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In the VLSI design process, interconnect delays play an important role in determin-
ing the performance of the circuits as they can make it impossible to achieve the
required clock rate. Nowadays, it is rare to find a placement program that does not
take into consideration timing issues of the circuit. However, routing did not receive
similar attention. We believe that timing of the layout can be further improved if
timing critical nets are given preferential treatment during routing. Such an ap-
proach has been taken in this work. This thesis accomplishes the implementation of
a timing-driven global router program for standard cell VLSI design. The solution
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another technique called Simulated Annealing. Tabu search has resulted in better
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Chapter 1

Introduction

1.1 Overview

In the automated design of VLSI circuits, the two principal design steps are place-
ment and routing. The placement step involves the assignment of cells of the circuit
to fixed locations of the chip, while routing is the task of finding suitable paths to
interconnect the desired set of pins of the cells. A set of pins or terminals is called a
net with one terminal designated as a source and the rest as sinks. The term suitable
path is meant for those paths that minimize a given objective function, subject to
constraints. Constraints may include number of routing layers, minimum separation
between adjacent wires of different nets, minimum width of routing wires, timing,
etc. Objective functions include the reduction in the overall required wirelength and

avoidance of timing problem due to delays of interconnection.



Routing takes a major portion of design time (about 30%) and as much as 50% of
layout area. In order to achieve routing for generally large number of interconnected
cells, computer programs called routers are used which precisely define the electrical
paths among the pins of the interconnected cells.

‘The prime objective of a routing algorithm is to achieve circuit interconnection
in the minimum possible area, automatically, and, with minimum manual interven-
tion. Thus most routers are meant to achieve complete automatic routing using
the smallest possible wire length to satisfy the performance criteria. For instance,
consider Figure 1.1(a) in which a shortest path is shown with length equal to the
Manhattan distance or the rectilinear distance between e and b. Manhattan distance

between two points p and q is given by

diSt(pa Q) =| Dz — 42 I + I Dy — Qy I (11)

The path in Figure 1.1(b) has more bends and is longer. Thus a signal will take
longer time to travel on this path.

The routing process basically includes two major steps: global routing and de-
tailed routing. Global routing is performed first to achieve a routing plan for the
nets such that they can be assigned to particular regions. Moreover, to optimize
the routing plan some additional connection points are determined to get connec-
tion among various routing areas (channels). In detailed or channel routing, each

routing region is picked up and nets are assigned to particular tracks in that region
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(a) (b)

Figure 1.1: Two possible paths connecting a pair of points. (a) The shortest path.
(b) A longer path with more bends [1].

to achieve the complete routing of all the nets.

With the advancement in VLSI fabrication technology, the switching delays of
gates have been reduced to the order of picoseconds, and thus interconnection delays
are becoming increasingly important in determining the speed of the circuits. In the
design of dense high performance circuits, the interconnection delays contribute as
much as half of the clock cycle. Thus large interconnection delays can make it
impossible to achieve the required clock rate.

In the past, characteristics like connectivity of modules (e.g. macro-cells or
standard cells), routability of the nets with the available routing constraints like
routing space and pins and pad locations, and layout area were the ones used to
perform physical design without any special concern for timing. But this trend has
changed. Now, timing is included as one of the most important factors guiding the
design process. Performance-driven layout design has received considerable attention

in the past several years. Work has been done mostly on the timing-driven placement
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problem, where a number of methods have been developed for placing blocks or cells
in timing critical paths close together. Only limited work has been done for the
timing-driven interconnection problem. The objective of our work is to implement a
timing-driven routing program for standard cell design methodology that will make

use of the timing constraints assigned to each net to keep the maximum delay of

any net minimum.

1.2 Standard Cell Design

Standard cell design is the object of this research. In this design style, all cells
(flip-flops or gates) have the same height but varying widths. The width of the cells
are usually a multiple of some grid unit depending upon the technology. For 2u
MOSIS CMOS technology used in this work, the grid is 8 microns. Cells are placed
in an array of horizontal rows, and all interconnections of signal nets are made by
channel routing in the spaces between the adjacent rows. For each terminal on one
side of a standard cell there is also an electrically common terminal on the opposite
side, either of which can be selected for routing. The standard cell layout model is
shown in Figure 1.2. The four blocks surrounding the cell rows on the top, bottom,
right and left are the external I/O buffers. The rectangular areas in between the
cell rows are the routing regions or channels. Feed-through cells are inserted within

the cell rows in order to provide interchannel routing (or there may be feed-through
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Figure 1.2: Standard cell layout model [2].
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pins available within the cells themselves).

The process of routing a standard cell integrated circuit is broken down into two
phases. In the first phase, called global routing, nets or net segments are assigned
to specific routing channels. As a result of this phase, the interconnection pattern in
each channel is defined and is independent of all other channels. In the second phase,
called detailed routing, the interconnection pattern in each ;:hannel is implemented
by assigning the net segments to tracks and columns in the channel.

‘The interconnection pattern is defined by the set of nets N = {n:} where each
net n; is a set of terminals t;'- which are to be interconnected. One terminal s € n;
is a designated source and the remaining terminals are sinks.

Each net can be modeled as a routing graph G(n;) = (V;, E;). Each vertex
v; € V corresponds to a terminal tj- on n;. A routing solution of a net n; is a tree
in G(n;) which we call the routing tree of the net, connecting all terminals/nodes
in n;. Consider the example in Figure 1.3. Figure 1.3(a) shows the terminals of a
single net as the vertical strips on a standard cell design, and Figure 1.3(b) shows
the graph modeling this net. The vertices correspond to net segments and edges
show the potential connectivity between the net segments. Figure 1.3(c) shows the
final net segments based on a routing tree formed out of the routing graph. For the
standard cell design style, the channels do not have prefixed capacities. Global rout-
ing consists of assigning nets to these channels so as to minimize channel densities

and congestion, overall connection length, number of vias and feed-throughs. Vias
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{a) (c)

Figure 1.3: A set of net segments [3].

are the holes in the insulating layer that connect conductors of two metal layers
generally used for routing. Global routing for standard cell presents two important
problems: how many feed-throughs to use and where to place them [6]. Moreover,
the more nets there are the more difficult it becomes to assign feed-throughs. For
these reasons, a feed-through assignment optimization is needed which eases channel
congestion, realizes minimum number of tracks and which does not depend on the
routing order. In the same way, a la.rgef via count introduced by a large number of
bends in the net segments wili result in longer timing delays and longer wire length
and decrease in the performance of the circuit.

The objective of this thesis is to develop a timing-driven global routing program
that can determine the routes of all nets of a given layout in such a way that a

minimum chip area is obtained with minimum timing violation.



1.3 Organization of the Thesis

The thesis is organized as follows: In Chapter 2 we present a thorough literature
survey on the global routing problem for standard cell design. It also covers timing-
driven approaches used for standard cell design. Chapter 3 discusses the Steiner
tree problem which is an essential part of the routing problem. In Chapter 4 we
describe an iterative improvement technique called Tabu Search which has been used
in this thesis to improve the initial global routing solution. We also briefly discuss
another iterative technique called Simulated Annealing. Chapter 5 describes in detail
the global routing technique used in this research. Chapter 6 contains a complete
description of the application of Tabu Search technique for improving the initial

global routing result. Finally, Chapter 7 provides experimental results, conclusion

and future directions for research.



Chapter 2

Literature Review

A very common technique for routing considers the layout as a maze. This technique
may be used for both global and detailed routing. Finding a path to connect any
two points belonging to the same net is similar to finding a path in the maze. The
most widely used algorithm used for maze routing is Lee algorithm [7]. It attempts
to find a path between two points on a grid that has obstacles (functional cells or
already placed nets). The major characteristic of Lee algorithm is that if a path
exists between two points, then it is definitely found. Furthermore, it is guaranteed
to be the shortest available path. The running time of the algorithm is high i.e., if L
is the length of the path to be found, then the processing time is O(L?). In addition,
the memory requirement for an N x N grid plane is O(N?). Some variations of Lee

algorithm for speed improvement have been suggested by Hadlock [8] and Soukup

[9]-
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Line Search Algorithms, first proposed by Mikami-Tabuchi [10] and Hightower
[11], overcome the drawback of large memory requirements of Lee algorithm and
its variations. Line search algorithms perform depth-first search in contrast to the
breadth-first approach used by Lee algorithm and its variations. Due to this nature
of line search algorithms, they do not guarantee finding the shortest path, and may
need several backtrackings. They show completion rates similar to Lee algorithm,
but with lesser execution time and memory requirement. The reason is that the
entire routing space is not stored as a matrix as in the case of Lee algorithm, but
the routing space and paths are presented by a set of line segments.

Global routing approaches fall into four general categories: (1) Sequential global
routing approach, (2) mathematical programming approach, (3) stochastic itera-
tive approach, and (4) hierarchical approach. A very detailed treatment of these
approaches may be found in a recent book of Sait and Youssef [1].

Sequential global routing is a graph based approach. It is the simplest and most
widely used approach. After the routing channels (regions) have been identified and
the corresponding routing graph constructed, global routing proceeds as follows.
Using the channel connectivity graph, we mark for each net those vertices of the
graph in which the net has pins. Hence, routing the net is accomplished by finding a
Steiner tree (preferably optimal) covering those marked vertices, where a Steiner tree
is a tree of minimum total length, or depending on the context, an approximation

to such a minimal tree. Two general approaches are possible in this case: (1)
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the order dependent approach and (2) the order independent approach. When the
available routing space is updated after the routing of each net, the approach is
order dependent, otherwise it is order independent.

In the mathematical programming approach, global routing is performed as a 0-1
integer optimization program, where a 0-1 integer variable is assigned to each net
and each possible routing tree of that net. The layout surface is modeled as a grid
graph, where each grid or routing region is represented by a vertex. The arcs linking
the vertices carry some weight which correspond to the capacity of the boundary
between two nodes in terms of the number of tracks. We need to identify different
possible routing trees for each net. We also associate an equation with each net
such that only one of the many possible trees is selected. In spite of its elegance in
finding a globally optimum assignment of the nets to routing regions, this technique
has some major problems. These problems include the identification of a number
of Steiner trees for each net, selection of the trees to guarantee the feasibility of the
solution, and a large number of integer constraints.

In the stochastic iterative approach, the acceptable assignment of the nets is
found by iteratively updating the current solution by ripping up and rerouting the
nets. Folowing this approach, a simulated annealing (SA) application to global
routing was first reported in 1983 [12]. The SA method is a stochastic sequential
improvement method characterized by its ability to escape from local solutions and

routing order. The SA method gradually reduces randomness in a system and
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eventually arrives at the optimal solution. In the first reported application of SA,
the authors have formulated the problem as an unconstrained integer program, where
all edge capacities are equal to one. Nets with only two terminals and routes with
just one bend are considered. The cost function used is a sum of the squares of the
loads of all individual routing regions.

Another application of simulated annealing technique to global routing has been
adopted in TimberWolf package [13]. TimberWolf package uses two metal layers
for routing of standard-cell designs. After the initial placement phase, Timberwolf
performs global routing in two stages. In the first stage, assignment of nets to the
horizontal channels is done in order to minimize the overall channel densities. All
nets that may be assigned to an adjacent channel (switchable nets) are identified
in this stage. In the second stage, the aim is to reduce the overall channel den-
sities by changing the channel assignments of the switchable nets. Refinement of
the placement takes place after global routing. This is done by randomly inter-
changing neighboring cells. After each interchange, both stages of the global router
are invoked to reroute the nets affected by the interchange. Simulated annealing is
used only in the second stage of global routing (as well as the placement refinement
phase).

Hierarchical approaches break down the overall global routing problem into sub-
problems such that the subproblems are solved individually. Solution of the original

problem is obtained by combining the solutions of the subproblems.
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There are bottom-up and top-down approaches to hierarchical global routing.
In the bottom-up approach, grid cells are combined into bigger cells until the entire
chip is treated as a super cell. Global routing is performed at each level of the
hierarchy for the individual cells considered for grouping. In contrast, for the top-
down approach, a hierarchy is formed from super cell to cells, until each cell is an
indivi&ual grid cell or a small group of individual grid cells. The design floorplan
usually assists the top-down approach.

Among the several hierarchical formulation reported in the literature, the first
one is due to Burstein and Pelavin [14]. Sadowska [15] and Lauther {16] have also
proposed approaches similar to hierarchical global routing, and these were reported
to produce better solutions than all other approaches.

Finding a Steiner tree for each net is an important problem in global as well as
detailed routing. In one of the works [17] on this problem, a bottom-up hierarchical
approach to building Steiner tree has been adopted. Based on a variation of a
minimum spanning tree algorithm, a collection of partial steiner trees are formed
at each level of the hierarchy. At a higher level of the hierarchy, these lower level
Steiner trees are merged such that the duplicate edges are removed and cycles are
avoided. Finally the tree corresponding to the top level of the hierarchy is the
required Steiner tree for the current net.

A performance oriented rectilinear Steiner tree (POMRST) heuristic has been

reported by Andrew Lim et.al. to solve the rectilinear Steiner tree problem [18]
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which shows favorable results compared with existing techniques. The heuristic
works iteratively by growing the Steiner tree one edge at a time. There are two
stages during each iteration. In the first stage a spanning tree is constructed which
is based on Prim’s algorithm. In the second stage, the spanning tree edges are used
to direct the selection of Steiner edges one at a time. The paper however does not
provide much details abc;ut the delay model used to perform timing analysis.

In another approach {19], the idea of minimum spanning tree and Steiner tree
algorithms has been used to formulate a routing tree with bounded radius and
bounded interconnect delay.

Recently, a neural network technique has been used for global routing [20]. In
this paper, the authors have suggested a two-layer neural network. The purpose of
the first layer is to minimize net lengths and attain a uniform distribution of the
nets over the routing channels. The second layer is meant to carry out effectively
the channel capacity constraints.

With the advancement in VLSI technology, the interconnection delay has become
significantly important in determining the circuit speed. Therefore, considerable fo-
cus has been given to performance-driven layout design during the past several years.
Much of the efforts has been made in timing-driven placement problem, but lim-
ited progress has been reported for the timing-driven routing problem. The factors
that lead to minimizing the interconnection delays are; the overall interconnection

length, number of wiring bends, and other electrical characteristics like wire re-
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sistance and capacitance. A recent approach [19] has formulated a global routing
technique which minimizes the total interconnection length as well as maximum
wiring delays. In another approach [21], timing analysis is used in global routing.
While routing a connection, the slacks of the affected paths are updated at the
corresponding path sinks. The maximized cost function is the slack of the longest
path. The timing-driven global routing problen-l has also been formulated as a mul-
titerminal, multicommodity flow problem with integer flows and additional timing
constraints [22].

In the routing problem of physical design, the channel routing strategy is popular
for its simplicity and efficiency. It is concerned with the actual interconnection of
the nets after the initial routing plan has been established by the global router. The
channel router takes each routing region and specifies for each net passing through
that region particular tracks and wire segments that interconnect the net. Given
sufficient routing space, channel router guarantees 100% completion of the routing.
Due to this fact, a majority of modern IC (integrated circuit) routing systems adopt
channel routing.

Numerous channel routing techniques are based on the left-edge algorithm, which
route the channel one track at a time, and for which now exist many variations and
extensions in the literature as can be seen in [23] and [24].

When the routing region is such that terminals lie on all the four sides of the

region with no internal obstruction, then routing in such a region is called switchbox
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routing. Switchbox routing is a harder problem than channel routing. An efficient
algorithm has been reported by Luk [25] which is basically an extension and modi-

fication to the greedy heuristic of Rivest and Fiduccia [26}.



Chapter 3

Rectilinear Steiner Tree Problem

3.1 Introduction

The Steiner tree problem has been studied for the past three decades and has received
considerable attention due to its involvement in a number of applications. Among
these are planning problems in transportation networks, installing communication
cables, building systems, printed circuit boards and VLSI design [4].

The Steiner problem comes in two different flavors: Euclidean Steiner prob-
lem and rectilinear Steiner problem. Consider two points i and j in the Eu-
clidean plane and let their coordinates be (z;,y;) and (z;,y;), respectively. We

define the cost of the edge connecting the two points as the Euclidean distance

\/ (z: — ;)% + (y: — yj)? between ¢ and j. Then, if V is a set of points in the plane,

the Euclidean Steiner problem is the problem of connecting together the vertices in

17
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Figure 3.1: A printed circuit board.

VUS so as to minimize the total cost of the edges used, where S is the set of Steiner
vertices, possibly empty. If | V |= 2 then the solution to this problem becomes a
shortest-path calculation. Otherwise, the solution is a minimum cost spanning tree
(MST) on some set of vertices VU S.

The rectilinear Steiner problem is the same as the Euclidean Steiner problem
except that the cost of the edge connecting any two points 7 and j together is given
by the Manhattan distance | z; — z; | + | y; — y; |. This problem is common in
printed circuit board design and in VLSI design. In both, the wire length between
components to be connected is minimized. Figure 3.1 shows an example.

Both of the above described problems are NP-hard [27]. They have received a
fair amount of attention in the literature and many heuristic algorithms have been

proposed.

A comprehensive survey of work relating to the Euclidean and rectilinear Steiner
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problems has appeared in [4] and [28]. This chapter presents an overview of the

rectilinear Steiner problem in general and its relation to the global routing problem

in particular.

3.2 Rectilinear Steiner Tree Problem: An Overview

Since a comprehensive survey of work relating to Euclidean and rectilinear Steiner
problems has recently been given by Hwang and Richards [4], we shall not give a
complete literature survey here but instead concentrate on the application of recti-
linear Steiner problem to the global routing problem in VLSI design.

Connecting n points of a net to make them electrically equivalent is a funda-
mental problem in a VLSI layout. The objective function that is usually considered
is the least amount of wire in forming the connection. Due to a number of techno-
logical and engineering reasons, the segments are laid out in horizontal and vertical
fashion. That is why the rectilinear distance function is used to calculate the length
of segments; The tree that is formed is called a rectilinear Steiner tree constructed
using the rectilinear metric.

Finding a rectilinear minimum spanning tree (RMST) of the n given points is a
possible approximate solution to the problem. Any “classical” minimum spanning
tree (MST) algorithm can be used if the problem is considered as an instance of a

complete graph with rectilinear distance edge weights. For instance, Prim’s algo-
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rithm can be implemented in O(n?) time [29), i.e., quadratic time which is optimal
for a complete graph. There are an infinite number of ways in which two points
in an RMST can be connected using shortest rectilinear wires. Even if the wires
are restricted to make just one bend there can still be two ways to place each wire.
Therefore for a complete graph of n points, there are 2"~! possible placements of
the n — 1 wires which may have several segment overlaps. These segment overlaps
must therefore be removed by the circuit designer.

Steiner trees usually provide shorter wirelength. A Steiner tree spans the n
points but may contain additional points in the plane as vertices to provide addi-
tional internal branching. A Steiner tree refers to a tree of minimum total length or,
depending on the context, an approximation to such a minimum cost tree. If over-
laps are removed from a RMST, it effectively produces an (approximate) rectilinear
Steiner tree (RST), though not necessarily minimal. There is no efficient procedure
known for computing a minimum RST. Nonetheless, we formally define a minimum
rectilinear Steiner tree problem in the plane as follows. Given a set S of n points
in the plane, find a set S’ of points that do not belong to S, called Steiner points,
such that the spanning tree over SU S’ is of minimum total length, with rectilinear
distance edges that connect all the points in set S.

‘The minimum rectilinear Steiner tree (MRST) problem is a fundamental prob-
lem in global routing and wire estimation for VLSI circuit layout, where we are

interested in connecting terminals of a net together. Several investigations of the
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Figure 3.2: Hanan’s description of a grid graph [4].
MRST problem have greatly influenced the research progress. Initially, Hanan [30]
showed that if one extends horizontal and vertical grid lines through each of the
n points in a set S, then there is an MRST whose Steiner points are all chosen
from among the intersection points (the Steiner Candidate set) in the resulting grid.
An example is given in Figure 3.2. Later, Gary and Johnson showed that despite
this reduction on the solution space, the MRST problem is NP-complete [27]. This
implies that an efficient optimal algorithm for the MRST problem is unlikely to be
found. Thus, a number of heuristics have been proposed as surveyed in [28, 31]. In
order to attack intractable problems, the basic goal is to formulate provably good
heuristics, typically in the sense of having bounded worst-case error from optimal.
Hwang [32] established that the rectilinear minimum spanning tree (MST) over S
is a fairly good approximation to the MRST with a worst case performance ratio of

3/2;1i.e., if ¢(T) represents the total cost of a tree T, c(MST)/c(MRST) < 3/2. Due
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Figure 3.3: MST (left) and MRST (Right) for the same four points.

to immense time required to obtain the optimal solution for the MRST problem, all
heuristics tabulate their performance by comparing themselves against this result.
That is, any MST-based strategy which improves upon an initial MST topology
(arrangement of points on the grid) and rearranges edges to induce Steiner points,
will also have performance ratio of at most 3/2. Thus, a number of Steiner tree
heuristics resemble classic MST construction and it remains an open question to
find a heuristic method with performance ratio strictly less than 3/2. Figure 3.3
shows an MST and MRST for the same four-pin net.

An MST-based solution method may not be appropriate for VLSI routing ap-
plications. It has been shown in [33, 34] that the optimal Steiner tree, as well as
heuristic MST-based rectilinear Steiner tree, will have a linear expected number of
Steiner points. But having too many Steiner points is undesirable because each
Steiner point is equivalent to introducing a via and vias are expensive in terms of

delay and performance of the circuit. Thus, based on this fact, a more direct ap-
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proach to adding Steiner points have been suggested by Kahng and Robbins [35].

. Their iterated I1-Steiner heuristic repeatedly finds the next best possible Steiner

point and adds it to the pbint set until no further improvement is possible. The
performance ratio of this approximation algorithm is never as bad as 3/2 and it is
proved to be not greater than 4/3 on the entire class of instances where the cost
ratio C(MST)/C(MRST) is 3/2.

The Steiner tree algorithm is the fundamental part of a global routing algorithm

in VLSI physical design. In the standard cell (objective of our work) and macro-cell

layout styles, global routing is accomplished in a routing graph extracted from a

.. given cell placement [36]. The graph edges correspond to routing channels, while

some vertices correspond to intersections of channels and others correspond to inte-

. rior points in the channels. A usual strategy for global routing consists of two phases

[36]. A number of alternative routes are generated for each net in the first phase.
The nets are independently treated one at a time with the objective of minimizing
the total edge cost of the routing path in the graph. In the second phase, a specific
route is selected for each net based on a criteria of channel capacity, overall chip
area and/or total interconnection length.

Most existing Steiner tree algorithms of wire-mode or timing-driven global routers
take the minimization of total wire length as the objective. Only a few consider the

timing constraint during the construction of global routing tree.
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3.3 Summary

’I‘his chapter provided an overview of the rectilinear Steiner tree problem and its
relation to the global routing algorithms in VLSI design. In Chapter 5 we will
present a timing-driven global routing scheme based on the technique of dividing a
net into zones and thus reducing the complex problem of determining the routing
tree of a net, into simpler smaller problems of routing net segments in different

zones. An iterative improvement technique has been applied to improve the routing

result in terms of delay bounds and channel densities.



Chapter 4

Tabu Search and Simulated

Annealing

4.1 Tabu Search

4.1.1 Introduction

Tabu search is a general iterative technique, that was originally proposed by Glover
[37, 5, 38] for finding good solutions to combinatorial optimization problems. This
simple and elegant technique is regarded as a higher-level method, or meta strategy
for solving optimization problems. It has been successfully applied to a number
of computationally hard problems like graph coloring {39], graph partitioning [40)],

VLSI placement [41], circuit partitioning [42], maximum independent set problem

25
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[43), etc.

In general terms, tabu search is an iterative procedure that starts from some
initial feasible solution and attempts to determine a better solution in the man-
ner of a greatest-descent algorithm. It does not employ pure randomization like
simulated annealing nor does it take the restrained approach that the proper rate
of descent will make the final solution closer to a global optimum [40]. Instead of
terminating upon reaching a point of local optimality, tabu search structures the
operation of its embedded heuristic in a manner that permits it to continue. This
is accomplished by forbidding moves with certain attributes (making them tabu),
and choosing moves from those remaining to which the embedded heuristic assigns
a highest evaluation. In this respect, tabu search employs a mechanism of control
which constraints and frees the search process. This corresponds to tabu restric-
tions and aspiration criteria. Tabu search uses a flexible attribute-based memory
structures to exploit historical search information more thoroughly than using rigid

memory structures (such as branch and bound) or by memoryless systems (such as

simulated annealing).

4.1.2 Tabu Restrictions

As opposed to the randomness of the search in simulated annealing, tabu search
uses a more systematic approach. Instead of choosing a neighboring solution (a

solution reachable from the current solution by making a move) at random, tabu
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search examines a number of neighbors and selects the best neighborhood solution
by making a move among all candidate moves. This best candidate solution may not
improve the current solution. Selecting the best neighborhood solution is unlike hill-
climbing as it might make a down-hill move. Further, each solution in the solution
space must be accessible to every other in a finite number of moves. This condition
ensures that the neighborhoods cover every solution in such a way that it is possible
to find the global optimum, given sufficient time.

With this approach, however, it is possible to reach a local optimum, ascend and
then go back to local optimum, thus causing a cycle. Tabu restriction is a device to
avoid such cycling by making selected attributes of these moves tabu (forbidden).
Tabu list is a list containing forbidden moves. The tabu list is initially empty,
constructed in the k first iterations and updated circularly in later iterations. The
parameter k is the tabu list size. Normally the forbidden moves are the reverse of
the k moves last performed. Thus, due to the tabu list, tabu search avoids returning
to the solutions just visited, and since degrading moves are allowed, the algorithm
has a chance of leaving a local minimum.

The most difficult part of applying tabu search is finding the right size of tabu
list. No single rule gives good sizes for all classes of problems. If the tabu list size is
too small the search will start cycling, and if it is too large the search might be too
restrictive. Therefore, an appropriate list size can be determined by watching the

occurrence of cycling when the size is too small and the quality of solution when the
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size is too large. It is a question of finding the right compromise, typically depending
on the specific problem investigated. However, good performance has been achicved

with tabu list sizes from 5 to 12. In many applications the tabu list size of 7 seems

to be quite effective.

4.1.3 Aspiration Criteria

This component of tabu search introduces diversification and intensification in the
search by exploring new regions in the search space. It is a Leuristic rule based on
cost values, associated with feasible solutions, such that it temporarily overrides the
tabu status if the move is sufficiently good. That is, we allow a move currently on the
tabu list if it leads to a better solution than the current best solution. The purpose
of aspiration criteria is to increase the flexibility of the algorithm while preserving
the basic features that allows the algorithm to escape local optima and avoid cyclic
behavior. At all times during the search procedure each cost ¢ has an aspiration
value that is the current lowest cost of all solutions arrived at from solutions with
cost ¢. The actual aspiration rule is that, if the cost associated with a tabu solution
is less than the aspiration value associated with the cost of the current solution,
then the tabu status of the tabu solution is temporarily ignored and it is accepted
as the next current solution. That is, although the tabu solution is not removed

from the tabu list, its tabu status is overridden, and a move to the tabu solution

may be made.
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It is to be noted that like other optimization procedures, tabu search routine is
ignorant of optimal cost values. this results in the procedure being unable to stop.

Thus, a stopping criterion must be used, based on a maximuin number of moves or

a time limit.

4.1.4 Algorithmic Description

A complete description of tabu search is given in [44] which is shown in Figure 4.1.

The functions performed by each of its steps are identified. A brief description of

these steps is given below:

1. Start with an initial solution which can be generated by a number of ways,
randomly or by a constructive process (our initial solution for global routing

is generated constructively as explained in Chapter 5). The initial solution is

also assumed to be the current best solution.

2. A set of moves is formed. Each move generates a trial solution. Hence we

get a set of trial solutions. The number of moves to make depends upon the

specific problem under consideration.

3. Select the move which generates the best solution among a set of trial solutions.

Call this move a candidate move, that is, it is a candidate to be an admissible

move.
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Figure 4.1: Tabu search algorithm [5].
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. This step includes a key issue of the procedure, which is to establish a basis for
deciding if a move being examined should be classified as tabu. It is checked
that whether the candidate move is in the tabu list or not. As mentioned
in the previous section, the tabu list records selected attributes of cach move

made. If the move is found to be tabu then go to step 5, otherwise go to step

6.

. In step 4 if the candidate move is found to be tabu then check the aspira-
tion criteria (as explained in Section 4.1.3). If the candidate move passes the

aspiration criteria go to step 6 otherwise go to step 7.

. The candidate move is considered admissible (i.e., either it is not tabu, step

4, or tabu but passes the aspiration criteria, step 5). Store this move as new

current best move and go to step 8.

. Select next best move from the sample set formed in step 2 or generate a new

set of neighbor solutions and select the best among them and go back to step

3, otherwise go to step 8.

. If the current best solution improves the previous best solution, store it as the

best solution found so far.

. Check for the stopping criterion. If the total number of iterations have been

elapsed than stop, otherwise go to step 10.
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10. Update tabu list and aspiration levels, that is, include the current best move
into the tabu list and the objective function value as its aspiration value for

the next iteration. Start new iteration by going back to step 2.

4.2 Simulated Annealing

4.2.1 Introduction

Simulated annealing (SA) was proposed by Kirkpatrick et al. [45] as a heuris-
tic algorithm for various combinatorial optimization problems encountered. It is a
stochastic iterative search method characterized by its hill climbing feature, i.e., the
acceptance of new state of the problem with a non-zero probability which might in-
crease the cost. These moves are controlled by a temperature parameter, in analogy
with temperature in the annealing process. At high temperature, the search is al-
most random, while at low temperature the scarch becomes alomost greedy. At zero
temperature, the search becomes totally greedy, i.e. only good moves are accepted.
Thus, the SA method gradually reduces the randomness in the system and arrives at
the optimized solution [46]. The SA method is a general heuristic search procedure
that has been applied to the travelling salesman problem, the network partitioning

problem, large scale combinatorial optimization problems such as placement and

routing in VLSI and neural networks [1].
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4.2.2 The Algorithm

The Simulated annealing algorithm is shown in Figure 4.2. The SA method is
based on the Metropolis procedure [47] which simulates the annealing process at
a given temperature T' (Figure 4.3). The Metropolis procedure corresponds to the
acceptance functon accept in Figure 4.2. This function determines the acceptance
(or otherwise) of the new state S,.,, of a given solution S. The prime feature of this
function is that, even if the new solution is worse than the previous one, it allows
on a probabilistic basis to escape from locally optimized values. The probability of
accepting a new state depends on the value of the temperature parameter T. The

updating rule for 7" is given helow.
Thew=axT; 0<a<l.

In the function accept, if the cost of the new solution S,., is better than the
cost of the current solution S, then certainly the new solution is accepted. However,
if the new solution has an inferior cost, the parameter T plays a fundamental role.
If T is very large, then the random number » (uniformly distributed between 0 and
1) is likely to be less than y and a new state is almost always accepted irrespective
of AC. If T is small close to 0, than all states with AC > 0 have smaller chances of

satisfying the test for smaller values of T'.

The main parameters of the SA algorithm are:



34

algorithm Simulated Annealing(Sy, Ty );
/* So is the initial solution and Ty is the initial temperature */

begin
T:= To;
S = So;

while(“stopping criterion is not satisfied){
while(“inner loop criterion® is not satisfied){
Snew = generate(S);
/* generate is a function which generates randomly a new state S,,, from state S * /
if (accept(C(S,ew), C(S),T) = 1)
S= Snew;
}
T = update(T);

}

end;

Figure 4.2: Simulated annealing algorithm.

accept(C(Snew, C(Z),T)
{
AC = C(Snew) — C(2);
y = min(l, exp{~AC/T});
r = random(0,1); /* returns the number between 0 and 1 */
if (r<y)
return(1); /* accept the new state */
else

return(0); /* reject the new state */

Figure 4.3: The accept function.
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1. The initial temperature.

2. The new state generation function (generate).
3. The acceptance function (accept).

4. The temperature update function (update).

5. The internal loop exit criterion.

6. The external loop exit criterion.

"The implementation details of the above characteristics are discussed in Chapter 6.

4.3 Summary

In this chapter, we have described two general iterative algorithms: tabu search
and simulated annealing. Both are powerful optimization technique that are easy
to implement, may escape local optima, and may also cope with complex prob-
lems involving multiple design criteria and constraints. Furthermore, they may be
applied to a diverse variety of combinatorial optimization problems. Both these al-
gorithms have been applied to iteratively improve our initial global routing solution

as explained in Chapter 6. A comparative study of their results is also given.



Chapter 5

Global Routing for Standard-Cell

Design

5.1 Introduction

Spanning tree based routing has proved useful in cell based design. For a given
circuit, there are several possible spanning trees for each net. Many global routing
methods are based on constructing a spanning tree for each net [48]. In the Timber-
Wolf package [13] minimum weight spanning trees, one for each net, are consﬁructed
and then passed through an iterative improvement step using simulated annealing
technique. Simulated annealing technique is used to search for a better channel

assignmentt of the switchable segments.

Generally all global routers intend to choose net segments in such a way that
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wiring congestion will be distributed between the channels. Some approaches other
than building minimum spanning tree (MST) for the nets use some modification
of the basic MST and Steiner tree algorithms to construct a routing trec that si-
multaneously minimizes both total wire length and maximum interconnect delay
[19].

Our goal is to develop a routing scheme that could minimize delays as well as
routing area. We shall develop a performance-driven global router so that it can
be integrated with another already developed performance-driven placement tool,
and can later be connected to the OASIS [49] system. OASIS (Open Architecture
Silicon Implementation Software) is a system for standard cell IC design. The tools
integrated into the OASIS system have been developed to automatically translate
high-level descriptions of integrated circuits into testable physical layouts, using
pre-designed standard cells. Thercfore, we will take our required input files for cell
placement and netlists from the OASIS system. The output of the global router
will then be transformed to a format suitable to be used by the detailed router of

OASIS to produce the final layout of interconnection nets. The details of all these

steps are given inthe following sections.
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Figure 5.1: Main steps of global router.

5.2 Global Routing

The flowchart of our global routing approach is given in Figure 5.1. Each stage is

explained in the coming sections.

5.2.1 Determination of Timing bounds on Nets

A signal starting from a source reaches a destination (sink) after traversing one or
more circuit modules. A path is defined as a sequence of such circuit modules. The
start point is an input pad or storage element output pin. The end point is an

output pad or storage element input pin. Thus, there can be four different paths
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Figure 5.2: Four types of paths.
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in a VLSI circuit. These paths are shown in Figure 5.2. All storage elements are
flip-flops.

As the number of paths in a VLSI circuit can be in the millions, it is ususally
the case that a very small subset out of all the paths are selected. These are the
paths with the largest delays. The path with the maximum delay is regarded as the
most critical path. Identiﬁcation of these critical paths is done by a timing analyzer
program. A detailed description of the timing analyzer/predictor is given in [50].
The timing analyzer/predictor program also computes the timing bounds for all the
nets in the layout. These bounds are such that if the interconnect delay of each net
is within its associated bound, then the circuit will be free from timing problems.

"The algorithm used to compute net delay bounds is discussed in [51].

5.2.2 Netlist Extraction

The preprocessing stage of our initial global routing starts by first extracting a
netlist of the cells, available in the input cell placement file from OASIS [49]. The
other inputs to our global router are the standard cell library and the delay bounds
of the nets estimated from the timing analyzer program [50]. The netlist creation
step involves the scanning of the output of a cell going to the inputs of other cells
or to an output pad. At this stage, all pin locations of all cells in a particular row
are also determined with respect to the leftmost coordinate (-1,-1). This convention

is followed by OASIS for the generation of the layouts. All the required data about
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a cell are retrieved from the standard cell library containing the relevant cell codes

and pin locations in addition to the load factor (LF) and load capacitance (LC)

values of each cell. These values are used in delay calculations.

3.2.3 Placement of feed-throughs

The next step after forming the netlist is the placement of the required extra feed-
throughs within the cell rows. This feed-through requirement is determined by
analyzing the netlist in such a way that the nets requiring feed-throughs are identified
and their corresponding requirements are matched against the already available
feed-throughs in a particular row. If the available feed-throughs are not sufficient
to provide the required routability for the nets, then the required number of extra
feed-throughs is determined for each particular row. These extra feed-throughs are
then inserted in the cell rows by distributing them on an average distance depending
upon the particular cell-row width. At the same time, the pin locations of the cells

are also adjusted.

After all the preprocessing steps described above, we move to the timing driven

approach to global routing used in our work.
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5.3 Timing-Driven Approach to Global Routing

The speed performance of a chip depends to some extent on signal propagation
through the interconnects. The smaller feature size has resulted in reduction of
switching delays of gates. This has increased relatively the propagation delays
through the wires connecting these gates.

Nowadays, it is rare to find a placement program that does not take into con-
sideration timing issues of the circuit. However, routing did not receive similar
attention. We believe that timing of the layout can be further improved if timing
critical nets are given preferential trcatment during routing. Such an approach has

been taken in this work. In this section, we shall describe how timing considerations

are included during global routing.

5.3.1 Delay Model

The delay model used in this thesis is the Linear Model. As per this model, it is
assumed that a signal traveling from the source arrives at all the sinks at the same

time. The overall delay for any path , is given by the following equation:

T(a)=3 S+ I (5.1)

cET nen

where S, is the switching delay of cell ¢ and I, is the interconnect delay of net n.

Based on the lumped RC-model, S, is defined as follows:

S.=BD.+ LD, (5.2)
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where BD, and LD, are the base delay and load delay, respectively, of cell ¢. The

base delay is obtained as shown below:
BD.=LF, x LC,

where the terms LF, and LC, denote the load factor of cell ¢ and the total load
capacitance at the input pins of cells driven by cell c.

The interconnect delay of net n is computed by the following equation:
I.=LF.xC,+R,xC,+ R, x LC, (5.3)

where, the terms C, and R, represent the capacitance and the resistance respec-

tively of net n.

The interconnect capacitance and resistance for net n are computed as given

below:
C = Area_capacitance + Fringe_capacitance (5.4)
where,
Area_capacitance = [Cam1 X L1 + Cama X L] X w (5.5)
and

Fringe_capacitance = 2 X [(w + Lu1) X C fm1 + (w + Lyi2) X C frug)] (5.6)

le X Lml + Rm2 X Lm2
w

R, =
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where,

C.mi = Plate Capacitance/Area of metal m;,

Cim1 = Fringe Capacitance/Length of perimeter of metal m,,
Came = Plate Capacitance/Area of metal my,

Cim2 = Fringe Capacitance/Length of perimeter of metal m,
Rm1 = Sheet Resistance of metal m,,

Rm2 = Sheet Resistance of metal m,,

Ly = Length of metal m,,

L2 = Length of metal mo,

w = Width of interconnects.

Next, we illustrate the delay computation for the path # shown in Figure 5.3 through

an example. Using Equations 5.2 and 5.3, the switching delay and interconnect delay

of the path 7 of Figure 5.3 can be obtained as follows:

Z S. = SSEQ; + Sg, + S¢, + SSEQ2 (5.8)
cellen
and
Z In = netsgql + Inetcl + Inela5 + InctSEQ2 (59)
cellen

The interconnect delay of some net, say netg, in Figure 5.3, is computed by the

following equation.

Inelcl = LFG| X Cnetcl + Cnelcl X Rnetc;l + LCG] X Iznt?tc;l (510)
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Figure 5.3: Delay model used in this work.
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where, the load capacitance of cell G; is obtained as follows:

LC¢) = LCq, + LCq, + LCg, + LCg, (5.11)
Metal Type Area_Capacitance Fringe.Capacitance
(10~*pF/u?) (10~*pF/p)

Range Min Typ Max | Min Typ Max
Metall 0.21 0.23 0.26 | 0.75 0.79 0.82
Metal2 0.13 0.14 0.15 | 0.78 0.81 0.85

Table 5.1: Area and fringe capacitance values.

Sheet_Resistance
(ohms/[square)
Range | Min Typ Max
Metall | 0.050 0.055 0.060
Metal2 | 0.022 0.028 0.033

Table 5.2: Sheet resistance values.

Different values for capacitance and sheet resistance are given in Tables 5.1 and
9.2 respectively. The width of interconnects for the circuit technology used isw = 3p.

After combining the constant terms in Equations 5.5, 5.6 and 5.7, these equations

may be re-written as follows:

Area_capacitance = 0.000078 x L,,; + 0.000045 X Lo (5.12)

Fringe_capacitance = 0.000164 x L,,; + 0.000170 x L,,» + 0.001002 (5.13)

R, =0.020 X Ly +0.011 X Ly (5.14)
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After combining all the constant terms, the new equations can be written as follows:

Co = CONST; X Ly, + CONSTy X Lyn, + CONST; (5.15)

and,

R, = CONST; X Ly, + CONST; x L., (5.16)

where Ly, and L, are the lengths of metals m; and my respectively. The new

constant terms are,

CONST, = 0.000242pF/p

CONST,; = 0.000215pF /p

CONST; = 0.001002pF

CONST, = 0.020Q/

CONST;5 = 0.011Q/p

From Figure 5.3, L,,,,=16yx and L,,,=15u. Let the values of load capacitance for
the cells Ga, G3, G4, and Gj be as given below:
LCg, = 0.068pF,

LCg, = 0.085pF,

LCg, = 0.091pF,

LCg, = 0.087pF,

and the load factor be,

LFg, = 4.92ns/pF,
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Then the load capacitance of the driving cell G; will be LCg, = 0.331pF. The
interconnect capacitance and resistance are found to be Cnctc, = 0.008099pF, and
Roerg, = 0.485Q respectively. By substituting these values in Equation 5.10, the

interconnect delay through netg, is obtained as follows.

Lietg, = 4.92 x 0.008099 + 0.008099 x 0.485 + 0.485 x 0.331

which is equal to 0.20431 ns.

Based on the above calculations and experimental results obtained from actual
VLSI circuits, it was observed that the load delay component contributes the most
to the interconnect delay. The contribution due to interconnect resistance was found
to be an order of magnitude smaller than that due to load factor. Before proceeding
further, we show that it is safe to ignore the effect of interconnect resistance in the
delay computation by the following example.

Let us assume a chip of size 4000 x 4000 #m? and the interconnect length for a 2-

pin net to be L,,; = 2000y and L,,» = 2000y for horizontal and vertical connections

respectively. Then, the interconnect resistance will be:
R, =0.02 x 2000 + 0.011 x 2000 = 6292

Now. let us compute the various components of interconnect delay assuming

LC.=0.051pF, LF, = 4.92KQ and C, = 0.012pF.

LF,. x C, = 4.92 x 0.012 = 0.05904ns
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R, x LC. = 62 x 0.051 = 0.003162ns

R, x C, =62 x 0.012 = 0.000744ns

It is evident from the above computation that the delay due to interconnect resis-

tance is very negligible and can be ignored.

5.3.2 Objective Function of the Initial Global Routing

In order to judge the quality of the solution of an optimization problem, it is of
utmost importance to have some criteria that will reflect the quality of the solution
obtained. Since global routing is an optimization problem with multiple objectives,
the choice of proper cost function(s) is not straightforward. This section discusses

some of the common objective functions used as a measure to estimate the cost of

a global routing solution.
The aim of an objective function is to identify a superior solution. This however,
is an optimization problem which is more difficult to solve. Some of the possible

criteria for evaluating the quality of a global routing solution can be as follows:
(1) minimize routing area,
(2) minimize total wirelength,
(3) even channel densities,

(4) minimize vias and feed-throughs,
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(5) minimize delay bound violations, or
(6) a combination of two or more of the above criteria.

The objectives described above may be conflicting, since we may find that shortest
multiterminal length may not always yield the smallest net delay. This is because
delays at the sink pins of a multiterminal net depend on how the interconnection
tree (topology) is constructed. Similarly, doglegging, introduced in order to minimize
the number of horizontal tracks and avoid vertical constraints, increases via count,
thus increasing the delay. Fced-through cell insertion in between other cells also
introduces some incremental delay as well as area increase as it causes the cell rows
to stretch. Even when there is sufficient area for feed-throughs, unrestricted layout
of feed-throughs may exert a bad influence on net segment assignment optimization
and/or on detailed routing. Hence, we need to formulate a performance-driven
routing plan so as to have a balance among the objectives described above.

Since our goal is to perform timing-driven routing, our prime objective is to
minimize net delays alongwith the minimization of overall chip area. In the initial
global routing stage, we sort the nets based on their criticality as mentioned in
Section 5.3.3. Then the nets are routed one at a time based on this sorted order. In
this way, the critical nets will have good opportunity to utilize the available feed-
throughs. This will result in better routing trecs for the critical nets as well as less

number of vias. This strategy has resulted in good solutions in terms of timing as



shown in Chapter 6. Furthermore, during the routing of each net, our objective is
to identify a minimal delay trée.

Our objective in the iterative improvement stage is to improve the overall routing
area. This is achieved by the optimal assignment of switchable segments to the
channels so as to reduce overall channel density of the layout. The implementation
details of the iterative improvement stage are given in Chapter 6.

In the following subsections, we shall provide implementation details of the initial

timing driven global routing step.

5.3.3 Ordering of Nets

The nets are routed one at a time, sequentially, based on their criticality. The net
criticality is determined by sorting the nets in the ascending order of their delay
bounds. Thus the most critical net is routed first. then the next most critical and
so on. This routing order is followed based on the fact that if the critical nets are
not satisfactorily routed, we are not going to achieve the appropriate routing of the

nets which can satisfy the timing requirements.

After the above described preprocessing steps, we move to the routing stage as

discussed in the upcoming sections.
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5.3.4 Partitioning and Classification of nets

As discussed in Chapter 3, the process of building a Steiner tree for a sct of poinuts
to be connected is NP-hard. Therefore, to solve such a complex problem, we use
a partitioning based approach, which is similar to the one reported by Sugai and
Hirata [2]. The reason behind partitioning and classification of nets is to break the
complex problem of routing a net into smaller manageable ones. That is, breaking
up a net into different segments and zones helps in solving some parts of the routing
problem using optimal methods while other parts using sub-optimal methods (as
explained in the next sections).

First, all nets are selected one at a time and each net is divided into 2-terminal
net segments. For that purpose, we sort the terminals of each net based on their

x-coordinates. Next, we classify 2-terminal net segments as follows (sce Figure 5.4):

1. One-channel net segments (Figure 5.4 (a)).
Here the terminals are in neighboring rows and the connecting segment can be

laid out on the first attempt in the channel sandwiched by the two cell rows.

2. Two-channel net segments (Figure 5.4 (b)).
Here the terminals exist in the same row and therefore the corresponding
segment is “Switchable*. A switchable net segment can be routed at random
in either of the channel above or the channel below the cell row. Switchable

segments are the object of our iterative improvement step. So, in this way all
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Figure 5.4: A classification of nets.

the switchable segments can be readily identified.

3. Global net segments (Figure 5.4 (c)).

These are other than the previous two, i.e., the two terminals are separated by

one or more intermediate rows. One or more line of fecd-throughs are generally

needed to route the global net segments.

The rectangular region surrounding each of the above mentioned segments are called
1-channel zones, 2-channel zones, and global zones respectively. Routing is then car-
ried out inside each zone (Figure 5.4) and becomes a straightforward task. Though
each two terminal zone can be routed optimally, the overall tree that will result will
obviously be far from optimal. Therefore, to keep a routing tree close to optimal,
we merge some of the two terminal global zones which are close to each other within

some threshold value. This is explained in the next section.
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5.3.5 Formation of Feed-through Zones

The partitioning of a net into two-terminal zones simplifies the problem to an ex-
treme. However, this will lead to a poor quality solution (measured in terms of
required feed-throughs and overall net length). In order to reduce the number of
required feed-throughs, one has to merge some of the global zones into one larger
zone of more than two terminals. This is achieved as follows [2].

While classifying a net into zones, some of the 2-terminal global zones may be
combined to form a zone with multiple terminals. This is called a feed-through
zone. This feed-through zone helps in reducing the number of feed-throughs that
may be required for subnets in neighboring 2-terminal global zones that are quite
close to each other. The sampling of a feed-through zone is done by determining if
another global zone exists in the same net and the distance between them is within
a threshold distance of F;. This F, has been taken as the maximum separation of
two terminals inside all global zones in a net. After determining the F, value in the

global zones of a net, we proceed as follows:
(a) Expand the present zone to include the terminals of the nearby zone.
(b) Destroy duplicate zones.

(c) Repeat (a) and (b) until all terminals have been processed.

Depending on the value of F;, feed-through zones change as shown in Figure 5.5. As

Fy gets larger, an increasing number of global zones are merged into multi-terminal
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Figure 5.5: Dependence of the size of feed-through zone on feed-through interval.
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Figure 5.6: Partition of a net into zones.
feed-through zones.

After a net is completely partitioned into different zones, it takes the form as

shown in Figure 5.6.

5.3.6 Routing Inside Zones

Routing inside a 1-channel zone is straightforward. The resulting segment is sand-
wiched between the two cell rows. A 2-channel net or switchable net can also be
assigned randomly to any of the channel above or below the row. For that purpose,
we generate a random number between 0 and 1. If the generated random number is
less than 0.5, the segment is assigned to the channel above the cell row, otherwise

it is assigned to the channel below the cell row. The switchable segments are the
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object of our iterative improvement stage. It has been reported in the literature and
has been observed during our experimentation that switchable segments comprise
more than 50% of the total number of segments in the layout. Therefore, they are a

strong candidate to be optimized. The length of the segments are also recorded as

they are laid out. The rectilinear distance function is used to determine the length

of the segments!.

Timing Driven Routing inside global zones

Routing inside a 2-terminal global zone reduces to finding the minimum delay path
between the two terminals of the zone. This can be optimally solved using Dijkstra’s
shortest path algorithm. Dijkstra’s algorithm is outlined in Figure 5.7.

In order to apply the Dijkstra’s algorithm, we first build a routing grid graph
as follows: We extend horizontal lines through the estimated centre inside each
channel covered under the 2-terminal bounding box. This central position inside
each channel can be taken from the previous estimates of designs of similar size
and characteristics. Then we extend vertical lines through each point of the net
and through each feed-through pin available inside the net bounding box. The
intersection points (X ) are the Steiner candidate points in the resulting grid (Figure
5.8). It is to be noted that if there are no available feed-throughs inside the terminals’

bounding box, then we have to expand our bounding box. This is achieved by

'Rectilinear distance between two points p and ¢ is defined as dist(p,q) =| pz~qz | + | py—qy |



algorithm Dijkstra;
begin
S:=0;5:=N;
d(7) := oo for cach node i € N;
d(s) := 0 and pred(s) := 0;
while | S |< n do /* n is the number of nodes in N */

begin
let i € S be a node for which d(i) = min {d(j): j € S};
S:=Su{i};
S:=5-{i};

for each (7,5) € A(:) do
/* A7) represents the arc adjacency list of node i */

if d(7) > d(i) + ci; then d(j) := d(7) + ¢;; and pred(j) := 1;
end;
end;

Figure 5.7: Dijkstra’s algorithm.
extending to the right and left of the bounding box to find available feed-throughs.
If available feed-throughs inside the cell row are exhausted, the program terminates

with a message to insert more feed-throughs in the feed-through preprocessing stage.

After constructing this grid graph, we determine the shortest delay path between
the two terminals using the available Stciner candidate points. During routing, we
also keep track of the length of the scgments in the horizontal and vertical directions
(for metall and metal2 respectively) as well as the number of vias, since they will
be used in the delay calculation (explained in section 5.3.1). We add a penalty value
to the length of the segments whenever they take a turn. This is because each bend

introduces a via in the layout and should be regarded as causing some extra delay.
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Therefore, the corresponding delay produced by a via is directly transformed into

length values.

Timing Driven Routing inside feed-through zones

A feed-through zone is a multi-terminal zone. The grid graph as shown in Figure
5.9 is formed in the same fashion as explained in the previous section. At this
routing stage, we try to determine an MRST (minimum rectilinear Steiner tree)

whose Steiner points are chosen from the Steiner candidate set in the resulting grid.

In a first step, we sort all the terminals available in the feed-through zone based
on their x-coordinates. Next, we determine a shortest path between the first two
terminals of the zone. All the points which lie on this shortest path are treated as
potential target points for the routes of the remaining terminals. The remaining
terminals of the zone are picked one at a time and shortest paths are determined
from the terminal to the potential target points. This process continues until all the
terminals are included in the tree. Now this tree may not be a tree of minimal delay.
An iterative improvement process is applied to improve delay of this routing tree.
This is achieved by ripping up a segment of the current trec and re-routing it in
such a way that we get a tree of smaller total delay. In this improvement stage, we
rip-up a branch starting from a terminal and try to re-route the terminal through a

better path with smaller delay using the same Dijkstra’s algorithm. The brauch to
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rip-up is selected as follows: we start traversing the tree from a terminal and follow
the path of the tree until we hit a point whose fanout is greater than 2. This means
that the point is further connected to some other points beside its predecessor and
successor. Thus, when a terminal is disconnected from the rest of the tree, we try
to find a better path to re-connect the terminal by considering the rest of the nodes
of the tree as potential target points. During the improvement stage, we keep the
cost (delay) of the initial tree and if some new branch improves on cost, the cost
of the tree is updated. The whole process of rip-up and re-route is repeated for 2n

times, where n is the number of terminals in the feed-through zone.

5.4 Complexity of the Algorithm

The complexity of the algorithm can be analyzed as follows:

The process of partitioning nets into zones is linear in the number of nets. The
routing inside a global zone is quadratic since a shortest path algorithm is being
used which has complexity of O(n?), where n is the number of points in the graph.
Routing inside feed-through zone is achicved by repetitive application of the shortest
path algorithm equal to the number of terminals that are inside the feed-through

zone. So the complexity of the algorithm is O(n?). The memory requirement is
g Yy req

linearly related to the number of cells in the circuit.
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5.5 Summary

In this chapter, we have presented the global routing scheme that has been used
in this research. The chapter also describes various objective functions used in our
global routing solution. The delay model used in our performance driven global
routing approach is also outlined. In the following chapter, we describe the iterative

improvement phase of our global router.



Chapter 6

Channel Density Optimization

6.1 Introduction

In this chapter we describe our approach to improve the initial global routing so-
lution obtained from the first stage, by optimizing the assignment of switchable
segments to the channels. Switchable segments account for about 40-50% of the
total number of segments as has been reported in the literature and confirmed in
this research. Therefore, they are very good candidates for the optimization process.
The main concern in this improvement step is to search for a better assignment of
the switchable segments in order to reduce the overall channel density as well as
to reduce channel congestion. The reduction of channel densities will reduce the

routing area required, whereas reducing channel congestion will ease the detailed

routing step.

G4



65

6.2 Optimization of channel density using Tabu
Search

In this section we will discuss various issucs regarding the application of Tabu search

(TS) on switchable segments. The main tasks in TS application are as follows:

e Defining a cost function.

e Starting with a feasible initial solution.

¢ Defining a neighborhood for a given solution.
¢ Generation of moves.

e Formulation and maintenance of tabu list.

e Decfining an aspiration level criterion.

¢ Finding a good tabu list size.

o An efficient way to accept moves.

The rest of the chapter will discuss these issues in detail.

6.3 Cost Function

In order to formulate the assignment of switchable segments as an optimization

problem, a suitable cost function is required. The optimization technique will then
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attempt to optimize the value of this function. The cost function C we seek to

optimize is the following
n
C= Z X (6.1)
i=1
where,
z;  channel density of channel i.
n number of channels.
The cost function represents the summation of the densities of the channels. The
channel density of a channel can be defined as the maximum number of segments
that are crossing a particular virtual grid line on the layout in that particular chan-
nel. Thus the summation of channel densities gives us the initial value of the cost
function. The overall arca of the layout can be reduced, therefore, by reducing this
cost value as much as possible.
When a switchable segment is moved from some channel j to some other channel

J + 1, for example, any of the following situations may occur.
1. the channel densitics in both channels j and § + 1 remain unchanged.

2. the channel density remains unchanged in channel j but increases by 1 in

channel j + 1.

3. the channel density in channel j decreases by 1 but remains the same in channel

j+1.
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4. the channel density decreases by 1 in channel J and increases by 1 in channel

Jj+ 1

Thus, the new cost C,,.,, of the solution either increases by 1, decreases by 1, or

remains the same.

It follows that the new cost C’, after the segment switch, will be

C'=C+ (2 —2;) + (2 — 2j41) (6.2)
where,
z; channel density of channel j before segment switch.
1; channel density of channel j after segment switch.

Tj+1  chaunel density of channel j before segment switcl.

j+1  channel density of channel j+1 after segment switch.

When the cost remains the same, it means that the net secgment switch has no
effect on the channel density and thus arca. We introduce another cost function at
this point. This cost function is meant for determining the congestion in a channel
between the points defining the span of the net scgment. The cost function is
computed by taking the difference between the overall channel density of a particular
channel and the density of the channel between the points defining the span of the
net segment. We first evaluate the cost function for the segment span in the original

channel and then for the new channel in which the scgment will be switched. The
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difference in cost (Ac) is determined by subtracting the second cost function value
from the first. A negative value of (Ac) indicates that switching the net segment to

the new channel places the segment in a channecl of less congestion.

6.4 Initial, Current and Best Solutions

Although in theory, the initial solution can be any feasible solution, TS may perform
poorly if given an inferior initial feasible solution. The initial solution in our case
is made constructively as explained in Chapter 5 but with switchable segments
assigned randomly. The cost of this solution is determined as the initial cost. As
TS proceeds, we keep two solutions - one is the current solution and the other is the
best solution found so far. At the start of TS, best solution is the initial solution and
the best cost is the initial cost. The best solution found in a number of iterations is

the output of TS, where the number of iterations is a user specified parameter.

6.5 Generation of Moves

The efficiency of Tabu Search strongly depends on the definition of the neighborhood
N(s) of a feasible solution, s, and of the Tabu list(s), on their sizes and on the
parameter nbmaz (maximum number of iterations between improvements).

We define for each feasible solution a neighborhood N(s); it consists of the

solutions to which one can move in one step of the iterative procedure. The basic
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step consists in moving from a solution s to another solution s’ where s’ is the. best
solution in the neighborhood N(s) (even if it is not as good as s ).

For our case, we can define the neighborhood of a solution s as the set of all
solutions s’ that can be obtained from s by changing the channel of a switchable
net segment selected at random from the available list of switchable segments. The
cost is calculated after the relocation of the segment. We generate all the candidate
moves for iteration itr (say) and the best among these is sciected, which may not
be better than the current solution in terms of cost. The candidate neighborhood
list size in our case is set equal to the number of channels in the layout. Moreover,

we record in the tabu list the number of the segment which has been relocated.

6.6 Tabu List

As mentioned before, the formulation of tabu list is one of the major decisions in TS
application to a problem. In the present implementation we used a single tabu list.
This list contains the numbers of the segments which have been selected randomly
for the last T iterations. The tabu list size T is an important parameter in TS. If
the size is too small the search will start cycling and if it is too large, the search
will be too restrictive. Tabu scarch was applied with different tabu list sizes, such
as 7, 12, 15 and 20, on all the benchmarks used. The magic number 7 is used for T

and it has produced good results for all cases. In this circular tabu list, the addition
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of another segment number removes the one recorded in its position T relocations
ago. If a candidate move is found tabu (segment number present in the tabu list),

its aspiration criteria is checked as described next.

6.7 Aspiration Level Criteria

In theory, aspiration level (AL) values oceur for each cost (C(s)) value encountered
during the whole iterative process. A move from s to s’ with a tabu status is
accepted if C(s") <= AL(C(s)). Initially, all ALs are set to a level higher then any
possible cost. As moves are made, the appropriate ALs are updated, if necessary.
For instance, when the first move is made from a solution of cost 8 (C(s)=8)toa
solution of cost 6 (C(s') = 6), the AL associated with the cost value of 8 is updated
to 6; i.e. AL(C(s)) = 6. Since the aspiration level is updated on each acceptance of
a move, a tabu move has to do better than the aspiration level recorded when that
move was made tabu.

If a tabu solution fails to satisfy the aspiration criteria, the next best candidate
solution can be selected from the candidate list of solutions and the process is
repeated. Otherwise, another set of candidate solutions may be generated. The
number of regenerations can be performed for maximum three times, after which
the number of trial solutions are increased by the same amount (the number of

channels). The increment to the number of the trial solutions are made for maximum



three times.

The above described strategy has proved very useful. Very rare cases have been
seen where the number of the trial solutions nceds to be incremented three times
in order to get an acceptable solution (not tabu or tabu but satisfies aspiration

criterion).

The aspiration criteria that are used in our case are described as follows:

o If the tabu solution increases the channel density of the new channel to which
the segment is being moved, than do not accept the tabu solution. Otherwise,

if the cost of the Tabu solution improves on the cost of the overall best solution,

then accept the tabu move.

If the channel densities in the original and the new channel do not change, then
the second cost function is used to determine the relative congestion inside
both the channels. If the move to the new channel is a move to a channel of

less congestion, then the tabu status of the segment move is ignored and the

move is accepted.
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6.8 Optimization of channel density using Sim-

ulated Annealing

We also experimented with simulated Annealing technique to search for a better
assignment of the switchable segments. The following describes our implementation

of the various characteristics of the simulated annealing method.

1. The initial temperature: The SA method needs to start from a high tem-
perature [46], but if it is too high, it causes a waste of processing time. The
temperature value should be such that it allows virtually all proposed new
states of the solution in the beginning as the temperature is high. The way

the initial temperature parameter is set in our case is as follows.

Basically the idea is to use the Metropolis function (e2€/T) to determine the
initial value of the temperature parameter. Initially, before the start of actual
SA procedure, we make a fixed number of moves, say M, in the neighborhood of
the current solution and determine the respective cost for each of these moves.
M is a function of the number of switchable segments. Next we determine the

difference of costs (AC) for each two successive solutions where,
AC; =C; - Ci

The average AC is then given by

1A
AC = JTZ"
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Since we wish to keep the probability, say Py, of accepting uphill moves high in
the initial stage of SA, we therefore get the value of the temperature parameter

by subsituting the value of Py in the following expression derived from the

Metropolis function.

_AC
0= I'IIPO

where Py = 1 (Py = 0.999).

. The new state generation function: In the case of 2-channel zones (switch-
able zones), one zone is chosen among them at random. A new state is gener-

ated by moving the switchable segment in the channel on the opposite side of

the cell row containing the terminals.

. Cost Function: The cost function used is the same used in the Tabu Search
implementation i.e. the estimation of wiring area which is approximated by

the total channel density, that is, the sum over all channels of the channel

density.

. The acceptance function: The Metropolis function is used in its standard

form.

. The temperature update function: The parameter o for updating the
temperature is a user specified parameter. In the current implementation, o

takes on the value of 0.9. At each updated value of the temperature, a number
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of state transitions equal to the internal loop count (explained next) are made.
These transitions are performed at each stage (or value of T') of the annealing

process so as to reach the probabilistic steady state.

6. The inner loop criterion: In order to reach the probabilistic steady state
at a certain temperature, the number of state transitions needs to be on the
average equal to the number of transitions needed for each element to pass
through all its possible states [52]. Since one of the states for the 2-channel
zones is already realized in the initial routing, only one other state is left to
be taken. In other words, the internal loop count is a function of the number

of 2-channel zones (switchable segments).

7. The outer loop criterion: This is the algorithm exit condition which is
generally satisfied when the solution fails to improve for a certain consecutive
number of times. This is done by recording the cost function value at the end
of each stage of the annealing process. In our implementation, we stop when

we observe no improvement in ten consecutive calls to the Metropolis function.

6.9 Results and Discussion

The two algorithms, tabu search and simulated annealing were presented in previ-
ous sections. In this section we will discuss the application of these algorithms on

various benchmark circuits. The algorithms are compared with each other and the
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best values for their parameters that affect the performance of the algorithms are
identified.

For the VLSI circuits used in our experiments, a 2 CMOS technology has been
used. The timing characteristics and other parameters such as dimensions etc.,
are given in [49]. It is assumed that metal m, is used for routing horizontal tracks,
whereas metal m; is used for vertical tracks. The values of capacitance and resistance
for these metals are adopted from a fabrication foundry manual [53].

The global router is written in C language under UNIX and runs on SUN and
NeXT machines. It has been tested on various practical circuits with a number
of cells ranging from 50 to about 2000. Table 6.1 shows the description of the
benchmarks used.

The statistics for different zones that were formed in these benchmarks while
performing global routing, are tabulated in Table 6.2. Tabu search implementation
has resulted in faster execution time and better results than the simulated annealing
as shown in Table 6.3. The reason for this behavior is that the tabu search works in
a much harder and directed way in its neighborhood to get a better solution from a
set of candidate solutions (though it may not be better than the current solution),
whereas simulated annealing performs almost randomly in the initial stages of its
execution as the temperature is high and then settles down to obtain only good
moves when the temperature reduces to zero. But in terms of memory requirements,

tabu search certainly consumes much more than simulated annealing. It is to be
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noted however, that an iteration in tabu search is quite different from a move in
simulated annealing. Tabu search performs all the steps of generation of candidate
solutions, selection of a candidate solution, checking of tabu status and aspiration
criteria on the particular selected solution and finally to update (or not) the current
best solution, in a single iteration. On the other hand, simulated annealing makes
a move to a neighboring state by simply checking the acceptance criteria defined in
the Metropolis function.

As shown in Table 6.3, for the largest circuit Struct (1953 cells), tabu search
has resulted in 10.06% reduction in cost function in just 31 seconds, whereas the
SA method took 529 seconds to achieve only 2.75% improvement. Other results
can be similarly noted. Figure 6.1(a) shows the performance of the tabu search
procedure for the Struct circuit. The graph shows the solution cost for each iteration.
Embedded on the graph is another curve for the best costs obtained. F igure 6.1(b)
shows a graph for the SA case. It shows the cost against cach move in the annealing
process. All other graphs for other circuits can be seen from Figure 6.2 to Figure
6.6.

‘The timing driven router (TDR) is compared with the wire-mode OASIS place-
ment and routing package developed by MCNC. Table 6.4 shows a comparison of
the segment lengths in metall and metal2 for both TDR and QOASIS.

As can be seen, OASIS produces shorter total wire lengths for most of the cases

we considered. This was expected because it does not favor critical nets during
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global routing. Moreover, it can also be seen that the number of feed-throughs
used by OASIS is quite high compared to TDR, accounting for its shorter total
wire length. But, as shown in Table 6.5, for the largest circuit, Struct, the percent
increase in the metall length of TDR with respect to OASIS is only 3.93%, where
as for the metal2 length, TDR shows an improvement over OASIS for about 4.78%.

Table 6.6 shows a comparison of OASIS and TDR for the number of segments,
via count, and the slack values. Asshown, the Struct circuit is routed with a smaller
number of segments and via count with TDR and thus resulted in better slack value.
Similarly, other cases can be seen in Table 6.6.

An interesting result is shown in Table 6.7 which illustrates the effect of ordering
of nets based on their criticality. As can be scen from the table, we do not have
much improvement of the slack value for various smaller circuits but the net ordering
becomes significant for larger circuits like Struct, whose slack value changes from
5.3 ns in the case of ordered nets, to -6.0 ns when the nets are not ordered on their
criticality. This shows that the net ordering for lightly interconnected circuits has
less overall effect on the routing solution (and slack values) as compared with highly
interconnected designs. For dense designs with a large number of nets, competition
for the routing resources (feed-throughs and tracks) becomes more severe. It is
important in that case to give preference to critical nets so that they get assigned to
the best feed-throughs, which results in shorter net length as well as smaller number

of vias.
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| Circuit “ Description | I0pads [Cells | Clock | Cr.Paths "

Adder Simple Adder 5 11 20 ns 6
Parl 16-bit Parity 17 15 40 ns 3
Par2 8-bit Parity 9 30 60 ns 90
TLC | Traffic Controller 10 45 18 ns 63
Fract || Fract. Multiplier 24 125 | 35 ns 8
Struct || 16-bit Multiplier 65 1953 | 150 ns 90

Table 6.1: Test cases statistics.

Circuit || No. Of | 1-chan. | 2-chan. | Global | FT zones
zones | zones | zones | zones

Adder 23 12 9 2 0
Parl 31 12 10 9 0
Par2 59 13 38 4 3
TLC 110 49 50 8 2
Fract 315 109 142 44 19
Struct 3226 642 2306 227 51

Table 6.2: Test cases zones’ statistics.

“ Circuits | Execution Time(sec) | Cost Reduction
TS | SA [ TS | SA |
Adder 1 5 11% 11%
Parl 1 22 12.5% 0%
Par2 1 5 14.28% 0%
TLC 1 20 16% 16%
Fract 1 49 8% 5%
Struct 31 529 10.06% | 2.75%

Table 6.3: Comparison of cost reduction and execution time between SA and TS.



Circuits OASIS TDR
FTs Length ml | Length m2 FTs Length m1 | Length m2
Inserted um um Inserted pm pm
Adder 0 416 771 0 304 553
Parl 0 640 1313 0 664 1307
Par2 4 1968 1646 4 2408 2051
TLC 1 5336 4808 0 5656 4294
Fract 53 29608 20024 22 35254 18368
Struct 390 420136 309365 239 4360672 294557

Table 6.4: Comparison of wire length between OASIS and TDR for metall and

metal2.

Circuits | % Increase | % Decrease
“ Lml{Lm2{Lmi|Lm2]
Adder - - 26.92 | 28.2
Parl 3.75 - - 0.457
Par2 223 | 246 - -
TLC 5.9 - - 10.6
Fract 19.06 - - 8.2
Struct | 3.93 - - 4.78

Table 6.5: Percent increase/decrease of metall and metal2 obtained from TDR when

compared with OASIS.



Circuits OASIS TDR

Segments | Vias | Slack || Segments | Vias [ Slack

ns ns

Adder 22 44 2.2 19 38 2.3

Parl 39 78 5.5 38 76 5.5

Par2 61 122 | 1.3 61 122 1.3
TLC 119 239 | 10.3 114 228 | 10.5
Fract 390 780 4 354 708 | 3.5
Struct 4521 9042 | 4.9 4277 8554 | 5.3

Table 6.6: Comparison between OASIS and TDR.

Circuit || Net Order || Length m1 Lengthm2 Vias Segments Slack
pm pm ns

Adder With 304 553 38 19 2.3
Without 384 709 48 24 2.4

Parl With 664 1307 76 38 5.5
Without 664 1305 76 38 5.5

Par2 With 2408 2051 122 61 1.3
“ Without 2408 1447 122 61 1.7

TLC With 5656 4294 228 114 9.5
Without 5672 4299 234 117 9.5

Fract With 44918 19935 708 354 3.5
Without 32756 18335 704 352 5.2

Struct With 436672 204557 8554 42717 5.5
Without 505412 295205 8560 4280 -6.0

Table 6.7: Comparison between OASIS and TDR with and without net ordering.
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6.10 Summary

In this chapter, we described the iterative improvement phase of the global router
where the objective is to optimize the assignment of switchable segments to reduce
the overall channel densitics and congestion. We also discussed some experimental
results for the test cases used. In these experiments, tabu search performed much
better than simulated annealing in terms of solution quality and execution time in all
the test cases. Furthermore, a comparison is made between our timing driven router
(TDR) and the OASIS global router in terms of wirclength, number of segments,

vias and slack values.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have addressed the problem of timing driven global routing for
standard cell design. A timing driven global router has been implemented. It is
based on two major steps. The first stage performs the timing driven global routing
in a constructive manner. The second stage improves the initial global routing
solution by optimizing the assignment of switchable segments using an iterative
technique called Tabu Search. The main purpose of the second stage is to minimize
the overall layout area.

In Chapter 1, an overview of the global routing problem is presented, particularly
in context of standard cell design. The motivation for incorporating timing during

global routing phase of VLSI design process is also discussed.
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In Chapter 2, a literature survey on global routing problem is given. Numerous
global routing techniques are described and related work on timing driven design
reported in the literature is reviewed.

In Chapter 3 an overview of rectilinear Steiner tree problem is given, which
is a fundamental part of the global routing problem. Related work on Steiner tree
problem is briefly discussed with special emphasis on rectilinear Steiner tree problem.

In Chapter 4, an overview of tabu search technique is given. Important charac-
teristics of this technique are identified with an overall discussion of the tabu search
algorithm. Another iterative technique called simulated annealing is also presented.
This technique is also implemented for the iterative improvement stage of our initial
global routing solution and the results are compared with that of tabu search as
discussed in Chapter 6.

In Chapter 5, the implementation details of our timing driven global router is
presented. The objective function used in the constructive phase of the global router
is the timing criticality of the nets. The router is based on partitioning a net into
different zones, namely one-channel, two-channel and global zones. Routing is then
done inside each zone. In a one-channel zone, the terminals are in neighboring rows
and the connecting segment is laid out in the channel sandwiched by the two cell
rows. In a 2-channel zone, the terminals exist in the same row and therefore the
segment is " Switchable”. Switchable segments can be routed at random to either of

the channel above or the channel below the cell row. In a global zone, the terminals
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are separated by one or more intermediate rows. One or more line of feed-throughs
are generally needed to route the global net segments. Some of the global zones may
be combined to form a feed-thorugh zone. The feed-through zone is a multi-terminal
zone requiring also one or more feed-throughs.

Routing order is sequential, based on the timing criticality of the nets. Routing
inside a two terminal global zone reduces to finding a shortest delay path using any
shortest path algorithm. While routing inside a feed-through zone is performed by
an iterative application of a shortest path algorithm to find a minimum delay tree.

The objective function used in the second stage of routing is the minimization
of the layout area. This can be approximated by an optimal assignment of switch-
able segments. Assignment of Switchable segments (which were placed randomly in
the initial routing stage) is optimized using tabu search. The results are also com-
pared with those obtained with the Simulated Annealing technique. As reported in
Chapter 6, tabu Search has resulted in good quality solutions and smaller execution
times as compared to simulated annealing in all the test cases used. Also presented
in Chapter 6 is a comparison between timing driven router (TDR) and OASIS [49]

in terms of number of segments, vias, slack values and wire lengths for all the test

cases used.
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7.2 Future work

One interesting question that requires further investigation is whether net parti-
tioning has an overall negative or positive effect on quality of solution. One way
to answer this question is to find for each net a Steiner tree without partitioning
the net into zones and compare the solution obtained with that produced when net
partitioning approach is followed. That is, we try to build a Steiner tree for the
whole net using the technique described for routing inside a feed-through zone and
then use Tabu Search for improving the initial tree construction and finding a tree
of minimum total delay. Similar strategy has been adopted in the TimberWolf pack-
age [13]. However, our proposed approach is different from that of Timberwolf in
several important aspects: (1) Timberwolf constructs a spanning tree, while in our
case we build a Steiner tree instead, (2) Timberwolf does not order the nets based
on their timing criticality and does not employ timing aspects in tree construction,
and (3) Timberwolf uses Simulated Annealing (with temperature set to zero) for the
optimization of the assignment of the switchable segments, whereas in our approach
we use Tabu Search.

Another improvement that we plan to perform is to use a more accurate delay
model during the estimation of the interconnect delays. In our current implementa-
tion, we use a lumped-RC model. This model overestimates the interconnect delays.

A better and more accurate model to use is the distributed-RC model.
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