An Expert System for Load Flow Planning

by

Farid Yousef Abdul-Rahman Al-Hariri

A Thesis Presented to the

FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL ENGINEERING

June, 1994
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.
An expert system for load flow planning

Al-Harari, Farid Yousef Abdul-Rahman, M.S.

King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994
AN EXPERT SYSTEM FOR LOAD FLOW PLANNING

BY

FARID YOUSEF ABDUL-RAHMAN AL-HARARI

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

ELECTRICAL ENGINEERING

JUNE, 1994
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by Farid Yousef Al-Harari under the direction of his Thesis Committee, has been presented to and accepted by the Dean of the College of Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.

Thesis Committee

DR. ABDALLAH AL-SHEHRI
Thesis Advisor

DR. IBRAHIM EL-AMIN
Member

DR. MOSTAFA AREF
Member

DR. GEORGE OPOKU
Member

DR. ABDALLAH AL-SHEHRI
Department Chairman

DR. ALA AL-RABEH
Dean of Graduate Studies

2.7.94

Date
This thesis is dedicated to my family
ACKNOWLEDGEMENTS

The full support and assistance received from King Fahd University of Petroleum and Minerals and Saudi Consolidated Electric Company in the Eastern Province (SCECO-East) are greatly acknowledged.

I wish to express my appreciation with thanks to my advisor Dr. Abdallah M. Al-Shehri for his great support and cooperation. I also wish to thank Dr. Ibrahim El-Amin, Dr. Mostafa Aref and Dr. George Opoku members of my thesis committee for their efforts and cooperation.

I would like further to thank Mr. Anwar S. Al-Abdullah, Manager of Engineering & Design Services Department at SCECO-East for his full support and encouragement. The assistance and helpful information provided by Mr. Fahd Al-Saho, Manager of Systems Operation Department and Mr. Ray Fong, Chief Power Dispatcher at SCECO-East are greatly appreciated.

Finally I would like to thank my father, wife, brothers, and sisters for their patience, forbearance and support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>List of Tables</th>
<th>viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 General
1.2 Literature Review
1.3 Problem Definition
1.4 Scope of Work

CHAPTER 2 EXPERT SYSTEMS IN POWER SYSTEM OPERATION AND CONTROL

2.1 Introduction
2.2 Definition and Fundamental Components of the Expert System
2.3 Role and Advantages of the Expert System in Power System Applications
2.4 Expert Systems Programming Languages and Tools

Page No: 1 16 16 16 17 20
CHAPTER 3 THE INTELLIGENT LOAD FLOW PLANNING ENGINE

3.1 Introduction

3.2 Configuration of the Developed Expert System Package

3.3 Power System Application Programs

3.3.1 Load Flow Program

3.3.2 Line Flow Sensitivity Coefficients Calculation Program

3.3.3 Voltage Magnitude and Angle, VAR Sensitivity Coefficients Calculation Program

3.3.4 Variation of Power System Sensitivity Coefficients

3.4 Expert System for Load Flow Planning

3.4.1 ES for Corrective Generation Re-Scheduling

3.4.2 ES for Voltage & VAR Adjustment

3.4.3 ES for Voltage Angle Adjustment
CHAPTER 4 CASE STUDIES AND RESULTS 62

4.1 Introduction 62

4.2 Test Case and Results for Voltage & VAR Control 62

4.3 Test Cases/Results for Corrective Generation Re-Scheduling 73

4.4 Test Cases and Results for Voltage Angle Adjustment 81

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 85

5.1 Summary 85

5.2 Conclusion 86

5.3 Contribution of the Thesis 86

5.4 Recommendations for Future Work 87

APPENDICES 88

NOMENCLATURE 229

REFERENCES 230
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Characteristics of ES Tools for Microcomputers</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Line Data of the IEEE 14-Bus System</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>Bus Data of the Modified IEEE 14-Bus System</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Limits on the Variables and the Results of the Study on the Modified IEEE 14-Bus System</td>
<td>68</td>
</tr>
<tr>
<td>5</td>
<td>Limits on the Variables and the Results of the Study on the Modified IEEE 30-Bus System</td>
<td>71</td>
</tr>
<tr>
<td>6</td>
<td>Initial and Final Power Flows for IEEE 6-Bus System</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Basic and Modified Generation Schedules for IEEE 6-Bus System</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>Initial and Final Power Flows for IEEE 25-Bus System</td>
<td>79</td>
</tr>
<tr>
<td>9</td>
<td>Basic and Modified Generation Schedules for IEEE 25-Bus System</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>Initial and Final Voltage Angles of Generator Buses for IEEE 25 Bus System</td>
<td>83</td>
</tr>
<tr>
<td>11</td>
<td>Basic and Modified Generation Schedules for IEEE 25-Bus System</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Sensitivity Tree</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Block Diagram of Expert System</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>The Prototype Expert System Configuration</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Variation of Sensitivity Coefficients with System Loadings</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>Flow Chart for Generation Shifting Process</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>Flow Chart for Voltage & VAR Adjustment Process</td>
<td>50</td>
</tr>
<tr>
<td>6A</td>
<td>Flow Chart for Voltage Adjustment Process</td>
<td>51</td>
</tr>
<tr>
<td>6B</td>
<td>Flow Chart for VAR Adjustment Process</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Flow Chart for Voltage Angle Adjustment Process</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>Single Line Diagram for Modified IEEE 14-Bus System</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>Single Line Diagram for Modified IEEE 30-Bus System</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>Single Line Diagram for IEEE 6-Bus System</td>
<td>74</td>
</tr>
<tr>
<td>11</td>
<td>Single Line Diagram for IEEE 25-Bus System</td>
<td>78</td>
</tr>
<tr>
<td>12</td>
<td>Single Line Diagram of IEEE 25-Bus System for Voltage Angle Adjustment</td>
<td>82</td>
</tr>
</tbody>
</table>
خلاصة الرسالة

اسم الطالب: فريد يوسف عبد الرحمن الهرري
عنوان الدراسة: نظام الخبير لتخطيط تدفق الحمل
التخصص: هندسة كهربائية - نظام الطاقة
تاريخ الشهادة: يونيو 1994م

موضوع الرسالة الرئيسي هو تطوير نظام الخبير لتخطيط تدفق الحمل في نظم الطاقة الكهربائية. أهم أهداف النظام المطور هو تحسين أداء وإبداع كل من الخبير والمستخدم المبدئي في تخطيط العمليات في نظم الطاقة الكهربائية.

يستطيع النظام مراجعة النتائج الإبداعية لتدفق الأحمال في الشبكة الكهربائية وإكتشاف الأوضاع الغير طبيعية وتقديم إقتراحات لإجراءات ضبط ضرورية لتخفيف زيادة الأحمال في خطوط النقل وتعديل الجهد في مواقع الأحمال وكذلك تعديل في توليد الطاقة المقدمة وزاوية الجهد في مواقع المولدات إلى حدود تشغيلية.

ف قد تم تطوير نظام الخبير المعد لتخطيط تدفق الحمل باستخدام طريقة الأسس القانونية والأدلة المسمى بـ "كلبس" والمبينة على التقنية المعروفة بـ "التسلسل الأمامي". وتم إختبار قدرة النظام المطور على عدة نظم كهربائية وكانت النتائج مرضية.

درجة الماجستير في العلوم
جامعة الملك فهد للبترول والمعادن
الظهران - المملكة العربية السعودية
يونيو 1994م
THESIS ABSTRACT

FULL NAME OF STUDENT : FARID YOUSEF AL-HARARI

TITLE OF STUDY : AN EXPERT SYSTEM FOR LOAD FLOW PLANNING

MAJOR FIELD : POWER SYSTEM

DATE OF DEGREE : June, 1994

A sensitivity based Intelligent Load Flow Planning Engine is developed. The main objective of the engine is to provide both an expert and novice user with a friendly working environment, aiming at enhancing a user's creativity in making operational plans in power system.

The developed engine can review the initial load flow results, detect abnormalities and suggest necessary control measures to alleviate line overloads and adjust the load bus voltage, var generation and voltage angle of generator bus to desired operating limits.

The expert system is developed using Expert System tool called CLIPS based on rule-based method and forward chaining reasoning process. Simulation studies with the developed expert system applied to various power systems show satisfactory results.

MASTER OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DHAHRAN, SAUDI ARABIA

JUNE, 1994
CHAPTER 1

INTRODUCTION

1.1 GENERAL

The behavior of modern power systems has become more and more complicated, causing the decision-making process to the power system operators to be increasingly difficult. In recent years the development of Expert Systems (ES) for power system operation, control and planning has been an active area of research. The ES developed to incorporate the existing knowledge in planning and operation can offer assistance to system operators to make a correct, timely decision during an unforeseen event.

Most of the applications of expert systems to power systems have so far been limited to "fault diagnosis", "restoration planning" and "alarm processing" [1, 2]. There are several expert systems applied to Voltage and Var Control, and most of them are prototypes for demonstration, research or field tests [1, 3]. So far there is only one expert system applied to electric power generation re-scheduling (shifting) to eliminate line overloads under system contingencies. However, ES application for voltage angle adjustment of generation buses to keep the angles within the transient stability limits is limited.

In this thesis the following Expert Systems, applied to power system are developed in one package.

1) ES for Corrective Re-Scheduling in Power Generation

The ES is capable of identifying those overloaded lines under normal
operations or contingencies and to perform the required shift in real power generation to eliminate overloads on transmission lines.

2) ES for Voltage and Var Adjustment

The ES is capable of detecting the load buses whose voltage magnitudes violate the normal operating limits or the generator buses whose generated reactive powers exceed the generation limits. It provides corrective actions via existing control elements in the power systems, such as shunt reactors, shunt capacitors, transformer tap changers and generator voltages.

3) ES for Voltage Angle Adjustment

The ES can verify the voltage angle of a generator bus and can compare the difference between its value and the value of slack bus voltage angle, with the pre-defined limit for transient stability. It then performs shifts in real power generation to adjust the angle of the generator bus if the value found exceeds the limit.

The thesis is divided into five chapters. The Chapter 1 is an introductory part where the application of ES to electrical power systems, in general, and to load flow planning in particular is addressed. This is followed by definition of the problem of load flow planning in modern power systems. The chapter concludes by highlighting the scope of work for this thesis. The Chapter 2 discusses the expert system components, roles and advantages of the ES in power system applications, programming languages and tools. The last part of the chapter discusses in details the features of the selected ES programming shell, 'CLIPS'. The architecture and methodologies applied for building the load flow planning expert system are explained in Chapter 3. In Chapter 4, several case studies are provided to demonstrate the operation and capabilities of the developed ES prototype. Finally, Chapter
5 concludes the thesis with a summary and recommendations for future work.

1.2 LITERATURE REVIEW

Artificial Intelligence (AI) has been an active area of research in recent years. Significant progress has been made in the development of the expert systems. Early application of expert systems were in medical diagnosis and therapy, and computer system configuration and troubleshooting [3, 5-8]. Other applications include analysis and synthesis of electric circuits [5-8], computer aided control system design [6, 8, 9] and substation grounding design [9]. Application of expert systems to power systems is a new area. Most of the present expert systems in power systems are prototypes for demonstration, research or field tests [1, 4].

The present expert system applications in power system operation have included the following major aspects:

1) Fault Diagnosis of Network

Several expert systems have been developed to identify the initiating disturbance and any device misoperations involved in an accidental change in the configuration of a network [7, 10-12]. For example in reference [10] the authors developed an expert system, using PROLOG, which can estimate fault sections using information from protective relays and circuit breakers. In reference [11] the authors developed a distributed expert system for fault diagnosis based on what they called a hybrid approach and using a rule-based language (OPSS).

2) Alarm Processing

Intelligent Alarm Processors (IAP) have been proposed and developed for
power control centers [7, 13-15]. The main objective of the IAP is to analyze the huge number of alarm messages produced by SCADA/EMS system and display the message on the dispatcher's console in different categories (i.e. most urgent alarms, less urgent alarms, non-urgent alarms).

3) Switching Operation

Expert systems for switching operations have been developed as prototypes [7,16]. The main function of the system is to give instructions to operators about how to switch on or off transmission lines during faults.

4) System Restoration

The expert system application to system restoration was pioneered by Sakaguchi and Matsumoto [7]. The knowledge base of their system contains rules which can identify paths of energization for de-energized buses. A more advanced expert system prototype, called a "guidance" system for restoration, was developed by Kojima, Warashia, et al [7]. Their system has been able to select the target system during the restoration, accept overriding actions and provide guidance in switching actions and load dispatching. The prototype developed by Liu, Lee and Venkata [17] performs restorations in distribution systems.

5) Substation Automation

B. Don Russell and Karan Watson [18] described in their paper the various substation automation functions where knowledge base systems could ideally be used. The paper includes justifications and preliminary field experiments.
6) Load Flow Planning

* In reference [19] the authors developed an intelligent load flow engine for power system planning. Their expert system identifies the overloaded lines and buses with violating voltage levels and provide recommendations for adjusting the active load flow and bus voltage.

Once the expert system identifies the overloaded lines and under/over voltage buses, it starts searching heuristically to solve the problem in two steps. In the first step, adjustment of active power flow is carried out. This is done by adjusting the generator outputs. While in the second step the bus voltages are adjusted using VAR compensators distributed in a network such as a shunt reactor, static condenser, tap changer, etc. The authors believe that the effect of VAR compensation is limited within a local area. Accordingly the electrical distance measured with the impedance between two buses was used as a clue to heuristic search. VAR compensators are examined in the order of distance. The amount of compensation is estimated with the sensitivity of $\Delta V/\Delta Q$ obtained from the DC model.

After the the adjustment is made, the load flow is computed again to see if the goal conditions are satisfied. DC load flow method was used to estimate line loadings and bus voltages.

* In reference [20, 21] the authors presented a preliminary procedure for developing sensitivity based intelligent load flow engine. Their attempt is to develop an engine which is capable of suggesting corrective measures for line overloads, load bus voltage and reactive power source limit violations.
7) Security Assessment

Dejan J. Sobajic and Y. Pao [22] developed a rule based system to effectively (1) detect and screen out harmless contingencies, and (2) recognize potentially harmful contingencies and determine corresponding endangered areas. The rule-based screening procedure is based on available topology-dependent qualitative information in power system and some equations to calculate the security margins. The expert system was tested on several power system models.

8) Reactive Power and Voltage Control

Expert systems have been developed to assist in the decision-making of the reactive power/voltage control problem. Hereunder, the different approaches of some expert systems in the reactive power/voltage control will be highlighted.

* The expert system, presented by Chen-Ching Liu and Kevin Tomsovic in references [7] and [8], consists of three fundamental components: a global database, a knowledge base, and an inference engine utilized to chain a set of rules to form a line of reasoning. A forward-chaining rule-based program (OPS83) was used for the execution of the expert system.

The knowledge base of this expert system is composed of the following empirical rules:

(a) If a load bus voltage drops below (or rises above) the operating limit, control devices such as shunt capacitors, transformer tap changers, generator voltage and synchronous condensers can be switched or adjusted to restore profile.
(b) If a load bus voltage drops below (or rises above) the operating limit, it is most efficient to apply the reactive compensation locally. If the capacity of local compensators is insufficient to resolve the voltage problem, then compensators with next highest sensitivities should be chosen.

(c) If the voltage is low (high) at a bus, the tap position of the local transformer tap changer can be raised (lowered) to correct the problem. However, increasing (decreasing) the tap position may cause other loads bus voltages to drop (rise).

(d) Generator bus voltages can be raised (lowered) to solve the low (high) load voltage problems.

The imperative rules are applied based on different levels of violations. In case of slight violation of the voltage limit, the above rules (a) - (d) are applied. However, if severe violation exists, a more systematic method such as a reactive power dispatch algorithm using linear programming is required to efficiently find a solution. The expert system was tested on a modified IEEE-30 bus system and the results presented are very encouraging.

* S.J. Chang, O.P. Malik and G.S. Hope [6] developed an expert system which also controls the voltage and reactive power of a power system.

The fundamental ideas for the development of the basic rules and the
The inference engine of the proposed expert system are outlined here.

In order to easily analyze the relationship between the bus voltage and the control measures, N_1 sensitivity trees, (See Figure 1), equal to the number of load buses in the power system, are used to represent system relationships. Each tree represents the entire relationship between a particular bus voltage and all control measures and secondary variations of the other bus voltage.

The root of the tree is the controlled bus voltage. Each root connects the control measures through branches. The sensitivity factor associated with the controlled bus voltage and the control measure is given on the corresponding branch. The second level of the tree gives the effect of the control measures on all other load bus voltages. In the second level, each control measure is connected to the other bus voltages by sub-branches. The sensitivity factors between the control and the bus voltages are shown at the sub-branches.

Similar trees are made for the reactive power dispatch control. In these trees, the reactive powers drawn at each load bus become the control measures. The roots and the second level leaves are the same as the voltage control sensitivity trees. Appropriate sensitivity factors corresponding to the reactive power dispatch and the bus voltage are used.

Based on the sensitivity tree, the basic rules and the inference engine of the proposed voltage and reactive power control expert system are developed. By recursively using predicate calculus rules in cooperation with
Figure 1: A Sensitivity Tree
numerical and logical calculations, the inference engine of the expert system was developed in PROLOG language which is based on backward chaining.

Terry F. Godart and Hans B. Puttgen [23] developed a voltage control expert system based on two rule-based techniques which predict the impact of voltage control devices on power system bus voltages using a "reactive path concept". The first technique determines a set of buses on which a particular controller has a significant impact. The second technique determines the two reactive power compensators which are best suited to alleviate voltage violations at a particular bus. These two techniques are implemented as tools for the voltage control expert system using OPS/83.

The knowledge base of the first technique was developed based on an assumption that each compensator's impact is limited to a set of buses meaning to its Reactive Power Control (RPC) region. As a result, the operation of a controller is determined based on its control region alone.

RPC regions are determined using a heuristically guided breadth-first search among the power system buses and using the base-case system topology. Heuristics are based on base-case reactive power flow data.

As indicated above the purpose of the second technique is to identify the two reactive power compensators that are best suited to mitigate voltage violations at a particular bus designated as "observed" bus. This technique attributes to every observed bus a Most Efficient Controller (MEC) and a Second Most Efficient Controller (SMEC).
The MEC and SMEC for a given observed bus are determined using a heuristically guided depth-first search. A reactive path is built from the observed bus; the first compensator encountered which is directly connected to this path is designated as MEC whereas the second one is the SMEC.

The two rules based techniques were tested by the authors using a version of the IEEE-118 bus system and the results show that these techniques provide valid results and that they are more efficient and feasible within the framework of an expert system.

SUMMARY

Expert System technology has obtained wide ranging attention of the power engineering community, researchers at universities and research institutes, and operation staff of electric utilities. Both researchers and users have realized that many operation and planning problems in power system are ideally suitable for expert system applications.

Some interesting observations drawn from the literature survey are summarized as follows:

- An Expert System can implement the performances of a person with recognized expertise in the problem domain. Therefore, it can reduce tedious and redundant manual tasks and provide a human expert with an environment that improves his productivity thus leading to efficient operation,

- There is a class of problems for which the application of conventional software is not suitable and that could be instead rationally and efficiently solved by using the ES technology,
At end of 1993 the practical use of ES in power system operation was fairly modest,

Most of the applications of ES to power systems have so far been limited to "fault location", "restoration planning" and "alarm processing",

Expert Systems developed for "Remedial Control" and "Security Assessment" in power system are so far very few.

1.3 PROBLEM DEFINITION

The growth in size and complexity of power system networks has necessitated more sophisticated techniques to power system planning, operation and control.

The power system planning, operation and control tasks have so far been achieved partly by great efforts of experienced operators or planners and partly by the introduction of partially automated systems which have become possible by the active application of advanced analysis techniques. Despite the remarkable progress in the extent and quality of the automation technology, much still depends on the judgement of human experts.

At present, judgements under abnormal conditions in power systems are also left to human experts. Moreover, the anticipated shortage in the supply of sufficient experienced human resources in the near future makes it is imperative to further promote automation in power systems.

The Artificial Intelligence (AI), especially expert system applications, can be the alleviation of the bottlenecks which most electric utilities are currently facing in system planning, operation and control.
1.4 SCOPE OF WORK

The main objective of this thesis is to develop an interactive ES package, consisting of three independent Knowledge Bases, that will assist the power system operators and planners in the decision-making when performing load flow analysis. Specifically, it will perform the following tasks:

1) **Corrective Re-Scheduling in Power Generation**

 The developed expert system should be able to review the load flow results and detect the overloaded lines in a power network and re-schedule the power generation to eliminate the overloads.

2) **Bus Voltage and Reactive Power**

 The developed expert system should assist the user in detecting load bus voltage problems in power network and determine appropriate control actions to correct the detected problems. Also, it should control the reactive power flow in the power network.

3) **Voltage Angle Adjustment**

 The ES should detect voltage angle violation for generation bus and determine appropriate new setting in power generation to eliminate the violation.

The ES package developed should be interfaced with other power system application programs, such as, load flow programs and power system sensitivity coefficient computation programs, written in FORTRAN.
The following items describe the scope of work followed to achieve the above objectives:

1) **Knowledge Acquisition**

The knowledge used in the applications was acquired from:

- literature survey in the relevant domain,
- discussion with experts in the power system dispatch center at SCECO-East, the electric utility responsible for generation, transmission and distribution of electricity in the Eastern Province of Saudi Arabia.

2) **Selection of ES Tool**

Different available AI languages and ES tools were evaluated and the selection was based on the following characteristics:

- easy to learn
- flexible for addition and deletion of rules
- PC based
- friendly and easy to use
- simple in knowledge representation
- capable to support forward-chaining control strategy.
- capable to communicate and interface with other languages, such as FORTRAN and external files.

3) **Development of Power System Application Programs**

The following three programs were developed using FORTRAN language
to determine the initial state and the sensitivity coefficients of the power system that are needed by the Knowledge Bases of the developed ES package:

- Load Flow Program
- Voltage, Angle and Var Sensitivity Coefficients Calculation Program.
- Line Power Flow Sensitivity Coefficients Calculation Program.

4) Development of the ES Package Configuration

A configuration which describes the interfaces among the different components of the ES, application programs, and input Data Bases and user was developed.

5) Development of the Knowledge Base (KB)

The KBs were developed from the knowledge gained from the literature survey and discussions with power dispatchers at SCECO-East. During the development of the KBs, the following main aspects were considered:

- varieties of control devices (continuous and discrete)
- priority order in control devices
- locality in control effects
- generality (not specific to a particular system)

6) Testing:

The developed ES package was tested on several power systems to demonstrate its capabilities.
CHAPTER 2

EXPERT SYSTEMS IN POWER SYSTEM

OPERATION AND CONTROL

2.1 INTRODUCTION

In recent years, expert system technology has captured the interest of many electric engineers and this trend is likely to continue. One fact of the current trend is to apply Expert Systems (ES) to power systems. Expert systems have been developed for several power system applications such as system planning, operation and control.

This chapter is a broad introduction to expert systems. The definition and fundamental principles of expert systems are introduced. The role and advantages of expert systems in power system applications are discussed. The various expert systems programing languages and tools are discussed. Finally, the chapter presents the main features of the ES programing tool "CLIPS" which is used for the development of the intelligent load flow engine.

2.2 DEFINITION AND FUNDAMENTAL COMPONENTS OF THE ES

An Expert System is a branch of AI which behaves like a human expert in a narrow specified domain of application. Each system has a knowledge in a particular domain and it utilizes this to provide decision support at a level comparable to the human expert and is capable of justifying its reasoning [5-7, 24].

16
Any Expert System mainly consists of three fundamental components, i.e.

- a knowledge base
- an inference engine
- a user interface

The structure of an expert system in a general block diagram form is shown in Figure 2.

The knowledge base contains knowledge which is specific to the domain of application, such as, simple facts about the domain, rules that describe relations in the domain, possible methods, heuristics and idea for solving problems in the domain. The inference engine actively uses the knowledge in the base and performs as cognitive processor. It makes all the reasoning and tries to find the rules that will be activated by the appropriate stimuli. The user interface provides smooth communication between the user and the system. The inference engine and the interface generally considered as one module and it is called an expert system shell.

2.3 ROLE AND ADVANTAGES OF THE ES IN POWER SYSTEM APPLICATIONS

The behavior of modern interconnected power systems has become more and more complicated, causing sudden rise of security problems to electric utilities. Often, utilities face the problem that the number of operators with relevant experience is not sufficient to cope with structurally changing reliability. These facts may ask for user friendly, alert assistance by ES when the operator needs to understand the electric situation and to make a correct, timely decision during an unforeseen event. Similarly, some well known operating
Figure 2: Block Diagram of Expert System
problems still have to be solved, such as: alarm handling, voltage/reactive power control, security assessment etc.

The role of the ES in power system operation could be [4]:

1) to work beside a human expert in high-level intellectual activities, such as: restoration, security analysis, operation planning, performance analysis;

2) to replace the human expert in medium - and low-level intellectual activities such as: diagnosis, data interpretation, maintenance coordination;

3) to support the man-machine interface;

4) to support the training activities;

5) to collect and organize knowledge in a specific domain (i.e planning) and then provide its maintenance and preservation;

6) to support decision on regulation and control functions specifically in critical complex situations;

7) to support human performance in monitoring;

8) to support managerial corrective action.

The main advantages of Expert Systems over numerical methods are [3, 8, 24]:

1) Assist Human Experts

During a real-time environment, if a problem is detected, an expert system can be applied to suggest a proper solution to the operators in time, based on the incorporated expert knowledge.

2) Understanding

The knowledge required to perform a task is expressed in terms of
production rule (IF-THEN Structures), which are very close to natural language and, therefore, easy to understand by users.

3) **Flexibility**

Each production rule represents a piece of knowledge relevant to the task. Hence it is very convenient to add or remove a rule when more experience is gained during operation and testing.

4) **Universality**

The knowledge base is problem domain dependent, but the inference engine is domain independent. So, different expert systems can be developed by replacing the knowledge base.

5) **Rapidity**

The expert system can provide the right expertise whenever needed. Expert systems can provide more rapid decisions to emergency events than human operators. This is very useful in power system operation.

2.4 **EXPERT SYSTEMS PROGRAMMING LANGUAGES AND TOOLS**

Although expert systems is a branch of AI, there are specialized languages for expert systems that are quite different from the commonly used AI languages such as LISP and PROLOG.

An expert system language is a higher order language than languages like LISP or C. That is, the specialized nature of expert system languages makes them very suitable for
writing expert systems but not for general purpose programming.

The primary functional difference between expert system languages and procedural languages, such as, FORTRAN or ADA is the focus of representation. Procedural languages focus on providing flexible and robust techniques to represent data. For example, data structures such as arrays, records, linked lists and trees are easily created and manipulated. Also, the data and methods to manipulate the data are tightly interwoven in the procedural languages. In contrast, expert system languages focus on providing flexible and robust ways to represent knowledge.

This difference in focus also leads to a difference in program design methodology. Because of the light interweaving of the data and knowledge in procedural languages, programmers must carefully describe the sequence of execution. However, the explicit separation of data from knowledge in expert system languages requires considerably less rigid control of execution sequence.

There are several expert system languages and tools commercially available. Examples of such tools supported for micro-computers are GURU, EXSYS, KES, LEVEL 5, CLIPS and few others. The main characteristics of these tools are summarized in Table 1 [24, 25].
<table>
<thead>
<tr>
<th>Name</th>
<th>EXSYS PROFESSIONAL</th>
<th>GURU</th>
<th>LEVEL 5</th>
<th>KES II</th>
<th>CLIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTIONAL USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K.B. Representation Rules</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Object-oriented Procedures</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(by calling out)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Chaining</td>
<td>x</td>
<td>x</td>
<td>limited</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Backward Chaining</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Math Calculations</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pattern Matching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Developer Interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Word Processor</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>K.B. Editor</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menu</td>
<td>Commands</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Inference Tracing</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>On-line Help</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Syntax Help</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Software Language of Tool Operating System</td>
<td>C MSDOS, UNIX, VMS</td>
<td>C MSDOS, VMS</td>
<td>Pascal MSDOS, VMS</td>
<td>C MSDOS, XENIX UNIX ULTRIX VMS, MVS</td>
<td>C MSDOS WINDOWS MACINTOSH UNIX, VMS</td>
</tr>
</tbody>
</table>
Table 1 Continued.

<table>
<thead>
<tr>
<th>Computer Support</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAX</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>IBM PC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>IBM PS/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Macintosh</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appolo</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBM Mainframe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Interface Language Hooks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Own Relational/DB</td>
<td></td>
<td>Own Relational/DB</td>
<td>Own Relational/DB</td>
<td>Own Relational/DB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End User Interface</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Menu</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
<th>EXSYS</th>
<th>mdb</th>
<th>Levels(IBI)</th>
<th>Software A & E</th>
<th>NASA</th>
</tr>
</thead>
</table>

2.5 'C' LANGUAGE INTEGRATED PRODUCTION SYSTEM (CLIPS)

CLIPS, the C Language Integrated Production System, is a complete environment for developing expert system programs which are specifically intended to model human expertise or knowledge. It is designed to allow artificial intelligence research, development, and delivery on conventional computers. CLIPS provides a cohesive tool for handling a wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming allows knowledge to be represented as heuristics, or "rule-of-thumb" which specify a set of actions to be performed for a given situation. Object-oriented programming allows complex systems to be modeled as modular components (which can be easily reused to model other systems or create new components). The procedural programming capabilities provided by CLIPS allow it to represent knowledge in ways similar to those allowed in languages such as C, Pascal, Ada, and LISP. Using CLIPS, one can develop expert system software using only rule-based programming, only object-oriented programming, only procedural programming, or combinations of the three.

CLIPS provides extensive features to support the rule-based programming paradigm including seven conflict resolution strategies, dynamic rule priorities, and truth maintenance. CLIPS supports more complex nesting of conditional elements in the if portion of a rule ("and", "or", and "not" conditional elements can be placed within a "not" conditional element).

The CLIPS Object-Oriented Language (COOL) provides object-oriented programming capabilities. Features supported by COOL include classes with multiple inheritance, abstraction, encapsulation, polymorphism, dynamic binding, and message passing with message-handlers. CLIPS supports tight integration of the rule-based
programming features of CLIPS with COOL (that is, a rule can pattern match on objects created using COOL).

CLIPS provides the capability to define functions, overloaded functions, and global variables interactively. In addition, CLIPS can be embedded within procedural code, called as a subroutine, and integrated with languages such as C, FORTRAN and Ada. CLIPS can be easily extended by a user through the use of several well-defined protocols. It provides several delivery options for programs including the ability to generate stand alone executable or to load programs from text or binary files.
CHAPTER 3
THE INTELLIGENT LOAD FLOW PLANNING ENGINE

3.1 INTRODUCTION

In this Chapter, the methodology and approach followed for developing the subject ES prototype are discussed in details. First, the overall configuration is discussed. Next, the theoretical concepts adopted for developing the power system application programs needed for successful operation of the developed ES prototype are explained. Finally, the knowledge bases and solution processes are discussed.

3.2 CONFIGURATION OF THE DEVELOPED ES PACKAGE

The configuration of the proposed expert system is shown in Figure 3. It consists of SIX fundamental components:

1) User interface: provides a friendly interactive windows interface environment which allows the user to select the commands through the built-in menu. The main menu contains options to run the built-in editor, used for editing the input data and viewing/printing the output results, the application program (Load Flow) and the various expert system modules, namely, Generation Rescheduling, Voltage/Var Control and Voltage Angle Adjustment.

2) Global Input Data Base: contains user input data required for expert system
Figure 3: The Prototype Expert System Configuration.
and application programs. All the input data required for both the load flow program and the expert system is entered once and saved in a common file.

3) Input-Output interface: reads all the required input data (i.e. initial state of the power system, control elements and their limits etc.) saved in several files and save the output results of the various expert system modules.

4) Inference Engine: utilized to chain the facts given in the knowledge base and the basic rules in a forward chaining philosophy.

5) Knowledge Base: presents the facts and rules required to solve a problem.
 - Knowledge Base 1: contains facts/rules for detection of overload lines and re-scheduling the generations to eliminate the overloads.
 - Knowledge Base 2: contains facts/rules for detection of load bus voltage and generated VAR violations and selection of possible control measures to correct the detected violations.
 - Knowledge Base 3: comprises of facts/rules to detect voltage angle violations and present remedial action by re-scheduling the generation.

6) Application Programs: used by expert system to perform necessary power system calculations, such as, load flow, sensitivity coefficients. They also, save all the input files needed for the expert system modules in required formats.

3.3 POWER SYSTEM APPLICATION PROGRAMS

Some power system application programs are developed using Fortran Language to
assist the expert system performing its tasks. These programs are mainly:

- Load flow analysis program,
- Line power flow sensitivity coefficient calculation program,
- Voltage/Magnitude and Angle, and Var sensitivity coefficient calculation program.

3.3.1 Load Flow Program

Load flow calculations provide power flows and voltages of a network for specified terminal or bus conditions. This information is essential for the continuous evaluation of the current performance of a power system and for analyzing the effectiveness of alternative plans for system expansion or alternative control actions for maintaining the system under operating constrains. These analyses require the calculation of numerous load flows for both normal and emergency operating conditions. Therefore, a computer program is developed for load flow calculations.

The load flow program is developed using the Newton-Raphson method which uses bus admittances for solving the load-flow problem. Details on this method are given in reference [26]. The listing of the program is given in Appendix - A.

3.3.2 Line Flow Sensitivity Coefficients Calculation Program

Excessive load at a bus or increased generation in part of a network or outage of a line or a transformer in a power system may result in a number of element overloads. A shift of generation may alleviate this problem. Before shifting the generation, the relationship between the change in line flow and change in generation should be known.
The Line Flow Sensitivity Coefficients Calculation Program is developed to determine the sensitivity relationships between the power flows through elements and the real power injections at various generator buses. The relationships are determined using the triangular factors of the Jacobian matrix involved in the Newton-Raphson load flow studies and they are used by the developed ES package for finding the proper shift in generation to eliminate overloading of lines and transformers.

In this section the basic theory used for calculation of the sensitivity coefficients for the line flow is first discussed. Then the solution algorithm of the developed program is presented.

The listing of the Computer program is provided in Appendix - A.

Basic Theory

The basic theory presented here is given in reference [27]. Let a line connecting buses \(i \) and \(j \) be overloaded. Desired changes in line flows can be expressed in terms of change in power injections at generator buses. By definition, the overload value on the line from \(i \) to \(j \) is:

\[
\Delta P_{ij} = P_{ij} \text{ (rated)} - P_{ij} \text{ (actual)}
\]

The overload is now related to changes in generation, at buses 2, 3 - - m:
\[
\begin{bmatrix}
\Delta P_2 \\
\Delta P_3 \\
\vdots \\
\Delta P_m
\end{bmatrix}
= \begin{bmatrix}
[H]
\end{bmatrix}
\]

(3-1)

where \(\Delta P_2, \Delta P_3, \ldots, \Delta P_m \) are the required generation shifts.

The matrix \([H]\) can be expressed as:

\[
[H] = \begin{bmatrix}
\frac{\partial P_{ij}}{\partial P} \\
\frac{\partial P_{ij}}{\partial P_2} \\
\vdots \\
\frac{\partial P_{ij}}{\partial P_m}
\end{bmatrix}
= \begin{bmatrix}
\frac{\partial P_{ij}}{\partial P} & \frac{\partial P_{ij}}{\partial P_2} & \cdots & \frac{\partial P_{ij}}{\partial P_m}
\end{bmatrix}
\]

Since \(P_{ij} = f(\theta, V) \) and \((\theta, V) = f(P) \)

\[
(3-2)
\]

\[
[H] = \begin{bmatrix}
\frac{\partial P_{ij}}{\partial \theta} & \frac{\partial P_{ij}}{\partial V}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \theta}{\partial P} \\
\frac{\partial V}{\partial P}
\end{bmatrix}
\]

Determination of the \([H]\) Matrix and its generalized inverse

The vectors \(\frac{\partial P_{ij}}{\partial \theta} \) and \(\frac{\partial P_{ij}}{\partial V} \) of equation (3-2), together will have a maximum of four non-zero elements for every \(P_{ij} \), namely:

\[
\frac{\partial P_{ij}}{\partial \theta_i}, \frac{\partial P_{ij}}{\partial \theta_j}, \frac{\partial P_{ij}}{\partial V_i}, \text{and} \frac{\partial P_{ij}}{\partial V_j}
\]

These partial derivatives can be calculated using the following expressions;
\[
\frac{\partial P_{ij}}{\partial \theta_i} = -V_i V_j Y_{ij} \sin (\delta_i - \delta_j - \theta_{ij})
\]
\[
\frac{\partial P_{ij}}{\partial \theta_j} = V_i V_j Y_{ij} \sin (\delta_i - \delta_j - \theta_{ij})
\]
\[
\frac{\partial P_{ij}}{\partial V_i} = V_j Y_{ij} \cos (\delta_i - \delta_j - \theta_{ij})
\]
\[-2V_j Y_{ij} \cos \theta_{ij}
\]
\[
\frac{\partial P_{ij}}{\partial V_i} = -V_i Y_{ij} \cos (\delta_i - \delta_j - \theta_{ij})
\]

where

\[V_i \delta_i; \ V_j \delta_j\] are the voltages of buses i and j, and \[Y_{ij} \theta_{ij}\] is the negative of the line admittance between buses i and j.

The vectors \[\frac{\partial \theta}{\partial P}\] and \[\frac{\partial V}{\partial P}\] (equation (3-2)) are elements of the sensitivity matrix (inverse of Jacobian matrix). The triangular factors of the Jacobian matrix is used to determine the value of these elements.

Digital-Computer Solution Algorithm

The calculation of the line flow sensitivity coefficients is basically a two step process. First, the solution of the load flow for the power system is determined. Then, using the Jacobian matrix determined at the last iteration of the load flow program, the sensitivity coefficients are calculated as explained in the above method.
3.3.3 Voltage Magnitude and Angle, VAR Sensitivity Coefficients Calculation Program

Over-voltages, under-voltages, and generator VAR limit violations can be alleviated by adjusting the VAR control variables namely, Switchable shunt capacitors and reactors or SVC, Transformer taps, and Generator voltages. While the voltage angle limit violations can be alleviated by re-scheduling the real power generation in the system.

The above dependent and control variables can be linked if the linearized sensitivity relationships between them are determined. A computer program is developed to determine the sensitivity relationships. This section presents a method of determining the required sensitivity coefficients and the digital solution procedure.

Sensitivity Coefficient Matrix

The calculation methodology of the sensitivity coefficient matrix is given in [28 - 32]. The approach basically utilizes the Jacobian matrix of Newton-Raphson load flow program which is in the form of:

\[
\begin{bmatrix}
\Delta P \\
\Delta Q_L
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial P}{\partial \delta} & \frac{\partial P}{\partial V_L} \\
\frac{\partial Q_L}{\partial \delta} & \frac{\partial Q_L}{\partial V_L}
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta V_L
\end{bmatrix} = [J] \begin{bmatrix}
\Delta \delta \\
\Delta V_L
\end{bmatrix}
\]

(3-4)

The Jacobian matrix is augmented by equations for power injections at the slack bus and reactive power injections at generator buses with controllable generator voltages and tap settings. For ease of explanation, bus 1 is selected as the slack bus. The sensitivities are in the form of:
\[
\begin{bmatrix}
\Delta P \\
\Delta Q \\
\Delta Q_g
\end{bmatrix} =
\begin{bmatrix}
A & B \\
J & D \\
E & F
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta V_L \\
\Delta V_g \\
\Delta T
\end{bmatrix}
\]

(3-5)

where

\[
A = \begin{bmatrix}
\frac{\partial P_1}{\partial \delta} & \frac{\partial P_1}{\partial V_L} \\
\frac{\partial P}{\partial V_g} & \frac{\partial P}{\partial T}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
\frac{\partial P_1}{\partial V_L} \\
\frac{\partial P}{\partial T}
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
\frac{\partial Q_L}{\partial \delta} & \frac{\partial Q_L}{\partial V_L} \\
\frac{\partial Q_L}{\partial V_g} & \frac{\partial Q_L}{\partial T}
\end{bmatrix}
\]

\[
E = \begin{bmatrix}
\frac{\partial Q_g}{\partial \delta} & \frac{\partial Q_g}{\partial V_L} \\
\frac{\partial Q_g}{\partial V_g} & \frac{\partial Q_g}{\partial T}
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
\frac{\partial Q_L}{\partial \delta} & \frac{\partial Q_L}{\partial V_L} \\
\frac{\partial Q_L}{\partial V_g} & \frac{\partial Q_L}{\partial T}
\end{bmatrix}
\]

By transferring all independent variables (control variables) to the right hand-side and all dependent variables, which are required to be determined, to left-hand side of equation (3-5), the equation can be rewritten as:

\[
\begin{bmatrix}
\Delta P \\
\Delta \delta \\
\Delta V_L \\
\Delta Q_g
\end{bmatrix} =
\begin{bmatrix}
AJ^{-1} & B - AJ^{-1}D \\
J^{-1} & -J^{-1}D \\
EJ^{-1} & F - EJ^{-1}D
\end{bmatrix}
\begin{bmatrix}
\Delta P \\
\Delta Q_L \\
\Delta V_g \\
\Delta T
\end{bmatrix}
\]

(3-6)

The matrix of equation (3-6) is the sensitivity matrix and contains the desired sensitivity coefficients which give the linear relationship between the dependent variables and control variables. The size of the sensitivity matrix is \(n \times (n + \text{no. of tap changers}) \), where \(n \) is the number of buses.
Digital Solution Procedures

An initial load flow solution by NR method is first performed. Using the element of the Jacobian matrix determined by the load flow program at the last iteration, the vectors A, B, D, E, F of eq. (3-6) are formulated. Next, the elements of the full sensitivity matrix is calculated using these vectors and the inverse of the Jacobian matrix as explained in the above equations.

3.3.4 Variation of Power System Sensitivity Coefficients

The sensitivity coefficients of the power system are calculated to determine the linear relationships between control variables (i.e. var compensator (ΔQ_L), tap changer, (ΔT) generator voltage (ΔV_g) and real power generation (ΔP) and dependent variables (i.e. voltage angle ($\Delta \delta$), load bus voltage, var generation (ΔQ_g) and line power flow(ΔP_{ij})). These coefficients are basically calculated from the Jacobian matrix formulated in the last iteration of the NR load flow solution program. The elements of the Jacobian matrix vary with the changes in the configuration of the network. Hence, adding or deleting an electrical element in the network will change the entire coefficients of the sensitivity matrix.

The sensitivity coefficients are generally assumed to be almost constant as far as the variation of system loading only is concerned. However, this assumption may not be valid in certain situations. For example, the effect of load changes on the sensitivity coefficients were analyzed for IEEE 30-Bus system and IEEE 25-Bus system and the results are shown in Figure 4. Based on these results it can be concluded that the sensitivity coefficients can change significantly with system loadings and the variation can be non-linear especially for heavy system loading.
Figure 4: Variation of Sensitivity Coefficients with System Loadings.
3.4 EXPERT SYSTEM FOR LOAD FLOW PLANNING

An expert system is developed to assist in the decision-making of the load flow planning problems which include voltage/reactive power control, line over-loads and voltage angle control. The knowledge required to perform the task is obtained from the literature survey and power dispatch operators of SCECO-East. To alleviate a load flow planning problem, empirical rules are used to generate appropriate control actions. Controls such as shunt capacitors, shunt reactors, transformer tap changers and generator voltages are utilized for voltage/reactive power problem. Line over-loads and voltage angle problems are mitigated by rescheduling the real power generation. In the following, the production rules and inference engine developed to perform the above functions are presented. The basic approach adapted for building the production rules of the developed expert system is based on the utilization of the sensitivity coefficients of the power system discussed in previous sections.

3.4.1 ES for Corrective Generation Re-Scheduling

Knowledge Base

The KB stores an expert's knowledge in the forms of rule, constraint and data. The main data and constraints needed to form the knowledge base are basically the initial power flow on each line and transformer, the initial real power generation of each generator, the upper power flow limits of each line and transformer, the upper and lower limits of real power generation of each generator, and a power flow sensitivity coefficient table for each line or transformer and the generator pair.
Basic Rules

Each rule represents a piece of expert knowledge. The following are the basic rules used for corrective generation re-scheduling, and these rules do not consider any economic dispatch. The rules are basically identified based on the ideas that the rescheduling of the generation for alleviating an overload on a particular line should not cause new overloads and the assigned new real power generations should not exceed the limits of the generators. Also, in case of eliminating of overloads in the first selected line(s) could not be achieved after applying all the possible generation shifting, the process of eliminating of overloads for the remaining overloaded lines should continue.

(Rule 1) If all the lines and transformers carry power within their limits (no overloads),

then exit the program in success.

(Rule 2) If there is (are) overloaded line(s) or transformer(s),

then determine the most overloaded line or transformer.

(Rule 3) If the line or transformer is overloaded,

and the most effective (the highest weighted sensitivity) generator has enough margin to eliminate the overload,

and the desired change in the generation will not cause new
overloads,

then change the generation by desired amount.

(Rule 4) If the first selected most effective generator has margin but not enough to eliminate the overload,

and change in the generation to the limit will not cause new overloads,

then change the generation to the limit.

(Rule 5) If the desired change in the generation cause new overloads,

determine a new change in generation that will not cause new overloads.

(Rule 6) If the generation change in the first selected generator does not eliminate the overload of a line or transformer,

then select the next most effective generator that has generation margin.

(Rule 7) If the first selected line or transformer is still overloaded after
applying all possible generation shifts,

then go to the next most overloaded line or transformer.

(Rule 8) If there is still overloaded line or transformer after applying all possible generation shifts,

then print "No Adequate Generation" message and the results.

(Rule 9) If there is no overload after applying the possible generation shifts,

then print the results.

Inference Engine

The inference engine is used to process the rules, facts and constraints given in the knowledge base. It also interacts with I/O interface in order to present the results of conclusions or to get input data. The detailed process of the inference engine is presented as flowchart in Figure 5.

3.4.2 ES for Voltage & VAR Adjustment

In load flow planning the planner should decide the VAR compensation for the
Figure 5: Flow Chart for Generation Shifting Process
Figure 5: (Continued)
Figure 5: (Continued)
electrical network to retain bus voltages within specific ranges and the VAR generation at the generator buses within their limits. The objective of VAR compensation is to solve over- and under-voltage problems. For example, if a bus voltage violates the normal operating limit, the operator can switch on a shunt reactor or capacitor, raise/lower transformer's tap or adjust the reference voltage of automatic voltage regulator to restore the voltage to a normal value.

Knowledge Base

For the reactive power & voltage control problem, the following data and constraints are needed to form the knowledge base.

1) The initial load flow results.

2) The upper and lower operating limits for load bus voltage.

3) The upper and lower limits of each controller.

4) The upper and lower limits of reactive generation at each generation bus.

5) A sensitivity coefficient table for each load bus voltage and the control measure pair, and for each generator bus reactive power and the control measure pair.

6) The types of available controllers and possible selections (continuous change or discrete change).

The user shall define the types of the available control elements (i.e. shunt reactor, shunt capacitor, tap changer and generator voltage), and the mode of the adjustment for each type. For example, in case of tap changer or
shunt var compensator the user shall define the mode of adjustment as
discrete (step by step) and the possible change per step. However, in case
of generator voltage or SVC the user shall define the mode of adjustment as
continuous.

Empirical Rules

The knowledge base of the developed ES for voltage/VAR control, adapt
the operating criteria followed by the power dispatch operators at SCECO-East.
Under normal system operation, the voltages of the load buses shall be maintained
between 0.95 p.u. and 1.05 p.u. In case of abnormal load bus voltage(s) the
operator shall restore the voltage using the available local and nearby (electrically)
control elements based on the following priority: 1) Var Compensator; 2)
Transformer Tap Changer; 3) Generator Excitation. This priority was set based on
economical consideration.

Further to the above criteria, the production rules of the ES are constructed
based on utilization of the power system sensitivity coefficients. The sensitivity
coefficients are used to identify the nearby (most effective) control elements for the
abnormal bus, and the most effective control element is defined by the highest
weighted sensitivity. Also, the sensitivity coefficients are needed to calculate the
required change in the control measures.

The main ideas which were considered for developing the basic rules are:

1) Restoring the voltage or reactive power at one bus shall not cause new
voltage or Var generation problem;
2) If more than one load bus face abnormal voltages, the restoration shall be started with the most under-voltage bus.

The reason of starting with the most under-voltage rather than over-voltage is to avoid the operation of under-voltage relay which will trip all the incomer power lines to that bus.

Based on the above approach, the following empirical rules are identified for voltage/VAR control process:

(Rule 1) If the voltages of all load buses are within the operating limits $0.95 \leq V \leq 1.05 \text{ p.u.}$, and the reactive generations at all generation buses are within their limits, then exit the program in success.

(Rule 2) If there are more than one load bus with voltage below the lower operating limits, then start the voltage adjustment with the bus of the highest violation.

(Rule 3) If there are more than one load bus with voltage above the upper operating limit,
then start the voltage adjustment with the bus of the highest violation.

(Rule 4) If there is a load bus with voltage below the lower operating limit, and there is a load bus with voltage above the upper operating limit,

then start the voltage adjustment first with the bus of voltage below the lower operating limit.

(Rule 5) If there is voltage violation, and there is violation in reactive power generation,

then solve first the voltage violation.

(Rule 6) If a bus voltage is below the lower limit,

then reduce nearby shunt reactor, or increase nearby shunt capacitor, or raise the tap of nearby transformer, or raise the voltage of nearby generator bus.
(Rule 7) If a bus voltage is above the upper limit,

then reduce nearby shunt capacitor,

or increase nearby shunt reactor,

or lower the tap of nearby transformer,

or lower the voltage of nearby generator bus.

(Rule 8) If there are more than one generation bus with the reactive generation violates their lower limits,

then start the VAR adjustment with the bus of the highest violation.

(Rule 9) If there is a generation bus with its VAR generation below the limit,

and there is a generation bus with its VAR generation above the limit.

then start the VAR adjustment first with bus of VAR generation below the limit.

(Rule 10) If a reactive generation is below the limit,
then raise the voltage of nearby generator(s).

(Rule 11) If a reactive generation is above the limit,

then lower the voltage of nearby generator(s).

(Rule 12) If there is still voltage or VAR violation after applying all possible control measures,

then print "No Adequate Controllers" message and print the results.

(Rule 13) If there is no voltage or VAR violation after applying the possible control measures,

then print the results.

The inference engine processes for the above rules is shown in Figure 6.
Figure 6: Flow Chart for Voltage & VAR Adjustment Process
Figure 6A: Flow Chart for Voltage Adjustment Process
"C"

YES

REDUCE THE CONTROL CHANGE

NO

"D"

UPDATE THE SETTING OF THE CONTROLLER
* CALCULATE UPDATE THE VOLTAGES OF ALL LOAD BUSES AND VAR GENERATIONS OF ALL GENERATOR BUSES

IS THE FIRST SELECTED BUS IS STILL ABNORMAL?

NO

HAVE ALL POSSIBLE CONTROL MEASURES BEEN TRIED?

YES

SELECT THE NEXT MOST ABNORMAL BUS UNTIL ALL THE BUSES ARE CHECKED

NO

SELECT THE NEXT MOST EFFECTIVE CONTROLLER USING THE SPECIFIED PRIORITY

"B"

Figure 6A: (Continued)
Figure 6B: Flow Chart for VAR Adjustment Process
Figure 6B: (Continued)
3.4.3 ES for Voltage Angle Adjustment

Transient stability studies are generally performed by power system planners for determining if the power system will remain in synchronism following major disturbances. Such studies determine the operating limits, the power angles, for the generators with respect to the swing bus in order to maintain the stability of the system after electrical disturbances.

The developed ES assists the power system operators in decision-making for the control of the voltage angles of the generator buses within the desired limits. The basic idea for controlling the voltage violation is using the linear relation between the voltage angle and real power injection.

Knowledge Base

The KB for voltage angle control problem consists of the following data and constraints:

1) Initial load flow results (voltage angles, real power generation).
2) Desired operating limit for voltage angle with respect to slack bus.
3) Upper and lower real power generation limits of each generator.
4) A voltage angle sensitivity coefficient table for each generator bus and real power pair.

Basic Rules

The basic rules needed for performing the voltage angle control task are given below. The rules are basically identified based on the idea that the
rescheduling of the generation for adjusting the voltage angle at a particular
generation bus should not cause new voltage angle violations and the assigned new
real power generations should not exceed the limits of the generators.

(Rule 1) If all the generators operate within acceptable power angle limits,

then exit the program in success.

(Rule 2) If there is (are) abnormal generator buses,

then determine the bus with the most violation in power angle limit.

(Rule 3) If the bus has abnormal power angle,

and the most effective generator has enough margin to eliminate the violation,

and the desired change in the generation will not cause new violations,

then change the generation by the desired amount.

(Rule 4) If the first selected most effective generator has margin but not enough to eliminate the power angle violation,
and change in the generation to the limit will not cause new violation,

then change the generation to the limit.

(Rule 5) If the desired change in the generation cause new violations,

then determine a new change in generation that will not cause new violations.

(Rule 6) If the generation change in the first selected generator does not eliminate the power angle violation of the selected bus,

then go to next most effective generator that has generation margin.

(Rule 7) If the first selected generator bus still has power angle violation after applying all possible generation shifts,

then go to the next generation bus.

(Rule 8) If there is still power angle violation after applying all possible generation shifts,
then print a message "No Adequate Controller", and the results.

(Rule 9) If there is no any more power angle violation after generation shifts,

then print the results.

Inference Engine

The solution process using the above knowledge base for voltage angle violation problem is given in Figure 7.
Figure 7: Flow Chart for Voltage Angle Adjustment Process
Figure 7: (Continued)
Figure 7: (Continued)
CHAPTER 4

CASE STUDIES AND RESULTS

4.1 INTRODUCTION

The developed ES prototype has been tested on several different power systems using IBM compatible PC with 486 Intel processor. It does not have any limitation as far as the application is concerned. It can be applied to any power system, not specific to a particular power system configuration.

This Chapter will present the test cases performed and the results obtained. First, the test cases and results for the voltage and reactive power control on the modified IEEE 14 and 30 bus power systems will be presented. Next, the test cases and results for the corrective generation re-scheduling on the modified IEEE 6 and 25 bus power systems will be shown. Finally, the chapter will present the test cases and results for voltage angle adjustment on the modified IEEE 25 bus power system.

4.2 TEST CASES AND RESULTS FOR VOLTAGE AND VAR CONTROL

CASE 1: MODIFIED IEEE 14-BUS SYSTEM

In this case a modified IEEE 14-bus system, Fig. 8, is chosen to test the capability of the developed ES prototype. The system parameters are taken from reference [33]. However, the following changes were made to test the capability of
the ES with the application of various control elements and to cause voltage and Var limit violations.

1) A shunt reactor has been added at bus 14,

2) A shunt capacitor has been added at bus 13,

3) Loads have been changed at buses 4, 9 and 13,

4) Starting voltages have been changed at buses 1, 2, 3, 6 and 8,

5) Tap settings of transformers have been slightly changed.

The full line and bus data of the modified IEEE 14-bus system are given in Tables 2 and 3, respectively. Table 4 presents the limits on the control and dependent variables, the initial load flow results and the final results calculated by the ES prototype, and the results produced by the load flow program to verify the calculated results.

The load flow study was performed for the base case system state and the results are given in Table 4 as "initial state". A review of this system state, along with the limits of the dependent variables (Table 4), indicates the following abnormal conditions:

Under-Voltages: Bus # 13

Over-Voltages: Bus # 7 and 9

Low reactive power: Bus # 2

High reactive power: Bus # 3 and 8
Figure 8: Single Line Diagram for Modified IEEE 14-Bus System
The developed ES prototype was used to alleviate the abnormal conditions. The new system conditions are described in Table 4 as "final state (1)".

The load-flow study was repeated after applying the suggested changes in the control variables by the ES to verify the accuracy of the prototype. The new final results of the load flow program are given in Table 4 under column "Final State (2)".

A comparison of the initial and final system states indicates no further violations to the limits.

The following example of manual calculation using sensitivity coefficient is given for illustration and to relate the result obtained here with the ES output.

Per the ES output (Table 4) the control variables Q9, Q13, V1, V2, V3 and V8 were changed from their initial values by \(\Delta \) equals -19, 9.0, 0.0356, 0.0319, -0.0548 and -0.0191, respectively.

For example, the new voltage at the load bus no. 7 can be calculated as follow:

\[
V7\text{ (new)} = V7\text{ (init.)} + \Delta V7
\]

\[
= 1.058 + \Delta V7
\]

\[
\Delta V7 = [S] \begin{bmatrix} \Delta Q9 \\ \Delta Q13 \\ \Delta V1 \\ \Delta V2 \\ \Delta V3 \\ \Delta V8 \end{bmatrix} = \begin{bmatrix} 0.000526 & 0.000088 & 0.0554 & 0.1761 & 0.1043 & 0.4626 \\ 9.0 & 0.0356 \\ 0.0319 \\ -0.0548 \\ -0.0191 \end{bmatrix} \begin{bmatrix} -19.0 \\ 9.0 \\ 0.0356 \\ 0.0319 \\ -0.0548 \\ -0.0191 \end{bmatrix}
\]

Where \([S]\) is a vector of sensitivity coefficients

Therefore,

\[
V7\text{ (new)} = 1.058 + (-0.01551) = 1.042
\]

And this value is the same as that obtained by ES (See Table 4).
TABLE 2: Line Data of the IEEE 14-Bus System

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0.01938</td>
<td>0.05917</td>
<td>0.0264</td>
</tr>
<tr>
<td>1-5</td>
<td>0.05403</td>
<td>0.22304</td>
<td>0.0246</td>
</tr>
<tr>
<td>2-3</td>
<td>0.04699</td>
<td>0.19797</td>
<td>0.0219</td>
</tr>
<tr>
<td>2-4</td>
<td>0.05811</td>
<td>0.17632</td>
<td>0.0187</td>
</tr>
<tr>
<td>2-5</td>
<td>0.05695</td>
<td>0.17388</td>
<td>0.0170</td>
</tr>
<tr>
<td>3-4</td>
<td>0.06701</td>
<td>0.17103</td>
<td>0.0173</td>
</tr>
<tr>
<td>4-5</td>
<td>0.01335</td>
<td>0.04211</td>
<td>0.0064</td>
</tr>
<tr>
<td>4-7</td>
<td>0.0</td>
<td>0.20912</td>
<td>0.0</td>
</tr>
<tr>
<td>4-9</td>
<td>0.0</td>
<td>0.55618</td>
<td>0.0</td>
</tr>
<tr>
<td>5-6</td>
<td>0.0</td>
<td>0.25202</td>
<td>0.0</td>
</tr>
<tr>
<td>6-11</td>
<td>0.09498</td>
<td>0.19890</td>
<td>0.0</td>
</tr>
<tr>
<td>6-12</td>
<td>0.12291</td>
<td>0.25581</td>
<td>0.0</td>
</tr>
<tr>
<td>6-13</td>
<td>0.06615</td>
<td>0.13027</td>
<td>0.0</td>
</tr>
<tr>
<td>7-8</td>
<td>0.0</td>
<td>0.17615</td>
<td>0.0</td>
</tr>
<tr>
<td>7-9</td>
<td>0.0</td>
<td>0.11001</td>
<td>0.0</td>
</tr>
<tr>
<td>9-10</td>
<td>0.03181</td>
<td>0.08450</td>
<td>0.0</td>
</tr>
<tr>
<td>9-14</td>
<td>0.12711</td>
<td>0.27038</td>
<td>0.0</td>
</tr>
<tr>
<td>10-11</td>
<td>0.08205</td>
<td>0.19207</td>
<td>0.0</td>
</tr>
<tr>
<td>12-13</td>
<td>0.22092</td>
<td>0.19988</td>
<td>0.0</td>
</tr>
<tr>
<td>13-14</td>
<td>0.17093</td>
<td>0.34802</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* Impedance and line-charging susceptance in p.u. on 100 MVA base. Line charging one-half of total charging of line.
TABLE 3: Bus Data of the modified IEEE 14-Bus System

<table>
<thead>
<tr>
<th>Bus number</th>
<th>Bus type</th>
<th>Starting bus voltage</th>
<th>Generation</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Magnitude p.u.</td>
<td>Phase angle p.u.</td>
<td>MW</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.05</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.025</td>
<td>0.0</td>
<td>40.0</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.08</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
TABLE 4: Limits on the Variables and the Results of the Study on the Modified IEEE 14-Bus System.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Limits</th>
<th>Variation</th>
<th>Initial State</th>
<th>Final State (1)</th>
<th>Final State (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td>Mode</td>
<td>Steps</td>
<td></td>
</tr>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR Sources (MVAr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{a}</td>
<td>0.0</td>
<td>19.0</td>
<td>D</td>
<td>1</td>
<td>19.0</td>
</tr>
<tr>
<td>Q_{13}</td>
<td>0.0</td>
<td>9.0</td>
<td>D</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Q_{14}</td>
<td>0.0</td>
<td>-9.0 *</td>
<td>D</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Transformer Taps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{4-7}</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.975</td>
</tr>
<tr>
<td>t_{9-4}</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9625</td>
</tr>
<tr>
<td>t_{5-6}</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9375</td>
</tr>
<tr>
<td>Generator Voltages (p.u)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{1}</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>V_{2}</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.025</td>
</tr>
<tr>
<td>V_{3}</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.08</td>
</tr>
<tr>
<td>V_{6}</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>V_{8}</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltages of Load Buses (p.u.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{4}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.039</td>
</tr>
<tr>
<td>V_{5}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.035</td>
</tr>
<tr>
<td>V_{7}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.058</td>
</tr>
<tr>
<td>V_{9}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.057</td>
</tr>
<tr>
<td>V_{10}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.040</td>
</tr>
<tr>
<td>V_{11}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.017</td>
</tr>
<tr>
<td>V_{12}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.969</td>
</tr>
<tr>
<td>V_{13}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.946</td>
</tr>
<tr>
<td>V_{14}</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.990</td>
</tr>
<tr>
<td>Generator Reactive Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{1}</td>
<td>-40.0</td>
<td>40.0</td>
<td></td>
<td></td>
<td>-11.649</td>
</tr>
<tr>
<td>Q_{2}</td>
<td>-40.0</td>
<td>50.0</td>
<td></td>
<td></td>
<td>-61.879</td>
</tr>
<tr>
<td>Q_{3}</td>
<td>0.0</td>
<td>40.0</td>
<td></td>
<td></td>
<td>103.702</td>
</tr>
<tr>
<td>Q_{5}</td>
<td>-6.0</td>
<td>50.0</td>
<td></td>
<td></td>
<td>47.542</td>
</tr>
<tr>
<td>Q_{8}</td>
<td>-6.0</td>
<td>24.0</td>
<td></td>
<td></td>
<td>26.255</td>
</tr>
</tbody>
</table>

D = Discrete, C = Continuous,
(1) = Results of ES, (2) = Results of Load Flow Program
* = The negative sign means a shunt reactor.
CASE 2: MODIFIED IEEE 30-BUS SYSTEM

The ES prototype was also tested on the modified IEEE 30-bus system. The single line diagram of the system is given in Figure 9. The system parameters are taken from [33], however, the bus data and control variables have been modified as indicated below:

1) Shunt reactors added at buses 16 & 28,

2) Shunt capacitors added at buses 10, 15 & 24,

3) Tap settings of transformer have been slightly changed.

4) Maximum Var capabilities have been changed at generator buses 8, 11 & 13.

The initial system state, determined by the load-flow program, and presented in Table 5 indicates the following abnormalities:

Under-Voltages: Bus # 14, 15, 18, 19, 20, 23, 24, 25, 26, 27, 29 & 30

High reactive power: Bus # 2, 8, 11 & 13.

The final state of the 30-bus system is given in Table 5. As shown in the table the developed ES prototype has alleviated all the abnormal voltages and reactive powers.
Figure 9: Single Line Diagram for Modified IEEE 30-Bus System
TABLE 5: Limits on the Variables and the Results of the Study on the Modified IEEE 30-Bus System.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lower Limit (MVAR)</th>
<th>Upper Limit (MVAR)</th>
<th>Mode</th>
<th>Steps</th>
<th>Initial State</th>
<th>Final State (1)</th>
<th>Final State (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR Sources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>0.0</td>
<td>19.0</td>
<td>D</td>
<td>1</td>
<td>19.0</td>
<td>19.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Q15</td>
<td>0.0</td>
<td>25.0</td>
<td>D</td>
<td>1</td>
<td>0.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Q16</td>
<td>0.0</td>
<td>-10.0*</td>
<td>D</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Q24</td>
<td>0.0</td>
<td>2 x 4.3</td>
<td>D</td>
<td>2</td>
<td>4.3</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Q28</td>
<td>0.0</td>
<td>-6.0*</td>
<td>D</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Transformer Taps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t4-12</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9250</td>
<td>0.9375</td>
<td>0.9375</td>
</tr>
<tr>
<td>t6-9</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9750</td>
<td>1.0125</td>
<td>1.0125</td>
</tr>
<tr>
<td>t6-10</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9625</td>
<td>0.9625</td>
<td>0.9625</td>
</tr>
<tr>
<td>t28-27</td>
<td>0.9</td>
<td>1.1</td>
<td>D</td>
<td>17</td>
<td>0.9625</td>
<td>0.9625</td>
<td>0.9625</td>
</tr>
<tr>
<td>Generator Voltages (p.u.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.060</td>
<td>1.0942</td>
<td>1.0942</td>
</tr>
<tr>
<td>V2</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.045</td>
<td>1.0621</td>
<td>1.0621</td>
</tr>
<tr>
<td>V5</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.01</td>
<td>1.0308</td>
<td>1.0308</td>
</tr>
<tr>
<td>V8</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.01</td>
<td>1.0287</td>
<td>1.0287</td>
</tr>
<tr>
<td>V11</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.082</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>V13</td>
<td>1.0</td>
<td>1.1</td>
<td>C</td>
<td></td>
<td>1.071</td>
<td>1.0953</td>
<td>1.0953</td>
</tr>
<tr>
<td>Dependent Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltages of Load Buses (p.u.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.018</td>
<td>1.046</td>
<td>1.045</td>
</tr>
<tr>
<td>V4</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.010</td>
<td>1.036</td>
<td>1.035</td>
</tr>
<tr>
<td>V5</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.004</td>
<td>1.027</td>
<td>1.026</td>
</tr>
<tr>
<td>V6</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.999</td>
<td>1.021</td>
<td>1.020</td>
</tr>
<tr>
<td>V7</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.001</td>
<td>1.048</td>
<td>1.047</td>
</tr>
<tr>
<td>V8</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.975</td>
<td>1.029</td>
<td>1.027</td>
</tr>
<tr>
<td>V9</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.980</td>
<td>1.032</td>
<td>1.030</td>
</tr>
<tr>
<td>V10</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.948</td>
<td>1.014</td>
<td>1.010</td>
</tr>
<tr>
<td>V12</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.921</td>
<td>0.999</td>
<td>0.995</td>
</tr>
<tr>
<td>V14</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.971</td>
<td>1.024</td>
<td>1.022</td>
</tr>
<tr>
<td>V15</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.968</td>
<td>1.022</td>
<td>1.020</td>
</tr>
<tr>
<td>V16</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.895</td>
<td>0.969</td>
<td>0.965</td>
</tr>
<tr>
<td>V18</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.884</td>
<td>0.954</td>
<td>0.950</td>
</tr>
<tr>
<td>V19</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.900</td>
<td>0.966</td>
<td>0.963</td>
</tr>
<tr>
<td>V20</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.958</td>
<td>1.014</td>
<td>1.012</td>
</tr>
<tr>
<td>V21</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.957</td>
<td>1.014</td>
<td>1.012</td>
</tr>
<tr>
<td>V22</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.900</td>
<td>0.975</td>
<td>0.971</td>
</tr>
<tr>
<td>V23</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.924</td>
<td>0.989</td>
<td>0.986</td>
</tr>
<tr>
<td>V24</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.930</td>
<td>0.981</td>
<td>0.978</td>
</tr>
<tr>
<td>V25</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.911</td>
<td>0.962</td>
<td>0.960</td>
</tr>
<tr>
<td>V26</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.944</td>
<td>0.984</td>
<td>0.983</td>
</tr>
<tr>
<td>V27</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>1.001</td>
<td>1.024</td>
<td>1.024</td>
</tr>
<tr>
<td>V28</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.922</td>
<td>0.964</td>
<td>0.962</td>
</tr>
<tr>
<td>V29</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td>0.910</td>
<td>0.952</td>
<td>0.950</td>
</tr>
<tr>
<td>V30</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 (Cont'd.)

<table>
<thead>
<tr>
<th>Generator</th>
<th>Reactive Power (MVAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₁</td>
<td>-40.0</td>
</tr>
<tr>
<td>Q₂</td>
<td>-40.0</td>
</tr>
<tr>
<td>Q₅</td>
<td>-40.0</td>
</tr>
<tr>
<td>Q₈</td>
<td>-10.0</td>
</tr>
<tr>
<td>Q₁₁</td>
<td>-6.0</td>
</tr>
<tr>
<td>Q₁₃</td>
<td>-6.0</td>
</tr>
</tbody>
</table>

D = Discrete, C = Continuous,
(1) = Results obtained from ES,
(2) = Results of Load Flow Programs
* The negative sign means a shunt reactor.
4.3 TEST CASES/RESULTS FOR CORRECTIVE GENERATION RE-SCHEDULING

CASE 1: IEEE 6-BUS SYSTEM

The developed ES prototype was tested on the IEEE 6-bus system whose single line diagram is shown in Figure 10 [34]. The initial operating state of the system as obtained from the load flow simulation is given in Table 6. By comparing the initial state of the load flows with the upper limits of the lines, the following overloads can be identified:

Overloaded Lines: 1-4, 1-5 & 3-6.

The 4th column of Table 5 presents the final state of the power flow after modifying the generation schedules by the ES prototype. The modified generation schedules, are given in the last column of Table 7. The new results clearly indicate no further overloads.
Figure 10: Single Line Diagram for IEEE 6-Bus System
TABLE 6: Initial and Final Power Flows For IEEE 6-Bus System

<table>
<thead>
<tr>
<th>Line designation</th>
<th>Upper limit (MW)</th>
<th>Initial state (MW)</th>
<th>Final state(^1) (MW)</th>
<th>Final state(^2) (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>33.5</td>
<td>28.687</td>
<td>4.9217</td>
<td>5.495</td>
</tr>
<tr>
<td>1-4</td>
<td>36.0</td>
<td>43.583*</td>
<td>27.0423</td>
<td>27.378</td>
</tr>
<tr>
<td>1-5</td>
<td>30.0</td>
<td>35.599*</td>
<td>25.0961</td>
<td>25.313</td>
</tr>
<tr>
<td>2-3</td>
<td>15.5</td>
<td>2.930</td>
<td>10.0545</td>
<td>10.062</td>
</tr>
<tr>
<td>2-4</td>
<td>60.0</td>
<td>33.091</td>
<td>49.4528</td>
<td>49.423</td>
</tr>
<tr>
<td>2-5</td>
<td>30.0</td>
<td>15.514</td>
<td>21.9075</td>
<td>21.892</td>
</tr>
<tr>
<td>2-6</td>
<td>40.0</td>
<td>26.248</td>
<td>32.3859</td>
<td>32.392</td>
</tr>
<tr>
<td>3-5</td>
<td>23.0</td>
<td>19.117</td>
<td>20.4684</td>
<td>20.453</td>
</tr>
<tr>
<td>3-6</td>
<td>40.0</td>
<td>43.773*</td>
<td>40.0</td>
<td>40.002</td>
</tr>
<tr>
<td>4-5</td>
<td>30.0</td>
<td>4.083</td>
<td>4.2485</td>
<td>4.250</td>
</tr>
<tr>
<td>5-6</td>
<td>15.0</td>
<td>1.614</td>
<td>-0.6303</td>
<td>-0.597</td>
</tr>
</tbody>
</table>

* = Overload
1 = Results obtained from ES
2 = Results of Load Flow Program
TABLE 7: Basic and Modified Generation Schedules for 6-Bus System

<table>
<thead>
<tr>
<th>Generation designation</th>
<th>Limit (MW)</th>
<th></th>
<th>Initial state (MW)</th>
<th>Final state (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>37.5</td>
<td>150.0</td>
<td>50.0</td>
<td>108.3078</td>
</tr>
<tr>
<td>G3</td>
<td>45.0</td>
<td>180.0</td>
<td>60.0</td>
<td>50.4864</td>
</tr>
</tbody>
</table>
CASE 2: IEEE 25-BUS SYSTEM

The developed prototype was applied for alleviating overloads on the IEEE 25-bus system. [35]. The single line diagram of the system is shown in Figure 11.

Table 8 presents the initial power flows and limits of the lines. Based on the data given in Table 8, the following overloaded lines can be found:

The Overloaded Lines were: 2-7, 3-14, 4-19, 5-17, 8-9, 17-18, 20-21, & 22-24.

The modified generation schedules as suggested by the ES prototype are given in Table 9. Using the modified generation schedules the new power flows are given in Table 8 and the results indicate that all the overloaded lines were alleviated.
Figure 11: Single Line Diagram for IEEE 25-Bus System
<table>
<thead>
<tr>
<th>Line designation</th>
<th>Upper limit (MW)</th>
<th>Initial state (MW)</th>
<th>Final state¹ (MW)</th>
<th>Final state² (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>100.0</td>
<td>-38.744</td>
<td>-29.9775</td>
<td>-29.732</td>
</tr>
<tr>
<td>1-16</td>
<td>120.0</td>
<td>40.802</td>
<td>44.3736</td>
<td>44.483</td>
</tr>
<tr>
<td>1-17</td>
<td>60.0</td>
<td>-16.161</td>
<td>5.0406</td>
<td>5.724</td>
</tr>
<tr>
<td>1-19</td>
<td>50.0</td>
<td>0.115</td>
<td>10.6586</td>
<td>11.013</td>
</tr>
<tr>
<td>1-23</td>
<td>40.0</td>
<td>26.699</td>
<td>30.0786</td>
<td>30.201</td>
</tr>
<tr>
<td>1-25</td>
<td>90.0</td>
<td>33.006</td>
<td>36.0076</td>
<td>36.097</td>
</tr>
<tr>
<td>2-6</td>
<td>100.0</td>
<td>22.740</td>
<td>9.2942</td>
<td>9.306</td>
</tr>
<tr>
<td>2-7</td>
<td>30.0</td>
<td>33.006*</td>
<td>27.9505</td>
<td>27.943</td>
</tr>
<tr>
<td>2-8</td>
<td>50.0</td>
<td>33.404</td>
<td>27.4219</td>
<td>27.412</td>
</tr>
<tr>
<td>3-13</td>
<td>40.0</td>
<td>17.807</td>
<td>31.0880</td>
<td>31.361</td>
</tr>
<tr>
<td>3-14</td>
<td>40.0</td>
<td>42.204*</td>
<td>38.2654</td>
<td>38.186</td>
</tr>
<tr>
<td>4-19</td>
<td>40.0</td>
<td>-43.671*</td>
<td>-37.3873</td>
<td>-37.300</td>
</tr>
<tr>
<td>4-20</td>
<td>40.0</td>
<td>39.305</td>
<td>36.2128</td>
<td>36.170</td>
</tr>
<tr>
<td>4-21</td>
<td>40.0</td>
<td>24.373</td>
<td>21.1814</td>
<td>21.134</td>
</tr>
<tr>
<td>5-10</td>
<td>55.0</td>
<td>31.752</td>
<td>30.0423</td>
<td>30.069</td>
</tr>
<tr>
<td>5-17</td>
<td>75.0</td>
<td>83.496*</td>
<td>69.7797</td>
<td>69.717</td>
</tr>
<tr>
<td>5-19</td>
<td>85.0</td>
<td>59.768</td>
<td>45.2163</td>
<td>45.249</td>
</tr>
<tr>
<td>6-13</td>
<td>25.0</td>
<td>7.415</td>
<td>-5.6876</td>
<td>-5.792</td>
</tr>
<tr>
<td>7-8</td>
<td>15.0</td>
<td>5.972</td>
<td>4.69</td>
<td>4.684</td>
</tr>
<tr>
<td>7-12</td>
<td>15.0</td>
<td>12.324</td>
<td>7.89</td>
<td>7.872</td>
</tr>
<tr>
<td>8-9</td>
<td>6.0</td>
<td>6.564*</td>
<td>6.0</td>
<td>5.988</td>
</tr>
<tr>
<td>8-17</td>
<td>10.0</td>
<td>7.171</td>
<td>0.7029</td>
<td>0.675</td>
</tr>
<tr>
<td>10-11</td>
<td>15.0</td>
<td>7.741</td>
<td>5.5136</td>
<td>5.521</td>
</tr>
<tr>
<td>11-17</td>
<td>20.0</td>
<td>2.680</td>
<td>0.4874</td>
<td>0.491</td>
</tr>
<tr>
<td>12-17</td>
<td>12.0</td>
<td>2.268</td>
<td>-2.1272</td>
<td>-2.151</td>
</tr>
<tr>
<td>14-15</td>
<td>25.0</td>
<td>20.124</td>
<td>16.5683</td>
<td>16.474</td>
</tr>
<tr>
<td>17-18</td>
<td>15.0</td>
<td>18.008*</td>
<td>13.7353</td>
<td>13.706</td>
</tr>
<tr>
<td>18-19</td>
<td>9.0</td>
<td>2.745</td>
<td>-1.4002</td>
<td>-1.445</td>
</tr>
<tr>
<td>20-21</td>
<td>12.0</td>
<td>13.703*</td>
<td>10.6985</td>
<td>10.649</td>
</tr>
<tr>
<td>21-22</td>
<td>25.0</td>
<td>17.378</td>
<td>11.3708</td>
<td>11.257</td>
</tr>
<tr>
<td>22-23</td>
<td>15.0</td>
<td>-10.671</td>
<td>-13.7011</td>
<td>-13.766</td>
</tr>
<tr>
<td>22-24</td>
<td>7.0</td>
<td>7.924*</td>
<td>5.0319</td>
<td>4.965</td>
</tr>
<tr>
<td>24-25</td>
<td>20.0</td>
<td>-7.131</td>
<td>-0.9723</td>
<td>-10.048</td>
</tr>
</tbody>
</table>

* = Overload
1 = Results obtained from ES
2 = Results of Load Flow Program
<table>
<thead>
<tr>
<th>Generation designation</th>
<th>Limit (MW)</th>
<th>Initial state (MW)</th>
<th>Final state (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>70.00</td>
<td>150.00</td>
<td>100.00</td>
</tr>
<tr>
<td>G3</td>
<td>50.00</td>
<td>200.00</td>
<td>150.00</td>
</tr>
<tr>
<td>G4</td>
<td>30.00</td>
<td>60.00</td>
<td>50.00</td>
</tr>
<tr>
<td>G5</td>
<td>100.00</td>
<td>250.00</td>
<td>200.00</td>
</tr>
</tbody>
</table>

TABLE 9: Basic and Modified Generation Schedules for IEEE 25-Bus System
4.4 TEST CASES AND RESULTS FOR VOLTAGE ANGLE ADJUSTMENT

CASE: IEEE 25-BUS SYSTEM

The developed ES prototype has been tested for voltage angle violation problem on the IEEE 25-bus system shown in Figure 12. The system contains five generators. The initial voltage angles of the generator buses as obtained from the load flow study are presented in Table 10.

The case study desires to maintain all the voltage angle difference, between the slack bus and other generator buses, within 4.0 degrees. Therefore, the voltage angles of the following generator buses must be adjusted.

Generator Buses: Bus # 2, 3 & 5.

Table 11 presents the modified generation schedules and according to the new schedules the new voltage angles were calculated and presented in Table 10.
Figure 12: Single Line Diagram of IEEE 25-Bus System for Voltage Angle Adjustment

<table>
<thead>
<tr>
<th>Generation bus designation</th>
<th>Initial voltage angle (deg.)</th>
<th>Final voltage Angle¹ (deg.)</th>
<th>Final voltage Angle² (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SLK</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>9.461*</td>
<td>3.7222</td>
<td>3.642</td>
</tr>
<tr>
<td>3</td>
<td>6.851*</td>
<td>4.00</td>
<td>3.962</td>
</tr>
<tr>
<td>4</td>
<td>-1.271</td>
<td>-3.3083</td>
<td>-3.4</td>
</tr>
<tr>
<td>5</td>
<td>9.242*</td>
<td>3.3513</td>
<td>3.259</td>
</tr>
</tbody>
</table>

* = Voltage Angle Violation
1 = Results obtained from ES
2 = Results of Load Flow Program
<table>
<thead>
<tr>
<th>Generation designation</th>
<th>Limit (MW)</th>
<th>Initial state (MW)</th>
<th>Final state (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower</td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>G₂</td>
<td>70.0</td>
<td>150.0</td>
<td>100.0</td>
</tr>
<tr>
<td>G₃</td>
<td>50.0</td>
<td>200.0</td>
<td>150.0</td>
</tr>
<tr>
<td>G₄</td>
<td>30.0</td>
<td>60.0</td>
<td>50.0</td>
</tr>
<tr>
<td>G₅</td>
<td>100.0</td>
<td>250.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>
CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 SUMMARY

An expert system prototype for load flow planning has been developed. It has the following main features.

1) Windows input/output interface facilities to give an interactive user-friendly environment.

2) The expert system prototype can detect overloads in the power system and propose new generation schedule to alleviate the overloads.

3) The prototype can detect over-voltages, under-voltages, and violations of reactive power limits of generators and it provides remedial measures to alleviate these violations.

4) The expert system can control the voltage angles of the generation buses within the desired limits.

The expert system has been developed using an expert system programming tool called CLIPS and adopting a technique which is based on the use of sensitivity factors.

The developed expert system has been tested on various examples of power systems. Test results show very satisfactory results.

In addition to the expert system a power system application program has been
developed using FORTRAN language to calculate the load flow and sensitivity factors of the power system. The application program has been integrated with the expert system in a single package.

5.2 CONCLUSION

Expert system methodology provides the power system engineers with new powerful tools. Intelligent load flow engine is a good example for demonstrating the possibility of expert system. It assists the planners in the load flow planning and the operators in decision-making for power system control. The reasoning of expert system seems to be more acceptable to the power system planners and operators than the solution of linear programing or other analytical procedures, because the former matches human heuristic thought process.

5.3 CONTRIBUTION OF THE THESIS

The thesis mainly contributes in the power system engineering by presenting an intelligent load flow planning tool to the power system engineers. The developed expert system can be useful at least in the following aspects:

1) It can be used to assist in decision-making for abnormal operating conditions in the power system.

2) It can be used to train power system operators.

3) It can be used to assist in system planning.
5.4 RECOMMENDATIONS FOR FUTURE WORK

Expert system being part of the family of artificial intelligence still constitute a young technology. So far most of the expert system in the power system applications are prototypes and under field tests.

There are several applications in power system operation in which the expert system can be applied. The following areas can be considered for future works:

1) Voltage and var control under voltage instability condition.

2) Economic generation shifting with line flow constraints.
APPENDICES
APPENDIX - A

COMPUTER LISTING OF POWER SYSTEM APPLICATION PROGRAMS
LOAD FLOW & SENSITIVITY COEFFICIENTS
CALCULATION PROGRAM

C***
C
C THIS PROGRAM PERFORMS THE FOLLOWINGS:-
C
1. LOAD FLOW STUDY BY NEWTON-RAPHSON METHOD .
2. CALCULATES THE SENSITIVITY COEFFICIENTS FOR POWER SYSTEM
3. CALCULATES THE SENSITIVITY COEFFICIENTS FOR REAL POWER FLOW

C***
C
THE FORMAT OF THE INPUT DATA SHALL BE AS FOLLOWS:-

C***
C
NO. OF BUS(es) (N), NO. OF LINES (C), 'REFERENCE BUS' ("00")
C
K.VOLT(BASE), MVA(BASE)
C
LINE, '1ST BUS', '2ND BUS', IMPEDANCE (R,X), TOTAL SUSCEPTANCE (G,YC), P. FLOW LIM.
C
= = = = =
C
NOTE: - 1. THE LINE PARAMETERS SHALL BE IN PER-UNIT.
2. THE LINE SUSP. IS THE TOTAL.
C
NUMBER OF STATIC VAR COMPENSATORS (NSC)
C
'SVC LOCATION', PRESETTING (+ OR - MVAR), MAXIMUM LIM. (+ OR - MVAR),
C
MINIMUM LIM. (+ OR - MVAR), CHANGE PER SETTING (+ MVAR)
C
= = = = =
C
NOTE: - '+' FOR CAPACITOR , '-' FOR REACTOR
C
NUMBER OF TAP CHANGERS
C
'FIRST BUS', 'SECOND BUS', TAP POSITION, 'TAP LOCATION', MAXIMUM LIM.,
C
MINIMUM LIM., CHANGE PER SETTING
C
= = = = =
C
POWER MISMATCH, 'SLACK BUS', SLACK VOLT. (REAL, IMAG), LOAD (REAL, IMAG),
C
MAXIMUM VOLTAGE (P.U.), MINIMUM VOLTAGE (P.U.), Q.G.MAX, Q.G.MIN
C
NO. OF VOLTAGE CONT. BUS(es), NO. OF GENERATORS, NO. OF CONDENSERS
C
'BUS NAME', REAL POWER GENERATED, BUS VOLT. (REAL, IMAG), LOAD (REAL, IMAG),
C
C MAX. VOLTAGE(P.U.),MIN. VOLTAGE(P.U.),P.G.MAX,P.G.MIN,Q.G.MAX,Q.G.MIN
C
C
C
C NOTE: FIRST ENTERS THE DATA OF ALL GENERATORS
C
C NO. OF LOAD BUSES
C 'BUS NAME', LOAD (REAL, IMAG), GEN. (REAL, IMAG), INIT. BUS VOLT (REAL, IMAG)
C P.G.MAX, P.G.MIN
C
C
C
C~~
C
C MAIN PROGRAM:
C
C~~
C
C CHARACTER*10 REP,BUSA,BUSB,SLACK,B(30),AA,A(30),LAB(30),BB
C CHARACTER*10 TA(10),TB(10),TLOC,BUSSC(20),LINE(50,2)
C COMPLEX Z,YB(30,30),VS,S(30),V(30),YBN,YP(30,30),YC
C COMPLEX YPN,SLL,GL(30),GR(30)
C REAL P(30),TAP(10),QSC(20),MAXLIM(20),MINLIM(20),DSETT(20)
C REAL ERROR,KVB,MVAB,TMAX(10),TMIN(10),DTAP(10),MVOLT(10)
C REAL MNVOLT(10),IMAG,PGMAX(30),PGMIN(30),FLIM(50)
C REAL QGMAX(20),QGMIN(20)
C INTEGER N,C,NLBUS,NVBUS,E,NTC,NSC,LN,NG,NC
C COMMON /MAIN0/V,B,S,LAB,P,SLL,GR,GL,NTC,TA,TB,TAP
C COMMON /MAIN1/YB
C COMMON /MAIN2/YP
C COMMON /MAIN3/NSC,BUSSC,QSC,MAXLIM,MINLIM,DSETT
C COMMON /MAIN7/MNVOLT,MINVOLT,TMAX,TMIN,DTAP,LIM,PGMAX,PGMIN,
C* FLIM,C,QGMAX,QGMIN
C
C OPEN(5,FILE='LFLOW.DAT',STATUS='OLD')
C OPEN(6,FILE='LFLOW.OUT')
C
C K=0
C READ(5,*)N,C,REF
C
C READ(5,*)KVB,MVAB
C
C DO 15 I=1,C
C E=I
C READ(5,*)LN,BUSA,BUSB,Z,YC,FLIM(LN)
C LINE(LN,1)=BUSA
C LINE(LN,2)=BUSB
C CALL YBUS(A,K,C,N,REF,BUSA,BUSB,Z,E,YC)
C 15 CONTINUE
C READ(5,*)NSC
IF(NSC.NE.0)THEN
DO 11 I=1,NSC
READ(5,*)BUSC(I),QSC(I),MAXLIM(I),MINLIM(I),DSETT(I)
QSC(I)=QSC(I)/MVAB
MAXLIM(I)=MAXLIM(I)/MVAB
MINLIM(I)=MINLIM(I)/MVAB
11 CONTINUE
DO 12 I=1,NSC
DO 13 J=1,N
IF(BUSSC(I).EQ.A(J))THEN
IMAG=AIMAG(YB(J,J))+QSC(I)
YB(J,J)=CMPLX(REAL(YB(J,J)),IMAG)
GO TO 12
ENDIF
13 CONTINUE
12 CONTINUE
ENDIF
C READ(5,*)NTC
IF(NTC.NE.0)THEN
DO 1 I=1,NTC
READ(5,*)TA(I),TB(I),TAP(I),TLOC,TMAX(I),TMIN(I),DTAP(I)
IF(TLOC.NE.TA(I))THEN
TB(I)=TA(I)
TA(I)=TLOC
ENDIF
1 CONTINUE
ENDIF
C READ(5,*)ERROR,SLACK,VS,SLL,MXVOLT(I),MNVOLT(I),QGMAX(I)
* ,QGMIN(I)
 B(I)=SLACK
 LAB(I)='SLK'
 V(I)=VS
 V(I)=V(I)/KVB
 GL(I)=SLL
 GR(I)=(0.0,0.0)
 SLL=SLL/MVAB
READ(5,*)NVBUS,NG,NC
IF(NVBUS.NE.0)THEN
DO 10 I=2,NVBUS+1
READ(5,*)B(I),P(I),V(I),GL(I),MXVOLT(I),MNVOLT(I),PGMAX(I),
* ,PGMIN(I),QGMAX(I),QGMIN(I)
 LAB(I)='PV'
 P(I)=P(I)/MVAB
 V(I)=V(I)/KVB
 GL(I)=GL(I)/MVAB
 GR(I)=(0.0,0.0)
10 CONTINUE
ENDIF
READ(5,*)NLBUS
DO 20 I=NVBUS+2,N
 READ(5,*)B(I),S(I),GR(I),V(I),PGMAX(I),PGMIN(I)
 LAB(I)= 'PQ'
 GL(I)=S(I)
 S(I)=-S(I)/MVAB
 S(I)=S(I)+GR(I)/MVAB
 V(I)=V(I)/KVB
20 CONTINUE
DO 30 I=1,N
DO 40 J=1,N
IF(B(I).EQ.A(J)) THEN
 DO 50 K=1,N
 YBN=YB(J,K)
 YPN=YP(J,K)
 YB(J,K)=YB(I,K)
 YP(J,K)=YP(I,K)
 YB(I,K)=YBN
 YP(I,K)=YPN
 50 CONTINUE
C
 DO 60 K=1,N
 YBN=YB(K,J)
 YPN=YP(K,J)
 YB(K,J)=YB(K,I)
 YP(K,J)=YP(K,I)
 YB(K,I)=YBN
 YP(K,I)=YPN
60 CONTINUE
C
 GO TO 1000
 BB=A(J)
 A(J)=A(I)
 A(I)=BB
 GO TO 30
ENDIF
40 CONTINUE
30 CONTINUE
C
CLOSE(5)
C
CALL LFLOW(N,NLBUS,NVBUS,ERROR,KVB,MVAB,NG,NC)
C
CLOSE(6)
C
STOP
END
SUBROUTINE OF YBUS:
DETERMINES THE Y-BUS MATRIX.

SUBROUTINE YBUS(A,K,C,N,REF,LINA,LINB,Z,E,YC)
CHARACTER *10 A(30),LINA,LINB,REF
INTEGER M,D,PP,Q,R,W,Y,C,N,E
COMPLEX YB(30,30),L(30,30),Z,SUM,YC,YP(30,30)

COMMON /MAIN1/YB
COMMON /MAIN2/YP

IF (K .EQ. 0) THEN
DO 100 I=1,N
DO 110 J=1,N
L(I,J)=(0.0,0.0)
YP(I,J)=(0.0,0.0)
110 CONTINUE
100 CONTINUE
A(1)=LINA
A(2)=LINB
L(1,2)=1/Z
YP(1,2)=YC/2.0
L(2,1)=L(1,2)
YP(2,1)=YP(1,2)
K=2
RETURN
ELSE
PP=0
Q=0
ENDIF
DO 20 I=1,K
IF (LINA.EQ.A(I)) THEN
M=I
PP=1
GO TO 40
ENDIF
20 CONTINUE
K=K+1
M=K
A(M)=LINA
40 DO 30 I=1,K
IF (LINB.EQ.A(I)) THEN
D=I
Q=1
GO TO 45
ENDIF
30 CONTINUE
K=K+1
D=K
A(D)=LINB

IF(J.EQ.1) THEN
L(M,D)=L(M,D)+1/Z
YP(M,D)=YP(M,D)+YC/2.0
L(D,M)=L(M,D)
YP(D,M)=YP(M,D)
ELSE
L(M,D)=1/Z
YP(M,D)=YC/2.0
L(D,M)=L(M,D)
YP(D,M)=YC/2.0
ENDIF
IF(E.EQ.C) THEN
DO 60 I=1,N
DO 70 J=1,N
IF(I.EQ.J) THEN
SUM=(0.0,0.0)
DO 90 R=1,N
IF(R.NE.I) THEN
SUM=SUM+L(I,R)+YP(I,R)
ENDIF
90 CONTINUE
YB(I,J)=SUM
ELSE
YB(I,J)=-1*L(I,J)
ENDIF
70 CONTINUE
60 CONTINUE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A(30,30), S(30), SL(30,30)
CHARACTER*10 B(30), LAB(30), TA(10), TB(10), BUSSC(20), LINE(50, 2)
CHARACTER*5 CC
CHARACTER*13 TYPE
REAL THETA(30, 30), DELTA(30), ERROR, KV, MVAB, P(30), Q(30)
REAL J(80, 80), X(60, 60), JC(60, 60), TAP(10), QSC(20)
REAL MAXLIM(20), MINLIM(20), DSETT(20), IMAG, VV
REAL MXXVOLT(10), MNVOLT(10), TMAX(10), TMIN(10), DTAP(10)
REAL PGMAX(30), PGMIN(30), FLIM(50), PRSETT, PFLOW
REAL QGMAX(20), QGMIN(20), VB
INTEGER N, N1, NBUS, NVBUS, NFLB, COUNT, NTC, NSC, GN, C, NG, NC
INTEGER GEN(20)
INTEGER T1(10), T2(10), SC(20), NSCC

COMMON /MAIN0/V, B, S, LAB, P, SLL, GR, GL, NTC, TA, TB, TAP
COMMON /MAIN1/YB
COMMON /MAIN2/YP
COMMON /MAIN3/NSC, BUSSC, QSC, MAXLIM, MINLIM, DSETT
COMMON /MAIN5/TESTA, DELTA
COMMON /MAIN6/JJ
COMMON /MAIN7/MXXVOLT, MNVOLT, TMAX, TMIN, DTAP, LINE, PGMAX, PGMIN,
* FLIM, C, QGMAX, QGMIN
COMMON /MAIN8/JC
COMMON /MAIN12/NSCC, SC

AV(VP)=ATAN2(AIMAG(VP), REAL(VP))*57.29578
NBUS=N

IF (NTC.NE.0) THEN
DO 1 I=1, NTC
DO 2 J=1, NBUS
IF (TA(I).EQ.B(J)) THEN
1 B(NBUS+I)=TA(I)
T1(I)=J
GO TO 222
ENDIF
2 CONTINUE
222 DO 3 K=1, NBUS
IF (TB(I).EQ.B(K)) THEN
T2(I)=K
GO TO 333
ENDIF
3 CONTINUE

333 YB(T1(I), T1(I))=YB(T1(I), T1(I))+T1(I)*T2(I)*YB(T1(I), T2(I))

YP(T1(I), T2(I))=YP(T1(I), T2(I))-YB(T1(I), T2(I))*TAP(I)*
(TAP(I)-1)

YP(T2(I), T1(I))=YP(T2(I), T1(I))-YB(T2(I), T1(I))*(1-TAP(I))
C YB(T1(I),T2(I))=TAP(I)*YB(T1(I),T2(I))
 YB(T2(I),T1(I))=YB(T1(I),T2(I))
1 CONTINUE
ENDIF
C DO 10 I=1,NBUS
 DO 20 J=1,NBUS
 IF(CABS(YB(I,J)).NE.0.0) THEN
 IF(REAL(YB(I,J)).EQ.0.0.AND.AIMAG(YB(I,J)).GT.0.0) THEN
 THETA(I,J)=3.14159/2.0
 ELSEIF(REAL(YB(I,J)).EQ.0.0.AND.AIMAG(YB(I,J)).LT.0.0) THEN
 THETA(I,J)=-3.14159/2.0
 ELSE
 THETA(I,J)=AV(YB(I,J))/57.29578
 ENDIF
 ELSE
 THETA(I,J)=0.0
 ENDIF
20 CONTINUE
 DELTA(I)=AV(V(I))/57.29578
C 10 CONTINUE
C CALL LBUS(COUNT,V,S,NBUS,ERROR,NLBUS,NVBUS,P,
 * GL,B,NTC,TAP,T1,T2)
C
C**
C CALCULATING THE LINE POWERS (MEASURED AT SENDING END)
C**
C DO 60 I=1,NBUS
 DO 60 J=1,NBUS
 IF(I.EQ.J.OR.CABS(YB(I,J)).EQ.0.0) GO TO 65
C SL(I,J)=V(I)*(CONJG(V(I)-V(J)))*CONJG(-YB(I,J))
 **+CONJG(V(I))*CONJG(YB(I,J))
C 65 GO TO 60
60 CONTINUE
C ********** CALCULATE SLACK BUS POWER **********
C S(1)=SLL
 DO 70 J=2,NBUS
 S(1)=S(1)+SL(1,J)
 70 CONTINUE
 GR(1)=S(1)*MVAB
C C CALCULATE LINE LOSS
C
DO 80 I=1,NBUS
 DO 80 J=1,NBUS
 IF(I.EQ.J) GO TO 90
 SLOSS(I,J)=SL(I,J)+SL(J,I)
 GO TO 80
90 SLOSS(I,J)=(0.,0.,0.)
80 CONTINUE
C
C CALCULATING THE REACTIVE POWER FOR VOLTAGE CONTROL BUSSES
C
IF(NVBUS.NE.0) THEN
 DO 77 I=2,NVBUS+1
 SUM2=0.0
 DO 13 J=1,NBUS
 SUM2=SUM2+CBABS(YB(I,J))*CBABS(V(J))*CBABS(V(I))*SIN(-THETA(I,J))
 * -DELTA(J)+DELTA(I))
 13 CONTINUE
 Q(I)=SUM2+AIMAG(GL(I))
 S(I)=CMPLX(P(I),Q(I))
 GL(I)=GL(I)*MVAB
 GR(I)=S(I)*MVAB
77 CONTINUE
ENDIF
C
IF(NSC.NE.0) THEN
 NSCC=0
 DO 444 I=1,NSC
 DO 555 J=1,NBUS
 IF(BUSSC(I).EQ.B(J)) THEN
 QSC(I)=QSC(I)+(CBABS(V(J)))**2
 ENDIF
 IF(LAB(J).EQ.'PQ') THEN
 IMAG=AIMAG(GR(J))+QSC(I)
 GR(J)=CMPLX(REAL(GR(J)),IMAG)
 GR(J)=GR(J)*MVAB
 NSCC=NSCC+1
 SC(NSCC)=J
 ENDIF
 GO TO 444
 ENDIF
555 CONTINUE
444 CONTINUE
ENDIF
C
C***
C OUTPUT 'INITIAL.DAT' FOR EXPERT SYSTEM (VOLTAGE & VAR CONTROL)
C 'THIS OUTPUT IS THE INITIAL LOAD FLOW RESULTS'
C***
C
OPEN (UNIT=7,FILE='INITIAL.DAT')
C
WRITE (7,*) KVB, MVAB
DO 950 I=1,NBUS
 VB=CABS(V(I))*KVB
C GRR=GR(I)/MVAB
C
950 WRITE(7,960)E(I),LAB(I),VB,AV(V(I)),GR(I),GL(I)
 WRITE(7,*),'ECF-INITIAL'
960 FORMAT(A,1X,A3,1X,6(F8.4,1X))
 CLOSE(7)
C
C***
C OUTPUT 'ANGLE.DAT' FOR EXPERT SYSTEM (VOLTAGE ANGLE ADJUSTMENT)
C 'THIS OUTPUT IS THE INITIAL VOLTAGE ANGLES FROM LOAD FLOW RESULTS'
C***
C
OPEN (UNIT=7,FILE='ANGLE.DAT')
DO 951 I=1,NBUS
 PRSETT=REAL(GR(I))
 IF(PRSETT.GT.0.0) THEN
 WRITE(7,961)E(I),LAB(I),AV(V(I))
 ENDIF
951 CONTINUE
 WRITE(7,*),'ECF-ANGLE'
961 FORMAT(A,1X,A3,1X,F8.4)
 CLOSE(7)
C
C***
C OUTPUT 'CTRL.DAT' FOR EXPERT SYSTEM (VOLTAGE & VAR CONTROL)
C 'THIS OUTPUT IS THE DATA ASSOCIATED WITH CONTROL VARIABLES'
C***
C
OPEN (UNIT=7,FILE='CTRL.DAT')
 CCC=0.0
DO 850 I=1,1+NVBUS
 VV=CABS(V(I))
 MXVOLT(I)=MXVOLT(I)/KVB
 MNVOLT(I)=MNVOLT(I)/KVB
 WRITE(7,860)I,B(I),'GV','NO',MXVOLT(I),MNVOLT(I),VV,CCC,
 *QGMAX(I),QGMIN(I)
 IF(NSC.NE.0) THEN
 DO 870 I=1,NSC
 QSC(I)=QSC(I)*MVAB
 MAXLIM(I)=MAXLIM(I)*MVAB
 MINLIM(I)=MINLIM(I)*MVAB
 IF(MAXLIM(I).LT.0.0) THEN
 TYPE='SR'
 ELSE
 TYPE='SC'
 ENDIF
 J=1+NVBUS+I
 WRITE(7,860)J,BUSSC(I),TYPE,'NO',MAXLIM(I),MINLIM(I),QSC(I),
 *DSETT(I),CCC,CCC
870 CONTINUE
ENDIF
IF (NTC .NE. 0) THEN
DO 880 I = 1, NTC
J = 1 + NVBUS + NSC - I
880 WRITE (7, 860) J, TA(I), ' TAP', TB(I), TMAX(I), TMIN(I), TAP(I), DTAP(I)
*, CCC, CCC
ENDIF
WRITE (7, *) ' EOF-CTRL'
860 FORMAT (12, 1X, A1, 1X, A3, 1X, A1, 1X, 6 (F8.4, 1X))
CLOSE (7)

C
C**
C PRINTING THE LOAD FLOW RESULTS
C**
C
325 WRITE (6, 325)
326 FORMAT (//, 80 ('#'), //, 25X, 'COMPLETE LOAD FLOW RESULTS', //, 80 ('#'))
327 WRITE (6, 350) COUNT
328 FORMAT (//, 5X, 'PROGRAM CONVERGED IN', I4, ' ITERATIONS' /)
329 WRITE (6, 400)
330 FORMAT ('0', 20X, 'BUS VOLTS (KV)', 7X, 'GENERATION', 11X, 'LOAD /
* , 20X, 14 ('-'), 6X, 12 ('-'), 9X, 7 ('-'), /)
331 WRITE (6, 500)
332 FORMAT (' ', 1X, 'BUS', 7X, 'TYPE', 4X, 'MAGN', 4X, 'ANGLE', 5X, 'MW', 7X,
* 'MVAR', 5X, ' MW', 7X, 'MVAR', 1X, 73 ('-'), /)
333 DO 200 I = 1, NBUS
334 V(I) = V(I) * KVB
335 V = CABS (V(I)) / KVB
336 QGG = AIMAG (GR(I))
337 IF ((LAB(I) .EQ. 'SLK' .AND. QGG.GT.QGMAX(I))
* .OR. (LAB(I) .EQ. 'SLK' .AND. QGG.LT.QGMIN(I)) THEN
338 WRITE (6, 600) B(I), LAB(I), CABS (V(I)), AV(V(I)), GR(I), GL(I)
339 FORMAT (' ', 1X, A10, 1X, A3, 2 (F8.3, 1X), 2X, F8.3, 1X, F8.3, '**',
* 2 (F8.3, 1X) /)
C
340 ELSEIF (LAB(I) .EQ. 'PV' .AND. QGG.GT.QGMAX(I))
* .OR. (LAB(I) .EQ. 'PV' .AND. QGG.LT.QGMIN(I)) THEN
341 WRITE (6, 602) B(I), LAB(I), CABS (V(I)), AV(V(I)), GR(I), GL(I)
342 FORMAT (' ', 1X, A10, 1X, A3, 2 (F8.3, 1X), 2X, F8.3, 1X, F8.3, '***',
* 2 (F8.3, 1X) /)
343 ELSEIF (LAB(I) .EQ. 'PQ' .AND. VL.GT.1.0500001)
* .OR. (LAB(I) .EQ. 'PQ' .AND. VL.LT.0.9500001) THEN
344 WRITE (6, 603) B(I), LAB(I), CABS (V(I)), AV(V(I)), GR(I), GL(I)
345 FORMAT (' ', 1X, A10, 1X, A3, F8.3, '***', F8.3, 3X, 4 (F8.3, 1X) /)
C
346 ELSE
347 WRITE (6, 600) B(I), LAB(I), CABS (V(I)), AV(V(I)), GR(I), GL(I)
348 FORMAT (' ', 1X, A10, 1X, A3, 2 (F8.3, 1X), 2X, 4 (F8.3, 1X) /)
349 ENDIF
200 CONTINUE
C
C***** PRINT LINE FLOW **************
C
WRITE(6,700)

700 FORMAT(80('"'),//,' ',29X,'LINE FLOW',10X,'LINE LOSSES',
*4X,'FLOW LIM.',//,29X,
*11('"'),8X,13('"'),2X,11('"'),/)
WRITE(6,800)

800 FORMAT(' ',6X,'LINE',17X,'MW',5X,'MVAR',6X,'MW',5X,'MVAR'
*6X,'MW',//,2X,77('"'),/)
DO 300 I=1,NBUS
DO 300 J=1,NBUS
IF(I.EQ.J.OR.SL(J,I).EQ.(0.0,0.0))GO TO 300
SL(J,I)=SL(J,I)*MVAB
SL(I,J)=SL(I,J)*MVAB
SLOSS(I,J)=SLOSS(I,J)*MVAB
C

C*****
DO 2222 K=1,C
IF(B(I).EQ.LINE(K,1).AND.B(J).EQ.LINE(K,2)) GO TO 3333
IF(B(I).EQ.LINE(K,2).AND.B(J).EQ.LINE(K,1)) GO TO 3333
2222 CONTINUE
C*****

3333 LP=ABS(REAL(SL(I,J)))
IF(LP.GT.FLIM(K)) THEN
WRITE(6,900)B(I),B(J),SL(I,J),SLOSS(I,J),FLIM(K)
900 FORMAT(' ',2X,A8,'-TO- ',A8,2X,F8.3,'*',
*3(F8.3,1X),1X,F8.3)
ELSE
WRITE(6,901)B(I),B(J),SL(I,J),SLOSS(I,J),FLIM(K)
901 FORMAT(' ',2X,A8,'-TO- ',A8,2X,4(F8.3,1X),1X,F8.3)
ENDIF
300 CONTINUE
WRITE(6,1000)
1000 FORMAT(2X,80('"'),//)
C******************************
C
WRITE(6,551)

551 FORMAT(2X,80('"'),//,20X,'GENERATORS/SYNCHRONOUS CONDENSERS'
* ',/80('"'),//)
WRITE(6,561)

561 FORMAT(2X,'LOCATION',2X,'BUS TYPE',4X,'PRES. GEN.',11X,
* 'GENERATION CAPACITY',//,3X,'(BUS)',15X,'MW',5X,'MVAR,'
* 6X,'MW',7X,'MW',6X,'MVAR',6X,'MVAR'
* ,//,38X,'(MAX.)',3X,'(MIN.)',3X,'(MAX.)',4X,'(MIN.)'
* ,//,2X,75('"'),//)
C
DO 523 I=1,NBUS
PRETT=REAL(GR(I))
IF(I.EQ.1) THEN
WRITE(6,535)B(I),LAB(I),REAL(GR(I)),AIMAG(GR(I)),QGMAX(I)
* ,QGMIN(I)
ELSEIF(I.GT.1.AND.I.LE.NBUS+1) THEN
WRITE(6,534)B(I),LAB(I),REAL(GR(I)),AIMAG(GR(I)),PGMAX(I),
*PGMIN(I), QGMAX(I), PGMIN(I)
ENDIF
IF (I.GT.NVBUS+1.AND.PRSCT.GT.0.0) THEN
 WRITE (6,536) B(I), LAB(I), REAL (GR(I)), AIMAG (GR(I)), PGMAX(I),
 *PGMIN(I)
ENDIF
534 FORMAT (2X,A8,4X,A3,2X,6(F8.3,1X))
535 FORMAT (2X,A8,4X,A3,2X,2(F8.3,1X),18X,2(F8.3,1X))
536 FORMAT (2X,A8,4X,A3,2X,4(F8.3,1X))
523 CONTINUE
C
C***
IF (MSC.NE.0) THEN
 WRITE (6,550)
550 FORMAT ('/,,80(\,'#'),//,25X,'STATIC VAR COMPENSATORS',',//
 * 80(\,'#'),//
 WRITE (6,560)
560 FORMAT (5X,'LOCATION',10X,'TYPE',8X,'PR. SETT.',6X,
 * 'MVAR LIMITS',//,6X,'(BUS)',25X,'(MVAR)',5X,'(MAX.)',
 * 5X,'(MIN.)',//,3X,62(\,'#'),//
 DO 570 I=1,NSC
 IF (MAXLIM(I).LT.0.0) THEN
 TYPE='SH. REACTOR'
 ELSE
 TYPE='SH. CAPACITOR'
 ENDIF
570 WRITE (6,580) BUSSC(I), TYPE, QSC(I), MAXLIM(I), MINLIM(I)
580 FORMAT (5X,A3,3X,A3,F8.3,3X,2(F8.3,3X))
570 CONTINUE
ENDIF
C
IF (NTC.NE.0) THEN
C
WRITE (6,100)
100 FORMAT ('/,,80(\,'#'),//,25X,'TRANSFORMER TAP CHANGERS',',/
 * ,80(\,'#'),//
 WRITE (6,101)
101 FORMAT (17X,'BETWEEN',13X,'TAP',7X,'TAP',9X,'LIMITS',
 * //,2X,'TAP ID.',5X,'BUS - BUS',8X,'LOCATIN',3X,
 * 'POSITION',2X,'(MAX.)',3X,'(MIN.)',//,1X,73(\,'#'),//
C
DO 1111 I=1,NTC
C
WRITE (6,110) I, TA(I), TB(I), TA(I), TAP(I), TMAX(I), TMIN(I)
110 FORMAT (2X,I2,10X,A8,2X,A8,3X,A8,3X,F6.4,3X,F6.4,3X,F6.4)
1111 CONTINUE
ENDIF
C
C***
C OUTPUT 'GEN.DAT' FOR EXPERT SYSTEM (GENERATION RE-SCHEDULING &
C VOLTAGE ANGLE ADJUSTMENT)
C***
OPEN(UNIT=7, FILE='GEN.DAT')

GN=0
DO 123 I=1, NBUS-1
PRSETT=REAL(GR(I+1))
IF(I.LE.NG) THEN
 GN=I
 GEN(I)=I+1
 WRITE(7,234) GN, B(I+1), PGMAX(I+1), PGMIN(I+1), PRSETT
ENDIF
IF(I.GT.NVBUS+1 .AND. PRSETT.GT.0.0) THEN
 GN=GN+1
 GEN(GN)=I+1
 WRITE(7,234) GN, B(I+1), PGMAX(I+1), PGMIN(I+1), PRSETT
ENDIF
234 FORMAT(I2,1X,A,1X,3(F8.4,1X))
123 CONTINUE
C
WRITE(7,*)'EOF-GEN'
C
CLOSE(7)

C
C***
C OUTPUT 'PFLOW.DAT' FOR:
C EXPERT SYSTEM (GENERATION RE-SCHEDULING)
C***
C
OPEN(UNIT=7, FILE='PFLOW.DAT')
C
DO 345 K=1,C
 DO 456 I=1, NBUS
 IF(LINE(K,1).EQ.B(I)) GO TO 567
456 CONTINUE
567 DO 678 J=1, NBUS
 IF(LINE(K,2).EQ.B(J)) GO TO 340
678 CONTINUE
340 PFLOW=REAL(SL(I,J))
 WRITE(7,341) K, LINE(K,1), LINE(K,2), PFLOW, FLIM(K)
341 FORMAT(I2,1X,A,1X,A,1X,F8.4,1X,F8.4)
345 CONTINUE
C
WRITE(7,*)'EOF-PFLOW'
C
CLOSE(7)
C
C***
C CALL SUBROUTINE 'SENSIT' (CALCULATES SENSITIVITY MATRIX FOR POWER SYS.)
C***
CALL SENSIT(NBUS, NLBUS, NVBUS, NTC, B, KVB, MVAB, TA)

CALL SUBROUTINE 'LSENS' (CALCULATES LINE LOADING SENS. MATRIX)
CALL LSENS (NBUS, NVBUS, NLBUS, KVB, MVAB, V, B, LAB, +C, LINE, GN, GEN)

RETURN
END

SUBROUTINE LBUS:
THIS SUB. IS USED BY THE SUB. (LFLOW) TO PERFORM
NECESSARY CALCULATIONS.

SUBROUTINE LBUS (COUNT, V, S, NBUS, ERROR, NLBUS, NVBUS
*, P, GL, B, NTC, TAP, T1, T2)
CHARACTER*10 B(30)
COMPLEX YB(30, 30), V(30), S(30), GL(30)
REAL THETA(30, 30), DELTA(30), SUM1, SUM2, VV(30), P(30), TAP(10)
REAL DP(30), DQ(30), ERROR, RL, IM, JJ(80, 80), JC(60, 60)
INTEGER NBUS, II, COUNT, NLBUS, NVBUS, TT, NTC, T1(10), T2(10)

COMMON /MAIN1/YB
COMMON /MAINS/THETA, DELTA
COMMON /MAINS/JJ
COMMON /MAINS/JC

TT=0
COUNT=0
DO 22 I=1, NBUS
22 VV(I)=CABS(V(I))
5 DO 2 I=2, NBUS
SUM1=0.0
SUM2=0.0
DO 3 J=1, NBUS
SUM1=SUM1+CABS(YB(I, J))*VV(J)*VV(I)*COS(-THETA(I, J))
* -DELTA(J)+DELTA(I))
SUM2=SUM2+CABS(YB(I, J))*VV(J)*VV(I)*SIN(-THETA(I, J))
* -DELTA(J)+DELTA(I))
3 CONTINUE

IF(NVBUS.NE.0.AND.I.GT.1.AND.I.LE.NVBUS+1) THEN
DP(I)=P(I)-SUM1-REAL(GL(I))

DQ(I)=0.0
ELSE
DP(I)=REAL(S(I))-SUM1
DQ(I)=AIMAG(S(I))-SUM2
ENDIF

C
2
CONTINUE
C
DO 4 II=2, NBUS
 IF(ABS(DP(II)) .LE. ERROR.AND. ABS(DQ(II)) .LE. ERROR) THEN
 IF(II.EQ.NBUS) THEN
 DO 44 J=2, N3US
 RL=VV(J)*COS(DELTA(J))
 IM=VV(J)*SIN(DELTA(J))
 V(J)=CMPLX(RL, IM)
 CONTINUE
 GO TO 11
 ENDIF
 GO TO 4
 ELSE
 CALL JACOB1(NBUS, VV, DP, DQ, NLBUS, NVBUS, TT
 *, B, NTC, TAP, T1, T2)
 C
 COUNT=COUNT+1
 GO TO 5
 ENDIF
4
CONTINUE
C
11
 TT=1
 CALL JACOB1(NBUS, VV, DP, DQ, NLBUS, NVBUS, TT
 *, B, NTC, TAP, T1, T2)
C
 RETURN
END

C
C***
C SUBROUTINE JACOB1:
C DETERMINES THE JACOBIAN MATRIX FOR L.FLOW STUDY
C***
C
SUBROUTINE JACOB1(NBUS, VV, DP, DQ, NLBUS, NVBUS,
* TT, B, NTC, TAP, T1, T2)
CHARACTER*10 B(30)
COMPLEX YB(30,30)
REAL JJ(80,80), DELTA(30), THETA(30,30), VV(30), BB(60)
REAL DV(30), DDELTA(30), DP(30), DQ(30), JC(60,60), VR, VI
REAL AA(30,30), TAP(10), JCC(60,60)
INTEGER NBUS, L, NLBUS, NVBUS, TT, NTC, T1(10), T2(10), N1

COMMON /MAIN1/YB
COMMON /MAIN3/THETA, DELTA
COMMON /MAINS/JJ
COMMON /MAINS/JCC

L=NBUS+1
DO 10 I=1, NBUS
 JJ(I,I)=0.0
 JJ(I,L)=0.0
 JJ(L,I)=0.0
 JJ(L,L)=0.0

DO 30 K=1, NBUS
 IF(K.NE.I) THEN
 JJ(I,I)=JJ(I,I) - VV(I) * VV(K) * CABS(YB(I,K))
 **SIN(DELTA(I) - DELTA(K) - THETA(I,K))
 JJ(I,L)=JJ(I,L) + VV(K) * CABS(YB(I,K)) * COS(DELTA(I) -
 * DELTA(K) - THETA(I,K))
 JJ(L,I)=JJ(L,I) + VV(I) * VV(K) * CABS(YB(I,K))
 * *COS(DELTA(I) - DELTA(K) - THETA(I,K))
 JJ(L,L)=JJ(L,L) + VV(K) * CABS(YB(I,K)) * SIN(DELTA(I) -
 * DELTA(K) - THETA(I,K))
 ENDIF
30 CONTINUE

JJ(I,L)=JJ(I,L) + 2 * VV(I) * CABS(YB(I,I)) * COS(THETA(I,I))
JJ(L,L)=JJ(L,L) - 2 * VV(I) * CABS(YB(I,I)) * SIN(THETA(I,I))

DO 20 J=1, NBUS
 IF(J.NE.I) THEN
 JJ(I,J)=VV(I) * VV(J) * CABS(YB(I,J))
 * *SIN(DELTA(I) - DELTA(J) - THETA(I,J))
 JJ(I,NBUS+J)=VV(I) * CABS(YB(I,J))
 * *COS(DELTA(I) - DELTA(J) - THETA(I,J))
 JJ(L,J)=-1*VV(I) * VV(J) * CABS(YB(I,J))
* *COS(Delta(I) - Delta(J) - Theta(I,J))

C

JJ(L,NBUS+J)=VY(I)*CABS(YB(I,J))

* *SIN(Delta(I) - Delta(J) - Theta(I,J))

C

ENDIF

20 CONTINUE

C

I=I+1

10 CONTINUE

C

DO 44 I=1,NBUS-1

44 BB(I)=DP(I+1)

DO 444 I=1,NLBUS

444 BB(NBUS-1+I)=DQ(NVBUS+I+1)

444 CONTINUE

DO 41 I=1,NBUS-1

41 DO 42 J=1,NBUS-1

42 JC(I,J)=JJ(I+1,J+1)

JCC(I,J)=JJ(I+1,J+1)

42 CONTINUE

41 CONTINUE

DO 43 I=1,NBUS-1,NVBUS

43 DO 45 J=1,NBUS-1

45 JC(NBUS-1+I,J)=JJ(NBUS+1+NBUSB+I,J+1)

JCC(NBUS-1+I,J)=JJ(NBUS+1+NBUSB+I,J+1)

45 CONTINUE

43 CONTINUE

DO 51 I=1,NBUS-1

51 DO 52 J=1,NLBUS

52 JC(I,NBUS-1+J)=JJ(I+1,NBUS+1+NBUSB+J)

JCC(I,NBUS-1+J)=JJ(I+1,NBUS+1+NBUSB+J)

52 CONTINUE

51 CONTINUE

DO 53 I=1,NLBUS

53 DO 54 J=1,NLBUS

54 JC(NBUS-1+I,NBUS-1+J)=JJ(NBUS+1+NBUSB+I,NBUS+1+NBUSB+J)

JCC(NBUS-1+I,NBUS-1+J)=JJ(NBUS+1+NBUSB+I,NBUS+1+NBUSB+J)

54 CONTINUE

53 CONTINUE

C

NN=2*(NBUS-1)-NVBUS

C

IF (TT.EQ.1) THEN

C

IF (NTC.NE.0) THEN

N1=2*NBUS

DO 60 I=1,N1

60 CONTINUE

C

DO 65 J=1,NTC

65 CONTINUE

JJ(I,N1+J)=0.0
DO 70 I=1,NTC
G1=ABS(REAL(YB(T1(I),T2(I))))/TAP(I)
B1=ABS(IMAG(YB(T1(I),T2(I))))/TAP(I)
C
JJ(T1(I),N1+I)=2*VV(T1(I))*(2*G1*TAP(I)+VV(T1(I)))*VV(T2(I))*
* (-G1*COS(Delta(T1(I))-Delta(T2(I))))+B1*SIN(Delta(T1(I)))-
* Delta(T2(I)))
C
JJ(T2(I),N1+I)=VV(T1(I))*VV(T2(I))*
* (-G1*COS(Delta(T2(I))-Delta(T1(I))))+B1*SIN(Delta(T2(I)))-
* Delta(T1(I)))
C
JJ(NBUS+T1(I),N1+I)=2*VV(T1(I))*(2*B1*TAP(I)+VV(T1(I)))*VV(T2(I))*
* (-B1*COS(Delta(T1(I))-Delta(T2(I))))-G1*SIN(Delta(T1(I)))-
* Delta(T2(I)))
C
JJ(NBUS+T2(I),N1+I)=VV(T1(I))*VV(T2(I))*
* (-B1*COS(Delta(T2(I))-Delta(T1(I))))-G1*SIN(Delta(T2(I)))-
* Delta(T1(I)))
C
70 CONTINUE
ENDIF
GO TO 1001
ENDIF
C
CALL FACTOR(JC,NN,BB)
C
DO 55 I=2,NBUS
DDELT(A(I)=BB(I-1)
DO 55 I=1,NLBUS
DV(I+NBUS+1)=BB(NBUS-1+I)
56 CONTINUE
C
DO 15 I=2,NBUS
DELTA(I)=DELTA(I)+DDELT(A(I)
C
DO 16 I=NBUS+2,NBUS
VV(I)=VV(I)+DV(I)
16 CONTINUE
1001 RETURN
END
C
**
C SUBROUTINE SENSIT:
C DETERMINES THE SENSITIVITY TABLE OF POWER SYSTEM
C**
C
SUBROUTINE SENSIT(NBUS,NLBUS,NVBUS,NTC,BBB,KVB,MVAB,TA)
CHARACTER*10 BBB(30),TA(10)
CHARACTER*15 COL(80),ROW(80)
INTEGER NBUS,NLBUS,NVBUS,N,N1,DIM,L,M,NN,MM,NTC,N2,NSCC,SC(20)
INTEGER SC1(20)
REAL SENS(80,80),A(1,60),B(1,30),J1(60,60)
REAL D(60,30),E(30,60),F(30,30),JC(60,60)
REAL A1(1,60),B1(1,30)
REAL D1(60,30),E1(30,60),F1(30,30)
REAL BB(1,30),FP(30,30),EE
REAL JJ(80,80),ANGSEN,MVAB,KVB

C COMMON /MAIN6/JJ
C COMMON /MAIN8/JC
C COMMON /MAIN12/NSCC,SC

C
NN=2*(NBUS-1)-NVBUS
N=2*NBUS
N1=NVBUS+1
N2=N1+NTC

C
L=NLBUS
M=NBUS-1
MM=M+L
EE=0.0001

C
DO 5 I=1,NBUS-1
A(1,I)=JJ(1,I+1)

C
DO 6 I=1,NBUS
A(1,NBUS-1+I)=JJ(1,NBUS+NVBUS+1+I)

C
DO 7 I=1,NVBUS+1
B(1,I)=JJ(1,NBUS+I)

C
IF(NTC.NE.0) THEN
DO 8 I=1,NTC
B(1,N1+I)=JJ(1,N+I)
ENDIF

C
DO 10 I=1,NBUS-1
DO 20 J=1,NVBUS+1
D(I,J)=JJ(I+1,NBUS+J)
20 CONTINUE
10 CONTINUE

C
IF(NTC.NE.0) THEN
DO 11 I=1,NBUS-1
DO 21 J=1,NTC
D(I,N1+J)=JJ(I+1,N+J)
21 CONTINUE
11 CONTINUE
ENDDIF

C
DO 30 I=1,NLBUS
DO 40 J=1,NVBUS+1
 D(NBUS-1+I,J)=JJ(NBUS+NVBUS+1+I,NBUS+J)
40 CONTINUE
30 CONTINUE
C
 IF(NTC.NE.0) THEN
 DO 31 I=1,NLBUS
 DO 41 J=1,NTC
 D(NBUS-1+I,NL+J)=JJ(NBUS+NVBUS+1+I,NL+J)
41 CONTINUE
31 CONTINUE
 ENDIF
C
 DO 50 I=1,NVBUS+1
 DO 60 J=1,NBUS-1
 E(I,J)=JJ(NBUS+I,J+1)
60 CONTINUE
50 CONTINUE
C
 DO 70 I=1,NVBUS+1
 DO 80 J=1,NLJBUS
 E(I,NBUS-1+J)=JJ(NBUS+I,NBUS+NVBUS+1+J)
80 CONTINUE
70 CONTINUE
C
 DO 90 I=1,NVBUS+1
 DO 95 J=1,NVBUS+1
 F(I,J)=JJ(NBUS+I,NBUS+J)
95 CONTINUE
90 CONTINUE
C
 IF(NTC.NE.0) THEN
 DO 91 I=1,NVBUS+1
 DO 96 J=1,NTC
 F(I,NL+J)=JJ(NBUS+I,NL+J)
96 CONTINUE
91 CONTINUE
 ENDIF
C
 CALL INVERT(JC,J1,NN)
C
 CALL MULMAT(A,J1,A1,1,NN,NN,1,NN,1,60,60,60,1,60)
C
 CALL MULMAT(A1,D,BB,1,NN,NN,N2,1,N2,1,60,60,30,1,30)
C
 CALL MULMAT(J1,D,D1,NN,NN,NN,N2,NN,N2,N2,60,60,30,60,30)
C
 CALL MULMAT(E,J1,E1,N1,NN,NN,N1,NN,N1,N1,30,60,60,60,30)
C
 CALL MULMAT(E,D1,FF,N1,NN,NN,N2,N1,N2,30,60,60,30,30)
C
 CALL SUBMAT(B,BB,B1,1,N2,1,30,1,30,1,30)
CALL SUBMAT(P, PF, FL, N1, N2, 30, 30, 30, 30, 30, 30)

DO 51 K = 1, NN
 SENS(1, K) = A1(1, K)
 DO 101 K = 1, NVBUS+1+NTC
 IF (K .LE. N1) THEN
 SENS(1, NN+K) = B1(1, K) * MVAB
 ENDIF
 ELSE
 SENS(1, NN+K) = B1(1, K) * MVAB
 ENDIF
 101 CONTINUE

DO 67 J = 1, NN
 DO 68 K = 1, NN
 IF (J .LE. M) THEN
 SENS(J+1, K) = J1(J, K) * 57.29578 / MVAB
 ENDIF
 ELSE
 SENS(J+1, K) = J1(J, K) / MVAB
 ENDIF

68 CONTINUE

67 CONTINUE

DO 100 J = 1, NN
 DO 110 K = 1, NVBUS+1+NTC
 IF (J .LE. M .AND. K .LE. N1) THEN
 SENS(J+1, NN+K) = -1 * D1(J, K) * 57.29578
 ENDIF
 ELSE
 SENS(J+1, NN+K) = -1 * D1(J, K) * 57.29578
 ENDIF

110 CONTINUE

100 CONTINUE

DO 120 J = 1, NVBUS+1
 DO 130 K = 1, NN
 SENS(NN+1+J, K) = E1(J, K)
 ENDIF

130 CONTINUE
CONTINUE

DO 140 J=1,NVBUS+1
DO 150 K=1,NVBUS+1+NTC
IF(K.LE.N1)THEN
SENS(NN+1+J,NN+K)=F1(J,K)*MVB
ENDIF

IF(K.GT.N1)THEN
SENS(NN+1+J,NN+K)=F1(J,K)*MVB
ENDIF

CONTINUE

CONTINUE

COL(1)='DP(//BBB(1)
DO 201 J=2,NBUS
COL(J)='DD(//BBB(J)

DO 202 J=1,NLBUS
COL(NBUS+J)='DVL(//BBB(N1+J)

DO 203 J=1,N1
COL(NBUS+NLBUS+J)='DQG(//BBB(J)

DO 210 J=1,NBUS-1
ROW(J)='DP(//BBB(J+1)

DO 220 J=1,NLBUS
ROW(NBUS-1+J)='DQL(//BBB(N1+J)

DO 230 J=1,N1
ROW(NBUS-1+NLBUS+J)='DVG(//BBB(J)

IF(NTC.NE.0)THEN
DO 240 J=1,NTC
ROW(NBUS-1+NBUSD+J)='DT(//TA(J)
ENDIF

SENS = COMPLETE SENSITIVITY MATRIX

C***
C OUTPUT 'SENSIT.DAT' FOR EXPERT SYSTEM (VOLTAGE & VAR CONTROL)
C***

OPEN (UNIT=7,FILE='SENSIT.DAT')

COL(1)='DP-SLK //BBB(1)
DO 301 J=2,NBUS
COL(J)='D-DELTA //BBB(J)

DO 302 J=1,NLBUS
COL(NBUS+J)='DV-LOAD' /BBB(N1+J)
C
DO 303 J=1,N1
 COL(NBUS+NLBUS+J)= 'DQ-GEN' /BBB(J)
C
DO 310 J=1,NBUS-1
 ROW(J)='DP' /BBB(J+1)
C
 L=0
 DO 320 J=1,NLUS
 ROW(NBUS-1+J)= 'DQ-LOAD' /BBB(N1+J)
 IF (L.LT.NSCC) THEN
 DO 315 K=1,NSCC
 IF (BBB(N1+J).EQ.BBB(SC(K))) THEN
 L=L+1
 SCL(L)=J
 ENDIF
 ENDF
 CONTINUE
 ENDIF
 ENDF
 DO 330 J=1,NLJS
 ROW(NBUS-1+NLJS+J)= 'DV-GEN' /BBB(J)
C
 IF (NTC.NE.0) THEN
 DO 340 J=1,NTC
 ROW(NBUS-1+NTC+J)= 'D-TAP' /TA(J)
 ENDF
 CONTINUE
 ENDF
 DO 402 K=1,NSCC
 DO 402 J=1,NLUS+NVBUS+1
 WRITE (7,502) CCL(J+NBUS),ROW(SCL(K)+NBUS-1)
 *,SENS(J+NBUS,SCL(K)+NBUS-1)
402 CONTINUE
502 FORMAT (2(A,1X),F10.6)
C
DO 400 K=1,N+NTC-NBUS-NLBUS
 DO 400 J=1,NLUS+NVBUS+1
 WRITE (7,500) CCL(J+NBUS),ROW(K+NBUS-1+NLBUS)
 *,SENS(J+NBUS,T+NBUS-1+NLBUS)
C
400 CONTINUE
 WRITE (7,*) 'EOF-SENSIT'
500 FORMAT (2(A,1X),F10.4)
 CLOSE (7)
C
C**
C OUTPUT 'ANGSEN.DAT' FOR EXPERT SYSTEM (VOLTAGE ANGLE ADJUSTMENT)
C**
OPEN (UNIT=7, FILE='ANGSEN.DAT')

DO 401 K=1, NVBUS
DO 401 J=1, NVBUS
ANGSEN=SENS(J+1, K)
WRITE(7,501)COL(J+1),ROW(K), ANGSEN
401 CONTINUE
WRITE(7,*) 'EOF-ANGSEN'
501 FORMAT(2(A,1X),F9.4)
CLOSE(7)
RETURN
END

**
SUBROUTINE " LSENS "
DETERMINE THE LINE FLOW SENSITIVITY MATRIX
**

SUBROUTINE LSENS(NBUS, NVBUS, NLBUS, KVB, MVAB, V, B, LAB, *NLINE, LINE, GN, GEN)

COMPLEX V(30), YB(30,30), YP(30,30)
CHARACTER B(30), LINE(50,2), LAB(30), S1(40,2)
REAL DELTA(30), THETA(30,30), H(60), SUM1, SUM2, VV(30)
REAL KVB, MVAB, RL, IM
REAL HH(40,30), H(30)
REAL JC(60,60)
INTEGER NBUS, NVBUS, NLBUS, NLINE, NN, KK, GN, GEN(20)

COMMON /MAIN1/YB
COMMON /MAIN2/YP
COMMON /MAIN5/THETA, DELTA
COMMON /MAIN8/JC
COMMON /LSENS1/HH, H

NN=NBUS-1+NLBUS
KK=NBUS-1

DO 55 L=1, NBUS
V(L)=V(L)/KVB
VV(L)=CABS(V(L))
55 CONTINUE

DO 5 K=1, NLLINE
DO 10 I=1, NBUS
IF(LINE(K,1).EQ.B(I)) GO TO 20
10 CONTINUE
20 DO 30 J=1,NBUS
 IF(LINE(K,2).EQ.B(J)) GO TO 40
30 CONTINUE

*** CALCULATIONS ***

40 DO 50 L=1,NN
 HH(L)=0.0
50 CONTINUE

IF(LAB(I).EQ.'SLK'.AND.LAB(J).EQ.'PV') THEN
 HH(J-1)=ABS(VV(I)*VV(J)*CABS(YB(I,J)))*SIN(Delta(I)-
 *Delta(J)-Theta(I,J))
 GO TO 1121
ENDIF

IF(LAB(I).EQ.'PV'.AND.LAB(J).EQ.'SLK') THEN
 HH(I-1)=-ABS(VV(I)*VV(J)*CABS(YB(I,J)))*SIN(Delta(I)-
 *Delta(J)-Theta(I,J))
 GO TO 1121
ENDIF

IF(LAB(I).EQ.'SLK'.AND.LAB(J).EQ.'FQ') THEN
 HH(J-1)=ABS(VV(I)*VV(J)*CABS(YB(I,J)))*SIN(Delta(I)-
 *Delta(J)-Theta(I,J))

 HH(NBUS-2-NVBUS+J)=ABS(VV(I)*CABS(YB(I,J)))*COS(Delta(I)-
 *Delta(J)-Theta(I,J))

 GO TO 1121
ENDIF

IF(LAB(I).EQ.'FQ'.AND.LAB(J).EQ.'SLK') THEN
 HH(I-1)=-ABS(VV(I)*VV(J)*CABS(YB(I,J)))*SIN(Delta(I)-
 *Delta(J)-Theta(I,J))

 HH(NBUS-2-NVBUS+J)=ABS(VV(J)*CABS(YB(I,J)))*COS(Delta(I)-
 *Delta(J)-Theta(I,J)) - 2*ABS(VV(I)*CABS(YB(I,J)))*COS(Theta(I,J))

 GO TO 1121
ENDIF

IF(LAB(I).EQ.'PV'.AND.LAB(J).EQ.'FQ') THEN
 HH(I-1)=-ABS(VV(I)*VV(J)*CABS(YB(I,J)))*SIN(Delta(I)-
 *Delta(J)-Theta(I,J))
\[
\begin{align*}
\text{HH}(J-1) &= \text{ABS}(Vv(I) \times Vv(J) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(\text{NBUS} - 2 \times \text{NBUS} + J) &= \text{ABS}(Vv(I) \times \text{CABS}(Yb(I, J))) \times \cos(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{GO TO 1121} \\
\text{ENDIF} \\
\text{IF} (\text{LAB}(I) . \text{EQ}. '\text{PQ}' . \text{AND} . \text{LAB}(J) . \text{EQ}. '\text{PV}') \text{THEN} \\
\text{HH}(I-1) &= -\text{ABS}(Vv(J) \times Vv(I) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(J-1) &= \text{ABS}(Vv(I) \times Vv(J) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(\text{NBUS} - 2 \times \text{NBUS} + I) &= \text{ABS}(Vv(J) \times \text{CABS}(Yb(I, J))) \times \cos(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) - 2 \times \text{ABS}(Vv(I) \times \text{CABS}(Yb(I, J))) \times \cos(\text{THETA}(J, I)) \\
\text{GO TO 1121} \\
\text{ENDIF} \\
\text{IF} (\text{LAB}(I) . \text{EQ}. '\text{PQ}' . \text{AND} . \text{LAB}(J) . \text{EQ}. '\text{PQ}') \text{THEN} \\
\text{HH}(I-1) &= -\text{ABS}(Vv(J) \times Vv(I) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(J-1) &= \text{ABS}(Vv(I) \times Vv(J) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(\text{NBUS} - 2 \times \text{NBUS} + I) &= \text{ABS}(Vv(J) \times \text{CABS}(Yb(I, J))) \times \cos(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) - 2 \times \text{ABS}(Vv(I) \times \text{CABS}(Yb(I, J))) \times \cos(\text{THETA}(J, I)) \\
\text{HH}(\text{NBUS} - 2 \times \text{NBUS} + J) &= \text{ABS}(Vv(I) \times \text{CABS}(Yb(I, J))) \times \cos(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{GO TO 1121} \\
\text{ENDIF} \\
\text{IF} (\text{LAB}(I) . \text{EQ}. '\text{PV}' . \text{AND} . \text{LAB}(J) . \text{EQ}. '\text{PV}') \text{THEN} \\
\text{HH}(I-1) &= -\text{ABS}(Vv(J) \times Vv(I) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{HH}(J-1) &= \text{ABS}(Vv(I) \times Vv(J) \times \text{CABS}(Yb(I, J))) \times \sin(\Delta t(I) - \text{DETA}(J) - \text{THETA}(I, J)) \\
\text{GO TO 1121} \\
\text{ENDIF}
\end{align*}
\]
CALL LSENSX(NN,I,J,B,NBUS,NVBUS,NLBUS)

B1(K,1)=B(I)
B1(K,2)=B(J)
DO 11 L=1,KK
11 HH1(K,L)=H(L)

CONTINUE

**
OUTPUT 'LSENSIT.DAT' FOR EXPERT SYSTEM (GENERATION RE-SCHEDULING)
**
OPEN(UNIT=7,FILE='LSENSIT.DAT')

DO 222 I=1,GN
DO 333 J=1,NLINE
K=GEN(I)-1
WRITE(7,444)J,B(GEN(I)),HH1(J,K)
333 CONTINUE
222 CONTINUE
WRITE(7,*)'EOF-LSENSIT'
444 FORMAT(I2,1X,A,1X,F8.4)
CLOSE(7)

RETURN
END

**
SUBROUTINE LSENSX
**
SUBROUTINE LSENSX(NN,I,J,B,NBUS,NVBUS,NLBUS)

CHARACTER*10 LAB(30),B(30)
REAL HH(60),HH1(60,30),H(30),BB(4)
REAL E(60),JC(60,60),BB2(4),JJ(60,60)
INTEGER NBUS,NVBUS,NLBUS,NN,KK

COMMON /LSENS1/HH,H
COMMON /MAIN8/JC

DO 222 L=1,NBUS-1
DO 222 L=1,NBUS
DO 800 M=1,NN
800 E(M)=0.0
E(L)=1.0
C
DO 960 M=1,NN
DO 970 N=1,NN
JJ(M,N)=JC(M,N)
970 CONTINUE
960 CONTINUE
CALL FACTOR(JJ,NN,E)
DO 980 M=1,NN
980 HH1(M,L)=E(M)
C
222 CONTINUE
KK=NBUS-1
C
CALL MULMAT1(HH,HH1,H,NN,NN,NN,KK,KK)
C
RETURN
END

C**
C SUBROUTINE FACTOR:
C**
C
SUBROUTINE FACTOR(JJ,NN,BB)
REAL JJ(60,60),BB(60)
INTEGER NN
CALL LUG(JJ,NN)

CALL SOLVE(JJ,NN,BB)

RETURN
END

C**
C
SUBROUTINE LUG(JJ,NN)
REAL JJ(60,60)
IF (NN.EQ.1)RETURN
NM1=NN-1
DO 10 K=1,NM1
KP1=K+1
DO 10 J=KP1,NN
T=JJ(K,J)/JJ(K,K)
JJ(K,J)=T
DO 10 I=KP1,NN
JJ(I,J)=JJ(I,J)-T*JJ(I,K)
10 RETURN
END
SUBROUTINE SOLVE(JJ,NN,BB)
C
C* ROUTINE SOLVES A.X=B WITH RESULT X RETURNED IN B WHICH IS
C* DESTROYED ON IN INPUT A CONTAINS LU FACTORS OBTAINED FROM LUG,
C* LROR OR CROUT. IT HAS DIMENSION N WITH THE ABSOLUTE ROW DIMENSION
C* OF A BEING LA IN THE CALLING PROGRAMME.
C
REAL JJ(60,60),BB(60)
C
C* FORWARD SUBSTITUTION
C
 BB(1)=BB(1)/JJ(1,1)
 IF (NN.EQ.1)RETURN
 DO 20 I=2,NN
 T=BB(I)
 IM1=I-1
 DO 10 J=1,IM1
 T=T-JJ(I,J)*BB(J)
 10 BB(I)=T/JJ(I,I)
 20 CONTINUE
C
C* BACK SUBSTITUTION
C
 NM1=NN-1
 DO 40 II=1,NM1
 I=NN-II
 IP1=I+1
 T=BB(I)
 DO 30 J=IP1,NN
 T=T-JJ(I,J)*BB(J)
 30 BB(I)=T
 40 CONTINUE
RETURN
END
C
C***
C SUBROUTINE SUBMAT(C=A-B)

C
SUBROUTINE SUBMAT(A,B,C,NR,NC,A1,A2,B1,B2,C1,C2)
INTEGER NR,NC,A1,A2,B1,B2,C1,C2
REAL A(A1,A2),B(B1,B2),C(C1,C2)
C
DO 10 I=1,NR
 DO 20 J=1,NC
 C(I,J)=A(I,J)-B(I,J)
 20 CONTINUE
10 CONTINUE
C
RETURN
END
C
C SUBROUTINE MULMAT(C=A*B)
C**
C
C SUBROUTINE MULMAT(A,B,C,NRA,NCA,NRB,NCB,NRC,NCC,A1,A2,B1,B2
* ,C1,C2)
INTEGER NRA,NCA,NRB,NCB,NRC,NCC,A1,A2,B1,B2,C1,C2
REAL A(A1,A2),B(B1,B2),C(C1,C2)
C
DO 10 I=1,NRC
DO 20 J=1,NCC
C(I,J)=0.0
DO 30 K=1,NRB
C(I,J)=C(I,J)+A(I,K)*B(K,J)
30 CONTINUE
20 CONTINUE
10 CONTINUE
RETURN
END

C**
C
C SUBROUTINE MULMAT1(C=A*B)
C**
C
C SUBROUTINE MULMAT1(A,B,C,NCA,NRB,NCB,NCC)
INTEGER NCA,NRB,NCB,NCC
REAL A(60),B(60,30),C(30)
C
DO 10 I=1,NCC
C(I)=0.0
DO 30 K=1,NRB
C(I)=C(I)+A(K)*B(K,I)
30 CONTINUE
10 CONTINUE
RETURN
END

C**
C
C SUBROUTINE INVERT(B=INV(A))
C**
C
C SUBROUTINE INVERT(A,B,N)
REAL A(60,60),B(60,60)
DO 10 I=1,N
DO 15 J=1,N
B(I,J)=A(I,J)
15 CONTINUE
10 CONTINUE
C
DO 1 IP=1,N
DO 2 IR=1,N

IF(IR.EQ.IP)GO TO 2
DO 3 IC=1,N
IF(IC.EQ.IP)GO TO 3
B(IR,IC)=B(IR,IC)-(B(IR,IP)*B(IP,IC)/B(IP,IP))
3 CONTINUE
2 CONTINUE
B(IP,IP)=-1./B(IP,IP)
DO 4 I=1,N
IF(I.EQ.IP)GO TO 4
B(I,IP)=B(I,IP)*B(IP,IP)
B(IP,I)=B(IP,I)*B(IP,IP)
4 CONTINUE
1 CONTINUE
DO 5 IR=1,N
DO 5 IC=1,N
5 B(IR,IC)=-B(IR,IC)
RETURN
END
C
C**
C END OF THE PROGRAM
C**
C
APPENDIX - B

COMPUTER LISTING OF

THE PROTOTYPE E.S.
APPENDIX - B.1

COMPUTER LISTING FOR KB OF

VOLTAGE & VAR ADJUSTMENT PROCESS
(defglobal ;/ GLOBAL VARIABLES
 count = 1
 countt = 0
 counttl = 0
 max-sen = 0.0
 max-cont = fyزاد
 max-dev = 0.0
 bus-dev = fyز
 max-type = type
 max-dev = 0.0
 g-count = 0
 old-bus = fyز
 old-busq = fyز
 max-dsr1 = 0.0
 max-dsr2 = 0.0)

(deftemplate sensit ;/ DATA BASE FOR SENSITIVITY COEFFICIENTS
 (slot dep-var (default ?NONE))
 (slot bus-name (default ?NONE))
 (slot ctrl-var (default ?NONE))
 (slot ctrl-loc (default ?NONE))
 (slot sen-fact (default ?NONE)))

(deftemplate control ;/ DATA BASE FOR CONTROL ELEMENTS
 (slot ctrl-num (default ?NONE))
 (slot location (default ?NONE))
 (slot ctrl-typ (default ?NONE))
 (slot sec-term (default ?NONE))
 (slot max-lim (default ?NONE))
 (slot min-lim (default ?NONE))
 (slot pr-set (default ?NONE))
 (slot ch-pr-st (default ?NONE))
 (slot ggmax (default ?NONE))
 (slot ggmin (default ?NONE))
 (slot prior (default ?NONE)))

(deftemplate in-state ;/ DATA BASE FOR INITIAL L. FLOW RESULTS
 (slot bus-name (type SYMBOL) (default ?NONE))
 (slot bus-type (type SYMBOL) (default ?NONE))
 (slot bus-volt (default ?NONE))
 (slot q-gen (default ?NONE))
 (slot pr-dev (type NUMBER) (default 0))
 (slot priorty (type NUMBER) (default 0))
 (slot seq (type NUMBER) (default 0)))
(defrule open-file-initial ;This rule opens the file which contains
 (initial-fact) ;the initial L. Flow results
=>
 (open "initial.dat" initial "r")
 (open "ctrl.dat" ctrl "r")
 (assert (read-file-initial)
 (last-round-in)
 (last-last-r)
 (read-file-ctrl)
 (nbus 0)
 (nbus 0)
 (ngen 0)))

(deffrule read-file-initial ;This rule reads the initial L. Flow
 (nbus <= (nbus ?nbus))
 (nbus <= (nbus ?nbus))
 (read-initial <= (read-file-initial))
=>
 (retract ?read-initial)
 (bind ?bus-name (read initial))
 (bind ?bus-type (read initial))
 (bind ?bus-volt (read initial))
 (bind ?p-gen (read initial))
 (bind ?q-gen (read initial))
 (bind ?p-load (read initial))
 (bind ?q-load (read initial))
 (if (neq ?bus-name EOF-INITIAL)
 then
 (bind ?pr-dev 0.0)
 (retract ?nbus)
 (assert (nbus (+ ?nbus 1)))
 (if (eq ?bus-type PQ)
 then
 (if (> ?bus-volt 1.05)
 then
 (bind ?pr-dev (- ?bus-volt 1.05))
 (if (< ?bus-volt 0.95)
 then
 (bind ?pr-dev (- ?bus-volt 0.95)))
 (if (and (<= ?bus-volt 1.05) (> ?bus-volt 0.95))
 then
 (bind ?pr-dev 0.0))
 (retract ?nbus)
 (assert (nbus (+ ?nbus 1)))
 (assert (in-state ?bus-name ?bus-name) ?bus-type ?bus-type)
 (bus-volt ?bus-volt)
 (q-gen ?q-gen) (pr-dev ?pr-dev)))
 (assert (read-file-initial)))
);close 'if
(if (eq ?bus-name EOF-INITIAL)
then
(assert (EOF-INITIAL))
(close initial)) ; close the file

(defrule read-file-ctrlit

?read-ctrl <- (read-file-ctrl)

?ngen <- (ngen ?ngen)

=>

(retract ?read-ctrl)

(bind ?ctrl-num (read ctrl))

(bind ?location (read ctrl))

(bind ?ctrl-typ (read ctrl))

(bind ?sec-term (read ctrl))

(bind ?max-lim (read ctrl))

(bind ?min-lim (read ctrl))

(bind ?pr-set (read ctrl))

(bind ?ch-pr-st (read ctrl))

(bind ?qgmax (read ctrl))

(bind ?qgmin (read ctrl))

(if (neq ?ctrl-num EOF-CTRL)
then
(if (eq ?ctrl-typ GV)
then
(retract ?ngen)
(assert (ngen =(+ ?ngen 1))))
(assert (contrl (ctrl-num ?ctrl-num) (location ?location)
(ctrl-typ ?ctrl-typ) (sec-term ?sec-term)
(max-lim ?max-lim)
(min-lim ?min-lim) (pr-set ?pr-set)
(ch-pr-st ?ch-pr-st)
(qgmax ?qgmax) (qgmin ?qgmin) (prior 1))
(assert (read-file-ctrl))
)
;if'
(if (eq ?ctrl-num EOF-CTRL)
then
(assert (EOF-CTRL))
(assert (q-dev-check))
(close ctrl)))))

(defrule qgen-violation ;/ THIS RULE CHECKS VIOLATION IN Q-GENERATION

?ngen <- (ngen ?ngen)

?qg-dev <- (q-dev-check)

?q-gener <- (in-state (bus-name ?bus-name)
(bus-type SLK|PV)
(q-gen ?q-gen)
(pr-dev ?pr-dev) (seq 0))

?ctrl <- (control (location ?bus-name)
(ctrl-typ GV)
(qgmax ?qgmax) (qgmin ?qgmin))
(test (or (< ?q-gen ?qmin)
 (> ?q-gen ?qmax)))

=> (retract ?qq-dev)
 (bind ?*g-count* (+ ?*g-count* 1))
 (if (< ?q-gen ?qmin)
 then
 (bind ?pr-dev (- ?q-gen ?qmin))
 (if (> ?q-gen ?qmax)
 then
 (bind ?pr-dev (- ?q-gen ?qmax))
 (if (and (>= ?q-gen ?qmin) (<= ?q-gen ?qmax))
 then
 (bind ?pr-dev 0.0))
 (modify ?q-gen-er (pr-dev ?pr-dev) (seq 1))
 (if (> ?ngen ?*g-count*)
 then
 (assert (q-dev-check))
)
)
)
 ; close 'if'
 ; close the rule

(defrule volt-violation-check
 ?initial <- (initial-fact)
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-type PQ) (bus-volt ?bus-volt)
 (pr-dev ?pr-dev&0.0))

=> (retract ?initial)
 (assert (violation-exist)))

(defrule qgen-violation-check
 ?initial <- (initial-fact)
 ?q-gen <- (in-state (bus-name ?bus-name)
 (bus-type SLK|PV)
 (q-gen ?q-gen)
 (pr-dev ?pr-dev&0.0))

=> (retract ?initial)
 (assert (violation-exist)))

(defrule print-no-violation
 (declare (salience -5))
 (not (violation-exist))

=> ; limits
 (printout t " THERE IS NO VIOLATIONS IN LOAD BUS VOLTAGES AND"
(defrule open-file-violation
 (violation-exist)
 =>
 (open "sensit.dat" sensit "r")
 (assert (read-file-sensit)))

;This rule opens the two files
;which contains the Sensitivity
;Factors and the Control Equipment Data

(defrule read-file-sensit
 ?read-sens <- (read-file-sensit)
 =>
 (retract ?read-sens)
 (bind ?dep-var (read sensit))
 (bind ?bus-name (read sensit))
 (bind ?ctrl-var (read sensit))
 (bind ?ctrl-loc (read sensit))
 (bind ?sen-fact (read sensit))
 (if (neq ?dep-var EOF-SENSIT)
 then
 (assert (sensit (dep-var ?dep-var) (bus-name ?bus-name)
 (ctrl-var ?ctrl-var)
 (ctrl-loc ?ctrl-loc) (sen-fact ?sen-fact)))
 (assert (read-file-sensit))
)
 ;close 'if'
 (if (eq ?dep-var EOF-SENSIT)
 then
 (assert (EOF-SENSIT))
 (close sensit)))

(defrule under-voltage-check-1 ;/ This rule & the next one identify the
 ;/ most under voltage bus
 (EOF-INITIAL)
 (EOF-SENSIT)
 (EOF-CTRL)
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-type PQ)
 (bus-volt ?bus-volt<:< ?bus-volt 0.95))
 (priorty ?priorit&0))

 (not (update-1))
 (not (last-round))
 =>
 (if (eq ?*old-bus* ?bus-name) ; 'if-1'
 then
 (assert (max-under-volt))
 (assert (update-1))
 (bind ?*bus-dev* ?bus-name)
 else
 (assert (max-under-volt))
 (bind ?pr-dev (- ?bus-volt 0.95))

)}
(bind ?*max-dev* (min ?*max-dev* ?pr-dev))
(if (= ?*max-dev* ?pr-dev)
 then
 (bind ?*bus-dev* ?bus-name)
) ; close 'if'
) ; close 'if-1'
) ; close the rule

(defrule under-voltage-check-2
 (declare (salience -1))
 ?maxx <- (max-under-volt)
 =>
 (retract ?maxx)
 (bind ?bus-name ?*bus-dev*)
 (bind ?*max-dev* 0.0)
 (bind ?*bus-dev* fyh)
 (assert (under-volt-1 ?bus-name)
 {control-bus ?bus-name type 0}
 (maxx 0.0)
 (update-1)))

(defrule over-voltage-check-1 ;/ This rule & the next one identify the ;/ most over voltage bus
 (declare (salience -50))
 (EOF-INITIAL)
 (EOF-SENSIT)
 (EOF-CTRL)
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-type PQ)
 (bus-volt ?bus-volt&:(> ?bus-volt 1.05))
 (priority ?priority&0))
 (not (update-1))
 (not (last-run))
 =>
 (if (eq ?*old-bus* ?bus-name) ; 'if-1'
 then
 (assert (max-over-volt))
 (assert (update-1))
 (bind ?*bus-dev* ?bus-name)
 else
 (assert (max-over-volt))
 (bind ?pr-dev (- ?bus-volt 1.05))
 (bind ?*max-dev* (max ?*max-dev* ?pr-dev))
 (if (= ?*max-dev* ?pr-dev)
 then
 (bind ?*bus-dev* ?bus-name)
) ; close 'if'
) ; close 'if-1'
(defrule over-voltage-check-2
 (declare (salience -51))
 ?maxx <- (max-over-volt)
 =>
 (retract ?maxx)
 (bind ?bus-name ?*bus-dev*)
 (bind ?*max-dev* 0.0)
 (bind ?*bus-dev* fyh)
 (assert (over-volt ?bus-name)
 (control-bus ?bus-name type 0)
 (maxx 3.0)
 (update-1)))

(defrule under-qgen-check-1 ;/ This rule & the next one identify the
 ;/ most under q-gen. bus
 (declare (salience -60))
 (EOF-INITIAL)
 (EOF-SENSIT)
 (EOF-CTRL)
 ?qgen <- (in-state (bus-name ?bus-name)
 (bus-type SLK|PV)
 (q-gen ?q-gen) (priority ?priority&0))
 ?ctrl <- (control (location ?bus-name)
 (ctrl-type GV)
 (qgmin ?qgmin))
 (not (update-1))
 (not (last-round))
 (test (< ?q-gen ?qgmin))
 =>
 (if (eq ?*old-bus* ?bus-name) ; 'if-1'
 then
 (assert (max-under-qgen))
 (assert (update-1))
 (bind ?*bus-dev* ?bus-name)
 else
 (assert (max-under-qgen))
 (bind ?pr-dev (- ?q-gen ?qgmin))
 (bind ?*max-dev* (min ?*max-dev* ?pr-dev))
 (if (= ?*max-dev* ?pr-dev)
 then
 (bind ?*bus-dev* ?bus-name)
) ; close 'if'
) ; close 'if-1'
) ; close the rule
(defrule under-qgen-check-2
 (declare (salience -61))
 ?maxx <- (max-under-qgen)
=>
 (retract ?maxx)
 (bind ?bus-name ?*bus-dev*)
 (bind ?*max-dev* 0.0)
 (bind ?*bus-dev* fyh)
 (assert (under-qgen ?bus-name)
 (control-bus ?bus-name type 0)
 (update-1)))

(defrule over-qgen-check-1 ;/ This rule & the next one identify the
 ;/ most over q-gen. bus
 (declare (salience -62))
 (EOF-INITIAL)
 (EOF-SENSIT)
 (EOF-CTRL)
 ?qgen <- (in-state (bus-name ?bus-name)
 (bus-type SLK|PV)
 (q-gen ?q-gen) (priority ?priority&0))
 ?ctrl <- (control (location ?bus-name)
 (ctrl-type GV)
 (qgmax ?qgmax))
 (not (update-1))
 (not (last-round))
 (test (> ?q-gen ?qgmax))
=>
 (if (eq ?*old-bus* ?bus-name) ; 'if-1'
 then
 (assert (max-over-qgen))
 (assert (update-1))
 (bind ?*bus-dev* ?bus-name)
 else
 (assert (max-over-qgen))
 (bind ?pr-dev (- ?q-gen ?qgmax))
 (bind ?*max-dev* (max ?*max-dev* ?pr-dev))
 (if (= ?*max-dev* ?pr-dev)
 then
 (bind ?*bus-dev* ?bus-name)
) ; close 'if'
) ; close 'if-1''
) ; close the rule

(defrule over-qgen-check-2
 (declare (salience -63))
 ?maxx <- (max-over-qgen)
(retract ?maxx)
(bind ?bus-name ?*bus-dev*)
(bind ?*max-dev* 0.0)
(bind ?*bus-dev* fyh)
(assert (over-qqen ?bus-name)
 (control-bus ?bus-name type 0)
 (update-1))

(defrule last-round ;; This rule & next rules reset the buses
 (declare (salience -63));/ for last round of correction process
 (last-round-in)
 ?initial <- (in-state (bus-name ?bus-name)
 (pr-dev ?pr-dev&"0.0")
 (priorty ?priorty&1))
=>
 (assert (last-round))
 (modify ?initial (priorty 0)))

(defrule confirm-last-round
 (declare (salience -64))
 ?lasti <- (last-round-in)
 ?last <- (last-round)
=>
 (bind ?*old-bus* fyh)
 (retract ?last)
 (retract ?lasti)
 (assert (last-round-ok)))

(defrule new-bus-check ;; This rule checks for new violation bus
 (declare (salience 5))
 (or
 ?buss <- (under-volt-1 ?bus-name)
 ?buss <- (over-volt ?bus-name)
 ?buss <- (under-qgen ?bus-name)
 ?buss <- (over-qgen ?bus-name)
) ; close 'or'
 ?ctrl <- (control (location ?ctrl-loc)
 (prior ?prior&"0"))
=>
 (if (neq ?bus-name ?*old-bus*)
 then
 (modify ?ctrl (prior 0))
) ; close 'if'
) ; close the rule
(defrule change-bus-priority-v ;/ This rule changes the old load bus if the
(declare (salience -42)) ;/ violation can not be eliminated
(or
?under-v <- (under-volt-1 ?bus-name)
?under-v <- (over-volt-1 ?bus-name)
) ; close 'or'
?cont <- (control-bus ? ? ?)
?max1 <- (maxx 0.0)
$update <- (update-1)
?initial <- (in-state (bus-name ?bus-name)
(priority ?priority))

=>
(retract ?under-v)
(retract ?cont)
(retract ?max1)
(retract ?update)
(modify ?initial (priority 1))
); close the rule

(defrule change-bus-priority-q ;/ This rule changes the old gen. bus if the
 ;/ violation can not be eliminated
(declare (salience -62))
(or
?under-v <- (under-qgen ?bus-name)
?under-v <- (over-qgen ?bus-name)
) ; close 'or'
?cont <- (control-bus ? ? ?)
?max1 <- (maxx 0.0)
$update <- (update-1)
?initial <- (in-state (bus-name ?bus-name)
(priority ?priority))

=>
(retract ?under-v)
(retract ?cont)
(retract ?max1)
(retract ?update)
(modify ?initial (priority 1))
); close the rule

(defrule under-voltage-local-reactor ;This rule adjusts the load
 ?under-volt-1 <- (under-volt-1 ?bus-name) ;bus voltage if its value
 ;below the limit, using local
 ?control-bus <- (control-bus ?ctrl ?type&"GV 0") ;Shunt Reactor(s), if exist
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-volt ?bus-volt&:(< ?bus-volt 0.95)))
 ?control <- (control (ctrl-num ?ctrl-num)
 (location ?ctrl)
 (ctrl-typ ?ctrl-typ&SR)
(max-lim ?max-lim)
(min-lim ?min-lim)
(pr-set ?pr-set & (< ?pr-set ?min-lim))
(ch-pr-st ?ch-pr-st)
(prior ?prior&0))

?sensit <- (sensit (dep-var DV-LOAD))
(bus-name ?bus-name)
(ctrl-var ?ctrl-var&DQ-LOAD)
(ctrl-loc ?ctrl)
(sen-fact ?sen-fact))

=>

(bind ?*old-bus* ?bus-name)
(retract ?under-volt-l)
(retract ?contro1-bus)
(bind ?d-volt (- 1.0 ?bus-volt))
(if (= ?d-sr (- ?min-lim ?pr-set)) ; if-2
then
(if (neq ?ch-pr-st 0.0) ; if-3
then
(bind ?nstep-rq (/ ?d-sr ?ch-pr-st))
(bind ?nstep-rq (round ?nstep-rq))
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-sstage-la))
(assert (next-sstage-lb))
else ; of 'if-3'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-sstage-la))
(assert (next-sstage-lb))
);close 'if-3'
else ; of 'if-2'
(if (neq ?ch-pr-st 0.0) ; if-5
then
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-sstage-la))
(assert (next-sstage-lb))
else ; of 'if-5'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-sstage-la))
(assert (next-sstage-lb))
);close 'if-5'
);close 'if-2'
);close the rule
(defrule over-voltage-local-reactor
 (?under-volt-1 <- (over-volt ?bus-name) ; This rule adjusts the load
 (?control-bus <- (control-bus ?ctrl ?type="GV 0") ; Shunt Reactor(s), if exist
 (?voltage <- (in-state (bus-name ?bus-name)
 (bus-volt ?bus-volt&:(> ?bus-volt 1.05)))
 (?control <- (control (ctrl-num ?ctrl-num)
 (location ?ctrl)
 (ctrl-typ {?ctrl-typ&SR})
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set&:(> ?pr-set ?max-lim))
 (ch-pr-st ?ch-pr-st)
 (prior ?prior&0))
 (?sensit <- (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&DQ-LOAD)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))
)
 =>
 (bind ?*old-bus* ?bus-name)
 (retract ?under-volt-1)
 (retract ?control-bus)
 (bind ?d-volt (- 1.05 ?bus-volt))
 (if (>= ?d-sr (- ?max-lim ?pr-set)) ; if-2
 then
 (if (neq ?ch-pr-st 0.0) ; if-3
 then
 (bind ?nstep-rq (/ ?d-sr ?ch-pr-st))
 (bind ?nstep-rq (round ?nstep-rq))
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
) ; close 'if-3'
 else ; of 'if-3'
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
) ; close 'if-2'
 (if (neq ?ch-pr-st 0.0) ; if-5
 then
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
) ; close 'if-2'
else ; of 'if-5'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
) ;close 'if-5'
) ;close 'if-2'
) ;close the rule

(defrule under-voltage-local-capacitor
(declare (salience -5))
;This rule adjusts the load
;bus voltage if its value
;below the limit ,using local
?under-volt-1 <- (under-volt-1 ?bus-name) ;Shunt Capacitor(s),if exist
?control-bus <- :control-bus ?ctrl ?type="GV 0|1)
?voltage <- (in-state (bus-name ?bus-name)
(bus-volt ?bus-volt&:(< ?bus-volt 0.95)))
?control <- (control (ctrl-num ?ctrl-num)
(location ?ctrl)
(ctrl-typ ?ctrl-typ&SC)
(max-lim ?max-lim)
(min-lim ?min-lim)
(pr-set ?pr-set&:(< ?pr-set ?max-lim))
(ch-pr-st ?ch-pr-st)
(prior ?prior&0))
?sensit <- (sensit (dep-var DV-LOAD)
(bus-name ?bus-name)
(ctrl-var ?ctrl-var&DQ-LOAD)
(ctrl-loc ?ctrl)
(sen-fact ?sen-fact))

=>
(bind ?*old-bus* ?bus-name)
(retract ?under-volt-1)
(retract ?control-bus)
(bind ?d-volt (- 1.0 ?bus-volt))
(if (<= ?d-sr (- ?max-lim ?pr-set)) ; if-2
then
(if (neq ?ch-pr-st 0.0) ; if-3
then
(bind ?nstep-rq (/ ?d-sr ?ch-pr-st))
(bind ?nstep-rq (round ?nstep-rq))
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
else ; of 'if-3'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
) ; close 'if-3'
 else ; of 'if-2'
 (if (neq ?ch-pr-st 0.0) ; if-5
 then
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
 else ; of 'if-5'
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
) ; close 'if-5'
) ; close 'if-2'
) ; close the rule

(defun over-voltage-local-capacitor
 (declare (salience -5))
 ; This rule adjusts the load
 ; bus voltage if its value
 ; above the limit , using local
 ; Shunt Capacitor(s), if exist
 (defparameter ?under-volt-1 (over-volt ?bus-name))
 (defparameter ?control-bus (control-bus ?ctrl ?type & : GV 0 1))
 (defparameter ?voltage (in-state (bus-name ?bus-name)
 (bus-volt ?bus-volt & : (> ?bus-volt 1.05))))
 (defparameter ?control (control (ctrl-num ?ctrl-num)
 (location ?ctrl)
 (ctrl-typ ?ctrl-typ & SC)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set & : (> ?pr-set ?min-lim))
 (ch-pr-st ?ch-pr-st)
 (prior ?prior & 0)))
 (defparameter ?sensit (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var & DQ-LOAD)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact)))

 =>
 (bind *old-bus* ?bus-name)
 (retract ?under-volt-1)
 (retract ?control-bus)
 (bind ?d-volt (1 05 ?bus-volt))
 (if (> ?d-sr (- ?min-lim ?pr-set)) ; if-2
 then
 (if (neq ?ch-pr-st 0.0) ; if-3
 then
 (bind ?nstep-rq (/ ?d-sr ?ch-pr-st))
 (bind ?nstep-rq (round ?nstep-rq))
 else
 (bind ?nstep-rq (round ?nstep-rq))
 else
 (bind ?nstep-rq (round ?nstep-rq))
)) ; close 'if-3'
 else
 (bind ?nstep-rq (round ?nstep-rq))
) ; close 'if-2'
) ; close the rule
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
else ; of 'if-3'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
) ; close 'if-3'
else ; of 'if-2'
(if (neq ?ch-pr-st 0.0) ; if-5
then
(bind ?nstep-av (integer ((/ - (min-lim ?pr-set) ?ch-pr-st))))
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
else ; of 'if-5'
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
) ; close 'if-5'
) ; close 'if-2'
) ; close the rule

(defrule under-voltage-local-tap-changer ; This rule adjusts the load
 (declare (salience -10)) ; bus voltage if its value
 ; below the limit , using local
 ?under-volt-1 <- (under-volt-1 ?bus-name) ; Tap Changer(s), if exist
 ?control-bus <- (control-bus ?ctrl ?type&~GV ?)
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-volt ?bus-volta:(< ?bus-volt 0.95)))
 ?control <- (control (ctrl-num ?ctrl-num)
 (location ?ctrl1)
 (ctrl-typ ?ctrl-typ&TAP)
 (sec-term ?sec-term)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (ch-pr-st ?ch-pr-st)
 (prior ?prior&0))
 ?voltage-1 <- (in-state (bus-name ?sec-term)
 (bus-type ?type-1&PQ)
 (bus-volt ?volt-1))
 ?voltage-2 <- (in-state (bus-name ?ctrl)
 (bus-volt ?volt-2))
 ?sensit <- (sensit (dep-var DV-LOAD)
(bus-name ?bus-name)
(ctrl-var ?ctrl-var-D-TAP)
(ctrl=loc ?ctrl)
(sen-fact ?sen-fact))

?sensit-1 <- (sensit (dep-var DV-LOAD)
(bus-name ?sec-term)
(ctrl-var D-TAP)
(ctrl-loc ?ctrl)
(sen-fact ?sen-1))

?sensit-2 <- (sensit (dep-var DV-LOAD)
(bus-name ?ctrl)
(ctrl-var D-TAP)
(ctrl-loc ?ctrl)
(sen-fact ?sen-2))

(test (or (and (eq ?ctrl ?bus-name) (> ?pr-set ?min-lim) (> ?volt-1 0.96))
(and (neq ?ctrl ?bus-name) (eq ?bus-name ?sec-term)
(< ?pr-set ?max-lim))
(and (neq ?ctrl ?bus-name) (neq ?bus-name ?sec-term)
(> ?pr-set ?min-lim))))

=>

(bind ?*old-bus* ?bus-name)
(retract ?under-volt-1)
(retract ?ctrl=1-bus)
(bind ?d-volt (- 1.0 ?bus-volt))
(bind ?d-sr-1 ((- 0.96 ?volt-1) ?sen-1))
(bind ?d-sr-2 ((- 0.96 ?volt-2) ?sen-2))
(if (or (and (< ?d-sr 0.0) (>= ?d-sr (- ?min-lim ?pr-set))
(>= ?d-sr ?d-sr-1))
(and (> ?d-sr 0.0) (<= ?d-sr (- ?max-lim ?pr-set))
(<= ?d-sr ?d-sr-2))) ; if-2
then
(binding ?nstep-rq (/ ?d-sr ?ch-pr-st))
(binding ?nstep-rq (integer ?nstep-rq))
(if (= ?nstep-rq 0) ; 'if-4a'
then
(modify ?ctrl=1 (prior 1))
(assert (under-volt-1 ?bus-name)
(ctrl=1-bus ?bus-name type 2))
else
(assert (d-change ?d-sr))
(assert (ctrl=1-er ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-s=age-1a))
(assert (next-s=age-1b))
) ; close 'if-4a'
else ; of 'if-2'
(if (< ?d-sr 0.2) ; if-5
then
(if (>= (- ?min-lim ?pr-set) ?d-sr-1) ; if-6
then
(binding ?nstep-av (integer ((?min-lim ?pr-set) ?ch-pr-st)))
(bind ?pr-set ?min-lim)
else
 (bind ?nstep-av (integer -(/ ?d-sr-1 ?ch-pr-st)))
) ; close 'if-6'
(if (= ?nstep-av 0) ; 'if-6a'
then
 (modify ?control (prior 1))
 (assert (under-volt-1 ?bus-name)
 (control-bus ?bus-name type 2))
else
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-la))
 (assert (next-stage-1b))
) ; close 'if-6a'
else
 (if (<= (- ?max-lim ?pr-set) ?d-sr-2) ; 'if-7'
then
 (bind ?pr-set ?max-lim)
else
 (bind ?nstep-av (integer (/ ?d-sr-2 ?ch-pr-st)))
) ; close 'if-7'
(if (= ?nstep-av 0) ; 'if-7a'
then
 (modify ?control (prior 1))
 (assert (under-volt-1 ?bus-name)
 (control-bus ?bus-name type 2))
else
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-la))
 (assert (next-stage-1b))
) ; close 'if-7a'
) ; close 'if-5'
) ; close 'if-2'
) ; close the rule

(defrule over-voltage-local-tap-changer
 (declare (salience -10))
 (?under-volt-1 <- (over-volt ?bus-name)
 ?control-bus <- (control-bus ?ctrl ?type="GV")
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-volt ?bus-volt & (> ?bus-volt 1.05)))
 ?control <- (control (ctrl-num ?ctrl-num)
 (location ?ctrl))
 (This rule adjusts the load
 ;bus voltage if its value
 ;above the limit ,using local
 ;Tap Changer(s),if exist
) ; This rule adjusts the load
(ctrl-typ ?ctrl-typ&TAP)
(sec-term ?sec-term)
(max-lim ?max-lim)
(min-lim ?min-lim)
(pr-set ?pr-set)
(ch-pr-st ?ch-pr-st)
(prior ?prior&0))

?voltage-1 <- (in-state (bus-name ?sec-term)
 (bus-type ?type-1&PQ)
 (bus-volt ?volt-1))

?voltage-2 <- (in-state (bus-name ?ctrl)
 (bus-volt ?volt-2))

?sensit <- (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&D-TAP)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))

?sensit-1 <- (sensit (dep-var DV-LOAD)
 (bus-name ?sec-term)
 (ctrl-var D-TAP)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-1))

?sensit-2 <- (sensit (dep-var DV-LOAD)
 (bus-name ?ctrl)
 (ctrl-var D-TAP)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-2))

(test (or (and (eq ?ctrl ?bus-name) (< ?pr-set ?max-lim) (< ?volt-1 1.05))
 (and (neq ?ctrl ?bus-name) (eq ?bus-name ?sec-term)
 (>) ?pr-set ?min-lim))
 (and (neq ?ctrl ?bus-name) (neq ?bus-name ?sec-term)
 (< ?pr-set ?max-lim))))

=>
(bind ?*old-bus* ?bus-name)
(retract ?under-volt-1)
(retract ?control-bus)
(bind ?d-volt (- 1.05 ?bus-volt))
(bind ?d-sr-1 (/ (- 1.05 ?volt-1) ?sen-1))
(bind ?d-sr-2 (/ (- 1.05 ?volt-2) ?sen-2))
(if (or (and (> ?d-sr 0.0) (< ?d-sr (- ?max-lim ?pr-set)))
 (>) ?d-sr ?d-sr-1))
 (and (< ?d-sr 0.0) (> ?d-sr (- ?min-lim ?pr-set)))
 (=> ?d-sr ?d-sr-2)) ; if-2
then
(bind ?nstep-rq (/ ?d-sr ?ch-pr-st))
(bind ?nstep-rq (integer ?nstep-rq))
(if (= ?nstep-rq 0) ; 'if-4a'
then
(bind ?nstep-rq 1)
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-la))
(assert (next-stage-lb))
else
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-la))
(assert (next-stage-lb))
) ; close 'if-4a'
else ; of 'if-2'
(if (> ?d-sr 0.0) ; if-5
then
(if (<= (- ?max-lim ?pr-set) ?d-sr-1) ; if-6
then
(bind ?pr-set ?max-lim)
else
(bind ?nstep-av (integer (/ ?d-sr-1 ?ch-pr-st)))
) ; close 'if-6'
(if (= ?nstep-av 0) ; 'if-6a'
then
(modify ?control (prior 1))
(assert (under-volt-1 ?bus-name)
(control-bus ?bus-name type 2))
else
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-la))
(assert (next-stage-lb))
) ; close 'if-6a'
else
(if (>= (- ?min-lim ?pr-set) ?d-sr-2) ; if-7
then
(bind ?pr-set ?min-lim)
else
(bind ?nstep-av (integer (/ ?d-sr-2 ?ch-pr-st)))
) ; close 'if-7'
(if (= ?nstep-av 0) ; 'if-7a'
then
(modify ?control (prior 1))
(assert (under-volt-1 ?bus-name)
(control-bus ?bus-name type 2))
else
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-la))
(assert (next-stage-1b))
) ; close 'if-7a'
) ; close 'if-5'
) ; close 'if-2'
) ; close the rule

(defrule uv-nearby-var-source ;/ This rule determines the most effective
 (declare (saliencce -20)) ;/ usable nearby var source for under voltage
 ;/ correction
 ?under-volt <- (under-volt-l ?bus-name)'
 ?control <- (control (location ?loc"?bus-name)
 (ctrl-typ ?type&SR|SC)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (prior ?prior&0))

 ?sensit <- (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var DQ-LOAD)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))
 (test (or (and (eq ?type SR) (< ?pr-set ?min-lim))
 (and (eq ?type SC) (< ?pr-set ?max-lim))))
 =>

 (assert (max-var))
 (bind ?*max-sen* (max ?sen-fact ?*max-sen*))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type)))

(defrule ov-nearby-var-source ;/ This rule determines the most effective
 ;/ usable nearby var source for over voltage
 ;/ correction

 (declare (saliencce -20))
 ?under-volt <- (over-volt ?bus-name)
 ?control <- (control (location ?loc"?bus-name)
 (ctrl-typ ?type&SR|SC)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (prior ?prior&0))

 ?sensit <- (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var DQ-LOAD)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))
 (test (or (and (eq ?type SR) (> ?pr-set ?max-lim))
 (and (eq ?type SC) (> ?pr-set ?min-lim))))
(assert (max-var))
(bind ?*max-sen* (max ?sen-fact ?*max-sen*))
(if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type))

(defrule new-nearby-max-cont-var
 (declare (salience -25))
 ?max1 <= (max-var)
 ?control-bus <= (control-bus ? ? ?)
=>
 (retract ?max1)
 (retract ?control-bus)
 (assert (control-bus ?*max-cont* ?*max-type* 0))
 (bind ?*max-sen* 0.0)
 (bind ?*max-cont* fyh)
 (bind ?*max-type* type))

(defrule uv-nearby-tap-changer ;/ This rule determines the most effective
 ;/ usable nearby tap changer for under
 ;/ voltage correction
 (declare (salience -30))
 ?under-volt <= (under-volt-1 ?bus-name)
 ?control <= (control (location ?loc & ?bus-name)
 (ctrl-typ ?type&TAP)
 (sec-term ?sec-term)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (prior ?prior&0))
 ?voltage-1 <= (in-state (bus-name ?sec-term)
 (bus-type ?type-1&PQ)
 (bus-volt ?volt-1))
 ?voltage-2 <= (in-state (bus-name ?loc)
 (bus-volt ?volt-2))
 ?sensit <= (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var D-TAP)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))
 (test (or (and (< ?sen-fact 0.0) (> ?pr-set ?min-lim) (> ?volt-1 0.96))
 (and (> ?sen-fact 0.0) (< ?pr-set ?max-lim) (> ?volt-2 0.96))))
=>
 (assert (max-tap))
 (if (< ?sen-fact 0.0)
 then
 (bind ?sen-fact (* ?sen-fact -1))
(bind ?*max-sen* (max ?sen-fact ?*max-sen*))
(if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type)))

(defrule ov-nearby-tap-changer ;/ This rule determines the most effective
 ;/ usable nearby tap changer for over
 ;/ voltage correction

 (declare (salience -30))
 ?under-volt <- (over-volt ?bus-name)
 ?control <- (ccntrol (location ?loc & ~ ?bus-name)
 (ctrl-typ ?type&TAP)
 (sec-term ?sec-term)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (prior ?prior&0))

 ?voltage-1 <- (in-state (bus-name ?sec-term)
 (bus-type ?type-l&PQ)
 (bus-volt ?volt-1))

 ?voltage-2 <- (in-state (bus-name ?loc)
 (bus-volt ?volt-2))

 ?sensit <- (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var D-TAP)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))

 (test (or (and (< ?sen-fact 0.0) (< ?pr-set ?max-lim) (< ?volt-1 1.05))
 (and (> ?sen-fact 0.0) (> ?pr-set ?min-lim) (< ?volt-2 1.05))))
 =>
 (assert (max-tap))
 (if (< ?sen-fact 0.0)
 then
 (bind ?sen-fact (* ?sen-fact -1)))
 (bind ?*max-sen* (max ?sen-fact ?*max-sen*))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type)))

(defrule new-nearby-max-cont-tap
 (declare (salience -35))
 ?maxl <- (max-tap)
 ?control-bus <- (control-bus ? ? ?)
 =>
 (retract ?maxl)
 (retract ?control-bus)
(assert (contrc\-bus ?*max-cont* ?*max-type* 0))
(bind ?*max-sec* 0.0)
(bind ?*max-cont* fyh)
(bind ?*max-type* type))

(defrule uv\-nearby\-gen\-voltage ;; This rule determines the most effective
;; usable nearby generator excit. for under
;; voltage correction

(declare (salience -40))
?under\-volt <- (under\-volt \-1 ?bus\-name)
?control <- (cc\=trol (location ?loc)
 (ctrl\-typ ?type&GV)
 (max\-lim ?max-lim)
 (min\-lim ?min-lim)
 (pr\-set ?pr\-set&:(< ?pr\-set ?max\-lim)))
 (qgmax ?qgmax)
 (prior ?prior&0))
?qgen <- (in\-state (bus\-name ?loc)
 (q\-gen ?q\-gen&:(< ?q\-gen ?qgmax)))
?sensit <- (sensit (dep\-var DV\-LOAD)
 (bus\-name ?bus-name)
 (ctrl\-var DV\-GEN)
 (ctrl\-loc ?loc)
 (sen\-fact ?sen\-fact))

=>

(assert (max\-gv!))
(bind ?*max-sen* (max ?sen\-fact ?*max-sen*))
(if (= ?*max-sen* ?sen\-fact)
then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type)))

(defrule ov\-nearby\-gen\-voltage ;; This rule determines the most effective
;; usable nearby generator excit. for over
;; voltage correction

(declare (salience -40))
?under\-volt <- (over\-volt ?bus\-name)
?control <- (cc\=trol (location ?loc)
 (ctrl\-typ ?type&GV)
 (max\-lim ?max-lim)
 (min\-lim ?min-lim)
 (pr\-set ?pr\-set&:(> ?pr\-set ?min\-lim)))
 (qgmin ?qgmin)
 (prior ?prior&0))
?qgen <- (in\-state (bus\-name ?loc)
 (q\-gen ?q\-gen&:(> ?q\-gen ?qgmin)))
?sensit <- (sensit (dep\-var DV\-LOAD)
 (bus\-name ?bus-name)
 (ctrl\-var DV\-GEN)
(ctrl-loc ?loc)
(sen-fact ?sen-fact))

=>
(assert (max-gv))
(bind ?*max-sen* (max ?sen-fact ?*max-sen*))
(if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-co??* ?loc)
 (bind ?*max-type* ?type)))

(defrule uggen-nearby-gen-voltage ;/ This rule determines the most effective
 ;/ usable nearby generator excit. for under
 ;/ q-gen. correction
(declare (salience -10))
?under-ggen <- (under-ggen ?bus-name)
?control <- (control (location ?loc&~?bus-name)
 (ctrl-typ ?type&GV)
 (min-lim ?min-lim)
 (pr-set ?pr-set&:(> ?pr-set ?min-lim))
 (qgmin ?qgmin)
 (prior ?prior&0))
?qgen <- (in-state (bus-name ?loc)
 (q-gen ?q-gen&:(> ?q-gen ?qgmin)))
?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var DV-GEN)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))

=>
(assert (max-gv))
(bind ?*max-sen* (min ?sen-fact ?*max-sen*))
(if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-co??* ?loc)
 (bind ?*max-type* ?type)))

(defrule oggen-nearby-gen-voltage ;/ This rule determines the most effective
 ;/ usable nearby generator excit. for over
 ;/ q-gen. correction
(declare (salience -10))
?over-ggen <- (over-ggen ?bus-name)
?control <- (control (location ?loc&~?bus-name)
 (ctrl-typ ?type&GV)
 (max-lim ?max-lim)
 (pr-set ?pr-set&:(< ?pr-set ?max-lim))
 (qgmax ?qgmax)
 (prior ?prior&0))
?qgen <- (in-state (bus-name ?loc)
(q-gen ?q-gen&:(< ?q-gen ?gmax)))

?sensit <- (sensit
 (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var DV-GEN)
 (ctrl-loc ?loc)
 (sen-fact ?sen-fact))

=>
 (assert (max-gv))
 (bind ?*max-sen* (min ?sen-fact ?*max-sen*))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*max-cont* ?loc)
 (bind ?*max-type* ?type))

(defrule new-nearby-max-cont-gv
 ?max1 <= (max-gv)
 ?control-bus <= (control-bus ? ? ?))

=>
 (retract ?max1)
 (retract ?control-bus)
 (assert (control-bus ?*max-cont* ?*max-type* 0))
 (bind ?*max-sen* 0.0)
 (bind ?*max-cont* fyh)
 (bind ?*max-type* type))

(defrule under-voltage-nearby-gen
 ?update <= (update-1)
 ;This rule adjusts the load
 ;bus voltage if its value
 ;below the limit , using nearby
 (under-volt-1 <= (under-volt ?bus-name) ;Gen. Voltage, if exist
 ?control-bus <= (control-bus ?ctrl ?ctrl-typ&GV 0)
 (in-state ?bus-name) (bus-volt ?bus-volt))
 (in-state ?bus-name)
 (ctrl-num ?ctrl-num)
 (location ?ctrl)
 (ctrl-typ GV)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (ch-pr-st ?ch-pr-st)
 (gmax ?gmax)
 (prior ?prior&0))

?qgen <= (in-state (bus-name ?ctrl)
 (q-gen ?q-gen))

?sensit <= (sensit
 (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&DV-GEN)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))

?sensit1 <= (sensit
 (dep-var DQ-GEN)
 (bus-name ?ctrl)
(ctrl-var DV-GEN)
(ctrl-loc ?ctrl)
(sen-fact ?sen-fac1))

=>
(bind ?*old-bus* ?bus-name)
(retract ?under-volt-1)
(retract ?control-bus)
(bind ?d-volt (- 1.0 ?bus-volt))
(if (<= ?d-sr (- ?max-lim ?pr-set)) ; if-1
then
(if (> ?q-gen ?q-max)
then
(bind ?d-ggen (- ?qgmax ?q-gen))
(bind ?d-srgen (/ ?d-ggen ?sen-fac1))
(bind ?d-sr (+ ?d-sr ?d-srgen))
(bind ?max-lim (+ ?pr-set ?d-sr))
) ; close 'if'
(if (< ?d-sr 0.0001)
then
(modify ?control (prior 1))
(retract ?update)
else
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
)
else ; of 'if-1'
(bind ?d-sr (- ?max-lim ?pr-set))
(if (> ?q-gen ?q-max)
then
(bind ?d-ggen (- ?qgmax ?q-gen))
(bind ?d-srgen (/ ?d-ggen ?sen-fac1))
(bind ?d-sr (+ ?d-sr ?d-srgen))
(bind ?max-lim (+ ?pr-set ?d-sr))
) ; close 'if'
(if (< ?d-sr 0.0001)
then
(modify ?control (prior 1))
(retract ?update)
else
(assert (d-chang ?d-sr))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
)
) ; close 'if-1'
) ; close the rule
(defrule over-voltage-nearby-gen
 ?under-volt-1 < (over-volt ?bus-name) ;This rule adjusts the load
 ?voltage < (in-state (bus-name ?bus-name) (bus-volt ?bus-volt))

 ?control < (control (ctrl-num ?ctrl-num)
 (location ?ctrl)
 (ctrl-typ GV)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)
 (ch-pr-st ?ch-pr-st)
 (qgmin ?qgmin)
 (prior ?prior60))

 ?qgen < (in-state (bus-name ?ctrl)
 (q-gen ?q-gen))

 ?sensit < (sensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (ctrl-typ ?ctrl-typ & DV-GEN)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))

 ?sensit1 < (sensit (dep-var DQ-GEN)
 (bus-name ?ctrl)
 (ctrl-typ DV-GEN)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fac1))

 =>

 (bind *old-bus* ?bus-name)
 (retract ?under-volt-1)
 (retract ?control-bus)
 (bind ?d-volt (- 1.05 ?bus-volt))
 (if (>= ?d-sr (- ?min-lim ?pr-set)); if 1
 then
 (if (< ?q-gen ?qgmin)
 then
 (bind ?d-qgen (- ?qgmin ?q-gen))
 (bind ?min-lim (+ ?pr-set ?d-sr))
) ; close 'if'
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-typ & ctrl-typ))
 (assert (next-stage-1a))
 (assert (next-stage-1b))
 else ; of 'if-2'
 (bind ?d-sr (- ?min-lim ?pr-set))
 (if (< ?q-gen ?qgmin)
then
 (bind ?d-qgen (- ?qgmin ?q-gen))
 (bind ?d-sr (\ ?d-qgen ?s-fac1))
 (bind ?min-lim (+ ?pr-set ?d-sr))
) ; close 'if'
 (assert (d-chang ?d-sr))
 (assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 (assert (next-stage-la))
 (assert (next-stage-1b))
);close 'if-1'
);close the rule

(defrule under-qgen-local-gv
 ;This rule adjusts the gen.
 ;bus q-gen. if its value
 ;below the limit, using local
 ;Gen. Voltage, if exist

 ?u-qgen <- (under-qgen ?bus-name)
 ?control-bus <- (control-bus ?bus-name ? ?)
 ?qgen <- (in-state (bus-name ?bus-name)
 (q-gen ?q-gen))
 ?ctrl <- (control (ctrl-num ?ctrl-num)
 (location ?bus-name)
 (ctrl-typ ?ctrl-typ&GV)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set&: (< ?pr-set ?max-lim))
 (qgmin ?qgmin)
 (prior ?prior0))

 ?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&DV-GEN)
 (ctrl-loc ?bus-name)
 (sen-fact ?sen-fact))

 =>
 (bind ?old-bus* ?bus-name)
 (retract ?u-qgen)
 (retract ?control-bus)
 (bind ?d-qgen (- ?qgmin ?q-gen))
 (bind ?d-gv (/ ?d-qgen ?s-fac1))
 (if (< ?d-gv (- ?max-lim ?pr-set))
 then
 (assert (d-chang ?d-gv))
 (assert (controller ?bus-name ?ctrl-var ?ctrl-typ))
 (assert (next-stage-la))
 (assert (next-stage-1b))
 else
 (bind ?d-gv (- ?max-lim ?pr-set))
 (assert (d-chang ?d-gv))
 (assert (controller ?bus-name ?ctrl-var ?ctrl-typ))
 (assert (next-stage-la))

(151
(assert (next-stage-1b))
) ; close ' if '
) ; close the rule

(defrule over-qgen-local-gv
 ;This rule adjusts the gen.
 ;bus q-gen. if its value
 ;above the limit ,using local
 ;Gen. Voltage ,if exist

?u-qgen <- (over-qgen ?bus-name)
?control-bus <- (control-bus ?bus-name ??)
?qgen <- (in-state (bus-name ?bus-name)
 (q-gen ?q-gen))
?ctrl <- (control (ctrl-num ?ctrl-num)
 (location ?bus-name)
 (ctrl-typ ?ctrl-typ&GV)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set&: (> ?pr-set ?min-lim))
 (qmax ?qmax)
 (prior ?prior&0))
?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&DV-GEN)
 (ctrl-loc ?bus-name)
 (sen-fact ?sen-fact))

=>

(bind ?*old-bus* ?bus-name)
(retract ?u-qgen)
(retract ?control-bus)
(bond ?d-qgen (- ?qmax ?q-gen))
(if (>= ?d-gv (- ?min-lim ?pr-set))
then
(assert (d-chang ?d-gv))
(assert (controller ?bus-name ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
else
(bond ?d-gv (- ?min-lim ?pr-set))
(assert (d-chang ?d-gv))
(assert (controller ?bus-name ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
) ; close ' if '
;
) ; close the rule

(defrule under-qgen-nearby-gv
 ;This rule adjusts the gen.
 ;bus q-gen. if its value
; below the limit, using nearby
; Gen. Voltage, if exist

?u-qgen <- (under-qgen ?bus-name)
?control-bus <- (control-bus ?ctrl ?ctrl-typ&GV ?)
?qgen <- (in-state (bus-name ?bus-name)
 (q-gen ?q-gen))
?ctrl0 <- (control (ctrl-num ?ctrl-num)
 (location ?bus-name)
 (ctrl-typ GV)
 (qgmin ?qgmin))
?ctrl1 <- (control (ctrl-num ?ctrl-num1)
 (location ?ctrl)
 (ctrl-typ GV)
 (min-lim ?min-lim)
 (pr-set ?pr-set&:(> ?pr-set ?min-lim))
 (prior ?prior&0))
?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var&DV-GEN)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))

=>

(bind ?*old-bus* ?bus-name)
(retract ?u-qgen)
(retract ?control-bus)
(bind ?d-qgen (- ?qgmin ?q-gen))
(bind ?d-gv (/ ?d-qgen ?sen-fact))
(if (>= ?d-gv (- ?min-lim ?pr-set)) ; 'if-1'
 then
 [assert (d-chang ?d-gv))
 [assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 [assert (next-stage-1a))
 [assert (next-stage-1b))
 else ; of 'if-1'
 [bind ?d-gv (- ?min-lim ?pr-set))
 [assert (d-chang ?d-gv))
 [assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
 [assert (next-stage-1a))
 [assert (next-stage-1b))
] ; close 'if-1'
] ; close the rule

(defrule over-qgen-nearby-gv ; This rule adjusts the gen.
 ; bus q-gen. if its value
 ; above the limit, using nearby
 ; Gen. Voltage, if exist
 ?u-qgen <- (over-qgen ?bus-name)
 ?control-bus <- (control-bus ?ctrl ?ctrl-typ&GV ?)
 ?qgen <- (in-state (bus-name ?bus-name)
 (q-gen ?q-gen))
 ?ctrl0 <- (control (ctrl-num ?ctrl-num)
(location ?bus-name)
(ctrl-typ GV)
(qgmax ?qgmax))

?ctrl1 <- (control (ctrl-num ?ctrl-num1)
(location ?ctrl)
(ctrl-typ GV)
(max-lim ?max-lim)
(pr-set ?pr-set & (<= ?pr-set ?max-lim))
(prior ?prior&0))

?sensit <- (sensit (dep-var DQ-GEN)
(bus-name ?bus-name)
(ctrl-var ?ctrl-var&DV-GEN)
(ctrl-loc ?ctrl)
(sen-fact ?sen-fact))

=>

(bind ?*old-bus* ?bus-name)
(retract ?u-qgen)
(retract ?control-bus)
(bind ?d-qgen (- ?qgmax ?q-gen))
(bind ?d-gv (/ ?d-qgen ?sen-fact))
(if (<= ?d-gv (- ?max-lim ?pr-set)) ; 'if-1'
then
(assert (d-chang ?d-gv))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
else ; of 'if-1'
(bind ?d-gv (- ?max-lim ?pr-set))
(assert (d-chang ?d-gv))
(assert (controller ?ctrl ?ctrl-var ?ctrl-typ))
(assert (next-stage-1a))
(assert (next-stage-1b))
);close 'if-1'
);close the rule

(defrule correction-stage-2a ; This rule verifies if the proposed change
; in control element causes any new load bus
; voltage violation

?next-stage <- (next-stage-1a)
?dchange <- (d-chang ?d-ch)
?initial <- (in-state (bus-name ?bus-name)
(bus-type PQ) (bus-volt ?bus-volt)
(pr-dev ?pr-dev) (seq 0))

?sensit <- (sensit (dep-var DV-LOAD)
(bus-name ?bus-name)
(ctrl-var ?ctrl-var)
(ctrl-loc ?ctrl)
(sen-fact ?sen-fact))

?n-lbus <- (nlbus ?n-lbus)

=>
(bind ?*countt* (+ ?*countt* 1))
(bind ?n-volt (+ ?bus-volt ?d-volt))
(if (and (> ?n-volt 1.05) (= ?pr-dev 0.0)) ; 'if-1'
 then
 (bind ?new-dev (- ?n-volt 1.05))
 (bind ?dd-ch (/ ?new-dev (abs ?sen-fact)))
 (bind ?*max-dsr1* (max ?*max-dsr1* ?dd-ch))
) ; close 'if-1'
(if (and (< ?n-volt 0.95) (= ?pr-dev 0.0)) ; 'if-2'
 then
 (bind ?new-dev (- 0.95 ?n-volt))
 (bind ?dd-ch (/ ?new-dev (abs ?sen-fact)))
 (bind ?*max-dsr1* (max ?*max-dsr1* ?dd-ch))
) ; close 'if-2'
(modify ?initial (seq 1))
(if (> ?nlbus ?*countt*) ; 'if-3'
 then
 (retract ?next-stage)
 (assert (next-stage-1a))
 else
 (retract ?next-stage)
 (bind ?*countt* 0)
) ; close 'if-3'
) ; close the rule

(defrule correction-stage-2b ;/ This rule verifies if the proposed change
 ;/ in control element causes any new gen. bus
 ;/ q-gen. violation

?next-stage <- (next-stage-1b)
?dchange <- (d-chang ?d-ch)
?initial <- (in-state (bus-name ?bus-name)
 (bus-type SLK|PV) (q-gen ?q-gen)
 (pr-dev ?pr-dev) (seq ?seq&2))
?ctrl0 <- (control (location ?bus-name)
 (ctrl-typ GV)
 (qgmin ?qgmin)
 (qgmax ?qgmax))
?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var ?ctrl-var)
 (ctrl-loc ?ctrl)
 (sen-fact ?sen-fact))

?n-gen <- (ngen ?ngen)
=>
 (bind ?*countt1* (+ ?*countt1* 1))
(bind ?n-qgen (+ ?q-gen ?d-qgen))
(if (and (> ?n-qgen ?qgmax) (= ?pr-dev 0.0)) ; 'if-1'
 then
 (bind ?new-dev (- ?n-qgen ?qgmax))
 (bind ?dd-ch (/ ?new-dev (abs ?sen-fact)))
 (bind ?*max-dsr2* (max ?*max-dsr2* ?dd-ch))
) ; close 'if-1'
(if (and (< ?n-qgen ?qgmin) (= ?pr-dev 0.0)) ; 'if-2'
 then
 (bind ?new-dev (- ?qgmin ?n-qgen))
 (bind ?dd-ch (/ ?new-dev (abs ?sen-fact)))
 (bind ?*max-dsr2* (max ?*max-dsr2* ?dd-ch))
) ; close 'if-2'
(modify ?initial (seq 2))
(if (> ?ngen ?*counttl*) ; 'if-3'
 then
 (retract ?next-stage)
 (assert (next-stage-1b))
 else
 (retract ?next-stage)
 (bind ?*counttl* 0)
) ; close 'if-3'
) ; close the rule

(defrule correction-stage-3 ;/ This rule & next one determine the final
 ;/ change in the control elements without causing any
 ;/ new violations
 (declare (salience -1))
 ?dchange <- (d-chang ?)
 ?control <- (controller ? ? ?)
=>
 (retract ?dchange)
 (retract ?control)
 (assert (max-ch = (max ?*max-dsr1* ?*max-dsr2*)))
 (bind ?*max-dsr1* 0.0)
 (bind ?*max-dsr2* 0.0)
) ; close the rule

(defrule correction-stage-4 ;/
 ?update-1 <- (update-1)
 ?max-devl <- (max-ch ?m-ch)
 ?ctrl0 <- (control (location ?ctrl)
 (ctrl-typ ?ctrl-typ)
 (pr-set ?pr-set)
 (ch-pr-st ?ch-pr-st)
) ; close 'if-3'
) ; close the rule
(prior ?prior))

=>
(retract ?update)
(retract ?max-devl)
(if (> ?ch-pr-st 0.0) ; 'if-1'
then
(bind ?n-step (+ (integer (/ ?m-ch ?ch-pr-st)) 1))
(bind ?m-ch (* ?n-step ?ch-pr-st))
); close 'if-1'
(if (> ?d-ch 0.0)
then
(bind ?d-ch (- ?d-ch ?m-ch))
(if (< ?d-ch 0.00001)
then
(modify ?ctrl0 (prior 1))
(retract ?update-1)
(assert (update-seq))
else
(bind ?pr-set (+ ?pr-set ?d-ch))
(modify ?ctrl0 (pr-set ?pr-set) (prior 1))
(assert (update ?ctrl ?ctrl-var ?d-ch 1))
else
(bind ?d-ch (+ ?d-ch ?m-ch))
(if (> ?d-ch -0.00001)
then
(modify ?ctrl0 (prior 1))
(retract ?update-1)
(assert (update-seq))
else
(bind ?pr-set (+ ?pr-set ?d-ch))
(modify ?ctrl0 (pr-set ?pr-set) (prior 1))
(assert (update ?ctrl ?ctrl-var ?d-ch 1))
); close 'if'
); close the rule

(defrule correct-5a ;/ This rule & next one confirm the orginal change
 ;/ in the selected control elements
 (declare (salience -1))
 (d-chang ?))
=>
(if (and (= ?*max-dsr1* 0.0) (= ?*max-dsr2* 0.0)) ; 'if-4'
then
(assert (stage-5a) (stage-5b))
); close 'if-4'
); close the rule

(defrule correction-stage-5
 ?stage1 <-(stage-5a)
?stage2 <- (stage-5b)
?dchange <- (d-change ?d-ch)
?ctrl10 <- (control (location ?ctrl)
 (ctrl-typ ?ctrl-typ)
 (pr-set ?pr-set)
 (prior ?prior))

=>
(retract ?stage1)
(retract ?stage2)
(retract ?dchange)
(retract ?control)
(bind ?pr-set (+ ?pr-set ?d-ch))
(modify ?ctrl10 (pr-set ?pr-set))
(assert (update ?ctrl ?ctrl-var ?d-ch 1))
 ; close the rule

(defrule update-seq

?update-1 <- (update-seq)
?voltage <- (in-state (bus-name ?bus-name)
 (seq ^0))
(nlbus ?nlbus)
(ngen ?ngen)

=>
(if (>= (+ ?nlbus ?ngen) ?*count*)
 then
 (bind ?*count* (+ ?*count* 1))
 (modify ?voltage (seq 0))
 ; (retract ?update-1)
 ; (assert (update-seq))
) ; close 'if'
(if (= (+ (+ ?nlbus ?ngen) 1) ?*count*) ; 'if-3'
 then
 (bind ?*count* 1)
 (retract ?update-1)
) ; close 'if-3'
) ; close the rule

(defrule update-voltage

?update-1 <- (update-1)

?update <- (update ？c-location ？c-var ？d-sr ?)

?voltage <- (in-state (bus-name ?bus-name) (bus-type PQ)
 (bus-volt ?bus-volt)
 (pr-dev ?pr-dev) (seq 1))

?ssensit <- (ssensit (dep-var DV-LOAD)
 (bus-name ?bus-name)
 (pr-set ?pr-set)
 (prior ?prior))

=>
(rewrite ?ssensit (ssensit ?bus-name ?dep-var DV-LOAD))
; This rule updates the voltages of load buses
; for any change in control variables
(ctrl-var ?c-var)
(ctrl-loc ?c-location)
(sen-fact ?sen-fact)

(not (update-qgen))
(nlbus ?nlbus)

=>
(if (>= ?nlbus ?*count*)
then
(bind ?*count* (+ ?*count* 1))
(if (> ?bus-volt 1.05)
then
(bind ?pr-dev (- ?bus-volt 1.05)))
(if (< ?bus-volt 0.95)
then
(bind ?pr-dev (- ?bus-volt 0.95)))
(if (and (< ?bus-volt 1.05) (>= ?bus-volt 0.95))
then
(bind ?pr-dev 0.0))
(modify ?voltage (bus-volt ?bus-volt) (pr-dev ?pr-dev) (seq 0))
(retract ?update)
(assert (update ?c-location ?c-var ?d-sr 1))
); close 'if'
(if (= (+ ?nlbus 1) ?*count*) ; 'if-3'
then
(bind ?*count* 1)
(retract ?update)
(assert (update ?c-location ?c-var ?d-sr 1))
(assert (update-qgen))
); close 'if-3'
); close the rule

(defrule update-qgen
 ?update-1 <- (update-1)
?update-2 <- (update-qgen)
; q-generation of gen. ; buses
?qgen <- (in-state (bus-name ?bus-name)
 (bus-type SLK|PV)
 (bus-volt ?bus-volt)
 (q-gen ?q-gen)
 (pr-dev ?pr-dev) (seq 2))
?ctrl0 <- (control (location ?bus-name)
 (ctrl-typ GV)
 (qgmin ?qgmin)
 (qgmax ?qgmax))
?sensit <- (sensit (dep-var DQ-GEN)
 (bus-name ?bus-name)
 (ctrl-var ?c-var)
 (ctrl-loc ?c-location)
 (sen-fact ?sen-fact))

; This rule updates the
; for any change in
; control variables
(ngen ?ngen)

=>

(if (>= ?ngen ?*count*) -
then
(bind ?*count* (+ ?*count* 1))
(if (< ?q-gen ?qgmin)
then
(bind ?pr-dev (- ?q-gen ?qgmin))
(if (> ?q-gen ?qgmax)
then
(bind ?pr-dev (- ?q-gen ?qgmax))
(if (and (>= ?q-gen ?qgmin) (<= ?q-gen ?qgmax))
then
(if (< (- ?q-gen ?q-gen) 0.00000000001)
then
(bind ?q-gen (round ?q-gen)))
(if (< (- ?q-gen ?qgmin) 0.00000000001)
then
(bind ?q-gen (round ?q-gen)))
(bind ?pr-dev 0.0))
(if (eq ?bus-name ?c-location)
then
(bind ?bus-volt (+ ?bus-volt ?d-sr)))
(modify ?qgen (bus-volt ?bus-volt) (q-gen ?q-gen) (pr-dev ?pr-dev) (seq 0))

); close 'if'
(if (= (+ ?ngen 1) ?*count*) ; 'if-1'
then
(bind ?*count* 1)
(retract ?update)
(retract ?update-1)
(retract ?update-2)
(assert (update-3))
else
(retract ?update)
(assert (update ?c-location ?c-var ?d-sr 1))
); close 'if-1'
); close the rule

(defrule acticate-no-controller ;/ This rule verifies if there is no
 ;/ adequate control measures

(declare (salience -65))
(and
(not (max-under-volt))
(not (max-over-volt))
(not (max-under-qgen))
(not (max-over-qgen))
(not (update-1))
); close 'and'
?initial <- (in-state (bus-name ?bus-name)
 (pr-dev ?pr-dev&~0.0))
(assert (update-1))

(defrule sucess-ful
 (declare (salience -66))
 (update-1)
 ?update <- (update-3)
=>
 (retract ?update))

(defrule open-print ;/ This rule open the output file
 (declare (salience -69))
 (or
 (update-1)
 (update-3)
)
=>
 (open "voltage.out" volt "w")
 (assert (file-opened)))

(defrule print-new-voltages1 ;/ The following rule prints the results
 (declare (salience -70))
 (file-opened)
=>
 (printout volt "THE EXPERT SYSTEM RESULTS FOR VOLTAGE/VAR ADJUSTMENT"
 crlf)
 (printout volt " " crlf))

(defrule print-new-voltages2
 (declare (salience -71))
 ?voltage <- (in-state (bus-name ?bus-name)
 (bus-type PQ)
 (bus-volt ?bus-volt))
 (file-opened)
=>
 (if (= ?*countt* 0)
 then
 (printout volt "The New Voltages of the Load Buses are as follow:" crlf)
 (printout volt " " crlf)
 (bind ?*countt* 1)
) ; close 'if'
 (format volt "BUS: %3d%-13s%-10s%-2.4f%n"
 ?bus-name " TYPE: PQ " " VOLTAGE= " ?bus-volt))

(defrule print-new-ggen2
 (declare (salience -75))
(file-opened)
?qgen <- (in-state (bus-name ?bus-name)
 (bus-type ?type): (or (eq ?type SLK)
 (eq ?type PV)))
 (q-gen ?q-gen))

=>
(if (= *counttl* 0)
 then
 (printout volt " " crlf)
 (printout volt "The New Q-Gen. of the Gen. Buses are as follow:" crlf)
 (printout volt " " crlf)
 (bind *counttl* 1)
) ; close 'if'
 (format volt "BUS: %-3d%-8s%-3s%-10s%-4.4f%n"
 ?bus-name " TYPE: " ?type " Q-GEN.= " ?q-gen))

(defrule print-new-control-settings
 (declare (salience -80))
 (file-opened)
 ?control <- (control (ctrl-num ?ctrl-num)
 (location ?location)
 (ctrl-typ ?ctrl-typ)
 (pr-set ?pr-set))

=>
(if (= *counttl* 1)
 then
 (printout volt " " crlf)
 (printout volt "The New Settings of Controllers are as follow:" crlf)
 (printout volt " " crlf)
 (bind *counttl* 2)
) ; close 'if'
 (printout volt " " crlf)
 (printout volt "CONT. SEQ. # " ?ctrl-num " LOCATION: " ?location crlf)
 (printout volt "CONT. TYPE: " ?ctrl-typ crlf)
 (format volt " PRES. SETTING: %-4.6f%n" ?pr-set))

(defrule print-no-controller
 (declare (salience -85))
 (update-1)
 (file-opened)

=>
 (printout volt " " crlf)
 (printout volt " NO ADEQUATE CONTROLLER AVAILABLE. " crlf))

(defrule close-print ;/ This rule closes the output file
 (declare (salience 90))
 (file-opened)

=>
 (close volt))
APPENDIX - B.2

COMPUTER LISTING FOR KB OF
CORRECTIVE GENERATION
RE-SCHEDULING PROCESS
(defglobal ;/ GLOBAL VARIABLES
 ?*ngen* = 0
 ?*nline* = 0
 ?*max-sen* = 0.0
 ?*min-sen* = 0.0
 ?*plus-cont* = fyh1
 ?*min-cont* = fyh2
 ?*dgen-plus* = 0.0
 ?*dgen-min* = 0.0
 ?*o-line* = fyh
 ?*pf-line* = 0.0
 ?*max-dev* = 0.0
 ?*old-line* = fyh
 ?*count* = 1
 ?*max-dgen* = 0.0
 ?*max-dgen1* = 0.0)

(deftemplate generate ;/ DATA BASE FOR GENERATORS
 (slot gen-num (default ?NONE))
 (slot gen-loc (type SYMBOL) (default ?NONE))
 (slot max-lim (default ?NONE))
 (slot min-lim (default ?NONE))
 (slot pr-set (default ?NONE))
 (slot prior (default ?NONE)))

(deftemplate lsensit ;/ DATA BASE FOR SENSITIVITY COEFFICIENTS
 (slot line-num (default ?NONE))
 (slot gen-loc (default ?NONE))
 (slot sen-fact (default ?NONE)))

(deftemplate pfow ;/ DATA BASE FOR LINE POWER FLOWS
 (slot line-num (default ?NONE))
 (slot bus-a (type SYMBOL) (default ?NONE))
 (slot bus-b (type SYMBOL) (default ?NONE))
 (slot pflow (default ?NONE))
 (slot max-flow (default ?NONE))
 (slot pr-dev (type NUMBER) (default 0.0))
 (slot seq (type NUMBER) (default 0))
 (slot priority (type NUMBER) (default 0)))

(defrule open-file-pflow ;/ THIS RULE OPEN THE FILE CONTAINING INITIAL
 (initial-fact) ;/ VALUES OF LINE POWER FLOWS OBTAINED FROM L.F.
(open "pflow.dat" pflow "r")
(assert (initial-fact2)) -
(assert (read-file-pflow))

(defrule read-file-pflow ;/ THIS RULE READS THE INITIAL VALUES OF LINE
 ;/ FLOWS FROM A FILE
 =>
 ?read-pflow <- (read-file-pflow)

 =>
 (retract ?read-pflow)
 (bind ?line-num (read pflow))
 (bind ?bus-a (read pflow))
 (bind ?bus-b (read pflow))
 (bind ?pflow (read pflow))
 (bind ?max-flow (read pflow))
 (if (eq ?line-num EOF-PFLOW) ; 'if-1'
 then
 (bind ?pr-dev (- (abs ?pflow) ?max-flow))
 (if (<= ?pr-dev 0.0)
 then
 (bind ?pr-dev 0.0))
 (bind *nline* (+ *nline* 1))
 (assert (pflow (line-num ?line-num) (bus-a ?bus-a)
 (bus-b ?bus-b) (pflow ?pflow) (max-flow ?max-flow)
 (pr-dev ?pr-dev)))

 (assert (read-file-pflow))
) ; close ' if-1 '
 (if (eq ?line-num EOF-PFLOW) ; 'if-2'
 then
 (assert (EOF-PFLOW))
 (close pflow) ; close the file
) ; close ' if-2 '
) ; close the rule

(defrule pflow-violation-check ;/ THIS RULE CHECKS THE LINE OVERLOADS
 ?initial <- (initial-fact)
 ?pflow-1 <- (pflow (line-num ?line-num) (pflow ?pflow)
 (max-flow ?max-flow))

 =>
 (retract ?initial)
 (assert (violation-exist)))

(defrule print-no-violation ;/ THIS RULE PRINTS " NO OVERLOADS " MESSAGE
 (declare (salience -5)) ;/ IN CASE NO OVERLOAD EXIST
 (not (violation-exist))

 =>
 (printout t " THERE IN NO OVER-LOADED LINE " crlf))
(defrule open-file-violation ;/ THIS RULE OPEN GENERATOR & SENSITIVITY
 (violation-exist) ;/ DATA FILES IN CASE OVERLOAD EXIST
=>
 (open "gen.dat" gen "r")
 (open "lsensit.dat" lsensit "r")
 (assert (read-file-gen)
 (read-file-lsensit)))

(defrule read-file-gen ;/ READS THE GENERATOR DATA FROM A FILE AND
 ?read-gen <- (read-file-gen) ;/ SAVE IT IN A DATA BASE
=>
 (retract ?read-gen)
 (bind ?gen-num (read gen))
 (bind ?gen-loc (read gen))
 (bind ?max-lim (read gen))
 (bind ?min-lim (read gen))
 (bind ?pr-set (read gen))
 (if (neg ?gen-num EOF-GEN) ;'if-1'
 then
 (bind <*gen* (+ <*gen* 1)))
 (assert (generate (gen-num ?gen-num) (gen-loc ?gen-loc)
 (max-lim ?max-lim) (min-lim ?min-lim)
 (pr-set ?pr-set) (prior 1)))
 (assert (read-file-gen))
) ; close 'if-1'
(if (eq ?gen-num EOF-GEN) ;'if-2'
 then
 (assert (EOF-GEN))
 (close gen) ; close the file
) ; close 'if-2'
) ; close the rule

(defrule read-file-lsensit ;/ READS THE SENSITIVITY DATA FROM A FILE AND
 ;/ SAVE IT IN A DATA BASE
 ?read-lsensit <- (read-file-lsensit)
=>
 (retract ?read-lsensit)
 (bind ?line-num (read lsensit))
 (bind ?gen-loc (read lsensit))
 (bind ?sen-fact (read lsensit))
 (if (neg ?line-num EOF-LSSENSIT) ;'if-1'
 then
 (assert (lsensit (line-num ?line-num) (gen-loc ?gen-loc)
 (sen-fact ?sen-fact)))
 (assert (read-file-lsensit))
) ; close 'if-1'
 (if (eq ?line-num EOF-LSSENSIT) ;'if-2'
 then
 (assert (EOF-LSSENSIT))
) ; close the rule
(defrule over-load-check-1 ;/ THIS RULE & NEXT ONE IDENTIFY THE MOST
 (EOF-PFLOW) ;/ OVERLOADED LINE
 (EOF-GEN)
 (EOF-LSSENSIT)
 ?pflow-1 <- (pflow (line-num ?line-num)
 (pflow ?pflow) (pr-dev ?pr-dev)
 (priority ?priority&0))
 (test (> ?pr-dev 0.0))
 (not (update))
 (not (last-round))
=>
 (if (eq ?*old-line* ?line-num) ; 'if-1
 then
 (assert (max-over-load))
 (assert (update))
 (bind ?*pf-line* ?pflow)
 (bind ?*o-line* ?line-num)
 else
 (assert (max-over-load))
 (bind ?*max-dev* (max ?*max-dev* ?pr-dev))
 (if (= ?*max-dev* ?pr-dev)
 then
 (bind ?*pf-line* ?pflow)
 (bind ?*o-line* ?line-num))
) ; close 'if-1'
) ; close the rule

(defrule over-load-check-2
 (declare (salience -5))
 ?maxx <- (max-over-load)
=>
 (retract ?maxx)
 (bind ?line-num ?*o-line*)
 (bind ?pflow ?*pf-line*)
 (bind ?*o-line* fyh)
 (bind ?*pf-line* 0.0)
 (bind ?*max-dev* 0.0)
 (assert (over-load-line ?line-num ?pflow)
 (gen-max-sen-plus FYH1)
 (gen-max-sen-minus FYH2)
 (update)))

(defrule new-line-check ;/ THIS RULE CHECKS FOR NEW OVERLOADED LINE
 (declare (salience 5))
?over-load <- (over-load-line ?line-num ?)
?gen <- (generate (gen-loc ?gen-loc) (prior ?prior&-0))

=>
(if (neq ?line-num *old-line*)
then
(modify ?gen (prior 0))
); close if
); close the rule

(defrule change-line-priority ;/ THIS RULE CHANGE THE OLD OVERLOADED
(declare (salience -20)) ;/ LINE IF THE OVERLOAD CAN NOT BE ELIMINATED
?over-load <- (over-load-line ?line-num ?)
?gen-plus <- (gen-max-sen-plus ?)
?gen-minus <- (gen-max-sen-minus ?)
?update <- (update)
?pflow-1 <- (pflow (line-num ?line-num)
(priority ?priority))

=>
(retract ?over-load)
(retract ?gen-plus)
(retract ?gen-minus)
(retract ?update)
(modify ?pflow-1 (priority 1))
); close the rule

(defrule max-gen-minus-plus-flow ;/ IDENTIFIES THE MOST EFFECTIVE GENERATOR
 ;/ AND HAS MARGIN FOR DECREASE IN GEN. FOR
 ;/ POSITIVE POWER FLOW
?over-load <- (over-load-line ?line-num ?pflow&:(> ?pflow 0.0))
?gen <- (generate (gen-loc ?gen-loc) (min-lim ?min-lim)
(pr-set ?pr-set&:(> ?pr-set ?min-lim))
(prior ?prior&0))
?lsensit1 <- (lsensit (line-num ?line-num) (gen-loc ?gen-loc)
(sen-fact ?sen-fact&:(> ?sen-fact 0.0)))

=>
(bind ?*old-line* ?line-num)
(assert (max-gen minus))
(bind ?*max-sen* (max ?*max-sen* ?sen-fact))
(if (= ?*max-sen* ?sen-fact)
then
(bind ?*min-cont* ?gen-loc)))
 (pr-set ?pr-set&:< ?pr-set ?max-lim))
 (prior ?prior&0))
?lsensit <- (lsensit (line-num ?line-num) (gen-loc ?gen-loc)
 (sen-fact ?sen-fact&:< ?sen-fact 0.0)))

==> (bind ?*old-line* ?line-num)
 (assert (max-gen plus))
 (bind ?*min-sen* (min ?*min-sen* ?sen-fact))
 (if (= ?*min-sen* ?sen-fact)
 then
 (bind ?*plus-cont* ?gen-loc)))

(defrule max-gen-minus-minus-flow ; IDENTIFIES THE MOST EFFECTIVE GENERATOR
 ; AND HAS MARGIN FOR DECREASE IN GEN. FOR
 ; NEGATIVE POWER FLOW
?over-load <- (over-load-line ?line-num ?pflow&:< ?pflow 0.0))
?gen <- (generate (gen-loc ?gen-loc) (min-lim ?min-lim)
 (pr-set ?pr-set&:< ?pr-set ?min-lim))
 (prior ?prior&0))
?lsensit <- (lsensit (line-num ?line-num) (gen-loc ?gen-loc)
 (sen-fact ?sen-fact&:< ?sen-fact 0.0)))

==> (bind ?*old-line* ?line-num)
 (assert (max-gen minus))
 (bind ?*max-sen* (min ?*max-sen* ?sen-fact))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*min-cont* ?gen-loc)))

(defrule max-gen-plus-minus-flow ; IDENTIFIES THE MOST EFFECTIVE GENERATOR
 ; AND HAS MARGIN FOR INCREASE IN GEN. FOR
 ; NEGATIVE POWER FLOW
?over-load <- (over-load-line ?line-num ?pflow&:< ?pflow 0.0))
 (pr-set ?pr-set&:< ?pr-set ?max-lim))
 (prior ?prior&0))
?lsensit <- (lsensit (line-num ?line-num) (gen-loc ?gen-loc)
 (sen-fact ?sen-fact&:< ?sen-fact 0.0)))

==> (bind ?*old-line* ?line-num)
 (assert (max-gen plus))
 (bind ?*min-sen* (max ?*min-sen* ?sen-fact))
 (if (= ?*min-sen* ?sen-fact)
 then
 (bind ?*plus-cont* ?gen-loc)))

(defrule nearby-gen ; STORES THE MOST EFFECTIVE GENERATORS WITH PLUS
 ; MARGIN AND MINUS MARGIN
(declare (salience -10))
?max-gen <- (max-gen ?max)
?gen-plus <- (gen-max-sen-plus ?)
?gen-minus <- (gen-max-sen-minus ?)
=>
(if (eq ?max plus)
then
(retract ?gen-plus)
(retract ?max-gen)
(assert (gen-max-sen-plus ?*plus-cont*))
(bind ?*min-sen* 0.0)
(bind ?*plus-cont* FYH1)
); close 'if'
(if (eq ?max minus)
then
(retract ?gen-minus)
(retract ?max-gen)
(assert (gen-max-sen-minus ?*min-cont*))
(bind ?*max-sen* 0.0)
(bind ?*min-cont* FYH2)
); close 'if'
); close of the rule

(defrule gen-reschedule-plus-minus ;/ DETERMINES THE MOST EFFECTIVE GENERATOR
 ;/ EITHER PLUS OR MINUS
(declare (salience -15))
?over-load <- (over-load-line ?line-num ?)
?gen-plus-1 <- (gen-max-sen-plus ?gen-plus&'FYH1)
?gen-minus-1 <- (gen-max-sen-minus ?gen-min&'FYH2)
?pflow1 <- (pflow (line-num ?line-num) (pflow ?pflow)
(max-flow ?max-flow) (pr-dev ?pr-dev))
?lsensit1a <- (lsensit (line-num ?line-num)
(gen-loc ?gen-plus) (sen-fact ?sen1a))
?lsensit1b <- (lsensit (line-num ?line-num)
(gen-loc ?gen-min) (sen-fact ?sen1b))
?gen1 <- (generate (gen-loc ?gen-plus) (max-lim ?max-lim1)
(pr-set ?pr-set1))
?gen2 <- (generate (gen-loc ?gen-min) (min-lim ?min-lim2)
(pr-set ?pr-set2))
=>
(retract ?over-load)
(retract ?gen-plus-1)
(retract ?gen-minus-1)
(bind ?max-gen (max (abs ?sen1a) (abs ?sen1b)))
(if (> ?pflow 0.0) ; 'if-1'
then
(bind ?d-flow (- ?max-flow ?pflow))
else
(bind ?d-flow (- (abs ?pflow) ?max-flow)))
(if (eq ?max-gen (abs ?sen1a)) ; 'if-2'
then

(bind ?d-gen1 (/ ?d-flow ?sen1a))
(bind ?gen-av1 (- ?max-lim ?pr-set1))
(if (<= ?d-gen1 ?gen-av1)
 then
 (assert (gen-plus ?gen-plus ?d-gen1)
 (count 1))
 (assert (next-stage))
 else
 (assert (gen-plus ?gen-plus ?gen-av1)
 (count 1))
 (assert (next-stage))
) ; 'if'
else ; 'if-2'
(bind ?d-gen2 (/ ?d-flow ?sen1b))
(bind ?gen-av2 (- ?min-lim ?pr-set2))
(if (>= ?d-gen2 ?gen-av2)
 then
 (assert (gen-minus ?gen-min ?d-gen2)
 (count 1))
 (assert (next-stage))
 else
 (assert (gen-minus ?gen-min ?gen-av2)
 (count 1))
 (assert (next-stage))
) ; 'if'
) ; 'close 'if-2'
) ; close the rule

(defrule gen-reschedule-plus ;/ DETERMINES THE AMOUNT OF INCREASE IN
 ;/ GENERATION FOR MOST OVERLOADED LINE
 (declare (salience -15))
 ?over-load <- (over-load-line ?line-num ?)
 ?gen-plus-1 <- (gen-max-sen-plus ?gen-plus"FYH1")
 ?gen-minus-1 <- (gen-max-sen-minus ?gen-min"FYH2")
 ?pflow1 <- (pflow (line-num ?line-num) (pflow ?pflow)
 (max-flow ?max-flow) (pr-dev ?pr-dev))
 ?lsens1 <- (lsensit (line-num ?line-num)
 (gen-loc ?gen-plus) (sen-fact ?sen1))
 (pr-set ?pr-set))
=>
(retract ?over-load)
(retract ?gen-plus-1)
(retract ?gen-minus-1)
(if (> ?pflow 0.0)
 then
 (bind ?d-flow (- ?max-flow ?pflow))
 else
 (bind ?d-flow (- (abs ?pflow) ?max-flow)))
(bind ?d-gen1 (/ ?d-flow ?sen1))
(bind ?gen-av1 (- ?max-lim ?pr-set))
(if (<= ?d-gen1 ?gen-av1)
 then
 (assert (gen-plus ?gen-plus ?d-gen1)
 (count 1))
 (assert (next-stage))
else
 (assert (gen-plus ?gen-plus ?gen-av1)
 (count 1))
 (assert (next-stage))
) ; close ' if '
) ; close the rule

(defrule gen-reschedule-minus ;/ DETERMINES THE AMOUNT OF DECREASE IN
 ;/ GENERATION FOR MOST OVERLOADED LINE

 (declare (salience -15))
 ?over-load <- (over-load-line ?line-num ?)
 ?gen-plus-1 <- (gen-max-sen-plus ?gen-plus&FYH1)
 ?gen-minus-1 <- (gen-max-sen-minus ?gen-min&FYH2)
 ?pflow1 <- (pflow (line-num ?line-num) (pflow ?pflow)
 (max-flow ?max-flow) (pr-dev ?pr-dev))
 ?lsens1 <- (lsensit (line-num ?line-num)
 (gen-loc ?gen-min) (sen-fact ?sen1))
 ?gen1 <- (generate (gen-loc ?gen-min) (min-lim ?min-lim)
 (pr-set ?pr-set))

 =>
 (retract ?over-load)
 (retract ?gen-plus-1)
 (retract ?gen-minus-1)
 (if (> ?pflow 0.0)
 then
 (bind ?d-flow (- ?max-flow ?pflow))
 else
 (bind ?d-flow (- (abs ?pflow) ?max-flow))
 (bind ?d-gen1 (+ ?d-flow ?sen1))
 (bind ?gen-av1 (- ?min-lim ?pr-set))
 (if (>= ?d-gen1 ?gen-av1)
 then
 (assert (gen-minus ?gen-min ?d-gen1)
 (count 1))
 (assert (next-stage))
 else
 (assert (gen-minus ?gen-min ?gen-av1)
 (count 1))
 (assert (next-stage))
) ; close ' if '
) ; close the rule

(defrule gen-reschedule-stage2 ;/ THIS RULE VERIFIES IF THE PROPOSED CHANGE
 ;/ IN GENERATION CAUSES ANY NEW OVERLOADS

 ?next-stage <- (next-stage)
(or
(gen-plus ?gen ?fdgen1)
(gen-minus ?gen ?fdgen1)
) ; close of 'or'

?pflow1 <- (pflow (line-num ?line-num)
(pflow ?pflow)
(max-flow ?max-flow) (pr-dev ?pr-dev) (seq 0))
?lsensitl <- (lsensit (line-num ?line-num)
(gen-loc ?gen) (sen-fact ?sen1))
?countl <- (count ?count)

=>

(bind ?count (+ ?count 1))
(bind ?d-pflow (* ?fdgen1 ?sen1))
(bind ?n-pflow (+ ?pflow ?d-pflow))
(bind ?new-dev (- (abs ?n-pflow) ?max-flow))
(if (and (> ?new-dev 0.0) (= ?pr-dev 0.0)) ; 'if-1' then
(bind ?ch-dev (- ?new-dev ?pr-dev))
(if (> ?ch-dev 0.0) ; 'if-2' then
(bind ?dgen (/ ?ch-dev (abs ?sen1)))
(bind ?*max-dgen* (max * ?max-dgen* ?dgen))
(assert (not-update ?gen ?fdgen1))
) ; close 'if-2'
) ; close 'if-1'
(modify ?pflowl (seq 1))
(if (<= ?count ?nline*) ; 'if-4' then
(retract ?countl)
(assert (count ?count))
else
(retract ?next-stage)
(retract ?countl)
(assert (count 1))
(if (= ?*max-dgen* 0.0) then
(assert (stage-5))
else
(assert (stage-3)))
) ; close 'if-4'
) ; close the rule

(defrule gen-reschedule-stage3 ;/ THIS RULE & NEXT ONE DETERMINE THE FINAL
; CHANGE IN GENERATION WITHOUT CAUSING NEW
; OVERLOADS

?stage <- (stage-3)
?update <- (not-update ?gen ?fdgen1)
(or
?gen1 <- (gen-plus ? ?)
?gen1 <- (gen-minus ? ?)
(retract ?stage)
(retract ?gen1)
(assert (max-dgen ?*max-dgen*))
(bind ?*max-dgen1* 0.0)
(bind ?*max-dgen* 0.0))

(defrule gen-reschedule-stage4
 ?update-1 <- (update)
 ?count <- (count ?)
 ?max-dev1 <- (max-dgen ?m-dgen)
 ?gen1 <- (generate (gen-loc ?gen) (max-lim ?max-lim)
 (min-lim ?min-lim) (pr-set ?pr-set))

=>
(retract ?update)
(retract ?max-dev1)
(if (> ?fdgen 0.0)
 then
 (bind ?fdgen (- ?fdgen ?m-dgen))
 (if (< ?fdgen 0.0000001)
 then
 (modify ?gen1 (prior 1))
 (retract ?update-1)
 (retract ?count)
 (assert (update-seq))
 else
 (bind ?pr-set (+ ?pr-set ?fdgen))
 (modify ?gen1 (pr-set ?pr-set) (prior 1))
 (assert (update ?gen ?fdgen)))
 else
 (bind ?fdgen (+ ?fdgen ?m-dgen))
 (if (> ?fdgen -0.0000001)
 then
 (modify ?gen1 (prior 1))
 (retract ?update-1)
 (retract ?count)
 (assert (update-seq))
 else
 (bind ?pr-set (+ ?pr-set ?fdgen))
 (modify ?gen1 (pr-set ?pr-set) (prior 1))
 (assert (update ?gen ?fdgen)))
) ; close 'if'

) ; close the rule

(defrule update-seq
 ?update-1 <- (update-seq)
pflow <- (pflow (line-num ?line-num) (seq 0))

=>
(if (>= ?*nline* ?*count*)
then
(bind ?*count* (+ ?*count* 1))
(modify ?pflow (seq 0))
) ; close 'if'
(if (= (+ ?*nline* 1) ?*count*) ; 'if-3'
then
(bind ?*count* 1)
(retract ?update-1)
) ; close 'if-3'
) ; close the rule

(defrule gen-reschedule-stage5
 ?stage <- (stage-5)
(or
 ?gen1 <- (gen-plus ?gen ?fdgen1)
 ?gen1 <- (gen-minus ?gen ?fdgen1)
) ; close of 'or'
?gen0 <- (generate (gen-loc ?gen) (max-lim ?max-lim)
(min-lim ?min-lim) (pr-set ?pr-set))

=>
(retract ?stage)
(retract ?gen1)
(assert (update ?gen ?fdgen1))
(bind ?pr-set (+ ?pr-set ?fdgen1))
(modify ?gen0 (pr-set ?pr-set))
) ; close the rule

(defrule update-pflow-plus-or-minus ;/ THIS RULE UPDATES THE POWER FLOWS
 ;/ OF THE LINES FOR ANY CHANGE IN GENERATION

?update <- (update)
?update-1 <- (update ?gen ?fdgen1)
?pflow1 <- (pflow (line-num ?line-num)
(pflow ?pflow)
(max-flow ?max-flow) (pr-dev ?pr-dev))
?lsensit1 <- (lsensit (line-num ?line-num)
(gen-loc ?gen) (sen-fact ?sen1))
?count1 <- (count ?count)

=>
(bind ?count (+ ?count 1))
(bind ?d-pflow (* ?fdgen1 ?sen1))
(bind ?pflow (+ ?pflow ?d-pflow))
(bind ?pr-dev (- (abs ?pflow) ?max-flow))
(if (<= ?pr-dev 0.0000000001) ; 'if-2'
then
(bind ?pr-dev 0.0)
) ; close 'if-2'
(modify ?pflow1 (pflow ?pflow) (pr-dev ?pr-dev) (seq 0))
(if (<= count ?*nline*) ;'if-3'
 then
 (retract ?count1)
 (assert (count ?count))
else
 (retract ?update)
 (retract ?update-1)
 (retract ?count1)
 (assert (update-3))
) ; close 'if-3'
) ; close the rule

(defrule last-round ; THIS RULE & NEXT RULES RESET THE OVERLOADED LINES
 ; FOR LAST ROUND OF CORRECTION PROCEESS
 (declare (salience -21))
 (initial-fact2)
 ?pflow-1 <- (pflow (line-num ?line-num)
 (pr-dev ?pr-dev&:(> ?pr-dev 0.0))
 (priority ?priority&1))
=>
 (assert (last-round))
 (bind ?*old-line* fyh)
 (modify ?pflow-1 (priority 0)))

(defrule confirm-last-round
 (declare (salience -22))
 ?last <- (last-round)
 ?initial <- (initial-fact2)
=>
 (retract ?initial)
 (retract ?last)
 (assert (last-round-ok)))

(defrule activate-no-controller ; THIS RULE VERIFIES IF THERE IS NO
 ; ADEQUATE GENERATION SHIFT
 (declare (salience -23))
 ?pflow-1 <- (pflow (line-num ?line-num)
 (pr-dev ?pr-dev&:(> ?pr-dev 0.0)))
=>
 (assert (update)))

(defrule sucessful
 (declare (salience -24))
 (update)
 ?update <- (update-3)
(retract ?update))

(defrule open-print ;/ THIS RULE OPEN THE OUTPUT FILE
 (declare (salience -26))
 (or
 (update-3)
 (update))
 =>
 (open "gener1.out" gener1 "w"))

(defrule print-new-pflow1 ;/ THE FOLLOWING RULES PRINT THE FINAL RESULTS
 (declare (salience -28))
 (update-3)
 =>
 (printout gener1 "EXPERT SYSTEM RESULTS FOR GENERATION RESCHEDULING"
 crlf)
 (printout gener1 " " crlf)
 (printout gener1 "The New Values of the Power Flows are as follow:" crlf
 " " crlf))

(defrule print-new-pflow2
 (declare (salience -30))
 (update-3)
 ?pflow1 <- (pflow (line-num ??line-num) (bus-a ?bus-a)
 (bus-b ?bus-b) (pflow ?pflow)
 (max-flow ?max-flow) (pr-dev ?pr-dev))
 =>
 (format gener1 "LINE NO. :%2d%-10s%-3d%-3s%-3d%-10s%-4.4f%-16s%-4.4f%n"
 ?line-num " BETWEEN : " ?bus-a " - "

(defrule print-gen-title
 (declare (salience -34))
 (update-3)
 =>
 (printout gener1 " " crlf)
 (printout gener1 "The New Generation Schedule is as follow:" crlf))

(defrule print-new-gener
 (declare (salience -35))
 (update-3)
(min-lim ?min-lim) (pr-set ?pr-set))

=>
(printout gener1 " " crlf)
(format gener1 " GEN. LOCAT. :%3d%-10s%-4.4f%n"
?gen-loc " PR. SET : " ?pr-set))

(defrule print-no-controller1
 (declare (salience -38))
 (update)
 =>
 (printout gener1 "EXPERT SYSTEM RESULTS FOR GENERATION RESCHEDULING"
 crlf)
 (printout gener1 " " crlf)
 (printout gener1 " NO ADEQUATE CONTROLLER AVAILABLE. " crlf)
 (printout gener1 " " crlf))

(defrule print-no-controller2
 (declare (salience -40))
 (update)
 ?pflow1 <- (pflow (line-num ?line-num) (bus-a ?bus-a)
 (bus-b ?bus-b) (pflow ?pflow)
 (max-flow ?max-flow) (pr-dev ?pr-dev))
 =>
 (printout gener1 " " crlf)
 (printout gener1 " " crlf)
 (format gener1 "LINE NO. :%2d%-10s%-3d%-3s%-3d%-10s%-4.4f%-16s%-4.4f%n"
 ?line-num " BETWEEN : " ?bus-a " - "

(defrule print-no-controller3
 (declare (salience -42))
 (update)
 (min-lim ?min-lim) (pr-set ?pr-set))
 =>
 (printout gener1 " " crlf)
 (printout gener1 " " crlf)
 (format gener1 " GEN. LOCAT. :%3d%-10s%-4.4f%n"
 ?gen-loc " PR. SET : " ?pr-set))

(defrule close-print ;/ THIS RULE CLOSES THE OUTPUT FILE
 (declare (salience -50))
 (or
 (update-3)
 (update))
 =>
 (close gener1))
APPENDIX - B.3

COMPUTER LISTING FOR KB OF

VOLTAGE ANGLE ADJUSTMENT PROCESS
(defglobal :/ GLOBAL VARIABLES
 ?*ang-lim* = 0.0
 ?*ngen* = 0
 ?*count* = 0
 ?*max-sen* = 0.0
 ?*plus-cont* = 0.0
 ?*dgen-plus* = 0.0
 ?*ang-bus1* = 0.0
 ?*max-ang* = 0.0
 ?*max-dev* = 0.0
 ?*dev-angl* = 0.0
)

(deftemplate generate :/ DATA BASE FOR GENERATORS
 (slot gen-num (default ?NONE))
 (slot gen-loc (default ?NONE))
 (slot max-lim (default ?NONE))
 (slot min-lim (default ?NONE))
 (slot pr-set (default ?NONE))
)

(deftemplate sensits :/ DATA BASE FOR SENSITIVITY COEFFICIENTS
 (slot dep-var (default ?NONE))
 (slot bus-name (default ?NONE))
 (slot ctrl-var (default ?NONE))
 (slot ctrl-loc (default ?NONE))
 (slot sen-fact (default ?NONE))
)

(deftemplate angle :/ DATA BASE FOR GENERATOR VOLTAGE ANGLES
 (slot bus-name (default ?NONE))
 (slot bus-type (default ?NONE))
 (slot volt-ang (default ?NONE))
 (slot pr-dev (type NUMBER) (default 0.0))
 (slot priority (type NUMBER) (default 0))
 (slot seq (type NUMBER) (default 0))
)

(defrule open-file-angle :/ THIS RULE OPEN THE FILE CONTAINING INITIAL
 (initial-fact) ;/ VALUES OF VOLTAGE ANGLES OBTAINED FROM L.F.
 =>
 (open "angle.dat" angl "r")
 (assert (read-file-angle)))

(defrule read-file-angle :/ THIS RULE READS THE INITIAL VALUES OF VOLTAGE
?read-angle <- (read-file-angle) ;/ ANGLES FROM A FILE

=>
 (retract ?read-angle)
 (bind ?bus-name (read angl))
 (bind ?bus-type (read angl))
 (bind ?volt-ang (read angl))
 (if (neq ?bus-name EOF-ANGLE) ; 'if-1'
 then
 (bind ?*ngen* (+ ?*ngen* 1))
 (assert (angle (bus-name ?bus-name)
 (bus-type ?bus-type)
 (volt-ang ?volt-ang)))
 (assert (read-file-angle))
); close 'if-1'
 (if (eq ?bus-name EOF-ANGLE)
 then
 (assert (EOF-ANGLE))
 (assert (angle-lim))
 (close angl); close the file
); close 'if-2'
); close the rule

(defrule read-angle-lim ;/ THIS RULE READS THE DESIRED ANGLE LIMIT
 ?angle <- (angle-lim);/ FROM THE USER
 =>
 (retract ?angle)
 (printout t "***** PLEASE ENTER YOUR DESIRED ANGLE LIMIT *****"
 crlf)
 (bind ?*ang-lim* (read))
 (assert (angle-dev))
); close the rule

(defrule check-angle-dev ;/ THIS RULE IDENTIFIES THE BUSES WITHOUT ANGLE
 ?angle <- (angle-dev);/ DEVIATION
 ?angle-1 <- (angle (bus-name ?bus-name)
 (bus-type PV)
 (volt-ang ?volt-ang)
 (pr-dev ?pr-dev))
 ?angle-2 <- (angle (bus-name ?bus-slk)
 (bus-type SLK) (volt-ang ?ang-slk))
 =>
 (retract ?angle)
 (bind ?*count* (+ ?*count* 1))
 (bind ?pr-dev (abs (- ?ang-slk ?volt-ang)))
 (if (<= ?pr-dev ?*ang-lim*)
 then
 (bind ?pr-dev 0.0))
 (modify ?angle-1 (pr-dev ?pr-dev))
 (if (> ?*ngen* ?*count*)
 then
(assert (angle-dev))
) ; close 'if'
) ; close the rule

(defrule angle-violation-check ;/ THIS RULE CHECKS VOLTAGE ANGLE
 ?initial <- (initial-fact) ;/ VIOLATION
 ?angle-1 <- (angle (bus-name ?bus-name)
 (bus-type PV)
 (volt-ang ?volt-ang) (pr-dev ?pr-dev&~0.0))

 =>
 (retract ?initial)
 (assert (violation-exist)))

(defrule print-no-violation ;/ THIS RULE PRINTS " NO VIOLATION " MESSAGE
 (declare (salience -5)) ;/ IN CASE NO VIOLATION EXIST
 (not (violation-exist))
 =>
 (printout t "THERE IS NO VIOLATION IN VOLTAGE ANGLE " crlf))

(defrule open-file-violation ;/ THIS RULE OPEN GENERATION & SENSITIVITY
 (violation-exist) ;/ DATA FILES IN CASE VIOLATION EXIST
 =>
 (open "gen.dat" gen "r")
 (open "angsen.dat" angsen "r")
 (assert (read-file-gen)
 (read-file-angsen)))

(defrule read-file-gen ;/ READS THE GENERATION DATA FROM A FILE
 ?read-gen <- (read-file-gen)
 =>
 (retract ?read-gen)
 (bind ?gen-num (read gen))
 (bind ?gen-loc (read gen))
 (bind ?max-lim (read gen))
 (bind ?min-lim (read gen))
 (bind ?pr-set (read gen))
 (if (neq ?gen-num EOF-GEN) ; 'if-1'
 then
 (assert (generate (gen-num ?gen-num)
 (gen-loc ?gen-loc)
 (max-lim ?max-lim)
 (min-lim ?min-lim)
 (pr-set ?pr-set)))
 (assert (read-file-gen))
) ; close 'if-1'
 (if (eq ?gen-num EOF-GEN); 'if-2'
 then
(assert (EOF-GEN))
(close gen) ; close the file
) ; close 'if-2'
) ; close the rule

(defrule read-file-angsen ;/ READS THE SENSITIVITY DATA FROM A FILE
?read-ang <= (read-file-angsen)
=>
(retract ?read-ang)
(bind ?dep-var (read angsen))
(bind ?bus-name (read angsen))
(bind ?ctrl-var (read angsen))
(bind ?ctrl-loc (read angsen))
(bind ?sen-fact (read angsen))
(if (neq ?dep-var EOF-ANGSEN) ; 'if-1'
then
(assert (sensit (dep-var ?dep-var)
(bus-name ?bus-name)
(ctrl-var ?ctrl-var)
(ctrl-loc ?ctrl-loc)
(sen-fact ?sen-fact)))
(assert (read-file-angsen))
) ; close 'if-1'
(if (eq ?dep-var EOF-ANGSEN); 'if-2'
then
(assert (EOF-ANGSEN))
(close angsen) ; close the file
) ; close 'if-2'
) ; close the rule

(defrule angle-check-1 ;/ THIS RULE & NEXT ONE IDENTIFY THE BUS WITH
(EOF-ANGLE) ;/ MAXIMUM VIOLATION
(EOF-GEN)
(EOF-ANGSEN)
?angle-2 <= (angle (bus-name ?bus-name)
(bus-type PV)
(volt-ang ?volt-ang)
(pr-dev ?pr-dev&"0.0))
(not (update))
=>
(assert (max-angle))
(bind ?*max-dev* (max ?*max-dev* ?pr-dev))
(if (= ?*max-dev* ?pr-dev)
then
(bind ?*max-ang* ?volt-ang)
(bind ?*ang-bus1* ?bus-name)))

(defrule angle-check-2
 (declare (salience -5)))
?maxx <- (max-angle)
)

=>
(retract ?maxx)
 (bind ?ang-bus ?*ang-bus1*)
 (bind ?volt-ang ?*max-ang*)
 (bind ?*ang-bus1* fyh)
 (bind ?*max-ang* 0.0)
 (bind ?*max-dev* 0.0)
 (if (> ?volt-ang 0.0)
 then
 (assert (ang-bus-plus ?ang-bus ?volt-ang))
 else
 (assert (ang-bus-neg ?ang-bus ?volt-ang))
) ; close 'if'
 (assert (gen-max-sen-plus FYH)
 (update)))

(defrule max-gen-plus ;/ IDENTIFIES THE MOST EFFECTIVE GENERATOR AND
 ;/ HAS MARGIN FOR INCREASE IN GENERATION
 ?angle-1 <- (ang-bus-neg ?ang-bus ?)
 (pr-set ?pr-set&:(< ?pr-set ?max-lim)))
 ?ang-sens <- (sensit (dep-var ?dep-var)
 (bus-name ?ang-bus) (ctrl-loc ?gen-loc)
 (sen-fact ?sen-fact))

=>
 (assert (max-gen-plus))
 (bind ?*max-sen* (max ?*max-sen* ?sen-fact))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*plus-cont* ?gen-loc)))

(defrule max-gen-minus ;/ IDENTIFIES THE MOST EFFECTIVE GENERATOR AND
 ;/ HAS MARGIN FOR DECREASE IN GENERATION
 ?angle-1 <- (ang-bus-plus ?ang-bus ?)
 ?gen <- (generate (gen-loc ?gen-loc) (min-lim ?min-lim)
 (pr-set ?pr-set&:(> ?pr-set ?min-lim)))
 ?ang-sens <- (sensit (dep-var ?dep-var)
 (bus-name ?ang-bus) (ctrl-loc ?gen-loc)
 (sen-fact ?sen-fact))

=>
 (assert (max-gen-plus))
 (bind ?*max-sen* (max ?*max-sen* ?sen-fact))
 (if (= ?*max-sen* ?sen-fact)
 then
 (bind ?*plus-cont* ?gen-loc)))
(defrule nearby-gen ;/ STORES THE MOST EFFECTIVE GENERATOR WITH PLUS
 ;/ MARGIN
 (declare (salience -10)) -
 ?max-gen <- (max-gen-plus)
 ?gen-plus <- (gen-max-sen-plus ?)
 =>
 (retract ?gen-plus)
 (retract ?max-gen)
 (assert (gen-max-sen-plus ?plus-cont*))
 (bind ?*max-sen* 0.0)
 (bind ?plus-cont* fyh1)
) ; close the rule

(defrule gen-reschedule-plus ;/ DETERMINES THE AMOUNT OF INCREASE IN
 ;/ GENERATION FOR THE MOST EFFECTIVE GEN.
 ?gen-plus <- (gen-max-sen-plus ?gen-plus&"FYH1")
 ?angle-2 <- (angle (bus-name ?bus-slk)
 (bus-type SLK) (volt-ang ?ang-slk))
 ?ang-sens <- (sensit (dep-var ?dep-var)
 (bus-name ?ang-bus) (ctrl-loc ?gen-plus)
 (sen-fact ?sen-fact))
 ?gen <- (generate (gen-loc ?gen-plus)
 (max-lim ?max-lim) (pr-set ?pr-set))
 =>
 (retract ?angle-1)
 (retract ?gen-pluss)
 (bind ?gen-av (- ?max-lim ?pr-set))
 (if (<= ?d-gen ?gen-av)
 then
 (assert (dgen-plus ?d-gen)
 (gen-plus ?gen-plus) (count 1))
 (bind ?pr-set (+ ?pr-set ?d-gen))
 (modify ?gen (pr-set ?pr-set))
 else
 (assert (dgen-plus ?gen-av)
 (gen-plus ?gen-plus) (count 1))
 (bind ?pr-set (+ ?pr-set ?gen-av))
 (modify ?gen (pr-set ?pr-set))
) ; close 'if'
) ; close the rule

(defrule gen-reschedule-minus ;/ DETERMINES THE AMOUNT OF DECREASE IN
 ;/ GENERATION FOR THE MOST EFFECTIVE GEN.
 ?gen-plus <- (gen-max-sen-plus ?gen-plus&"FYH1")
 ?angle-2 <- (angle (bus-name ?bus-slk)
(bus-type SLK) (volt-ang ?ang-slk))

?ang-sens <- (sensit (dep-var ?dep-var)
 (bus-name ?ang-bus) (ctrl-loc ?gen-plus)
 (sen-fact ?sen-fact))

?gen <- (generate (gen-loc ?gen-plus)
 (min-lim ?min-lim) (pr-set ?pr-set))

=>

(retract ?angle-1)
(retract ?gen-plus)
(bind ?gen-av (- ?min-lim ?pr-set))
(if (>= ?d-gen ?gen-av)
 then
 (assert (dgen-plus ?d-gen)
 (gen-plus ?gen-plus) (count 1))
 (bind ?pr-set (+ ?pr-set ?d-gen))
 (modify ?gen (pr-set ?pr-set))
 else
 (assert (dgen-plus ?gen-av)
 (gen-plus ?gen-plus) (count 1))
 (bind ?pr-set (+ ?pr-set ?gen-av))
 (modify ?gen (pr-set ?pr-set))
) ; close 'if'
) ; close the rule

(defrule update-volt-angle ;/ UPDATES THE VOLTAGE ANGLES FOR ALL BUSES
 ?update <- (update) ;/ BASED ON THE CHANGE IN GENERATION

 ?gen1 <- (gen-plus ?gen)
 ?dgen1 <- (dgen-plus ?fdgen)
 ?angle1 <- (angle (bus-name ?bus-name)
 (volt-ang ?volt-ang) (pr-dev ?pr-dev))
 ?angle-2 <- (angle (bus-name ?bus-slk)
 (bus-type SLK) (volt-ang ?ang-slk))
 ?ang-sens <- (sensit (dep-var ?dep-var)
 (bus-name ?bus-name) (ctrl-loc ?gen)
 (sen-fact ?sen-fact))

 ?count1 <- (count ?count)

=>

(bind ?count (+ ?count 1))
(bind ?pr-dev (abs (- ?ang-slk ?volt-ang)))
(if (<= ?pr-dev ?*ang-lim*)
 then
 (bind ?pr-dev 0.0)
 (modify ?angle1 (volt-ang ?volt-ang) (pr-dev ?pr-dev))
 (if (<= ?count (- ?ngen* 1)) ; 'if-2'
 then
 (retract ?count1)
 (assert (count ?count))
)
else
(retract ?update)
(retract ?gen1)
(retract ?dgen1)
(retract ?count1)
(assert (update-3))
)
; close 'if-2'
)
; close the rule

(defrule successful
 (declare (salience -19))
 (update)
 ?update <- (update-3)
 =>
 (retract ?update))

(defrule open-print ;/ OPENS THE OUTPUT FILE
 (declare (salience -20))
 (or
 (update-3)
 (update))
 =>
 (open "angle.out" angle1 "w"))

(defrule print-title1 ;/ THIS RULE & THE FOLLOWING PRINTS THE RESULTS
 (declare (salience -24)) ;/ IN OUTPUT FILE
 (or
 (update-3)
 (update))
 =>
 (printout angle1 "EXPERT SYSTEM RESULTS FOR VOLTAGE ANGLE ADJUSTMENT" crlf)
 (printout angle1 " " crlf)
 (printout angle1 "The New Values of the Voltage Angles are as follow:" crlf
 " " crlf))

(defrule print-new-angle
 (declare (salience -25))
 (update-3)
 ?angle1 <- (angle (bus-name ?bus-name)
 (bus-type ?bus-type)
 (volt-ang ?volt-ang))
 =>
 (format angle1 " BUS NAME :%3d%-10s%-3s%-15s%-4.4f%n"
 ?bus-name " BUS TYPE : " ?bus-type
 " VOLTAGE ANGLE : " ?volt-ang))
(defrule print-gen-title
 (declare (salience -29))
 (update-3)
=>
 (printout angle1 " " crlf)
 (printout angle1 "The New Settings of Generators are as follow:=" crlf))

(defrule print-new-gener
 (declare (salience -30))
 (update-3)
 ?gen <- (generate (gen-loc ?gen-loc)
 (max-lim ?max-lim)
 (min-lim ?min-lim) (pr-set ?pr-set))
=>
 (printout angle1 " " crlf)
 (format angle1 " GEN. LOCAT. :%-3d%-10s%-4.4f%-10s%-4.4f%-10s%-4.4f\n " PR. SETT. : " ?pr-set " MAX. GEN. : " ?max-lim " MIN. GEN. : " ?min-lim))

(defrule print-no-controller ;/ THIS RULE FIRES INCASE NO ADEQUATE CONTROLS
 (declare (salience -35))
 (update)
=>
 (printout angle1 " " crlf)
 (printout angle1 " NO ADEQUATE CONTROLLER AVAILABLE. " crlf))

(defrule close-print ;/ CLOSES THE OUTPUT FILE
 (declare (salience -40))
 (or
 (update-3)
 (update))
=>
 (close angle1))
APPENDIX - C

COMPUTER OUTPUTS FOR CASE STUDIES
APPENDIX - C.1

LOAD FLOW PROGRAM OUTPUTS
STUDY CASE NO.1, "14-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (INITIAL STATE)

PROGRAM CONVERGED IN 3 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.050</td>
<td>0.000</td>
<td>238.248</td>
<td>-11.649</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.025</td>
<td>-5.034</td>
<td>40.000</td>
<td>-61.879*</td>
<td>21.700</td>
<td>12.700</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.080</td>
<td>-13.935</td>
<td>0.000</td>
<td>103.702*</td>
<td>94.200</td>
<td>19.000</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>1.000</td>
<td>-17.258</td>
<td>0.000</td>
<td>47.542</td>
<td>11.200</td>
<td>7.500</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>1.100</td>
<td>-14.493</td>
<td>0.000</td>
<td>26.255*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.039</td>
<td>-10.938</td>
<td>0.000</td>
<td>0.000</td>
<td>37.800</td>
<td>-3.900</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>1.035</td>
<td>-9.476</td>
<td>0.000</td>
<td>0.000</td>
<td>7.600</td>
<td>1.600</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.058*</td>
<td>-14.493</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.057*</td>
<td>-16.283</td>
<td>0.000</td>
<td>19.000</td>
<td>10.500</td>
<td>-6.600</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.040</td>
<td>-16.773</td>
<td>0.000</td>
<td>0.000</td>
<td>9.000</td>
<td>5.800</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.017</td>
<td>-17.172</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>1.800</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.969</td>
<td>-18.664</td>
<td>0.000</td>
<td>0.000</td>
<td>6.100</td>
<td>1.600</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRESS. GEN.</td>
<td>GENERATION CAPACITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>MW (MAX.) MW (MIN.) MVAR (MAX.) MVAR (MIN.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>238.248</td>
<td>-11.649</td>
<td>40.000 -40.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>40.000</td>
<td>-61.879 100.000 30.000</td>
<td>50.000 -40.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>0.000</td>
<td>103.702 0.000 0.000</td>
<td>40.000 0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>0.000</td>
<td>47.542 0.000 0.000</td>
<td>50.000 -6.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>0.000</td>
<td>26.255 0.000 0.000</td>
<td>24.000 -6.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TYPE</th>
<th>PR. SETT.</th>
<th>MVAR LIMITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(MVAR) (MAX.) (MIN.)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SH. CAPACITOR</td>
<td>19.000</td>
<td>19.000 0.000</td>
</tr>
<tr>
<td>13</td>
<td>SH. CAPACITOR</td>
<td>0.000</td>
<td>9.000 0.000</td>
</tr>
<tr>
<td>14</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>-9.000 0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAP ID.</th>
<th>BETWEEN BUS - BUS</th>
<th>TAP LOCATION</th>
<th>TAP POSITION (MAX.)</th>
<th>LIMITS (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 - 7</td>
<td>4</td>
<td>0.9750 1.1000 0.9000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9 - 4</td>
<td>9</td>
<td>0.9625 1.1000 0.9000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 - 6</td>
<td>5</td>
<td>0.9375 1.1000 0.9000</td>
<td></td>
</tr>
</tbody>
</table>
STUDY CASE NO.1, "14-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (FINAL STATE)

PROGRAM CONVERGED IN 3 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.086</td>
<td>0.000</td>
<td>234.743</td>
<td>8.848</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.057</td>
<td>-4.575</td>
<td>40.000</td>
<td>3.834</td>
<td>21.700</td>
<td>12.700</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.025</td>
<td>-12.105</td>
<td>0.000</td>
<td>22.051</td>
<td>94.200</td>
<td>19.000</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>1.000</td>
<td>-16.498</td>
<td>0.000</td>
<td>45.132</td>
<td>11.200</td>
<td>7.500</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>1.081</td>
<td>-13.325</td>
<td>0.000</td>
<td>24.676*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.038</td>
<td>-9.847</td>
<td>0.000</td>
<td>0.000</td>
<td>37.800</td>
<td>-3.900</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>1.044</td>
<td>-8.584</td>
<td>0.000</td>
<td>0.000</td>
<td>7.600</td>
<td>1.600</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.041</td>
<td>-13.325</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.032</td>
<td>-15.117</td>
<td>0.000</td>
<td>0.000</td>
<td>10.500</td>
<td>-6.600</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.019</td>
<td>-15.678</td>
<td>0.000</td>
<td>0.000</td>
<td>9.000</td>
<td>5.800</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.007</td>
<td>-16.232</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>1.800</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.971</td>
<td>-17.962</td>
<td>0.000</td>
<td>0.000</td>
<td>6.100</td>
<td>1.600</td>
</tr>
</tbody>
</table>
Generators/Synchronous Condensers

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>BUS TYPE</th>
<th>PRES. GEN.</th>
<th>GENERATION CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>MW (MAX.)</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>234.743</td>
<td>8.848</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>40.000</td>
<td>3.834</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>0.000</td>
<td>22.051</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>0.000</td>
<td>45.132</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>0.000</td>
<td>24.676</td>
</tr>
</tbody>
</table>

Static Var Compensators

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>TYPE</th>
<th>PR. SETT. (MVAR)</th>
<th>MVAR LIMITS (MAX.)</th>
<th>MVAR LIMITS (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>SH. CAPACITOR</td>
<td>0.000</td>
<td>19.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>SH. CAPACITOR</td>
<td>9.000</td>
<td>9.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>-9.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Transformer Tap Changers

<table>
<thead>
<tr>
<th>TAP ID.</th>
<th>BETWEEN BUS - BUS</th>
<th>TAP LOCATIN</th>
<th>TAP POSITION (MAX.)</th>
<th>LIMITS (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 - 7</td>
<td>4</td>
<td>0.9750</td>
<td>1.1000 0.9000</td>
</tr>
<tr>
<td>2</td>
<td>9 - 4</td>
<td>9</td>
<td>0.9625</td>
<td>1.1000 0.9000</td>
</tr>
<tr>
<td>3</td>
<td>5 - 6</td>
<td>5</td>
<td>0.9375</td>
<td>1.1000 0.9000</td>
</tr>
</tbody>
</table>
STUDY CASE NO.2, "30-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (INITIAL STATE)

PROGRAM CONVERGED IN 3 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.060</td>
<td>0.000</td>
<td>347.071</td>
<td>-32.779</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.045</td>
<td>-7.323</td>
<td>40.000</td>
<td>76.664*</td>
<td>21.700</td>
<td>12.700</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.010</td>
<td>-17.328</td>
<td>0.000</td>
<td>39.084</td>
<td>94.200</td>
<td>19.000</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>1.010</td>
<td>-16.300</td>
<td>0.000</td>
<td>54.567*</td>
<td>30.000</td>
<td>30.000</td>
</tr>
<tr>
<td>11</td>
<td>PV</td>
<td>1.082</td>
<td>-21.815</td>
<td>0.000</td>
<td>41.919*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>1.071</td>
<td>-25.224</td>
<td>0.000</td>
<td>69.618*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>PQ</td>
<td>1.018</td>
<td>-11.018</td>
<td>0.000</td>
<td>0.000</td>
<td>2.400</td>
<td>1.200</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.010</td>
<td>-13.342</td>
<td>0.000</td>
<td>0.000</td>
<td>7.600</td>
<td>1.600</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>1.004</td>
<td>-15.407</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>0.999</td>
<td>-16.727</td>
<td>0.000</td>
<td>0.000</td>
<td>22.800</td>
<td>10.900</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.001</td>
<td>-21.815</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>0.975</td>
<td>-25.212</td>
<td>0.000</td>
<td>19.000</td>
<td>5.800</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.980</td>
<td>-25.224</td>
<td>0.000</td>
<td>0.000</td>
<td>11.200</td>
<td>7.500</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>0.948*</td>
<td>-27.190</td>
<td>0.000</td>
<td>0.000</td>
<td>6.200</td>
<td>1.600</td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>0.921*</td>
<td>-27.857</td>
<td>0.000</td>
<td>0.000</td>
<td>28.200</td>
<td>12.500</td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>0.971</td>
<td>-25.544</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>1.800</td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>0.968</td>
<td>-25.553</td>
<td>0.000</td>
<td>0.000</td>
<td>9.000</td>
<td>5.800</td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>0.895*</td>
<td>-29.157</td>
<td>0.000</td>
<td>0.000</td>
<td>3.200</td>
<td>0.900</td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>0.884*</td>
<td>-29.699</td>
<td>0.000</td>
<td>0.000</td>
<td>29.500</td>
<td>13.400</td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>0.900*</td>
<td>-28.864</td>
<td>0.000</td>
<td>0.000</td>
<td>12.200</td>
<td>6.700</td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>0.958</td>
<td>-25.861</td>
<td>0.000</td>
<td>0.000</td>
<td>17.500</td>
<td>11.200</td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>0.957</td>
<td>-25.887</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>0.900*</td>
<td>-29.026</td>
<td>0.000</td>
<td>0.000</td>
<td>23.200</td>
<td>5.600</td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>0.924*</td>
<td>-26.783</td>
<td>0.000</td>
<td>4.300</td>
<td>8.700</td>
<td>6.700</td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>0.930*</td>
<td>-24.469</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>PQ</td>
<td>0.911*</td>
<td>-24.973</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>2.300</td>
</tr>
<tr>
<td>27</td>
<td>PQ</td>
<td>0.944*</td>
<td>-22.739</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>PQ</td>
<td>1.001</td>
<td>-16.264</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>29</td>
<td>PQ</td>
<td>0.922*</td>
<td>-24.190</td>
<td>0.000</td>
<td>0.000</td>
<td>2.400</td>
<td>0.900</td>
</tr>
<tr>
<td>30</td>
<td>PQ</td>
<td>0.910*</td>
<td>-25.238</td>
<td>0.000</td>
<td>0.000</td>
<td>10.600</td>
<td>1.900</td>
</tr>
</tbody>
</table>
GENERATORS/SYNCHRONOUS CONDENSERS

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>BUS TYPE</th>
<th>PRES. GEN. MW</th>
<th>MVAR</th>
<th>GENERATION CAPACITY (MW) MAX.</th>
<th>(MIN.)</th>
<th>(MW) MAX.</th>
<th>MVAR (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>347.071</td>
<td>-32.779</td>
<td>40.000</td>
<td>-40.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>40.000</td>
<td>76.664</td>
<td>100.000</td>
<td>30.000</td>
<td>50.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>0.000</td>
<td>39.084</td>
<td>0.000</td>
<td>0.000</td>
<td>40.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>0.000</td>
<td>54.567</td>
<td>0.000</td>
<td>0.000</td>
<td>50.000</td>
<td>-10.000</td>
</tr>
<tr>
<td>11</td>
<td>PV</td>
<td>0.000</td>
<td>41.919</td>
<td>0.000</td>
<td>0.000</td>
<td>35.000</td>
<td>-6.000</td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>0.000</td>
<td>69.618</td>
<td>0.000</td>
<td>0.000</td>
<td>50.000</td>
<td>-6.000</td>
</tr>
</tbody>
</table>

STATIC VAR COMPENSATORS

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>TYPE</th>
<th>PR. SETT. (MVAR)</th>
<th>MVAR LIMITS (MAX.)</th>
<th>(MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SH. CAPACITOR</td>
<td>19.000</td>
<td>19.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>SH. CAPACITOR</td>
<td>0.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>24</td>
<td>SH. CAPACITOR</td>
<td>4.300</td>
<td>8.600</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>6.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>-10.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TRANSFORMER TAP CHANGERS

<table>
<thead>
<tr>
<th>TAP ID.</th>
<th>BETWEEN BUS - BUS</th>
<th>TAP LOCATION</th>
<th>TAP POSITION (MAX.)</th>
<th>LIMITS (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>0.9250</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>0.9750</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>0.9625</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>0.9625</td>
</tr>
</tbody>
</table>
STUDY CASE NO. 2, "30-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (FINAL STATE)

PROGRAM CONVERGED IN 3 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>KVAR</th>
<th>MW</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.094</td>
<td>0.000</td>
<td>343.965</td>
<td>1.034</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.062</td>
<td>-6.590</td>
<td>40.000</td>
<td>31.722</td>
<td>21.700</td>
<td>12.700</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.031</td>
<td>-16.225</td>
<td>0.000</td>
<td>39.638</td>
<td>94.200</td>
<td>19.000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>1.029</td>
<td>-15.168</td>
<td>0.000</td>
<td>44.513</td>
<td>30.000</td>
<td>30.000</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PV</td>
<td>1.100</td>
<td>-20.202</td>
<td>0.000</td>
<td>28.075</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>1.095</td>
<td>-23.273</td>
<td>0.000</td>
<td>51.225</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PQ</td>
<td>1.045</td>
<td>-10.276</td>
<td>0.000</td>
<td>1.000</td>
<td>2.400</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.035</td>
<td>-12.447</td>
<td>0.000</td>
<td>1.000</td>
<td>7.600</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>1.026</td>
<td>-14.367</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.020</td>
<td>-15.640</td>
<td>0.000</td>
<td>1.000</td>
<td>22.800</td>
<td>10.900</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.047</td>
<td>-20.202</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.027</td>
<td>-23.319</td>
<td>0.000</td>
<td>15.000</td>
<td>5.800</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>1.030</td>
<td>-23.273</td>
<td>0.000</td>
<td>0.000</td>
<td>11.200</td>
<td>7.500</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>1.010</td>
<td>-25.215</td>
<td>0.000</td>
<td>0.000</td>
<td>6.200</td>
<td>1.600</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>0.995</td>
<td>-26.233</td>
<td>0.000</td>
<td>25.000</td>
<td>28.200</td>
<td>12.500</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>1.022</td>
<td>-23.587</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>1.800</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>1.020</td>
<td>-23.617</td>
<td>0.000</td>
<td>0.000</td>
<td>9.000</td>
<td>5.800</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>0.965</td>
<td>-27.160</td>
<td>0.000</td>
<td>0.000</td>
<td>3.200</td>
<td>0.900</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>0.950</td>
<td>-27.509</td>
<td>0.000</td>
<td>0.000</td>
<td>29.500</td>
<td>13.400</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>0.963</td>
<td>-26.720</td>
<td>0.000</td>
<td>0.000</td>
<td>12.200</td>
<td>6.700</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>1.012</td>
<td>-23.954</td>
<td>0.000</td>
<td>0.000</td>
<td>17.500</td>
<td>11.200</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>1.012</td>
<td>-23.994</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>0.971</td>
<td>-27.140</td>
<td>0.000</td>
<td>0.000</td>
<td>23.200</td>
<td>5.600</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>0.986</td>
<td>-25.064</td>
<td>0.000</td>
<td>8.600</td>
<td>8.700</td>
<td>6.700</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>0.978</td>
<td>-22.762</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PQ</td>
<td>0.960</td>
<td>-23.216</td>
<td>0.000</td>
<td>0.000</td>
<td>3.500</td>
<td>2.300</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>PQ</td>
<td>0.983</td>
<td>-21.051</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>PQ</td>
<td>1.024</td>
<td>-15.184</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>PQ</td>
<td>0.962</td>
<td>-22.387</td>
<td>0.000</td>
<td>0.000</td>
<td>2.400</td>
<td>0.900</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>PQ</td>
<td>0.950*</td>
<td>-23.348</td>
<td>0.000</td>
<td>0.000</td>
<td>10.600</td>
<td>1.900</td>
<td></td>
</tr>
</tbody>
</table>
Generators/Synchronous Condensers

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>BUS TYPE</th>
<th>PRES. GEN. MW</th>
<th>MVAR</th>
<th>GENERATION CAPACITY MW (MAX.)</th>
<th>MW (MIN.)</th>
<th>MVAR (MAX.)</th>
<th>MVAR (MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>343.965</td>
<td>3.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>40.000</td>
<td>32.722</td>
<td>100.000</td>
<td>30.000</td>
<td>50.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>0.000</td>
<td>39.638</td>
<td>0.000</td>
<td>0.000</td>
<td>40.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>0.000</td>
<td>44.513</td>
<td>0.000</td>
<td>0.000</td>
<td>50.000</td>
<td>-10.000</td>
</tr>
<tr>
<td>11</td>
<td>PV</td>
<td>0.000</td>
<td>28.075</td>
<td>0.000</td>
<td>0.000</td>
<td>35.000</td>
<td>-6.000</td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>0.000</td>
<td>51.225</td>
<td>0.000</td>
<td>0.000</td>
<td>50.000</td>
<td>-6.000</td>
</tr>
</tbody>
</table>

Static Var Compensators

<table>
<thead>
<tr>
<th>LOCATION (BUS)</th>
<th>TYPE</th>
<th>PR. SETT. MVAR</th>
<th>MVAR LIMITS (MAX.)</th>
<th>(MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SH. CAPACITOR</td>
<td>19.000</td>
<td>19.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>SH. CAPACITOR</td>
<td>25.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>24</td>
<td>SH. CAPACITOR</td>
<td>8.600</td>
<td>8.600</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>-6.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>SH. REACTOR</td>
<td>0.000</td>
<td>-10.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Transformer Tap Changers

<table>
<thead>
<tr>
<th>TAP ID.</th>
<th>BETWEEN BUS - BUS</th>
<th>TAP LOCATION</th>
<th>TAP POSITION</th>
<th>LIMITS (MAX.)</th>
<th>(MIN.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 - 12</td>
<td>4</td>
<td>0.9375</td>
<td>1.1000</td>
<td>0.9000</td>
</tr>
<tr>
<td>2</td>
<td>6 - 9</td>
<td>6</td>
<td>1.0125</td>
<td>1.1000</td>
<td>0.9000</td>
</tr>
<tr>
<td>3</td>
<td>10 - 6</td>
<td>10</td>
<td>0.9625</td>
<td>1.1000</td>
<td>0.9000</td>
</tr>
<tr>
<td>4</td>
<td>28 - 27</td>
<td>28</td>
<td>0.9625</td>
<td>1.1000</td>
<td>0.9000</td>
</tr>
</tbody>
</table>
Study Case No. 1, "6-Bus System"

Complete Load Flow Results (Initial State)

Program Converged in 2 Iterations

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>LOAD MW</th>
<th>LOAD MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>241.500</td>
<td>0.000</td>
<td>107.869</td>
<td>15.955*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>241.500</td>
<td>-3.671</td>
<td>50.000</td>
<td>74.350*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>246.100</td>
<td>-4.273</td>
<td>60.000</td>
<td>89.624*</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>227.556</td>
<td>-4.196</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>226.653</td>
<td>-5.276</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>231.018</td>
<td>-5.947</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
</tbody>
</table>

Line Flow

<table>
<thead>
<tr>
<th>LINE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28.687</td>
<td>-15.418</td>
<td>0.905</td>
<td>-2.600</td>
<td>33.500</td>
</tr>
<tr>
<td>1</td>
<td>43.583*</td>
<td>20.119</td>
<td>1.087</td>
<td>0.187</td>
<td>36.000</td>
</tr>
<tr>
<td>1</td>
<td>35.599*</td>
<td>11.254</td>
<td>1.073</td>
<td>-2.196</td>
<td>30.000</td>
</tr>
<tr>
<td>2</td>
<td>-27.782</td>
<td>12.817</td>
<td>0.905</td>
<td>-2.600</td>
<td>33.500</td>
</tr>
<tr>
<td>2</td>
<td>2.930</td>
<td>-12.269</td>
<td>0.040</td>
<td>-6.541</td>
<td>15.500</td>
</tr>
<tr>
<td>2</td>
<td>33.091</td>
<td>46.051</td>
<td>1.505</td>
<td>0.929</td>
<td>60.000</td>
</tr>
<tr>
<td>2</td>
<td>15.514</td>
<td>15.352</td>
<td>0.498</td>
<td>-2.654</td>
<td>30.000</td>
</tr>
<tr>
<td>2</td>
<td>26.248</td>
<td>12.399</td>
<td>0.583</td>
<td>-3.612</td>
<td>40.000</td>
</tr>
<tr>
<td>3</td>
<td>-2.890</td>
<td>5.728</td>
<td>0.040</td>
<td>-6.541</td>
<td>15.500</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRES. GEN. MW</td>
<td>MVAR</td>
<td>GENERATION MW (MAX.)</td>
<td>MVAR (MAX.)</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>107.869</td>
<td>15.955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>50.000</td>
<td>74.350</td>
<td>150.000</td>
<td>37.500</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>60.000</td>
<td>89.624</td>
<td>180.000</td>
<td>45.000</td>
</tr>
</tbody>
</table>
Study Case No. 1: "6-Bus System"

Complete Load Flow Results (Final State)

Program converged in 2 iterations

<table>
<thead>
<tr>
<th>Bus</th>
<th>Type</th>
<th>Magn.</th>
<th>Angle</th>
<th>MW</th>
<th>kVar</th>
<th>MW</th>
<th>MVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>241.500</td>
<td>0.000</td>
<td>58.186</td>
<td>32.821</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>241.500</td>
<td>-0.712</td>
<td>108.308</td>
<td>52.099</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>246.100</td>
<td>-2.256</td>
<td>50.486</td>
<td>92.132</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>227.061</td>
<td>-2.294</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>226.496</td>
<td>-3.469</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>230.886</td>
<td>-3.717</td>
<td>0.000</td>
<td>0.000</td>
<td>70.000</td>
<td>70.000</td>
</tr>
</tbody>
</table>

Line Flow

<table>
<thead>
<tr>
<th>Line</th>
<th>Flow MW</th>
<th>MVAR</th>
<th>Losses MW</th>
<th>MVAR</th>
<th>Limit MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - TO 2</td>
<td>5.495</td>
<td>-4.910</td>
<td>0.034</td>
<td>-4.342</td>
<td>33.500</td>
</tr>
<tr>
<td>1 - TO 4</td>
<td>27.378</td>
<td>24.324</td>
<td>0.659</td>
<td>-1.518</td>
<td>36.000</td>
</tr>
<tr>
<td>1 - TO 5</td>
<td>25.313</td>
<td>13.406</td>
<td>0.668</td>
<td>-3.713</td>
<td>30.000</td>
</tr>
<tr>
<td>2 - TO 1</td>
<td>-5.461</td>
<td>0.568</td>
<td>0.034</td>
<td>-4.342</td>
<td>33.500</td>
</tr>
<tr>
<td>2 - TO 3</td>
<td>10.062</td>
<td>-13.557</td>
<td>0.094</td>
<td>-6.274</td>
<td>15.500</td>
</tr>
<tr>
<td>2 - TO 4</td>
<td>49.423</td>
<td>40.498</td>
<td>1.893</td>
<td>1.708</td>
<td>60.000</td>
</tr>
<tr>
<td>2 - TO 5</td>
<td>21.892</td>
<td>13.729</td>
<td>0.665</td>
<td>-2.150</td>
<td>30.000</td>
</tr>
<tr>
<td>2 - TO 6</td>
<td>32.392</td>
<td>10.860</td>
<td>0.784</td>
<td>-3.036</td>
<td>40.000</td>
</tr>
<tr>
<td>3 - TO 2</td>
<td>-9.969</td>
<td>7.282</td>
<td>0.094</td>
<td>-6.274</td>
<td>15.500</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRES. GEN. MW</td>
<td>MVAR MVAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>58.186</td>
<td>32.821</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>108.308</td>
<td>52.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>50.486</td>
<td>92.132</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERATION CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW (MAX.) MW (MIN.) MVAR (MAX.) MVAR (MIN.)</td>
</tr>
<tr>
<td>150.000 37.500 0.000 0.000</td>
</tr>
<tr>
<td>180.000 45.000 0.000 0.000</td>
</tr>
</tbody>
</table>
STUDY CASE NO.2, "25-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (INITIAL STATE)

PROGRAM CONVERGED IN 2 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>KVAR</th>
<th>MW</th>
<th>MUAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.020</td>
<td>0.000</td>
<td>245.687</td>
<td>125.868*</td>
<td>200.000</td>
<td>65.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.020</td>
<td>9.461</td>
<td>100.000</td>
<td>10.455</td>
<td>10.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.010</td>
<td>6.851</td>
<td>150.000</td>
<td>15.807</td>
<td>50.000</td>
<td>17.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>1.010</td>
<td>-1.271</td>
<td>50.000</td>
<td>46.377*</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.015</td>
<td>9.242</td>
<td>200.000</td>
<td>-6.616</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>0.991</td>
<td>5.881</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.001</td>
<td>4.882</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>8</td>
<td>PQ</td>
<td>1.000</td>
<td>4.331</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>0.990</td>
<td>3.715</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.000</td>
<td>5.015</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.000</td>
<td>3.825</td>
<td>0.000</td>
<td>0.000</td>
<td>5.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>1.000</td>
<td>3.616</td>
<td>0.000</td>
<td>0.000</td>
<td>10.000</td>
<td>0.000</td>
</tr>
<tr>
<td>#</td>
<td>PQ</td>
<td>5.587</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>-1.819</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>-2.920</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>-2.777</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>3.305</td>
<td>0.000</td>
<td>0.000</td>
<td>60.000</td>
<td>20.000</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>1.002</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>0.309</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>-3.365</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>-4.625</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>-5.706</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>-3.273</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>-7.055</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>-6.488</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 -TO-3</td>
<td>-38.774</td>
<td>14.880</td>
<td>1.213</td>
<td>3.003</td>
<td>100.000</td>
</tr>
<tr>
<td>1 -TO-16</td>
<td>40.802</td>
<td>26.795</td>
<td>0.691</td>
<td>-0.055</td>
<td>120.000</td>
</tr>
<tr>
<td>1 -TO-17</td>
<td>-16.161</td>
<td>12.689</td>
<td>0.430</td>
<td>-0.321</td>
<td>60.000</td>
</tr>
<tr>
<td>1 -TO-19</td>
<td>0.115</td>
<td>2.852</td>
<td>0.023</td>
<td>-2.235</td>
<td>50.000</td>
</tr>
<tr>
<td>#</td>
<td>TO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>TO- 23</td>
<td>26.699</td>
<td>-0.784</td>
<td>0.748</td>
<td>-4.231</td>
</tr>
<tr>
<td>2</td>
<td>TO- 25</td>
<td>33.006</td>
<td>4.437</td>
<td>0.847</td>
<td>-4.610</td>
</tr>
<tr>
<td>3</td>
<td>TO- 6</td>
<td>22.740</td>
<td>4.857</td>
<td>0.327</td>
<td>-0.327</td>
</tr>
<tr>
<td>4</td>
<td>TO- 7</td>
<td>33.859*</td>
<td>1.580</td>
<td>0.566</td>
<td>1.122</td>
</tr>
<tr>
<td>2</td>
<td>TO- 8</td>
<td>33.404</td>
<td>1.018</td>
<td>0.623</td>
<td>1.188</td>
</tr>
<tr>
<td>3</td>
<td>TO- 1</td>
<td>39.987</td>
<td>-11.878</td>
<td>1.213</td>
<td>3.003</td>
</tr>
<tr>
<td>3</td>
<td>TO- 13</td>
<td>17.807</td>
<td>7.151</td>
<td>0.207</td>
<td>-0.307</td>
</tr>
<tr>
<td>3</td>
<td>TO- 14</td>
<td>42.204*</td>
<td>3.534</td>
<td>2.089</td>
<td>4.521</td>
</tr>
<tr>
<td>4</td>
<td>TO- 19</td>
<td>-43.671*</td>
<td>27.633</td>
<td>0.519</td>
<td>0.215</td>
</tr>
<tr>
<td>4</td>
<td>TO- 20</td>
<td>39.305</td>
<td>7.103</td>
<td>0.604</td>
<td>-0.603</td>
</tr>
<tr>
<td>4</td>
<td>TO- 21</td>
<td>24.373</td>
<td>1.640</td>
<td>0.584</td>
<td>-3.976</td>
</tr>
<tr>
<td>5</td>
<td>TO- 10</td>
<td>31.752</td>
<td>-1.912</td>
<td>0.487</td>
<td>-3.532</td>
</tr>
<tr>
<td>5</td>
<td>TO- 17</td>
<td>83.496*</td>
<td>-0.674</td>
<td>0.980</td>
<td>-4.927</td>
</tr>
<tr>
<td>5</td>
<td>TO- 19</td>
<td>59.768</td>
<td>-14.030</td>
<td>3.381</td>
<td>7.460</td>
</tr>
<tr>
<td>6</td>
<td>TO- 2</td>
<td>-22.413</td>
<td>-5.184</td>
<td>0.327</td>
<td>-0.327</td>
</tr>
<tr>
<td>6</td>
<td>TO- 13</td>
<td>7.415</td>
<td>0.187</td>
<td>0.015</td>
<td>-0.354</td>
</tr>
<tr>
<td>7</td>
<td>TO- 2</td>
<td>-33.293*</td>
<td>-0.457</td>
<td>0.566</td>
<td>1.122</td>
</tr>
<tr>
<td>7</td>
<td>TO- 8</td>
<td>5.972</td>
<td>-2.038</td>
<td>0.020</td>
<td>-0.724</td>
</tr>
<tr>
<td>7</td>
<td>TO- 12</td>
<td>12.324</td>
<td>-2.498</td>
<td>0.057</td>
<td>-0.830</td>
</tr>
<tr>
<td>8</td>
<td>TO- 2</td>
<td>-32.781</td>
<td>0.170</td>
<td>0.623</td>
<td>1.188</td>
</tr>
<tr>
<td>8</td>
<td>TO- 7</td>
<td>-5.951</td>
<td>1.313</td>
<td>0.020</td>
<td>-0.724</td>
</tr>
<tr>
<td>8</td>
<td>TO- 9</td>
<td>6.564*</td>
<td>3.217</td>
<td>0.022</td>
<td>-1.062</td>
</tr>
<tr>
<td>9</td>
<td>TO- 17</td>
<td>7.171</td>
<td>-4.693</td>
<td>0.027</td>
<td>-5.593</td>
</tr>
<tr>
<td>9</td>
<td>TO- 8</td>
<td>-6.542*</td>
<td>-4.279</td>
<td>0.022</td>
<td>-1.062</td>
</tr>
<tr>
<td>9</td>
<td>TO- 10</td>
<td>-8.457</td>
<td>0.720</td>
<td>0.071</td>
<td>-0.645</td>
</tr>
<tr>
<td>10</td>
<td>TO- 5</td>
<td>-31.265</td>
<td>-1.620</td>
<td>0.487</td>
<td>-3.532</td>
</tr>
<tr>
<td>10</td>
<td>TO- 9</td>
<td>8.528</td>
<td>0.075</td>
<td>0.071</td>
<td>-0.645</td>
</tr>
<tr>
<td>10</td>
<td>TO- 11</td>
<td>7.741</td>
<td>-3.449</td>
<td>0.061</td>
<td>-1.189</td>
</tr>
<tr>
<td>11</td>
<td>TO- 10</td>
<td>-7.680</td>
<td>2.260</td>
<td>0.061</td>
<td>-1.189</td>
</tr>
<tr>
<td>11</td>
<td>TO- 17</td>
<td>2.680</td>
<td>-2.259</td>
<td>0.010</td>
<td>-1.584</td>
</tr>
<tr>
<td>12</td>
<td>TO- 7</td>
<td>-12.268</td>
<td>1.668</td>
<td>0.057</td>
<td>-0.830</td>
</tr>
<tr>
<td>12</td>
<td>TO- 17</td>
<td>2.268</td>
<td>-1.667</td>
<td>0.003</td>
<td>-1.377</td>
</tr>
<tr>
<td>13</td>
<td>TO- 3</td>
<td>-17.600</td>
<td>-7.458</td>
<td>0.207</td>
<td>-0.307</td>
</tr>
<tr>
<td>13</td>
<td>TO- 6</td>
<td>-7.400</td>
<td>-0.540</td>
<td>0.015</td>
<td>-0.354</td>
</tr>
<tr>
<td>14</td>
<td>TO- 3</td>
<td>-40.115</td>
<td>0.987</td>
<td>2.089</td>
<td>4.521</td>
</tr>
<tr>
<td>14</td>
<td>TO- 15</td>
<td>20.124</td>
<td>-7.958</td>
<td>0.143</td>
<td>-0.013</td>
</tr>
<tr>
<td>15</td>
<td>TO- 14</td>
<td>-19.981</td>
<td>7.945</td>
<td>0.143</td>
<td>-0.013</td>
</tr>
<tr>
<td>15</td>
<td>TO- 16</td>
<td>-9.994</td>
<td>-17.946</td>
<td>0.111</td>
<td>-1.081</td>
</tr>
<tr>
<td>16</td>
<td>TO- 1</td>
<td>-40.111</td>
<td>-26.850</td>
<td>0.691</td>
<td>-0.055</td>
</tr>
<tr>
<td>16</td>
<td>TO- 15</td>
<td>10.105</td>
<td>16.865</td>
<td>0.111</td>
<td>-1.081</td>
</tr>
<tr>
<td>17</td>
<td>TO- 1</td>
<td>16.591</td>
<td>-13.010</td>
<td>0.430</td>
<td>-0.321</td>
</tr>
<tr>
<td>17</td>
<td>TO- 5</td>
<td>-82.516*</td>
<td>-4.253</td>
<td>0.980</td>
<td>-4.927</td>
</tr>
<tr>
<td>17</td>
<td>TO- 8</td>
<td>-7.143</td>
<td>-0.900</td>
<td>0.027</td>
<td>-5.593</td>
</tr>
<tr>
<td>17</td>
<td>TO- 11</td>
<td>-2.670</td>
<td>0.675</td>
<td>0.010</td>
<td>-1.584</td>
</tr>
<tr>
<td>17</td>
<td>TO- 12</td>
<td>-2.265</td>
<td>0.290</td>
<td>0.003</td>
<td>-1.377</td>
</tr>
<tr>
<td>17</td>
<td>TO- 18</td>
<td>18.008*</td>
<td>-2.753</td>
<td>0.265</td>
<td>-0.515</td>
</tr>
<tr>
<td>18</td>
<td>TO- 17</td>
<td>-17.743*</td>
<td>2.238</td>
<td>0.265</td>
<td>-0.515</td>
</tr>
<tr>
<td>18</td>
<td>TO- 19</td>
<td>2.745</td>
<td>-7.237</td>
<td>0.045</td>
<td>-1.196</td>
</tr>
<tr>
<td>19</td>
<td>TO- 1</td>
<td>-0.092</td>
<td>-5.086</td>
<td>0.023</td>
<td>-2.235</td>
</tr>
<tr>
<td>19</td>
<td>TO- 4</td>
<td>44.190*</td>
<td>-27.418</td>
<td>0.519</td>
<td>0.215</td>
</tr>
<tr>
<td>19</td>
<td>TO- 5</td>
<td>-56.387</td>
<td>21.490</td>
<td>3.381</td>
<td>7.460</td>
</tr>
<tr>
<td>19</td>
<td>TO- 18</td>
<td>-2.700</td>
<td>6.041</td>
<td>0.045</td>
<td>-1.196</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRES. GEN. MW</td>
<td>MW</td>
<td>MVAR</td>
<td>MW</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>245.687</td>
<td>125.868</td>
<td>80.000</td>
<td>70.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>100.000</td>
<td>10.455</td>
<td>50.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>150.000</td>
<td>15.807</td>
<td>40.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>50.000</td>
<td>46.377</td>
<td>40.000</td>
<td>-10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>200.000</td>
<td>-8.616</td>
<td>70.000</td>
<td>-70.000</td>
</tr>
</tbody>
</table>
STUDY CASE NO. 2. "25-BUS SYSTEM"

COMPLETE LOAD FLOW RESULTS (FINAL STATE)

PROGRAM CONVERGED IN 2 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>VAR</th>
<th>MW</th>
<th>VAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.020</td>
<td>0.000</td>
<td>297.787</td>
<td>107.609*</td>
<td>200.000</td>
<td>65.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.020</td>
<td>3.670</td>
<td>74.658</td>
<td>15.037</td>
<td>10.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.010</td>
<td>5.264</td>
<td>150.000</td>
<td>14.215</td>
<td>50.000</td>
<td>17.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>1.010</td>
<td>-3.757</td>
<td>50.000</td>
<td>44.486*</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.015</td>
<td>4.348</td>
<td>170.028</td>
<td>-3.956</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>0.989</td>
<td>2.432</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.001</td>
<td>-0.073</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>8</td>
<td>PQ</td>
<td>1.000</td>
<td>-0.503</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>0.990</td>
<td>-1.051</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>0.999</td>
<td>0.357</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>0.999</td>
<td>-0.487</td>
<td>0.000</td>
<td>0.000</td>
<td>5.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.999</td>
<td>-0.873</td>
<td>0.000</td>
<td>0.000</td>
<td>10.000</td>
<td>0.000</td>
</tr>
<tr>
<td>LINE</td>
<td>PQ</td>
<td>Flow</td>
<td>PQ</td>
<td>Line Losses</td>
<td>Flow Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>-------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.987</td>
<td>2.738</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.957</td>
<td>-2.509</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.957</td>
<td>-3.406</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.972</td>
<td>-3.090</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1.000</td>
<td>-0.594</td>
<td>0.000</td>
<td>0.000</td>
<td>60.000</td>
<td>20.000</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.992</td>
<td>-2.329</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.005</td>
<td>-2.407</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.988</td>
<td>-5.647</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.977</td>
<td>-6.570</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.966</td>
<td>-7.179</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.988</td>
<td>-3.803</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.963</td>
<td>-8.003</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.970</td>
<td>-7.147</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-29.732</td>
<td>11.569</td>
<td>0.720</td>
<td>1.031</td>
<td>100.000</td>
</tr>
<tr>
<td>1</td>
<td>44.483</td>
<td>25.526</td>
<td>0.759</td>
<td>0.264</td>
<td>120.000</td>
</tr>
<tr>
<td>1</td>
<td>5.724</td>
<td>4.617</td>
<td>0.060</td>
<td>-1.343</td>
<td>60.000</td>
</tr>
<tr>
<td>1</td>
<td>11.013</td>
<td>-1.260</td>
<td>0.173</td>
<td>-1.843</td>
<td>50.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 23</td>
<td>30.201</td>
<td>-2.094</td>
<td>0.952</td>
<td>-3.808</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 25</td>
<td>36.097</td>
<td>4.251</td>
<td>0.999</td>
<td>-3.881</td>
</tr>
<tr>
<td>2</td>
<td>-TO- 6</td>
<td>9.306</td>
<td>7.990</td>
<td>0.099</td>
<td>-1.406</td>
</tr>
<tr>
<td>2</td>
<td>-TO- 7</td>
<td>27.943</td>
<td>2.321</td>
<td>0.388</td>
<td>0.273</td>
</tr>
<tr>
<td>2</td>
<td>-TO- 8</td>
<td>27.412</td>
<td>1.726</td>
<td>0.422</td>
<td>0.229</td>
</tr>
<tr>
<td>3</td>
<td>-TO- 1</td>
<td>30.452</td>
<td>-10.538</td>
<td>0.720</td>
<td>1.031</td>
</tr>
<tr>
<td>3</td>
<td>-TO- 13</td>
<td>31.361</td>
<td>3.854</td>
<td>0.554</td>
<td>0.604</td>
</tr>
<tr>
<td>3</td>
<td>-TO- 14</td>
<td>38.186</td>
<td>3.899</td>
<td>1.718</td>
<td>3.399</td>
</tr>
<tr>
<td>4</td>
<td>-TO- 19</td>
<td>-37.300</td>
<td>23.642</td>
<td>0.380</td>
<td>-0.151</td>
</tr>
<tr>
<td>4</td>
<td>-TO- 20</td>
<td>36.170</td>
<td>8.110</td>
<td>0.522</td>
<td>-0.820</td>
</tr>
<tr>
<td>4</td>
<td>-TO- 21</td>
<td>21.134</td>
<td>2.734</td>
<td>0.454</td>
<td>-4.315</td>
</tr>
<tr>
<td>5</td>
<td>-TO- 10</td>
<td>30.069</td>
<td>-1.506</td>
<td>0.437</td>
<td>-3.766</td>
</tr>
<tr>
<td>5</td>
<td>-TO- 17</td>
<td>69.717</td>
<td>0.508</td>
<td>0.687</td>
<td>-7.492</td>
</tr>
<tr>
<td>5</td>
<td>-TO- 19</td>
<td>45.249</td>
<td>-10.958</td>
<td>1.941</td>
<td>3.673</td>
</tr>
<tr>
<td>6</td>
<td>-TO- 2</td>
<td>-9.207</td>
<td>-9.396</td>
<td>0.009</td>
<td>-1.406</td>
</tr>
<tr>
<td>6</td>
<td>-TO- 13</td>
<td>-5.792</td>
<td>4.397</td>
<td>0.015</td>
<td>-0.352</td>
</tr>
<tr>
<td>7</td>
<td>-TO- 2</td>
<td>-27.554</td>
<td>-2.048</td>
<td>0.388</td>
<td>0.273</td>
</tr>
<tr>
<td>7</td>
<td>-TO- 8</td>
<td>4.684</td>
<td>-1.585</td>
<td>0.012</td>
<td>-0.746</td>
</tr>
<tr>
<td>7</td>
<td>-TO- 12</td>
<td>7.872</td>
<td>-1.365</td>
<td>0.023</td>
<td>-0.991</td>
</tr>
<tr>
<td>8</td>
<td>-TO- 2</td>
<td>-26.990</td>
<td>-1.497</td>
<td>0.422</td>
<td>0.229</td>
</tr>
<tr>
<td>8</td>
<td>-TO- 7</td>
<td>-4.672</td>
<td>0.838</td>
<td>0.012</td>
<td>-0.746</td>
</tr>
<tr>
<td>9</td>
<td>-TO- 9</td>
<td>5.988</td>
<td>3.513</td>
<td>0.020</td>
<td>-1.071</td>
</tr>
<tr>
<td>9</td>
<td>-TO- 17</td>
<td>0.675</td>
<td>-2.850</td>
<td>0.000</td>
<td>-5.716</td>
</tr>
<tr>
<td>9</td>
<td>-TO- 10</td>
<td>-5.967</td>
<td>-4.584</td>
<td>0.020</td>
<td>-1.071</td>
</tr>
<tr>
<td>10</td>
<td>-TO- 5</td>
<td>-9.032</td>
<td>-0.416</td>
<td>0.081</td>
<td>-0.617</td>
</tr>
<tr>
<td>10</td>
<td>-TO- 9</td>
<td>-29.632</td>
<td>-2.260</td>
<td>0.437</td>
<td>-3.766</td>
</tr>
<tr>
<td>10</td>
<td>-TO- 11</td>
<td>9.113</td>
<td>-0.201</td>
<td>0.081</td>
<td>-0.617</td>
</tr>
<tr>
<td>10</td>
<td>-TO- 10</td>
<td>5.521</td>
<td>-2.534</td>
<td>0.031</td>
<td>-1.267</td>
</tr>
<tr>
<td>11</td>
<td>-TO- 10</td>
<td>-5.490</td>
<td>1.267</td>
<td>0.031</td>
<td>-1.267</td>
</tr>
<tr>
<td>11</td>
<td>-TO- 17</td>
<td>0.491</td>
<td>-1.267</td>
<td>0.000</td>
<td>-1.606</td>
</tr>
<tr>
<td>12</td>
<td>-TO- 7</td>
<td>-7.849</td>
<td>0.374</td>
<td>0.023</td>
<td>-0.991</td>
</tr>
<tr>
<td>12</td>
<td>-TO- 17</td>
<td>-2.151</td>
<td>-0.373</td>
<td>0.002</td>
<td>-1.378</td>
</tr>
<tr>
<td>13</td>
<td>-TO- 3</td>
<td>-30.807</td>
<td>-3.250</td>
<td>0.554</td>
<td>0.604</td>
</tr>
<tr>
<td>13</td>
<td>-TO- 6</td>
<td>5.807</td>
<td>-4.748</td>
<td>0.015</td>
<td>-0.352</td>
</tr>
<tr>
<td>14</td>
<td>-TO- 3</td>
<td>-36.468</td>
<td>-0.500</td>
<td>1.718</td>
<td>-3.399</td>
</tr>
<tr>
<td>14</td>
<td>-TO- 15</td>
<td>16.474</td>
<td>-6.479</td>
<td>0.095</td>
<td>-0.144</td>
</tr>
<tr>
<td>15</td>
<td>-TO- 14</td>
<td>-16.379</td>
<td>6.336</td>
<td>0.095</td>
<td>-0.144</td>
</tr>
<tr>
<td>15</td>
<td>-TO- 16</td>
<td>-13.599</td>
<td>-16.336</td>
<td>0.120</td>
<td>-1.061</td>
</tr>
<tr>
<td>16</td>
<td>-TO- 1</td>
<td>-43.724</td>
<td>25.262</td>
<td>0.759</td>
<td>0.264</td>
</tr>
<tr>
<td>16</td>
<td>-TO- 15</td>
<td>13.719</td>
<td>15.275</td>
<td>0.120</td>
<td>-1.061</td>
</tr>
<tr>
<td>17</td>
<td>-TO- 1</td>
<td>-5.664</td>
<td>-5.960</td>
<td>0.060</td>
<td>-1.343</td>
</tr>
<tr>
<td>17</td>
<td>-TO- 5</td>
<td>69.030</td>
<td>8.000</td>
<td>0.687</td>
<td>-7.492</td>
</tr>
<tr>
<td>17</td>
<td>-TO- 8</td>
<td>-0.674</td>
<td>-2.866</td>
<td>0.000</td>
<td>-5.716</td>
</tr>
<tr>
<td>17</td>
<td>-TO- 12</td>
<td>-0.490</td>
<td>-0.339</td>
<td>0.000</td>
<td>-1.606</td>
</tr>
<tr>
<td>17</td>
<td>-TO- 18</td>
<td>2.153</td>
<td>-1.005</td>
<td>0.002</td>
<td>-1.378</td>
</tr>
<tr>
<td>18</td>
<td>-TO- 17</td>
<td>13.706</td>
<td>-1.809</td>
<td>0.153</td>
<td>-0.808</td>
</tr>
<tr>
<td>18</td>
<td>-TO- 19</td>
<td>13.554</td>
<td>1.001</td>
<td>0.153</td>
<td>-0.808</td>
</tr>
<tr>
<td>19</td>
<td>-TO- 1</td>
<td>37.680</td>
<td>-23.793</td>
<td>0.380</td>
<td>-0.151</td>
</tr>
<tr>
<td>19</td>
<td>-TO- 4</td>
<td>43.308</td>
<td>14.632</td>
<td>1.941</td>
<td>-3.673</td>
</tr>
<tr>
<td>19</td>
<td>-TO- 18</td>
<td>1.473</td>
<td>4.757</td>
<td>0.027</td>
<td>-1.244</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRESENT GENERATION</td>
<td>GENERATION CAPACITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW (MAX.)</td>
<td>MW (MIN.)</td>
<td>MVAR (MAX.)</td>
<td>MVAR (MIN.)</td>
</tr>
<tr>
<td>1</td>
<td>SLX</td>
<td>297.787</td>
<td>107.609</td>
<td>80.000</td>
<td>-70.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>74.658</td>
<td>15.037</td>
<td>50.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>150.000</td>
<td>14.215</td>
<td>40.000</td>
<td>-40.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>50.000</td>
<td>44.486</td>
<td>40.000</td>
<td>-10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>170.028</td>
<td>-3.956</td>
<td>70.000</td>
<td>-70.000</td>
</tr>
</tbody>
</table>
STUDY CASE NO.1, "25-BUS SYSTEM" (VOLTAGE ANGLE)

COMPLETE LOAD FLOW RESULTS (INITIAL STATE)

PROGRAM CONVERGED IN 2 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.020</td>
<td>0.000</td>
<td>245.687</td>
<td>125.868*</td>
<td>200.000</td>
<td>65.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.020</td>
<td>9.461</td>
<td>100.000</td>
<td>10.455</td>
<td>10.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.010</td>
<td>6.851</td>
<td>150.000</td>
<td>15.807</td>
<td>50.000</td>
<td>17.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>1.010</td>
<td>-1.271</td>
<td>50.000</td>
<td>46.377*</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.015</td>
<td>9.242</td>
<td>200.000</td>
<td>-8.616</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>0.991</td>
<td>5.881</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.001</td>
<td>4.882</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>8</td>
<td>PQ</td>
<td>1.000</td>
<td>4.331</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>0.990</td>
<td>3.715</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.000</td>
<td>5.015</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.000</td>
<td>3.825</td>
<td>0.000</td>
<td>0.000</td>
<td>5.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>1.000</td>
<td>3.616</td>
<td>0.000</td>
<td>0.000</td>
<td>10.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PQ</td>
<td>0.989</td>
<td>5.587</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>0.956</td>
<td>-1.819</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>0.956</td>
<td>-2.920</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>0.971</td>
<td>-2.777</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>1.001</td>
<td>3.305</td>
<td>0.000</td>
<td>0.000</td>
<td>60.000</td>
<td>20.000</td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>0.992</td>
<td>1.002</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>1.005</td>
<td>0.309</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>0.988</td>
<td>-3.365</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>0.977</td>
<td>-4.625</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>0.967</td>
<td>-5.706</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>0.988</td>
<td>-3.273</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>0.963</td>
<td>-7.055</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>0.970</td>
<td>-6.488</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
</tbody>
</table>

LINE FLOW

| LINE | MW | MVAR | LINE LOSSES
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>MVAR</td>
<td>MW</td>
<td>MVAR</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 3</td>
<td>-38.774</td>
<td>14.880</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 16</td>
<td>40.802</td>
<td>26.795</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 17</td>
<td>-16.161</td>
<td>12.689</td>
</tr>
<tr>
<td>1</td>
<td>-TO- 19</td>
<td>0.115</td>
<td>2.852</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRES. GEN. MW</td>
<td>MVAR</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>245.687</td>
<td>125.868</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>100.000</td>
<td>10.455</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>150.000</td>
<td>15.807</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>50.000</td>
<td>46.377</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>200.000</td>
<td>-8.616</td>
</tr>
</tbody>
</table>
STUDY CASE NO.1, "25-BUS SYSTEM" (VOLTAGE ANGLE)

COMPLETE LOAD FLOW RESULTS (FINAL STATE)

PROGRAM CONVERGED IN 2 ITERATIONS

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>MAGN.</th>
<th>ANGLE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.020</td>
<td>0.000</td>
<td>310.377</td>
<td>103.355*</td>
<td>200.000</td>
<td>65.000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>1.020</td>
<td>3.642</td>
<td>82.766</td>
<td>13.698</td>
<td>10.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>1.010</td>
<td>3.962</td>
<td>134.795</td>
<td>16.788</td>
<td>50.000</td>
<td>17.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>1.010</td>
<td>-3.400</td>
<td>60.000</td>
<td>39.762</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>1.015</td>
<td>3.259</td>
<td>153.029</td>
<td>-1.141</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>0.990</td>
<td>1.695</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.000</td>
<td>-0.371</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>8</td>
<td>PQ</td>
<td>1.000</td>
<td>-0.870</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>0.990</td>
<td>-1.583</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>0.999</td>
<td>-0.428</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>0.998</td>
<td>-1.169</td>
<td>0.000</td>
<td>0.000</td>
<td>5.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.999</td>
<td>-1.287</td>
<td>0.000</td>
<td>0.000</td>
<td>10.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>PQ</td>
<td>0.988</td>
<td>1.819</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>0.958</td>
<td>-3.076</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>0.958</td>
<td>-3.807</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>0.973</td>
<td>-3.347</td>
<td>0.000</td>
<td>0.000</td>
<td>30.000</td>
<td>10.000</td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>0.999</td>
<td>-1.154</td>
<td>0.000</td>
<td>0.000</td>
<td>60.000</td>
<td>20.000</td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>0.992</td>
<td>-2.599</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>1.006</td>
<td>-2.363</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>0.988</td>
<td>-5.319</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>0.977</td>
<td>-6.291</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>0.966</td>
<td>-6.967</td>
<td>0.000</td>
<td>0.000</td>
<td>20.000</td>
<td>7.000</td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>0.988</td>
<td>-3.726</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>0.963</td>
<td>-7.866</td>
<td>0.000</td>
<td>0.000</td>
<td>15.000</td>
<td>5.000</td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>0.970</td>
<td>-7.052</td>
<td>0.000</td>
<td>0.000</td>
<td>25.000</td>
<td>8.000</td>
</tr>
</tbody>
</table>

#

<table>
<thead>
<tr>
<th>LINE</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
<th>MVAR</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-22.254</td>
<td>9.043</td>
<td>0.412</td>
<td>-0.200</td>
<td>100.000</td>
</tr>
<tr>
<td>1</td>
<td>47.539</td>
<td>24.568</td>
<td>0.823</td>
<td>0.567</td>
<td>120.000</td>
</tr>
<tr>
<td>1</td>
<td>8.939</td>
<td>3.674</td>
<td>0.097</td>
<td>-1.241</td>
<td>60.000</td>
</tr>
<tr>
<td></td>
<td>TO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>TO 19</td>
<td>10.807</td>
<td>-1.285</td>
<td>0.167</td>
<td>-1.860</td>
</tr>
<tr>
<td>1</td>
<td>TO 23</td>
<td>29.694</td>
<td>-1.915</td>
<td>0.921</td>
<td>-3.873</td>
</tr>
<tr>
<td>1</td>
<td>TO 25</td>
<td>35.652</td>
<td>4.269</td>
<td>0.976</td>
<td>-3.990</td>
</tr>
<tr>
<td>2</td>
<td>TO 6</td>
<td>13.349</td>
<td>6.935</td>
<td>0.143</td>
<td>-1.200</td>
</tr>
<tr>
<td>2</td>
<td>TO 7</td>
<td>29.868</td>
<td>2.182</td>
<td>0.443</td>
<td>0.533</td>
</tr>
<tr>
<td>2</td>
<td>TO 8</td>
<td>29.551</td>
<td>1.580</td>
<td>0.489</td>
<td>0.551</td>
</tr>
<tr>
<td>3</td>
<td>TO 1</td>
<td>22.665</td>
<td>-9.243</td>
<td>0.412</td>
<td>-0.200</td>
</tr>
<tr>
<td>3</td>
<td>TO 13</td>
<td>27.221</td>
<td>4.746</td>
<td>0.425</td>
<td>0.264</td>
</tr>
<tr>
<td>3</td>
<td>TO 14</td>
<td>34.906</td>
<td>4.285</td>
<td>1.445</td>
<td>2.571</td>
</tr>
<tr>
<td>4</td>
<td>TO 19</td>
<td>-28.210</td>
<td>19.236</td>
<td>0.228</td>
<td>-0.549</td>
</tr>
<tr>
<td>4</td>
<td>TO 20</td>
<td>36.616</td>
<td>7.957</td>
<td>0.533</td>
<td>-0.790</td>
</tr>
<tr>
<td>4</td>
<td>TO 21</td>
<td>21.595</td>
<td>2.568</td>
<td>0.471</td>
<td>-4.271</td>
</tr>
<tr>
<td>5</td>
<td>TO 10</td>
<td>27.886</td>
<td>-1.095</td>
<td>0.377</td>
<td>-4.053</td>
</tr>
<tr>
<td>5</td>
<td>TO 17</td>
<td>62.402</td>
<td>1.097</td>
<td>0.553</td>
<td>-8.665</td>
</tr>
<tr>
<td>5</td>
<td>TO 19</td>
<td>37.745</td>
<td>-9.144</td>
<td>1.349</td>
<td>2.116</td>
</tr>
<tr>
<td>6</td>
<td>TO 13</td>
<td>-13.206</td>
<td>-8.135</td>
<td>0.143</td>
<td>-1.200</td>
</tr>
<tr>
<td>6</td>
<td>TO 19</td>
<td>-1.793</td>
<td>3.135</td>
<td>0.004</td>
<td>-0.381</td>
</tr>
<tr>
<td>7</td>
<td>TO 2</td>
<td>-29.425</td>
<td>-1.649</td>
<td>0.443</td>
<td>0.533</td>
</tr>
<tr>
<td>7</td>
<td>TO 8</td>
<td>5.430</td>
<td>-1.808</td>
<td>0.017</td>
<td>-0.734</td>
</tr>
<tr>
<td>7</td>
<td>TO 12</td>
<td>8.997</td>
<td>-1.540</td>
<td>0.030</td>
<td>-0.957</td>
</tr>
<tr>
<td>8</td>
<td>TO 2</td>
<td>-29.062</td>
<td>-1.029</td>
<td>0.489</td>
<td>0.551</td>
</tr>
<tr>
<td>8</td>
<td>TO 7</td>
<td>-5.414</td>
<td>1.074</td>
<td>0.017</td>
<td>-0.734</td>
</tr>
<tr>
<td>8</td>
<td>TO 9</td>
<td>7.437*</td>
<td>3.055</td>
<td>0.027</td>
<td>-1.041</td>
</tr>
<tr>
<td>8</td>
<td>TO 17</td>
<td>2.039</td>
<td>-3.096</td>
<td>0.002</td>
<td>-5.703</td>
</tr>
<tr>
<td>9</td>
<td>TO 8</td>
<td>-7.411*</td>
<td>-4.096</td>
<td>0.027</td>
<td>-1.041</td>
</tr>
<tr>
<td>9</td>
<td>TO 10</td>
<td>-7.588</td>
<td>-0.904</td>
<td>0.057</td>
<td>-0.682</td>
</tr>
<tr>
<td>10</td>
<td>TO 5</td>
<td>-27.509</td>
<td>-2.958</td>
<td>0.377</td>
<td>-4.053</td>
</tr>
<tr>
<td>10</td>
<td>TO 9</td>
<td>7.646</td>
<td>0.222</td>
<td>0.057</td>
<td>-0.682</td>
</tr>
<tr>
<td>10</td>
<td>TO 11</td>
<td>4.865</td>
<td>-2.261</td>
<td>0.024</td>
<td>-1.285</td>
</tr>
<tr>
<td>11</td>
<td>TO 10</td>
<td>-4.841</td>
<td>0.976</td>
<td>0.024</td>
<td>-1.285</td>
</tr>
<tr>
<td>11</td>
<td>TO 17</td>
<td>-0.159</td>
<td>-0.976</td>
<td>0.024</td>
<td>-1.285</td>
</tr>
<tr>
<td>12</td>
<td>TO 7</td>
<td>-8.967</td>
<td>0.583</td>
<td>0.030</td>
<td>-0.957</td>
</tr>
<tr>
<td>12</td>
<td>TO 17</td>
<td>-1.033</td>
<td>-0.582</td>
<td>0.000</td>
<td>-1.385</td>
</tr>
<tr>
<td>13</td>
<td>TO 3</td>
<td>-26.797</td>
<td>-4.482</td>
<td>0.425</td>
<td>0.264</td>
</tr>
<tr>
<td>13</td>
<td>TO 6</td>
<td>1.797</td>
<td>-3.516</td>
<td>0.004</td>
<td>-0.381</td>
</tr>
<tr>
<td>14</td>
<td>TO 3</td>
<td>-33.461</td>
<td>-1.713</td>
<td>1.445</td>
<td>2.571</td>
</tr>
<tr>
<td>14</td>
<td>TO 15</td>
<td>13.467</td>
<td>-5.272</td>
<td>0.663</td>
<td>0.231</td>
</tr>
<tr>
<td>15</td>
<td>TO 14</td>
<td>-13.404</td>
<td>5.040</td>
<td>0.663</td>
<td>0.231</td>
</tr>
<tr>
<td>15</td>
<td>TO 16</td>
<td>-16.577*</td>
<td>-15.041</td>
<td>0.134</td>
<td>-1.026</td>
</tr>
<tr>
<td>16</td>
<td>TO 1</td>
<td>-46.716</td>
<td>-24.001</td>
<td>0.823</td>
<td>0.567</td>
</tr>
<tr>
<td>16</td>
<td>TO 15</td>
<td>16.711*</td>
<td>14.015</td>
<td>0.134</td>
<td>-1.026</td>
</tr>
<tr>
<td>17</td>
<td>TO 1</td>
<td>-8.842</td>
<td>-4.914</td>
<td>0.097</td>
<td>-1.241</td>
</tr>
<tr>
<td>17</td>
<td>TO 5</td>
<td>-61.849</td>
<td>-9.763</td>
<td>0.553</td>
<td>-8.665</td>
</tr>
<tr>
<td>17</td>
<td>TO 8</td>
<td>-2.037</td>
<td>-2.607</td>
<td>0.002</td>
<td>-5.703</td>
</tr>
<tr>
<td>17</td>
<td>TO 11</td>
<td>0.159</td>
<td>-0.630</td>
<td>0.000</td>
<td>-1.606</td>
</tr>
<tr>
<td>17</td>
<td>TO 12</td>
<td>1.034</td>
<td>-0.803</td>
<td>0.000</td>
<td>-1.385</td>
</tr>
<tr>
<td>17</td>
<td>TO 18</td>
<td>11.536</td>
<td>-1.269</td>
<td>0.108</td>
<td>-0.925</td>
</tr>
<tr>
<td>18</td>
<td>TO 17</td>
<td>-11.429</td>
<td>0.343</td>
<td>0.108</td>
<td>-0.925</td>
</tr>
<tr>
<td>18</td>
<td>TO 19</td>
<td>-3.571</td>
<td>-5.343</td>
<td>0.031</td>
<td>-1.235</td>
</tr>
<tr>
<td>19</td>
<td>TO 1</td>
<td>-10.640</td>
<td>-0.576</td>
<td>0.167</td>
<td>-1.860</td>
</tr>
<tr>
<td>19</td>
<td>TO 4</td>
<td>28.438</td>
<td>-19.785</td>
<td>0.228</td>
<td>-0.549</td>
</tr>
<tr>
<td>19</td>
<td>TO 5</td>
<td>-36.396</td>
<td>11.260</td>
<td>1.349</td>
<td>2.116</td>
</tr>
<tr>
<td>LOCATION</td>
<td>BUS TYPE</td>
<td>PRES. GEN.</td>
<td>GENERATION</td>
<td>CAPACITY</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MW</td>
<td>MW (MAX.)</td>
<td>MW (MIN.)</td>
<td>MVAR</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>310.377</td>
<td>103.355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>82.766</td>
<td>13.698</td>
<td>150.000</td>
<td>70.000</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>134.795</td>
<td>16.788</td>
<td>200.000</td>
<td>50.000</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>60.000</td>
<td>39.762</td>
<td>60.000</td>
<td>30.000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>153.029</td>
<td>-1.141</td>
<td>250.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
APPENDIX - C.2

ES OUTPUTS
STUDY CASE NO.1. "14-BUS SYSTEM"

THE EXPERT SYSTEM RESULTS FOR VOLTAGE/VAR ADJUSTMENT

The New Voltages of the Load Buses are as follow:-

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.0384</td>
</tr>
<tr>
<td>5</td>
<td>PQ</td>
<td>1.0439</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.0419</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.0344</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.0210</td>
</tr>
<tr>
<td>11</td>
<td>PQ</td>
<td>1.0076</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>0.9717</td>
</tr>
<tr>
<td>13</td>
<td>PQ</td>
<td>0.9515</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>0.9791</td>
</tr>
</tbody>
</table>

The New Q-Gen. of the Gen. Buses are as follow:-

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>Q-GEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PV</td>
<td>17.3050</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>0.5363</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>24.0000</td>
</tr>
<tr>
<td>6</td>
<td>PV</td>
<td>43.4678</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>8.4131</td>
</tr>
</tbody>
</table>

The New Settings of Controllers are as follow:-

CONT. SEQ. # 2 LOCATION : 2
CONT. TYPE : GV
 PRES. SETTING : 1.056882

CONT. SEQ. # 1 LOCATION : 1
CONT. TYPE : GV
 PRES. SETTING : 1.085646

CONT. SEQ. # 5 LOCATION : 8
CONT. TYPE : GV
 PRES. SETTING : 1.080987

CONT. SEQ. # 3 LOCATION : 3
CONT. TYPE : GV
 PRES. SETTING : 1.025198

CONT. SEQ. # 6 LOCATION : 9
CONT. TYPE : SC
 PRES. SETTING : 0.000000

CONT. SEQ. # 7 LOCATION : 13
CONT. TYPE : SC
 PRES. SETTING : 9.000000

CONT. SEQ. # 4 LOCATION : 6
CONT. TYPE : GV
PRES. SETTING : 1.000000
CONT. SEQ. # 8 LOCATION : 14
CONT. TYPE : SR
 PRES. SETTING : 0.000000

CONT. SEQ. # 9 LOCATION : 4
CONT. TYPE : TAP
 PRES. SETTING : 0.975000

CONT. SEQ. # 10 LOCATION : 9
CONT. TYPE : TAP
 PRES. SETTING : 0.962500

CONT. SEQ. # 11 LOCATION : 5
CONT. TYPE : TAP
 PRES. SETTING : 0.937500

STUDY CASE NO. 2, "30-BUS SYSTEM"

THE EXPERT SYSTEM RESULTS FOR VOLTAGE/VAR ADJUSTMENT

The New Voltages of the Load Buses are as follow:

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PQ</td>
<td>1.0456</td>
</tr>
<tr>
<td>4</td>
<td>PQ</td>
<td>1.0356</td>
</tr>
<tr>
<td>6</td>
<td>PQ</td>
<td>1.0267</td>
</tr>
<tr>
<td>7</td>
<td>PQ</td>
<td>1.0207</td>
</tr>
<tr>
<td>9</td>
<td>PQ</td>
<td>1.0479</td>
</tr>
<tr>
<td>10</td>
<td>PQ</td>
<td>1.0295</td>
</tr>
<tr>
<td>12</td>
<td>PQ</td>
<td>1.0320</td>
</tr>
<tr>
<td>14</td>
<td>PQ</td>
<td>1.0138</td>
</tr>
<tr>
<td>15</td>
<td>PQ</td>
<td>0.9996</td>
</tr>
<tr>
<td>16</td>
<td>PQ</td>
<td>1.0238</td>
</tr>
<tr>
<td>17</td>
<td>PQ</td>
<td>1.0224</td>
</tr>
<tr>
<td>18</td>
<td>PQ</td>
<td>0.9690</td>
</tr>
<tr>
<td>19</td>
<td>PQ</td>
<td>0.9541</td>
</tr>
<tr>
<td>20</td>
<td>PQ</td>
<td>0.9662</td>
</tr>
<tr>
<td>21</td>
<td>PQ</td>
<td>1.0143</td>
</tr>
<tr>
<td>22</td>
<td>PQ</td>
<td>1.0140</td>
</tr>
<tr>
<td>23</td>
<td>PQ</td>
<td>0.9750</td>
</tr>
<tr>
<td>24</td>
<td>PQ</td>
<td>0.9897</td>
</tr>
<tr>
<td>25</td>
<td>PQ</td>
<td>0.9809</td>
</tr>
<tr>
<td>26</td>
<td>PQ</td>
<td>0.9626</td>
</tr>
<tr>
<td>27</td>
<td>PQ</td>
<td>0.9845</td>
</tr>
<tr>
<td>28</td>
<td>PQ</td>
<td>1.0245</td>
</tr>
<tr>
<td>29</td>
<td>PQ</td>
<td>0.9638</td>
</tr>
<tr>
<td>30</td>
<td>PQ</td>
<td>0.9518</td>
</tr>
</tbody>
</table>

The New Q-Gen. of the Gen. Buses are as follow:

<table>
<thead>
<tr>
<th>BUS</th>
<th>TYPE</th>
<th>Q-GEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>PV</td>
<td>27.7957</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>32.3548</td>
</tr>
<tr>
<td>8</td>
<td>PV</td>
<td>43.1120</td>
</tr>
<tr>
<td>13</td>
<td>PV</td>
<td>50.0000</td>
</tr>
<tr>
<td>5</td>
<td>PV</td>
<td>39.3192</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>1.5908</td>
</tr>
</tbody>
</table>

The New Settings of Controllers are as follow:

CONT. SEQ. # 6 LOCATION : 13
CONT. TYPE : GV
PRES. SETTING : 1.095274

CONT. SEQ. # 3 LOCATION : 5
CONT. TYPE : GV
PRES. SETTING : 1.030777

CONT. SEQ. # 5 LOCATION : 11
CONT. TYPE : GV
PRES. SETTING : 1.100000

CONT. SEQ. # 4 LOCATION : 8
CONT. TYPE : GV
PRES. SETTING : 1.028691

CONT. SEQ. # 2 LOCATION : 2
CONT. TYPE : GV
PRES. SETTING : 1.062143

CONT. SEQ. # 1 LOCATION : 1
CONT. TYPE : GV
PRES. SETTING : 1.094200

CONT. SEQ. # 15 LOCATION : 28
CONT. TYPE : TAP
PRES. SETTING : 0.962500

CONT. SEQ. # 14 LOCATION : 10
CONT. TYPE : TAP
PRES. SETTING : 0.962500

CONT. SEQ. # 12 LOCATION : 4
CONT. TYPE : TAP
PRES. SETTING : 0.937500

CONT. SEQ. # 13 LOCATION : 6
CONT. TYPE : TAP
PRES. SETTING : 1.012500

CONT. SEQ. # 9 LOCATION : 24
CONT. TYPE : SC
PRES. SETTING : 8.600000

CONT. SEQ. # 8 LOCATION : 15
CONT. TYPE : SC
PRES. SETTING : 25.000000

CONT. SEQ. # 7 LOCATION : 10
CONT. TYPE : SC
PRES. SETTING : 19.000000

CONT. SEQ. # 10 LOCATION : 28
CONT. TYPE : SR
PRES. SETTING : 0.000000

CONT. SEQ. # 11 LOCATION : 16
CONT. TYPE : SR
PRES. SETTING : 0.000000
STUDY CASE NO.1: "6-BUS SYSTEM"

EXPERT SYSTEM RESULTS FOR GENERATION RESCHEDULING

The New Values of the Power Flows are as follow:-

LINE NO. :2 BETWEEN : 1 - 4 P. FLOW : 27.0423 P. FLOW LIM. : 36.0000
LINE NO. :3 BETWEEN : 1 - 5 P. FLOW : 25.0961 P. FLOW LIM. : 30.0000
LINE NO. :4 BETWEEN : 2 - 3 P. FLOW : 10.0545 P. FLOW LIM. : 15.5000
LINE NO. :5 BETWEEN : 2 - 4 P. FLOW : 49.4528 P. FLOW LIM. : 60.0000
LINE NO. :7 BETWEEN : 2 - 6 P. FLOW : 32.3859 P. FLOW LIM. : 40.0000
LINE NO. :8 BETWEEN : 3 - 5 P. FLOW : 20.4684 P. FLOW LIM. : 23.0000
LINE NO. :10 BETWEEN : 4 - 5 P. FLOW : 4.2485 P. FLOW LIM. : 30.0000
LINE NO. :9 BETWEEN : 3 - 6 P. FLOW : 40.0000 P. FLOW LIM. : 40.0000
LINE NO. :11 BETWEEN : 5 - 6 P. FLOW : -0.6303 P. FLOW LIM. : 15.0000

The New Generation Schedule is as follow:-

GEN. LOCAT. :3 PR. SET : 50.4864

GEN. LOCAT. :2 PR. SET : 108.3078
STUDY CASE NO. 2. "25-BUS SYSTEM"

EXPERT SYSTEM RESULTS FOR GENERATION RESCHEDULING

The New Values of the Power Flows are as follow:-

<table>
<thead>
<tr>
<th>LINE NO.</th>
<th>BETWEEN</th>
<th>5 - 17</th>
<th>P. FLOW</th>
<th>69.7797</th>
<th>P. FLOW LIM.</th>
<th>75.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>5 - 10</td>
<td>P. FLOW</td>
<td>30.0423</td>
<td>P. FLOW LIM.</td>
<td>55.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>4 - 21</td>
<td>P. FLOW</td>
<td>21.1814</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>4 - 20</td>
<td>P. FLOW</td>
<td>36.2128</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>4 - 19</td>
<td>P. FLOW</td>
<td>-37.3873</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>3 - 14</td>
<td>P. FLOW</td>
<td>38.2654</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>3 - 13</td>
<td>P. FLOW</td>
<td>31.0880</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>2 - 12</td>
<td>P. FLOW</td>
<td>27.4219</td>
<td>P. FLOW LIM.</td>
<td>50.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>2 - 11</td>
<td>P. FLOW</td>
<td>9.2942</td>
<td>P. FLOW LIM.</td>
<td>100.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 25</td>
<td>P. FLOW</td>
<td>36.0076</td>
<td>P. FLOW LIM.</td>
<td>90.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 23</td>
<td>P. FLOW</td>
<td>30.0786</td>
<td>P. FLOW LIM.</td>
<td>40.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 19</td>
<td>P. FLOW</td>
<td>10.6586</td>
<td>P. FLOW LIM.</td>
<td>50.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 17</td>
<td>P. FLOW</td>
<td>5.0406</td>
<td>P. FLOW LIM.</td>
<td>60.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 16</td>
<td>P. FLOW</td>
<td>44.3736</td>
<td>P. FLOW LIM.</td>
<td>120.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 15</td>
<td>P. FLOW</td>
<td>29.9775</td>
<td>P. FLOW LIM.</td>
<td>100.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>5 - 10</td>
<td>P. FLOW</td>
<td>-9.9723</td>
<td>P. FLOW LIM.</td>
<td>20.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>4 - 24</td>
<td>P. FLOW</td>
<td>5.0319</td>
<td>P. FLOW LIM.</td>
<td>7.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>3 - 23</td>
<td>P. FLOW</td>
<td>-13.7011</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>2 - 22</td>
<td>P. FLOW</td>
<td>11.3708</td>
<td>P. FLOW LIM.</td>
<td>25.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>1 - 21</td>
<td>P. FLOW</td>
<td>10.6985</td>
<td>P. FLOW LIM.</td>
<td>12.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>18 - 19</td>
<td>P. FLOW</td>
<td>-1.4002</td>
<td>P. FLOW LIM.</td>
<td>9.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>17 - 18</td>
<td>P. FLOW</td>
<td>13.7353</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>15 - 16</td>
<td>P. FLOW</td>
<td>-13.4987</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>14 - 15</td>
<td>P. FLOW</td>
<td>16.5683</td>
<td>P. FLOW LIM.</td>
<td>25.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>12 - 17</td>
<td>P. FLOW</td>
<td>-2.1272</td>
<td>P. FLOW LIM.</td>
<td>12.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>7 - 12</td>
<td>P. FLOW</td>
<td>27.9505</td>
<td>P. FLOW LIM.</td>
<td>30.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>11 - 17</td>
<td>P. FLOW</td>
<td>0.4874</td>
<td>P. FLOW LIM.</td>
<td>20.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>10 - 11</td>
<td>P. FLOW</td>
<td>5.5136</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>9 - 10</td>
<td>P. FLOW</td>
<td>-9.0198</td>
<td>P. FLOW LIM.</td>
<td>10.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>8 - 17</td>
<td>P. FLOW</td>
<td>0.7029</td>
<td>P. FLOW LIM.</td>
<td>10.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>7 - 9</td>
<td>P. FLOW</td>
<td>6.0000</td>
<td>P. FLOW LIM.</td>
<td>6.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>7 - 12</td>
<td>P. FLOW</td>
<td>7.8903</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>7 - 8</td>
<td>P. FLOW</td>
<td>4.6900</td>
<td>P. FLOW LIM.</td>
<td>15.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>6 - 13</td>
<td>P. FLOW</td>
<td>-5.6876</td>
<td>P. FLOW LIM.</td>
<td>25.0000</td>
</tr>
<tr>
<td>LINE NO.</td>
<td>BETWEEN</td>
<td>5 - 19</td>
<td>P. FLOW</td>
<td>45.2163</td>
<td>P. FLOW LIM.</td>
<td>85.0000</td>
</tr>
</tbody>
</table>

The New Generation Schedule is as follow:-

GEN. LOCAT. : 5 PR. SET : 170.0282
GEN. LOCAT. : 2 PR. SET : 74.6583
GEN. LOCAT. : 4 PR. SET : 50.0000
GEN. LOCAT. : 3 PR. SET : 150.0000
STUDY CASE NO.1, "25-BUS SYSTEM" (VOLTAGE ANGLE)

EXPERT SYSTEM RESULTS FOR VOLTAGE ANGLE ADJUSTMENT

The New Voltage Angles of the Generator Buses are as follow:

<table>
<thead>
<tr>
<th>BUS NAME</th>
<th>BUS TYPE</th>
<th>VOLTAGE ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>PV</td>
<td>3.3513</td>
</tr>
<tr>
<td>4</td>
<td>PV</td>
<td>-3.3083</td>
</tr>
<tr>
<td>3</td>
<td>PV</td>
<td>4.0000</td>
</tr>
<tr>
<td>2</td>
<td>PV</td>
<td>3.7222</td>
</tr>
<tr>
<td>1</td>
<td>SLK</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The New Settings of Generators are as follow:

<table>
<thead>
<tr>
<th>GEN. LOCAT.</th>
<th>PR. SETT.</th>
<th>MAX. GEN.</th>
<th>MIN. GEN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>134.7947</td>
<td>200.0000</td>
<td>50.0000</td>
</tr>
<tr>
<td>4</td>
<td>60.0000</td>
<td>60.0000</td>
<td>30.0000</td>
</tr>
<tr>
<td>2</td>
<td>82.7664</td>
<td>150.0000</td>
<td>70.0000</td>
</tr>
<tr>
<td>5</td>
<td>153.0287</td>
<td>250.0000</td>
<td>100.0000</td>
</tr>
</tbody>
</table>
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CLIPS</td>
<td>'C' Language Integrated Production System</td>
</tr>
<tr>
<td>EMS</td>
<td>Energy Management System</td>
</tr>
<tr>
<td>ES</td>
<td>Expert System</td>
</tr>
<tr>
<td>IAP</td>
<td>Intelligence Alarm Process</td>
</tr>
<tr>
<td>IE</td>
<td>Inference Engine</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>KB</td>
<td>Knowledge Base</td>
</tr>
<tr>
<td>OPS5</td>
<td>Official Production System Version 5</td>
</tr>
<tr>
<td>MEC</td>
<td>Most Efficient Controller</td>
</tr>
<tr>
<td>RPC</td>
<td>Reactive Power Control</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SMEC</td>
<td>Second Most Efficient Controller</td>
</tr>
</tbody>
</table>
REFERENCES

