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Optimal power flow (OPF) is one of the main tools for optimal operation and planning of
modern power systems. Needs of OPF development rise, as power systems get more
complicated. One of those main needs is the incorporation of power flow flexibility,

which the flexible AC transmission systems (FACTS) devices play the main role in it.

Incorporating FACTS devices to be among the OPF problem control variables is the main
concern of this thesis. A new formulation of OPF was developed taking into account
FACTS devices representations. The developed formulation was solved for the optimal
control variable settings with respect to single objective as well as to multi-objective
optimization problems. Those objectives were total fuel cost minimization, voltage
profile improvement, and voltage stability enhancement. Because of the complicated
nature of the resulted problem, an efficient optimization technique was developed and
implemented in this study. Particle swarm optimization (PSO) technique was employed
for solving the formulated OPF problem. The effectiveness of PSO was compared to that
of genetic algorithm (GA). The potential and superiority of PSO have been demonstrated
through the results of different optimization runs. A novel hybrid GA/PSO has been
proposed in this study for solving the problem of optimal FACTS devices location. The
developed techniques have been tested on a standard IEEE test system. The results have
been compared with those reported in the literature. The results of the developed and
proposed techniques demonstrate their potential and effectiveness in handling power

system optimization problems.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

Serving customers with reliable, good quality, and low cost electric power supply is the
ultimate goal of every electric utility. Meeting this goal needs a proper power system
planning and operation which is a great and growing challenge. Ultilities and power
producers put a great effort in beating such a challenge. This can be noticed in the
continuing developments and attentions in two directions. The first is related to the power
system analysis and control tools. Optimal Power Flow (OPF) is the most leading tool
belongs to this direction. The second direction is related to the power system equipment
and devices developments. Flexible AC Transmission Systems (FACTS) is believed to be

the top in this trend.

Optimal power flow (OPF) is a special type of power flow where some variables are
adjusted (controlled) so as to optimize a predefined objective while respecting various
constraints [1-3]. The OPF was raised in the early sixties as an extension of the

conventional economic dispatch [1]. Its usages have been widened since then to cover



many power system applications ranging from long range planning to on-line operation.
So, it has deserved a great attention in the past two decades [3].

Flexible AC Transmission System (FACTS), on the other hand, have opened a new world
in power system control. They have made the power systems operation more flexible and
sécure. They have the ability to control, in a fast and effective manner, the three effective
players in power flow. These are circuit impedance, voltage magnitude and phase angle.
Gaining flexibility in power flow is not a little achievement. The great economic and

technical benefits of this to the powér systems have been well proven [4,5].

The question now is what can the OPF add to the FACT devices in terms of analysis?
Also, what can the OPF gain from incorporating the FACTS devices in terms of solution?
The answer to these questions is enough to justify this research direction and clarify its

motivations.

1.2 Thesis Motivation

Incorporating FACTS devices in OPF problem contributes in developing OPF to be more
beneficial tool for power systems planning and operation. Specifically it can help in the

following:

1.2.1 Widening OPF Solution Space
Solution space of conventional OPF is usually limited by the operation and control

variable limits of the power system. This limitation usually prevents from attaining the



hoped improvements in the OPF objective or objectives. Therefore, it became necessary
to widen the operating margins and increases the controllability of the power system.
FACTS devices, with its introduced flexibility and controllability of power flow, release

some of the imposed constraints on the OPF and so help in widening the solution space

[6-9].

1.2.2 Assessment of FACTS Devices

Installing FACTS devices in any power system is an investment issue. It offers some
flexibility to the power system (as explained in chapter 3) at the expense of cost.
Therefore, it is necessary for any new installation of FACTS to be very well justified [10-
14]. This justification needs an off-line simulation of the power system with the different
candidate FACTS installations to assess the value added to the system. Among the
different assessment tools used for this purpose, OPF seems to be the best. By
incorporating FACTS devices in OPF with some modification, it can give scalar measures
of its benefits. This can help a lot in deciding for the optimal location of new FACTS

installation.

1.2.3 Limitation of Traditional Optimization Algorithms

Generally, most of the conventional optimization techniques apply sensitivity analysis and
gradient-based optimization algorithms by linearzing the objective function and the
system constraints around an operating point. Unfortunately, the problem of the OPF is a
highly nonlinear and a multimode optimization problem, i.e. there exists more than one

local optimum. Hence, local optimization techniques are not suitable for such a problem.
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Moreover, many mathematical assumptions such as convex, analytic, and differential
objective functions have to be taken [15]. However, the OPF problem is an optimization
problem with, ‘in general, nonconvex, nonsmooth, and nondifferentiable objective

functions. Therefore, conventional optimization methods are not that efficient in solving

OPF problem [16-18].

Recently, a new evolutionary algorithm, called particle swarm optimization (PSO), has
been used for solving power system problems [19-22]. The results reported were

promising and encouraging for further research.

1.3  Thesis Objectives

Objectives of this thesis can be listed as follows:

1. Developing an OPF formulation where FACTS devices are incorporated and
considered as control variables.

2. Assessing FACTS devices using the developed OPF from different objective
perspectives.

3. Formulating OPF as a multi-objective optimization problem and using fuzzy logic to
extract the best compromised solution.

4. Employing two of the latest evolutionary algorithms in searching for the solution of
the above objectives and comparing their results. Those two are the Genetic

Algorithms (GA) and the Particle Swarm Optimization (PSO).
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5. Proposing a new GA/PSO algorithm to be used in searching for optimal FACTS
devices location with respect to certain objective using the formulated OPF, This can

help in FACTS devices investment.

1.4 Thesis Overview

Following is briefing of the nine chapters comprise this thesis. Chapter 2 gives a
literature review of OPF. This includes a review of OPF applications, OPF formulation
trends, and OPF solution techniques. The following chapter, chapter 3, describes the
FACTS devices and their concepts. The most common used FACTS devices and their
modeling for power flow studies are explained in this chapter. Detailed OPF formulation
with FACTS devices is developed in chapter 4 whereas detailed explanation of GA and
PSO solution techniques, used for solving this formulated problem, are given in chapter S.
This chapter also gives an explanation of the new GA/PSO algorithm used for searching

for optimal FACTS location.

Case studies and siﬁulation using IEEE-30-bus system are given in chapters 6, 7, and 8.
Chapter 6 is devoted for the comparison between GA and PSO in terms of speed of
convergence, robustness, and solution quality. OPF with FACTS is solved for different
objective functions in chapter 7 using PSO. In chapter 8, the new GA/PSO is used for
searching for optimal FACTS location with respect to a specified objective. The report is
concluded in chapter 9 by summarizing the main findings of the study and pointing to

some directions for future studies



CHAPTER TWO

LITERATURE REVIEW OF OPTIMAL

POWER FLOW

This chapter presents the literature survey of the optimal power flow applications and
solution methods. It seems essential at the beginning to name two comprehensive surveys
on this matter. The first one is that of Huneault and Galiana [1]. Their work looks back,
as they mentioned, on OPF field and economic power dispatch from the early 1930’s up
to 1989. The second survey is that of Al-Hawary et. al. [2]. It reviewed the optimization

techniques that were applied to the OPF problem up to 1993.

2.1 Overview

Enormous efforts have been spent for improving OPF to make it of great help for all sorts
of power system engineering. The OPF have been widened to include objectives other
than minimizing fuel cost and system losses which are the most common objectives. New
constraints have been added to the OPF over the power balance equations and the

generator VAR limits. Also the control variables have received some attention. One of



the newly introduced control variables to the OPF is the FACTS devices setting. All this
together with the non-linear and non-convex nature of OPF problem contributed to came

up with a complicated and difficult OPF problem to solve.

This chapter introduces first the optimal power flow problem and compares it with the
conventional power flow in section 2.2. Then it gives in a three sections a review to the
optimal power flow and its developments. It reviews in section 2.3 the applications to the
OPF. Then it reviews the problem formulation and handling approaches in section 2.4. In

section 2.5, it reviews the solution techniques employed for OPF solving.

2.2 Conventional Power Flow Versus Optimal Power Flow

2.2.1 Conventional Power Flow

Power flow calculation is the most common power system simulation tool. It is essential
in evaluating the operation conditions of power systems, taking the proper control actions,
and planning for future expansions. Power flow calculation can be described as finding
the voltage magnitude and angle at each bus of the power system and in turn finding the
real and reactive power flow through transmission lines and transformers among other
valuable information. This is done by solving a series of simultaneous nonlinear
equations known as power-balanced equations which state that the power injected at each
bus is equivalent to the sum of power flows on all branches connected to that bus. More
specifically, the net real power P; and reactive power (; entering the network at bus 7 in

figure (2.1) are given respectively as:



F=F; -F, (2.1)
O=0s —Op (2.2)

where Pg; and Qg; are the generated real and reactive power at bus i, and Pp; and Qp; are
the real and reactive power demand at the same bus. The complex conjugate power
injected at bus i of a system consists of NB number of buses can be expressed in terms of

the network bus voltages and admittances as follows.
P:' -J Qi =Vl i

R NB
=V, Z g
J=1

(2.3)

where

V,= |V,. |4 0, is the voltage magnitude and angle at bus i.
V,= ’Vj ‘4 0, is the voltage magnitude and angle at bus ;.
Y, = 'Yu ’4 6, 1s the negative summation of admittances connected between buses i and j

where i # .

Taking the real and imaginary parts of (2.3) and substituting for P; and Q; in (2.1) and

(2.2) results in the following two equations:



Busi
—_—
Pgi+iQg ;
P +jQ,

Ppi+JQp;
—

Figure 2.1: General bus i with generation and load
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NB
PGi —PDi = JEIVI-VJ-YIJ cos(6y; +6; —5;)=0; Vi, jeNB (2.4)

NB
QGi -QDi = jélViVjYij sin(6;; +0;-6;)=0; Vi, jeNB 2.5)

The power flow problem is to solve the above two equations for values of unknown bus
voltage magnitudes and angles. Iterative numerical techniques are needed to solve such
non-linear equations and the resulted solutions represent the power system 6peration

conditions for a specific equipment setting.

Dependent variables such as load bus voltages and branch flow are the measure of the
power flow solution quality. Load flow model offers a set of independent control
variables whose value can be adjusted to provide an acceptable solution. Generator
reactive output, transformer tap, and phase shifter angles are the common control
variables for power flow. Experiences, unfortunately, showed that conventional power
flow is not sufficient for large number of control adjustments to satisfy a system global
objective rather that local objective such as bus voltage control. Optimal power flow has

found its way for emergence from here [23].

2.2.2 Optimal Power Flow
Unlike conventional power flow, optimal power flow is a special power flow problem

which, optimally, adjusts system control variables to achieve certain results while
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satisfying the power flow equations and other inequality constraints. It is an optimization

problem with objective and constraints as given below in its general form [23].

Min  J(x,u) (2.6)
Subject to: g(x,u)=0 2.7)
h(x,u)<0 (2.8)

Where x is the v.ector of state variables (dependent variables), u is the vector of controlled
variables (independent variables), f'is the objective function to be optimized, g is the set of
power flow equality constraints, and 4 is the set of inequality constraints on the dependent
and the independent variables. Table 2.1 summarizes the main differences between the

conventional power flow and the optimal power flow.
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Table 2.1: Main differences between conventional and optimal power flow

12

Conventional Power Flow

Optimal Power Flow

Global such as fuel cost

Objectives | Local such as bus voltage control
minimization in the entire system
Power-balanced equations,
Constraints | Power-balanced equations generator Var limits, transformer
tap ranges, shunt Var limits, ...etc.
Generator MW output, transformer
Generator reactive output,
taps, and phase shifter angles,
Controls transformer taps, and phase shifter

angles

shunt capacitors, series

compensation, ...etc.
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2.3 OPF Applications

Applications of OPF may be classified into operational and planning applications.
Operational applications can be separated into economical and technical. Several of
applications come under each class. The most common applications can be explained as

follows.

2.3.1 Fuel Cost Minimization
The starting point for OPF is minimizing the operation cost of power systems. The
minimization of the fuel cost is the main objective under this class. It seeks to find the

optimal active power outputs of the generation plants so as to minimize the total fuel cost

[1,2,15-19,23-25].

2.3.2 Loss Minimization
Transmission losses minimization is considered to be one of the cost minimization
objectives as well. This objective together with the fuel cost minimization is among the

most common used objectives [1, 2, 23-25].

2.3.3 Voltage Profile Improvement

This objective has been taken into consideration in many OPF works [19,26-27]. In most
OPF problems, voltages are bounded between upper and lower limits in inequality
constraints [16-18]. Other OPF problems look for the operating settings that minimize the

summation of the total voltage deviation at the load buses [19,26].
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2.3.4 Voltage Stability Enhancement
Voltage profile improvement does not necessary implies a voltage secure system. Voltage
instability problems have been experienced in systems where voltage profile was
acceptable [28]. Voltage secure system is the system that is able to maintain constantly
acceptable bus voltage at each bus under normal operating conditions, after load increase,
changing system configuration, or when the system is subjected to a disturbance. This
objective has been given a great attention in previous OPF researches where it has been

formulated in different ways [19, 29-34]

2.3.5 Power Transfer Maximizing

Power transfer maximizing is a valuable goal for interconnected systems. It can help in
minimizing the operation cost of power system in addition to other advantages such as
reliability enhancement. This can be best managed by optimal adjustment of Var sources
[27,35]. One use of FACTS devices is to enhance the power transfer and OPF can play a

major role for optimal settings of those devices for this purpose.

2.3.6 Optimal System Planning

Like power system operation, OPF has taken a leading place in today’s power system
planning [3]. Reactive power planning is the most active application area of OPF and this
can be a research subject by itself. Var planning aims to minimize the cost of additional
expansion of new reactive resources to maintain the system in a secure and economic

manner. It consists of identification of optimal Var location and size. The attribute in
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Var planning may involves voltage stability enhancement, losses minimization, or any
other evaluation index. An evaluation of three optimal Var planning tools is given in [36].

Different Var planning approaches have been tried [37-38].

2.4 OPF Problem Formulation

OPF, like any optimization problem, needs to be put in such a way where the candidate
solution can be evaluated and the searching process is directed to the optimal solution.
Most of time, the optimization techniques used to find the optimal solution formulate the
problem in a shape convenient to work well.  What follows is a generalization of the

formulation approaches and solution strategy to the OPF problem.

2.4.1 Objective Formulation

An optimization process, by definition, looks for the best of all feasible solutions in terms
of certain objective or objectives. So it has to have a tool to evaluate and rank those
feasible solutions. There are two known classes of strategies for evaluating candidate

solutions: the first class relies on objective function while the other relies on rule.

1.  Function-based objective
This approach is possible when each solution can be assigned a single numerical value.
Due to its easy handling, it is more common than the other approach. Classical OPF

problems usually relay on this approach [15-19,23-27]. An advantage of this approach is



16

that it gives a value to every possible solution. This allows for a fair comparison between

all candidate solutions.

2. Rules-based objective

It is sometimes easier for the user to state rules to select between candidate solutions
rather than building an objective function. This approach has been in used recently with
the revolution of expert systems. This approach is found to great helpful in multi-

objective optimization with conflicting nature [39-40].

2.4.2 Control Variables

The only control variable for OPF problems, at their launching, was the MW output of the
generators. Various control variables have been incorporated since then. The standard
OPF nowadays treat generator terminal voltages, transformer tap settings, and Var shunt

together with the MW output as controlled variables.

FACTS devices settings were treated lately as control variables in very few OPF problems
[41-44]. The only objective considered in [41-44] was the minimization of the generation
cost. A compréhensive study of FACTS devices effect on OPF problem is still needed

and this is one objective of this thesis.

2.4.3 Constraints Treatment
As any optimization problem, there are some constraints that have to be satisfied in the

course of the OPF problem solution. The way of dealing with constrains has developed
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and new constraints have been added. Load flow needs, which usually come with FACTS

devices, are some of those new constraints lately introduced in OPF problems [8,45-46].

Constraints can be usually treated either as hard or soft constraint. In hard constraint
approach, no violation is accepted at all while in soft constraints approach, violations are
reflected in the objective with some certain penalty. The later approach is used in this

thesis.

2.5 OPF Solution Techniques

OPF goes hand in hand with the development in optimization techniques. One can judge
that almost all optimization technique have been applied to solve OPF problem.
Literature is full with comparisons and evaluations of such algorithms. Those algorithms
and optimization techniques can be broadly classified into two classes, namely,

conventional techniques and modern techniques.

2.5.1 Conventional Optimization Techniques

Nonlinear programming [47,48], quadratic programming [49], Newton-based solutions
[50-52], linear programming [53,54], and interior point methods [55,56] are some of the
most common techniques of this type. Most of those optimization techniques are
gradient-based. Literature is full of applications of those techniques for OPF solutions.

Interested readers are directed to consult the comprehensive survey presented in [2].
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What is common in all of these techniques is that they make use of the first and second
derivatives of objective function and its constraints to find out the optimal solution.
Hence, a differentiable and convex objective function has to be assured in order for those
optimization techniques to work well. Unfortunately, the OPF problem in general comes
with a nonconvex, nonsmooth, nonlinear, and nondifferentiable objective function. This

has encouraged the OPF developers to try some more efficient optimization techniques.

2.5.2 Modern Evolutionary-based Optimization Techniques

These algorithm's simulate the evolutionary pattern observed in nature. The reported
results of these techniques often out perform the conventional optimization techniques
when applied to complicated problems such as OPF. Genetic algorithm (GA),
evolutionary strategy (ES), evolutionary programming (EP), and particle swarm

optimization (PSO) are the four major algorithms of this direction.

GA has received a great attention from OPF developers. It has been applied in many OPF
problems with a variety of objectives [17,18,42-43]. Nevertheless, EP and ES [15,16]
have been applied to the same purpose. PSO is the latest algorithm of the four. It has
been applied in many field of engineering including power system problems [20-22].
However, up to writing of this thesis, it has been applied to OPF problem only once so far
[19]. The above techniques did not consider the FACTS devices in their formulation.

This gap will be covered in this thesis.
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This thesis is an effort to include FACTS devices settings into consideration in OPF
studies. It tries also to utilize the latest advances in optimization techniques for OPF

solving.
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CHAPTER THREE
FACTS DEVICES AND POWER FLOW

CONTROL

3.1 Overview

FACTS are AC transmission components incorporating power electronic controlled
devices (FACTS devices or controllers) to enhance flexibility in power flow control. The
word “flexibility” here means the power system ability to accommodate changes in
electric transmission network or rapid operating conditions. Power system flexibility
implies enhancing the power transfer capability, improving the security and stability of

the system, and improving the transmission system performance in general.

FACTS devices are power electronic-based system and other solid-state control (no
moving parts) that provide a rapid control of one or more of the three AC transmission
system parameters affecting power flow. The three parameters are bus voltages, line
impedances, and phase angles [57]. This chapter explains how those parameters

influence power flow and clarifies the different controlling techniques. A description of
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three of the most known FACTS devices will be given. Specifically the effectiveness and
potential of static Var compensator (SVC), thyristor controlled series compensator

(TCSC), and thyristor controlled phase shifter (TCPS) will be explained.

3.2 Power Flow Control

Figure 3.1 is a simplified power transmission system that will be used to derive the basic
relationships of AC power transmission in order to understand the power flow control
offered by FACTS devices. It is a simple two-bus system where the sending and the
receiving ends are interconnected via a short transmission line with a series reactance X

and a neglected shunt capacitance.

For simplicity and clarification, it has been assumed that the sending end voltage Vs and

the receiving end voltage 'z have the same magnitude. That is |Vs|=|Vz|=V :

5

v, =Ve'? = V(cos%+jsing—) 3.1)

i
v, =Ve’7 =V(cos2 - jsind) (3.2)
2 2
The current through the line is given by
I=-S 2" ginZ (3.3)
The midpoint voltage ¥V, is
Vi =V —j32(~1 = Vcos—g (3.4)

Assuming a lossless line, the power is the same at both ends as well as the midpoint, i.e.,
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Figure 3.1: Simple power system model
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2

Ve .
P=VMI=—j(—sm5 (3.5)

The reactive power provided for the line at each end is

2

Q, =—0, = I*Vsin(—i;)= 24 (1-cos9) (3.6)

X
Figure 3.2 shows the relationships between the real power P, the reactive power (J, and

the angle 6.

It is clear from (3.5) how the voltage magnitude and angle at the sending and receiving
bus and the electric length of the transmission line (i.e. the effective series line reactance
X) direct the power transmission. Shunt var compensation, series compensation, and
phase angle controller are three approaches to control those parameters. Following is a

brief illustration of the effect of each approach on the transmittable power.
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Figure 3.2:

Power transmission characteristic for the simple system in figure 3.1
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3.2.1 Shunt Compensation
The magnitude of the voltage V), at the middle of the uncompensated line in figure 3.1 is
equals to Veos &2, which is less than the voltage magnitude at the line ends. To maintain
a flat voltage profile (|Vs| = |Vx| = |[Vu] = V), a capacitive current Iy needs to be drawn at

the middle of the line as shown in Figure 3.3.

The drawing of capacitive current is equivalent to applying a shunt compensator at that
point. Since the compensator voltage V), and its current /), are in quadrature, the
compensator does not consume any real power. Therefore, the power transferred from
sending end to the mid-point is equal to the power transfer from the mid-point to the

‘receiving end and it 1s given by:

sin — (3.7

Figure 3.4 shows the plot of the power transfer P against the angle & [58].
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Figuré 3.3: Simple power system model with mid-point shunt compensation

2P

e s e e e e o - = e —— . e — — ——

Power

|
|
|
|
|
|
Poa | T 7 — K Puncomp) |
|

|

I

|

|

v

R — — - — —

Angle

Figure 3.4: Power transmission characteristic for the shunt compensated line
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3.2.2 Series Capacitance Compensation
Figure 3.5 shows the arrangement of series compensation of a line using a mid-point
capacitor to reduce the overall line reactance. This method makes the line appears

electrically shorter than in the actual case.

The overall reactance of the line will become X-X,, or alternatively, X(1-s), where s is the

degree of compensation given by:

§ == ;0<s<1 (3.9)

The current in the compensated line and the real power transmitted are the same as (3.3)

and (3.5) except that X(7-s) is substituted for X, i.e;

= 2 sin—5~ (3.9
X(1-s) 2
2
P= 4 sino (3.10)
X(1-5)

Figure 3.6 shows how the transmitted real power P varies as the degree of compensation s

changes [58].
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Figure 3.5: Simple power system model with series compensation
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Figure 3.6: Power transmission characteristic for the series compensation
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3.2.3 Phase Angle Control
A line compensated by a phase shifter is shown in figure 3.7. The voltage from the phase
shifter, V5, is adjustable in phase and magnitude to produce the desired ¢ phase shift
(leading or lagging). In this way, the sending-end voltage Vs becomes the sum of the
generator voltage Vi and the phase shifter voltage V. This can keep the transmitted
power at a desired level independent of the angle & between the sending and the receiving
ends. Thus, the power can be kept at its peak value after the angle & exceeds 7/2 (the peak
power angle) by controlling the effective phase angle (0-0) between the sending and the

receiving ends.

The transmitted power can be expressed as follows:

2

P=£/)—(~sin(5-—a) (3.11)

The phase shifter does not increase the maximum power transfer capability of the line as
in the case of series and shunt compensation. However, it allows the maximum power
transfer to occur at a wide range of the phase angle. This can be noticed from figure 3.8

which shows the transmitted power against the angle & [58].
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Figure 3.7: Simple power system model with phase shifter control
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Figure 3.8: Power transmission characteristic for the phase shifter
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3.3 FACTS Devices

Static Var compensator (SVC), Thyristor controlled series capacitor (TCSC), and
Thyristor controlled phase shifter (TCPS) are FACT devices that act on the three
parameters to determine the power transfer. What is common to those FACTS
devices is that they employ thyristor reactive impedances or tap-changing transformer

with thyristor switches as controlled elements.

3.3.1 Static Var Compensator
The early start of today’s FACTS devices was a thyristor-controlled static var
compensator (SVC) [4]. It has been identified by the word static because it does not
have inertia or any rotating components. It has been defined by the IEEE as ““a shunt-
connected static Var generator or absorber whose output is adjusted to exchange
capacitive or inductive current so as to maintain or control specific parameters of the

electric power system (typically bus voltage)” [57].

Figure 3.9 shows the two most popular SVC configurations, namely, the fixed
capacitor with a thyristor controlled reactor (FC/TCR) and the thyristor switched
capacitor Wi'th the thyristor controlled reactor (TSC/TCR). The former is preferred in
industrial application due to the less thyristor valves required whereas the later offer

smoother control on reactive power.
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From an operation point of view, the SVC can be seen as a variable shunt susceptance.
Therefore, we choose to model the SVC as a total variable susceptance between certain

limits as shown in figure 3.10. The effect of this on load flow can be taken care of in

building the Y-Bus matrix [59].
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Figure 3.9: Static Var Compensator

Figure 3.10: SVC model for power flow studies
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3.3.2 Thyristor-Controlled Series Capacitor
Thyristor-controlled series capacitor (TCSC) is a more flexible way of series
compensation which has been in use since early 1960s. It is the incorporation of thyristor
valves that has led to that great flexibility in active power flow control and oscillation
damping. Figufe 3.10 shows one common scheme of TCSC. It is a fixed capacitor bank
in parallel with a thyristor-controlled reactor in order to provide a smoothly variable series
capacitive reactance. In addition to its effectiveness in steady state control of power flow,
TCSC has been so effective in transient stability improvement and power oscillation
damping [60]. According to [4], there have been three installation of TCSC in the United

State of America (USA).

The effect of TCSC on power system can be seen as a controllable reactance x, inserted in

the transmission line as shown in figure 3.12 [45,61].
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Figure 3.11: Thyristor Controlled Series Capacitor
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Figure 3.12: TCSC model in power flow calculation
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3.3.3 Thyristor-Controlled Phase Shifter
The thyristor-controlled phase shifter (TCPS) is a phase-shifting transformer employs
thyristor-controlled tap changer instead of the mechanical one to allow for a high speed
operation. TCPS, as shown in figure 3.11, consists of a shunt-connected excitation
transformer with appropriate taps, a series insertion transformer and a thyristor switch

arrangement.

Similar to TCSC, TCPS allows for the control of power flow through the network and
power sharing between parallel circuits. However, TCSC are more suitable for long

distance lines while TCPS performs better in compact high density network [60].

The effect of the phase shifter can be seen to be equivalent to an ideal transformer with

complex taps as shown in Figure 3.14.

The modification to the Y-Bus matrix is as follows [62]:

% thii "'tYije_jd)

Bus p
- -jo
t¥;e Y,

(3.12)

OPF with FACTS devices is formulated in the next chapter, chapter 4, using the modeling

of FACTS explained in this chapter.
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Figure 3.13: Thyristor-controlled phase shifter
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Figure 3.14: TCPS model in power flow calculation
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CHAPTER FOUR

OPF FORMULATION WITH FACTS

DEVICES

4.1 Overview
The OPF problem seeks to optimize the steady state performance of a power system in
terms of an objective function while satisfying several equality and inequality constraints.

OPF 1n its general form is expressed as follows:

Min  J(x,u) 4.1)
Subject to: g(x,u)=0 4.2)
h(x,u)<0 4.3)

Where x is the vector of state variables. This includes the slack bus power Pg;, load bus
voltage ¥}, generator reactive power output (g, and transmission line loadings S;. Hence,
x can be expressed as

x' = [Pg Vy s Vi Q6,5 Q0,, sS4 s S, ] 4.4)

ul
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Where NL, NG, and nl are number of load buses, number of generators, and number of
transmission lines, respectively.

u 1s the vector of control parameters (independent variables). It consists of generator
voltages Vg, generator real power outputs Pg except the slack bus Pg;, transformer tap
settings 7, and FACTS devices control parameters. FACTS devices control parameters
consists of the SVC susceptances B, TCSC reactances xc, TCPS angles ®. Hence, u can

be expressed as

u' =V, ...V ,P. ..P Y Y A
G1 GNG G2 GNG 1°"*NT @3
B,..B s Xp e X ,D.....0 ] :
1 NSVC 1 CNTCSC 1 NTCPS

Where NT, NSVC, NTCSC, and NTCPS are number of regulating transformers, number of

SVCs, number of TCSCs, and number of TCPSs, respectively.

4.2  Objectives

J is the objective function to be minimized. Most OPF objectives are related to the
enhancement of the operation performance of the power system by looking for the optimal
setting of some controlled variables. Another main objective of OPF is related to the
optimal future planning of the power systems. This includes the optimal allocation of

new equipments and expansion of transmission network. The control variables and the
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constraints are assumed to be common for the different objectives. Following are the

objectives that are considered in this study.

4.2.1 Fuel Cost Minimization
Fuel cost minimization is the most classical objective. It is an expansion of the economic
dispatch. It seeks to find the optimal active power outputs of the generation plants so as

to minimize the total fuel cost.
NG
J="3 f;(8/h) (4.6)
i

where f; is the fuel cost curve of the " generator and it is assumed here to be represented

by the following quadratic function:

2
fi=a;+biPg +ePG (81h) (4.7)

where a;, b;, and ¢; are the cost coefficients of the i generator.

4.2.2 Volta;ge Profile Improvement

Previous objective function seeks to improve the cost of operation regardless of the power
quality. It may result in an unattractive state from the power quality point of view [19].
Optimal power system operation requires some kind of compromise between the
operation cost and quality. Voltage profile is one of the quality measures for power
system. It can be improved by minimizing the load bus voltage deviations from 1.0 per

unit. The objective function can be expressed as
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J= 3 - (4.8)
ie NL

4.2.3 Voltage Stability Enhancement

Voltage profile is not all for power system operation quality. Voltage profile
improvement does not necessary implies a voltage secure system. Voltage instability
problems have been experienced in systems where voltage profile was acceptable [28].
Voltage secure- system can be assured by enhancing the voltage stability profile
throughout the whole power system.

An indicator L-index is used in this study to evaluate the voltage stability at each bus of
the system. The indicator value varies between 0 (no load case) and 1 (voltage collapse)

[32,63,64]. L-index at load bus j can be expressed as:

ieg Cj i Vi
S &
J
Where:
ar : set of load buses
aG . set of generator buses
V; : complex voltage at load bus j
Vi : complex voltage at generator bus i
Cii : elements of matrix C determined by:
lcl=-r,; Pl o] (4.10)

Matrix [Y;;] and [ Y] are submatrices of Y-bus matrix in equation (4.11)
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e el
el Yor Y6 |76

Some of the best features of the L-index is that the computation speed of very fast and so
can be used for on-line monitoring of power system. Enhancing the voltage stability and
moving the system far from voltage collapse point cén be achieved by minimizing the
following obj ective function

J =Lpax (4.12)

Where L4, 1s the maximum value of L-index defined as

Linax =max {L g ,K =1, NL| (4.13)

4.3 Constraints

The functions g and % are the equality and inequality constraints to be satisfied while

searching for the optimal solution.

4.3.1 Equality constraints
The function g represents the equality constraints which are the power flow equations

corresponding to both real and reactive power balance equations, which can be written as:

NB
PGz' —PDi = JEIVI-V]-YU. (FACTS )cos(<9ij (FACTS )+5j -9,)=0 (4.14)
;Vie NB
NBVV Y.. (FACTS )sin( 8. (FACIS Y+ 6 ;- 6.)=0
QGi—QDi _]EI i’ l'j( ) sin( ZJ( )+ - )= (4.15)

; Vie NB
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Where:
NB is the number of buses;
Pg; and Qg; are active and reactive power generations at bus i;
Pp;and Qp; are active and reactive power demands at bus ;
V; and J; are voltage magnitude and angle at bus i;
Y;(FACTS) and 6;(FACTS) are magnitude and phase angle of elements in Y-bus matrix

where the effects of FACTS have been taken ito consideration.

4.3.2 Inequality constraints
h is the system inequality operation constraints that include:
i) Generation constraints: Generator voltages, real power outputs, and reactive power

outputs are restricted by their lower and upper limits as follows:

min max ; 4.1

VGi < VGi < VGi , i =1,.., NG (4.16)
min max P

PGi SPGi spGi , i=1,.., NG (4.17)
min max .

QGi sQGi sQGi , i=1,.., NG (4.18)

11)Transformer constraints: Transformer tap settings are bounded as follows:

TR <7 <A o, NT (4.19)

1i1) Security constraints: These include the constraints of voltages at load buses and

transmission lines loadings as follows
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v <y, <V =1, NL (4.20)
1 1 1
Sl_<_SlmaX , i=1,., nl (4.21)

iv) FACTS devices constraints: SVC, TCSC, and TCPS settings are bounded as follows:

BN <. <BMAX -1, NSVC (4.22)

;P gy <X o, NTCSC (4.23)
4 i 1

oM <. <OPX o1 ., NICPS (4.24)

Where B is the SVC susceptance, x. is the TCSC reactance, and @ is the TCPS angle. It
is worth mentioning that the control variables are self constrained. The hard inequalities
of Pg;, V1, Qg, and S; can be incorporated in the objective function as quadratic penalty
terms. Therefore, the objective function can be augmented as follows:

Juye =J +An(Pe —pim 2, Mg
aug PG ~1G, v &V VL

+A —0MYL LY (S, ~smax
QiEI(QGi QGz') s & LT )

(4.25)
2

where Ap, Ay, Ap, and As are penalty factors and %™ is the limit value of the dependent

variable x given as

max max
. x (XX
th =1 _min min (4.26)
x (X <X
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The solution methodology for solving the OPF problem formulated above will be

presented in the following chapter.
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CHAPTER FIVE

SOLUTION METHODOLOGY

This chapter explains the optimization techniques employed for solving the OPF for the
different objectives formulated in chapter four. It starts by a general overview that
highlights the general tasks of the optimization algorithms and the nature of the
evolutionary algorithms in general. This is followed By an explanation of the Genetic
Algorithm and Particle Swarm Optimization in sections 5.2 and 5.3 respectively. The
implementation details of the two algorithms for OPF solving are also given. Section 5.4

describes a new GA/PSO for solving the optimal FACTS devices location problems.

5.1 Overview

OPF is an optimization problem and the quality of its solution depends greatly on the
optimization technique employed for this purpose. Optimization algorithms are needed in
this study for the following purposes:

o Solving single objective OPF with/without FACTS devices.

o Solving multi-objective OPF with/without FACTS devices.
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o Finding optimal locations and settings of FACTS with respect to a certain
objective,
Genetic algorithm (GA) and Particle swarm optimization (PSO) have been selected for
those purposes. They are two of the leading optimization algorithms belonging to the
class of algorithms known as stochastic iterative search methods. Algorithms of this class

take the following general shape shown in figure 5.1.

1. Begin: generate and evaluate an initial collection of candidate solutions S.

2. Operate: produce and evaluate a collection of new candidate solution S’ by
making randomized changes to the initial solution S.

3. Renew replace some of the members of S with some better members of S”, and

then (unless some termination criteria has been reached) return to 2.

Figure 5.1: Generalized stochastic iterative search

These methods oiltperform other traditional methods for the following main reasons:

1. They search the problem space using a population of trials representing possible
solutions to the problem, not a single point. This property ensures these algorithms
to be lesé susceptible to getting trapped on local minima and moving over hills and
across valleys. It provides also some kind of parallelism.

2. They use objective functions assessment to guide the search in the problem space.
Therefore, they are very general and can deal with non-smooth, non-continuous and

non-differentiable functions.



48
3. They use probabilistic transition rules, not deterministic rules. Hence, they can
search a complicated and uncertain area. This makes them more flexible and robust

than conventional methods.

The following two sections explain these two algorithms.

5.2  Genetic Algorithm (GA)

Genetic Algorithms (GAs) were invented by John Holland and developed by him and his
students and colleagues [65]. GA typical structure was described by David Goldberg

[66].

In general, GA is started with a set of solutions (represented by chromosomes) called
population. Solutions from one population are taken and used to form a new population.
This is done by evolving the chromosomes through successive iterations, called
generations. During each generation, the chromosomes are evaluated using some
measure of fitness. To create the next generation, new chromosomes called offspring, are
formed by a crossover operator or/and a mutation operator. This is repeated until some
condition (for example number of populations or improvement of the best solution) is

satisfied. Following is a detailed explanation of the algorithm.

5.2.1 GA Basic Elements and Operators
e Chromosome, X(1),: 1t is a string structure representing a candidate solution

usually, but not necessary, coded in terms of binary alphabet. Real coded



49
chromosomes can be used and in this case each chromosome is represented by an
m-dimensional real-valued vector, where m is the number of optimized
parameters. At time ¢, the j’h chromosome Xj(?) can be described as X;(¢)=/x; 1(t),
%,2(t),..., xjm(t)], where xs are the optimized parameters and x;.(?) is the
position of the 7™ chromosomes with respect to the & dimension, i.e., the value of
the & optimized parameter in the j/** candidate solution.

Population, pop(t),: 1t is a set of n chromosomes at time ¢, i.e., pop()=[X1(¥), Xa(2),
e X(®)].

Crossover,: It is the most dominant operator in GA, and is responsible for
producing new children by selecting two strings among the potential parents and
exchanging portions of their structures. The new children may replace the weaker
individuals in the population. A blend crossover operator (BLX-a) has been
employed in this study. This operator starts by choosing randomly a number from
the interval [x-a(yi~x), yita(yi-x;)], where x; and y; are the i™ parameter values of
the parent solutions and x; < y;. To ensure the balance between exploitation and
exploration of the search space, a = 0.5 is selected. This operator is depicted in
Figure 5.2. In this way, the excellent characteristics of the parents will be
inherited in the next generation. The probability of crossover is set arbitrarily and

is typically greater than or equal to 0.6. When a random number generated
between 0 and 1 is less than the preset value of crossover probability, crossover

will take place.
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Figure 5.2: Blend crossover operator (BLX-a)
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*  Mutation,: 1t is a local operator, which is applied with a very low probability of
occurrence. Its function is to alter the value of a random position in a string. This
avoids the loss of important information at a particular position in the string.
Similar to crossover probability, the mutation probability is set arbitrarily and is
typically 0.1 per individual. When a random number generated between 0 and 1 is
less than the preset value of mutation probability, a string will be mutated.
Random mutation operator has been employed in this study.

o Global best, X "(1),: As a chromosomes move through the search space, it
compares its fitness value at the current position to the best fitness value the
algorithm has ever attained at any time up to the current time. The best position
that is associated with the best fitness encountered so far is the global best, X*(?).

Hence, the global best can be determined such

o Stopping criteria: These are the conditions under which the search process will
terminate. In this study, the search will terminate if one of the following criteria is
satisfied: (a) the number of iterations since the last change of the best solution is
greater than a prespecified number; or (b) the number of iterations reaches the

maximum allowable number,

5.2.2 GA Searching Technique
In GA algorithm, the population has » chromosomes that represent candidate solutions.

Each chromosome is an m-dimensional real-valued vector, where m is the number of
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optimized parameters. Therefore, each optimized parameter represents a dimension of the
problem space.

The GA technique can be described in the following steps:

Step 1 (Initialization): Set the time counter 7=0 and generate randomly n

by randomly selecting a value with uniform probability over the ¥ optimized parameter

search space[x;" ,x™ ].

Step 2 (Fitness): Evaluate each chromosome in the initial population using the objective
function, J. Search for the best value of the objective function Jpey. Set the chromosome

associated with Jy. as the global best.
Step 3 (Time updating): Update the time counter t=¢+ 1.

Step 4 (New population): Create a new population by repeating the following steps until

the new population is complete:

o Selection: Select two parent chromosomes from a population according to
their fitness (the better fitness, the bigger chance to be selected)
o Crossover: With a crossover probability, cross over the parents to form a new
offspring (children). If no crossover was performed, offspring is an exact copy
- of parents.
o Mutation: With a mutation probability, mutate new offspring at each locus

(position in chromosome).
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o Accepting: Place new offspring in a new population

Step 5 (Replace): Use new generated population for a further run of algorithm.

Step 6 (Stopping criteria): If one of the stopping criteria is satisfied then stop; else go to

step 2.

5.2.3 GA Implementation for OPF
Figure 5.3 represents the contents of the chromosomes for a real coded GA used for OPF
solving. It consists of the looked for control variables settings. » number of these

chromosomes are generated based on the population size of the algorithm.

Figure 5.4 shows the flow chart of OPF using GA. The load flow is simulated for each
candidate solution to evaluate its fitness. That is because the fitness function takes into
consideration the violation such as load bus voltages, generator Mvar limits, and line

loading as was declared in chapter 4.
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5.3  Particle Swarm Optimization (PSO)

Like evolutionary algorithms, PSO technique conducts searching using a population of
particles, corresponding to individuals. Each particle represents a candidate solution to
the problem at hand. In a PSO system, particles change their positions by flying around in
a multi-dimensional search space until a relatively unchanging position has been
encountered, or until computational limitations are exceeded. Unlike GA and other
heuristic algorithms, PSO has the flexibility to control the balance between the global and
local exploration of the search space. This unique feature of PSO overcomes the

premature convergence problem and enhances the search capability [67-72].

5.3.1 PSO ﬁasic Elements and Operators

e Particle, X(1),: This is analogous to chromosome in GA. It is a candidate solution
represented by an m-dimensional real-valued vector, where m is the number of
optimized parameters. At time ¢, the ;” particle Xj(t) can be described as
Xi(t)=[x;1(t), xj2(t),..., xjm(t)], where xs are the optimized parameters and
X;k(1) 1s the position of the ;™ particle with respect to the #* dimension, i.e., the
value of the & optimized parameter in the /* candidate solution.

e Population, pop(t),: It is a set of n particles at time ¢, i.e., pop(t)=[X;(?), X2(2), ...,
Xu(¥)].

e Swarm: it is an apparently disorganized population of moving particles that tend to

cluster together while each particle seems to be moving in a random direction.
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Particle velocity, V(1),: 1t is the velocity of the moving particles represented by an
m-dimensional real-valued vector. At time ¢, the j particle velocity Vi(t) can be
described as Vi(t))=[v;:(t), vj2(¥). ..., vim(?)], Wwhere v;4(t) is the velocity component
of the j” particle with respect to the ¥ dimension. It is also limited by some
maximum value, v¢"”. This limit enhances the local exploration of the problem
space and it realistically simulates the incremental changes of human learning.
The maximum velocity in the #* dimension is characterized by the range of the &

optimized parameter and given by

ymax (x;cnax _xlrcnin ) N (5.1)

where N is a chosen number of intervals.

Inertia weight, w(?),: It is a control parameter that is used to control the impact of
the previous velocities on the current velocity. Hence, it influences the trade-off
between the global and local exploration abilities of the particles. For initial
stages of the search process, large inertia weight to enhance the global exploration
1s recommended while, for last stages, the inertia weight is reduced for better local
exploration. The decrement function for decreasing the inertia weight given as
w(t)=a w(t-1), where o is a decrement constant smaller than but close to 1, is
proposed in this study.

Individual best, X (1),: As a particle moves through the search space, it compares
its fitness value at the current position to the best fitness value it has ever attained
at any time up to the current time. The best position that is associated with the

best fitness encountered so far is called the individual best, X*@#). For each



58
particle in the swarm, X*(#) can be determined and updated during the search. In a
minimization problem with objective function J, the individual best of the ;™
particle Xj*(t) is determined such that J(Xj*(t)) < JXj(t)), t <t. For simplicity,
assume that Jj*= J(Xj(z)). For the /” particle, individual best can be expressed

aS X (1) =[x}, ()yeerr X, (O] -
o Global best, X (1),: It is the best position among all  individual  positions

achieved so far. Hence, the global best can be determined such

o Stopping criteria: Same as with GA.

5.3.2 PSO Searching Technique

In PSO algorithm, the population has 7 particles that represent candidate solutions. Each
particle is an m-dimensional real-valued vector, where m is the number of optimized
parameters. Therefore, each optimized parameter represents a dimension of the problem
space.

The PSO technique can be described in the following steps:

Step 1 (Initialization): Set the time counter r=0 and generate randomly n
particles, {XJ(O),J‘ =1,..., n}, where X ,(0)=[x,,(0)...., x,,,(0)]- x4(0) is generated by
randomly selecting a value with uniform probability over the & optimized parameter

search space[x[™ ,x™ ]. Similarly, generate randomly initial velocities of all
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randomly selecting a value with uniform probability over the A dimension AR

Each particle in the initial population is evaluated using the objective function, J. For
each particle, set X,-*(O) = X;(0) and J,~*=Jj, Jj=1, 2, ..., n. Search for the best value of the
objective function Jp.s. Set the particle associated with Jp.s; as the global best, X M(0),
with an objective function of J* . Set the initial value of the inertia weight w(0).

Step 2 (Time updating): Update the time counter r=¢+ 1.

Step 3 (Weight updating): Update the inertia weight w(t)=a w(t-1).

Step 4 (Velocity updating): Using the global best and individual best, the J* particle

velocity in the & dimension is updated according to the following equation:

Vi O=wly (t—-l)+c1r1(xj.’k(t—l)—xj,k(t—-l)j

Jik (5.2)
+Cyry (x;.’k (t - 1)— xj,k (t - 1))
where ¢;, and c¢; are positive constants and 7;, and r, are uniformly distributed random
numbers in [0,1]. Check the velocity limits. If the velocity violates its limit set it at its
proper limit.
Step 5 (Position updating): Based on the updated velocities, each particle changes its

position according to the following equation
ik (t)= vj,k )+ %k (t-1) (5.3)

If a particle violates its position limits in any dimension, set its position at the proper

limit.
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Step 6 (Individual best updating): Each particle is evaluated according to the updated
position. If J;<J", j=1, 2, ..., n, then update individual best as X';()=X;(®) and J*; = J;
and go to step 7; else go to step 7.

Step 7 (Global best updating): Search for the minimum value J , amongJ ' where min is

the index of the particle with minimum objective function value, i.e., min € {j;
J=1, 2, ..., n}. Ime,-nq** then update global best as X'= Xmin(t) and J”=Jm,-,, and go to
step 8; else go to step 8.

Step 8 (Stopping criteria): If one of the stopping criteria is satisfied then stop ;else go to

step 2.

5.3.3 ' PSO Implementation for OPF
In using PSO for OPF solving, the particles represents the sought control variables.
Similar to GA, figure 5.3 shows the contents of the particles and based on the population

size, n number of these particles are generated. Figure 5.5 shows the whole algorithm.
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5.4 New Proposed GA/PSO

This is a searching technique developed for a complex and complicated problem related to
OPF. That problem is finding the optimal FACTS device location and settings with

respect to one of the OPF objectives discussed in chapter 4.

S5.4.1 Motivation of GA/PSO
The problem above consists of two parts. The first is the optimal FACTS devices
locations while the second is the OPF that generates the optimal settings of the FACTS

devices together with the other control variables.

The result of the first part is an integer which is either bus number and/or branch numbers
where FACTS devices are suggested to be installed. This needs an integer-based
optimization algorithm. GA has been chosen to play this role because of its attractive
quality. Fitness candidate solution is part of GA which requires OPF solving. From here
the need for PSO appears. PSO has fast convergence ability which is greatly attractive

property for such a large iterative and time consuming problem [69-72].

5.4.2 OPF Using GA/PSO

The interaction between the two algorithms as shown in figure 5.6 goes as follows. GA
generates candidate FACTS locations and PSO evaluate them by solving the OPF with
those FACTS locations. This yields to the optimal settings for those FACTS devices

together with the other control variables and so the corresponding fitness of for each
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FACTS location. The GA then takes that information and processes in generating another
solution set by crossing over and mutating the old FACTS locations set. PSO is then
consulted again for OPF solving with those new FACTS locations. This process is
repeated until one of the stopping criteria for GA is satisfied. The final output of the
process is an optimal setting of the OPF control variables with an optimal, or rather close

to optimal, FACTS devices location with their corresponding optimal settings.

The new GA/PSO technique can be described in the following steps:

Step 1 (Initialization): Set the time counter 7=0 and generate randomly =

locations.

| Step 2 (Fitness using PS0): Evaluate each chromosome (candidafé FACTS location) in
the initial population using the objective function, J. This is done by solving the OPF
with each candidate location using PSO. Search for the best value of the objective
function Jpesr. Set the chromosome (FACTS location) associated with Jps, as the global

best.
Step 3 (Time updating): Update the time counter t=¢+ /.

Step 4 (New population): Create a new population of FACTS location by repeating the

following steps until the new population is complete:
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Selection: Select two parent chromosomes from a population according to
their fitness (the better fitness, the bigger chance to be selected)
Crossover: With a crossover probability, cross over the parents to form a new
offspring (children). If no crossover was performed, offspring is an exact copy
of parents.
Mutation: With a mutation probability, mutate new offspring at each locus
(position in chromosome).

Accepting: Place new offspring in a new population

.Step 5 (fitness using PSO and time updating): repeat step 2 and 3 with the new FACTS

locations.

Step 6 (Stopping criteria): If one of the stopping criteria is satisfied then stop; else go to

step 4. Figure 5.6 shows those steps.
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CHAPTER SIX

SOLUTION OF OPF USING GA AND PSO

This chapter uses the GA and PSO to solve the traditional OPF without FACTS control
devices. The purpose is to assess the potential of PSO against those of the GA. The
objective function used is the fuel cost minimization and standard IEEE-30 bus system is

used in all simulations.

Both the GA and the PSO were developed and implemented on 2.0GHz PC using
FORTRAN language. The population size, maximum number of generation and other

settings for the two algorithms are stated before each simulation case.

6.1 1EEE 30-Bus System

Figure 6.1 shows the standard IEEE 30-bus system used for simulation. The system line
and bus data are given by [73] and shown in Appendix I. The system has six generators at
buses 1, 2, 5, 8, 11, and 13 and four transformers with off-nominal tap ratio in line 6-9, 6-

10, 4-12, and 28-27. No shunt Var compensation buses have been selected.
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Figure 6.1: Single line diagram of IEEE 30-bus system
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6.2 Fuel Cost Minimization Using GA and PSO

The effectiveness and robustness of GA and PSO have been evaluated and assessed. Both
algorithms have been employed for finding OPF solution that best minimize the total fuel
cost. Several runs of both algorithms with different population size have been conducted.

The maximum number of generation has been kept equal to 300 in all simulations.

The objective function is the total fuel cost, i.e.
NG
J =3 f;(8/h) (6.1)
1

where f; is the fuel cost of the i* generator.

The generator cost curves are represented by quadratic functions as [73]

fy = a4 +b,Fg, +ciPC‘;2i ($/h) (6.2)

where a;, b;, and ¢; are the cost coéfﬁcients of the generator. The values of these

coefficients are given in Table 6.1.

Table 6.1: Generation cost coefficients [73]

Gl | G2 | G3 | G8 |GIl1| GI13

a | 00 0000|0000, 00

b | 200 | 175 | 100 | 325 | 300 | 300

c 375|175 | 625 | 83.4 | 250 | 250
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The controlled variables were the generator MW outputs, the generator terminal voltages,

and the transformer tap settings. No FACTS devices were assumed in the system.

6.2.1 Settings of the Searching Algorithms
As stated earlier, the number of population and the initial solutions were varied to see how

robust both algorithms are to those two factors.

GA settings:

The maximum number of generation for each algorithm was kept as 300. Population sizes
of 5, 10, 25, and 50 were used to see the effect of that on the algorithm performance. Real
GA coding was implemented with a crossover probability of 0.9 and mutation probability

of 0.1 per individual.

PSO settings:

PSO has more key parameters than GA. The maximum number of generation and the
population size were analogous to those used for GA. The initial inertia weight w(0) and
the number of intervals in each space dimension N were selected as 1.0 and 10,

respectively. The decrement constant ¢=0.9 and c¢;=c,=1.0.

6.3 Convergence of GA and PSO

How fast an optimization algorithm converges to the optimal solution is an important

issue. The two algorithms were tested using four different number of population,
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specifically, five (5), ten (10), twenty five (25), and fifty (50). Each was tested using
same ten different initial solutions. Figures 6.2-6.5 show the average fuel cost variation
versus iteration for both algorithms. It is clear that with all population sizes considered,
PSO performs better than GA in terms of the best value of the objective function as well

as the speed of convergence.
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6.4 Robustness of GA and PSO

Like any evolutionary algorithms, randomness plays a major role in the searching process
of both PSO and GA. Robustness to the sequence of the random numbers generated is an
important property since the difference in random sequence implies difference in the start
with initial solution. Figure 6.6 shows the convergence of ten (10) GA runs with different
random number sequences. Figure 6.7 shows the same for PSO using the same ten (10)

random se€quences.

It is clear for GA that the ten cases converged to different optimal solution while in case
of PSO all the ten cases converged approximately to the same optimal solution. It can be
concluded that the PSO is more robust and effective in solving the OPF problem

considered.
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6.5  Solution Quality of GA and PSO
As a summary of the performance of both algorithms, Table 6.2 below shows the best,
worst, and average of the ten (10) runs with the four different population sizes considered

in section 6.3. It is clear that, the best, the worst, and the average solutions obtained by

PSO are much better than those obtained by GA.

Table 6.2: Summary of results

Best Worst Average
# Population
PSO GA POS GA POS GA
5 801.7002 | 805.0526 | 806.8203 | 811.5003 | 803.2220 | 807.6068
10 801.5617 | 802.4138 | 802.1005 | 808.7361 | 801.7816 | 806.1232
25 801.3532 | 802.8127 | 802.0516 | 806.7349 | 801.5172 | 805.0736
50 801.3175 | 802.1296 | 801.5186 | 805.1086 | 801.3972 | 804.1000

6.6 Results of PSO Compared with Published Results

For a comprehensive comparison, some published results have been traced. In [15],
Evolutionary Programming (EP) was employed to solve OPF for the same system as in
this research. The program was run 100 times with a population size of 20 and a total
number of generations of 50. With the same control variable limits, initial conditions, and

other system data, the average cost of solution obtained was $803.51 with the minimum
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being $802.62 and maximum of $805.61. It is clear that the proposed PSO approach
outperforms the EP.

In terms of conventional optimization algorithms, the same problem was solved using
gradient-based approach in [73]. Nine (9) shunt Var capacitors were controlled there in

addition to the control variables considered in our study. Nevertheless, the optimal

resulted fuel cost was $804.583.

The cases considered justify clearly the choice of PSO for solving OPF. The following

two chapters, chapter 7 and 8, employ PSO for OPF solving whenever possible.
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CHAPTER SEVEN

OPF STUDIES USING PSO

7.1 Overview

In this chapter, PSO is used to solve single objective OPF. This single objective is one of
the three objectives explained in chapter 4, namely, total fuel cost minimization, voltage
deviation minimization, and voltage stability enhancement. To show the impact of the
FACTS devices on the OPF results, studies with and without FACTS are simulated using
IEEE-30 given in Appendix I. Five (5) FACTS devices are assumed in the IEEE-30 bus
system at some arbitrary locations. Those FACTS devices are: two (2) SVC at buses 11
and 27, two (2) TCSC on branches 4, and 24, and one (1) TCPS on branched 8. In

general, the following cases are considered.

Case 1: Fuel cost minimization without FACTS

Case 2: Fuel ;:ost minimization with FACTS

Case 3: Voltage profile improvement without FACTS
Case 4: Voltage profile improvement with FACTS

Case 5: Voltage stability enhancement without FACTS
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Case 6: Voltage stability enhancement with FACTS

The normal power flow case is shown in the table as well for a comprehensive view.

7.2  Total Fuel Cost Minimization

The objective function is as given in equation (6.1) with the quadratic generator cost
curves in equation (6.2) and cost coefficient given in Table 6.1. PSO with a population
size of ten (10) and maximum number of generation equals to 300 was simulated to find

the optimal setting of the control variables that minimize the total fuel cost.

Table 7.1 shows the optimal settings of the control variables for the IEEE-30 bus system
and the resulted total fuel cost. The table shows two cases in addition to the normal
power flow case. Case 1, without FACTS devices where the control variables were the
generator MW outputs, the generator terminal voltages, and the transformer tap settings.
Case 2 has, in addition to the former mentioned controlled variables, five (5) FACTS

devices at arbitrary locations as mentioned earlier.

The final results in Table 7.1 show that the fuel cost with normal power flow was
$902.3224 whereas it has been decreased to $801.5616 with OPF in case 1 without
FACTS devices which means a saving of about 11.17%. The table also shows that the
reduction in fuel cost in case 2 with FACTS devices is not more than 0.05% from that of
case 1 without FACTS. This is expected since FACTS are not fuel minimization-based

devices. Part of the variation of the total fuel cost for the cases 1 and 2 are shown in
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figure 7.1. The figure shows that the convergence of the case with FACTS devices is

greatly much faster than without FACTS.
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Table 7.1: Optimal settings of control variables for total fuel minimization case

Limits

. Normal Power Case 1 Case 2
Max Min Flow (without FACTS) (with FACTS)

P, 0.50 2.00 0.9880 1.7335 1.7289
P, 0.20 0.80 0.8000 0.4804 0.4943
P; 0.15 0.50 0.4998 0.2384 0.2381
Pg 0.10 0.32 0.2000 0.2303 0.2107
Py 0.10 0.30 0.2000 0.1190 0.1270
Py 0.12 0.40 0.2000 0.1207 0.1224
Vv, 0.95 1.10 1.0500 1.0790 1.0845
V, 0.95 1.10 1.0450 1.0600 1.0663
Vs 0.95 1.10 1.0100 1.0254 1.0373
Vs 0.95 1.10 1.0100 1.0371 1.0371
Vi 0.95 1.10 1.0500 1.0610 1.0685
Vis 0.95 1.10 1.0500 1.0719 1.0602
T 0.90 1.10 1.0780 1.0021 1.0056
Tz 0.90 1.10 1.0690 1.0126 0.9875
Ts 0.90 1.10 1.0320 1.0239 0.9802
T35 0.90 1.10 1.0680 0.9680 0.9567
SVCy -0.02 0.05 - - 0.0120
SVCy -0.02 0.05 - - -0.0001
TCSCy (% of X1) 0.00 50% - - 0.1739
TCSCyy (% of Xy) 0.00 50% - - 0.0960
TCPS;s (radian) -0.20 0.20 - - 0.0288
Cost ($/H) 902.3224 801.5616 801.1727
3. voltage deviation 0.8632 0.5760 0.7775
Voltage stab. Index 0.1644 0.1439 0.1388
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7.3  Voltage Profile Improvement

In the following two cases, the objective considered is to improve the voltage profile of

the system. This objective can be expressed as has been shown in chapter 4 as

J= 3 ;- (7.1)
ie NL

As in the previous two cases, PSO with a population size of ten (10) and maximum
number of generation equals to 300 has been used to find the optimal setting of the control

variables that best minimize equation (7.1).

Table 7.2 shows the setting of the control variables and the resulted summation of voltage
deviation. The table shows two cases in addition to normal power flow. Case 3, without
FACTS devices where the control variables are the generator MW outputs, the generators
voltages, and the transformer tap settings. The other case (case 4) has, in addition to the
former mentioned control variables, five (5) FACTS devices at arbitrary locations same as

case 2. .

The final results in Table 7.2 show that the total sum of voltage deviations was reduced
from 0.8632 in normal power flow to 0.1572 in case 3. The table also shows that the
deviations were reduced further with the FACTS devices in case 4. The total sum of
voltage deviation in this case was reduced to 0.1437 which means a reduction of about
8.6 % over that in case 3. This shows that FACTS devices have a considerable effect on
voltage deviation. Part of the variation of the summation of the voltage deviation for

cases 3 and 4 are shown in figure 7.2. As was noticed before in the case of fuel cost
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minimization, the summation of the voltage deviation with FACTS devices converges

much faster than the case without FACTS.
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Table 7.2: Optimal settings of control variables for voltage profile improvement

Limits Normal Power Case 3 Case 4
Max Min Flow (without FACTS) (with FACTS)

P, 0.50 2.00 0.9880 1.3294 1.3836
P, 0.20 0.80 0.8000 0.5671 0.4896
P; 0.15 0.50 0.4998 0.4524 0.3420
Py 0.10 0.32 0.2000 0.1645 0.2478
Py, 0.10 0.30 0.2000 0.1745 0.1959
Py 0.12 0.40 0.2000 0.2210 0.2578
V; 0.95 1.10 1.0500 1.0053 1.0133
Vs, 0.95 1.10 1.0450 0.9966 1.0044
Vs 0.95 1.10 1.0100 1.0158 1.0199
Vs 0.95 1.10 1.0100 1.0080 1.0092
Vi 0.95 1.10 1.0500 1.0887 1.0184
Vis 0.95 1.10 1.0500 1.0420 1.0286
Ty 0.90 1.10 1.0780 1.0499 1.0214
Ty, 0.90 1.10 1.0690 0.9829 0.9254
T;s 0.90 1.10 1.0320 0.9845 0.9598
Tss 0.90 1.10 1.0680 0.9452 0.9626
SVCy; -0.02 0.05 - - 0.0065
SVCy, -0.02 0.05 - - 0.0491
TCSCy (% of Xy) 0.00 50% - - 0.2216
TCSCyy (% of X1) 0.00 50% - - 0.3176
TCPS; (radian) - -0.20 0.20 - - -0.0764
Cost (3/H) 902.3224 855.0492 831.4172
Y voltage deviation 0.8632 0.1572 0.1437

Voltage stab. Index 0.1644 0.1516 0.1583
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7.4 Voltage Stability Enhancement

As mentioned earlier, voltage instability problems have been experienced in systems
where voltage profile was acceptable [28]. Therefore, a voltage secure system can only

be assured by enhancing the voltage stability profile throughout the whole power system.

The indicator L-index, explained in chapter 4, is used here to evaluate the voltage stability
at each bus of the system. The indicator value varies between 0 (no load case) and 1
(voltage collapse) [63,64]. The following objective function is proposed for this purpose
J =Lpax (7.2)

where L4, 18 the maximum value if L-index defined as

Lipax =max L, ,K =12,.., NL (7.3)

and L-index at load bus j can is determined by equation (4.9)

It is aimed here to minimize the maximum L-index. Again, PSO with a population size of
ten (10) and maximum number of generation equals to 300 has been used to find the
optimal setting of the control variables that best minimize equation (6.4). Table 7.3
shows the setting of the control variables and the resulted L,... Again, two cases were
considered. Case 5 was without FACTS devices whereas case 6 was with five (5) FACTS

devices at arbitrary locations.

The final results in Table 7.3 show that the value of L, was reduced from 0.1644 in

normal power flow to 0.1399 in case 5 which means a reduction of about 14.9 %. The
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table also shows that an additional reduction of about 13.9 % has been achieved because
of the existing of FACTS devices in case 6. As a result, the distance from collapse has
increased further. Part of the variation of vale of L, at load buses is shown in figure 7.3.
Again, the convergence with FACTS devices is much faster than the case without

FACTS.
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Table 7.3: Optimal settings of control variables for voltage stability enhancement

Limits

Normal Power Case 5 Case 6
Max Min Flow (without FACTYS) (with FACTS)

P, 0.50 2.00 0.9880 1.1345 1.4242
P, 0.20 0.80 0.8000 0.5610 0.5897
Ps 0.15 0.50 0.4998 0.5112 0.3881
Py 0.10 0.32 0.2000 0.3482 0.2229
Py 0.10 0.30 0.2000 0.2173 0.1845
Py 0.12 0.40 0.2000 0.1200 0.1200
Vi 0.95 1.10 1.0500 1.0261 1.0839
v, 0.95 1.10 1.0450 1.0194 1.0788
Vs 0.95 1.10 1.0100 1.0479 1.0857
Vs 0.95 1.10 1.0100 1.0287 1.0423
Vi 0.95 1.10 1.0500 1.0379 1.0304
Vis 0.95 1.10 1.0500 1.0840 1.0312
Ty 0.90 1.10 1.0780 0.9574 0.9833
Ti2 0.90 1.10 1.0690 0.9445 0.9379
Ts 0.90 1.10 1.0320 0.9886 0.9263
Ts36 0.90 1.10 1.0680 0.9404 0.9393
SVC;; -0.02 0.05 - - 0.0186
SVCy -0.02 0.05 - - -0.0500
TCSC, (% of X1) 0.00 50% - - 0.0699
TCSCyq4 (% of X1) 0.00 50% - - 0.1669
TCPS; (radian) -0.20 0.20 - - 0.2000
Cost ($/H) 902.3224 882.7579 837.9752
3. voltage deviation 0.8632 0.7824 0.9068
Voltage stab. Index 0.1644 0.1399 0.1205
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CHAPTER EIGHT
OPTIMAL FACTS LOCATION USING

PROPOSED GA/PSO

8.1 Overview

The cases simulated in the chapter 7 are to be simulated again here but with optimal
FACTS devices location. More specifically, close to optimal FACTS locations are to be
found using the proposed PSO/GA algorithm developed in section 5.4. Cases to be

simulated are:

Case 1: Optimal FACTS devices locations for fuel cost minimization.

Case 2: Optimal FACTS devices locations for voltage profile improvement.

Case 3: Optimal FACTS devices locations for voltage stability enhancement.

In addition, two more cases that demonstrate the multi-objective optimization using PSO
with and without FACTS devices are to be studied. Those cases are:

Case 4: Fuel cost minimization and voltage stability enhancement without FACTS.

Case 5: Fuel cost minimization and voltage stability enhancement with FACTS.
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8.2 Optimal FACTS Location for Fuel Const Minimization

As stated earlier, the benefit of FACTS devices in fuel cost minimization is insignificant.
This is because FACTS devices are not cost minimization devices. This fact has been
seen in section 7.2 with FACTS devices at some arbitrary locations. The case is the same

even if one tries to search for an optimal FACTS location.

The new PSO/GA described in chapter 5 was implemented to search for an optimal, or
rather close to optimal, FACTS device locations that best minimize the total fuel cost.
The optimal FACTS locations were found to be as follows: SVCs at buses 20 and 21,
TCSCs on branches 2 and 5, and TCPS on branch 34. Table 8.1 shows the optimal
settings of the control variables for OPF with optimal and arbitrary FACTS device
locations and their corresponding fuel costs. The total fuel cost, as can be noticed from
the table, has reduced from $801.1727 to $800.7393. FACTS devices, as indicated

earlier, are not fuel minimization-based devices. So, such little reduction is expected.
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Table 8.1: Optimal FACTS locations and settings of control variables for total fuel cost

minimization
' Limits Case with Arbitrary ((c):;tsifnzl
Min Max FACTS Locations FACTS Location)

P 0.50 2.00 1.7289 1.7634
P; 0.20 0.80 0.4943 0.4770
P 0.15 0.50 0.2381 0.2388
Py 0.10 0.32 0.2107 0.2068
Py 0.10 0.30 0.1270 0.1165
Pus 0.12 0.40 0.1224 0.1200
v, 0.95 1.10 1.0845 1.0837
v, 0.95 1.10 1.0663 1.0666
2 0.95 1.10 1.0373 1.0377
Vs 0.95 1.10 1.0371 1.0391
V. 0.95 1.10 1.0685 1.0638
Vs 0.95 1.10 1.0602 1.0472
Ty 0.90 1.10 1.0056 1.0605
Ty 0.90 1.10 0.9875 0.9443
Tys 0.90 1.10 0.9802 0.9666
Tss 0.90 1.10 0.9567 0.9750

VG, 20.05 0.05 0.0120 -

% SVC,, -0.05 0.05 -0.0001 -

3 TCSC, (% of Xi) 0.00 50% 0.1739 ;

g TCSCy4 (% of Xy) 0.00 50% 0.0960 .

= TCPS; (radian) . -0.20 0.20 0.0288 ;
SVCr 20.05 0.05 - 0.0432

g SVCy -0.05 0.05 . 0.0219

Q

S TCSC, (% of Xy) 0.00 50% ; 0.2035

§ TCSCs (% of Xy) 0.00 50% . 0.2410

& T1CPS;, (radian) -0.20 0.20 - -0.0052
Cost (VH) 801.1727 800.7393
3" voltage deviation 0.7775 0.7393
Voltage stab. Index 0.1388 0.1426
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8.3 Optimal FACTS Location for Voltage Profile Improvement

It has been shown in section 7.3 that a great reduction in the summation of voltage
deviations was gained with optimal settings of FACTS devices at some arbitrary
locations. Further reduction can be gained if FACTS devices are installed at an optimal

location as has been verified here.

The new PSO/GA was used to search for an optimal FACTS device location that may
lead to the best reduction in summation voltage deviations. The optimal locations were as
follows: SVCs at buses 19 and 26, TCSCs on branches 16 and 18, and TCPS on branch
26. Table 8.2 shows the optimal control variable settings for both OPF with arbitrary and
close to optimal FACTS location. The resulted summation of voltage deviation with the
close to optimal FACTS device locations is 0.0961 which means a reduction of about

33.12% from that with the arbitrary FACTS location.
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Table 8.2: Optimal FACTS locations and settings of control variables for voltage profile

improvement
Limits ' Case with Arbitrary (g;:i:nil
Max Min FACTS Locations FACTS Location)

2 0.50 2.00 13836 13969
P 0.20 0.80 0.4896 0.4067
P 0.15 0.50 0.3420 0.4102
Py 0.10 0.32 0.2478 0.2649
Py 0.10 0.30 0.1959 0.2111
Pis 0.12 0.40 0.2578 0.2358
v, 0.95 1.10 1.0133 1.0140
2 0.95 1.10 1.0044 1.0041
Vs 0.95 1.10 1.0199 1.0178
2 0.95 1.10 1.0092 1.0107
Vi 0.95 1.10 1.0184 1.0316
Vs 0.95 1.10 1.0286 1.0197
T, 0.90 1.10 1.0214 1.0517
T;; 0.90 1.10 09254 0.9000
T)s 0.90 1.10 0.9598 0.9666
Tis 0.90 1.10 0.9626 0.9505

_SVC;; 20.05 0.05 0.0065 »

(=]

g svey -0.05 0.05 0.0491 ;

S TCSCy (% of Xy) 0.00 50% 0.2216 ;

_g TCSCyy (% of Xy) 0.00 50% 03176 ;

S TCPS; (radian) 20.20 0.20 -0.0764 -
SVChy 20.05 0.05 - 0.0500

,§ SVCs -0.05 0.05 - 0.0273

3

S TCSCiq (% of Xy 0.00 50% - 0.2916

E TCSCs (% of Xy) 0.00 50% ; 0.1999

& TCPSys (radian) -0.20 0.20 - -0.2000
Cost (§/F) 831.4172 §49.9176
Y. voltage deviation 0.1437 0.0961
Voltage stab. Index 0.1583 0.2242
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8.4 Optimal FACTS Location for Voltage Stability Enhancement

The new PSO/GA algorithm was used once again here but to search for the close to
optimal FACTS locations that lead to the best voltage stability enhancement. The close to
optimal locations found were as follows: SVCs at buses 19 and 29, TCSC on braches 36
and 38, and TCPS on branch 10. OPF results of this case have been compared with that
of the case with the arbitrary FACTS locations. Both are shown in Table 8.3. The
voltage stability index has been improved and reduced from 0.1205 to 0.0598. (50.37%

reduction)
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Table 8.3: Optimal FACTS locations and settings of control variables for voltage stability

enhancement
‘ Limits Case with Arbi.trary (oC;tsifn:;l
Min Max FACTS Locations FACTS Location)

P, 0.50 2.00 1.4242 1.2281
P, 0.20 0.80 0.5897 0.6274
P; 0.15 0.50 0.3881 0.3012
Py 0.10 0.32 0.2229 0.2245
Py 0.10 0.30 0.1845 0.2996
Py 0.12 0.40 0.1200 0.2414
v, 0.95 1.10 1.0839 1.0688
Vs 0.95 1.10 1.0788 1.0553
Vs 0.95 1.10 1.0857 1.0349
Vs 0.95 1.10 1.0423 1.0189
Vi 0.95 1.10 1.0304 1.0626
Vs 0.95 1.10 1.0312 1.0373
Ty 0.90 1.10 0.9833 1.0381
T;, 0.90 1.10 0.9379 0.9017
T;s 0.90 1.10 0.9263 0.9107
Tss 0.90 1.10 0.9393 0.9418

= SVCi -0.05 0.05 0.0186 -

é SVCy; -0.05 0.05 -0.0500 -

2 TCSC, (% of Xy) 0.00 50% 0.0699 -

g TCSCyq (% of Xi) 0.00 50% 0.1669 -

ﬁ TCPS; (radian) -0.20 0.20 0.2000 -
SVCie -0.05 0.05 - -0.0500

g SVCy -0.05 0.05 - -0.0320

S

S TCSCss (% of X1) 0.00 50% - 0.4988

£ TCSCys (% of X1) 0.00 50% - 0.1340

& TCPS,, (radian) -0.20 0.20 ; -0.1520
Cost ($/H) 837.9752 844.1146
Y. voltage deviation 0.9068 0.6090
Voltage stab. Index 0.1205 0.0598
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8.5 Multi-objective OPF Using PSO

In real life, economic power system operation does not make much sense apart from
power quality and vice versa. This has led to OPF problem with multiple objectives

instead of a single objective.

The multi-objective optimization seeks the solution x=(x;,x3,.....,X,) Which minimize or
maximize the values of a set of objective functions f=(f,f3,......,f»). For the PSO or any
optimization technique to be applicable for such type of optimization, the objectives have
to be combined into a single objective according to some utility function. In many
applications, however, the objectives to be optimized are non-commensurable and often
competing and conflicting. In our study for instance, economic and qualitative operation
of power system can not be ideally combined in one single objective and therefore single
solution may not exist because of the trade off characteristic among the two objectives.

Hence a set of optimal solution known as Pareto-optimal set is introduced [74,75].

The Pareto-optimal set is a family of points which is optimized in the sense that no
improvement can be achieved in any objective without degradation in others. This set is
obtained by applying PSO to solve single objective optimization problems that are
formulated by combining the objectives with a proper weighting. In our study here, the
multi-objective optimization problem consists of two objectives. They can be combined

as follows:

J=wAJ +(1=-w)iy J, (8.1)
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where A; and A; are properly selected scaling factors. To generate a Pareto-optimal set of
50 solutions, PSO has to be applied 50 times with varying w as a random number w =

rand[0,1]. This part of simulation tries to show how far FACTS devices can help in

multi-objective optimizing.

8.5.1 Fuel Cost Minimization and Voltage Stability Enhancement
Total fuel cost minimization and voltage stability enhancement are the two objectives
considered. PSO was employed to find the Pareto-optimal solutions where the two

objectives were combined in a single objective as follows:
NG
J=w 3 f;(8/h)+(1=w)A Lpax (8.2)
2

where A is scaling factor selected as 7000 so that the voltage stability index be comparable
with the fuel cost. w is a weighting factor between 0 and 1. Twenty (20) solutions were

generated by running PSO twenty (20) times starting with w=1 with a step reduction of

0.05.

Two cases were simulated. Case 4 without any FACTS devices where the control
variables are: generator MW outputs, generator terminal voltages, and transformer tap
settings. It is clear from the graph shown in figure 8.1 that no significant enhancement in
the voltage stability can be attained even with high weight. The worst voltage stability
index was attained if w=1 which means a fuel cost minimization problem (Table 7.1).
The value of the maximum voltage stability index at this point of simulation is 0.1439.

On the other hand, the best voltage stability index was attained where w=0 which means a
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voltage stability enhancement problem. The value of the maximum voltage stability index

at this instance was 0.1399 (Table 7.3)

The other case, Case 5, was with FACTS devices at close to optimal location that lead to
the best voltage stability enhancement. Those locations were as found in section 8.4 as
follows: two (2) SVC at buses 19 and 29, two (2) TCSC on branches 36 and 38, and one
(1) TCPS on branch 10. 1t is clear from figure 8.1 that a great improvement in the voltage
stability enhancement was attained. In this case, we were able to move the voltage

stability from 0.1277 when w=1 to 0.0598 when w=0.
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Figure 8.1: Pareto-optimal set of fuel cost minimization and voltage stability enhancement

for cases 4 and 5



101

8.5.2 The Best Compromise Solution
The Pareto-optimal set provides the decision maker with insight into the characteristic of

the problem before a final solution is chosen. The final chosen solution should be the best

compromise one. Due to imprecise nature of the decision maker’s judgment, the i

objective function of each solution is represented by a membership function y; defined as

[75]

1 F, < I
max
FPaX _ g,

) Fl_max _ Fimin

Fimin < Fi < Fimax (8-3)

M=

0 F; 2 Fl.max

.

For each solution &, the normalized membership function 4* is calculated as

(8.4)

where M is the number of solution in the Pareto-optimal set. The best compromise

solution is the one having the maximum value of x* [75].

Tables 8.4 and 8.5 show the membership value for each objective and the normalized
membership value for both cases. The best compromise solution in each Table is
highlighted. Table 8.4 shows that the maximum normalized membership value for case 4
was with w=0.55. The corresponding optimal fuel cost and voltage stability were
$803.5305 and 0.1396 respectively. On the other hand, the maximum normalized

membership value for case 5 was with w=0.95. The corresponding optimal fuel cost and
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voltage stability were $806.4186 and 0.0743 respectively. Table 8.6 shows the optimal

settings of the control variables for the two cases.




- Table 8.4: Pareto-optimal solutions of fuel cost (/) and voltage stability index (F)
without FACTS devices (Case 4)
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%ﬁ%ﬁ?}n w F F2 He1 Hrz Iy
0 1.0000 801.5617 0.1439 1.0000 0.0000 0.0330
1 0.9500 801.7877 0.1407 0.9972 0.7482 0.0576
2 0.9000 802.7057 0.1420 0.9859 0.4306 0.0468
3 0.8500 804.7781 0.1422 0.9604 0.3835 0.0444
4 0.8000 804.7829 0.1417 0.9603 05200~ 0.0489
5 0.7500 805.3603 0.1417 09532 0.5059 0.0482
6 0.7000 805.5995 0.1413 0.9503 0.6071 0.0514
7 0.6500 805.9551 0.1429 0.9459 0.2259 0.0387
8 0.6000 804.4946 0.1417 0.9639 0.5200 0.0490
9" .0.5500 . - 803:5304 - 0.1396 0:9758 1.0000 0.0852 -
10 05000 805.4332 0.1420 0.9523 0.4447 0.0461
11 0.4500 809.9317 0.1421 0.8969 0.4141 0.0433
12 0.4000 809.2023 0.1410 0.9059 0.6800 0.0524
13 0.3500 813.3117 0.1409 0.8553 0.6894 0.0510
14 0.3000 808.5170 0.1413 0.9143 0.6047 0.0502
15 0.2500 809.2062 0.1422 0.9059 0.3835 0.0426
16 0.2000 810.0323 0.1417 0.8957 0.5106 0.0464
17 0.1500 809.2367 0.1420 0.9055 0.4447 0.0446
18 0.1000 810.2235 0.1410 0.8933 0.6847 0.0521
19 0.0500 811.5054 0.1402 0.8775 0.8518 0.0571
20 0.0000 882.7579 0.1399 0.0000 0.9365 0.0309

* The best compromise solution
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Table 8.5: Pareto-optimal solutions of fuel cost (/) and voltage stability index (F») with

FACTS devices (Case 5)
KA(EZ%Z?)” w Fy F2 M1 Hr2 7
0 1.0000 801.3192 0.1277 1.0000 0.0000 0.0328
U © 09500 - 8064186 - 0.0743 08829 07863 0.0548
2 0.9000 813.3733 0.0638 0.7233 0.9409 0.0546
3 0.8500 813.8952 0.0636 0.7113 0.9445 0.0544
4 0.8000 815.6752 0.0604 06705 0.9920 0.0546
5 0.7500 814.7359 0.0619 0.6920 0.9698 0.0546
6 0.7000 816.2138 0.0618 0.6581 0.9713 0.0535
7 0.6500 815.1653 0.0637 0.6822 0.9426 0.0534
8 0.6000 816.9478 0.0611 0.6413 0.9814 0.0533
9 0.5500 816.1738 0.0618 0.6590 0.9714 0.0535
10 0.5000 820.3843 0.0608 0.5624 0.9860 0.0508
11 0.4500 821.3663 0.0603 0.5398 0.9932 0.0503
12 0.4000 824.6737 0.0625 0.4639 0.9608 0.0468
13 0.3500 826.6745 0.0621 0.4180 0.9673 0.0455
14 0.3000 826.8526 0.0607 0.4139 0.9873 0.0460
15 0.2500 827.2492 0.0605 0.4048 0.9906 0.0458
16 0.2000 830.7644 0.0603 0.3241 0.9934 0.0433
17 0.1500 833.6497 0.0600 0.2579 0.9975 0.0412
18 0.1000 826.8583 0.0603 0.3679 0.9937 0.0447
19 0.0500 844.8850 0.0603 0.0000 0.9925 0.0326
20 0.0000 844.1146 0.0598 00177 1.0000 0.0334

* The best compromise solution



105

Table 8.6: Optimal settings of control variables for best compromise solution of fuel cost

minimization and voltage stability enhancement

Limits Normal Power Case 4 Case 5
Min Max Flow (without FACTS)  (with FACTS)

P, 0.50 2.00 0.9880 1.6642 1.7316
P, 0.20 0.80 0.8000 0.4913 0.4836
P; 0.15 0.50 0.4998 0.2369 0.2492
Py 0.10 0.32 0.2000 0.2418 0.2160
Py 0.10 0.30 0.2000 0.1645 0.1327
Py 0.12 0.40 0.2000 0.1219 0.1200
V; 0.95 1.10 1.0500 1.0612 1.0853
v, 0.95 1.10 1.0450 1.0472 1.0615
Vs 0.95 1.10 1.0100 1.0239 1.0263
Vs 0.95 1.10 1.0100 1.0282 1.0356
Vi 0.95 1.10 1.0500 1.0283 1.0594
Vis 0.95 1.10 1.0500 1.0668 1.0380
Ty 0.90 1.10 1.0780 0.9538 0.9870
Tiz 0.90 1.10 1.0690 0.9357 0.9531
Tys 0.90 1.10 1.0320 0.9717 0.9362
T3 0.90 1.10 1.0680 0.9418 0.9622
SVCiy -0.02 0.05 - - -0.0117
SVCy -0.02 0.05 - - -0.0052
TCSCss (% of X1) 0.00 50% . ; 0.4127
TCSCss (% of Xz) 0.00 50% ; - 0.2355
TCPSyy (radian) -0.20 0.20 - - -0.0977
Cost ($/H) 902.3224 803.5304 806.4186
Y. voltage deviation 0.8632 0.7892 0.7727

Voltage stab. Index 0.1644 0.1396 0.0743
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CHAPTER NINE

CONCLUSIONS AND FUTURE WORK

Following are some conclusions and some proposed future work related to the concern

subject.

9.1 Conclusions and Findings

The optimal power flow problem incorporating FACTS devices has been investigated and
discussed in this thesis. OPF has been then formulated as an optimization problem taking
into consideration the FACTS representations. Different objective functions with several

equality and inequality constraints have been considered.

Two different optimization techniques have been implemented and compare to each other.
Namely, GA and PSO have been evaluated and assessed in this study. The comparison
results between GA and PSO show the potential and effectiveness of PSO compared to
GA in terms of robustness, convergence speed, and quality of the optimal solution
obtained. Therefore, PSO is the optimization tool employed for solving the formulated

OPF problem. OPF incorporating FACTS devices at some arbitrary location has been
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solved using PSO for a single objective. Minimization of total fuel cost, voltage
deviation, and L-index have been considered individually.

A new proposed GA/PSO algorithm has been proposed for solving the optimal location
and settings of FACTS devices with respect to a certain objective. In the proposed
technique, the capability of GA to solve the optimal location problem has been merged

with the potential of PSO to solve the optimal settings problem.

In addition, the OPF problem has been formulated as a multi-objective optimization
problem where more than one objective function has been considered. The Pareto-optimal
front of the multi-objective OPF problem has been generated. A fuzzy-based procedure is

employed to extract the best compromise solution out of the Pareto optimal solutions.

Generally speaking, the main findings and conclusions of this work can be summarized as

follows:

o There is a great need for incorporating FACTS devices effect in OPF. This can help
in optimal planning and optimal operation of FACTS devices.

e PSO is more effective and more robust algorithm compared to GA in all cases
considered iﬁ this study.

» FACTS devices greatly improve voltage deviation and significantly enhance voltage
stability of power systems while they have a slight improvement on fuel cost,

e A new GA/PSO was proposed and tested in this study where the advantages of GA

and advantages of PSO were merged.
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o A further great improvement on the results can be achieved by investigating the

optimal locations of FACTS devices.

9.2 Future Work Directions

Following are some extensions that may be taken into consideration in future:

Developing the presented techniques to handle the continuous variables as well as the

discrete variables of the problem.

e More objectives can be considered in solving OPF with FACTS devices such as
maximizing power transfer and enhancing system reliability.

e Developing a multi-objective PSO and implementing it for solving OPF problem as a
true multi-objective optimization problem.

e Investigate the injection model of FACTS as opposed to the Y-bus modification
method.

o Finally, the OPF problem with FACTS proposed in this study can be expanded to

come up with a comprehensive operation and planning tool. This requires mainly

inclusion .of some more operational objectives and at the same time paying attention to

the cost in general (i.e. operational and planning cost).
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APPENDIX 1

IEEE-30 BUS SYSTEM DATA

Table I-1: Transmission line and transformer data for IEEE-30 bus system

Line Line p.u.resistance on  p.u.reactance on  p.u. line charging Transformer Rating
No. Designation 100 MVA 100 MVA on 100 MVA Tap Setting MVA
1 1 - 2 0.0192 0.0575 0.0264 130
2 1 _ '3 0.0452 0.1852 0.0204 130
3 2 _ 4 0.0570 0.1737 0.0184 65
4 3~ 4 0.0132 0.0379 0.0042 130
5 2 _ 5 0.0472 0.1983 0.0209 130
6 2 . 6 0.0581 0.1763 0.0187 65
7 4 _ 6 0.0119 0.0414 0.0045 90
8 5 - 7 0.0460 0.1160 0.0102 70
9 6 _ 7 0.0267 0.0820 0.0085 130
10 6 .. 8 0.0120 0.0420 0.0045 32
11 6 _ 9 0.0000 0.2080 0.0000 0.978 65
12 6 _ 10 0.0000 0.5560 0.0000 0.969 32
13 9 _ 1 0.0000 0.2080 0.0000 65
14 9 _ 10 0.0000 0.1100 0.0000 65
15 4 _ 12 0.0000 0.2560 0.0000 0.932 65
16 2 _ 13 0.0000 0.1400 0.0000 65
17 12 _ 14 0.1231 0.2559 0.0000 32
18 12 _ 15 0.0662 0.1304 0.0000 32
19 12 _ 16 0.0945 0.1987 0.0000 32
20 14 _ 15 0.2210 0.1997 0.0000 16
21 6 _ 17 0.0824 0.1923 0.0000 16
22 15 . 18 0.1070 0.2185 0.0000 16
23 18 _ 19 0.0639 0.1292 0.0000 16
24 19 - 20 0.0340 0.0680 0.0000 32
25 10 _ 20 0.0936 0.2090 0.0000 32
26 0 _ 17 0.0324 0.0845 0.0000 32
27 10 _ 21 0.0348 0.0749 0.0000 32
28 0 _ 22 0.0727 0.1499 0.0000 32
29 2F 22 0.0116 0.0236 0.0000 32
30 15 _ 23 0.1000 0.2020 0.0000 16
31 22 _ 24 0.1150 0.1790 0.0000 16
32 23 _ 24 0.1320 0.2700 0.0000 16
33 24 _ 25 0.1885 0.3292 0.0000 16
34 25 _ 26 0.2544 0.3800 0.0000 16
35 25 _ 27 0.1093 0.2087 0.0000 16
36 28 _ 27 0.0000 0.3960 0.0000 0.968 65
37 27 29 0.2198 0.4153 0.0000 16
38 27 _ 30 0.3202 0.6027 0.0000 16
39 29 _ 30 0.2399 0.4533 0.0000 16
40 8 _ 28 0.0636 0.2000 0.0214 32
4 . 28 0.0169 0.0599 0.0065 32




Table I-2: Bus data of the IEEE-30 bus system

‘ Voltage Generation™ Load*
BusNo.  y fagnitude

g MW Mvar MW Mvar

1 1.05 0.9880 0.0000 0.0000 0.0000
2 1.05 0.8000 0.0000 0.2170 0.1270
3 1.00 0.0000 0.0000 0.0240 0.0120
4 1.00 0.0000 0.0000 0.0760 0.0160
5 1.01 0.5000 0.0000 0.9420 0.1900
6 1.00 0.0000 0.0000 0.0000 0.0000
7 1.00 0.0000 0.0000 0.2280 0.1090
8 1.01 0.2000 0.0000 0.3000 0.3000
9 1.00 0.0000 0.0000 0.0000 0.0000
10 1.00 0.0000 0.0000 0.0580 0.0200
11 1.05 0.2000 0.0000 0.0000 0.0000
12 1.00 0.0000 0.0000 0.1120 0.0750
13 1.05 0.2000 0.0000 0.0000 0.0000
14 1.00 0.0000 0.0000 0.0620 0.0160
15 1.00 0.0000 0.0000 0.0820 0.0250
16 1.00 0.0000 0.0000 0.0350 0.0180
17 1.00 0.0000 0.0000 0.0900 0.0580
18 1.00 0.0000 0.0000 0.0320 0.0090
19 1.00 0.0000 0.0000 0.0950 0.0340
20 1.00 0.0000 0.0000 0.0220 0.0070
21 1.00 0.0000 0.0000 0.1750 0.1120
22 1.00 0.0000 0.0000 0.0000 0.0000
23 1.00 0.0000 0.0000 0.0320 0.0160
24 1.00 0.0000 0.0000 0.0870 0.0670
25 1.00 0.0000 0.0000 0.0000 0.0000
26 1.00 0.0000 0.0000 0.0350 0.0230
27 1.00 0,0000 0.0000 0.0000 0.0000
28 1.00 0.0000 0.0000 0.0000 0.0000
29 1.00 0.0000 0.0000 0.0240 0.0090
30 1.00 0.0000 0.0000 0.1060 0.0190

* p.u. on 100 MVA base
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Table I-3: Generation capacity data of the IEEE-30 bus system

BusNo.  MinMW MacMw R WX
1 50 200 20 200
2 20 80 20 100
5 15 50 .15 80
8 10 35 15 60
1 10 30 -10 50
13 12 40 15 60

Table I-4: Static capacitor data of the IEEE-30 bus system

p.u. susceptance on
Bus No. 100 MVA

10 0.190

24 0.043
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