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PREFACE

The rapid development of wavelets and spline functions is due primarily to their
great usefulness in applications. The enormous literature published during the last
decades, shows that the actual development of wavelets and spline theory has an essential
influence on large areas of modern applied (numerical) mathematics, such as; data fitting,
interpolation and approximation, numerical treatment of operator equations, control
theory, probability and statistics, image and signal transform and so on.

The work is organized as follows. Chapter 1 contains relevant basic definitions
and notations about spline functions. Chapter 2 will cover general introduction of Fourier
and wavelet transforms. A brief overview of wavelet analysis, multiresolution analysis
and highlighting the important properties of spline representation and construction of
functions are presented in Chapter 3. Finally, In chapter 4, we briefly consider the
application of wavelets to the numerical solution of boundary value problems. As a
further research problem we consider a general second order boundary value problem.
The existence as well as the convergence of the solution for this BVP is introduced using

Spline functions.



Chapter 1

Spline Functions

1.1 Introduction

Spline functions are piecewise polynomials of degree n that are connected together (at
points called knots) so as to have n—1 continuous derivatives. They were first
considered from a mathematical point of view by Schoenberg [39], and became the object
of rather intensive research in the late 1950s [1], [7] and [37-40].

In general, there are two main categories of problems in approximation theory.
The first category consists of problems in which approximation of unknown function is
sought, based on a series of data (often-measurable data) regarding this function. These
problems are called fitting-data problems. The second category of problems arises within
the mathematical modeling of various processes in nature. Since these models usually
lead to solving certain equations, they are called operational equations problems.

Examples include, but not limited to, boundary-value problems for ordinary and partial
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differential equations, integral equations and optimal control problems. In both categories
a new function is sought, one that approximates an unknown function with given
properties. Two steps are necessary to produce such functions, see [1], [7] and [40].
1. Choosing a class of suitable functions where the approximation is sought
ii. Choosing an approximation process (an algorithm) to produce the function most
suitable for the problem.

The success of this approach depends heavily on the existence of convergent class
of approximating functions. To be of maximal use, a class of functions 4 must satisfy the
following conditions:

1. The members of A are sufficiently smooth functions.
ii. The members of A together with their derivatives and integrals are easy to
implement on a computer.
iti. A is large enough to possibly contain approximating functions for a wide range
of processes and phenomena.

For a long time it was believed that polynomials were the most suitable as a class
of approximating functions. Later, though, it was found that there are classes of
approximation, not necessarily polynomials, which are more efficient for certain
problems. In recent years the use of a number of special classes of approximation; that is,
the so-called class of spline functions proved to be very beneficial both in approximation

theory and numerical analysis.



1.2 The Definition and Fundamental Properties of the Spline Functions

Since polynomials played a central role in approximation theory and numerical analysis

for many years [1], [40]. We will start by defining polynomials.

Definition 1.1

We call the space P, = {p(x) 1 p(x) = Zcixi", Ci»...,Cy,xarerealand c,, # 0} the

i=1
space of polynomials of order m.

Note that P, has so many attractive features. Some of them are

i. P, is finite dimensional linear space with a convenient basis

i.. Polynomials are smooth functions and they are easy to store, manipulate and
evaluate on a digital computer

iii. The derivative and antiderivative of a polynomial is again a polynomial

iv. Various matrices (arising in interpolation and approximation by polynomials) are
always nonsingular, and they have strong sign-regularity properties.

The main drawback of the space P, for approximation purposes is that the class

is relatively inflexible. Polynomials seems to do all right on sufficiently small intervals,
but when we go to larger intervals, severe oscillations often appear in particular if m is
more than 3 or 4. This suggest that in order to have a class of approximating functions
with greater flexibility, we should work with polynomials of relatively low degree, and

the interval of interest should be divided into smaller pieces [1], [7] and [40].



Definition 1.2

Let a=X3 <X; <...< X, <X, =b, and write A={x,.}'o‘+'the set A partitions the
interval [a,b] into k+1 subintervals, I, =[x,,x;,), i=0L,..,k—1 andI, =[x,x,,]
Given a positive integer m, let

PP, (A) ={ J : there exist polynomiak p,, p,, p,, ..., p, in PM}

with f(x)=p,(x) forxel, i=0,1,...,k
We call PP, (A) the space of piecewise polynomials of order m with knots xi. ..., Xx.
While it is clear that we have gained flexibility by going over from polynomials to
piecewise polynomials, we have lost smoothness, which is important, since piecewise
polynomials functions are not necessarily smooth.
Definition 1. 3
Let A be a partition of the interval [a, b] as in Definition (1. 2), and let m be a positive
integer. Let §,(A)=PP,(A)~C™*[a,b] where PP,(A) is the space of piecewise
polynomials in Definition (1.2). We call &,,(A) the space of polynomial splines of order
m with simple knots at the points xi, ..., Xk
Note that this space has the same attractive features of polynomials, in addition,
low-order splines are very flexible and do not exhibit oscillations usually associated with
polynomials. So, we can say that spaces of smooth piecewise polynomials (splines)
should be useful for approximation purposes. Now, we will give some basic properties of

such spaces.
Let [a, b] be a finite closed interval, and let A = {x,}f witha=x, <x, <...<x, <x,,, =b

being a partition of [a, 5] into k subintervals I, =[x,,x,,,) ,i=0,1,2,..., k-1 ,and



I, =[x,,x,,]. Let m be a positive integer, and let M =(m,, m,,...,m,) be a vector of
integers with 1<m, <m ,i=12, . k.
Definition 1.4

We call the space

S : there exist polynomiak s, ,s,,...,s, in P, such that S(x) = 5;(x)
S(Pn;M,A)=4forxel, ,i=0,,.. .k and D] (x;) =D](x;) for j=0],..m—1-m,
i=1,.,k

b

the space of polynomial splines of order m with knots x;, x,, ..., x, of multiplicities
my,m,,...,m, 'We call M the multiplicity vector. It controls the nature of the space
o(p,;m,A) by controlling the smoothness of the splines at the knots.

Definition 1.5

Let..<y,<y,<y <y, <.. beareal sequence. Given the integers i and m >0, for any

x € R define the functions

m —_ (_1)’" [yi: yi+1""7yi+m] (x—.V):-n_l !fyx <yi+m
Q" (x) =
0 otherwise.

The functions Q" are called B-spline functions of order m associated with nodes

Yi> Yists-> Yiem - These kinds of functions can also be defined with simple recursive

definition as follows:

assumem>2and y, <y, . Then for any xe R
o7 (x) =1 (Yiem = Vi) [(x—yi) Q:"n—l(x)+(yi+m —-X) :x-l

Vi =y) if yi<x<y,
where Q) (x) = V=) If y,. X< Yim
0 otherwise.



B-spline functions have finite support. That is,
O (x)=0forx<y,and x>y, also Q"(x)>0for y,<x<y,,.

For computational purposes, functions whose eigenvalues are neither too large
nor too small are preferred. This is the reason why we will introduce the so-called
normalization of B-spline functions.

Definition 1.6

Let N7 (x) =(¥,,, —¥:;) OF (x) with the B-spline functions O as defined in Definition
L.5. The functions N;" are called the normalized B-spline functions associated with the
nodes y;,..., V-

In many problems in applied mathematics we seek the approximation of functions
that are known to be periodic. As it is desirable to work with periodic approximation
functions in such cases. We will now give the definition of periodic spline functions.
Definition 1.7

Assume a <b, identifying b with a, we may regard the interval [a,b) as a circle with
circumference L=b—a . Now given A={a<x, <x, <..<Xx, <b}, we may think of A
as a partition of the circle into k subintervals, I, =[x, x,,),i=12,..,k—1, and
I, =[x,,x,,,).Let m be a positive integer, and let M :=(m,, m,, ..., m,) be a vector of
integers with 1<m, <m ,i=1,2, ..., k we define

_ S : there exist polynomials s,,...,s, in p, such that S(x) = s,(x)
S°(Pm:M,A)={forxel, ,i=1,.. k, and D (x)=DI"'(x,) for j=1,...,m-m, ,

i=1,.., k where we take s, = s,.

We call &° the space of periodic polynomial splines of order m with knots atx,,..., X, .



There are several spaces of piecewise polynomial functions that have proved useful in
applications. These include natural splines, g-spline, mono splines, and discrete spline.
The definition and fundamental properties of these concepts can be found in [39).

Definition 1.8

The m” order cardinal B-spline is defined by

N, (x)= (N, *N)(x) = f N, (x-t)dt, m=2, (1.1)

where N, is the characteristic function of the interval [0,1).
Theorem 1.9
The m™ order cardinal B-spline N, satisfies the following properties:

L Forevery feC,

Tf(x)Nm (x)dx =j‘...j‘f(xl +...+x,)dx..dx, . (1.2)

[

i.  Forevery geC™,

™) N (e =31 2) 506). 13)
1 < £ rm m-l _ 1 m_m-1
i N,,,(x):(m_l)!;(-n G) (x—k)T TR

iv.  N,(9)=(AN,)(9) =N, (x) =N, (x-1).

\'A The cardinal B-splines N,, and N,,_, are related by the identity:

X

No()) =N, () + =

_ N,  (x-1). (1.4)
m-—1 .



Vi. SuppN,, =[0,m]. Where Supp N, = {x:N_(x) #0}.
vi. N,(x)>0, forO<x<m.
viii. N,

is symmetric with respect to the center of its support, namely
m m
N (—+x)=N_(—-—x).
WG+ D) =N, -3)

N,(k)=90,,, keZand

iX. _
N0 =5 N, @)+ R2EH]
n

N, (k-1), k=L..n.

Proof. (i) Assertion (1.2) certainly holds form =1. Suppose it holds for (m —1), then by

the definiton of Nn in (1.1) and this induction hypothesis, we have

I f(X) N, (x)dx = j 1) { [Nps(x-2) dt} dx

(i1) Assertion (1.3) follows from (1.2) since

1

[ 8™, + ..t x, ), ..dx, =§(—1)"'*(:')g(k)

by direct integration.
(iv) Using (1.1), we have

N ()= [Ny (2=t )dt =Ny, (x-1)+ N, (5)=(aV,_,) (&),



(v) To verify this identity, we represent x™ as the product of a monomial and a

truncated power, namely:

m-1 __ m-2
+

and then apply the following “Leibniz Rule” for differences:
(&R =D () (A ) (A g)(x—k) (1.5)
k=0

Now, if we set f(x) =x and g(x) = x7*in (1.5) and recall that A* f(x) =0 for k>2,

we will have

N )=t 11)|Amx:'-l
=~ 1)'{;m'" X2+ mA (x - 1)}
o 1)l{x[ AT - A (= 1)+ mA™ (e —1)™2 )

——N 1()+ N, (x-1).
m— 1

The rest of the assertions can be easily derived by induction, using the definition of

N,and (1.4).
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1.3 The Numerical Solutions of Differential Equations by Spline

Functions.

In this section we will give an example to see how spline functions could be used to
approximate the solution of differential equations. A procedure for obtaining spline
function approximations for solutions of initial value problems in ordinary differential
equations is presented [34] and [36].

Example 1.10

Given the differential equation
Y'=f(xy), 0<x<b, (1.6)
Assume that f(x,)eC™2inT where T ={(x, y) |0<x< b} assume also that it
satisfies the Lipschitsz condition
|f(x,y)—f(x,y1)|SLly—yl| if 0<x<b. (1.7)
If m>3 then (1.7) is equivalent to the boundedness of df /0y in T. These conditions on
f(x,») guarantee the existence of a unique solution to (1.6) for any initial condition.

Our construction of the approximate solution S(x) =S, (x) is as follows. Let y(x) be the

solution of (1.6) determined by the initial value y(0)=y,. Let n>m be an integer,
h= 2 and let S(x),0<x<b, be a spline function of degree m , class C™" and having
n

its knots at the points x=h,2h,..,(n—-1)h. We define the first component of

S(x) =S, (x)by

()= 10) + Y (@) x4+

D) Y& 0)x™! + %ao x™, 0<x<h, (1.8)

11



with the last coefficient a, as yet undetermined. We now determine a, by requiring that
S(x) should satisfy (1.6) for x = k. This gives the equation

S'(h) = f(h, S(h)) (1.9)
m-1
to be solved for a,. It is seen that (1.9) is an equation in ¢ where &= %0 h 4” —1)

which is conveniently solved by iteration. Having determined the polynomial (1.8), we

repeat the same steps in the interval [h, 2h]; that is,

m-1

S(x)= Z%S""(h) (x—h)* +mi!a, (x-h)", h<x<2h, (1.10)

and determine a, so as to satisfy the equation
S'(2h) = f(2h, S(2h)).

Continuing in the same manner we obtain a spline function S, (%) satisfying the equation

S, (vh)y=f(vh S, (vh)), v=0,1,-, n—1. (1.11)
Theorem 1.11
If h<m/L, then the spline function S, (x) exists and is uniquely defined by the
above construction.
Proof.

Over the interval [ v A, (v+1) k] we define

S(x) = f% S® (vh) (x—vh)* + % a, (x—vh)"

k=0 Tv-

=Av(x)+i'av (x—vh)™, v=0,1---,n-1.
m!

12
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Thus A,(x) is uniquely determined by the spline continuity conditions, and a, is to be
found from relation (1.11) replacing v by v+1. Relation (1.11) will be satisfied if and
only if

a =8 M oronaen.La #)- 4 @+yh) - g @)

(1.12)

One Lipschitz constant for g, (¢) is L A/m independent of v, where L is the Lipschitz
constant for f(x,y). Hence for h <m/L we have that g,(r) is a strong contraction

mapping, and (1.12) has a unique fixed point a, which may be found by iteration.

13




Chapter 2

WAVELET TRANSFORMS

2.1 Fourier Analysis

The subject of Fourier analysis is one of the oldest subjects in mathematical analysis and
is of great importance to mathematician and engineers alike [10], [20], [27], and [31].
From a practical point of view, when one thinks of Fourier analysis, one usually refers to
( integral) Fourier transforms and Fourier series. A Fourier transform is the Fourier
integral of some function f defined on the real line R. When f is thought of as an
analog signal, then its domain of definition R is called the continuous time domain. In
this case, the Fourier transform f' of f describes the spectral behavior of the signal f.
Since the spectral information is given in terms of frequency, the domain of definition of
the Fourier transform f , which is again R, is called the frequency domain. On the other
hand, a Fourier series is a transformation of bi-infinite sequences to periodic functions.

Hence, when a bi-infinite sequence is thought of as a digital signal, then its domain

14



definition, which is the set Z of integers, is called the discrete time domain. In this case,
its Fourier series again describes the spectral behavior of the digital signal, and the
domain of definition of a Fourier series is again the real line R, which is the frequency
domain. However, since Fourier series are 2 7 -periodic, the frequency domain R in this

situation is usually identified with the unit circle.

2.2 Fourier and Inverse Fourier Transform

Throughout this chapter, all functions f defined on the real line R are assumed to be

measurable. And for each p,1< p <o, let LP(R) denote the class of measurable
functions f on R such that the ( Lebesgue ) integral f |f (x)|’ dx is finite. Also, let

L”(R) be the collection of almost everywhere (a.e.) bounded functions; that is, functions

bounded everywhere except on sets of (Lebesgue) measure zero. hence, endowed with

the “norm”

1
"f” {J:|f(x)lp dx}p for 1<p<oo;
i €ess sup I £(x) l for p=o

—WCN <

each L?(R),1< p <o, is a Banach space.

Definition 2.1

Let f, g € L*(R) then, the “inner product” is defined by
(f.8)=|"_f(x) g()d. @1)

Endowed with this inner product, the Banach space L*(R) becomes a Hilbert space. Of

course, it is clear that

15



£ 0=fli. fel’@®). 2.2)

In the following, we concentrate our attention on functions in L'(R).
Definition 2.2

The Fourier transform of a function f € L' (R) is defined by

@ )=(Ff)(@)=[" ™ f(x)dx. (2.3)

Some of the basic properties of ]' (w),for every f € L'(R), are summarized in the
following theorem.

Theorem 2.3

Let f € L'(R). Then its Fourier transform f' satisfies:
i FferL®with 7| <|s];
11 f is uniformly continuous on R ;
iii.  ifthe derivative f’ of f also exists and is in L'(R), then
f(®)=iof(@);, and 24)
v. f'(a))—>0,as @ —>+ oo,

Proof

Assertion (1) is obvious. To prove (ii), let & be chosen arbitrary and consider

sup f(o +5)—f(03)| = sup I_:e_imx (e7%* —1) f(x) dx

<[l 1l 70 .

16



Now, since Ie‘”" —l“f(x)lsz |f(x)|e L'(R) and Ie'“’" ——ll —>0as & >0, the
Lebesque Dominated Convergence Theorem implies that the quantity above tend to zero
as 5§ > 0.

To establish (iii), we simply integrate (2.3) by parts, and use the fact that f(x) —» 0 as

x —> *oo. Indeed,

F{f @)} =[_f'()e™ d

a0

[ f@e | —io) [T fyeien an |

=iw f(®).

Finally, the statement in (iv) is usually called the “ Riemann-Lebesgue Lemma”.
To prove it, we first observe that if f' exists and is in L'(R), then by (iii) and (i), we

have,
| 7@)| =|—a-)1—|—|f“'(w )| sl—;—luf' I, —o.

as @ —> 0o In general, for any given £ > 0, we can find a function g such that

g.g8'€L and | f ~g|, <& then by (i), we have
| f(@)]<| F@)-2(@)|+| #(@)|
<|f-gl, +|2@)| <& +| 2(@)|5
completing the proof of (iv).

If it happens that f” is in L'(R), then we can usually “recover” f from f , by

using the “ inverse Fourier transform” defined as follows.

17



Definition 2.4

Let J} € L'(R) be the Fourier transform of some function f € L'(R). Then the inverse

Fourier transform of f is defined by

F D=5 & f(o)do. @5)

1
/4
So, the important question is: when can f be recovered from f by using the

operator F™', or when is (F~' f) (x) = f(x) ? the answer is: at every point x where f
is continuous. That is we have the following theorem.
Theorem 2.5
Let f e L'(R) such that its Fourier transform f is also in L' (R). Then

f@=F" f)® (2.6)
at every point where f is continuous.

Example 2.6

Let a>0. Then

2

|7 emiem e dx=\/z e @.7)
- "

In particular, the Fourier transform of the Gaussian function e is V7 e @ /*.
Definition 2.7

Let f and g be functions in L'(R). Then the (continuous-time) convolution of f and

g isalsoinan L'(R) function h defined by

hx)=(f*g)=[_ f(x-»)&(y)dy. (2.8)

18



Theorem 2.8
Let f and g bein I'(R). Then (f*g) (@)= f(®) #(®)
Proof

By definition and interchange of the order of integration we have

F(f+g)=["_ [ f(x-y)g(»)e = dydx

=" [T fG-»rg(yye dedy.

Instead of x we now take x — y =g as a new variable of integration. Then

F(f*)=[" [ f(9) g(y)e™® dgdy

=" fleye ™ dg |  g(y)e*” dy

=F(f) F(g).

2.3 Fourier Series

We now turn to the study of 2z — periodic functions. For each p, 1< p <oo, the

following notation will be used:

1/p
B-ﬂjj"[f(x)r’ dx} , for 1<p<oo;

“ £ "L’(O, ) 2.9

ess sup | f£(x) I , for p=oo

0sx<2=x

for each p,I7(0,27) denotes the Banach space of functions f satisfying
S(x+27)= f(x) ae. in R, and "f"L"(O.Zx) <o

Definition 2.9

Let f, g € L*(0,27) then the inner product is defined by
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(f.8) =5 [ 705G e 210)

The companions of the spaces L7 (0, 27) are the (sequence) spaces 7 =17(Z)

of bi-infinite sequences {a, }, k € Z, thatsatisfy: || {@,} |, <o, where

kp ;, 1< oo;
| @} |, = {Q‘" } for 1=p< @.11)

suplakI, Jor p=oo
k

Analogous to the Hilbert spaces L*(R) and L*(0, 27), the space I> =1?(Z) isalsoa

Hilbert space with inner product:

(@), .}, =X a, b, . (2.12)

keZ

Recall that the (integral) Fourier transform is used to describe the spectral
behavior of an analog signal f with finite energy (i.e., f € L*(R)). Here, we introduce
the “ discrete Fourier transform” F*° of a “digital signal” {c,} € I” to describe its spectral

behavior, as follows:

F e ()= ¢, ™. (2.13)

keZ
On the other hand, if f is any function in L?(0,27),1< p <o, then we can

define the “inverse discrete Fourier transform” F*™' of f by:
-] 1 2x —-ikx
FE B =c(f)=5=] fx)e'™ dx. (2.14)
2z J0

That is, F*~' takes f e L"(0, 27) to a bi-infinite sequence {c,(f)},ke€Z. This

sequence, of course, defines a Fourier series
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> e (e (2.15)

keZ
and is called the sequence of “Fourier coefficients” of the Fourier series.

2.4 The Gabor Transform

A function f in L*(R) is used to represent an analog signal with finite energy, and its

Fourier transform

F@)=["_ e f@yar (2.16)
reveals the spectral information of the signal. Unfortunately, formula (2.16) alone is not
very useful for extracting information of the spectrum f’ from local observation of the

signal f . What is needed is a “good” time-window.

The optimal window for time localization is achieved by using any Gaussian function

‘1
g.(t)= L %= (2.17)

2,/7:0:

where a >0 is fixed, as window function.

Definition 2.10

A nontrivial function @ € L*(R) is called a window function if x @(x)is also in L*(R).
The center ¢” and radius A, of a window function @ are defined to be

L J

1 @ 2
'=——0| x|o(x)| dx (2.18)
Jof -~

and
1 « ) /2
A, =i (x-1')? |w(x)| dx (2.19)
lof, ¥
respectively and the width of the window function @ is defined by 2 A .
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Definition 2.11
For any fixed value of a >0, the “Gabor transform” ofan f e L’(R) is defined by

(&5 £)(@)=[" (e (1)) g, t~b)dr. (2.20)

That is, (g; f) (@) localizes the Fourier transform of f around ¢z =54 . The “width”
of the window is determined by the (fixed) positive constant & to be discussed below.

Observe that from (2.7) in Example (2.6) with @ =0 and a=(4 & )~', we have

f_: g, (t—b)db =I_: g, (x)dx=1, (2.21)
so that
|~ (er £)(@)db=f(w), @eR.
That is, the set
{g; f:beR}
of Gabor transform of f decomposes the Fourier transform f of f exactly to give its

local spectral information. Note that since g, is an even function, its center, defined by

(2.18), is 0, and hence,

A, = 1 {Im x? gi(x)dx}llz. (2.22)
l&al, =

Theorem 2.12

For each >0,

A, =Aa. (2.23)

8 (- 4
That is, the width of the window function g, is 2 Ja .

Proof

By setting @ =0 in (2.7), we have
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L
I e de=+ra ?; .29

and differentiating both sides with respect to the parameter a yields

Jm x? e dx=—2\/?—a‘3/2. (2.25)

Hence, by setting a =(2a )" in (2.24) and (2.25), it follows that
ARG (2.26)
and consequently,
172
A, =@Bra)’ {%&- izz— (2a)3’2} =Jea.
We may interpret the Gabor transform g; f in (2.20) somewhat differently; namely,

by setting

Gy, (t)=¢e"" g (t-b) (2.27)

we have

(g5 N)(@)=(f.G.)=["_ f(OG:, () ar. (2:28)
In other words, instead of considering g7 f as localization of the Fourier transform of
Jf ., we may interpret it as windowing the function (or signal) f by using the window

function G

b

in (2.27). We will follow this point of view in comparing it with the

“integral wavelet transform” later.

One advantage of the formulation (2.28) is that the Parseval Identity can be used to

relate the Gabor transform of f with the Gabor transform of _f .In fact, since

Gy, () =™ gma(roy (2.29)
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which follows from (2.7) by letting o =1/4a , we have

(25 f)(@)=(1, G;’,..,)=2L(f‘, é;'_,,,) (2.30)

T

I p= 2 is(n-@) ,-a(g-o)
= ——— e e d
> L” S n

E [ (e F) 8uealn—a) dr
2{ra ’-=

-iba

e Vda 2y ¢
—Zﬁ(gm f)( b)'

Let us interpret (2.30) from two points of view. First, we consider

[~ ™ £()) g, ¢—b)dr @231)

= (Jz e—”m) L I_m (™" j(’]» 81/4e(N—w) dn,
a 2 =

which says that, with the exception of the multiplicative term \/g e™*” | the “window

Fourier transform” of f with window function g, at =5 agrees with the “window

inverse Fourier transform” of f‘ with window function g;,,, at 7 = @. By theorem 2.12,

the product of the widths of these two windows is

(2A,)(24,,,.)=2. (2.32)
On the other hand, by considering
a 1, e’ -ibp
Hb,m (’7) :=—_Gb.w ('7)= e gl/4a (ﬂ_w): (2'33)
2z 2Jr a

we have
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(f.65.)=(F. HE, ). 234
This identity says that the information obtained by investigating an analog signal f(z) at
t=b by using the window function G, , as defined in (2.27) can also be obtained by
observing the spectrum f (17) of the signal in a neighborhood of the frequency 7 =@ by
using the window function H;', as defined in (2.33). Again the product of the width of
the time-window G’ and of the frequency-window H;'  is

A, Jea,. J-ca)ea,, =2 (2.35)

The Cartesian product

1 1
b—\/z,b+1/¢;]x[w—2\/;,w+ 2\/5}

of these two windows is called a rectangular time-frequency window. It is usually plotted
in time-frequency domain to show how a signal is localized. The width 2 Ja ofthe time-

window is called the “width of the time-frequency window”, and the width % of the
o

frequency window is called the “height of the time-frequency window”. Observe that the
width of the time-frequency window is unchanged for observing the spectrum at all
frequencies. This restricts the application of the Gabor transform to study signals with

unusually high and low frequencies.
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2.5 Short-Time Fourier Transform and the Uncertainty Principle

As discussed before, we have seen that the Gabor transform is a window Fourier
transform with any Gaussian function g, as the window function. For various reasons

such as computational efficiency or convenience in implementation, other functions may

also be used as window functions instead. Also as seen before, for a non-trivial function

@ € L*(R) to qualify as a window function, it must satisfy the requirement that
tw(t)e L*(R). (2.36)
From (2.36) and by an application of the Schwarz inequality to the product of (1 +|¢ l)_'

and (1+|tl)a)(t) , it is clear that @ € L'(R) also. Hence, by Theorem 2.3, its Fourier
transform @& is continuous. However, although it follows from the Parseval identity that
@ is also in I’(R), it does not necessarily satisfy (2.36), and hence, may not be a
(frequency) window function. Recall from the previous section that the importance of a
Gaussian function g, is that its Fourier transform is also a Gaussian function, so that g,
and g, can be used for time-frequency localization.

Example 2.12
Both the first order B-spline

1 forO0<t<l

‘ (2.37)
0 othrwise

N, (1) :={

and the Haar function
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1 for05t<—;-;

Vi@ =y, () =4-1 foréstd; (2.38)

0 otherwise,

.

are window functions; but their Fourier transforms N , and ¥, do not satisfy (2.36), and
hence N, and vy, can not be used for time-frequency localization.

In general, for any w e L*(R) that satisfies (2.36), we define the center and

radius of @ by
x° :=L2 j_: t|ao(t)|* dr (2.39)
|l

and

A, {j (t—x")? |a;(t)] dt} ) (2.40)

Iw .
We also use the value 2 A, to measure the width of the window function @ . In signal
analysis, if @ is considered as an analog signal itself, then A is called the root mean
square (RMS) duration of the analog signal, and A is called its RMS bandwidth,
provided that @ also satisfies (2.36). The Gabor transform (2.20), can be generalized to
any “window Fourier transform” of an f e L*(R), by using a function @ that satisfies

(2.36) as the window function, as follows:
(& ) (@)=[ (7™ f@®) @ (-b)dt. (2.41)
Hence by setting

W, (1) =e" o (t-b) (2.42)
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we have
& N@=(fW.)=|_ fOW, Oadt (2.43)
so that (g, f) (@) give local information of f in the time-window
[x*+b—-A,,x"+b+A,]. (2.449)
Now, suppose that the Fourier transform & of @ also satisfies (2.36). Then we

can determine the center @" and radius A, of the window function &, by using

formulas analogous to (2.39) and (2.40). By setting

V()= 5 = Wy o (1) (245)

ibo
=(e je‘”’” d(n-w).

2z

Which is also a window function with center at ®* + @ and radius equal to A, we

have, by the Parseval identity,
& (@)= W)= (F V). (2.46)
Hence, (g, f)()also gives local spectral information of f in the frequency-window
[ +o—-A;, 0" +0+ A ] (2.47)
In summary, by choosing any @ e L*(R) such that both w and & satisfy (2.36) to
define the window Fourier transform in (2.41), we have a time-frequency window
[+ - A, x"+b+ A, ]x[@0" +0-A;,0" +o+A,] . (2.48)
with width 2A (as determined by the width of the time-window) and constant window

area
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4A, A, (2.49)

Again, the width of the time-frequency window remains unchanged for localizing
signals with both high and low frequencies.
Definition 2.13

If @ € L*(R) is chosen in a way such that both @ and its Fourier transform &

satisfy (2.36), then the window Fourier transform introduced in (2.41), by using @ as the
window function, is called a “short-time Fourier transform” (STFT)

As observed earlier, since both @ and @ satisfy (2.36), they must be continuous
functions. In addition to the Gaussian functions, every B-spline of order higher than one
can be used to define an STFT.

For accurate time-frequency localization, one chooses a window function @ such that

The time-frequency window has sufficiently small area 4 A, A;. We have already seen
in (2.35) that if @ is any Gaussian function g, @ > 0, then the window area is 2. So, the

first question to be answered is whether a smaller area can be achieved. The following
theorem, known as the “Uncertainty Principle”, says that it is not possible to find a
window with size smaller than or equal to that of the Gaussian functions.

Theorem 2.14

Let @ € I*(R)be chosen such that both @ and its Fourier transform & satisfy (2.36).

Then

A A, == . (2.50)

(SR

Furthermore, equality is attained if and only if

w()=ce'” g, (t-b),
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where c#£0,a >0,and a,b € R.

Hence, the Gabor transform introduced in the previous section is the STFT with
the smallest time-frequency window. In some application, a larger window must be
chosen in order to achieve other desirable properties. For example, a second or higher
order B-spline facilitates computational and implementational effectiveness. The most

important property not possessed by the Gabor transform is the additional condition:
[ v@ax=o,

where yis the window function. This property gives us an extra degree of freedom for
introducing a dilation (or scale) parameter in order to make the time-frequency window
flexible. With this dilation parameter, the time-localization integral transform to be
discussed in the next section will be called an “integral wavelet transform™ (IWT), and

any window function for defining the IWT will be called “basic wavelet”.
2.6 The Integral Wavelet Transform

We have seen that in analyzing a function (signal) with any STFT, the time-frequency
window is rigid, in the sense that its width is unchanged in observing any frequency band
(or octave)

[@"+® —A;z, 0" +w +Aj ]
with center frequency " + @ . Since frequency is directly proportional to the number of

cycles per unit time, it takes a narrow time-window to locate high-frequency phenomena
more precisely and a wide time-window to analyze low-frequency behaviors more

thoroughly. Hence, the STFT is not suitable for analyzing signals with both very high and
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very low frequencies. On the other hand, the integral wavelet transform (IWT), to be
defined later, relative to some basic wavelet provides a flexible time-frequency window
that automatically narrows when observing high-frequency phenomena and widens when
studying low-frequency environments.

Definition 2.15

If y e L*(R) satisfies the “admissibility” condition:

~ 2
c,=(" l—"’l-(—“"—)l—dm <o, (2.51)
- m

then y is called a “ basic wavelet”. Relative to every basic wavelet vy, the integral
wavelet transform (IWT) on L*(R) is defined by

W, £) (. a)=|a|2 [~ f(t)w(ﬂ) &, fe’®, @52)

a

where a, be R with a#0.
If, in addition, both y and  satisfy (2.36), then the basic wavelet y provides a
time-frequency window with finite area given by 4 A, A;. In addition, under this
additional assumption, it follows that \ is a continuous function, so that the finiteness of

C, implies { (0) = 0, or equivalently,

[T vwar=o. (2.53)

This is the reason that yis called a “wavelet”. We will see that the admissibility
condition is needed in obtaining the inverse of the IWT.

By setting
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vow =] a [ o[22}, @54)
the IWT defined in (2.52) can be written as

W, £)b. a)=(1.v,..) (2.55)
In the following discussion, we will assume that both y and  satisfy (2.36). Then if the
center and radius of the window function y are given by ¢* and A, respectively, the
function vy, , is a window function with center at 5+ a¢" and radius equal to aA,.

Hence, the IWT, as formulated in (2.55), gives local information on an analog signal f
with a time window
[b+at”—aA,,b+at” +aA,]. (2.56)

This window narrows for small values of a and widens for allowing a being large.

Next, consider
o]
1 A a 2 <a —iot t—b
— Y, = e’’’ — | dt 2.57)
S Vna(@) =5 — [ w( aj
1
2
=a|a| e’ ylaw)
27

and suppose that the center and radius of the window function  are given by »° and
A ;, respectively. Then by setting

7(@)=0 @+ o), (2.58)
we have a window function 77 with center at the origin and radius equal to A ¢- Now

from (2.55) and (2.57), and applying the Parseval identity, we have
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a|

®, N6, a)=;'—|;f,, F(o)e n[a( w—“"))dw. 2.59)

a

@ D=n(aa)—a)')=ﬁl(aw) has
@

Since it is clear that the window function 7 (a (a) —

radius given by lA‘;, , the expression in (2.59) says that, with the exception of a multiple
a

of alal_”2 /27 and a linear phase-shift of e®”, the IWT W, f also gives local

information of f with a frequency-window

a a YV a a

o 1 w" 1
[ —=A, 2 —A,.,} (2.60)
In the following discussion, the center " of y is assumed to be positive. In doing so,

we may think of this window as frequency band ( or octave) with center-frequency @" /a

and bandwidth 2 A; /a . The importance of this identification is that the ratio

center frequency w®'/a _ o (2.61)

bandwidth  2A,/a 24,

is independent of the scaling a. Hence, if the frequency variable is identified as a

!, then an adaptive bandpass filter, with pass-band given by

constant multiple of a”
(2.60), has the property that the ratio of the center-frequency to the bandwidth is
independent of the location of the center-frequency. This is called “constant-Q filtering”.

Now, if ®°/a is considered to be frequency variable @, then we may consider

the 1 — @ plane as the time-frequency plane. Hence, with the time-window in (2.56) and

the frequency-window in (2.60), we have a rectangular time-frequency window
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r - -
[b+at'—aAv,b+at°+aAv]xLa; —%Ag,%ﬁué%] (2.62)

in the ¢ —® plane, with width 2a A, (determined by the width of the time-window).

Hence, this window automatically narrows for detecting high-frequency phenomena (i.e.,

small a > 0), and widens for investigating low-frequency behavior (i.e., large a > 0).
We next derive a formula for reconstructing any finite-energy signal from its IWT

values.

Theorem 2.16

Let y be a basic wavelet that defines an IWT W, . Then

da

a2

" " lm, ne.amwm, nea)|Za=c,(1.g). (2.63)

forall f, g € L*(R). Furthermore, for any f e I* (R)and xR at which f is

continuous,

1

r@=z-[" ["lw, nealvy_@%Za, 264

where vy, , is defined in (2.54).

Proof

By applying the Parseval Identity and (2.57), and using the notation

{ F(x) = £ (x) ¥ (ax); (2.65)
G(x) = g(x) ¥ (ax),

we have

[~ lw, ne.a®@, Hea)dw
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rari- { I_:f(t)mdtf e

)ul

{2” [ F@e™ ded— j G(y)e ™’ dy}db

a

fal)-
@ |1l A A p
27|a| |27 T-=G(b) F(b)

2eTa] [ Gx) F(x) dx,

where the Parseval Identity is applied again to arrive at the last equality. Hence, by
substituting (2.65) into the above expression, then integrating with respect to da/a* on

(—o0, ), and recalling the definition of C, from (2.51), we obtain

1 7 ne. o, De sl 2.66)
a

=L {f(x)g(x)j [veex l)l }»dx

Furthermore, if f is continuous at x, then using the Gaussian function g.(—x) forthe

function g and allowing & tending to O from above, we arrive at

(=i 7 [~ [%, 0 60 v | o
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- p e alv.o B a

This completes the proof of the theorem.
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Chapter 3

WAVELET ANALYSIS

3.1 Multiresolution Analysis and Wavelets

In this section, we will present some definitions and properties that are needed for the
analysis of wavelets.

Definition 3.1

For ¢, w e I’(R)and J, k e Z,define @V, € P(R) by
@, (¥)=2"" 9 (2'x—k) and y,,(x)=2"2y (2'x-k). (3.1)
Definition 3.2

A Wavelet is a function w(f) € L*(R) such that the family of functions {w, .} as
defined in (3.1), is an orthonormal basis in the Hilbert space L*(R)[10], [27]. That is

(y/j‘k,y/,'",):é'j.,.é',"m' J.k,I,meZ and every f € I*(R) can be written as
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f@= Sec,w,,0. G2)

J. k==
The simplest example of an orthogonal wavelet is the Haar function y,, defined by
[ 1
1 for 0<x< )

vy (x)=4-1 for %Sx<l.

0 otherwise

.

By Definition (3.2) it is clear that any wavelet generates a direct sum decomposition of

I’(R). For each jeZ, let us consider the closed subspaces

V,=..OW,_, oW,

1o

J€Z of I’(R) where WJ..,‘=cIosL2(R)<y/j.,,:keZ>, jeZ.

These subspaces have the following properties:

L. ...clV,cV,cVc..,

ii. clos, (UVJ] = L*(R), where clos denotes the closure of the set.
Jjez

ii. [V, ={0},
Jez
iv. V,,=V,®W,, jeZ,and

v. fMeV, o fRR)eV,,, jeZ.
In fact, if the reference subspace V¥, say, is generated by a single function ¢ <I*(R) in

the sense that ¥, = cIos[_z ® (¢° . keZ ) where

8,0 =2% 62 x—k).
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Then all the subspaces V, are also generated by the same function ¢ (just as the
subspaces W, are generated by i) where

v, =cIosL,(R)<¢jJ‘ :keZ), JeZ. (3.3)
Definition 3.3
A function geI’(R) is said to generate a multiresolution analysis (MRA) if it

generates a nested sequence of closed subspaces ¥, that satisfy (i), (ii), (iii), (v) in the

sense of (3.3), such that {g,,} forms a Riesz basis of V.
Definition 3.4
{os} 1s said to form a Riesz basis of V. If there exist two constants A and B, with

0 <A< B <, such that

o0

Z CePo.x

ke =-—c0

2
Alte . < <Blfe}]:
2

for all bi-infinite square summable sequences {c,} ; thatis

| .}

> 2
p=2le] <.
k=—c0
If § generates an (MRA), then ¢ is called a “scaling function”. Typical examples of

scaling functions @are the m” order cardinal B-splines N, .
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3.2 Wavelet Decompositions and Reconstruction

Let {V;} be generated by some scaling function ¢ < I*(R) and {W,} is generated by
some wavelet i € L*(R). In this case, by property (ii), every function f in I*(R) can be
approximated as closely as desired by an f,eV,, for NeZ. Since
V.=V, ,®W,_, forany je Z, f, has aunique decomposition: f, = fy_, +g,_, where
Sy €Vy_, and g, , € W,_,. By this process we have

Sy =8+ 8y 2+ 8ns ot By + Sy (3.4
where f, €V and g; e W, forany j, M here is chosen such that | £, | is smaller

than some threshold. In what follows, we will discuss an algorithmic approach for

expressing f, as a direct sum of its components g, _,,..., €y »and fy_,,, and
recovering f, from these components.

Since both the scaling function ¢ ¥, and the wavelet y € W, arein ¥}, and since ¥, is

generated by ¢, ,(x) = 2% @#(2x—k), k € Z there exist two sequences {p,} and {g.}el’

such that

#(x) =2 p,#(2x~k) @3-5)
w(x) =2 q.4(2x—k) (3.6)

for all xe€ R. The formulas (3.5) and (3.6) are called the “two-scale relations” of the

scaling function and wavelet respectively. On the other hand, since both ¢ (2x) and
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#(2x—1)arein ¥, andV, =V, @ W,,, there are four /*sequences which we denote by

{a_.}. {b_s}, {a,_,.}, and {b,_,, }, k € Z such that

#(2x) =D [a_p (x— k) + b_py(x—K)]; 3.7

#(2x-1)= Z[al—2k¢(x_k) +b_y(x—K)], (3.8)

forall x € R. The two formulas (3.7) and (3.8) can be combined into a single formula

p(2x—1)= Z[a,_z,,;ﬁ(x—k) +h_y(x-K)], leZ. (3.9

Which is called the “decomposition relation” of gand ¥ . Now, we have two pairs of
sequences ({p.},{q.}) and ({a,},{b,}), all of which are unique due to the direct sum
relationship¥; =¥, @ W,. These sequences are used to formulate the reconstruction and
decomposition algorithms, which will follow. Hence, { p.}and {gq,}are called
reconstruction sequences, while {a,} and {b,}are called decomposition sequences.

To describe these algorithms, let us first recall that both [, €ev; and g, € W,

have unique series representations:

()= clg(2' x-k
{f,(x) gc ¢’ x k) 5.10

with ¢’/ ={c/} el?
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and

) =Y diw@2 x—k
{g,(x) ; w2’ x—k) 6D

with d’/ = {d/} el’?
In the decomposition and reconstruction algorithms, the functions Sf; and g; will be

represented by the sequences ¢’ and d” as defined in (3.10) and (3.11).

Decomposition Algorithm

By applying (3.9)-(3.11), we have

J-1 J
Ce = Zal-zkcl
[

) . 3.12)
di” = Zb —2C1 (

This algorithm can be described by the following schematic diagram:
d N -1 d N-2 d N-M

I Y-t S .

Reconstruction Algorithm

By applying (3.5), (3.6), (3.10), and (3.11), we have:

"Z[Pk-zz '+q, 4] (3.13)

The following schematic diagram can also describe this algorithm:

dN—M dN—M+l dN-—l
~N ~N ~N
VM 5 eNMI eV eV
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3.3 The Two Scale Relation for the Cardinal B-Spline

In this section we will study the relationship between any two consecutive subspaces of

the nested sequence {/'" : j € Z} that are closed subspaces of L*(R),[37]. Now since
foreach jeZ
N,(2')eV  and V] V],

we will have
N,(2'x)= Y p,. N2 x-k), (.14)
k=—c0

where {p,,, :k € Z} is some sequence in /*. Taking the Fourier transform of both sides

we get

N, w) =%[Z Pos e_ik%J N, (-‘23). (3.15)

This formula can be applied to determine the sequence {p,, .} . Indeed,

—iw

N, (w) =(1 _; )m (3.16)

—iw

l—e

since N,, is the m-fold convolution of N, and N,(w) =

Substituting (3.16) into (3.15) we get,

ny

1 ¢ —ikw/2 1—e™ " iw/2 3 1+e™? ¥ NS my —ikwl2
5 ;Pm‘k ( N ) (1 _ e-,% 5 ;o )

43



and this yields

_j2™ (@) for O<k<m
P 0 otherwise

Consequently, the precise formulation of (3.14) is given by
Nm (x) =22-m+l (Z') Nm(zx_'k) s
k=0

which is called the “two-scale relation” for the cardinal B-splines of order m.

3.4 Construction of Spline Interpolation Formulas

To construct a spline interpolation operator, it is very important to require the operator to
reproduce polynomials at least up to some desirable degree. This requirement not only
helps in achieving a tolerable order of approximation, but is also critical in preserving
certain shapes of the given data. After all, to interpolate a set of constant data, one
expects to use a (horizontal) straight line [1], [7], [38], [41].

We will first give a brief discussion of the cardinal spline interpolation problem,

namely; for any given “admissible” data sequence {f,} we want to determine the

solution {c,} in
ZCkNm(x+%—k)l,=j =f,.jeZ. (3.17)
k=-c0

Here, {f;} is said to be admissible if it has at most polynomial growth.
Central to our discussion is the goal of constructing the so-called “Fundamental

splines™ that interpolate the data {5,,}. With a fundamental spline on hand, an



interpolation operator may be readily obtained by using any given data sequence as the
coefficient sequence of the spline series formed by integer translates of the fundamental
spline.

Let us first investigate the cardinal spline interpolation stated in (3.17) with data sequence

{J,,}- By solving the bi-infinite system
Zc,(,""N,,,('—;’-+j—k) = &, Jjez, (3.18)
for {c,("") } we have an m™ order “fundamental cardinal spline function”

L(x) = 3 & Nm(x+%—k), (3.19)

e
that has the interpolation property

L,(x)=6,, (3.20)
as given by (3.18). In contrast to the cardinal B-spline N, which has compact support,
we will see that the coefficient sequence {c,(,"') } is not finite for each m >3, so that the
fundamental cardinal spline L_ does not vanish identically outside any compact set.
Hence, when it is applied to interpolate a given data sequence {f;},where f; = f(j) for

some f €C , say, one has to be careful about the convergence of the infinite spline series

Unf) &= SF®L, (x-k) . (3.21)

k=-x
Fortunately, as we will see in a moment, {c,'," } decays to zero exponentially fast as
k — oo . This implies that the fundamental cardinal spline function L_(x) also decays to

zero at the same rate as x —» +oo. Thus, if {f(k)} is of at most polynomial growth, then
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the series in (3.21) certainly converges at every x e R; and in view of the interpolation

property (3.20), we have

S -N))=0, jeZ. (3.22)
This means, the interpolation spline operator J, gives a spline function J, f that
interpolates the given data function f atevery x=j, jeZ.
To study the fundamental cardinal spline functions L_(x), we must return to the system

(3.18) of linear equations whose coefficients are given by the B-spline values

Nm( % +k ) Now we consider the symbol

1;/,.. (z) = ZN,,, (ﬂ+k)z",
T 2
and note that this symmetric Laurent polynomial can be easily transformed into an

algebraic polynomial with integer coefficients by considering

(%]

E, _ (2):=(m-1)!z Nau(2), (3.23)

where [x] denotes the largest integer not exceeding x. This notion generalizes the
definition of Euler-Frobenius polynomials from even-order cardinal B-splines to those of
arbitrary orders. For more details see [10]. The most important property of the Euler-

Frobenius polynomial £

m

-, in (3.23) for our purpose here is that it does not vanish on the

unit circle |z]=1. Hence, it follows that Nan (z)#0 for all z=e™,weR. Now the

system of linear equations (3.18) can be written as

Cnm(z) = (3.24)
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where C (z) is the symbol of {c(’") } By using partial fractions, it is easy to see that the
sequence { (m) } exponentially decays as k — +oo, and the decay rate is given by the
magnitude of the root of E, , in |z |<lwhich is closest to the unit circle |z]=1. This
formula can be used for computing L_(x).

Example 3.7

Determine the cubic fundamental cardinal spline L,(x).

By applying (ix) in Theorem (1.9), the non-zero values of N,(k), ke Z, are found to

be

1 41
N, (), N,(2), N4(3)} = {Z’ g, g}

Hence, the corresponding Euler-Frobenius polynomial is given by

E, (z) =1+4z+27%= (z+2—\/?)(z+2+\/—3_).

Consequently, we have

(4—1)!2[ /2] _ 6z
E, (2) _(z+2—ﬁ)(z+2+ﬁ)

(3.25)

2+,/3 2,3
(-2+J_) —(-2- J‘)[Hz J3 z+2+f]

2 a PACINE AR (eI

V5 3 (247 ),

47



so that the sequence {c,(f) } 1s given by

O =(-1) V3 (2-y3 )", kez. (3.26)

This yields the cubic fundamental cardinal spline
L,(x)= i(—l)kﬁ(z—ﬁ)'“’N4(x+z—k) (.27
k=-0
Observe that the rate of decay of L,(x) is

O((Z—\/—f)lxlj, as x—+too, (3.28)

in view of the fact that SuppN,(-+2-k) =[k -2,k +2].

3.5 Interpolatory Spline-Wavelets

The only wavelet we are very familiar with so far, at least in explicit formulation, is the
Haar wavelet i, =y, . On the one hand, its companion scaling function is the first order
cardinal B-spline N, namely:
¥y =N,(2x)-N,(2x-1) (3.29)
while on the other hand, it is interesting to note that wy is also related to the derivative of
the second order cardinal B-spline N, in the sense that
Wy (¥) = Nj(2%). (3:30)
It is therefore natural to ask to what extent the observation in (3.30) would generalize. To

answer this question, let us first remark that the second order cardinal B-spline N, can be
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viewed as a fundamental cardinal spline. In fact, the second order fundamental cardinal
spline function L,, defined as in (3.19) - (3.20), is given by
L,(x)=N,(x+1).

Hence, an equivalent statement of assertion (3.30) is

Wy () =Ly(2x-1). (331

If we follow this point of view, then we can get spline-wavelets of arbitrary

orders. To be precise, let {VJ’”} be the MRA of L*(R) generated by the m” order
cardinal B-spline, and let {W™}, jeZ, denote the sequence of orthogonal
complementary (wavelet) spaces, in the sense that

vr=VrOW", jeZz, (3.32)
where it should be recalled that the circle around the plus sign indicates orthogonal
summation . In the following, for each positive integer m, L, denotes the m™ order
fundamental cardinal spline function introduced in (3.19) — (3.20).

Theorem 3.8

Let m be any positive integer, and define

Wim =I5 (26~1), (3.33)
where L,, is the (2m)” order fundamental cardinal spline. Then ¥, generates the
(wavelet) spaces W", j € Z, in the sense that

Wy =clos, (2w, , (2! x—k ):keZ), jez. (3.34)

J L
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Proof
Let us first verify that y,, is in W;". For every neZ, by applying successive
integration by parts and noting that the m™ derivative of the m® order cardinal B-spline

N, is a finite linear combination of integer translates of the delta distribution, we have

(N =MW )= [ N, (x—n ) L5 (2x~1)dx

( l)mrLzm(Zx 1)N™ (x~n)dx

02_"'( -1 () jLzm(Zx-l)a(x—n—k)dx

=S (Y @) L (200 26 -1)=0
since L,,(¢)=4,,, £ € Z. Hence, Wim €Wy

Next, let us investigate the two-scale relation of y,, with respect to

N,(2x—k), keZ. That is, we are interested in studying the /> sequence {g,} for

which

Vim ()=I (26-1)= 3, N, (2x—k) (3.35)

k=—c0

Keeping the same notation as in (3.19), we write

L,, (x)= Zc(z"')N (x+m-k). (3.36)

On the other hand, by applying the cardinal B-spline identity (iv) in Theorem 1.8

repeatedly, it follows that
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NG (x)=(ANE D) ()
=-=(a"N, )(x) (337)

- :Z(-l)" () N, (x~k),

where A denotes the backward difference operator . Hence we obtain, from (3.33), (3.36)

and (3.37),

Wim (6)=L) (26-1)= 3 et N (26 -1+ m—k )

k=0

= i e i(—l)t GCIN, (2x~1+m—-k—¢)

k=-x

> 4,N,(2x-n),
with
=D (1) el (3.38)
=0
The two-scale symbol Q corresponding to the two-scale sequence {g,} in (3.35), as

given by (3.38), is now

Q(2)= Z[Z( 1)‘(,)c‘::’lu] "

_""l“" (3.39)
(1-2) $efm
Where it follows from (3.36) and the interpolatory property L,,(/)=4, , that
Seempn oL (3.40)
=y F, (2)

with
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F, (z):=EN_‘ (z)= mz—lsz (m +k )z"
f=omt (3.41)

_—_kim {I:Nm (k+x)N,, (x)dx }z",

being the generalized Euler-Frobenius Laurent polynomial relative to the m™ order
cardinal B-spline N, . In spline theory, where algebraic polynomials with integer
coefficient are very desirable, the Euler-Frobenius polynomials of order 2m—1 are
defined by

E, .(2)=Cm-Yz""F (z) .
Thus, substituting (3.14) into (3.39), we have found the formula for the two-scale symbol

Q, namely;

z—m+l

. (1-z) L (3.42)

F,(z2)

0(z)=

Note that Fn never vanishes on the unit circle, see [10]. Now, since the two-scale

symbol of NV, is given by

1+zY\"
P()=ry, @=(*32.
we can compute the determinant Apg as follows:

Ap g (z)=det [ ;’ ((j)z ) QQ(Z()_ Z)] (3.43)

(2™ (1+ 2™ oz (1-z)"
2" F (-2) 2™ E (2)

- [
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= om-l zI1, (zz) ) zF, (zz)
- T Eone Y ARG

Since Fn never vanishes on | z|=1, we have shown that

AP.Q (z) #0,

zl =1.

Hence, {(-—k):k e Z} is a Riesz basis of W, and this complete the proof.
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Chapter 4

Differential Equations and Wavelets

In this chapter, we will present the numerical approximation of solutions of differential
equations. The first section will be devoted to some basic definitions and results from
linear algebra. The condition number of a matrix that measures the stability of the
solution will be presented in the second section. Finally, we will introduce two methods
for solving differential equations numerically. The first is called the finite difference
method. It is based on approximating the derivatives that are involved in the differential
equations using differences. The second, which will be presented in the fourth section, is
a class of methods that is called the Galerkin-Wavelet methods. There, we will describe
how wavelets could be used efficiently on the numerical solution of differential

equations.
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4.1 Basic Definitions and Results from Linear Algebra

Definition 4.1
Let ¥ be a vector space over C. A (complex) inner product is a map (-, -): ¥ xV —>C
with the following properties:
i (u+v,w)=(u,w)+(v,w) forall u,v,weV,
ii. (au,v)=a(u,v)forall@cC andall u,veV,
iii.  (u,v)=(v,u) forall u,veV?,
iv. ()20 forall uc¥,and (u, u) =0ifand only if u = 0.

A vector space ¥ with a complex inner product is called a (complex) inner product
space.

Definition 4.2

Let ¥ be a vector space over C with a complex inner product (- -). For ve ¥, define

| vIl=y(>-)- Wecall | v | the norm or the length of v.
Definition 4.3

Let A=[a;] be an m x n matrix over C.

The transpose A’ of Aisthe nxm matrix B ={b;] defined by b, =a;, forall i, j
The conjugate transpose A" of A4 is the nxm matrix C =[c;] defined by ¢, = ;;
forall i, j.
Definition 4.4

Let A bean nxn matrix. 4 is unitary if 4 is invertible and A™' = 4",
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Definition 4.5

An nxnmatrix Ais normal if 4°"4A=A4 A",
Definition 4.6

Let 4 bean nxn matrix. 4 is Hermition if 4° = 4.
Definition 4.7

A matrix A is said to be circulant if a,,,, ., =a,, ,

Theorem 4.8
Let T:/*(Z,) > I*(Z,) be a linear transformation.
Then the following statements are equivalent:
a. T is translation invariant.
b.  The matrix A representing T in the standard basis £ is circulant.
c. The matrix A representing 7 in the Fourier basis F is diagonal.
Theorem 4.9
(Spectral theorem for matrices) Let Abe an nxnmatrix over C . Then the following
statements are equivalent:
a. A s unitarily diagonalizable.

b. Ais nomal.

c. There is an orthonormal basis for C” consisting of eigenvectors of A .

4.2 The Condition Number of a Matrix

Many applications of mathematics require the numerical approximation of solutions of

differential equations. The methods for numerically solving a linear ordinary differential
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equation come down to solving a linear system of equations, or equivalently, a matrix
equation 4 x =y . For such system to have a unique solution x for every y, the matrix
A should be invertible. However, in applications there are further issues that are of

crucial importance. One of these has to do with the condition number of the matrix.

Definition 4.10

Let A4 be an nxn matrix. Define |4, called the norm of 4 by

|42

I=1"

where the supremum is taken over all nonzero vectors in C".

4] = sup

Definition 4.11

Let A be an invertible nxn matrix. Define C,(A), the condition number of A4, by
Cy(A) =] 4[| 47" |. i Ais not invertible, set C,(4) = oo.

Example 4.12

Consider the linear system 4x =y, where x, y € C?, and

e 595 —~14.85
198 -494 |

The determinant of A is .01, which is not 0, so A is invertible. For
_[3.0s
Y= 1102]"

the unique solutionto A x=y is
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now, if we suppose

Then the solutionto A x' =y’ is

f]

Note that y and )’ are close but x and x’ are far a part. A linear system for which this
happens is called badly conditioned. In this situation, small errors in the data can lead to
large errors in the solution. This is undesirable in applications, because in nearly all
computations with real data there is an error either due to rounding off or due to
imperfect measurement of the data. For a badly conditioned system, the apparent solution
can be meaningless physically.

Lemma 4.13

Suppose that A4 is an nxn normal invertible matrix. Let

|4 =max{|ﬂ |: 4 isan eigenvalueofA}

and
|2] . =min{|A|: 4 isan eigenvalueof 4 }
then
C, (A)=EL'“.
12|

The condition number of a matrix 4 measures the stability of the linear system

A x =y under perturbations of y. The stability of the linear system is most naturally

described by comparing the relative size '“}ﬁ of the change of the solution to the
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relative size "5% yj of the change in the given data. The condition number is the

maximum value of this ratio.
Theorem 4.14
Suppose A4 is an nxn invertible matrix, x,y,5x,5 yeC”,x#0, Ax=y,and

ASx=36y.Then

| x| Iyl
Proof
To show this we need to show that
| axf<]affx]. 4.2)

By the definition of | 4 | we have | 4 ||> " A ITxI” Since

7&”=1 for x=0

we get (4.2). Now, let y = 4 x, using (4.2), we have
P4 PIIES @3)
Similarly, since 6x=4"' 5y,
lox<] 47 |15 “.4)
By multiplying inequalities (4.3) and (4.4) we get

[l e <cucn] =l o3

which is equivalent to inequality (4.1).

The condition number of 4 measures how unstable the linear system 4 x=y is
under perturbation of the data y . In applications, therefore, a small condition number is

desirable. If it happens that the condition number of A is high, it is recommended to
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replace the linear system 4x=y by an equivalent system whose matrix has a low
condition number. Multiplying the system A4 x=y by a preconditioning matrix B to
obtain the equivalent system B Ax=By such that C,(BA) is smaller than C,(A)

could do this.
4.3 Finite Difference Methods for Differential Equations

For the sake of simplicity we will concentrate on the following problem.

- u'(t) = f(t) te (0, 1) (4 S)
u(0)=u(1)=0, |

where f:[0,1] — C is assumed to be continuos. Our target is to find a C*> function u

that satisfies (4.5). Note that at the end points O and 1, derivatives are interpreted in the
one-sided sense.
Theoretically this equation is well known. And the unique solution u of the two point

boundary value problem (4.5) is given by
u@==[ [ fsydsde+x| [’ 7(s)dsad. (4.6)

However, if f is a function whose antiderivative can not be expressed in terms of

elementary functions, it may not be possible to explicitly evaluate (4.6). One approach to
approximate the solution uis to numerically estimate the integrals in this formula.

Another way, which is more general, is the finite difference method.
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Methods involving finite differences for solving boundary-value problems replace
each of the derivatives in the differential equation by an appropriate difference-quotient
evaluated on a finite set of points in the interval [0, 1].

By the definition of the derivative,

_u(E+Ar)—u (@
- At

u' (f)

for small Az, which is refered to as the forward difference formula. For reasons of
symmetry, let 4> 0, consider both Az=h/2and At =—h/2, and average will produce

the center difference formula

2 2

u,(,)z%[u(r+%3—u(r)+u(t)—z:(t—%)}

_u(t+3)-u(t-3)
= - .

Applying this to u’ we obtain

u’(t+%)—u’(t-—§)zu(t+h)—2u(t)+u(t—h)'

"(t)= 4.7

u" (1) - pE; @7
Now, consider the partition

J
tj:]_v:, J—O,I,. ,N

andlet h=1/N.
Also set

x(j)=u(7{,—)andy(j)=$ (Tfl—),forj=0,l,...,N 4.8)

To solve —u"(¢;)=f(t,), we approximate u"(t;) using (4.7). Now, consider the
system of equations
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(5 )
N N N N N
with boundary conditions # (0)=u (1) =0, to make sense we restrict ourselves to
1< j< N —1. Thus we consider

—x(J+1)+2x(J)-x(J-1)=y(Jj) for j=1,.... N-1, 4.9)
with the boundary conditions

x(0)=0and x(N)=0. (4.10)

Equation (4.9) is a linear system of N —1 equations in the N —1 unknowns

x(1), ..., x(N —1) represented by the matrix equation

2 -1 O 0 o0 x(1) [ y(1)
-1 2 -1 O 0 x(2) y(2)
0 -1 2 -1 0 0
4.11)
o O 0O -1 2 -1
0 O 0 -1 2]}|x(N-1)] [y(N-1)]
which we denote by
Ay x=y
We claim that det 4, =N . We will use induction to show that
det 4y, =2 det A, —det 4, , for N=3 “4.12)
Now for N =3
2 -1 o0
Aya=d,=|-1 2 —1| D deta,=2| > He|7P 7!
Ne1 = Ay = etA4, = -1 2 0o 2
0o -1 2
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50, (4.12) is true for N =3 . Assume that (4.12) is true for N = k&, we need to show that it

=2(3)—2=2det A4, —det 4,

is true for N =k +1. Indeed,

[ 2
-1
0
det 4., =det
0
| 0
get
2 -1
-1 2
0 -1
detA,,, =2
o o
0 o0

-1

2

-1

0
~1
2

0
-1 0
2 -1 0
o -1
0
0
0 0
-1 O 0
-1 2 -1
-1 2

-1

-1

expanding along the first row we

Expanding the second term along the first column we obtain

2
-1
0
detA4,,, =2

-1
2
-1

0
-1
2

0
0
0

-1 -1

-1
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-1 O

2 -1 O

-1 2 -1 O

0o -1 2 -1
o -1

0 0

2 -1 O

-1 2 -1 O

o -1 2 -1
0 -1

0 0

-1

-1

-1

-1
2




=2det A, —det4,_,. Hence, (4.12) holds for all N>3. Now, using
induction again it is clear that det A, =N . Hence, A4, is invertible, and the system

Ay x =y has a unique solution x for each vector y.

As we let h — 0; that is, N — o, we expect our solution to approximate the true
values of u in (4.8) with greater accuracy. However, in general it is important
numerically to have a well-conditioned linear system. So next we study the condition

number of A4, .

Observe that A4,, is real and symmetric, hence Hermitian. Therefore, it is normal.
By Lemma 4.13, C,(4)=|A| /|| . To compute the eigenvalues of A, , we
consider the matrix B),_, that agrees with A, except that the entries of B,,_, in the top
right and lower left comers are —1 instead of 0. Then B, _, is circulant. Hence, it is

diagonalizable and we can find its eigenvalues using Theorem 4.8.

Another way to see the relation between A4, and the circulant variant is to
observe that 4, is the N —1x N —1 submatrix obtained by deleting the first row and the
first column of the N x N matrix B, . We see that we can get information regarding the
eigenvalues of 4, from those of B, .

Suppose x' =(x(0), x(1), ..., x(N —1))is an eigenvector of B, such that x(0)=0.
Let A be the associated eigenvalue. Let x=(x(1), x(2),...,x(N—1)). Then
By, x'(j)=A, x(j) for j=1,2, ..., N—1 because the condition x(0) = 0 guarantees
that the first column of B, has no effect on the value of B,, x'(j). Therefore,

Ay x(J)=By ¥'(J)=Ax'(j)=24x(j),
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for j=1,2,..., N~-1. So, x is an eigenvector of 4, with eigenvalue 4.

Because B, is circulant, Theorem 4.8 says that its eigenvectors are the element of
the Fourier basis Fg, Fi,...,F,_,. The eigenvalues of B, are given by
A;=4sin’ (7 j/N). It is not clear that there exists an eigenvector x'of B, satisfies
x'(0)=0. However, if 1<j<N/2, we have 1,_ ; =4, so the eigenspace
corresponding to 4 ; is two-dimensional, spanned by F, and F,_ ;- Therefore a linear

combination of F; and F,_; belongs to this eigenspace. For 1< j <N /2 and with

i=+/-1, define K, eI*(Z,) by

K, ) =2-( F,(n) = Fyr,(n)

_ L( g2FiinIN _ e-Z;tijnlN)z sin 2z jn )
2i N

Then K;(0)=0 and B, K; =1, K, . By the above discussion, this implies that the
vector of length N -1 obtained by deleting the first component from K, is an
eigenvector of 4, with eigenvalue A . Let m =2j; define vectors G,, of length N —1

forl<m<N-1by

G, (n)=sin(”:;n) for n=1,2,..., N—1. (4.13)

We claim that G,, for 1 <m < N -1 are the eigenvectors of 4, with eigenvalues 1 ,.

Indeed,

(4y G, )=-G,(I-1)+2G,(1)-G,(I+1)
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=| 2-2cos| 22 sin(ﬂml =4sin?| 22 G, ().
N N 2N

Thus, we see that the eigenvectors of A, are G, for 1 <m < N —1 with corresponding
eigenvalues 4 sinz(%]. These eigenvalues are distinct, so are the eigenvectors and we

have a complete set of eigenvectors for the matrix A4,,. Now, the condition number of

A, is given by

4sin?| Z& =D
max 2N

min 4 sin® (—1-)
2N

As N — oo, sin*(z (N —1)/2N)—> 1, whereas sin>(r /2N) behaves like 7> /4 N2.

C, (AN) =

ad
|

|
| A

Thus

4N?

r?

Cy(4y) =

So the condition number of 4, goes to + 0o as fast as N?. So although what should
happen is that increasing N should increase the accuracy of the approximation to the
solution u of equation (4.5). The linear 4,, x = y becomes increasingly unstable and the

solution becomes more and more unreliable.
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For the simple case (4.5) we were able to explicitly diagonalize the matrix A,
arising in the finite difference method. This is due to the fact that the operator L defined
by Lu =—u" is translation invariant. Consequently the matrix A4,, was close to circulant,
in the sense that 4, is closely related to the circulant matrix B,, . This and a bit of luck
enabled us to find the eigenvectors of A4, . However, if Lis a linear variable coefficient

ordinary differential operator; that is, operator of the form
N dj

(L) =LE)(0)=3. b, ou(®)
=0 t

where the coefficients b ; are allowed to vary with ¢, L will not be translation invariant.

Also the matrix 4 arising in the finite difference approximation to the solution of
Lu = fin[0,1] with the boundary conditions u(0)=u(1) =0, will not be closed to
circulant. And even if 4 is diagonalizable ( which is not clear), it is not clear how to
explicitly diagonalize it. We also expect the condition number of A4 to be large because
that is the case in the much simpler case (4.5).

An altemative approach will be using wavelets that includes the variable
coefficient case. That is what we will consider in the next section. This approach leads to

linear systems with bounded condition numbers.
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4.4 Wavelet-Galerkin Methods

In this section, we will consider another approach to the numerical solution of ordinary
differential equations, known as the Galerkin methods. We will see that using wavelets
together with Galerkin method give the two main desired properties for the associated
linear system namely, sparseness and low condition number, [20], [27] and [32].

We consider the class of ordinary differential equations of the form
d du
Lu(t)=——| a(t)— |{+b(t)u(t)=f(t) for0<t<l1 (4.14)
dt dt
with Dirichlet boundary conditions
u(0)=u(1)=0,
where a,b and f are given real-valued functions. We assume that » and f are

continuous and a has a continuous derivative on [0, 1]. We also assume that the operator

L is uniformly elliptic; that is, there exist finite constants C,, C,,and C, such that
0<C,<a(t)<C,and 0<b(1)<C,. 4.15)
For the Galerkin method, we suppose that {v 5 }j is a complete orthonormal system for
L*([0,1]), and that every v, € C?[0, 1] and satisfies
v;(0)=v;(1)=0. (4.16)
We select some finite set A of indices j and consider the subspace
S=span{v;:jeA}. 4.17)
We look for an approximation to the solution u of equation (4.14) of the form

u, = Z x, v, €S (4.18)

kel
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where each x, is a scalar. These coefficients should be determined such that #_ behaves
like the true solution u on the subspace S ; that is,
(Lus, vj)=<f, vj> forail jeA. (4.19)

By linearity, it follows that

(Lu,,g)=(f,g) forall geS.

Substituting (4.18) in equation (4.19), we get

<L (Zxk vk), vj>=<f, vj>, forall je A,

keA
or

Z(Lv,‘,vj>xk =<f, vj>, forall jeA. (4.20)
keA

Let x denote the vector (x,),.,,and let y be the vector (3,),.,, where y, =(f, v,,).
Let A be the matrix with rows and columns indexed by A, that is, 4 =[a ixedikens

where
a., =<Lv,c,vj>. (4.21)

J>

Thus, equation (4.20) is the linear system of equations

Zaj'k x. =y, ,forall jeA,

kA
or

Ax=y. 4.22)
In the Galerkin method, for each subset A, we obtain an approximation u, €S to u, by

solving the linear system (4.22) for x and using these components to find u, by equation
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(4.18). f we increase our set A in some systematic way, we expect that our
approximation u, will converge to the actual solution u .

As before we should be concemed about the nature of the linear system (4.22)
that results from choosing a wavelet basis for the Galerkin method. We would like the
matrix 4 to have two main properties. First, we would like the matrix 4 to have small

condition number. Second, we would like 4 to be sparse.
There is a way of modifying the wavelet system for L*(R)so as to obtain a

complete orthonormal system
{v j_k}(.i.k)el' (4.23)
for I*([0,1]). The set T is a certain subset of Z x Z . Now ¥, is C* foreach
(J, k) € A, and satisfies the boundary conditions
Ve (0)=y,;,(1)=0.
The wavelet system {y .}, .- also satisfies the following estimate: there

exist constants C,, C; >0 such that for all functions g of the form

g= ch.k Vi (4.24)
for which the sum is finite, we have
Co 227 e, < | g’ arsc, 32V | ¢l (4.25)
ik ik

The notation used for applying the Galerkin method with these wavelets is
somewhat confusing due to the fact that the wavelets are indexed by two integers. Thus

using wavelets, we write equation (4.18) as
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u, = Z NIAR BN

(f.k)eA

and as a result equation (4.20) becomes

DALV s Wim) Xu =(fo ¥, 0) forall (I, m)e A, (4.26)

(J.k)eA
where A is some finite set of indices. We can write (4.26) as a matrix equation of the

form Ax =y, where the vectors x=(x, ;) ;yea and ¥ =(¥; ;). ipea are indexed by

the pairs (J, k) € A. while the matrix 4=[a, ,,.; . Iy m ;9<1 defined by

Bpmjoe =LV o Vi) (4.27)
has its rows indexed by the pairs (/,m)e A and its columns indexed by the pairs
U, keA

As suggested, we would like 4 to be sparse and have a low condition number.
Actually A itself does not have a low condition number, but we can replace the system

Ax=y by an equivalent system M z =v, for which the new matrix M has the desired

properties. To show this, we define the matrix D =[d, .. ; . 1u.m. ;. 10en DY

A} i ={ 274 (m) = (), k) (4.28)
00 I (1 m) = (J, k).

Define the matrix M = [m, . " o, ). (k) €A by

M=D'4D™. (4.29)

This means that, we have componentwise
ml.mzj.k = z—j—l al. mj. k = 2—1‘—1 <ij.ln V’I.m > (4-30)

The system Ax =y is equivalent to
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D'AD'Dx=D"y,
ifweset z=Dx and v=D "'y, we have
Mz=v. (4.31)
The norm equivalence (4.25) has the consequence that the system (4.31) is well
conditioned. The following theorem is needed to prove the main result. It explains the

need for the uniform ellipticity assumption (4.15).

Theorem 4.15
Let L be a uniformly elliptic Sturm-Liouville operator. Suppose g € L*([0,1])is C*in

[0, 1] and satisfies g(0) =g (1) =0. Then
C . lg() de<(Le, g)<(C,+C) [ | ' (1)) ’dr, (4.32)

where C,, C,,and C, are the constants in relation (4.15).

Proof

Observe that

(~@ag)), g)=|.~(@gy(® g dt

1 ’ ’
=[ ag® gW di =(ag’, g').
Therefore,

(Lg,g)=(-(ag) +bg, g)={ag’ g')+ (b g, g). So by relation (4.15),

2 —_—
C [ lg®f as<[ a@|g®| di=| a®g'®g® di=(ag’, g'). (4.33)
Also by relation (4.15) we have,

o< | b|g®|* dr=(bg, g).
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Adding the above inequalities gives
C [le®|* a<(Lg. g).

which is the left half of the relation (4.32). For the other half, note that by (4.15) we

have,
(ag', &)= at)|g'®|" dt<C, [, |g'@) dr. (434)
Also since g(0)=0,
g() = g'(s) ds,

by the fundamental theorem of calculus. Now, if we apply the Cauchy-Schwarz

inequality to the functions g’ 7., and 7., Where y , (x) = {i’ : 5[[(()),,tt]]’we got
|2’ s( [ ds) (jo'l ds) <[ |g®|* ds
for every t [0, 1]. Therefore
[le@|* dar<| |g'@[ das | ar =, [g'®[ ds. (4.35)

Hence, by (4.15),
(bg, g) = j'o‘ b(t)g(1)g() d1 < C, j’o‘ le@|* dr<c, jo‘ lg'@)|? d.

This result and (4.34) give the right hand side of (4.32).
Theorem 4.16

Let L be a uniformly elliptic Sturm-Liouvilly operator. Let {¥, .} ; ;;.r be a complete
orthonormal system for [I?([0,1]) such that each e 18 C?, with

¥,;:(0)=y,,.(1)=0, and such that the norm equivalence (4.25) holds. Let Abe a
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finite subset of I'. Let M be the matrix defined in equation (4.29). Then the condition

number of M satisfies

(G, +C) G

C,(M)<
« (M) C.C,

(4.36)

for any finite set A, where C,, C,, and C; are as given in (4.15), and C,and C; are the

constants in relation (4.25).

Proof
Let z=(z; ) 1es be any vector with |z | =1.Let w = D 'z where the matrix D is as

given in (4.28); thatis, w = (W, , ), ryc 1 » Where

_ J
Wi e=2""2;,.
Define

&= Z WieVije-
Gk

Then by equation (4.30),

(Mz, z>= Z Mz, ., Z

{d,m)eA

=2 2 (L'/’j.k’ y/,_m>2'jzj'k 27z,

(m)eA (j.k)eA

=< L( Z wf-k '//Jlk]’ Z wl.m '/,I.m>=<Lg’ g)s
(. keA d.m)

since 27/ z;,=w;, and 27'z, ., =w,,.. Applying Theorem 4.15 and relation (4.25)

gives

(Mz,z)=(Lg.g)<(C, +Cy) [ |g'®| dt<(C, +C)C, Y 2% |w,,|”,

U.beA
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and

(Mz,z)=(Lg, g)=C, [ |g®)| de=C,c, ¥ 2% |w,,|”.

U.k)eA

However,

> 2%

(. k)eA

2 2
wj.kl = Z |zj.k| =|z]"=1.
U.eA
So forany z with "z"=1,
C C,<(Mzz)<(C, +C;)C;.

If 2 is an eigenvalue of M , we can normalize the corresponding eigenvector z so that

"z”zl,to obtain

(M z, z)=</1 z, z)=/1<z, z)=/1||z"2 =A.
Hence, every eigenvalue of M satisfies
C,C, <A 2(C,+Cy)C,.
Note that M is Hermitian, so it is normal and C,(M) is given by Lemma (4.13) to be
the ratio of the largest eigenvalue to the smallest. And the result follows since all of the
eigenvalues are positive.

So the matrix in the preconditioned system M z=v has a bounded condition
number independent of the set A. As a result, if we increase Ato approximate our
solution with more accuracy, the condition number stays bounded. This is an advantage
of the Galerkin method over the finite difference method where the condition number
grows as N”. To see the advantage of the wavelets over the Fourier system we should

consider the other feature of the matrix M that is desirable: we would like M to be
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sparse. Note that i, , is 0 outside an interval of length c2 7/ around the point 27k,

for some constant c¢. Because L involves only differentiation and multiplication by

another function, it does not change this localization property. As a result, Ly ; . is 0
outside this interval. Similarly, v, ,, is 0 outside an interval of length ¢2~' around the

point 2 'm . As we let j and / get large, fewer and fewer of these intervals intersect, so
more and more of the matrix entries m, , ;, are zeros. This means M is sparse. The

basic reason for this sparseness is the compact support of the wavelet.

Although the matrices we obtained using finite differences were sparse, they
have large condition numbers. Using the Galerkin method with the Fourier system, one
obtains a bounded condition number, but the matrix will be no longer sparse. Using the
Galerkin method with a wavelet system, will guarantee both advantages.

The fact that a wavelet system nearly diagonalizes a very broad class of operators
1s one of the key properties of wavelets. We have seen that this is very important in
applications to numerical differential equations. Another main property of wavelets is
their combination of spatial and frequency localization. This property is usually used in
signal analysis. A third key property of wavelets is that norm equivalencies for wavelets
such as relation (4.25) hold for a much larger class of function spaces than the Founer

system.
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4.5 Further Research

Consider the following second order boundary value problem [34], [36]

of = d <
Y'()=1(t, ¥(), Y'(®) 0<r<1 @37)
y(0)=y1)=0
where f:[0,1]1x R*> > R, (t,u, v) = f(t, u, v) is continuous in 7, #, and v. Assume that

S satisfies the following Lipschitz condition

I o, u,v)—~ O, uy,v)) ISL [l“l —u2|+ I W—v, l]

! (4.38)
@ u,v), (tu,,v,)e[0,1]x R
Let A be a partition of [0, 1] given by
A:C=t <t <---<t, <t,, <--<t, =1,
where ¢, ~t, =h<1 and k=0,1,...,n—1.
The functions f@(z, y, '), g =1, 2, ..., r are generated as follows:
SO =f@ y, ) and from f9 we obtain recursively
(a-1) (Co)] (Cab)]
ot oy oy'
Now define the spline function approximation y(¢) by S, (¢):
' ” (t — tk)z
Sa®) =S, =8,,()+S;,(t,) (¢ —t,)+ S, (t,) —=—
2!
- € —1,)7" (4.40)
+ _,—Zof [tks S (te). Sy (tk)] W

where S9(2,) = y® = 3(0) = 0. By construction it is clear that

S, @ ec*([0,11xR? ).
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Forall te[r,,t,,,], k=0(1)n-1, let the exact solution of (4.37) be written in

the form

A .Vk j r+3 (s tk)r+3
W= ) ) S

where &, (t,,t,,,) and k=0,1,....n—1.
Before proceeding to the discussion of the convergence of the spline
approximation, let us introduce the following notations:

e(t) =| y(t) - S, (9)], the exact error
e, =| ¥ ~ S, (¢,)], the error in the computedsolution,
SO = FOlte Sia (@), S ()] (4.42)

f‘(j) =fm(tk’ V> Vi)
where j=0,1,...,r and £=0,1,...,n-1.

First we estimate |y(r)—S,(f)|. Using (4.40), (4.41), the Lipschitz condition

(4.38) and the notation (4.42) we obtain

’ ’ " " (t—tk)z
e(r) Sl Vi —Sa(2) l"‘ I Vi =S (8) l I t“”kl*’ I Vi —Sea(t) I—ZI——

+ rz—l | YU _ £ I K _tk|j+3 | D)~ O t—1,
= £ LG+ “ (r +3)!
<e, +he + h_ek + z , ¥ - fkml l &) -1 L .
2! G +3) (r+3)!
(4.43)
If we denote
F=| yor £ Iand F= Y (E,) - £ (4.44)

then,
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F<L(e +e) (4.45)
and
F<w O, h )+ L (e, +e;) (4.46)

where w (y(”'”, h) is the modulus of continuity of the function y“*? . Thus using (4.45)

r=1 J+3
and (4.46) we may obtain Z G+ <e” —2 <e. With this result we can easily get
j=0 J + .
h2 r+3
e@<(A+cyoh)e, +(+cy)he, +—e] + w(y"® h) (4.47)
2 (r+3)!
where ¢, =L (e + ( 1 3)J is a constant independent of 4. In a similar manner, we can
r+3)!
easily get
r+2
e'(t)y<c, he, +(1+c, h)e, +hel + w(y?, h) (4.48)
(r+2)!

where ¢, =L (e + J which is independent of A .

(r+2)

Now the estimate of | y"(£) — S; (¢)

,» we use the Lipschitz condition (4.38) and notations

(4.42) and utilizing the inequality

r—1 hj
. < e *
o (J+D!
we can get
r+l
e"(t)<c,he,+c,he, +e) + w(y?, h) (4.49)

(r+1)

where ¢, =L (e + ) is constant and independent of 4 .

(r +1)!
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If we let | E(x)| = max { e(x), e'(x), e"(x)} . It can be determined that
E()<O(h™").

To find the estimate for | Y@@ -89 l, q=3,4,..., r+2, using (4.38)-(4.49) we get

( ) j+3 6)] I -t lj+3—q (r+3) ") I t _tklﬁs-q
|ykq)(t)—S,fq ® ISZI Yy _ £U lm+| YUINE,) - £ o
<O (p=+r+3-1) (4.50)

thus we proved the following theorem.

Theorem 4.17

Let S, (#) be the approximate solutions of the problem (4.37), given by equations (4.40)-
(4.41) and f eC"([0,1]x R?), then for all te[t,,t,,]c[0,1, h=0,1,...,n—1 we
have l yO @ -SSP lsK h™?~7 w(h) where j=3,4,..., r+3, and K is a constant

independent of A.
With the help of spline approximation, the problem has been converted into the

form given in (4.5)

u'(t)=f (@), te[0]]
u(0)=u(1) =0.

This means wavelet representation for the solution of BVP procedure can be easily
applied. Using the above procedure, delay neutrol and functional differential equations

may also be considered.
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