ENHANCED POWER CONTROL MANAGEMENT FOR DIRECT METHANOL FUEL CELL/BATTERY HYBRID SYSTEM VIA DUAL THRESHOLD CASCADE. Masters thesis, King Fahd University of Petroleum and Minerals.
PDF
Majed Aljeshi 202110630 - Thesis.pdf Restricted to Repository staff only until 14 August 2025. Download (5MB) |
Arabic Abstract
المقترح في هذه الرسالة هو اقتراح نظام عمل محسّن للتحكم في إدارة الطاقة الى عمل خلية ميثانول مع البطارية. يهدف نظام إدارة الطاقة المتكامل إلى إطالة عمر البطارية من خلال جعل خلية الميثانول هي المصدر الرئيسي لتزويد الطاقة للأحمال الخارجية مع استدعاء البطارية عند الضرورة فقط. ولتحقيق هذا الهدف تم وضع وحدة تحكم ذكية . تتمثل وظيفة جهاز التحكم الذكي في ضبط مستوى السائل داخل خزان الميثانول في نطاق معين يعبر عنه بحد علوي وحد سفلي بخلاف وضع مستوى ثابت داخل الخزان والمتعارف عليه. هذه الخاصية تنمنح خلية الميثانول القدرة على تغيير الحرارة بهدف تلبية الأحمال الخارجية في بعض فترات التشغيل حيث انه خلال هذه الفترة يتم فصل وتعطيل اقتران التحكم في مستوى الخزان عن أجهزة التحكم في درجة الحرارة. عندما يكون غير قادر على استيعاب الطاقة المطلوبة للحمل، يتم استخدام البطارية للتعويض في حالة الضرورة فقط. تم اختبار هذا النظام الذكي من خلال برنامج ماتلاب سيمولينك بهدف توضيح نتائج المحاكاة من خلال سيناريوهات عمل مختلفة.
English Abstract
An enhanced high-level power management control system for direct methanol fuel cell (DMFC)/battery hybrid device is proposed in this work. Integrated with parallel configuration of hybrid device, the power management system (PMS) aims to extend battery lifetime by making the fuel cell as the main source for supplying energy to external loads, while invoking battery whenever necessary. For satisfying this objective, a novel dual threshold cascade (DTC) controller is incorporated with PMS. The controller serves to regulate liquid-level in the methanol solution tank of the fuel cell but has a direct effect on thermal state and output power. Installing this controller in DMFC improves power performance of the cell by enabling it to shift the power from one state to another for satisfying load demand in some periods of operation, at which case master level and slave temperature controllers are de-coupled. In such periods where the controller is at manual mode, the battery stays uncalled. Whenever DMFC is unable to deliver the required power to the load, battery is used to compensate for the balance of power. The study is examined in a simulation environment using MATLAB and Simulink software suit, combining a comprehensive dynamic modeling of DMFC system, a reliable model of Li-ion battery and the improved PMS being proposed. Simulation results demonstrate that using dual threshold controller in PMS makes the DMFC/battery hybrid system to operate and satisfy the requested signal of load in various case scenarios being studied. In some cases, DMFC by itself is sufficient to feed the load while the battery is incorporated in other occasions. An example is the case when the load requests 47 W of power while DTC is on manual mode, at which case DMFC sends the entire wattage to the load while battery is not used. Utilizing improved PMS can lengthen the lifespan of the battery and make compact hybrid system. Some recommendations are suggested to advance this work in the future.
Item Type: | Thesis (Masters) |
---|---|
Subjects: | Chemical Engineering |
Department: | College of Chemicals and Materials > Chemical Engineering |
Committee Advisor: | Al-Yousef, Zuhair |
Committee Members: | Abussaud, Basim and Al-Shammari, Abdallah |
Depositing User: | MAJED ALJESHI (g202110630) |
Date Deposited: | 15 Aug 2024 06:07 |
Last Modified: | 15 Aug 2024 06:07 |
URI: | http://eprints.kfupm.edu.sa/id/eprint/143037 |