Experimental Investigation and Modeling the Heat of Hydration in Mass Concrete Structures

(2013) Experimental Investigation and Modeling the Heat of Hydration in Mass Concrete Structures. PhD thesis, King Fahd University of Petroleum and Minerals.

[img]
Preview
PDF (phd Dissertation)
Muneer-PhD_Dissertation_.pdf

Download (17MB) | Preview
[img]
Preview
PDF
Muneer-PhD_Dissertation_.pdf

Download (17MB) | Preview

Abstract

The hydration of cement in mass concrete structures produces high temperature.The temperature in the core of the mass concrete structures is higher than the temperature in the surfaces that are closer to ambient air. This temperature gradient leads to the development of thermal stresses, which may cause cracking if thermal stresses exceed the tensile strength of concrete at early age. This research focuses on conducting an experimental program for 46 different mixes using iQdrum heat signature and heat box to obtain the heat of hydration and temperature rise. The mechanical properties of these concrete mixes such as tensile strength, compressive strength, and modulus of elasticity were also conducted. The effect of mineral admixtures, such as fly ash, ground granulated blast furnace (GGBFS) slag, and silica fume, on heat of hydration was investigated. The effect of steel and polypropylene fibers on the heat of hydration and on the cracking index of mass concrete at early age was studied. The temperature rise, the peak temperatures, and strains for different seven mock-up specimens and for actual structures such as pilescap, were monitored. The viscoelastic behavior of mass concrete at early age was simulated by using the finite element nonlinear approach The finite element model predicted the temperature rise in the mass concrete structures, and associated thermal stresses The finite element model has ability to indicate to whether the cracks will form or not. Based on experimental and numerical investigations, guidelines will be developed for mass concrete in Kingdom of Saudi Arabia (KSA). These guidelines will help in reducing the risk of cracking due to high temperature gradient between core of concrete and its surface.

Arabic Abstract

عول حٍ اها حُ الاسو دٌ ف الو شٌاخ الخشسا حًٍ راخ الىرل الىث شٍج ذ لْذ دسخاخ حشاسج عال حٍ . دسخح الحشاسج ف هشوض ا سّظ الىرل الخشسا الىث شٍج أعلى ه اٌِ ف السط ذْ الوعشضح لذسخح الحشاسج الخاسخ حٍ. الفشق ت يٍ دسخح الحشاسج ف هشوضالىرلح الخشسا حً سّّط اِ لذ دٌْي الى ذ لْ ذٍ الاخر اِداخ الحشاس حٌ اّلر وٌىي اى ذسثة ف ذشىل الشم قْ رّله ف حالح ذدا صّ الاخر اِداخ ال اٌذدح عي الحشاسج هما هّح الخشسا حً للشذ ف عوش هثىش ) هشحلح هاتعذ الصة(. زُا الثحث س فْ شٌوض على إخشاء الرداسب الوخثش حٌ تاسرخذام خ اِص الىلش هّ رٍش ا اّلص ذٌ قّ الحشاسي على 64 خلطاخ خشسا حًٍ هخرلفح.ذن ل اٍط الخ اْص الو ىٍا ىًٍ حٍ للخلطاخ الوذس سّح هثل هما هّح الضغظ هّما هّح الشذ عّاهل الوش . ذود دساسح ذأث شٍ الاضافاخ الخشسا ف الحشاسج ال اٌذدح هي اها حُ الاسو دٌ. لمذ ذن ل اٍط ذغ شٍ دسخح الحشاسج دّسخح الحشاسج الاعظو حٍ لىرل اّلرش اُْخ لسثع ع اٌٍخ خشسا حًٍ ذدش ثٌ حٍ ) ه وْة( لّو شٌاخ خشسا حًٍ راخ ورل وث شٍ هثل تلاطح الخ اْص كٌ راخ السواواخ الىث شٍج .لمذ اخش دٌ وًزخح السل نْ اللضج الوشى للخشسا حً ف عوش هثىش ) هشحلح هاتعذ الصة ( تاسرخذام طش مٌح الع اٌصش الو رٌ حٍِ اللاخط حٍ. وً رْج الع اٌصش الو رٌ حٍِ س فْ مٌ مْ ترمذ شٌ دسخاخ الحشاسج ف الىرل الخشسا حًٍ الاخ اِداخ الحشاس حٌ ذّحذ ذٌ ف وٍا إرا واى س فْ رٌن ذشىل الشم قْ رً دٍح ذله الاخ اِداخ . تالاعرواد على ال رٌائح الوخثش حٌ العذد حٌ س فْ رٌن وراتح اشرشاطاخ خاصح تالو شٌاخ الخشسا حًٍ راخ الىرل الىث شٍج ف الوولىح العشت حٍ السع دْ حٌ. ذله الاشرشاطاخ س فْ ذعول على ذخف فٍ خطش الرشمماخ ال اٌذدح عي الفشق الحشاسي ت يٍ هشوض الىرلح الخشسا حًٍ سّطح اِ .

English Abstract

Full Text Status: Restricted Abstract: The hydration of cement in mass concrete structures produces high temperature.The temperature in the core of the mass concrete structures is higher than the temperature in the surfaces that are closer to ambient air. This temperature gradient leads to the development of thermal stresses, which may cause cracking if thermal stresses exceed the tensile strength of concrete at early age. This research focuses on conducting an experimental program for 46 different mixes using iQdrum heat signature and heat box to obtain the heat of hydration and temperature rise. The mechanical properties of these concrete mixes such as tensile strength, compressive strength, and modulus of elasticity were also conducted. The effect of mineral admixtures, such as fly ash, ground granulated blast furnace (GGBFS) slag, and silica fume, on heat of hydration was investigated. The effect of steel and polypropylene fibers on the heat of hydration and on the cracking index of mass concrete at early age was studied. The temperature rise, the peak temperatures, and strains for different seven mock-up specimens and for actual structures such as pilescap, were monitored. The viscoelastic behavior of mass concrete at early age was simulated by using the finite element nonlinear approach The finite element model predicted the temperature rise in the mass concrete structures, and associated thermal stresses The finite element model has ability to indicate to whether the cracks will form or not. Based on experimental and numerical investigations, guidelines will be developed for mass concrete in Kingdom of Saudi Arabia (KSA). These guidelines will help in reducing the risk of cracking due to high temperature gradient between core of concrete and its surface. Date: 21 December 2013 Publisher: KFUPM References: l

Item Type: Thesis (PhD)
Subjects: Civil Engineering
Civil Engineering > Structural Engineering
Department: College of Design and Built Environment > Civil and Environmental Engineering
Committee Advisor: Baluch, M.H.
Committee Members: Al-Gadhib, Ali. and Al-Amoudi, Omar and Shamshad, Ahmad
Depositing User: MUNEER KAID SAID ABDO (g200505410)
Date Deposited: 16 Apr 2014 06:26
Last Modified: 01 Nov 2019 15:41
URI: http://eprints.kfupm.edu.sa/id/eprint/139128