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Chapter 1

INTRODUCTION

Advances in coding plays an important role in the astounding increase in capacity
of today’s digital storage. The advances in materials, manufacturing techniques,
electronics and mechanical design make compact discs, digital audiotape, floppy
disks, video disks, and hard disks possible. But the usage of storage capacity close

to their theoretical maximum is made possible by coding.

1.1 Coding

Coding techniques are used in communication systems to improve the reliability
of the communication channel. The reliability is commonly expressed in terms of
the probability of receiving the wrong information. Information theory partitions

the coding problem into two main categories: source and channel coding. Source



coding is a technique to reduce the source symbol rate by removing the redundancy
in the source signal. Channel coding is the technique of realizing high transmission
reliability despite shortcomings of the channel, while making efficient use of the
channel capacity.

Codingisa~ of rules for assigning, to a source sequence, another sequence that
is recorded. 7 ¢ aim of this transformation is to improve the reliability or efficiency
of the recording channel.

In recorder systems, channel coding consists of two steps, finding

1. an error correction code,

2. arecording code.

Error correction control is performed by adding extra symbols to the message. Reed-
Solomon codes are quite suitable for recording applications because they can combat
combinations of random as well as burst errors. Recording code converts the input

bit stream to a waveform suitable for the specific recorder requirements.

1.2 Channel Constraints

The special attributes that the recorded sequences should have to render it compat-

ible with the physical characteristics of the available transmission channel are called

channel constraints.



Long sequences of like symbols easily foil the timing recovery or the adaptive
equalization. It seems quite rcasonable to try to protect against such vexatious
cases by removing them from the input. A coding step in which particular sequences
are forbidden to minimize the effect of worst-case patterns is a good example of a
recording code. The channel constraints considered here are deterministic by nature
and are always in force. A typical example of a channel constraint and its description
in time-domain terms is that of scquences containing restricted run length of like
symbols. Channel constraints can also be described in frequency-domain terms.
Common magnetic recorders do not respond to low-frequency signals so that in order
to minimize distortion of the retrieved data, one usually eliminates low frequency
components in the recorded data by a coding step.

Scrambling is often advocated to climinate ‘worst-case’ effects in the data. Scram-
blers use pseudo-random sequences to randomize the statistics of the data. making
them look more like a stationary sequence. There are, however, input patterns, for
which scramblers will fail. since any technique that performs a one-to-one mapping
between input and output data by necessity does not remove error-prone sequences
and remains vulnerable to problematic inputs. Recording codes are also used to
include position information for servo systems and timing information for clock re-
covery.

The digital symbols can be represented by physical quantities in many ways.

Most digital recording systems currently in use are binary and synchronous, which



means that in each symbol time interval, or time slot, a condition of, for example,
pit or no pit, positive or negative magnctization, etc., is stored. During read-out,
the receiver, under the control of the retrieved clock, properly phased with respect
to the incoming data, samples the retrieved signal at the middle of each time slot.

The recording code must be capable to regenerate the bit clock in the player
from the read-out signal. To permit this, the number of pit edges per second must
be sufficiently large, and in particular the maximum runlength must be as small
as possible. Another requirement relates to the ‘low-frequency content’ of the read
signal. This has to be as small as possible. There are two reasons for this. In
the first place, the servo systems for track following and focusing are controlled by
low-frequency signals, so that low-frequency components of the information signal
could interfere with the servo-systems. The second reason is illustrated in figure 1.1,
in which the read signal is shown for a clean disc (a) and for a disc that has heen
soiled. e.g. by fingermarks (b).

This causes the amplitude and average level of the signal to fall. The fall in level
causes a completely wrong read-out if the signal falls helow the decision level. Errors
of this type are avoided by eliminating the low-frequency components with a filter
(c). but the use of such a filter is only permissible provided the information signal
itself contains no low-frequency components. The high-pass filter should be chosen
to pass the signal and to reject the low-frequency noise. It cannot simultaneously do

both completely; the filter is chosen as a good compromise between these conflicting
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DL is decision level

0%

(a) for a clean disc

100%

0%

(b) for a soiled disc

(c) for a soiled disc after
the low frequencies have
been filtered out

Because of soiling, both amplitude and the signal level decrease; the
decision errors that this would cause are eliminated by the filter

Figure 1.1: Read-out signal for six pit edges on the disc



goals. In the Compact Disc system the frequency range from 20 kHz to 1.5 MHz is

used for information transmission; the servo systems operate on signals in the range

0 to 20 kHz. (1]

1.3 Inter Symbol Interference

When a single pulse is transmitted over a bandwidth-limited system, it is smeared
out in time due to convolution with the channel’s impulse response. A sample at
the centre of a symbol interval is a weighted sum of amplitudes of pulses in several
adjacent intervals. This phenomenon is called intersymbol interference (ISI). If
the product of symbol time interval and system bandwidth is reduced, the ISI will
become more severe. A point may eventually be reached at which this effect becomes
so severe that the recciver, even in the absence of noise. can no longer distinguish
between the symbol value and the IS and will start to make errors.{2]

According to Nyquist's criteria for distortionless transmission, all ISI can be elim-
inated prior to detection by means of a lincar filter which equalizes the characteristics

of the channel. In practice there are difficulties in providing correct equalization at

all times.
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1.4 Physical Attributes

Tape surface asperities and substrate irregularities may cause variations or fluctua-
tions in the intimacy of head contact, which changes the response at high frequencies
much more than at low frequencies. In disc drives, the varyving radii of tracks re-
sults in a linear density variation of about two to one, and the thickness of the air
film, which is a function of the disc-licad speed, is also subject to change. In the
compact disc, spindle wobble and disc warp mean that the focal plane is contin-
uously moving and the spot quality will vary due to the finite bandwidth of the
focus servo. Optimum equalization is difficult to maintain under dynamic condi-
tions, although an adaptive equalizer can be used to follow the dynamic changes.
A recording code must be designed to show a certain acceptable ruggedness against
the aforementioned dynamic changes of the channel’s characteristics.

The physical parameters mentioned above are associated purely with the one-
dimensional communication channel approach. Designing for high linear density
cannot be the sole objective. In a system approach, both dimensions, track and
linear density, should be considered. In magunetic recorders, signal amplitude and
signal-to-noise ratio are proportional to the track width. In this sense, linear and
track density are traded against each other. For mechanical design simplicity, high-
performance digital tape recorders such as the DAT (Digital Audio Tape) recorder

are designed to operate at relatively high linear densities but low track density. With



the use of wide tracks with high lincar densities, ISI rather than (additive) noise is
frequently the limiting factor. This statement is specially true for optical recording
systems where noise is virtually absent.

The choice of a particular code depends on numerous factors such as available
signal-to-noise ratio, clocking accuracy, non-linearities, and intersymbol interference.
Other constraints, such as equipment limitations. ease of cncoding and decoding,.

and the desire to preserve a particular mapping between the source and the code

symbols all govern the encoding chosen.

1.5 Sofic Systems

Channel constrained codes can be considered subsets of output sequences of so-called
sofic systems. A finite directed graph whose edges are labeled by symbols from a
finite alphabet defines a sofic system. The sofic system is the set of all bi-infinite
sequences of symbols generated by bi-infinite paths in the graph. The graph together
with its edge labeling presents a sofic system.

Two special types of sofic systems arise in theory and practice. The casiest to
deal with are the shifts of finite type (SFT's). SFT can be presented by a labeled
graph in such a way that each clement is the label of a unique bi-infinite path in

the graph. A practically important class of SFT's are the (d,k) runlength-limited

systems.



The second special type of sofic system is almost finite type (AFT) sofic systems.
An AFT sofic system is one that can be presented by a labeled graph in such a way
that for all bi-infinite paths in the graph that are labeled are totally separated.
A practically important class of AFT systems that are not SFT's are the charge-

constrained systems [3]. The charge constrained systems are also known as bounded

running sum systems.

1.6 Runlength-limited Codes

Recording codes that are based on runlength-limited '(RLL) ones are usually used
in optical and magnetic disk recording practice. Runlength is the length of time
between consecutive transitions and is usually expressed in the number of binary
symbols.Runlength-limited sequences are characterized by two parameters, (d + 1)
and (k + 1). Relationship between code parameters and the physics of recording

systems are summarized for instance in [4].

The parameter d controls the highest transition frequency and thus has a bearing
on intersymbol interference when the sequence is transmitted over a bandwidth-
limited channel. In the transmission of binary data it is generally desirable that the
received signal is self-synchronizing or self-clocking. Timing is commonly recovered

with a phase-locked loop which adjusts the phase of the detection instant according
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to observed transitions of the reccived waveform.

The maximum runlength parameter k ensures adequate frequency of transitions
for synchronization of the read clock. The grounds on which d and k values are
chosen, in turn, depend on various factors such as the channel response, the desired
data rate (or information density), and the jitter and noise characteristics.

Recording codes that are based on runlength-limited sequences have found almost
universal application in optical and magnetic disc recording practice. Archetypes
are the rate 1/2,(d = 2,k = 7) code applied in the IBN3380 rigid disc drive [5], and
the EFM code (rate = 8/17,d = 2.k = 10) which is employed in the Compact Disc
(see Chapter 2 [1]). Runlength-limited codes, in their general form, were pioneered
by Berkoff [6], Freiman and Wyner [7]. Kautz [8]. Gabor [9], Tang and Bahl [10],

and notably Franaszek [11].

1.7 dk-limited binary codes

A dk-limited binary sequence, in short, (dk) sequence. satisfies simultaneously the

following two conditions:

1. d constraint: two logical "ones™ are separated by a run of consecutive “zeros’ of

length at least d.

2. k constraint: any run of consecutive ‘zeros’ is of length at most k.
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If only proviso (1.) is satisfied, the sequence is said to be d-limited (with & = o)

1

and will be termed (d) sequence.

In general, a (dk) sequence is not employed in optical or magnetic recording
without a simple coding step. A (dk) sequence is converted to a runlength-limited
channel sequence in the following way. Let the channel signals be represented by
a bipolar sequence y;,y;ie{—~1,1}. The channel signals represent the positive or
negative magnetization of the recording medium, or pits or lands when dealing with
optical recording. The logical 'ones’ in the (dk) sequence indicate the positions of a
transition 1 — —1 or —1 — 1 of the corresponding runlength-limited sequence.

The mapping of the waveform by this coding step is known as precoding as shown

in table 1.1.
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Table 1.1: Precoding

12

dk-sequence

runlength-limited
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Sequences that are assumed to be recorded with such a change-of-state encoding
step are said to be given in non-return-to-zero-inverse NRZI notation. Coding tech-
niques using the NRZI format are generally accepted in digital optical and magnetic
recording practice. The NRZI format is convenient in magnetic recording since dif-
ferentiation occurs as a part of the physical process in the heads. The original signal
is restored in a quite natural fashion by observing the peaks in the retrieved signal.
The peaks coincide with the 'ones’ of the stored sequence in NRZI notation. The
use of the NRZI format in non-differentiating channels, such as the Compact Disc,
is less obvious. The RLL sequence has the virtue that at least d+1 and at most k+1

consecutive like symbols occur.

In the table 1.2 some parameters of runlength-limited codes that have found

practical application are given.



Table 1.2: Various codes with runlength parameters d and k

fldl k] R | Code i
0] 1 | 1/2 | FM, Bi-phase
113 | 1/2 | MFM, Miller
217 | 1/2 2.0
17| 2/3 (1.7)
11| 1/2 3P
2110 | 8/17 EFM

14
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For recording codes that map m information bits onto n code bits, the minimun
separation between transitions is sometimes called the density ratio. The width of
the detection window is the duration during which the presence or absence of a
transition has to be detected. This detection window is of width m/n data bit in-
tervals and a large detection window is preferred due to possible bit synchronization
imperfections during the read process.

Immink [1] is an excellent book in introducing coding techniques for digital
recorders. Siegel and Wolf [12] discuss many types of modulation codes used in
magnetic recording and illustrate many examples of application of partial response
equalization, sampling detection, and digital signal processing in modulation and
coding techniques. Immink [13] is a tutorial to runlength-limited sequences and
Marcus [14] provides modulation code design techniques based upon the state split-

ting algorithin. Pohlmann[13] gives practical details of digital audio and optical disc

technology.
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Chapter 2

LITERATURE SURVEY

2.1 Runlength-Limited Error Control Codes

Runlength-limited codes with error correcting capabilities (RLLECC) are better
than concatenation of runlength-limited and error control codes. In concatenated
coding the constraints are met with an inner constrained code and the error correc-
tion is performed by an outer code. RLLECC have reduced complexity and in many
cases also improved rate [16]. It has been shown {17}, [18] that combined codes can
offer much improved efficiency in addition to simpler overall system.

Popplewell and O’Reilly [16] present a new class of RLL codes with a minimum
distance 4. The codes are formed by taking an appropriate coset of a linear trans-
parent error correcting code (LTECC) and are relatively simple to implement. {19]

solves the problem of selecting a coset which gives the lowest bound on runlength,

16
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i.e., an optimum coset.

Ferreira and Lin [20] emphasized systematic analytical code construction proce-
dures that work for any d constraint and implement casily coder and decoder. The
block codes are capable of detecting and correcting single bit-errors, single-peak
shift-errors, double adjacent-errors and multiple adjacent erasures.

Helberg and Ferreira [21] develop five new combined codes. Three methods are
described for introducing error correction capabilities. In the first one some distance
building characteristics are incorporated into the constrained code. In this way the
concatenability of the constrained scquences is taken care of by the original finite
state transition diagram that describes the constraints. In the second method the
constrained symbols are mapped onto a shift register graph to enhance the length
before emergence of the distance building paths. In the second method care must
be taken to ensure that the constraints are preserved. Hamming distance preserving
mapping is the third method. Codes are generated by shift registers and nonlinear
combinatorial logic and empirical technigues.

Helberg and Ferreira [21] develop a new (d.k) = (1.5) code that has the fewest
number of states and has a higher rate and density ratio than known codes. The
known codes have better error correcting capabilities. To achieve higher error cor-
recting capabilities, either complexity, rate, density ratio or a combination of these
parameters have to be sacrificed. A new (d,k)=(1.3) convolutional code increases

the free distance by increasing the number of states from three to four. This increase
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in the free distance has advantages when using soft decision Viterbi decoding.

Ferreira, Wright and Nel [22] discuss the concept of Hamming-distance preserv-
ing RLL codes. Fredrickson and Wolf 23] concentrate on RLL codes that can detect
shifted 'ones’ in the (d,k)-constrained bit stream. Lee and Wolf [24] present a general
algorithm for constructing a single error-correcting RLL code. The Euclidean dis-
tance between RLL sequences in the physical context of the noisy magnetic recorder
is investigated by Immink [25].

Patapoutian and Kumar[26] construct (d,k) error-correcting block codes by em-
ploying linear block codes. The scheme allows asymptotically reliable transmission.
For the same error-correction capability, the rate is comparable to the parent linear
block code. The single-error correcting code is asymptotically optimal.

The errors obtained in magnetic recording channels are the following:
1. 0 is changed into a 1

2. 1is changed into a 0

3. 1 is shifted one position in cither direction

Ytrehus [27] provides the construction of constrained codes for the mixed error
channel. Mixed error channel combines the binary symmetric channel and the peak

shift channel see table 2.1 for different channel models. The codes achieve code rates

close to the (d.k) capacity.
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Table 2.1: Set of Error Types in Different Channel Models

Channel

Set of error types

Binary Symmetric Channel (BSC)

0—1.1-0

Asymmetric Channel (ASC)

1-0

Peak Shift Channel (SC)

LeftShift, RightShift

19
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Bassalygo [28] considers bounds on the size of a maximal such code. A lower
bound in the case of t-error correction is derived by considering the coset of a t-error
correcting BCH (Bose-Chaudhuri Hocquenghem) code of length n that contains the
maximum number of constrained n-tuples.

Ytrehus [29] gives upper bounds derived on the number of codewords in error
correcting (d,k) constrained block codes. The results suggest that in such codes
fairly long block lengths are necessary to achieve code rates close to capacity.

Immink {30] describes a new technique for constructing fixed length (d,k) runlength-
limited block codes. The basic idea of the new construction is to uniquely represent
each source word by a (d.k) sequence with specific predefined properties, and to
construct a bridge of 3, 1 < 3 < d., merging bits between every pair of adjacent
words. An essential element of the new coding principle is look ahead. The new

constructions have the virtue that only one look-up table is required for encoding

and decoding.

2.2 DC-free Sequences (Bounded Running Se-
quences)

According to Immink (1] binary sequences with spectral nulls at zero frequency have
wide application in optical and magnetic recording systems. DC balanced codes can

be used to reduce interaction between the data written on the disc and the servo
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systems that follow the track. The low frequency disturbances for example due
to finger prints may cause completely wrong read-out if the signal falls below the
decision level. Errors of this type are avoided by high pass filtering. In balanced
codes each symbol has the same number of 0's as 1's. Balanced codes are assumed
to have null at de. [31] presents a thorough treatment of balanced codes.

Practical coding schemes devised to achieve suppression of low-frequency com-
ponents are by mostly block codes. Basically three approaches have been used
for dc-balanced codes which are zero-disparity, low-disparity and polarity-disparity.
The disparity is defined as excess nnumber of *ones’ over the number of zero’s in
the codeword. Zero-disparity codewords contain equal number of ‘ones’ and ‘zeros’.
In low-disparity the translations are not one-to-one. In polarity-disparity for code-
word of n digits the (n-1) source symbols are supplemented by one symbol called
the polarity bit. The encoder has the option to transmit the n-bit words without

modification or to invert all symbols [1].

2.3 Running Digital Sum (RDS) Constrained

A code is said to be Running Digital Sum (RDS) constrained if all possible infor-
mation sequences can be encoded into sequences such that the sum is bounded by
some given positive integer. Pierobon [32] shows that the power density function of

an encoded sequence vanishes at zero frequency if. and only if, the encoder is a finite
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running digital sum encoder. Justesen [33] and Immink [34] show that sum variance
could be a valuable criterion of the low-frequency characteristics of a channel code
and sum variance of a dc-free sequence is simple to calculate.

Blaum et al [35] present a new approach for encoding any string of information
bits into a sequence having bounded running digital sum. The results are better than
the previously known values of the RDS for same rate. These codes also provide
error correcting capabilities. Cohen and Litsyn [36] give the asymptotic bounds on
parameters of error-correcting codes with small running digital sum. The bounds
demonstrates the existence of long codes with good error-correcting properties.

Deng et al [37] present a class of convolutional codes which have both DC-free
and error correcting properties and which can be encoded and decoded easily.

Barg [38] states that the codes formed by vectors of values of characters of
polynomials with argument running over (a subset of) points of a finite field are
a frequent object of investigation, since one can estimate their parameters via the
classical inequalities for the values of exponential sums. In [39] it is observed that
applying estimates of incomplete sums, one can prove that some codes of this type
have small running digital sum compared to the block length. Barg [38] derives an
extension of the results of [39] to nonprime extension fields and to the nonbinary

case, which leads to new families of error-correcting de-constrained codes.
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2.4 Problem Definition

Conventional linear Error Correcting Codes do not possess desirable recording code
properties since they have unbounded running disparity and have unlimited run-
lengths which can lead to several problems. To combat noise present in the record-
ing channel, several schemes for error-correction have previously been considered
employing error-correcting code surrounding an inner modulation code.

Runlength constraints can be used for error correction and DC-free sequences.
Generally, codes which combine error correction and runlength constraints are better
than concatenated schemes. Runlength constraints can be applied on the running
digital sum or on the maximum/minimum consecutive sequence of 1's or 0's. Codes
with dpin = 4 are used in runlength limited sequences. Channels that can accept
only a subset of all possible input sequences. called constrained channels, would be
considered here.

In transparent codes the logical complement of the code is also a code vector.
Transparent codes are not discussed in the literature in sufficient detail. Several
properties of transparent codes are investigated. Reflective codes are subclass of
transparent codes. Several properties of reflective codes are also investigated. Study
of transparent codes also helps in the construction of runlength limited codes. Sev-
eral runlength codes which are transparent in nature have been developed and their

properties such as maximum runlength, length of code vector, length of information
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vector, weight enumeration, duality are discussed.

In the literature there is a detailed study of dual codes and their properties. But
there seems to be a lack of study of transparent codes. It is envisaged to inves-
tigate transparent codes and their properties in particular with respect to weight
distribution. Popplewell [16] defines transparent codes which are of d,;, = 4 and
satisfy certain conditions. We start out to investigate a subclass of transparent codes
defined by Popplewell with the aim of improving the results by Popplewell et al.

Linear transparent block codes can be modified by adding to each codeword a
modification vector, so that runlength constraints are satisfied. The new code can
be decoded quite easily and it shares the transparent property with the parent code

as well. The powerful theory of binary linear block codes can be applied to the

modified codes.
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Chapter 3

GENERAL PROPERTIES OF

TRANSPARENT CODES

In this chapter linear codes and and Hamming weight are briefly explained. The
concept of logical inverse is discussed in detail. Generator Matrix G and parity check
matrix H are discussed with some new definitions and propositions. Reflective codes

are also briefly discussed in this chapter. Finally runlength is discussed in much

detail.

3.1 Galois Field

Finite fields do not exist for any arbitrary number of elements. In general, they

exist only when the number of elements is a prime number or is a power of a prime

N
it
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number. The former are called prime fields, while the latter are called extension

fields over the prime field.

Definition 3.1.1 Let R be a set, + and - be two binary operations on R and 0,1

be special elements of R. If further that :
1. (R,+,0) is an abelian group
2. (R/0,-,1) is an abelian group
3. the distributive laws hold: For every a,b,c € R
alb+c)=ab+ac
(a + b)e = ac + be

then (R.+,.,0,1) is called « field. If R is finite and has q clements then the field is

called finite or a Galois field and is denoted by GF(q).

3.2 Linear Codes

Definition 3.2.1 A linear code of length n is a subspace of the vector space GF(q)"

where GF(q) is some Galois field.

In other words, a linear code is a nonempty set of n-tuples over GF(q) called
codewords such that the sum of two codewords is again a codeword, and the product

of any codeword by a field element is a codeword. For any linear code, the all-zero
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word, as the vector-space origin, is always a codeword. More directly, if c is a

codeword then its additive inverse —c is a codeword too and hence ¢ + (—¢) =0 is

a codeword.

Definition 3.2.2 Let K be a subset of GF(q)". The Hamming weight w(a) of any
word of GF(q)" is equal to the number of nonzero components in C. The minimum
weight w(K') is the smallest weight of any nonzero word of K.

The Hamming distance between two words a and b is the number of places where

they differ, and is denoted by d(a.b).

The minimum distance d(K) of ' is the smallest Hamming distance of two dis-

tinct words of K'; i.e.,

d(K') = min{d(a,b)|a,b € K.a # b} (3.1)

Example 3.2.1 The Hemming distance of two pairs of words defined over GF(2)
and GF(3) respectively is

d(10111,00101) = 2 and d(0122.1220) = 3.

If u = u...up, v = vp...0, are vectors (with components from a field F), their

scalar product is
u-v=uty+..+u,v, (32)

evaluated in F. If u - v = 0, u and v are called orthogonal.
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Definition 3.2.3 If C is an (n,k) linear code over field F, its dual or orthogonal

code C* is the set of vectors which are orthogonal to all codewords of C:
Ct={uju-v=0 foralve C} (3.3)

Proposition 3.2.1 Let C be « linear code. Then every coset corresponding to C

has the same minimum distance as C.

Proof: Assume that C is a linear code and C’ is a coset obtained by adding a
non-codeword m to every codeword in C. Suppose ¢’ € C’, then ¢' = a + m for
some a € C. The distance d(«,0) would change to d{a + m,m) = d(a’,m). Since
d(a,b) = d(a + b.0) it follows that d(a + m.m) = d{a + m + m,0) = d(a,0). Thus

even after addition of vector m the minimum distance of coset C’ is same as of the

original code. O

3.3 Quasi-Cyclic Codes

Definition 3.3.1 A Code C is quasi-cyclic (QC) if it is linear and if a right circular
shift of p positions of any codeword of C is also in C. i.e.. whenever (cg, €. ....Cne1)

1s in C then so is

If p=1, C is called a cyclic code.
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Example 3.3.1 For p=2, « 2-cyclic code. with n = 6, k = 3 is defined by the

generator matriz

All the codewords of the (6,3) 2-cyclic code are shown in table 3.1.



Table 3.1: (6,3) 2-cyclic code

il Message | Codeword ||
0 000000
000011
001100
001111
110000
110011
111100
111111

] O Ut = W N
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3.4 Transparent Codes

Definition 3.4.1 A code C over GF(2™) is a transparent or self-complementary

code if the logical inverse of every codeword is also a codeword.

3.4.1 Logical Inverse

The logical inverse of the codeword over a binary field is the one’s complement.
To find the logical inverse of a binary extension field element, find its binary rep-

resentation, find its one’s complement and find the corresponding symbol over the

extension field.

Example 3.4.1 If the codeword of length n = 8 over GF(2) is given by 11001100,

then the logical inverse would be 00110011.

Example 3.4.2 Assume now that a codeword of length n is given in exponential
representation:

32 3
w = 0a%'a3a?aba’a®

This codeword can be described in binary representation using the table (3.2).



Table 3.2: Symbols of GF(23) expressed in binary form

I Message | Codeword | Logic Inverse ||

13

0 000 o’
a® 001 at
al 010 ab
a? 011 a?
a? 100 a3
al 101 al
a? 110 a’
a? 111 0
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The codeword w can be written in terms of binary numbers «as:

w = (000)(001)(010)(011)(100)(101)(110)(111)

The codeword w', the complement of the codeword w. in binary representation would

be:

w' = (111)(110)(101)(100)(011)(010)(001)(000)
Finally finding the corresponding symbols in exponential representation:

5 2 7
' = a’a'a®a?a’at a0

To find the complement of any code C over a binary extension field, C is ex-
pressed in terms of binary symbols. Then the logical complement is obtained by
changing zero’s to one’s and one's to zeros.

Note that the complement of a ficld clement must always be a different field
element; i.e., the notion of a self-complemented codeword does not exist. This
means that any field, each of which has a complement. must have an even number of

elements. This excludes all finite fields, except for the binary field and its extension

fields.

Proposition 3.4.1 A linear code over GF(2) is transparent iff it contains the all-

one codeword.

Proof: Let C be a transparent code. Since C is a linecar code it contains the

all-zero codeword. The logical inverse of the all-zero word is the all-one word. Hence
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the all-one is always a codeword of a linear transparent code. Conversely, let C be
a linear code containing the all-one word codeword. If this codeword is added to
any codeword, the complement of the codeword is obtained and since by lincarity
the sum of any two codewords is also a codeword it follows that the complement is
included. Hence a linear code C containing the all-one word is a transparent code.

]

We make the basic assumption that from now on all transparent codes considered

are linear codes unless otherwise stated.

Example 3.4.3 Ifc = 11001100. is ¢ codeword of some code of length n over GF(2)

the complement is obtained by adding the all-one code vector:
11001100+ 11111111 = 00110011

Example 3.4.4 Let ¢ = a%a'0a’. be ¢ codeword of some code of length n over

GF(23). The complement is obtained by adding the all-one code vector a®a®a’a®

¢ =a’al0a’
55,55 2 5
a3a!0a® + a’a%0%a® = a2ala’a?

Thus the complement of ¢ is given by ¢ = a’a®a’a?

Proposition 3.4.2 A code over GF(2) is transparent iff every column of the gen-

erator matriz G contains an odd number of 1's.
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Proof: A transparent code always contain the all-one codeword. To get the all-one
codeword, the sum of every column must be one. Thus every column of the gencrator
matrix of a transparent code must contain an odd number of ones. Conversely, if
every column of the generator matrix contains an odd number of 1's, then the

addition of all rows of G yield the all-onc codeword. Since the all-one codeword is

present, the code is transparent. 0

Proposition 3.4.3 A code over GF(2) is transparent if every row of « parity-check

matriz H has an even number of 1's.

Proof: If ¢ is a codeword then cH' must be the all zero vector, i.e., the ¢ product
cH' must be zero. This will clearly be true if the row has an even number of 1’s
since the mod 2 sum of an even number of 1’s is always zero. 0O

For instance, if n=7 then ¢ = 1111111, then [1111111]H* could only be zero if

every row of H has an even number of 1's.
Proposition 3.4.4 The dual code of a transparent code is not transparent

Proof: It will be proved that Hamming codes are transparent codes but their

duals, the simplex codes, are not. Thus the dual of a transparent code is not always

transparent. a

3.5 Reflective Codes

Definition 3.5.1 A code C s reflective, if C' and its dual C*- are both transparent.
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The subclass of transparent codes proposed by Popplewell and O’Reilly belongs
to the class of reflective codes. Hamming codes are not reflective because the dual

code of a Hamming code is not transparent.

Proposition 3.5.1 The generator matriz G and parity-check matriz H of a reflec-

tive code have the following properties:
1. every row of G and H has an even number of 1's.

2. every column of G and H has an odd number of 1's.

Proof: By Proposition (3.4.2) the G matrix of a transparent code has an odd
number of 1's and by proposition (3.4.3) H has even number of 1's in every row.
Since the dual of reflective code is also transparent. It follows that the G matrix of

a reflective code has an even number of 1's in every row and the H matrix has an

odd number of 1's in every column. 0

3.6 Runlength

Runlength constraints are very important in storage devices. If the runlengths are
very short then many distortions are caused by inter-symbol interference and if the
runlengths are long enough then problems of synchronization and low frequency
components are encountered. Low frequency components must be avoided because

a lower spectrum is occupied by the control signals.
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Definition 3.6.1 A (possibly infinite) sequence s over the (finite) alphabet A has

runlength RL(s,a) if it is the mazimum number of consecutive symbols a € A in s.

The sequence s has mazximal runlength RL,,..(s) if

RLyaz(s) =3¢ {RL(s,a)} (3.4)

and unlimited runlength if RL(s,a) is the length of the sequence.

If s is a sequence of words of C € A", i.e., s € (A")", where (A™)" is the set of

all sequences of words of C. then

RL(C.a) -L"E‘{“,. o {RL(s,a)} (3.3)
and
RL .y (C) =3 {RL(C.a)} (3.6)

The maximal runlength of a sequence of codewords can be determined from the

G matrix of the given code. To this end we use the following proposition.

Proposition 3.6.1 A code C' contains a nonzero codeword of Humming weight w

or less iff « linearly dependent set of w columns of H exist.

Proof: For any codeword c¢. cH' = 0. Let ¢ have weight w. Drop the components of
c that are zero. This is a lincar-dependence relation in w columns of H. Hence, H
has a linearly dependent set of w columns. Conversely, if H has a linearly dependent

set of w columns, then a linear combination of at most w columns is equal to zero.
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These w non-zero coefficients define a vector of weight w or less for which cH' = 0.

a

Definition 3.6.2 Let G be ¢ (fized) generator matriz of ¢ binary linear transparent

code. Then

RS is the marimum number of consecutive columns of G including the first

column (Start).

RE is the mazimum number of consecutive columns of G including the last

one (End).

RM is the mazimum number of consecutive columns of G excluding the first

and last one (Middle).
Now let € be the set of all permutations of columns of G. Then
RSnin(C) = MIN{RS|G € &}

REnin(C) = MIN{RE|G € €}
RMin(C) = MIN{RM|G € €}

RS
Proposition 3.6.2 A subset C € A" has mazitnal runlength

RL,:(C) = MAX{RE + RS. RA} (3.7)
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where RS(¢), RE,;z(a) and RM(a) are the mazimum numbers of consecutive
symbols a in any word of C at the start. end and anywhere in the middle, respectively.

If RS(a) = RE(a) = RM(a) = n then C has unlimited runlength.

Proof: If a sequence of codewords does not contain any all-one or all-zero code-
words then maximum runlength could be expressed as the maximum number of
consecutive symbols (1/0’s) in middle of the codeword or it could be the sum of

maximum consecutive symbols in the end of preceding codeword and the start of

succeeding codeword. m]

Proposition 3.6.3 If C is a (n,k) linear block code then RL 4 < 2k.

Proof: Note from matrix theory that since the rank of an (n, k) matrix corresponds
to the number of linearly independent rows or columns, the rank < MIN{n.k} =k
for all error control codes, whence RS,,in < k. RM,in < k and RE,,;, < k. Since
RLer = MAX{RS + RE,RM}, it implies that RL,,., < 2k. m]

Linear transparent codes over GF(2) have unlimited runlength due to the inclu-
sion of the all-zero and the all-one codeword. Therefore to produce ECCs having
limited runlengths we need to find a set of codewords which does not contain the

all-zero or all-one word whilst at the same time will retain the minimum distance

properties of the parent ECC.
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Chapter 4

TRANSPARENT CODES

Some of the popular codes are found to be transparent for instance Hamming codes,
Repetition code, Perfect codes, Golay code. This chapter provides a brief overview

of these codes and some propositions regarding properties of transparent codes.

4.1 Hamming Codes

Definition 4.1.1 A binery Hamming code is defined by its code length n and mes-
sage length k, n = 2" -1 and k = 2™ —m —1 where m > 2. The dual of « Hamming

code s called simplex code or maximum length code.See Fig.(4.1).

40



Length:

n=2"-1=nt

Information symbols:

k=2"-m-1= m*

Minimum distance:

d=3

Length of information message
for the dual Hamming code:

m =kt

Error control capability:

Perfect codes for
correcting single errors

Figure 4.1: Properties of Hamming Codes
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Proposition 4.1.1 A parity check matriz H of a binary (n,k) Hamming code has
every column different from any other one and none is the zero column vector. Since

n = 2™ — 1 all nonzero vectors of length m are present.
Proof: This is simple proof see [40]. 0o

Proposition 4.1.2 Every row of parity check matriz H of a binary Hamming code

(n,k) has weight of 2"~ 1.

Proof: All the non-zero vectors of length m are present in the columns of the H
matrix. This implies that half the entries of every row of H are 1. Since the total
number of columns are 2™ (including all-0), it follows that the weight of every row
is half of 2™; i.e., the weight of every row of the H matrix is 2™~ O

For example see fig. 4.2 and fig. 4.3.
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Figure 4.2: Parity-check matrix of the Hamming code (7,4)
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000111100001 111

011001100110011

101010101010101
Figure 4.3: Parity-check matrix of the Hamming code (15,11)

0000O0OO0COI1II1T1T11T1T1I1
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Proposition 4.1.3 Any binary (n.k) Haemming code C is transparent.

Proof: For Hamming code (n, k) where n = 2™ — 1 and £ = 2™ — m — 1 all rows
of the parity-check matrix have weight 2"~ by Proposition (4.1.2) . But 2™~! is
always even by Proposition (4.1.2). This implies that all rows of the parity-check
matrix of a Hamming code have an even number of 1s. Hence by Proposition (3.4.3)

the all-1 codeword exists. Thus Hamming codes are transparent. 0o

Proposition 4.1.4 The simplex (n.k) code (dual of Hamming code) is not trans-

parent.

Proof: The parity-check matrix of the dual of a Hamming code is the generator
matrix of the Hamming code. Since all non-zero vectors of length m are present in
the columns of the parity-check matrix all non-zero vectors of length m are present in
the columns of generator matrix of the simplex code. Since all the non-zero vectors
of length m are present it follows that some columns of the generator matrix have
even number of one’s. Since even number of one’s are present in the columns of

generator matrix, it shows that this code could not be the transparent code. Thus

Simplex code is not transparent.See fig. 4.4 and fig.4.5. 0O
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011 1000
101 0100
H_110 0010
111 0001

Figure 4.4: Parity-check matrix of the dual Hamming code (7,4)

46



47

W
[ 3 = o= I <> W < I oo B o T wo I e R
OO 00O OO ~O
COO0OOODOOO~OO
OO0 OoOO A0 00
COoOO0OO0 OO 0000
OO0 0O OO0 OO
OO H OO OO OO
[ R == R o= T I <o B o B = I« R e T B em)
oM OO0 C OO OC
O - OO0 OO
- OO OO0 OO
_oee—E O A O~ O
—_, O A O OO~
O A OO O o~
OO mr+ =
. s

I

o

Figure 4.5: Parity-check matrix of the dual Hamming code (15,11)
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4.2 Repetition Codes

Definition 4.2.1 The repetition code (n,1) contains two codewords, the sequence

of n zeros and the sequence of n ones.
Proposition 4.2.1 Every repetition code is a transparent code.

Proof: In repetition code, there are two code words which are all 1’s and all 0’s.
These two are 1’s complement of each other. Thus the repetition code is transparent.
a

For example the codewords of the (5,1) repetition code are 00000 and 11111.

These are 1's complements of each other. Thus the repetition code is a transparent

code.

4.3 Perfect Codes

Visualize a small sphere about each of the codewords of a code, each sphere with
the same radius (an integer). Allow these spheres to increase in radius by integer
amounts until they cannot be made larger without causing some spheres to intersect.
That value of the radius is equal to the number of errors that can be corrected by
the code. It is called the packing radius of the code. Now allow the radii to continue
to increase by integer amounts, until every point in the space is contained in at

least one sphere. That radius is called the covering radius of the code. The packing
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radius and the covering radius are equal in case of perfect codes.

Definition 4.3.1 A perfect code is one for which there are equal radius spheres

about the codewords that are disjoint and completely fill the space.

Examples of perfect codes are the (n,1) repetition code when n is odd and the

Hamming Code.

Proposition 4.3.1 A perfect t-error correcting binary (n.k) code exists, if the num-

bers n, k and t satisfy the following equation.

<[+ 6)- Ol

Proof: For a (n,k) linear perfect code over GF(2). the number of codewords is 2*.
Codes having all the words in spheres of radius 1 are single error correcting. There
could be n number of words at a distance 1 from any code word. Thus we have a
total number of words equal ton +1 = ('(;) + ('l') at distance less than or equal to
1 in one sphere. So the total number of words in all spheres of radius 1 becomes
2¢ x (n + 1). In perfect codes all the words are within spheres. Thus the total
number of words 2" is equal to the words within all spheres 2¥(n 4+ 1). For spheres of
radius 2, there could be (8) + ('1') + ('_;) number of words in (or on) the sphere. Thus
total number of words 2" becomes 2* [(;) + ('l') + ('_;)] More generally, spheres of
radius t. contain (g) + ('l’) + ('_;) +-- 4+ (’;) words. Thus the total number of words

in all spheres would be 2% x ((8) + ('l') + ('_;) 4+ (',') ). Thus 2% spheres contain all
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2" points of the space.

O

Consider now for which parameters a binary perfect code could exist. If t =1,

or d = 3 we have (1 + n)2" = 2" so that n = 2" — 1. Letting m = n — k, we
have the parameters n = 2™ — 1.k = 2™ — 1, which are satisfied by the Hamming
code. So for this family of possible parameters. we have perfect codes with these
parameters. If ¢ = 2, we have (14+n+ ('_;) )2% = 2" so that 1 4+n + ('_;) = 2"* The
first n, for which 1 4+ n + (’2') is a power of 2, is n = 5. A perfect code with these
parameters is the (3, 1) repetition code. If t = 3, a sphere contains 14 n + ('2') + (g)
points and this is a power of 2 for n = 23. This vields the a (23,12) binary Golay
code withd =7. 14 2n+ 4('_;) is a power of 3 for n = 11 and the perfect Golay

ternary (11.6) code with d = 5 is obtained.
Proposition 4.3.2 The Golay code (23,12) with d = 7 is a transparent code.

Proof: The weight distribution of the (23.12) Golay code with d = 7 is shown

in table 4.1 [40]. Since the all 1's codeword is present. the (23,12) Golay code is

transparent. a
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Table 4.1: Weight Distribution of Golay Code (n.k,d) = (23,12,7)

Weight | #ofequiweight
Codewords

0 1

7 253
8 506
11 1288
12 1288
15 506
16 253
23 1
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Proposition 4.3.3 All binary perfect codes are transparent.

Proof: The repetition code (n,1) when » is odd, and Hamming Codes (n, k) are
perfect and transparent. The Golay Code (23,12) is also perfect code. Thus all

linear binary perfect codes are transparent. )
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Chapter 5

MODIFIED CODES

In this chapter modification of codes is discussed. Algorithm for finding a modifi-
cation vector over binary fields and over binary extension fields are explained and

examples are given. Generator Matrix transformations from binary extension fields

to binary fields are developed.

5.1 Modification of Linear Codes

It has been proved that the transparent code contains the all-one codeword and
that its existence causes unlimited runlength sequences. A special vector called
modification vector is added to every codeword to limit the runlength.

The error correction capability depends upon the minimum distance of the code

[41], [42]). The error correction capability of the code is also preserved after adding
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an n-bit vector m € € with every codeword. This means that it is possible to encode
an information sequence by standard encoding methods but before transmitting the
codeword, one adds a particular constant modification vector so that the codeword
transmitted along the channel is now runlength limited. At the receiver side the
inverse operation is performed; thus, before any error correction is attempted, the
received word is first added to m and then standard crror control decoding can be

performed. This procedure is illustrated in Figure 5.1.
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(1]
Ut

Transmitter
error modify
control vector channel
encoder

Figure 5.1:

Block diagram of a system employing runlength limited ECCs

Receiver
modify error
vector control
decoder
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5.2 Modification Vector

A modification vector is needed to satisfy the runlength-limited constraints on the
codewords. The error correction capability is conserved due to the principle of
linearity. Undesired runlengths are avoided by adding suitable modification vector.

Given a generator matrix G for the ECC. First a systematic generator matrix is
determined by row operations and column operations. Then the systematic parity-
check matrix is obtained from the systematic generator matrix. The parity check
matrix H is obtained from the systematic parity-check matrix. Then row operations
are performed on the parity-check matrix such that the desired RL,,,. is obtained.
Some of the rows of H are needed to satisfy the constraints on RS,,;n, RE,;» and
RM ;. A new matrix s is obtained which contains the rows of H which are neces-
sary to satisfy the runlength constraints. Modification vector are obtained by solving

a set of equations. There are many possible solutions. A suitable modification vector

is chosen depending on the application.

Algorithm 5.2.1 Get H matriz for the given code C.

1. Rearrange H by performing row operations to produce H so that it satisfies the

following conditions:

(¢) H has at least one row = such that

il:,i =0 fO'I‘ alli = Rsmin +2. RSmiu + 37 e, n (51)



(b) H has at least one row = such that,

it:‘; =0 for
i=1,2,--+,p, MinRLpyor + p+ 2, MinRLypar +p+3,---,n  (52)

where p=1,2.---,n — MinRl,,q, — 2

(c) H has at least one row = such that,
hei=0foralli=1.2.--.n—REp,—1 (5.3)

2. If H does not satisfy all these conditions then there does not exist a coset that
satisfies the bound on MinRL,,,, and accordingly one or more of the bounds
on RE,in, RSmin 01 RM,,;, must be increased until all the conditions of 5.1,

5.2 and 5.3 are satisfied. The particular bound which is increased depends upon

which condition is not satisfied.

3. When H satisfies all the conditions in (2) then form « new matriz S which is

constructed from all rows of H that satisfy at least one of the conditions (a),
(b) and (c).
4. Solve the matriz equation
mS' = (5.4)

Any solution of this equation will produce a modification vector m which sat-

isfies the predetermined bounds on M[inRL,,,,.
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The parity check matrix may be put in this form by using a method similar to

Gaussian elimination; the procedure involves a maximum of

(n—k)(n—k ~1)= (n — k)? row operations (5.5)

For a given code the complexity of the procedure therefore increases with the square

of the number of check bits.

See the flow chart in figure(5.2).



Get matrix H from
the matrix G of the

code

Rearrange
»| matrix H
by row operations

Conditions
Satisfied ?

Bounds
adjusted

Matrix S is
consturcted

Solve Equation
mS =1

l

Suitable
Modification
Vector

Figure 5.2: Algorithm for suitable modification vector

13
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Proof: (Outline) To find a modification vector, m, which forms a coset satis-
fying the predetermined runlength bounds we must find m so that it simultaneously

satisfies the following conditions:

;
T"'l te nT-RS,,,;,,+1 # CI\R‘g"lin +l
i
My~ MAinRLpas+2 # C‘Z.A\!inRL".u-f-'Z
i
M3~ MALinRLmas+3 #  CyMinRLoar+3

Ma_AMinRLuyar—=2"" " Mn=1 7 C.';—.\l.'n RLmar—2m-1
My MinRLmas—1"""Ma # C:;—.\lierL,,.a,—l.rw
foralli =0,1,-.-,2% - 1, where C J'A is the set of words consisting of codeword bits
jtok.
If the received word r is a member of the set of error control codewords and
H = [h;;] is the parity check matrix then rH' = 0. Conversely if » is not a member

of the set of codewords then rH' # 0. So, since m is not a codeword it must satisfy
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at least one of the following equations:
Timgmih =1

2:':,[ 771,']12‘,' =1

(5.7)
z:?:, 777’1”’1!—1:.1' =1
To satisfy the first inequality in eqn. (5.6) we require,
n
Z mih.; =1 (5.8)
i=1

for some 2 =1,2,---,n— k.

Now if h.; =0 for all i = RS,,;;n + 2, RSsiw + 3.-+-.n then eqn. 5.8 becomes,

Rsvllill+[
mih.; =1 (5.9)
i=1
So if we select m - -+ mpg,,,, +1 such that eqn. (3.9) is satisfied we know that the

first inequality in eqn. (5.6) and hence the bound on RS,,;, is satisfied irrespective

of what we select as values for

MRS, in+2° Ny

Consider now the second inequality in eqn. (5.6). If there exists some row z of

Hsothat h.;=0forall i = 1. MinRL,,qe + 3. MinRL o +4,--+,n. ie.
my + Z mih.; =1 (5.10)
i=MinRLjar+3

then the first inequality in equ. (5.6) is satisfied simultaneously with the second

inequality in equ. (5.6) if we select my -« MyringL,.,, +2 Such that my - -mps . 4
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satisfies eqn. (5.9) and ma- -+ Mprinpr,,. +2 Satisfies eqn. (5.10). This allows m to

satisfy the bound on RS,,;, and also on MinRL,,,. over the first MinRL, 40 + 2

bits of m.

Thus in general to simultancously satisfy the set of inequalities in eqn. (5.6) it

suffices to have at least one row :z of H so that,
h.;=0foralli=RS,;, +2,RSin+3.---.n (5.11)
at least one row so that,
h.i=0foralli=12:--,p,MinRLpor +p+2, MinRLpo +p+3,-+-,n (5.12)
where p=1,2,---,n — MinRL,,.. — 2 and at least one row so that,
h,i=0foralli=1,2,---.n - RE,;; = 1 (5.13)

Hence to find a modification vector which satisfies the predetermined runlength
bound it suffices to perform row operations on A and to form the matrix S from the
rows satisfying the conditions above. Then solving the matrix equation mS! = 1

yields a solution. Hence the algorithm for finding m. O

This algorithm is implemented in software and the H is obtained from the H

matrix.

5.3 Examples

Example 5.3.1 Computation of runlengths.
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Given is the generator matriz G :

1111 0000

G=|11100 1100

1100 0011
RSpnin = 1 from first and second column
RM,,in = 2, from third and fourth column

RE,;n = 1 from seventh and eighth column and

RLyer = MAX(1+1.2) =2

Step 1: Find parity check matrix H.

The systematic Gsys matriz is obtained by column permutations.

—_
N
(9%
ot
-1
K3
[«2]
o

Gsys =
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The systematic Hyy, matriz is obtained from Gys.

1 235

-1
N
D
o0

Hsys=
00100 100

00010 010

LOOOOIOOI

The parity check matriz H is obtuined by performing reverse column permuta-

tions on the systeﬁzatic matriz Hy,

By adding row #2 to row# 1:




By shifting row #2 to last row:

Step 2: Conditions

1. H has at least one such that

Row#1 of the H matriz satisfies this condition

hi=0foralli =3.4.---.8

2. H has at least one row = such that: H.;=0forp=12.---,(8—2-2)=4.

Thus p=1,2,3,4

(a) For p=1:

Row?2 of the H matriz satisfies this condition

(b) For p=2:

Row? of the H matriz satisfies this condition

l.z:,,- =0forali=1andi=5,6,7,

I.r.:'; =0forali=1.2andi =0,

~1
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(c) For p=3:
h.i=0foralli=1,23andi=T1,8
Row3 of the H matriz satisfies this condition
(d) For p=4:
hei=0foralli=1,2.3,4andi=38

Row3 of the H matriz satisfies this condition
3. H has at least one row = such that:
h.;i=0forali=1.2.---,6
Row4 of the H matriz satisfies this condition.

Step 3 Find H.

Since all the conditions of Step 2 are satisfied, no adjustment of bounds is needed.

Thus H is same as H.
Step 4 Find s.
Row § is redundant, thus matriz S is formed by eliminating the fifth row from

the parity check matriz H.

1100 00O0O0
0011 0000
0000 1100

0000 0011




Step 5 Solving the equation mS' = 1.

The modification vector m = (2)x9030425TeT7Tg) must satisfy:
T+ =1= (2, =0&2s =1) or (2; = 1&2, = 0)

T3+ 24=1= (23 =0&2,=1) or (z3 = 1&24 = 0)
s+ s =1= (25 =08&25=1) or (5 = 1&26 = 0)
zr+ag=1= (z; =0&ag = 1) or (v; = 1&g =0)

There are 2* = 16 different solutions. One of the possible solution is:

m = [10101010]

Thus modification vector m for the given code is given by m = [10101010]

Example 5.3.2 Given the generator matriz G:

1111 06000 0O0OODO
1100 1100 00O00O
1100 0011 0000
1100 0000 1100

0010 1000 1010

1110 1000 1001

L

RS,in = 1. from first and second column.

RMin =3, from third, fourth. fifth and sizth column.
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RE,.;n = 3, from the last three columns and
RLper = MAX(1+3.3)=4

Step 1: Find parity check matrix H.

By column permutations of the G. the systematic matriz G,ys is obtained:

111000100000-
110100 010000
Gws= 1110010 001000
110001 000100

001101 00O0O0CT1O0

L111101 000O0O01

H,y, is obtained from Ggys:

Hys= 1001000 100011
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After reversing the column permutations:

Adding row #2 to row

Arrange the rows to ob

100
010
0 01
000
000

000
L

110

010

000

000
i

110
001
000

000

1

1

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

1

0

#1 and row #4 to row #3:

0000

0

1

1

0

0

0

1

1

1

0

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

1111

0

0

0

0

0

0

tain the following parity check matriz H:

0

0

]

69
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Step 2: Conditions

1. There must be at least one row so that: RS, +2 = 1+2 = 3.

i=3,4,---,12
h.i=0foralli =3.4,---.12

Rowl of the H matriz satisfies this condition

Thus

9. H should have at least one row so that: n — M iNRLyge —2=12-4—-2=0.

thusp=1,2,--- .6, MinRL oo +p+2=4+p+2=6+p
(a) For p=1:
h.i=0foralli=1andi=7.8,9,10,11,12
Row? of the H matriz satisfies this condition.
(b) For p=2:
h.;i=0foralli=1.2 and i =28.9,10,11,12
Row?2 of the H matriz satisfies this condition
(c) For p=3:
h.i=0 foralli=1.2.3 and i =9,10.11,12
Row3 of the H matriz satisfies this condition
(d) For p=4:
iz.:'; =0 foralli=1.2.3.4 and i =10,11,12

Row3 of the H matriz satisfies this condition
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(e) For p=5:

fz:',- =0 foralli=1,2.3.4,5 and i = 11,12
Row3 of the H matrix satisfies this condition

(f) For p=6:

il:‘,- =0 forali=1,2.3.4.5.6 and i =12
Row3 of the H matriz satisfies this condition
3. H has at least one row so that:
h.i=0forali=1.2,---.6

Row3 of the H matriz satisfies this condition

Step 3 Find H.

Since all the conditions of Step 2 are satisfied. no adjustment of bounds is needed.

Step 4 Find s.

The rows 4,5 and 6 are redundant. thus matriz S is formed by eliminating the

last three rows from the parity check matriz H.

1100 0000 OO0OOTO

S=10011 1100 0000

LOOOO 6011 0000



Step 5 Solving the equation mS' = 1.

The modification vector

m = (Z)T2T3T4T5T6T7T8T9T10211T12)

must satisfy:

Tyt =1 = 2 possible solutions
T3t+rgt+as+ag=1 = 8 possible solutions
Tr+ag=1 = 2 possible solutions

X9, T10, %11, T12 € {0,1} = 16 possible solutions

There are 2 x 8 x 2 x 16 = 512 different solutions. One of the possible solution

18:

m = [101000101000]

Thus modification vector m for the given code is given by m = [101000101000)

5.4 Generator Matrix Transformation

Let G be a generator matrix of an (n,k) code over GF(2™). We want to replace
every symbol of the extension field by its binary equivalent. Let (n,k2) be the
binary code equivalent to (n,k) where ny = n x m and ky = k£ x m, and let G»

be the generator matrix of the (n,.ks) code. There arc k3 rows in Ga. The binary
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generator matrix is simply obtained from the original matrix G of the (n,k) RS
code over GF(2™) as

a°G
alG

G._)_ = a,?G

L 0,m--lc;'
where every (field) element of GF(2™) in G is replaced by its binary row vector of
length m. Thus G5 has dimension (m.k) x (m.n) = ky X n,.

|

G2=| 0 o' a> a o' a 0

Now convert every symbol of G, to its binary equivalent.



600 000 111 011 100 111

Example 5.4.1 Modification vector for (7,3)RS code over GF(2).

Given is the generator matriz G. We find by inspection of G

RS,,.,-,, =k= 9
RM,iw=k=9
REmin =k=9

RLppe = MAX(94+9.9) =18

Step 1: Find parity check matrix H.




Adding row #4 to row #3 and row #1, and row #5 to row #6 and row #8:

Adding row #6 to row #2 and row #3, row #7 to row #9:

1

0000

0

0

0

1

0

0

1

0

0

0

0000O0

0

0

0

0

0

1

1

%

1

0

1

0

1

1

0

1

0

1100

0

1

0

0

10110100

0

1

0

0

1

1

0

1

1

0

1

1

0

0

0

1

0

0

1

0

1

1

1

0

0

1110

0

0

0

1

0

0110100

0

1

1

0

0

0

1

1

100011

1

1

0

0

0

1

0

73



Adding row #8 to row #3, row #6 and row #9:

Adding row #9 to row #4 and row #8:

LO

0

X

0

1

0

0

0

.

0000

0

0

1100

0

1

1

1

0

0

0

0

1

10110

1

0

1

0

0
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After column permutations a systematic generator matriz is obtained:

Gsys =

100000000

0

0

0

0

0

0

0

~1

-~



The systematic H,y, matriz is obtained from the G

Hsys =

L

The parity check matriz H is obtained by reversing the column permutations of

1001010

1

0

0

1

1

1

1

0

1

0

1

1

0

0

SYys-

2 5 6 7 9

0

1

0

0

0

0

0

0

12

13

14

15

0000O0O0OO0O

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1



13

the systematic matriz Hy,

1000 000O0O 0100 0O0OO1 O0O0O1O00O0

060110 00CO0O1 OO0OO0CO0O OO0OO11 O111O00

L000100010000 060000 11101

Step 2: Conditions
1. Since RS,.in = 9, there must be at least one row so that
hei=0 foralli =11.12.---,21
This condition is not satisfied.

2. Since AlinRL,,,, = 18, it follows that n — \[inRL,,,, —2=21-18-2=1.

Thusp=1. Hencei =1.2.-+- . p, \[inRL e +p+2..... n=121. H should
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have at least one row so that:

hoy=h.s =0
Row?2 of the H matriz satisfies this condition

3. Since MinRL.,q = 18, it follows that n - RE,,;, — 1 =21 —-9—1=11. Hence

i=1,2,---,11. H has at least one row so that:
h.i=0foralli=1.2.---,11
This condition is not satisfied.

Step 3 Find H.

The matrix H is modified to satisfy the conditions and its modification can be

written as:
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T
1

LOOOO 0000 0011 0101 00101

Step 2: Conditions
1. Since RS,,in = 9, there must be at least one row so that
he;=0foralli =11.12.---.21
Row #1 of H matriz satisfies this condition.

2. Since MinRL .. = 18, it follows that n — MinRLar —2=21-18-2=1.

Thusp=1. Hencei=1.2.--- .p.MinRLox +p+2....,n =1,21. H should
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have at least one row so that:
hoy=h.2 =0
Row#2 of the H matriz satisfies this condition

3. Since MinRL,,q = 18, it follows thatn — RE,;;,—1 =21 —9—1 = 11. Hence

i=1,2,---.11. H has at least one row so that:
hej=0 forali=1.2.--,11
Row#11 of the H matriz satisfies this condition

Step 4 Find S.

The rows 3,4 - -- 10 and 12 are redundant. thus matriz S is formed by eliminating

these rows from the parity check matriz H.

.
1100 0101 1100 00O0O0O O0O0OOOO

S=10011 0101 0110 0000 00000

LOOOO 0000 0001 1010 10110

Step 5 Solve the equation mS' =1 Solving the equation mS' = 1 gives many

solutions. One of the possible solutions is

m = {100100000000100000000]
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Chapter 6

REFLECTIVE CODES

In this chapter simpler implementation of some Reflective Codes are discussed. Sim-
ple methods for the parity-check matrix and modification vector are investigated.

Several codes are given for illustration.

6.1 Parity-check Matrix Construction

Popplewell and O’Reilly [19] investigated a subclass of reflective codes, which we
shall refer to as PO(Popplewell-OReilly) codes. These codes can be defined by
specifying their A matrix.
Definition 6.1.1 Let ij,75,m;. and my be positive integers, satisfying

1. 1) and i2 are even

2. 141 <i

83
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3. (my — my)e{0,1}
4. (myiy + maiy)/2 is even

Furthermore, let m = m + my and L = log, [ia]. Then we define the parity check
matriz H of the Popplewell-O Reilly (PO) code to be the (m + L) x (my7) + mois)

matriz consisting of alternating blocks B), (of i) columns) and B;—?2 (of i2 columns)

such that, for my = ms.

H= [B(])BlzB.;B:i)‘ e Brlrr—:?B;-)vl—l]
and for m; # my

H=[ByB}B}B}--- B ,B!,_,|

m— m-=1

where
m m m m
k 9 Pl or s 9
B, =
2 L L L
by by by e iy

ke{1,2} andr e {0,1.2.---.m -1}

and b;‘-’ denotes a binary column vector with k entries and binary value j, when

read from bottom (MSB) to top (LSB).

Proposition 6.1.1 The (n.k) PO code defined by the H matriz of Definition 6.1.1

satisfies the following properties:
1. C is a reflective code

2. dmin(c) =4



3 n= TIl]i] + 7712?'2

4-k=m - 1) +me(is—1) =L = n-(m+L). where L = [logyi,)

5. RLpyar =11 + 15 — 2

Proof:

(1) First m = m; +m> rows of H contain i1 and i3 number of 1s alternately. Since

¢; and iy are even, it implies even number of 1s in the first m rows. The number of

Isinrowsm+j,j=1,2,..Lis

oj~1 ’_l =1 ’_2_
my2 leJ + my2 lsz

This is clearly always even when J 2 1. and when j = 1 this expression becomes

(myi) + mais) /2. This is also even. So every row of H matrix has an even number

of 1s and hence the code is transparent.

(2) Since all the columns of the H matrix are different, then any three columns
are independent and one deduces dmin > 3. The number of columns is always > 4.

where equality holds for i} = iy = 2. and my = my = 1. Since the modulo-2 addition

of the first four columns is zero, we have Ain < 4.

(3) Since ¢; number of columns are repeated 1y times and iy number of columus

are repeated my times, n = myi, + Maly.
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(4) There are m; +ma+L rows in the H matrix. It implies that n—k = m 1+my+L.
Thus £ can be written as & = n—m;—my— L. Substituting the value for n, we

get k= mi; + myiy — my —my ~ L. Thus k = i;(m, 1) + ix(my — 1) - L.

(5) Since RS = i, — 1 and RE = 2 =~ 1, it implies that RL,; = RS + RE =
U+ —2, ]
Note that 4, and i2 influence the runlengths of the modified codes while m; and m,
influence the code rate.
The first m rows of H ensure that an appropriately modified code will satisfy

the maximum runlength value above, while the last L rows ensure that the code has

minimum distance 4.

6.2 Modification Vector

Proposition 6.2.1 The modification vector which maps the linear Popplewell-O Reilly
(PO) code to a coset satisfying RL,,q. is:

for my =m, :

i ia i in

.M:|10...010...0...10...010...0

and for my # m,

i in i in ia i

M= 10...010...010...010...0...10...010...0
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6.3 Generator Matrix

If the parity check matrix is given then the generator matrix could easily be obtained
by first changing the parity check matrix to the systematic parity check matrix and
then from systematic parity check matrix we obtain the systematic generator matrix.
From the systematic generator matrix we obtain the required generator matrix.
The conversion of the parity check matrix to the systematic parity check matrix
may need row operations. But row operations do not change the code. If column
permutations are also required for obtaining systematic parity check matrix then the
generator matrix obtained would not be identical to the desired generator matrix.
This generator matrix obtained after column permutations would be equivalent to

the desired generator matrix. To get the desired generator matrix inverse column

operations should be performed.
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6.3.1 Generator Matrix of Subclass of Reflective Codes

For the special case of reflective codes for which i} = i, = 2, the generator matrix is

where, as usual, Gisa k x n matrix
Proposition 6.3.1 When iy =iy =2 then m| = m,.

Proof: Let i; = iy = i. Then myiy + maiy = 2my + 2my = 2(my + my). But
(myi; + Maiz)/2 should be even. This implies that m; + m5 should be even. But
my — mee{0,1} implies that my=myie.m —my=0 otherwise, if m; — my =1
then my +my = my + M3 +1 = 2my + 1. This number is odd in all cases because

2my + 1 is odd for all cases of ma. O

6.4 Software

Software modules have been written to generate parity check matrix and generator

matrix for a code with the given parameters of /). /. my and m,.
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To avoid the difficulty of getting the G matrix from H by solving GH” = 0, the
cyclic-like, well structured and systematic nature of the matrices was exploited to
obtain a software function for generating G.

The systematic H matrix is obtained after column permutation of the H ma-
trix. Then the systematic G matrix is obtained from the systematic H matrix.
From this systematic G matrix, the actual G matrix is obtained by reverse column

permutation. See the flow chart in figure (6.1).



90

Generation of H
from i1,i2, m1
and m2

Column

Permutations to get
Systematic H

Getting Systematic
G matrix

Reverse Column
Permutations

Figure 6.1: lowchart for obtaining G matrix



6.5 Examples

6.5.1 Example #1

i =2 19 = 2
m; =2 me = 2
n=38 k=3

m=m; + my = 4

W b,

bo b}

Since iy =iy, B! = B2, where r € {0,1,2,3}

H = [B(;B'fB.;Bg]

oo by by bt b

bbby b ol

00 00 00
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G1=

Total number of words = 256
Number of codewords = §

Number of cosets = 32

1111
1100

1100

0 00O

1100

0 011

Maximum Runlength, RL,,,, = i 1+02—-2=242-2=9

Modification Vector = 10101010

6.5.2 Example #2

=2 g =2
m; =3 my =3
n=12 k=35

m=m;+my =20

L= r10g22] =1

bgr bgr

by

b

Since iy = i, B! = B2, where r € {0.1,2.3.4.5)
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H, = |B}B}B}B; B, B}

bf of g Mg 0 b B} By bl B U5y U

-

by bbb bbb ol By ol oy b b ol

1111 0000 0O0O00O0
1100 11006 000TCO0
Gx=l1100 0011 0000

1100 0000 1100

LIIOO 0101 0011

Total number of words = 4096
Number of codewords = 32

Number of cosets = 128
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Modification Vector = 101010101010

Maximum Runlength, RLyj. =8 +i3—2=24+2-2=2

6.5.3 Example # 3

i1=2 i2=4
m; =2 my =2
n=12 k=6

m=m; +my =4

L = [log4] = 2

where » € {0,1,2, 3}

Hy = |ByB}B}B}|

<
—h

<
(=Y
—

-
VK

) b..

S ho
St
S
<
[ad

94



H; =
00 00O0O0C OO0 1111
01 0101 01 0101
LO 0 0011 00 0011
1111 0000 0O0O0O
1100 1100 0000
1100 0011 0000

G; =

0010 1000 1010

L
Total number of words = 4096

Number of codewords = 64
Number of cosets = 64
Maximum Runlength, RLyor =i +i2—2=2+4—-2=4

Modification Vector = 101000101000

1110 1000 1001

95



Chapter 7

WEIGHT DISTRIBUTION

7.1 -Weight Enumerator

L

Definition 7.1.1 If K is a block code with ezactly A; codewords of Hamming weight

oy

i (i=0,1,...,n) then the polynomial
A(x) = Z A
i=0
is called the ‘weight enumerator’ or ‘weight distribution’ of the code K.

For any small code, we can find a table of all the weights by an exhaustive search.
For large codes, this is not possible. Instead, one must employ analytical techniques
if such techniques can be found in general. Analytically describing the weight dis-

tribution of a code is a difficult problem and is unsolved for most codes.

Proposition 7.1.1 If the minimum distance is d. then 49 = 1, 41 = Ay =

96



i23

..Ag_1 =0, Ag not zero. Furthermore, if C is transparent then
A;=Ani fori=0,1,.... |n/2]

Proof: The weight of a codeword is its distance from the all zero word. If the
minimum distance is d, then there is no codeword at distance less than d from the
all-0 codeword. Thus all the codewords are at distance greater or equal to d from
the all-zero codeword. The distance of the non-zero codeword from the all-zero
codeword is the Hamming weight of the codeword. Thus all the non-zero codewords
are of weight greater or equal to d. Hence the constants 4y, ..., A¢—1 are all zero.
If a transparent code contains a codeword of weight i, then the corresponding
complement codeword has weight (n — i). If there are A; number of codewords of

weight i then there must be A,_; codewords of weight (n — i). |

Example 7.1.1 For the Hamming code (7,3). A3 = A4 =17, for the Hamming code

(15,11), .43 = Ayg = 35, .45 = .-'ho = 168.

7.2 Weight Distribution of Maximum Distance

Separable (MDS) codes

Definition 7.2.1 An (n,k) code with minimum distance d = n — k + 1 is called

Maximum Distance Separable (MDS).
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Maximum distance separable codes are defined over fields GF(g) with ¢ > 2. Since
these codes can have more than one codewords of Hamming weight equal to 7, it
follows that the number of codewords of weight 0 is not equal to number of codewords
of weight n. Thus these codes cannot be considered for transparent codes. The

known weight distribution of MDS codes does not exclude the possibility that an

MDS code is transparent.

Proposition 7.2.1 The weight distribution of « MDS code (n,k) over GF(q) is

given by
1 if 1=0
AI:W 0 if 1l=1,...(d-1)
| (D= D=1 (g~ if 124

where d is the minimum distance.

Proof: For proof see [40]. 0

7.3 Weight Distribution of Hamming-Codes

Proposition 7.3.1 The weight distribution of the class of Hamming (n,k) codes is

Y 1 S\n : An—=1)/2 A(n+1)/2
A(z) = m— [(1+.1.) +n(l+2) (1-2a) ]

Proof: For proof see [40] 0
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The weight coefficients for various Hamming codes are listed in Tables 7.1 and

7.2.




il

Table 7.1: Weight Distribution of Hamming Code(n k) = (7,4)

Weight | No. of equiweight
Codewords
0 1
3 7
4 7
7 1

100
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Table 7.2: Weight Distribution of Hamming Code (n,k) = (15,11)

Weight | No. of equiweight
codewords

0 1

3 35

4 105

5 168

6 280

7 435

8 435

9 280

10 168

11 105

12 35

15 1|




7.4 Examples
hW=2 i,=2
Example 74.1 ;5 =38 m, =8 Modification Vector = 101010101010

n=12 k=3§
Weight Distribution: (Original Code)

Weight 0 4 8 12
Number 1 15 15 1

Weight Distribution: (Modified Code)
Weight 6
Number 32

See figure 7.1.
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16 -

141

121

101

1t 1 | I | | I | T
0 2 4 6 8 10 12
Codewords Vs Weights

Figure 7.1: Weight distribution of (12,5) PO code
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0W=2 12=4
Example 7.4.2 m; =2 my =2 Modification Vector = 101000101000
n=12 k=6
Weight Distribution: (Original Code)
Weight 0 4 6 8 12

Number 1 23 16 23 1
Weight Distribution: (Modified Code)

Weight 4 6 8

Number 16 32 16

See figure 7.2.
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Codewords Vs Weights

12

Figure 7.2: Weight distribution of (12,6) PO code
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7.5 Weight Distribution of Subclass of Reflective

Codes

To find a general formula for the weight distribution of transparent codes, consider

first special subclasses.

Proposition 7.5.1 For the subclass of PO reflective codes with iy = iy = 2, the

weight distribution is given by:

o) =2 (L) + () e

Proof: Since the weight enumerator 4; = 4,_; and Ap = 4; = 1 are satisfied
in all the examples, thus the weight distribution is satisfying the requirement of

transparent codes over GF(2). If all the codewords are added then the expression

becomes:

st () ()0 ()
2= (o) () eo) (5 ()

Since the summation of all coefficients of the weight enumerator is equal to the total

number of codewords, it implies that the distribution does not contradict with the

known facts. |

See tables 7.3,7.4, and 7.5.



Table 7.3: Weight Distribution (n,k)

= (20,9)
Code | Weight Codewords of
Equivalent Weight

=2 0 1

g =2 4 15

mp =25 8 210

my =3 12 210

n=20 16 45

k=9 20 1
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Table 7.4: Weight Distribution (n.k) = (20,11)

Code || Weight Codewords Of
Equivalent Weight
=2 0 1
ip =4 4 69
my =4 6 144
ma = 3 8 270
n =20 10 180
k=11 12 370
14 144
16 69
20 1
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Table 7.5: Weight Distribution (n,k) = (32,15)

Code || Weight Codewords Of
Equivalent Weight
h=2 0 1
=2 4 120
m; =8 8 180
ms = 8 12 8008
n =232 16 12870
k=15 20 3008
24 1820
28 120
32 1
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7.6 Software

Computer search has been applied to get the weight distributions of various smaller
codes. The program produced sufficient data to obtain the weight distribution of

several codes. See table 7.6.
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Table 7.6: Weight Distribution (n.k) = (32,19)

Code || Weight Codewords Of
Equivalent Weight
1] = 2 0 1
iy =4 4 200
m; =6 6 960
Mo =5 8 7140
n =232 10 22720
k=19 12 65528
14 99200
16 131390
18 99200
20 65528
22 22720
24 7740
26 960
28 200
32 1
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Chapter 8

CONCLUSIONS AND FUTURE

RESEARCH

Runlength-limited codes have wide applications in storage devices, optical discs,
Digital Audio Tape (DAT), CD’s. Runlength constraints are necessary to be sat-
isfied. Low frequency components are normally used for control signals and servo
mechanisms. If transitions of information bits is quite rapid then intersymbol inter-
ference may be the problem.

Separate codes could be used for error correction and runlength constraints. But
the codes performing error correction and satisfving the runlength constraints are
far more efficient than the concatenation scheme.

Transparent codes are self complementary. Every codeword contains its com-

plement in the dictionary of the codewords. Runlength could be infinite in case of

112
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transparent codes.

Many popular codes are found to be transparent. Hamming codes, repetition
code, perfect code, Reed Solomon Codec are transparent. General properties of
transparent codes are investigated.

A new class of transparent codes has been studied. Parity-check matrix and
generator matrix of subclass of transparent codes have been implemented in software.
These codes are quite simple for implementation. The encoders and decoders could
be implemented quite efficiently.

Linear codes have been modified to satisfy the runlength constraints. Error cor-
rection capabilites of the codes are preserved after modification. This modification

is performed over binary and binary extension fields. Different modification vectors

can be used for a code depending on our application.
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