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CHAPTER1

INTRODUCTION

1.1 MOTIVATION

Successful design and operation of industrial chemical processes require
considerable amount of thermophysical data of the substances involved. Traditionally,
these data are derived from physical sciences (mainly physics and chemistry). Recently,
however, other fields such as biology, medicine, ecology and materials science are
significantly contributing to these data bases (Zeck and Wolf, 1993). In the past, most of
. these data were acquired exclusively experimentally. This i$ usually achieved f:ither by
direct experimental measurement at the desired c?ondition, or from empirical rnodel.
obtained by macroscopic treatment of the experimental data. These empirical methods are
limited to the experimental range covered; as such they are of limited predictive value. In
addition, experimental measurements are tedious and expensive to use for diverse
substances and conditions that prevail in the industry.

On the other hand, appropriate concepts of molecular science can be used to
develop physical models that estimate real properties from abstract thermodynamic
functions (Prausnitz et al., 1986). This method provides insight into the relationship
between molecular structure, intermolecular forces and the resulting thermophysical
properties. Therefore, modern practice has shifted to molecular approach to develop

1
completely theoretical relationships. The ultimate goal of this molecular approach is to



calculate bulk properties of substances from the first principle, namely: quantum theory
and statistical mechanics. Achievement of this will considerably reduce the needed
experiments.

In modeling the behavior of real fluid mixtures, equations of state and activity
coefficient models are widely used. The activity coefficients can be derived from several
bases such as:

i. Composition power series expansion of Gibbs energy, for example,

Margules and van Laar equations;

ii. Local composition distribution expansion, such as the Wilson and the non-
random two liquid NRTL models (Prausnitz et. al., 1986); and

ili.  Direct approximations from statistical mechanics (Abrams and Prausnitz, 1975).

These equations commonly require orily two parameters to describe bmary mixtur_es:

Most of the fluids dealt with in the industry. are mixtures. A rich pure-fluid
experimental data base already exists for most of the components of these mixtures. To
exploit this resource, development of mixture models based on pure fluid properties is
highly desirable. Statistical mechanics has proved to be an effective tool toward achieving

this objective.

1.2 OBJECTIVES

Due to the above importance, several theoretical mixture models have been
developed (for real and model fluids) using statistical mechanics approach. Of course,

there are some inaccuracies in these theoretical models. One of the reasons for such
1



inaccuracies is inconsistency in approximations used to develop the models. In fact, even

popular models such as the UNIFAC have some inconsistencies (Hamad, 1996).

The overall objective of this work, therefore, is to develop consistent mixture
models (in terms of exact limiting conditions) that can predict thermodynamic properties
of dense fluids and polymers. To be useful, the model should also be simple and accurate.
Therefore, the specific objectives of the present study are as follows:

6] Develop simple models for dense fluids that satisfy the recently derived limiting
condition results; which include identical components limit, infinite size ratio
limit and independent components limit (for non-additive hard spheres);

(ii)  Compare the results of the developed model with those of molecular simulation,
selected common existing models and available experimental data; and

(iii)  Extend the above models to highly asymmetric dense fluids and polymer systems.

1.3 ORGANIZATION OF THE THESIS

The basic concepts of statistical mechanics and other literature relevant to the
development of mixture models considered in the present study are reviewed in Chapter
2. Chapter 3 details the procedures employed in developing these mixture models. This
chapter also gives results of the derived binary mixture models. Satisfactory binary
models from Chapter 3 are generalized to multicomponents in Chapter 4. Further, these
generalized models are validated and tested for hard spheres (additive and non-additive),
Lennard-Jones and real (simple) fluid mixtures. Chapter 5 describes the extension of pure

polymer equation of state to mixture and parameterization and test of this extended



equation. Finally, the conclusions and recommendations for future work are given in

Chapter 6.



CHAPTER 2

REVIEW OF THE LITERATURE

2.1 Statistical Mechanics and Fluid Thermodynamics

Solution of mathematical equations of quantum mechanics provides permissible
microscopic (quantum energy) states attainable by a particular system at any time.
Statistical mechanics, on the other hand, allows averaging over those microstates to arrive
at the macroscopic (bulk) properties of the system, such as pressure, heat capacity and
viscosity. The time averaging process was conceptually avoided first by Gibbs through

the introduction of statistical ensembles (Whalen, 1991).
2.1.1 Basic Postulates and Ensembles

An ensembie is a large collection of systems of particles in which the macroscopic
properties of each of these systems is in the same thermodynamic state as that of a real
system of interest. Although all the individual systems are of the same macroscopic
properties, their quantum states may, however, differ. According to the fundamental
postulate of statistical mechanics, therefore, the time averaged dynamic property (for
example, pressure) of a real system is equal to the ensemble average of that property
(Hill, 1960).

This simply allows replacement of the time-average value of a single system property by

1
instantaneous average property value taken over a large number of systems of identical



macroscopic state as the real system. The second postulate was devised to facilitate
calculations of the ensemble averages. It states that in a closed system of fixed energy, all
the possible distinguishable quantum states are equally probable (Hill, 1960).

Thus, the probability of any system of the ensemble being in quantum state i is

P= ’%V @.1)

where n; is the number of systems in state i and N is the total number of systems Z,. ;.

2.1.2 The Partition Function

All the individual systems of an ensemble are macroscopically identical. These
identities are specified by appropriate set of thermodynamic (macroscopic) constraints on
the ensemble. The overall statistical behavior of molecules in a system is described by its
partition function whi.ch is a mathematical expression rep'resentihg the p;obability of a
system being in various molecular states. The partition function of each ensemble type is
related to some basic thermodynamic properties. The most commonly encountered
ensembles and their thermodynamic constraints are specified in Table 2.1. Once the basic
thermodynamic expressions are obtained, other properties are easily derivable using the

classical thermodynamic relations.
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For most real systems, at temperatures above about ~50 K, their translational
energy is much larger than the energy gaps between consecutive quantum mechanical
energy levels. In the classical limit, therefore, except for the quantum gases (hydrogen
and helium), the discrete summations in the equations in Table 2.1 can be replaced by
integrations over the phase space without introducing appreciable error (Reed and
Gubbins, 1973). This results to semi-classical partition function. A similar approach is
not valid for the internal (vibrational and rotational) motion energies of the molecules.
Partition functions are, therefore, separated into configurational and internal parts to
facilitate its use in calculating thermodyaamic properties. The configurational partition
function accounts for the motion of centers of mass of particles in their potential field,
while the internal partition function represents the contribution from internal motion of
the molecules.

The canonical partition function, therefore, takes the following form (Reed and
Gubbins, 1973): |

1
0=—20. NNZ 2.2)
N!th N

where Q is the internal partition function, A = h/(21tm;k'[')"2 is the de Broglie wave
length of component i, h is Planck’s constant, m; is the mass of molecule i, k is
Boltzmann constant, T is the absolute temperature, N is number of molecules. Zy is the

configurational integral given by



2, = [..[exp(47) v, ..ar 2.3)

4

where r; is the position vector of molecule i (x;, y;, z in Cartesian coordinates), ¢ is the

intermolecular potential function, and V is the system volume.

2.2 Thermodynamic Properties from First Principles

2.2.1 Intermolecular Potential Energy

As seen from the partition function and their thermodynamic relationships,
calculation of macroscopic properties of substances from the first principles involve two
steps: specification of intermolecular potential energy ﬁ.mction_, and application of the
laws of statistical mechanics to evaluate these properties at the de;hed state.

The intermolecular potential energy results from interaction among particles. The
extent of these interactions depends on separation between the particles. The commonly
encountered potential functions ¢(r) are:

) For ideal gas potential,
$(r)=0 (2.4)
(ii)  For hard spheres potential,

$(r)=+x r<c

$(r)=0 r>c 2:5)
1



where o is the hard sphere diameter.

(iii) For square-well potential,

o (r)=+w r<c
o(r)=-¢ G <r<Aic (2.6)
o(r)=0 r>\c

where o is the repulsive diameter, A is the attractive diameter, and ¢ is the potential well
depth.

(iv)  For inverse-12 Soft-sphere (SS12) potential,

6()= 4 (f’-} @)
r

‘where o is the collision diameter of the molecules, and € is the potential well depth.

(v)  For Lennard-Jones (LJ 12,6) potential,

0()=4¢ 912 - 96 (2.8)

(vi)  For Kihara KH potential,

o(r)=+w r<d

—d 12 —d 6
0(r)=4¢ (6 } - (G } r>d @

r-d
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2.2.2 Molecular Simulation

For a system of N molecules, the partition function Equation 2.2 involves N-body
integrals over the total intermolecular potential energy function. Exact solution of these
equations are only possible for some idealistic cases, for instance, independent molecules
(ideal gas) or adsorption of a gas at low pressure (Gubbins, 1989). To solve the N-body
integral equations, two methods are generally employed, molecular simulation and
theoretical approximations using molecular theories.

Molecular simulation provides a reliable means (within a few percentage error) of
evaluating macroscopic thermodynamic properties of hypothetical fluids based on
assumed interaction potentials. Here, sufficient computer time is used to numerically
estimate ratios of the full N-body integrals using the Monte Carlo (MC) method.
‘Molecular dynamics (MD) techniques are used to determine equilibrium and non-
equilibrium properties. Allen and Tildesley (1987) have given a good description of the

two methods. A brief background of these methods is, however, given in what follows.
2.2.2.1 Monte Carlo Method

In MC method, system constraints are first fixed, then molecules of the system
being simulated are randomly moved using a random number generator (hence the name
Monte Carlo). The generated moves are either accepted or rejected based on compliance
with statistical mechanics distribution laws. Several thousands of the acceptable moves
are then averaged to obtain equilibrium properties of the system (Barker, 1963). Several

algorithms have been developed for this purposej(Metropolis et al., 1953; Hansen and



Varlet, 1969). Using this technique, many investigators have simulated systems using
different potential functions under widely varying conditions (Wood and Parker, 1957,
Nicolas et al., 1979; Panagiotopoulus, 1987; Miyano, 1991; Miyano, 1993; Metropolis et
al., 1953; Adams, 1976; Adams, 1979; Nixon and Silbert, 1984; Lotfi et al., 1992;

Johnson et al., 1993; Guo et al., 1994).
2.2.2.2 Molecular Dynamics Method

In MD method, initial configuration and momenté are first assigned to all the
particles/molecules of the system. The molecules are then allowed to move under the
influence of their intermolecular forces. Newton’s laws of motion are used to calculate
the instantaneous spatial configuration and velocity distributions of the system at any
_ time. Configurations of about 2x10° - 20le4_ time steps are then averaged for
equilibrium properties of the system (Lee, 1988). Molecular systems have beeﬂ fairly
simulated using MC method (Borgelt et al., 1990; Verlet, 1967; Levesque and Verlet,
1969; Adachi et al., 1988; Saager and Fischer, 1990; Johnson et al., 1993). The basic
steps of both MC and MD techniques have been summarized by Gubbins (1989).

It should be noted that if sufficient run lengths (in terms of configurations or
random moves for MC and in time steps for MD) are taken, both methods converge to the
same results. Johnson et al. (1993) have summarized the system description, and
temperature and density ranges for most of the published work of molecular simulation.

The major limitations of molecular simulation methods are:



L4

@) The CPU time increases exponentially with number of molecules which limits N
to between hundreds to a few thousands;

(i)  Both methods require the intermolecular potential used; and

(iii)  Their accuracy in predicting the properties of real substances is limited by the
accuracy of the provided potentials.
Thermodynamic properties prediction by molecular simulations are exact for the

fluid potential used. These results, therefore, serve as a reference for testing other models

based on molecular approximations.

2.3 Distribution Functions and Thermodynamic Properties

The “structure” of matter (spatial distribution of its molecules) varies from completely
random as in ideal éas to completely ordered as in perfect crystal. Substances, whether in
pure or mixed form, exist somewhere between these two extremes. Dilute gases and
solids are easier to describe because of their closeness to completely random and
perfectly ordered arrangements of the molecules, respectively. The situation with dense
fluids (liquids and supercritical gases) is, however, different. For these systems,
distribution functions play a fundamental role in describing their structure, hence

macroscopic properties.
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2.3.1 Distribution Functions

In a system of N particles enclosed in a volume V, the probability P™ of finding
molecule 1 in volume dr; at location r; , molecule 2 in volume element dr, at r, and

molecule N at volume element dry at ry is given by (Reed and Gubbins, 1973):

P¥ur, ..dr, = ——I-—exp(-ﬁ¢)dr, .dry, (2.10)
Z(TV.N)
where Z(T,V,N) is the configurational integral, (see Equation 2.3), and P is the
Boltzmann factor 1/kT.
If each of the above probabilities is considered for each of n molecules
irrespective of the configuration of the remaining (N-n) molecules, then by integrating
over the pos-ition of the remaining ( n+1, n+2,. . ., N) molecuiés, we hévé (Reed and

Gubbins, 1973):

1
PG, 1) = ———— I Iexp(—Bd))dl’, ...dry, (2.11)
Z(T.V.N
Therefore, if we consider the probability density of finding any molecule in dr, at r;, any
molecule in dr, at r and any molecule in dr, at r,,, irrespective of the configuration of the

remaining ones, we have:

!

(V-n)

p®,r,,..1,)= PO, 1,,...x,) (2.12)
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This is the general distribution function of the system, which plays a major role in

evaluation of the system’s properties.
2.3.2 Pair Correlation Function (pcf)

In evaluating the configurational properties of substances, the relative pair
position of molecules is of much importance. In an ensemble of particles, the pair
correlation function is an expression that gives the probability of finding a molecule of
type i in volume element dr, at position r; and a molecule of type j in volume element dr,
at position ry. From statistical mechanics, in the N-T-V (canonical) ensemble, this pair

distribution function is given by (Hill, 1956):

pP(in)= N,.(N,.'-a,,.);[... e %rds,..dry [2(T,V,N) - @13)

where k is Boltzmann constant, T is the absolute temperature, V is the system volume, N
is the set N1, Np, ..N¢ molecules of type 1,2, .. ., c. 8ij is the Kronecker deita and Z(T,
V, N) is the configurational integral given by Equation 2.3.

It is clear from Equations 2.13 and 2.3 that the pair distribution function depends
on the temperature, density and composition of the system. The general pair distribution
function in Equation 2.13 can reduce to a number of special cases for various limiting

conditions. One of these cases is described below.

In the ideal gas limit (®/kT — 0)



0@ (r)= NN, -8, )V 2.14)

Equation 2.14 can be used to normalize Equation 2.13 to obtain a pair radial distribution

function (rdf), defined as:
g,0)=e{C)7’[(N.N;) @.15)
which is equivalent to:
: %
g,¢)=V(1=8,/N))[ ... [ e, .dr, [2TV. N) 2.16)

Equation 2.16 is only for the canonical ensemble. Expressions for other ensembles have
also been derived (Hill, 1962; Lee, 1988).

From the pair rdf, other thermodynamic properties of pure fluids and fluid
mixtures follow by definition. For an m-components mixture, the residual internal ‘energy

Uy and the compressibility factor Z are, respectively, given by (Hill, 1962):

) Np m m L
U,=U-U*=—" xx, [¢,()g; ¢ Wnridr 2.17)
2 i=l j=1 0
and
P P m
Z=——=l-—0.xx ,Tnp 1(r)g, (P)énridr (2.18)

pkT  GkT U1 o

where U® is the ideal gas internal energy, ¢’ is the derivative of the intermolecular
potential function with respect to the distance r. In deriving Equation 2.17, pair wise

!



additivity of the intermolecular potential is assumed, that is, the total potential energy of

the system is given by summing all the pair wise potential energies of the molecules.

N N

D= 224’(':;) (2.19)

i=l j<i

Another important equation in thermodynamic properties evaluation is the

compressibility equation, expressed as:

11{0P m m
—|—| =1-p2 X xx chy(r)4nr1dr (2.20)
kT\3p r

T

where c;(r) is the direct correlation function which measures the direct effect of molecule
i on molecule j.

" Equations 2.17, 2.1“8 and 2.20 a?e use-ful in evaluating thennod);namic properties -
of simple fluids. To do this, we need to know the radial distribution function gij(r).

Unfortunately, expressions for gij(r) are not easier to solve than the partition function

expression from where they were derived. However, they have physical interpretations,
and can even be measured experimentally. In real applications, rdf expressions are
approximated to obtain solvable equations that can be evaluated for thermodynamic
properties. These approximations are the basis of a number of molecular theories.

The total correlation function c(r), is another important statistical mechanics
expression that gives the total influence of molecule 1 on molecule 2 at distance r in a

given system. Percus-Yevick (1958) used this expression to suggest an approximate



theory for pure fluids. This has subsequently been extended to mixtures. Property
calculations using these mixture equations of state are very complex (Hamad, 1988).

2.3.3 Molecular Theories

The energy and pressure equations presented in the previous sections are only
valid for spherically symmetric fluids. For systems with angle dependent potentials such
as polar fluids, minor changes are needed in the above equations. There were several
attempts to make the distribution functions more useful (Kirkwood, 1935; Yvon,1935;
Born and Green, 1946). These have resulted to integral and integro-differential equations
that are also complicated (Boublik et al., 1980). A comprehensive discussion of these
approximations is given by Hamad (1988).

To avoid the above complexities, m_olecul?r theories are derived to use known
pure ﬂu1d prbperties to develbp models for predicting mixture properties. In these
methods, approximations are made to the N-body integral equations to render them
solvable. Among the existing molecular theories, the five principal ones (Gubbins, 1989)
are: (1) corresponding states theory, (2) perturbation and cluster expansion theory, (3)
integral equations theory, (4) density functional theory and (5) lattice models. The first

three of these theories will be discussed briefly due to their relevance to this work.



2.3.3.1 The corresponding states theory

Corresponding states theory employs both theoretical and empirical means to develop
models for pure fluids and fluid mixtures. It is based on fluids with identical form of

intermolecular potential energy function which can be represented in the following form:

¢y =euf| — 2.21)

i

where ¢;; is the interaction energy between a molecule of type i and a molecule of type j.
g; is the corresponding potential well depth. The functional form f of the reduced
intermolecular separation r is common for all molecular pairs. oj; is the collision diameter
of molecules i and j. Lennard-Jones fluid Equation 2.8 is a good example of such fluids,
(HarismiaciiS etal, 1991). -
In an one-fluid corresponding states theory, mixture properties are considered
equal to that of a single hypothetical fluid. The composition dependent molecular
parameters of this hypothetical fluid is obtained by applying semiempirical mixing rules

on the pure component properties.
2.3.3.2 Perturbation and cluster expansion theory

Simple fluid models such as hard spheres and Lennard-Jones fluids are idealized

cases. Due to the simplicity of their application in theoretical studies, thermodynamic



properties of these fluids are well investigated. It is this resource that is exploited in
perturbation theory to study real fluids.

In perturbation theory, the properties of a real fluid is considered to consist of two
parts, the reference contribution and the perturbation contribution. Simple fluid models
(such as hard-sphere fluid, Lennard-Jones fluids, etc.) are used to account for the
reference contribution, while additional effects are treated as perturbations of the
reference.

Developing real fluid equations of state via the perturbation approach involves:
mathematical expansion of the configurational partition function of the original system
around a reference system of known properties. Accuracy of the resulting model depends

on the closeness of the original system to the reference.
* 2.3.3.3 Integral equations theory

Theories have been developed to simplify evaluation of the pair radial distribution
function Equation 2.16. These are the Yvon-Bom-Green YBG, the Hypernetted chain
HNC and the Percus-Yevic PY theories.

In the YBG theory, Equation 2.16 is differentiated and simplified to the following

form (Reed and Gubbins, 1973).

ag("n) a‘b("lz (r,2)+pr%(u)

—g )4l (2.22)
or, ar,



This is an exact equation with all the quantities known except g), the triplet correlation
function. Kirkwood (1935) first made Equation 2.22 of practical use by introducing the
superposition assumption. This assumes the triplet correlation function to be the product

of the three pair correlation functions, that is,

| g(g)(rlz'rnv"zs): g("lz)g("u)g(ru) (2.23)

Equation 2.22 has been converted to an integral equation which has been solved
numerically. Comparison of thermodynamics property prediction from this model and
from molecular simulation shows that Equation 2.22 is only good at low densities (Reed
and Gubbins, 1973). This points to the validity of superposition principle only at this
condition.

- Hypernetted-chain -HNC and Percus-Yevick PY (Pei'cus-Yevick, 1958) theqries
vs;ere developed to avoid the sensitivity of -Equation 2.23 to small errors in the
superposition assumption. These two theories use a less sensitive total correlation
function which measures the total effect of molecule 1 on molecule 2 at separation ry, as

follows:

h(r)= g )~ 1 (2.24)

This principle resulted to improved pair correlation functions over the YBG theory. Reed
and Gubbins (1973) have presented details of the derivations.

The improved equations are as follows:



@) For HNC,

1ng(m)+¢—(-'2-pf[g(rn) 1][g(ru) ing(r;)-1 -¢—(I£—)}dn (229)

(i) ForPY,

g(r,,)exp[d)(p)} 1+Pj[g(r,,) 1]3(’13)[1 exP(d’(r”)} dr, (2:26)
kT kT

Equations 2.25 and 2.26 give results closer to molecular simulation than YBG. However,
they are not reliable at high densities too. HNC overpredicts the compressibility factor

while PY underpredicts it.

2.4 Consistency of Thermodynamics Mixture Models

2.4.1 Consistency of pef Equations

If an approximate theory of g(r) is used to calculate pressure using the pressure
Equation (2.18) and the compressibility Equation (2.20), different values will be
obtained. This difference is due to the inaccuracy in the approximations used (Reed and
Gubbins, 1973). One cause of such inaccuracy is inconsistency in the approximations. To
develop accurate models, researchers are continuously striving to improve these
approximations.

Rowlinson (1965), suggested a self consistent approximation in which the direct

correlation function (dcf) was expressed in terms of unknown function \, which for



mixtures depend on temperature T, density p and mole fraction x; of component i. The

Rowlinson expression is:

escip, T)= CPY(":'P:T)"' d(".’P:T) 2.27)

where cpy is the Percus-Yevick approximation, which for a mixture can be obtained from

c(r) = 8,(r )1 - ey ) 228)

and d in Equation 2.27, is given by

dr;p.T)=v(p.T. x,.{g,.j e -1-Ing,(r)- (—D-:l (2.29)
kT
This self cc;néistent equationA gav'e v;ctiues for hard sbhere fourth and fifth virial
coefficients that are very close to the exact values (Watts and Henderson, 1969), which
are shown in Table 2.2.
Hamad (1994) applied the basic calculus principle of the equality of mixed second
derivative on the canonical and grand canonical ensemble partition functions (PF) to

arrive at the following consistency criterion.

’InPF  98’InPF

= (2.30)
asPas®  ps@ast)
mn i

ij nn

where S,f‘p) is unlike interaction parameter with p and q running over all parameter types

and i, j running over all components.



TABLE 2.2. Fourth and fifth virial coefficients of hard spheres (Watts and
Henderson, 1969).

PYp PYc SC Exact value

B,/b3 02500 02969 02824 0.2869

B, /b 0.0859 0.1211 0.1188  0.1102%+.0003
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For binary hard spheres mixture of independent parameters (cy, ©y;, and Gy), the

consistency equation reduces to the following:

s agu@'u)

2

08, (0'12)
—=0

x0;,———2x,0, (2.31)
00, oo,
and
, 081 (622) , g1, (cl.’ )
X,Cp———=2XC,——= 0 (2.32)

do ), 30,
The factor 2 in the second terms of Equation 2.31 and Equation 2.32 were omitted in the
original work of Hamad (1994) due to typographical eiror (Hamad, 1995).

For dependent size parameters, the consistency equation takes the form:

, ag,,(O',,) do ), , aglz(clz)
X0y ——+2xx, 12
90, o do : 760",, - : (2.33)
s agzz(o'zz) 00, , aglz@'/z)
—X)Cp ——2x%, 2 =0
o6, 00, do

Using the above consistency equations, Hamad (1994) showed that the virial equation for
the commonly used Percus-Yevick approximation for mixture pcf is inconsistent.

Hamad and Mansoori (1989) have derived relations among integrals of rdf of
mixtures in the canonical ensemble. The derived relations are useful in reducing the
assumptions usually made in rdf approximations. It can as well be used to test the

approximate theories of radial distribution functions.



2.4.2 Mixture virial coefficients

Virial mixture theories constitute a powerful tool for representing the behavior of
mi@es. They can accurately predict the thermodynamic properties of mixtures with
large molecular parameter différence (Hamad, 1988). The usefulness of virial equations
of state results from their strong basis in statistical mechanics. There are also exact
statistical mechanics expressions relating the experimentally measurable virial
coefficients to intermolecular interactions.

For pure hard sphere fluids, exact virial coefficients are known up to the tenth
virial (Kratky, 1977; Santos et al.,, 1995). The situation is, however, different for
mixtures. For the simple case of mixture of additive hard spheres, exact analytical results
are known only up to third virial.

Foranm 'comp.orient mixture of édditfve hard spheres, the third virial coefficient

is given by (Prausnitz, 1986):
Coix = %Zzzxixjxkcyk (2.34)
i Jj ok

Exact expression for the coefficients Cy is given as (Kihara and Miyoshi, 1975):

[ )2{ 3 p3 3p3 3 3) 2p2p2
C,. =|— R,.R.+R,.R +R:R /3+3R,.R.R +
w 3 ! * T s } (2.35)

R RIR+ R R R (RR+ R R+ R(RER, + R RS )}

where Rj = Gji/2 is the collision radius of component i, the mixture third virial is given by



Equation 2.34. Fourth virial coefficient for mixture of hard spheres has also been
calculated using a combination of analytical and numerical techniques. A result of this
calcuiation for mixture of size ratio ranging from 1.67 to 3.0 gave accuracy within 0.01%
of the exact value (Rigby and Smith, 1963).

Expressions for virial coefficients become even more difficult for non-spherical
bodies. For convex body mixtures, the second virial coefficient is given by (Boublik,

1986):
B, =1(v,+v,+ RS, +R;S)) (2.36)

where Vi is the volume of molecule and Sj is its surface area.

Kihara and Miyoshi (1975) have given mixture third virial coefficient of the same
form as that in Equation 2.35 for non-spherical bodies. The R%R%Ri term is, however,
replaced by Gijk whose value lies within the range SiSjSk< Gijk < RIR3R}. Boublik

(1986) suggested the following as an approximate expression for Gijk;

4n
Gy =| — | (R2S,S, + R25,S, + RIS.S,) 2.37)
3

In a manner analogous to developing expressions for second and third virial coefficients,
Boublik (1986) also suggested an expression for the fourth virial coefficient. The
accuracy of 3rd and 4th virial coefficients for convex body mixtures could not be

evaluated due to lack of exact results.



2.4.3 Exact limits on mixture models and excess properties

Fluid phase equilibria are among the most important thermodynamic properties
directly used in the design and control of industrial chemical processes. In developing
mixture models for phase equilibrium and other thermodynamic property calculations,
researchers usually incorporate known limiting conditions for these functions.
Composition limits are the ones commonly used. A symmetric quadratic dependence of
mixture second virial on composition ensures (at least composition wise) that the limits of
pure components are satisfied as the density approaches zero. Satisfaction of composition
limits at low density alone is, however, not a sufficient condition for the consistency of a
model.

Startiqg from the relation 'between the pa;titi0u_ function and total Gibbs energy,”
Hamad (1995) derived a genéral condition for identical component limit of excess Gibbs

energy mixture models. For a binary mixture with pairwise additivity, this reduces to the

following:
8G* N.(N, =5 /a¢ N(N-I /a¢,,.
—'=ZZ k( i H) K —Zx,. ( ) i (2.38)
s, F T 1+, \as,., 2 \as,/,

where GF is the excess Gibbs energy, S;; is any parameter of intermolecular potential
energy, ; is the Kronecker delta, ¢;; is intermolecular energy between pair i,j and the

angled brackets stand for expectation value.



Equation 2.38 reduces to the following multicomponent equations for independent

energy parameters.
aG*
=2xx,U, [e i# (2.39)
Oe;
and
oG*
==X; (1 —-X; )Ur /e (2.40)
asii
with
U, =U(T,P)-U*(T) (241)

where U,, U and U™ are the residual, total and ideal gas internal energies, respectively. x;
is the mole fraction of component i, and € is the total interaction energy. In this
dérivation, it is assumed that the total number of particles is largé, that is, N>>1.

For size parameter, Hamad (1995) obtained the following:

aG*- dc ,
G, = 3NKT(Z - I)x| D 2x, — -1 +x, (2.42)
ao-’_ k=i 60'

it it

where Z is the compressibility factor (PV/NKT).
In the limit of infinite size ratio (v,/v; —> ), when species of a component
becomes point molecules, Hamad (1995) obtained the limit of GE for a binary mixture as

follows.

G* = kT(x, Iny, +x,Iny,) (2.43)



where v; are activity coefficients given by:

Iny, = In[x, +x,z,(l—v, x,/v)] (2.44)
Va¥;
Iny, = +AG, (2.45)
V~X,V,

v; is the molar volume of component i, and v is the mixture molar volume. The Gibbs
energy change is given by

b,
AG, = G,(T.B)~Gy(T, P)= | p,dp (2.46)

P2

where z,, G,, P, are properties of pure component 2 evaluated at mixture temperature T;
and p, = No/V =xy/v.

- Usihg the above equations, Hamz;d'(l995) compared the. linﬁté of GE models and
the expected exact values at these limits. This test revealed that even popular models such
as NRTL and UNIQUAC do not satisfy these conditions, major modifications are,
therefore, required especially in the size dependencies. Therefore, Hamad (1995)
suggested some exact statistical thermodynamics restrictions for mixture models in the
limits of infinite size ratio, identical components and independent components. He also

proposed the following simple mixture model which will satisfy all the restrictions.

Ar = ZxIAir({ri}slj' T,V,(Dy-,.,.) (2.47)
where Ar is the residual Helmhotz free energy for the mixture, Ajr is the residual

Helmbhotz free energy for pure component i, s;; is the intermolecular interaction parameter



(for example collision diameter o;, interaction energy €;;,), ®;; is the accentric factor, T is
the absolute temperature, and v is the mixture molar volume. The fundamental difference

between Equation 2.47 and the van der Waals two fluid theory is that Ajr is evaluated on

a theoretical basis that can satisfy all the given restrictions.

2.5 Application of fluid models to polymer systems

Equations of state and mixture models that satisfactorily describe the properties of
mixtures of simple spherical molecules are generally inaccurate in describing the systems
of chain molecules such as polymers and polymer mixtures. This is due to the additional
complexities of the latter which is caused by their highly entangled nature. For flexible
liquid polymer chains, there is a large number of degrees of freedom due to the different

‘possibilities in motions and orienfations of segfnents, ‘coupled with inter- and
intramolecular interactions. These explain the difficulty in exact statistical mechanics
treatment of chain molecules. Therefore, drastic idealizations and statistical mechanics
approximations are necessary in developing equations of state for polymer fluids
(Schwerzer and Curro, 1988; Chiew, 1990).

Despite the above drawbacks, researchers have developed theoretical and
semiempirical models whose predictions compares favorably with experimental data of
simple fluids and polymer systems. Several dense fluids equations of state have been
developed based on the simplifying ideas of the Prigogine's theory.

The Prigogine's theory (Prigogine et al., 1953; Prigogine, 1957) is a

corresponding states theory in which it was assumed that the effect of density on external



rotational and vibrational motion of the molecules is the same as its effect on translational
motion. Following this assumption, the rotational and vibrational parts of the partition
function (PF) were factored into external parts that are density dependent, and internal
part that is independent of density. The density-dependent part is due to molecular
rotations, low frequency vibrations and intermolecular motions such as bond bending and
bond rotations that cause structural changes. The density-independent internal parts
arising for instance from high frequency low amplitude vibrations have no effect on
intermolecular interactions.

To approximate the unknown density dependence of the external rotational and
vibrational motions for large molecules, a parameter ¢ was defined as one third of the
total number of external (density-dependent) degrees of freedom. The value of ¢ is unity
for spherical molecules (for examp!e, argon) and small molecules with apprgximately
spherical shape (for example meihane). Using this assumption and the cell model, which
accounts for the effect of repulsive forces, Prigogine obtained the following partition

function for chain molecules (Vimalchand and Donohue, 1989):

O [ 6% - 1)'] (ch()] (2.48)

AJ Ne

where Q.omp is the combinatorial factor that accounts for number of distinguishable
arrangements of the segments of molecules in the system, ¢ is the mean intermolecular

potential energy, N is the total number of molecules in the system, g is a geometric



w
w

constant, U, is volume of segments, U is reduced volume of segments. T is the reduced
temperature which is given by:
_ T or
T=—=— (2.49)
T° ¢q
where k is the Boltzmann constant, ¢ is the interaction energy per unit external surface
area, q is the surface area of a molecule and T the absolute temperature.

Several theories were developed from Prigogine's theory which include the Flory's
theory, (Flory, 1956), the perturbed hard chain theory PHCT (Beret and Prausnitz, 1975;
Donohue and Prausnitz, 1978), the chain of rotators theory COR {(Chien et al., 1983).

In the Flory’s theory, the concept of free volume was used to account for

intermolecular interactions. A simple generalization of van der Waals attractive term was

used for the r-mer chain. This can'simply be writtén.as (Viimalchand and Donohue 1989):

¢ e I
— = (2.50)
2kT kT ©
which results to the following partition function (Flory, 1956):
Qcomb . Ne Nc
0=—"{gu;(#-1)| en— @s1)
AJNC BT

All the terms retain their connotations as defined in Equation 2.48.
The above perturbed hard chain theories differ from Prigogine’s theory and the

Flory’s theory in the approximations used for density-dependent degrees of freedom and
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the expressions for repulsive and attractive interactions. In the PHCT theory (Beret and
Prausnitz, 1975), the Prigogine’s theory of chain molecules and the perturbed hard chain
theory for small molecules were used to develop a more accurate theory of wider
applicability. The partition function of this theory is:

vy (v, Y (-Ne)
0= —| e ——J (2.52)
NINM\y 2kT

where v is the system volume, v; is the free volume determined from the Carnahan-
S_tarling expression for hard spheres molecules.

In deriving the PHCT, (Donohue and Prausnitz, 1978), considered the effects of
rotational and vibrational degrees of freedom on the repulsive and attractive forces
between molecules. These effects, which were treated as equivalent to those of

translational motions, resulted to the following partition function:

' y¥ » v, Ne - Ne '
0= —| ex (2.53)
NIANY\y 2¢kT

where all the terms retain their previous meanings.

Vimalchand and Donohue (1989) have compared these theories of chain molecules
comprehensively.

In simple molecular fluids, the attractive forces are much weaker than the
repulsive forces. The structure of such fluids are, therefore, basically determined by the
repulsive forces. In modeling such fluids, it is, therefore, natural to use athermal hard
body fluids as reference. For simple molecules that are approximately spherically

symmetric, hard spheres fluid is the useful reference, while for polymers, hard-sphere-



chains equations of state are the most convenient reference equations. These equations of
state are simple, and they explain some significant features of real chain-like fluids (Song
et al., 1994). Several of these equations are available in the literature (Boublik et al.,
1990; Chiew, 1990; Yethiraj and Hall, 1993; Bokis and Donohue, 1992; Phan et al, 1993;
Song et al., 1994; Hino et al., 1994).

As in the case for simple molecules, researchers have also simulated chain
molecules (Gao and Weiner, 1989; Honnell and Hall, 1989; Denlinger and Hall, 1990;
Muller and Binder, 1995; Chang and Sandler, 1994). These molecular simulation results
serve as a reliable reference for testing models of chain molecules.

Song et al. (1994a) used three parameters (segment number r, defined as number
of single hard spheres per chain, segment size o, and non-bonded segment pair interaction
energy € ), and modified hard—spherg-chains equation of state of Chiew (1990) to develop
an engineering-oriented equatidn of state. This perfmbed;ha:d-sphere-chains (PHSC)
equation of state is applicable to simple fluids (r = 1) and polymers. It gives excellent
predictions of thermodynamic properties of several simple fluids (normal and branched
alkanes, aromatics, chlorinated hydrocarbons, etc.) with deviations less than about 5%.
For the t\a;/enty two polymers with PHSC equation of state parameters as shown in Table
2.3, deviations of P-V-T properties from experimental values is in the range of 0.02 to

0.5% (Song et al., 1994a).
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TABLE 2.3 PHSC Equation-of-State Parameters for Common Polymers (Song et al,,

1994a)
polymer ™M % rms dev
(molg)  o(A)  ek(K) R pig

high density poly(ethylene) 0.03542 3.860 3849 67 0.11
low-density poly(ethylene) 0.04945 3413 336.7 6! 0.12
iso-poly(propylene) 0.01410 5.456 5514 45 0.19
iso-poly(1-butene) 0.02140 4.663 485.0 45 0.25
poly(isobutene) 0.01019 6.030 779.5 55 0.11
poly(4-methyl-1-pentene) 0.02113 4.687 446.1 126 025
poly(styrene) 0.01117 5.534 724.7 69 0.12
poly(o-methylstyrene) 0.01191 5.446 7314 50 0.06
cis-1,4-poly(butadiene) 0.01499 5.264 611.8 156  0.05
poly(vinyl chloride) 0.0Q9£3 I 5.271 7369 87 0.19
poly(ethylene glycol) 0.02981 3.766 405.7 68 0.12
poly(vinyl acetate) 0.02044 4.242 477.2 110 0.02
poly(methyl methacrylate) 0.01432 4.850 655.9 41 0.03
iso-poly(methyl methacrylate) 0.01580 4.662 629.4 93 0.13
poly(butyl methacrylate) 0.01899 4.550 510.8 168 0.18
poly(cyclohexyl methacrylate) 0.01482 4.889 607.2 90 0.11
poly(ethylene terephthalate) 0.05437 2.798 3503 121 038
poly(carbonate) 0.02628 3.828 479.5 107 0.18
poly(ether ether ketone) 0.06690 2.580 3228 126 047
poly(sulfone) 0.02401 3912 530.5 149  0.09
poly(tetrafluoroethylene) 0.03753 2516 192.8 21 0.29
poly(tetrahydrofuran) 0.01708 4.843 531.0 47 0.08




Chapter 3

Development of Consistent Mixture Models

3.1 Simple Molecules

3.1.1 Model Formulation

In developing mixture models, it is useful to introduce the concept of residual

property. This is defined for any real system property X as:
X' (T.V.N)= X(T,V,N)-X*(T,V,N) 3.1

'I'he'importa?me of this is to separaté the contribution of infermoiecuiér forces from ail
other factors that contribute to the total system property. X" is the system property value
in the absence of intermolecular forces (ideal gas state).

For a canonical ensemble, the relationship between pressure and partition function
can be obtained by differentiating the Helmotz free energy in Table 2.1 with respect to

the system volume (at fixed temperature and number of particles).

84
P=- (—] (3.2)
oV/rn

Multiplying Equation 3.2 by the system volume V and splitting into the form of Equation

3.1 gives (Reed and Gubbins, 1973):
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ainQ

PV = kTV(——] = (PY)* +(PVY (3.3)

ov
where the ideal gas contribution to the total system energy is given by

(PV)® = NkT ' (3.4)

The term (PV)' comes from the force (-d¢/dr) between a particular molecule and all others
in a spherical shell distance r from the central molecule i (see Figure 3.1).
Change in pressure AP is the total force [(-d¢/dr)pg(r)41tr2dr]/area at r. This

simplifies to the following statistical mechanics expression (Reed and Gubbins, 1973):
P= pkT—4mp? Jo gl ar 69
0

where ¢' is the derivative of the potential function with respect to the distance r. Equation

3.5 can be rewritten in the following form:

Z=1-%np Jro g(r)idr (3.6)
0

When extended to a mixture of m components, Equation 3.6 becomes:



p(z) = pe(®)

Figure 3.1 Configurational contribution of central molecule i (interacting with all other
molecules) to increment of pressure in shell dratr.



Z=1-%np iix,x jrd) 2r)g,(rY dr 3.7

i=l jul 0

where x;, and x;, are mole fractions of com;}onents i and j, respectively. r is the
intermolecular separation, and g; is the pair correlation function.

The essence of starting with an equation of state in the present approach is to
avoid dealing with the complex statistical mechanics part of Equation 3.7). Our
expressions for compressibility factor Z are, therefore, written in three different

equivalent forms as follows:

Z=1+pQ. D xxBF, (.8)
i

Z=1+ pr,(ijB,j)H,. S (3.9)

Z=1+p). D xx,B,G (3.10)
i j

where o is the collision diameter of molecules i and j. Fy;, H;, and G are unknown
functions of temperature, density, composition and molecular parameters. These can,

therefore, be expressed in the following functional forms:

kT
Ej =F POy, 1Dy e (3.11)

SX'
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kT

H =H|poy,—, 0y . (3.12)
€y,
kT
G(pg) = G| po 4, — 0 4,-.. (3.13)
€y

To meet the consistency criterion, Equation 3.8 to Equation 3.10 must reduce to the pure
component values at the appropriate conditions (pure component limit, identical
molecular parameter limit, etc.).

Each of the expressions for compressibility factor in Equations 3.8 to 3.10 has its
particular advantage. The expression in the form of f;;, (see Equation 3.8), besides being
simple, is the most natural form since most intermolecular forces are pairwise additive.
The most important advantage of Eqﬁation 3.9 is that it can easily be applied to evaluate
mixture properties even if the pure components equations of state are different. This is
highly desirable since researchers have developed accurate, but widely varying pure
equations of state to describe specific substances or groups of substances. Finally, the
functional form of G in Equation 3.10 preserves the density dependence of the pure
equation of state in the mixture equation. This has some computational advantage. The
functions F, H and G in Equations 3.11 to 3.13 are evaluated as (Z-1)/B from pure
substance equation of state, with B as the second virial coefficient.

The first natural candidate to this approach is the hard-sphere fluid. Because, this
is a very simple fluid model, and it considerably mimics real fluids especially at high

temperatures and high densities where the fluid structure is mainly determined by



repulsive forces. Therefore Fy;, H;, and G in Equations 3.10 to 3.12 are first evaluated for

binary hard sphere fluid mixture. These are latter extended to multicomponent mixtures.
3.1.2 Evaluation of Parameters
3.1.2.1 Parameter F;;

For the hard sphere fluid, due to the potential function as defined in Equation 2.5,
it is only the size parameter that remains in Equations 3.11 to 3.13. Equation 3.10,

therefore, simplifies to:

F, = F(pf,) (3.14)

where f; represents three composition-dependent unknowns. Equation 3.14 is also
expressed in another form to suit the proposed evaluation approach. The other functional

form of Equation 3.14 is given as:

F; = F[p(xl.frj.l ‘*'xzfju)] (3.15)

The form of Equation 3.15 allows evaluation of f;;, and f;;,, independent of the mixture
composition.

The following strategies were employed in solving the above equations for f;;.

1) The parameter f; was evaluated from the third virial coefficients derived from
compressibility factor expressions of Equation 3.8 and Carnahan Starling Equation of

state for hard spheres fluid given in Equation 3.16 (Mansoori et al., 1969; Boublik, 1970).
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e e EG-E)
Z&5 =% (3.16)

+ 2 + 3
1-§; (1‘§3) (1-§,)

Equation 3.16 is the mixture version of Carnahan-Starling equation of state for pure hard
spheres. Carnahan and Starling originally proposed this equation which resulted from the
approximately recursive behavior of molecular dynamics results of the virial coefficients
of hard spheres (Carnahan and Starling, 1969).

The sets of equations that resulted from the above formulations were difficult to
solve analytically. The necessity of using numerical techniques to test this model limits
its applicability.

(i)  The pair correlation function for hard spheres mixture at contact is given by

2

I 360, £, Ilog; 3

i
g (pos)=—+ 4= (3.17)
1-&, 20, (=&)Y 2\o, ) (1-¢,)
where the system density p is given by:
p=2.p (3.18)
k=1
and
£, =n/62,p:oh (3.19)

k=l

with the component density evaluated from Equation 3.16 as:



Py =X, P (3.20)

Equation 3.15 exhibits an approximate distinguishing factor between its three

terms. This is more clearly expressed if Equation 3.15 is rewritten in the following form:

0 ! |’ 2
/ o0, 3 1 c,0; -| I 1
{ (3.21)

( ) 0,0, I
.’!" . = 9 + 2 - 2 g N
81 \PO G, é- 1—51 G é- 2(1—51).+ Cj é J 2(1—§J)J

f; was, therefore, taken as the distinguishing factor between the terms of the contact

values for pair correlation functions of hard sphere mixtures. This value is thus given by:

f;= sz,,cfk (3.22)

Oy

(iii) The pressure of a mixture of hard spheres is given by (Reed and Gubbins, 1973):

P = KT p, +inkY. Y p,0 51810 5000, ) (3.23)
1=l

i=l j=1

where all the terms retain their previous meanings.

The compressibility factor expression from Equation 3.23 is similar in form to
that from Equation 3.8. The model expression f;; was, therefore, obtained by solving
equations that result from equating equivalent terms from expansions of F;; of Equation

3.8 and the pair correlation function of hard spheres, thus:



F; (pf,-,- )= & (pc,,-) (.24)

For a binary mixture, the values obtained for f;; (see Appendix A). are:

fu= %SJ + %GISI (3.25)

( o,
fi=5S; +%L—— \ (3.26)

G
[ =%S;+%0,S, (3.27)

where the terms S, and S; are defined as:

S, =x,o;’ +x_,cr; (3.28)
S, =x,6] +x,0; (3.29)

(iv) In Equation 3.15), f;, and f;, represent four unknowns. To solve for these
unknowns, four independent equations are needed. These four equations were obtained in
pairs using two different methods.

In the first approach, the four unknowns were solved from the equations that
resulted from equating F;; and g; as in (iii) above. For a binary mixture, this procedure

gave the following expressions:



f120 =0 ( + 50'11/51’) (3.31)

fi2=0iG+%0,/0,,) (3.32)
fa2= ic0, + 'i'o'lj (3.33)

On substituting Equations 3.30 to 3.31 back into Equation 3.14, the final equations
simplify to the same form as that in Equations 3.25 to 3.27. This is expected since it is
fundamentally the same model, and hence this serves as a check on our parameter
evaluation strategy.

(v)  From statistical mechanics, the third virial coefficient of an m-component mixture
Cnix is given by Equation 2.34. The coefficients Cy; are related to pair potentials ¢, ;.

~8n? N T]J"]':r
Ciu = f,l Su fj,‘ r,,‘rl,‘d dr,.,,drj,‘ (3.34)

3 00y

In Equation 3.34, the fterms are given by:

Jim =e‘l’(—¢'”' kT)‘I G.

Similar expressions are also available for the fourth virial coefficient D ;, as:

[¥3)
LI
¥/
A

n

ZZ;ZX.J‘ XX Dy (3.36)
j

i
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In the second approach, the f;; and f;, terms were, therefore, evaluated by
equating two corresponding terms from the third and fourth virial coefficients of Equation
3.8 and hard spheres compressibility equation. For the purpose of symmetry, terms C,,,
and C,5,, were the coefficients considered from the third virial coefficient, while Dy,
and D,5,, from the fourth virial were used to generate the second set of equations.

The above procedure resulted to four different roots. Three of these,
unrealistically gave negative values of f; and f;, for all size ratios of a binary mixture.
The fourth model (see Appendix B) that always gave positive values of f;;; and f;, is,
however, complicated and can not be easily generalized to multicomponent mixtures. It
has, therefore, not been considered any further (for generalization to multicomponent

form) in this work. It was, however, tested for hard sphere fluids as will be seen later.
3.1.2.2 Parameter H;

In a similar approach to section 3.1.2.1, H; in Equation 3.9) is written in the

following forms

H, = H(ph,) (3.37)

and

H, = H[p(h, + x5, )] (3.38)

Here also, for a binary mixture, Equation 3.37 involves two unknowns while Equation

3.38 consists of four unknowns. However, since H involves only one pure component
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index i, for i = j we can readily see that h is a direct measure of the pure component

molecular volume. Therefore,
hii = 0",".‘ (339)

The following methods were, therefore, used to solve Equation 3.37 for h;’s:

@) In the first method employed, the parameter H; was taken to be equivalent to the
pair correlation function g;. A comparison of Equation 3.9 with Equation 3.45 justifies
this assumption. Due to the difference in number of indices associated to H and g,
equivalence of the two is not straight forward. The following scheme was, therefore, used

for a binary mixture to retain consistency in composition dependence.

xlcllgll +Xx,x ’cl"gl’ (xlcll +xlx’o-l’)Hl (3.40)

and

23 3 2.3 3
X308 +X,X,0,,8, = (xzo'zz +x,x20',2)H_, (3.41)

Note that for hard spheres, 65; = ), = (6}; + 62)/2. Due to the definition in Equation
3.39, only two unknowns are left in Equation 3.38.
On solving Equation 3.40 and Equation 3.41 according to Equation 3.37, the

following expressions for h; and h; were obtained.

kd
(xl("lJ + xz“chz)

=
1
(W[
&
+
i
a
7]

(3.42)
(xlo'l +x261’)

and
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(xlcl +xz°'1°'lz)

h,=%8,+%0,S, ( ; ;

X0, + xlo'lz)
where S, and S; are as defined in Equation 3.28 and Equation 3.29. It should be noted
that solution of Equations 3.40 and 3.41 using the functional form of H; defined in
Equation 3.38 gave exactly the same results as in Equations 3.42 and 3.43 above.
(ii) In the second method, the unknowns in Equation 3.37 were solved from two
coefficients (C;,, and C,,) of the third virial of Equation 3.9 and the corresponding terms
from hard spheres equation of state. Applying this procedure to a binary mixture yielded
the following results.

o} (350; +1240}c, + 7800} + 45,0 —5})

hy, = (3.44)
5(c} +80}5, +30c}c} +80,0] +o7) '

and

o} (350 + 1240,0} +78c}c} +40}0,~0})
hy = (3.43)
5@} +80}c, +30c7c? +80,0! +07)

3.1.2.3 Parameter G

The third form of our model representation as shown in Equation 3.10 is different
from the pair correlation function. This unindexed model parameter is evaluated for the
whole mixture before multiplying out by the summation term. This makes the model
simpler to apply. The following methods were used to solve for the model parameter g.

(1)  An equivalent form of Equation 3.23 in pair correlation function is:



T
Z=1+— Pzzx.-xﬁ,;gy (3.46)
6

Expanding Equation 3.10 and Equation 3.46 with respect to density p, and substituting

the previously evaluated function f; for dg;/0p, g was obtained as follows for a binary

mixture:
) szixﬁ,; ("no'ﬁ / 0.-,-)
g=35,+35, (3.47)
3D xx 5
(ii) Finally, g was taken to be the mixture packing fractions given by:
g=2x50% (348)

3.2 Chain Molecules

The interaction particle theory has been very useful in developing equations of

state for chain molecules (Schweizer and Curror, 1988; Chiew, 1990; Chiew, 1991;

Malakhov and Brun, 1992; Thomas and Donohue, 1993). In the interaction particle

theory, a chain molecule is considered to consist of several interacting particles or sites

(see Figure 3.1). This interaction can originate from chain connectivity (bond between

particles of a chain) and attractive and repulsive interactions.

In developing mixture models for chain molecules, we start from a general

expression for compressibility factor for hard chains

1



Z=1+2n/3p. 2.0 xxoirrg; (3.49)
i J

where p, is the chain density and o;; is the collision diameter of sites i and j. x; and x; are
the mole fractions of sites i and j. r; and r; are the chain lengths of components i and j,and
g;; is the pair correlation function of the sites.

Combining the binary third virial coefficient of Kihara (Hirschfelder et al., 1964)
with the consistency conditions, (see Equations 231 to 2.33), Hamad, (1995)

approximated the coefficients of density expansion of g; as follows:

g; =1+mp/6(5/2b) (3.50)
The terms appearing in Equation 3.50 are exact and the remaining higher order terms

have been neglected since their contribution to g;;is small..



Figure 3.2 A system of interacting sites in a polymer solution § solvent

molecules; @ sites of polymer 1;@ sites of polymer 2).



In Equation 3.50 by; is the composition-dependent mixture volume parameter given by the
summation kakcij‘k . The terms ¢;; are calculated from mixing rule.

Substituting the expression for by and Equation 3.50 into the consistency
equations yielded Equations 3.51 and 3.52. It should be noted that this method was
previously used by Hamad, (1995) to derive equation of state for nonadditive hard

spheres. Same approach is used here to develop the mixing rule for chain molecules.

, 0y, , 8¢y, 0Ocpy
o, ——+0]; ——|=0 (3.51)
30 5 86, doy
and
s 0¢y, , 0cp;  Ocpys
O +07, - =0 (3.52)
do 8o, &0, :

Equations 3.51 and 3.52 were converted to ordinary differential equations, and solved for

the parameters c;; (see Appendix C). This resulted to the following mixing rule.
Crag = (0' ] /200' izX’T’C il(l + "z)+ 2rro 1o 22(1 + 4"1)'*' NS ;05 (5 + 3"1)] (3.53)
Cpag = (0’ %,/20c fg)[rfc L +r)+2rro o (1 +4n)+rro o 20+ 3r2)] (3.54)

Cna= (’?/20)[ n 0'11(1"’3)‘*’0'?10'22 {5"1(1"'1)' 2"2(1"'1)}"'
7’20’,,0';(137, ’1)'*'"20';(5'*'3’1)]



€y = (rZ/ZO)[r.,G‘;.,(I "'l)"'cuo'f’z {5"2(1 ""1)"2"1(1 ""z)}‘*'

3.56
rlcflczz(j-;’z —1)+",0",'(5+3r2)] (3.56)

where o;; are the collision diameters of the corresponding sites, r; is the chain length
(number of sites in chain i).
In the limiting case of unbonded hard spheres, r; = r; = 1 and o3 = (oy; + 62)/2,
Equation 3.53 to Equation 3.56 reduce to a set of equations which simplify to the
expressions derived by Hamad (1995).

For reasonably long chain molecules (r>>1 and r,>>1), Equation 3.53 to

Equation 3.56 can reasonably be approximated to the following:

Crag = "lz"z(o';,l/lzoizxc‘l‘l +8070,,+ 36,63 (3.57)
Cr22 = "1".’2(0'::2/120'52)[5::2 +80 65, + 30'-;’10' 2 - (3.58)
Ciia = "12"2/121’0'?1 -36}0, +130,035, + 303, (3.59)
€y = r,r.;’/IZI—G‘_I., —30'110':;2 +1367,6 5 +307, (3.60)

Note that in arriving at Equation 3.57 to Equation 3.60, coefficients in Equation 3.53 to

Equation 3.56 were adjusted to reproduce correct limiting values of ¢y



CHAPTER 4

MODELS VALIDATION AND TESTING

4.1 Mixture Models for Simple Molecules

4.1.1 Introduction

This chapter presents all the mixture models for simple molecules (developed in
chapter 4) in their generalized form. The generalized forms of these models are applicable
to multicomponent systems. The developed models are used to predict properties of both
hypothetical (hard sphere and Lennard-Jones) and real fluids. The predicted properties of
mociel fluids are compared to some simulation data since these data are exact for the
model fluid chosen. For real mixtures, experimental data are used as the basis for our
model evaluation. In both cases we have compared the predictions of the newly

developed models with other models in the literature.

4.1.2 Generalized Mixture Model

The general representation of our mixture models are summarized as follows.
) For the model based on the approximate distinguishing value of the pair
correlation function (hence forth referred to as model DVPCF), the compressibility factor
is given by:

!



Z=1+n/6pZinxjc;.F,}(pj;.) 4.1)

i=l jul

with

f=Cis /0 ﬁ)ixkcf,‘ 4.2)
k=l

(ii)  The single indexed H; model based on pair correlation functions of Equation 3.9
and Equation 3.46 and solved according to Equation 3.37 is referred to as model HI1. The

compressibility factor for this model is given by:

Z=1+ pixi(ixjc;)Hi[p(xpf, +x.,h,.j)] 4.3)
jol

i=]

where

5:(C,/5+0io yo3(C, 5 +08) |
hy = 4.4

6 3.3
0'!-,- —6,.,-0'1-,-

The parameters C_,,I and E‘w in Equation 4.4 are given by:

C, =03(o; - 180,07 +320}) 4.5)
and
C, =oio) - 180,057 +320}) (4.6)

(iii) The model formulated as in (ii) above and solved according to Equation 3.37 is

referred to as model H2 with the following compressibility expression.

Z=1I+ pix,.(ix,c;)ﬂ,.[p(h,)] 4.7

i=l  \j=l



where
h = le,c;.f,,. Z;xjo,j. (4.8)
J= ]=

where the parameter f;; is as given in Equation 4.9.

(iv)  The general form of model fij (Equations 3.25 to 3.29) that is also applicable to
non-additive hard spheres was obtained with the same procedure as in deriving Equations
3.25 to 3.29 but using the contact value of the following pair correlation function for non-

additive hard spheres. This resulted to the following equation.

fi= Zx,‘c,.j R (4.9)
k=1

The term c; in Equation 4.9 was obtained by expanding the pair correlation function

Hamad (1995). The resulting expression interms of the exact third virial coefficient is
(Kihara, 1943):

1

ij K

1 é8cC
Cjx = :

. - (4.92)
60c; oc,; (mN,/6)

i
where C;;), are the coefficients of the third virial coefficient. o is the collision diameter of
molecular pair i and j. N, is the Avogadro’s number.
If s is the maximum of the three collision diameters (o}, o and o), then, for
G; +0y +0y 2 2s:
1 )
Cix = ——@',, +0, —-c,j)z[c,].(o',_,. +20, +20j,‘)- 3(0',* —o'j,‘)] (4.10)

56,.].



and for o; + G, +0, < 2s, cj is given by

16 Os
Cix =— I-—|o:0% 4.11)
S5s oo

i

(v)  For model G1 (obtained by taking hard sphere packing fraction as the unindexed

parameter g):

z=1+p2. 2 xx5.G[p(s)] (4.12)
with g = Zxkclfk

(vi)  For model G2 which was obtained from expansion of Equation 3.10 and Equation
3.46 with respect to density, the generalized expression for compressibility factor Z is the

same as that in G1 where g is given by:

m m
3
szixj"a' i
i
T  mom
3
XxX0;
i J

g (4.13)

The parameter f;; is as defined in model H2 above.

All the above models including models B1 (presented in Appendix B) and model
D1 Equation 4.3 to Equation 4.4, reduce to the correct pure component compressibility in
the limit of identical molecular parameters (size and energy). The models also satisfy the
low pressure (ideal gas) limit. Models D1 (see Equations 4.3 to 4.4) and B1 were not

generalized due to their complexity.

!



4.1.3 Mixtures of (additive) Hard Spheres

Figures 4.1 through 4.6 show the predictions of compressibility factor of a binary
equimolar hard sphere fluid with size ratio o,/c; = 3.0. These predictions are compared
with the corresponding values calculated using the Mansoori-Carnahan-Starling-Leland
MCSL equation of state (Mansoori et al., 1971), the van der Waals one fluid theory, and
molecular simulation data (Alder, 1964). From these figures, it is clear that at the stated
size ratio, all the developed models satisfactorily agree with the simulation data within
the tested mixture density range. Model f; shows the best results with an average

deviation of 0.62% from the simulation data. The maximum calculated error for this

model occurs at a packing fraction (§ = n/6Lx.c;) of 0.44. At this point Z is
underpredicted by about 1.1%. For mixture densities up to 0.44, model f;; under predicts
Z. At a density of 0.51, however, the compressibility factor is over predicted. As it will be
seen later, the model generally over predicts Z at mixture densities greater than about
0.45 even at high compositions of the smaller component. It should be noted that this
density is close to the freezing density, the only phase transition (fluid-solid) for hard
spheres which occurs at a density of about 0.50 (Fries and Hansen, 1983). The MCSL
equation is very accurate because it is specific to the hard sphere mixtures, and cannot be

used for other mixtures. The new models are general, therefore, they can be used for

mixtures other than hard spheres.
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Figure 4.1 Compressibility factor of equimolar mixture of binary hard sphere fluid
(0,/5,=3.0) using model DVPCF (* :- Simulation results of Alder, 1964; ** :- from
Mansoori et al., 1971).
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Figure 4.2  Compressibility factor of equimolar mixture of binary hard sphere fluid
(o4/6,=3.0) using model f; (* :- Simulation results of Alder, 1964; ** :- from Mansoori et

al., 1971).
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Figure 4.3 Compressibility factor of equimolar mixture of binary hard sphere fluid
(6,/5,=3.0) using model H1 (* :- Simulation results of Alder, 1964; ** :- from Mansoori

etal., 1971).
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Figure44  Compressibility factor of equimolar mixture of binary hard sphere fluid
(6,/5,=3.0) using model H2 (* :- Simulation results of Alder, 1964; ** :- from Mansoori

etal., 1971).
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Figure 4.5 Compressibility factor of equimolar mixture of binary hard sphere fluid
(oy/cy = 3.0) using model G1 (* :- Simulation results of Alder, 1964; ** :- from Mansoori

etal, 1971).
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Figure 4.6 Compressibility factor of equimolar mixture of binary hard sphere fluid
(o,/o, = 3.0) using model G2 (* :- Simulation results of Alder, 1964; ** :- from Mansoori
etal., 1971).



The superiority of model f; is attributable to the fact that, unlike H; and G models,
it fully accounts for all pair wise interactions in F;;.

Expressions for Bl and D1 were not generalized to multicomponent form due to
their complexity. Nonetheless, these two models predict hard spheres mixture
compressibility factor satisfactorily. As shown in Figure 4.7, the models predict much
more accurately than the van der Waals one fluid theory. The accuracy of the models
decreases at higher density (packing fraction).

In Figure 4.8, we have tested our model DVPCF against the accurate Mansoori-
Carnahan-Starling-Leland (MCSL) equation of state model (Mansoori et al., 1971) at
different packing fractions and mole fractions. There is a reasonable agreement between
the two models. The deviation shown is a strong function of the packing fraction used. In
the region of low mole fraction of the smaller component, model DVPCF slightly

underpredicts the MCSL model. This trend has, however, changed around x, = 0.8 for E=
0.4 and around x, = 0.6 for & = 0.45. For high packing fractions, the new model shows an

inflection point in the low mole fraction region of the larger molecules. This is probably
due to the factor (1-'r|)2 that tends to zero in this region. This points to a limitation of the
combination of this model with the Carnahan Starling (CS) equation. The CS equation is
accurate but is known to behave incorrectly at high densities by predicting infinite
pressure at a packing fraction of unity, while physically the infinite pressure occurs at the

closest packing fraction of (TI:‘/2/6) about 0.74. The combination of the new model with
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the CS equation predicts infinite pressure for mixture packing fractions much less than
unity. Except for the small region of its abnormal behavior, model DVPCF predicts more
accurately than the van der Waals one-fluid model.

Generally, all the models show higher accuracy at lower densities. This is
expected because the Carnahan-Starling pure equation of state which was used in
evaluating the models’ parameters agree almost exactly with molecular dynamics results
for mixture densities up to about 0.5. Beyond this density, both Carnahan-Starling and
other theories such as the self consistent approximation and the Percus-Yevick theories
are not satisfactory (Reed and Gubbins, 1973).

Besides Figures 4.1 to 4.6, Tables 4.1 and 4.2 present further details of the
deviations of our models from simulatipn data. It is clear, therefore, that for hard sphere
fluids, all the mixture modéls perform much better than the van der Waals model. In spite
of its relatively high errors, the van der Waals model is commonly used in science and
engineering due to its simplicity. Although our models are more accurate than the van der
Waals’, evaluation of mixture properties using these models are almost equally tasking.

The MCSL mixture equation of state predicts the compressibility factor with the
same accuracy as model f;; and it is simple to use. This equation has, however, limited
application since it can only be used for hard sphere mixture. It can, therefore, not be used
to calculate fluid properties using the modified hard sphere theories that involve attractive

forces.
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Table 4.1 Compressibility factor of equimolar binary hard sphere mixture (o,/c; = 3).

& Zgy Deviation of Model (%)

| (£1%) vdW  MCSL f; H1 H2 Gl G2
02333 237 -62160 -0.091  -0372 0391 -0.715 2832 -0.956
02692 277 -8.1810 0.067  -0337 0838  -0.889 3825  -127
03106  3.36 S11.194 0121  -0684  1.121 -1577 4661  -2.185
03583  4.24 14886 0034  -0723 2057  -2192 6089  -3.169
03808 4.6 -16868 0075  -0767 2574  -2592 6750  -3.792
04393  6.57 .22857 0066  -1059 4084  -4137 8250  -6.089
05068  9.77 -29.856 1294 0398  8.468 -5.043 11693 -8317
Average Deviation” <1% 2.79 2.449 6.3 3.683
Average Deviation™ <1% 3.703 1.910 7.085 3.230
Average Deviation™ <1% 2948 2248 6508  3.469

+ for entries in the table using CS pure equation of state; ++ absolute average deviation using Sanchez
(1994) EOS; +++ absolute average deviation using Kolafa EOS Boublik and Nezbeda (1986).
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Table 4.2 Variation of hard sphere mixture compressibility factor with density and
composition hard sphere mixture (cy,/cy;=2).

x1 POy Zyvp Deviation of Model (%)
vdW  MCSL f; H1 H2 Gl G2
0.9500 0.45 8.71 -13.400 -3.56 -3.123 24928  -5.283 0.125  -6.544
0.9500 0.50 11.5 -12.833 0.341 2327 66376  -1.919 4.783 -4.015
09500 0.55 16.4 -17.171  -0.626  5.591 177.541 -324 4376  -6.533
0.8984 045 7.82 -13.487 1.3 1.571 25.702  -1.539 7.143 -3.209
0.8984 0.50 10.7 -17.596 1.247  3.054 47702  -2.466 8.038  -5.066
0.8984 0.55 14.8 -21.071 2953 8.706 99.75 -1.762 10.832  -5.836
0.8984 0.59 225 -34.067 -8.807 2.786 161.251 -13.6 -1.138  -18.697
0.8008 045 7.55 -17.128 0.615 0427 16.12 2875 7.655  -4.689

0.8008 0.50 10.10 -20353 2544 3390 29.489 -2.209 10903 . -5.021

0.8008 0.55 14.30 -26.620 1.582  4.858 47.802 -4489 11.046 -8.658

Average Deviation” 2.607 4203 72456 6388 12904 10.511
Average Deviation™ 2607 20104 137912 3726 16998  8.082
Average Deviation™ 2607 3604 68266 6238 13.136 10.260

+ for entries in the table using CS pure equation of state; ++ absolute average deviation using Sanchez
(1994) EOS; +++ absolute average deviation using Kolafa EOS Boublik and Nezbeda (1986).



The Sanchez’ and the Kolafa’s equations of state referenced in Tables 4.1 and 4.2

are given in Equations 4.14 and 4.15 respectively.

1+1.024385m + 1.]045377]" - 0.46114721]J - 0.743038211‘
ZJ.J =

(4.14)
1~ 2.975615m + 3.007000n7 - 10977587’

I2n-6n’+n’-2n°
Z=1+ (4.15)

3(1-n)

where 1 is the packing fraction. Subscripts 4, 3 on Z indicate the highest powers of the
polynomials in the numerator and the denominator of the compressibility expression.

Sanchez (1994) derived Equation 4.14 using the Pade approximant theory (Pade,
189%). Boublik and Nezbeda (1986) reported Equation 4.15 as Kolafa equation of state.

| As shown in Tables 4.1 and 4.2, variation of the pure equation of state shows iittle effect

on the accuracy of the predicted mixture properties. This is expected since all pure
equations of state are known to be very accurate. Their major difference lies in their
complexities.

From Table 4.2, it can be inferred that the models perform almost equally well at
non-identical mixture compositions. The size, composition and reduced density values
used in Table 4.2 present a more severe test of the models. This is because there are more
of the smaller molecules in the mixture (higher x,), hence, domination of the bigger

molecules is highly reduced.



Figures 4.3 to 4.6 clearly show that deviation of models H1, H2, G1 and G2
increase with the mixture packing fraction. Since models H1 and H2 and models G1 and
G2 deviate in an opposite manner, a combination of these two pairs can improve
prediction results at high packing fractions. Table 4.3 compares the deviations of such a
. weighted model (H3), taken as tH1 + (1-t)H2 with models H1 and H2 in predicting the
simulation data of Alder (1964). Note that this also applies to models G1 and G2. Table
4.4 therefore compares a similar model G3 to models GI and G2 in predicting
compressibility factor at high mixture packing fraction (simulation data are from Fries
and Hansen, 1983). In both cases, varying T can improve the prediction results up to four
times. Note that maximum deviation in G3 remain consistently high. This always
occurred at the highest packing fraction of the data (§ = 0.59, x; = 0.8984), and at this
point, both models underestimate the "compressibility factor (see Table 4.5). The
improvements obtained for the high packing fraction data is even more pronounced in H3
because predictions of model H1 are poor at these packing fractions. At § = 0.59,
prediction errors in models Hl and H2 were reduced from about 70% and 4%.

respectively, to less than 2% in H3.



TABLE 4.3 Compressibility factor of a mixture of hard spheres using
model H3 (x; = x, =0.5; 055/0(, = 2.0).

T Absolute deviation of model H3 (%)
Average Maximum
1 (H3=HI) 2.78 8.47
0.60 0.37 2.00
0.55 0.37 1.29
0.50 0.44 0.71
0.45 0.53 1.11
0.40 0.78 1.51

0 (H3 =H2) 2.45 5.04




TABLE 4.4 Compressibility factor of a mixture of hard spheres using
model G3 (Xl =X3 = 0.5, 0'22/0'“ = 20).

T Absolute deviation of model G3 (%)
Average Maximum
1 (G3=G1) 6.60 11.05
0.60 3.06 8.77
0.55 2.75 9.65
0.50 2.44 10.55
0.45 2.76 11.42
0.40 2.29 12.21

0 (G3=G2) 6.83 18.70

i3



TABLE 4.5 Improved compressibility factor prediction by model G3.

X 4 Lo Model deviation (%)
Gl G2 G3

0.9500 0.45 8.71 0.125 -6.544 -2.63
0.9500 0.50 11.50 4.783 -4.015 1.12
0.9500 0.55 16.40 4376 -6.553 -0.21
0.8984 0.45 7.82 7.143 -3.209 2.80
0.8984 0.50 10.70 8.038 -5.066 2.48
0.8984 0.55 14.80 10.832  -5.836 3.67
0.8984 0.59 22.50 -1.138  -18.697  -8.77
0.8008 0.45 7.55. 7.653 -4.689 = 242
0.8008  0.50 10.10 10903  -5.021 4.07
0.8008 0.55 14.30 11.046  -8.658 2.46

Absolute average deviation (%)  6.604 6.829 3.06
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4.1.4 Mixtures of Non-additive Hard spheres (NAHS)

In additive hard sphere mixtures, the unlike particles’ collision diameter oj; (i # j)
is characterized only by the individual like particle collision diameters [o}; = (o} + 5;)/2].
For non-additive hard spheres, however, an additional non-additivity parameter A is
. required to fully describe the unlike particle collision diameter (see Figure 4.9) oy
=(1+A)(c; + op)/2. Molecules with positive non-additivity have high repulsion. At
sufficiently high densities, their mixtures become thermodynamically unstable, and they
exhibit phase separation. Mixtures of molecules with negative non-additivity show
association, and they do not phase separate.

Although non-additive hard spheres represent a simple fluid model, its
distribution function resembles those of real fluids, hence it is widely used in perturbation
tl;eories (Jung and Jhoh, 1994). Several observed phase behaviors in real mes have
been attributed to non-additivity. The experimentally observed heterocordination in liquid
alkali group IV alloys (Alblas et al., 1984) and aqueous electrolyte solutions (Gaminiti,
1982) are due to negative non-additivity. The homocoordination (phase segregation)
observed in liquid alloys of Ti - Te (Ichigawa et al., 1974) and supercritical aqueous NaCl
(Pitzer et al., 1985) are attributed to positive non-additivity. In fact at high pressures (~
10° bar), even hydrogen-helium mixture exhibits phase separation due to positive non-

additivity (Schouten et al., 1985).



A=-1/3

A =0 (additive HS)

A=+2/3

Figure 4.9 Unlike particle collision diameters of non-additive hard spheres.
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4.1.4.1 Compressibility factor for non-additive hard spheres

Figures 4.10 to 4.21 show variation of compressibility factor with reduced density
for our models at different compositions and non-additivity parameters. For the model f;
(Figures 4.10 to 4.12), both at x; = 0.1 and x, = 0.25, the model agrees very well with the
simulation data of Jung and Jhon (1994). For mixture densities up to 1.2, model f;
predicts better than van der Waals 1-fluid model at higher deviations from additive hard
spheres (A= - 0.5 and A = 0.3) for both x; = 0.1 and x; = 0.25. At A =- 0.1, both f;; and
the vdW-1f model predict Z accurately. The later is known to be reliable for soft spheres.
In the van der Waals model, the binary hard spheres mixture is represented by a single
hypothetical fluid of size o, (cx3= xlzcl3 + 2x,x20',23+ x220'23). If vdW-1f reduced density
(p'= pcx3) is taken as an indepepdent variable, the fluid’s compressibility factor
éxpression has, fherefore, no explicit dependence on A. This should correspond to
compressibility for A = 0, since at this value of A, for symmetric hard spheres, o, =
1/2(c,+0,)(1+A) = 6, = 6, =0, i.e. true one component fluid. This explains the accuracy
of vdW-1f and our models at small deviations from additivity (A =- 0.1 in Figures 4.10 to
4.21) and it should apply to all models based on the theory of corresponding states.

Figures 4.12, 4.15, 4.18 and 4.21 clearly show that, for equimolar composition
and equal molecular sizes, our models underpredict the compressibility factor at A = -0.5
and overpredict it at A = 0.3. The magnitudes of these deviations increase with the

reduced density.
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Figure 4.10 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model fj; at x;= 0.1. The points represent Monte Carlo simulation data from
Jung and Jhon (1995). vdW-1f and f;; overlap for A=0.3 and - 0.1.
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Figure 4.11 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model f;; at x; = 0.25. The points represent Monte Carlo simulation data from
Jung and Jhon (1995). vdW-1f and f; overlap for A=0.3 and - 0.1.
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Figure 4.12 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model f; at x; = 0.50. The points represent Monte Carlo simulation data from

Jung and Jhon (1995). vdW-1f and f;; overlap for A =-0.1.
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Figure 4.13 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H1 at x, = 0.1. The points represent Monte Carlo simulation data from
Jung and Jhon (1995). vdW-1f and H1 overlap for A =0.3 and - 0.1.
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Figure 4.14 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H1 at x1=0.25. The points represent Monte Carlo simulation data from

Jung and Jhon (1995). vdW-1f and H1 overlap for A=-0.1.



Model: H1 /
/0
——— vdWIf
©  Simulation L . /

A=-0.1

()]
|

Compgassublllt&factor %n
| 1
>
[

N
|

0 T I I | T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Reduced density po®

Figure 4.15 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H1 at x1= 0.50. The points represent Monte Carlo simulation data from
Jung and Jhon (1995).
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Figure 4.16 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H2 at x1= 0.1. The points represent Monte Carlo simulation data from
Jung and Jhon (1995). vdW-1f and H2 overlap for A=0.3 and - 0.1.
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Figure 4.17 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H2 at x1= 0.25. The points represent Monte Carlo simulation data from
Jung and Jhon (1995). vdW-1f and H2 overlap for A=-0.1.
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Figure 4.18 Effects of mixture density and A on the compressibility factor of symmetric
NAHS for model H2 at x1=0.50. The points represent Monte Carlo simulation data from

Jung and Jhon (1995).
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Figure 4.19 Effects of mixture density and A on the compressibility factor of NAHS for
model G2 at x; = 0.1. The points represent Monte Carlo simulation data from Jung and

Jhon (1995). vdW-1f and G2 overlap for A= 0.3 and - 0.1.
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model G2 at x; = 0.25. The points represent Monte Carlo simulation data from Jung and
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Figure 4.21 Effects of mixture density and A on the compressibility factor of NAHS for
model G2 at x; = 0.50. The points represent Monte Carlo simulation data from Jung and

Thon (1995).



Bellone et al. (1986) have developed an accurate equation of state for symmetric
non-additive hard spheres by parameterization of the Carnahan-Starling formula for hard
spheres. Their equation is given by:

M ya—2ya
Z=l4—a' "I (4.16)

(as ‘am.;,-)'

where 1. is the effective packing fraction (n/ 12)pd3 [1+(1+A)3] of the mixture, a;’s are

parameters related to A through constants b;’s as follows:

a=1+bA (I+AY (4.17)

Equation 4.16 reproduced the simulation data of Ballone et al. (1986), and that of Adam
. and McDonald (1975) to an accuracy within the statistical error of these data (~5%).

However, Equation 4.16 had to be fitted to simulation data to obtain the four constants.
4.1.4.2 Phase separation in non-additive hard spheres

Mixtures of non-additive hard spheres with positive non-additivity phase separate
at high densities to minimize the system free energy. Spheres with highly positive non-
addivity should separate at lower densities (due to their excessive repulsion) than those
with lower value of positive non-additivity. The Helmholtz free energy for a mixture is

given by:



Amix Amix.r

+ Y x,Inx, (4.18)
RT RT

At low densities, the entropy terms in Inx; dominates the free energy, and the mixture

remains homogeneous. The Helmholtz free energy can be obtained from compressibility

factor as:

a=[@-1)pdp (4.19)

Considering one of our models, say f;;, and using Carnahan Starling equation of state, the

reference free energy is given by

A

SN T5) DI EET A () N (4.20)
RT T -

where the function F, is evaluated from Helmholtz free energy as follows:

(-ny

4.21)

with n = po” for the symmetric equimolar system. Also, due to the symmetry, that is, oy,
= 0,,, the critical point, if it exists, must occur at points corresponding to equimolar

mixture composition (that is x; = X, = 0.5). It must also satisfy the following condition.
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=0 (4.22)

Symmetry of the binary mixture also requires that for the two phases I and II in
equilibrium, xll = xzu and le = xl“. This reduces the equilibrium condition to
aAmixlaxll rp = 0 for the coexistence curve between the two phases.

Figures 4.22 and 4.23 present phase diagrams for non-additive hard spheres (A =
0.2) predicted by our mixture models. These are compared to the Monte Carlo simulation
data of Amar (1989), MIX1 model of Melnyk and Sawford (1975) and the vdW-1f model.
Figure 4.22 shows that models f;; and H1 considerably underpredict the mixture densities
at which phase separation occurs (compared to the simulation data), nonetheless these
models are improvements over van der Waals’ predictions. At the composition extremes
(x; < 0.05 and x; > 0.95), however, the..two models’ predictions compare satisfactorily
with the simulation data. Models DVPCF, H2, G1 and G2, on the other hand, overpredict
the simulation data (see Figure 4.23). Our models could also not predict the flatness in the
profile of the simulation data around x; = 0.5 due to the failure of the Helmholtz free
energy expressions to give a flat turning point at this composition. The flat density profile
is generally difficult to predict by simple theories. As shown in Figures 4.22 and 4.23,
even the MIX1 model that uses hard spheres mixture as reference is not very satisfactory.
In contrast to the other models, model f; shows a relatively flat region with density

varying just between 0.36 to 0.3589 as the mole fraction x, increases from 0.3538 to 0.50.
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Figure 4.22 Phase diagram of a mixture of symmetric nonadditive hard sphere fluid
system (A = 0.2) for mixture models f;; and H1 (*:-Monte Carlo results of Amar, 1989).
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Figure 424 Coexistence curves for an equimolar mixture of symmetric nonadditive
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results as in Table 4.3).
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Figure 4.25 Coexistence curves for an equimolar mixture of symmetric nonadditive hard
sphere fluid system for mixture models H2, G1 and G2 (**:-Monte Carlo results as in
Table 4.3).



Using Equations 4.18 to 4.22, critical densities for our models were calculated at
various values of the non-addivity parameter as shown in Figures 4.24 and 4.25. These
figures show that our models are generally in better agreement with simulation data at
high values of A when compared with van der Waals model. At lower deviations from
non-additivity, models f; and H1 converge with the van der Waals and the MIX1 model
into the solid region for pure hard spheres. The later occurs at a reduced density (po}) of
1.033 (Jung et al., 1995). Note that the available simulation data as summarized in Table
4.6 does not extend to the region of A less than 0.20. MIX1 model is a first order
perturbation equation of state using a multicomponent reference fluid. For starting with a
multicomponent reference, MIX1 performs better than one component reference fluid
models such as the vdW-1f and the Barker Henderson (BH) models Melnyk and Sawford,
(1975). quever, this applies only to the phase. behavior. It does not predict the
compressibility factor conebtly, even the second virial is not correct.

The model based on the distinguishing value of the pair correlation function
(DVPCF) shows good agreement with simulation data at A greater than about 0.3. At A
values lower than 0.3, however, the model deviates sharply from the vdW-1f, MIXI, f;;,
H1 models, and probably simulation results as shown in Figure 4.24. Models H2, G1 and
G2 behave in a manner similar to DVPCF but to a lesser extent as shown in Figure 4.25

(on the scale of Figure 4.25, critical density predictions by models H2 and G2 are the

same).
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Table 4.6 Summary of simulation data for nonadiitive hard spheres (NAHS).

Nonadditivity  Critical density Source
A pc‘3

0.20 0.50£0.02 Hoheisel, 1993
0.42 +£0.04 Melnyk and Sawford, 1975
0.415% 5on Amar, 1989

0.30 0.38+0.02 Hoheisel, 1993

0.50 0204002 - Hoheisel, 1993

1.00 0.0485 £0.003(N=256) Ehrenberg et al., 1990

0.0488 + 0.003(N = 256)

0.0525 + 0.004(N = 500)

Ehrenberg et al., 1990

Ehrenberg et al., 1990
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4.1.5 Mixture of Lennard-Jones Fluids

The Lennard-Jones potential is the simplest potential that possesses both the
attractive and the repulsive properties of real fluids. For this reason it exhibits both the
two first order transitions (liquid-vapor and fluid-solid) and the second order, the critical
point. Lennard-Jones potential is, therefore, very useful in predicting the thermodynamic
properties of rare gases and weakly anisotropic molecules such as methane, nitrogen and
oxygen (Lee, 1988).

Lennard-Jones molecules account for attractive forces through an energy

parameter €. Considering a specific case, for example, model DVPCF, the quantity F i in
Equation 4.1 is taken to depend on the parameter & through a dimensionless temperature

" as follows:

kT
F;=F| pof5— (4.23)

€y

where pf;; is as defined in Equation 4.2, k is the Boltzmann constant, and T is the absolute
temperature. This dependence gives the exact second virial coefficient. Note that the
mean density approximation MDA also uses the same energy parameter dependence. The

functional form of F given by:

K\ (Z,.-1
po’,—|= (4.24)
£ pc’




A Vi

was obtained from the pure component equation of state or Zpyre, where G is pure
component collision diameter. As shown in Equation 3.11, if the molecules are
characterized by other parameters, such as the accentric factor or polarity parameters,
then the appropriate values for the pair ij can also be used in evaluating Fjj after obtaining

F from the pure equation of state:

P kT
> xoh— (4.25)

Gy €;

G0
F. = o}

For a satisfactory evaluation of this model, we need to cover a wide molecular
parameter range. Therefore, we have used Lennard-Jones data from the work of Shukla et
al. (1986) in which they also presented results for molecular simulation and four other
models. This data covers the molecular .size and energy ratios ub to 2.0 and 4.5,
respectively. The reduced temperature T (T = kT/€) used was in the range 1.3 to 5.82
while the reduced density p‘ (p= pf;) used was in the range of 0.425 to 0.90.

The equation of state of Johnson et al. (1993) was used for the pure Lennard-
Jones fluid. The reduced temperature range for this equation of state is 0.7 < T <6.0
while the density is in the range 0.1 < p' < 1.25. These values also form the
recommended range for use of our models with this pure equation of state. So only points

where all the individual temperatures (T ’I‘i‘j andTi}) and all the individual densities
(p;i, P}j and pi‘j) fall within the given limits should be considered for use with our

models.



A comparison of model DVPCF with vdW-1f, MDA and WCA-LL-GH is
presented in Table 4.7. Note that there are slight differences in the percentage error values
of Table 4.7 and those reported earlier by Shukla et al. (1986). This is due to the more
accurate equation of state of Johnson et al. (1993) for the pure fluid that was used instead
of the equation of state of Nicolas et al. (1979) used by Shukla et al. (1986). Percentage
errors in WCA-LL-GH are reported as given by Shukla et al. (1986) because they do not
depend on the pure equation of state.

From Table 4.7, it is clear that vdW-1, MDA and WCA-LL-GH mostly
underpredict the compressibility factor Z. On the contrary, our models mostly overpredict
Z. Magnitudes of the average and maximum errors for our model are 3.3% and 8.6%,
respectively. These values are lower than the corresponding values of 8.6% and 29.1%
for vdW-1 theory and of 9.6% and 32.4% for MDA theory. Tbe corresponding average
and maximum errors for WCA-LL-GH théory are 3.7% and 9.5%, respectively. These
values are quite close to the results for model DVPCF in spite of the more complex and
involved form of the former. At higher size ratios, model DVPCF shows a major
improvement in the accuracy of Z.

In a manner similar to the above, Table 4.8 present a summary of test for models

£

;» H1 and H2 for binary mixture of Lennard-Jones fluids with the energy parameters

evaluated as in Equation 4.26.
£ =FhT)
H,1, = H(hp,T,) (4.26)
H,2, = H(hp, kT[Y. xg,)



Table 4.7. Compressibility factors of Lennard-Jones fluids using model DVPCF.

Deviation from Zyp (%)
£/, 6)/o, POy’ ZMD"  vdW-1 MDA~ WCA- DVPCF
LL-GH"

1.00 1.30 0.90 5.006 3.9 3.8 1.3 -1.6
1.00 2.00 0.90 5.682 -15.3 -15.3 -6.8 -3.1
1.50 1.00 0.90 4.944 0.4 0.1 14 0.1
1.50 1.30 0.90 5.177 3.6 3.8 1.1 0.1
1.50 2.00 0.90 5.976 -159 -16.1 9.5 1.4
2.50 1.00 0.90 4911 43 2.6 0.78 26
2.50 1.30 0.90 5.363 3.9 54 -1.0 1.8
2.50 2.00 0.90 6.522 -20.7 217 92 42
3.50 1.30 0.90 5.347 3.3 6.3 02 43
3.50 2.00 0.90 6.790 -24.5 -26.4 8.7 6.6
4.50 1.00 0.90 4.806 72 1.9 0.8 1.9
4.50 1.30 0.90 5.160 -12 5.8 -0.54 8.6
4.50 2.00 0.90 6.988 289 315 1.5 62
1.50 1.05 0.80 3.754 1.0 0.7 0.9 1.0
1.50 1.30 0.80 3.837 -1.0 -1.3 0.9 2.0
1.50 1.55 0.80 4.102 74 7.6 -6.1 0.3
1.50 2.00 0.80 4.449 -146 -14.7 -8.3 0.2
2.50 - 1.0§ 0.80 3.754 0.5 -1.1 -0.1 . -0.4
2.50 1.30 0.80 3.798 5 1% R | -1.1 32
2.50 1.55 0.80 3.928 4.8 6.3 3.8 6.4
2.50 2.00 0.80 4461 -16.9 -18.0 9.4 53
3.50 1.05 0.80 3.572 29 0.7 03 0.3
3.50 1.30 0.80 3.618 02 3.7 0.9 5.1
3.50 1.55 0.80 3.988 -10.9 -13.9 2.9 35
3.50 2.00 0.80 4.527 234 -25.6 9.0 5.8
4.50 1.05 0.80 3.316 6.5 0.5 0.3 1.9
4.50 1.30 0.80 3.420 0.5 5.9 -0.8 59
4.50 1.55 0.80 3.644 9.6 -14.3 0.7 9.8
4.50 2.00 0.80 4.441 -29.1 324 7.7 7.9
1.50 1.30 0.68858  2.908 2.6 2.8 -1.1 05
1.50 2.00 0.70863 3313 -104 -10.5 5.1 1.4
4.50 1.30 0.50000 1.161 -0.1 3.7 4.7 -1.6
4.50 2.00 042518  0.846 1.1 9.1 -8.3 2.3

ABSOLUTE AVERAGE ERROR (%) 8.6 9.6 3.6 32

ABSOLUTE MAXIMUM ERROR (%) 292 324 9.5 9.8




Table 4.8. Compressibility factors of a binary Lennard-Jones fluid mixture using
models f;, H1 and H2.

Deviation from Zyyp, (%)
£,/€, /o, poy’ f; HI H2 HIZ HI2
1.00 130 0.90 ;1377 0481  -1.569  -1415 1415
1.00 2.00 0.90 -1537 2415 2800  -1217  -1217
1.50 1.00 0.90 -0.007  -0.129 0.124 0.124  -0.109
1.50 1.30 0.90 -0.103 2.195 0935  -0.603  -0.128
1.50 2.00 0.90 2.096 8.967 -1.355 1.016 2318
2.50 1.00 0.90 2516 1.265 3.349 3.349 1.500
2.50 1.30 0.90 0.566 4.468 -0.609 0.027 0.127
2.50 2.00 0.90 3.582 14247 2377 1.195 3.666
3.50 1.30 0.90 1.925 6.709 0.764 1.702 0.637
3.50 2.00 0.90 5.485 18.766  -2.045 2.612 5.580
4.50 1.00 0.90 1.848 -3.78 4351 4353 2.735
4.50 1.30 0.90 5.075 10416  4.054 5333 2.665
4.50 2.00 0.90 5.843  20.523 2172 3457 6.533
1.50 1.05 0.80 0.997 1.013 1.048 1.064 0.833
1.50 1.30 0.80 1.871 3.581 1.384 1.649 1.810
1.50 1.55 0.80 -0.189 3.174 -1.334  -0588  -0.131
1.50 2.00 0.80 0.592 6.069 -1.854 0.049 0.849
2.50 1.05 0.80 -0.682  -2.055 0.044 0.083  -2.147
2.50 1.30 0.80 2.263 4395 2.135 2647 - 1456
2.50 1.55 0.80 5226 . 10.602  3.838 5.204 4.959
2.50 2.00 0.80 4.500 13.186  0.636 3.737 4.694
3.50 1.05 0.80 0069  -4.223 1.647 1707 -3911
3.50 1.30 0.80 3.238 4.513 4.060 4.824 0.923
3.50 1.55 0.80 0.943 6.779 0.104 1969  -0.092
3.50 2.00 0.80 3.263 13.873  -1170 2984 3.191
4.50 1.05 0.80 1462  -6.654  4.304 4389  -5.706
4.50 1.30 0.80 3.081 2.623 5.104 6.138  -1.325
4.50 1.55 0.80 5.525 11.727 5444 8.030 3.285
4.50 2.00 0.80 3.541 15771 -1253 4.073 3.152
1.50 130 068858  -0.536 0.504 0642  -0456  -0.625
1.50 200 070863 2347 6.635 0.833 2354 2.706
4.50 130 050000 -1.655  -17.000  7.366 7588  -10.092
4.50 200 042518  -0901  -14410 21.867 22943  3.509
ABS. AVERAGE ERROR (%) 2.268 7.268 2.305 3299 2.546
ABS.MAXIMUM ERROR (%)  5.843 20523  21.867  22.943  10.092

* +: linear combinations of models H1 and H2 with combining rules as explained in text

Ldd



Again, these models show considerable improvement over the vdW-1f and the MDA
models. Model f;; predicts better than WCA-LL-GH as well. Models H1 and H2 are
comparable to the WCA-LL-GH in terms of the average deviation. They, however,
perform poorly at low system density and size and energy ratios.

At several of the parameter sets used in Tables 4.7 and 4.8, models HI and H2
deviate differently from simulation data (while H1 under predict, H2 over predict). In the
last two columns of Table 4.8 (denoted by H12" and H12"), we have attempted improving
the predictions by combining models Hl and H2. Column H12" represent a linear

combination of H1 and H2 as [tH1 + (1-t)H2] and a geometric average of their energy

parameters (’[‘i' x kT/ ineijy. The value of a used is 0.9 , and as seen in the table, model

H2 is still better than the combined model. There are several useful ways of determining

1; one of this which uses molecular sizes for a binary mixture is given below.

. (I+(cz/c,)")/0’,+0',)
Zk:xkci’

(4.27)

In this equation n can be adjusted to get the best value for T subject to the condition that t

< 1.0. In the last column of Table 4.8, instead of the geometric average of the energy

terms, a weighted average with respect to «, [t?}' +(I—‘t)kT/ Y xe ] was used.

Y

Although the resulting model predicts better than both H1 and H2, the small difference

does not justify the extra effort.
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4.2  Mixtures of simple real molecules

Unlike hypothetical fluids, the intermolecular potentials of real fluids are not
exactly known. There are accurate potentials for the noble gases (Aziz et al. 1983; Aziz
and Slaman, 1986) because they are simple monatomic fluids. These molecules are also
satisfactorily represented by the Lennard-Jones (12, 6) potential. Next to noble gases in
spherical symmetry are the Quasi-spherical (tetrahedral) molecular fluids like methane
and carbon tetrafluoride. Molecules such as carbon dioxide and ethane are distinctly non-
spherical. They are nonetheless considered simple because they are relatively small in
size and non-polar. Any good model for simple molecules should, therefore, give best
predictions for noble gases followed by quasi-spherical and then non-spherical molecules.

In the test of our models for simple molecules, the accurate equation of state for
nc;n-polar fluids of Tao and Mason (1994.) was used. Thisis a médiﬁed form of an earlier
statistical mechanical analytical equation of state proposed by Song and Mason (1989)
and by Ihm et al. (1991). The equation of state of Tao and Mason (1994) is written as:

P (e‘T‘/T-AZ)
—=1+(B-a)p+ + 4, - Bpp’ ————=

pkT 1-2bp 1+18(@p)

(4.28)

where p is the number density N/V, B is the second virial coefficient, o is a temperature
dependent correction to the second virial (for softness of repulsion), T is absolute

temperature, T, is the critical temperature, bp is the packing fraction, A, A, x and A are



100

constants correlated to the molecular properties. Note that p was missing in the second
term of their original publication.
To demonstrate our mixture model using this equation of state, consider a specific

case, for instance model f;;. For real molecular system, this is easily written as:

Z=1+pY. 3 xx,B,F,ef,.T) (4.29)
i J

The parameter Fj; is then evaluated from (Z-1)/Bp in the same manner as explained earlier

in the previous section. The expression for F from Equation 4.28 is, therefore:

zZ-1 /B €™ -4,)
——=(-o/B)+—+ 4,bp)et/B-)—— (4.30)
Bp 1-(bp) 1+18(p)

where o and b are given as functions of Boyle volume vy and non-dimentional
temperature T/Tg_Tg is the Boyle temperature (Song and Mason, 1989; Song and Mason,

1990; Song and Mason, 1991; Song and Mason, 1992).

afvy = ayep{-e T a [ -ep fe ) || @31)

bfvs = a,[1 -, T/ T;) o e (T/ T ) a1 - ot epfe(nY ) @32
4T/TY

where a,, a,, ¢, and c, are constants.



For computational simplicity, we have used the second virial expression of Pitzer and

Curl (1957) which was later modified by Tsonopolous (1978). This is given by:
B=(2/RT)' [fO@)+or )] (433)
with
L) = 01445 -0.330/T, - 0.1385/T} —0.0121[T] ~6.07 x 107[T} (4.34)
and

f(T)= 00637 +0.331/T7 -0423/T’ - 0.008/T; (4.35)

where T, is the reduced temperature (T/T,) , @ is the accentric factor and P, is the critical
pressure.

The terms in Equation 4.30 were, therefore, expressed in terms of T, T, and @ (T,

~ = T/Tp) as follows.
a =v, £i(T;) (4.36)
b=vs f,(T,) (4.37)
B=(R/RT) £,(T.0) (4.38)
a/B=f(T. T, 0) (4.39)

Substituting the above relationships into Equation 4.30 and extending it to mixtures gives

the following expression for Fy.



I=2 @x, P)
AWl 7))

1+18(y,p)

F; =1-f4(7;,-,-. an“’ij)*

(4.40)

In evaluating Fij' from Equation 4.40, two different expressions were chosen for b
Firstly, the volume parameter b taken proportional to the volume of molecules (03).
Secondly, the Boyle’s volume vy can be taken proportional to o°. After making each
choice, application of the mixing rules in by is then straight forward (see Appendix D).
The noble gases have extensively been studied both theoretically and
experimentally. The works of Sorokin (1969), Schouten et al. (1975), Barreiros et al.
(1982), among several others constitute a rich reference data base. The predicted molar
volumes of a binary mixture of 48.5 mo'le % Argon and 51.5 mole % Krypton using
model f; are shown in Figures 4.26 and 4.27. The volume of molecules were taken to be
proportional to an equal contribution of the molecular parameters vg and b, that is o o
(vg + b)/2. This combination was chosen because for all the experimental data range, the
selection ¢® o« v underpredicts the mixture volume while o «<b overpredicts it. The
unlike pair collision diameter was calculated using the hard spheres formula. Geometric
mean was used for the temperature while composition dependent pseudocritical pressure
(P2 = X,Pe; + XPc;) was used for the unlike pair critical parameters. As shown in the
figures, the models satisfactorily predict the mixture volumes for all the experimental data

range. The figures also show that the model under predict experimental data in the low



1200

1000

o)

o

o
1

Pressure bar

[0)]

o

o
|

400

200

30 32 34 36 38

Molar volume cm’/mol

Figure 4.26 Prediction of molar volumes of a binary liquid mixture of argon and krypton
with x,, = 0.485 at 129.32 K and 142.68 K for model f; (Points are experimental data of
Barreiros et al., 1982; EOS is the equation of state of Thm et al., 1992).
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Figure 427 Prediction of molar volumes of a binary liquid mixture of argon and
krypton with x,, = 0.485 at 134.32 K and 147.08 K for model f; (Points are experimental
data of Barreiros et al., 1982; EOS is the equation of state of Ihm et al., 1992).
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pressure range and overpredict at high pressure for all the temperatures observed.

The mixture model f; shows a similar trend to the equation of state of Ihm et al.
(1992). Both overpredict and underpredict experimental data in the same regions. At
142.68 K, predictions of the two equations are closest in the pressure range of about 50 to
220 bar (see Figure 4.26). In this region, it was experimentally observed that the mixture
volume falls outside the two pure components’ envelope as shown in Figure 4.28. This
region also shows considerable skewness in the experimental excess volume versus mole
fraction plots (Barreiros et al., 1982). Generally, the mixture equation of state of Ihm et
al. (1992) predicts better than our models. Nonetheless, the predictions of our models are
satisfactory with actual error of just 2.22% even at points of highest deviation. Naturally,
it is expected that use of experimentally measured parameters such as the second virial
coefficient (instead of correlations as used in the foregone calculations) will improve the

‘prediction accuracy. This is demonstrated in calculating pure component volumes using
the equation of state of Ihm et al. (1992). Using experimental second virial coefficient,
they calculated the volume of pure saturated carbon dioxide with an error of 0.00% as
compared to an error of - 0.63% using correlation for the second virial coefficient.

Table 4.9 compares the calculated and experiental molar volumes of the same Ar -
Kr mixture (with same combination rules) using models H1, H2, Gl and G2. With the
simple pseudocritical parameters used, only model H1 predicts accurately taking only
parameter b as the molecular size. For the other models, however, use of arithmetic
average of the two parameters was necessary. Even then predictions of models G1, and

especially G2 are inaccurate.
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TABLE 4.9 Predictions of the molar volumes of a binary mixture of 48.5 mole %
argon and 51.5 mole % krypton.

T P Molar volume (cm3/mol)
X) (bar) Expt. £ H1 H2 Gl G2
129.32 398 34.98 34.24 34.38 33.70 32.11 44.84

214.7 33.25 32.94 33.16 32.54 31.02 41.96
517.9 31.42 31.54 31.83 31.25 29.79 39.51

13432  33.0 35.95 35.91 35.23 34.62 32.99 46.48
372.5 32.68 32.57 32.82 32.30 30.81 41.06
653.7 31.25 31.47 31.71 31.22 29.77 39.21

142.68 449 37.43 36.77 36.58 36.08 34.43 48.86
647.5 31.93 32.16 32.29 31.90 30.45 39.93

- 915.0 30.82  .31.25 3141 31.03 129.82 38.63

12804  29.69 30.35 30.54 30.17 28.78 37.41

147.08 61.1 38.10 37.48 37.19 36.77 35.10 49.69
447.6 33.45 33.54 33.56 33.21 31.73 41.85
942.5 31.00 3145 31.56 31.24 29.61 38.80
1094.2 30.48 31.02 31.15 30.83 29.43 38.22
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Table 4.10 presents the predictions of molar volumes of a binary mixture of Neon
and Argon at different compositions using model f; It is clear from the tables that the
prediction errors are strong functions of both composition and pressure. Increasing
composition of neon from 0.02686 to 0.1151 increases deviation of the model from
0.48% to 2.28% at 275.7 bar and from 1.28% to 3.10% at 551.4 bar. Also, for each
composition, errors increase with pressure. Table 4.11 shows a trend similar to the above
for a mixture of methane and carbon tetrafluoride at 298.15 K. For pressures up to about
110 bar, the model predicts quite good for all compositions. Above about 300 bars,
however, the predictions are unsatisfactory, with the highest error occurring at equimolar
composition. At high pressures, even the pure equation of state predicts with some
significant error. The error for the larger component, CF, at about 353 bar is - 6.10%.

Carbon dioxide and ethane are distinctly non-spherical molecules but of relatively
simple shapes. A binary mixture of these two compounds is of interest in natural gas
liquefaction process since carbon dioxide can easily freeze and block pipes at cryogenic
temperatures. A combination of the strong quadrupole moment in carbon dioxide coupled
with the relatively weak one for ethane (Willis et al. 1984) makes this system a more
severe test for mixture models compared to the previous cases. This mixture is known to

form non-ideal solutions with azeotropes (Fredensiund and Mollerup, 1974).



TABLE 4.10 Prediction of molar volumes of a binary mixture of
Neon and Argon at 121.36K for model f;;.

Mole fraction Pressure v (experimental) Error
of neon (bar) ) (cm*/mol) 100(V-Vexpt )/ Vexpt

0 7.03 34.7374 -0.98

206.79 31.6295 -0.22

551.43 29.1591 0.57

0.0286 29.64 34.5765 -0.12

275.71 30.9368 0.48

551.43 28.9791 1.28

0.1511 110.29 343184 1.36

27571 -7 31.0857 228

551.43 28.6075 3.10

0.3501 190.93 35.8598 1.29

344.64 30.8374 475

551.43 28.0841 6.26

0.4662 201.62 37.9873 2.32

344.64 31.5197 5.60

55143 27.8872 1.717
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TABLE 4.11 Prediction of pressures of a binary mixture of
Methane and Carbontetraflouride at 298.15K using model H1.

Molefraction P(expt) Error
CH4 (bar ) . IOO(P'Pexpt)/P expt

1.0000000 18.02 -0.05
114.26 -0.48

273.79 1.64

0.749787 17.96 -0.04
113.50 1.35

301.76 13.09

0.500050 - 17.84 _ . -0.06
109.93 1.98

319.17 15.06

0.2500066 17.66 -0.13
104.06 1.23

337.90 7.02

0.0000000 17.42 -0.25
95.73 -0.56

352.88 -6.10




The performance of models f; and H1 in predicting the molar volumes of carbon
dioxide and ethane is shown in Table 4.12. Over the entire composition range, the
saturated liquid volumes are predicted with a maximum absolute error of about 5% for
both models. Model H1 always underpredicts the mixture volume while f; overpredicts.
In these tests, The pseudocritical parameters (temperature, pressure, accentric factor and

size) needed in evaluating our models’ unlike pair (i # j) parameters are as follows:

T;[i = (7:::]:1,)%(1"191) (4.41)

P = 4T, (pcichii/ L+ PV T )

cif |
(VZ +VJ

cii

(4.42)

0, =05@,+0,;) (4.43)

where T_’s are the critical temperatures and k;; is 0.08 for the pair CO, - C;H¢ (Chueh and
Prausnitz, 1967). P.’s and Vs are the critical pressures and critical volumes respectively.
 is the accentric factor.

The above relationships have been found satisfactory, and are commonly used in virial
calculations (Prausnitz and Gunn, 1958; McElroy and Fang, 1993; McElroy and Ababio,
1994). Use of the simpler pseudocritical combining rules gave results that are very close
to Table 4.12 (difference between deviations from the two calculations was not more than
about 0.2%). A wider prediction range for the carbon dioxide-ethane mixture for model
is shown in Figure 4.29. For this, the maximum deviation is about 5% in the supercritical

range.



TABLE 4.12 Prediction of molar volumes of molar volumes of a binary mixture of
Carbondioxide and Ethane at 241.5K using models f; and H1.

Mole fraction Pressure v (expt) Deviation (%)
co, (bar) (cm®/mol) £; HI

0 10.09 65.17 -0.63 -0.41
0.0832 12.05 63.80 0.53 -1.16
0.1711 13.63 62.51 1.33 222
0.3047 15.18 59.90 3.02 -2.94
0.4594 16.10 56.87 3.87 -3.97
0.5604 16.38 54.06 5.08 -3.39
0.6330 16.46 52.26 5.03 -3.43
0.7145 16.36 49.93 499 -3.00
0.7996 16.10 47.06 5.14 -1.83
0.9098 15.16 43.44 .3.59 -0.90

1 13.41 40.72 -2.58 -1.65

L&V
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Figure 429  Molar volumes of supercritical binary mixture of carbondioxide and
ethane predicted with model f;. Points are experimental data of Reamer et al. (1945).



CHAPTER 5

MODELS FOR PVT BEHAVIOR OF POLYMER SYSTEMS

5.1 Mixture models for polymer systems

Mixtures of different polymers or solutions of polymers in solvents are commonly
referred to as polymer systems. Compared to simple molecules, polymer systems exhibit
two unusual properties. For a mixture of two or more polymer species, there is a tendency
for incompatibility emanating from the small entropy of mixing compared to that found
with small molecules. This incompatibility can split the mixture into phases. The second
abnormality is common in polymer solutioqs in solvents. Due to the large size difference
between the polymer and solvent molechles, activity coefficient of the solvent/monomer
molecules is considerably diminished. This latter property is important in solvent
recovery and devolatilization of polymer products, while the former is important in
polymer blending (Chao and Greenkorn, 1975).

Review of theoretical equations of state for hypothetical chain fluids was aiready
presented in section 2.5. For real polymers, correlative equations of state are often used to
describe their PVT behavior. One such commonly used empirical equations is the Tait
equation (Tait, 1888). This is actually an isothermal compressibility equation rather than
truly been an equation of state (Danner and High, 1993). Within limited ranges, such
empirical equations can dependably be used to interpolate or extrapolate data to desired

conditions. Alternatively, equations of state from statistical mechanics theory can be used



to correlate the experimental data. This later method gives equations of state whose
parameters are useful in devising mixing rules to predict properties of polymer solutions

(Danner and High, 1993).
5.2  Equations of state from average correlation functions

Theoretical equations of state for chain molecules can be developed from the
knowledge of their molecular structure which is adequately described by intermolecular
site-site correlation function. The intermolecular site-site correlation function g,p(r) of
molecular fluids is the probabilistic distribution of site o of one molecule and site § of
another separated by a distance r. For long chains, this distribution results from the
interaction of many force centers (see Figure 3.1). Therefore, it is more convenient to use
the average values.

The average intermolecular correlation function g(r) is related to the site-site

correlation function by (Chiew, 1991):

I m m

g()=—2.2 84 0) 5.1)

m‘ a=l p=l

where g(r) is the average probability of finding two sites of different molecules at
distance r apart, and m is the number of sites in a molecule (chain length).

The single index average correlation function g.(r) is also of particular
importance. This gives the average correlation between site o and all other sites. It is

related to the site-site correlation function by:



O3 5.0) 62

y=I

For a polymer with different site types (copolymers), differentiating the canonical

(r)

partition function Q with respect to site-site interaction parameter Saﬁ and using the pair

correlation function of the ensemble gives:

6lnQ  Np

c 0 uy
—— ] S(g)exp(-uag/RT)/Q (5.3)

oS%) 24T = B "9S

Substituting for the integrand and simplifying the resulting expression yields:

olnQ

=-2nNp. Y Y (%) 2 (5.4)
3 Ség) a B . - :
If S is taken as the size parameter o, for a homonuclear chain (homopolymer) (64, = Cop
= opp = O), substituting Equation 5.4 and the expression for InQ from the partition
function relationship (InQ = -A/NKT) simplifies to the following expression.

1 9(4/NkT)

glc)= (5.5)

npos’m do

where g(c) is the average intermolecular site-site correlation function, A is the residual

Helmbholtz energy, and m is the chain length. Density of sites in the system is given by:



p=—=mp, (5.6)

where N is the total number of sites and V is the volume of the system.
Equation 5.5 can be used to derive expressions for average correlation function

from equations of state since the residual Helmholtz energy is given by:

A P dp’
— = [@e)-1n— 57)
NkT 0 p’

where Z is the compressibility factor, primes are used on the integrand to distinguish it

from the limits.
53 Consistency.of Pair Correlation Functions

Consistency of pair correlation functions is useful in deriving accurate equations
of state and mixture models. Equations of state of athermal hard sphere chains are
therefore tested for consistency. Average intermolecular pair correlation function were
also evaluated based on Equation 5.5 derived earlier.

The equation of state of Chiew (1990) is given by:

I 3n 3’ r—11+n/2
+ + -
2
I-n (@-n) (@-n)] r @-ny

This equation was tested according to the consistency conditions given in Equatios 3.52

& = (5.8)

to 3.53. The consistency condition was not satisfied.
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Song et al. (1994) generalized Equation 5.8 using the Carnahan-Starling radial
distribution function at contact. For pure copolymer system, they obtained the following
equation.

I £, £

g, = —+3/2— ~+1/2 J (5.9)
I-n  (-n) ¢-n)

where g; is the radial distribution function at contact between a sphere of diameter d; and

another of diameter d;. The packing fractions 1 is p/4 Zbii and &;; are defined as follows.

%
b b,
E.:ij =p/4

> b (5.10)
b k

:
Equation 5.9 is also not consistent with Equation 5.5. However, this was made consistent
by adding another parameter F (that makes it consistent) and solving for the parameter.

For a homopolymer (i =j)

I 8i g
g = +3/2 +F/[2

I-n  (-my  (@-n)

Using the approach of Hamad (1995) for hard spheres mixture, Equation 5.11 was

(5.11)

substituted into the consistency equations to derive the following functional form of F for

chain molecules.

F=3/4-[3/4- f@")}? (5.12)

where



R =(§ci)z/(§ci)l (5.13)

Substituting Equations 5.12 and 5.13 into Equation 5.11, and solving the correlation
function equation yields the following expressions for F.

)] For Carnahan-Starling equation,
g = (-n/2)/(t-n) (5.14)
the function f(0'3) then equals unity. Therefore, F(c) becomes (3-R)/2, and the consistent

pair correlation function at contact becomes:

1 n 3-1mn’
g)=—+32—— +( ok (5.15)
I-n (- (@-n)
(i)  For virial Percus-Yevick equation,
g =-n/H/a-ny "~ (5.16)

This yields f(0'3) = 3(1-1)/4n. From this, F(c) = 3R(n-1)/2n. Therefore, the consistent

pair correlation function at contact becomes:

n

1
glo)=——-+3/2 - (I-1/2) (5.17

I-n  (-m)
(iii) For compressibility Percus-Yevick equation,
3
g = ([+n/2+n?/4)/(1-n) (5.18)
gives f(c°) = 3/2. This results to F(c) = 3(1+R)/4.
Therefore, consistent expressions for contact value radial distribution functions

for homopolymers based on Carnahan-Starling (CS) and the virial Percus-Yevick (PY)
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equations of state are given in Figures 5.1 and 5.2. The consistent CS equation gave
almost identical results to the Percus-Yevick compressibility equation. These values are
in good agreement with the predictions of the original equations. For the virial Percus-
Yevick equation, the new consistent equation underpredict the compressibility factor at
high packing fractions (see Fig. 5.2). At low packing fractions, all the equations are in

good agreement.

5.4  PVT Behavior of Polymer Mixtures

PVT behavior of polymers is a necessary physical property that is directly used in the
design and operation of polymer process equipment. It can also be used with calorimetric
data to accurately estimate the enthalpy and entropy of polymers. This is necessary for
energy-efficient design in hiéh pressure (high power-) opérations (Isacescu et al., 1971).
There are several correlations for predicting the PVT behavior for pure polymers.
These are mostly in the form of equations of state. Notable among these is the Tait
equation, (Tait, 1888). This correlative equation is very accurate in the pressure and
temperature range used to determine the equation’s constants. Within this range, the
average error of the equation (~ 0.1%) is less than most reported experimental errors. Due
to this high accuracy, the Tait equation has been used to fit several pure polymer data

(Danner and High, 1993; Rodgers, 1993).
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Figure 5.1 Compressibility vs packing fraction for an 8-mer/monomer mixture predicted
using hard chain g; expressions based on Carnahan-Starling (CS) and corresponding
consistent expression (CCS). Points are Monte Carlo data of Honnell and Hall (1991).
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Figure 5.2 Compressibility vs packing fraction for an 8-mer/4-mer mixture predicted
using hard chain g; expressions based on Percus-Yevick compressibility (PY) and
corresponding consistent expression (CPY). Points are Monte Carlo data of Honnell and
Hall (1991).



L

A major limitation of this method is the restriction of its use in only polymers for
which the constants have been determined from experimental data. Thus, no method is
available for predicting the constants from the molecular parameters of the polymer. As a
result, the sensitivity of the constants with variation of molecular weight of the same
polymer species is not known (Danner and High, 1993). In an attempt to extract
molecular parameter information from the equation constants, a general equation of state
for polymer mixture in the form of Equation 3.48 was used.

Noting that the molar volume v = V/N, and using density as a basis, Z in Equation

3.48 can be written as:
Z = PV/NRT = (P[RT)V[m¥m/N) (5.19)

where m is the total mass.of polymer in the system, N is the total number of molecules
and V is the system volume.
The term m/N for a mixture is commonly defined as the weight average molecular weight

of the polymer.
mN=3 MN,/N=) Mx=M (5.20)

where M,; is the molecular weight of component i, N; is the number of molecules of type i,
x; is the mole fraction of chains of type i, and M is the weight average molecular weight
of the polymer mixture.

Substituting Equations 5.19 and 5.20 into Equation 3.48 and noting that for long

chains, 1/M = 0, gives:
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Pv 4n

= —:PcZZx.—xﬁ 78 (5:21)
RT 6M

where v is the volume per unit mass of the mixture.
In the limit of pure component, that is, x, = 0, solving Equation 5.21 for the
average correlation function of pure component 1, yields an expression that can be

generalized to the following:

g, = (6/4mp. J(Pv/RT), (M, [r )1/ r;) (5.22)

where all the terms retain their previously defined meanings.
The terms in Equation 5.22 were deliberately grouped in the presented form

because of the physical significance attached to each of them. The term Myr; is

proportional to the average weight of a repeat unit, while the term oy, is a measure of the
volume of a polymer molecule. These relationships are exact if the polymer is assumed to
consist entirely of tangent hard sphere chains. Pv/RT can be obtained from accurate pure

polymer equations of state as explained in what follows.

The Tait equation is generally written as:

V(P,T)=V(.T){ - Cir[(B+ P)/(B+ B)]} (5.23)
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where V(P,T) is the specific volume at pressure P and temperature T. V(0,T) is the
specific volume at zero pressure and temperature T. B(T) is the Tait parameter for the
specific polymer, C is a universal constant (numerically equal to 0.0894) for polymers, P
and T are absolute pressure and temperature, respectively.

The term V(0,T) is given by polynomial or exponential functions of the form:

V(O0.T)= 4y + At + A,1° (5.24)
or

v(0,T)=V,exp(Vt) (5.25)

where Ay, A;, and A,, or V,, V) are specific constants for a given polymer. B(T) in
Equation 5.23 is also commonly written in the form of Equations 5.24 and 5.25 with the
corresponding constants By, B; and B, for.the quadratic form or just By and B, for the .
exponential form (Rodgers, 1993).

The term (Pv/RT) in Equation 5.22 can be obtained from the Tait equation which
can be rewritten as follows for Py=0:

Pv  PV(Q.T)

RT RT

Mf1-Cin(1 + P/ B)] (5.26)

The zero-pressure term V(0,T) in Equation 5.23 can be factored into size and energy

terms as follows:

vO.1)=4 [+a,T-5)+a.C-5) ] (5.27)



where A, is the volume term, and q, and q, are reciprocals of energy and energy squared.
In a similar manner (to the above development), the log term in the Tait equation
can be factored into separate volume and energy contributions using the definition of

B(T) in the Tait equation as follows:

P PBJR

exp(B,1) (5-28)
B(I) B B,/R

where B;By/R was taken as molar density and A as volume parameter of the polymer.

Therefore, the following holds:

y4, M
o« — (5.29)
B BJR r

where M is the molecular weigilt'of polymer and r is it's chéin length.

Equation 5.19 was tested for some common polymers with repeat units as shown
in Figure 5.3. From tabulated Tait equation parameters (Danner and High, 1993), and our
fitted Tait equation for poly-4-hydroxystyrene using the pure polymer data (Luenga and
Rubio, 1994), values of M/r were calculated according to Equation 5.29. These are
presented in Table 5.1.

The fitted Tait parameters for the polymers given by Danner and High (1993) are
general for the polymer type. Hence, their general dependence on polymer specie
molecular weight is not known (Danner and High, 1993). In spite of this short coming,

based on the knowledge of average range of molecular weights of such polymers that are



commonly encountered in the literature, it is clear that one cannot make meaningful
conclusions from the calculated values of M/r (see Table 5.1) based on the repeat units

shown in Figure 5.3.
5.5 Tait Equation for Mixtures

The failure of Equation 5.29 to give reasonable values for M/r means Equation
5.22 cannot give reliable values for pair correlation functions. This prompted the need for
development of mixture version of the Tait equation from the existing form for pure
polymers. To this end, Equation 5.23 was directly extended to mixtures as follows (for

Po = 0):

Ve(P.T)= T 2527, 0.1 -Cln(1 + P/8,)] (5.30)

The V(0,T) and the P/B(T) terms as written in Equation 5.27 and Equation 5.28

respectively, were similarly extended to mixtures as follows:

v,0.7)= Ao,-,-[1+q,§” T-1)+qf’ (T—Ta)’] (5.31)
and
P B,
= exp[B,,.j(T - 7;,)] (5.32)

B(r) K/PB,

where the term R/B,;B; as in Equation 5.28 is simply represented by by
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Figure 5.3 Structure of repeat units of some common polymers.



TABLE 5.1 Derived M/r parameters for some polymers’

Polymer M, 1043x A, 10%xB, 10°xB, M/rEq.(5.19)
(m’/kg) (Pa) (1/K) (g/mol)
LDPE - 11.615 1.9325 5.6839 17.6
PVAc - 8.2832 1.8825 3.8774 11.4
HDPE - 11.567 1.7867 4.7254 10.9
PS - 9.3805 2.5001 4.1815 7.9
P4HS ~6200 8.4295 2.5001 3.0780 3.1

*) the values of Ay, By, B, for P4HS is from our fit while the rest are from Danner and High, 1993.
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The advantage of writing Equations 5.27 and 5.28 in the form of Equations 5.31
and 5.32, respectively, for mixtures lies in the readily applicable mixing and combining
rules in the latter. The term q(') is inversely proportional to energy, while qm is inversely
proportional to energy squared. Lorenz Berthelot’s combining rules can, therefore, be

readily applicable to the cross parameter. Thus

[/
g5 = (g ¢’ )é (5.33)

If need be, an additional characteristic binary constant can be used to account for

deviations of qu“) from the above geometric mean. In that case, the cross parameter will,

therefore, be of the form:

g = (-5 Y’ (5.34)

where k; is a characteristic binary constant (relating to energy or temperature).
The form of Equation 5.34 is not desirable since it introduces an additional parameter to
the mixture equation. For the volume parameter, Ag; and by, the mixing rule especially
developed for chain molecules (see Equations 3.56 to 3.59) was applied.

Equation 5.20 was tested using experimental data of Luengo et al. (1994) for a
50:50 (wt/wt) mixture of poly(4-hydroxystyrene) and poly(vinylacetate). The fitted Tait
parameter for poly(vinylacetate) from Danner and High, (1993) was used. Since there was

no such parameter for pure poly(4-hydroxystyrene) available, experimental parameters



for pure poly(4-hydroxystyrene) from Luengo et al. (1994) was used to fit Tait equation
for the parameters. Much of the temperature for the experimental data of the mixture (75
to 200°C) falls outside the range for the pure poly(4-hydroxystyrene) (130 to 250°C). The
validity of the fitted pure parameters outside the experimental temperature of the fit was,
therefore, tested. In doing this, pure experimental data in the pressure range of (10 MPa to
100 Mpa) and a temperature range of 130 to 180°C was used to fit Tait equation. The
fitted equation reproduced these data with an absolute average error of 0.10% and a
maximum of 0.26%. The equation was then used to predict some experimentally
available data in the temperature range 190 to 220°C which is outside the fit range. The
14 experimental data points predicted were reproduced with absolute average and
maximum errors of 0.20% and 0.42% respectively. It is expected that the error in
predicting pure polymer. vplumetric data at the mixture conditions will even give smaller
errors because the terriperature range of the mixture is closer to the range used in fitting
the Tait equation than the temperature range in which the fit was tested. This justified the
use of the fitted constants outside the range of the fit, despite a recommendation for the
contrary (Danner and High, 1993).

The mixing rule for chain molecules can be applied to the volume parameter b

according to the following equation.

Wy
(V3]
W
Se?

by =2k"k Cijx .

where the terms c;; are given by Equations 3.56 to 3.59.



To calculate the zero pressure volume term V(0,T), the following mixing rules

were tested on the volume parameter Ag;;.

4o, =12(t, 4, Y3, 4 (5.36)
to, = 2t 20, Y S5 A5, A (537)
= (A,,d A,,ﬁ)” S x ALY x Al (5.38)
= (o, 4o, Y X5 4l (5.39)
4y, =1[2 Zk 4, (5:40) |

Ao, =5 2%k Ao, + /( )/Z 4, (5:41)

i+ Al

Using the above mixing rules, Equation 5.30 fairly predicted the mixture density within
the same error range. Table 5.2 shows these errors for some representative experimental
data points for the mixture of poly(4-hydroxystyrene) P4HS and poly(vinylacetate)
PVAc.

The errors in Table 5.2 were reduced by factor of 1 to 2 by introducing an

additional binary size parameter A. Therefore,



TABLE 5.4 Errors in predicting the densities of a mixture of poly(4-hydroxystyrene) and
poly(vinylacetate).

P(MPa) T (°C) Percentage Deviation
Eq. Eq. . Eq. Eq. Eq. Eq.
(5.36) (5.37 (5.38) (5.39) (5.40) (5.41)
10 100.5 -1.77 -1.71 -1.74 -1.74 -1.77 -1.74
60 160.2 -2.24 -2.18 -2.21 -2.21 -2.24 -2.16

100 190.8 -2.41 -2.35 -2.38 -2.38 -2.41 -2.33
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o, <[+ 8 Yt + 4 )/2] (5.42)

Using a value of 0.06 for A reduced the errors in Table 5.2 to between - 0.05% and
0.50%. Even though this parameter (which resembles nonadditivity) improves the
predictability of Equation 5.20, one cannot conclude that it originates from non-
additivity. It could be due to other shape factors of the repeat units. For spherical chain
repeat units, A is truly the non-additivity parameter.

A plot of the predicted volumes of a binary mixture of poly(4-hydroxystyrene)
and poly(vinylacetate) using a value of 0.06 for A is shown in Figure 5.4. From this plot,
it could be seen that accuracy of the predictions increases with both temperature and
pressure. One possible reason for the increase in accuracy with temperature is due to the
pure poly(4-hydroxystyrene) data used_. This was at a temperature higher than the low
temperature end of the mixture data. Another factor might be the dominant effect of
repulsive forces on the molecular configuration (structure) of the system at high pressure
and temperature. The predictions are generally accurate because even at the region of the
highest deviations (low temperature and pressure), the percentage error is below 1.0%.

The parameter A is only related to the size of the polymer repeat units. In an
analogous manner, one should expect an energy-related parameter also to improve the
accuracy of the model. Surprisingly, however, addition of this parameter does not show
any noticeable effect. The improvement achieved by using k; = - 0.02 in q; = ‘/(qﬁqﬁ) (1-
k;) is less than the improvement due to A above. This suggests a similarity in the

interaction energies of the sites of the two polymers.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

Consistent mixture models for simple molecules were developed from the
following:

(i) Approximate distinguishing values between pair correlation for hard spheres.

(ii) Expansion of the pair correlation for hard core molecules.

(iii) Third and fourth virial coefficients for hard core molecules.
All the models were validated and tested for. mixtures of additive hard spheres, nor-
additive hard spheres; Lennard-Jones fluid and simple real fluids. Based on these tests,
the model based on the expansion of the pair correlation function was on overall the best.

For additive hard spheres, the models accurately predicted the mixture
compressibility factors. The model predictions were much better than the van der Waals
one fluid and the mean density approximation theories, and it was very close to the
accurate Mansoori-Carnahan-Starling-Leland equation for hard sphere mixtures. There
was generally slight decrease in accuracy of the H and G models at high packing
fractions. In this region, models H1 and G1 overpredicted the compressibility factors
while models H2 and G2 underpredicted. Therefore, linear combinations of models H1

and H2 and of models G1 and G2 predicted accurately even at high packing fractions.



For non-additive hard spheres, the models were found quite satisfactory for
symmetric mixtures between A (non-additivity parameter) values of - 0.5 to + 0.3. Their
accuracy, however, decreased at higher values of the non-additivity. Except for the flat
region at the critical point, the models correctly predicted the trend of the phase
boundary. However, the quantitative values were generally not quite satisfactory.

For Lennard-Jones fluids, models f;, DVPCF and H2 predicted compressibility
factor with average deviations of about 3%, about three times better than the van der
Waals and the mean density approximations. Except at the highest regions of the test
parameter (size ratios of 2.0 and energy ratios of 4.5), model H1 was also satisfactory.
Here also, due to the opposite prediction trends, combinations of models H1 and H2 and
of models G1 and G2 gave good results even at the high size and energy ratio regions.

The models also ‘performed satisfactotily for mixtures of argon-krypton, neon-
argon, methane-tetréﬂuoromethane, and carbon dioxide-ethane. Deviations from
experimental data were generally within 5% except at high pressures where deviations of
up to 15% was observed for model H1.

For chain molecules, a consistent mixing rule was developed from third virial
coefficient and consistency equations. Tait equation of state for pure polymers was also
extended to mixtures. The extended mixture equation was tested with the developed
mixing rules for chain molecules. It closely predicted the experimental polymer mixture
data for poly(4-hydroxystyrene) and poly(vinylacetate) with a maximum deviation of
about 1.0%. The predicted results were more accurate at high temperatures and high

pressures of the polymer mixture.



6.2 RECOMMENDATIONS

Although the developed models were generalized for multicomponent mixtures,
they were only tested with binary experimental data. This models should, therefore, be
tested for at least ternary and quartenary mixtures to find their accuracy for such
mixtures. This is necessary since there may be build up or fortuitous cancellation of the
binary pair errors. This will certainly depend on the molecular properties of the pure
substances involved.

Due to the scarcity of volumetric data for polymer mixtures, our polymers mixture
model was only compared to one set of experimental data. Pressure-Volume-Temperature
experiments for polymer mixtures are, therefore, recommended to complement the
existing huge pure polymer data basé in the enhancement of modeling in this field. At
relatively high temperatures, measurements could be made for polymers in their liquid
state. To obtain reference data for normal conditions, however, it may be necessary to
first dissolve the pure polymers in their common solvent. A solid polymer mixture can
then be cast from a mixture of the solutions by evaporating the common solvent.

Phase separation studies of our mixture models for non-additive hard spheres was
only limited to mixtures of symmetric molecules. This study should be extended to
asymmetric fluids and also supercritical solutions. The later may be useful in the
development of solid state batteries from superionic conductors.

During the course of this work, the residual Helmholtz free energies of hard-

sphere chains equation of state of Chiew (1990) and of Malakhov and Brun (1992) based



on Percus-Yevick thermodynamic perturbation theory (TPT) were found to be
inconsistent with the average intermolecular correlation functions. Further studies on this
could lead to useful consistent equations of state for polymers.

In their present form, our models were designed to reproduce the second virial
coefficient and the repulsive part of the third virial coefficient correctly. This is the main
source of the improvements of our models over the van der Waals and the MDA theories.
Further improvements could be made if similar derivations are made using a fluid
potential such as the square well model that has both the hard core and attractive terms.
Of course, the expected improvement in accuracy is to the compromise of simplicity.
Molecular parameters other than size and energy could also be incorporated according to
Equation 2.47 to extend the mixing rules to more complex polar and associating

solutions.
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NOMENCLATURE

Helmbholtz free energy

Specific constants for pure polymer in Tait equation
Second virial coefficient

Specific constants for pure polymer in Tait equation
Third virial coefficient

direct correlation function

Fourth virial coefficient

Excess property

Gibbs free energy; also as model parameter function
Radial distribution function

Planck’s constant

Component specie

Boltzmann constant

Unlike pair interaction parameter

mass of molecule

Number of systems of an ensemble being in state i
Number of molecules (part of the total N)

Total number of molecules in a system

Absolute pressure

Probobility of an ensemble being in quantum state i



Probability that uniquely defines a molecule in a system
Canonical ensemble partition function

Energy parameters in Tait equation for mixtures
Chain length (number of repreat units)

Radial position vector (r radial distance)
Collision radius of molecules

Surface area of molecules

Entropy

Absolute temperature

Critical temperature

Dimensionless temperature (T/Tg)

Boyle’s temperature.

Reduced temperaﬁxre

Internal energy

Volume of molecules

System volume

Critical volume

Mole fraction of component
Isothermal-isobaric ensemble partition function
Compressibility factor

Configurational integral Z(T, V, N)
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Greek Symbols

Q

{1

Microcanonical ensemble partition function

Grand canonical ensemble partition function

T Chemical potential

B Boltzmann factor (1/kT)

€ Energy parameter (potential well depth for L-J fluids)

A de Broglie wave length (A% = Bh*/2nm;)

() Intermolecular potential energy function

A Reduced potential well width in square well potential fluid
c Collision diameter of molecules

p Number density (N/V)

] Cronecker delta |

Y Activity coefficient

o Contribution of repulsive forces to the second virial coefficient
£ Packing fraction

® Accentric factor

Abbreviations

BH Barker-Henderson

comb

Combinatorial contribution



COR Chain of rotators

CPU Central processing unit

CsS Carnahan-Starling

DFT Dense fluid theory

DVPCF Approximate distinguishing value of pair correlation function
Gl, G2 Model notations

HI1, H2 Model notations

HDPE High density polyethylene

KH Kihara potential

HS Hard spheres

LDPE Low density polyethylene

liq Liquid

LY 12,6 Lennard-Jons 12, 6 potential

MC Monte Carlo

MD Molecular Dynamics

mix Mixture

MDA Mean density approximation theory
MSCL Mansoori-Carnahan-Starling-Leland
NRTL Non-random two liquid theory

PCF Pair correlation function

PHCT Perturbed hard chain theory

PF Partition function



PS

PVAc

PY

P4Hs

rdf

SC

SS12

TPT
UNIQUAC

vdW-1f

Poly(styrene)

Poly(vinylacetate

Percus-Yevick
Poly(4-hydroxystyrene)

Radial distribution function

Self consistent

Inverse-12 soft-sphere potential
Thermodynamic pertubation theory
Universal quasi-chemical theory

van der Waals one fluid theory

WCA-LL-GH Weeks Chandler-Andersen-Lee-Levesque-Grundke-Henderson
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APPENDIX A

DEVELOPMENT OF MIXTURE MODEL FROM HS PCF

(MATHEMATICA® CODING)
Off [General::spell] ; Off [General::spell1];
s[n_J]:=x1 d1*n + x2 d2"n;
y =ros[3]

a =s[1] s[2] / s[3];

zhs =(1+y(3a-2)+y*2(3gm-3a+1)
-gmy*3)/ (1 -y"3;

g1t =1/(1-y)+3/2d1ros[2]/(1-y*2

| +f(d1 ro s[2])*2/(1 - y)'3;

g12 =1/(1-y)+3/2(d1d2/d12) ro s[2]/ (1 - y)*2
+f(d1d2/d12 ro s[2])*2/(1 - y)'3;

d = D[g11, ro]; ro =.

d0 =Simplify[ d 2/5];

dx11 = Coefficient[d0, x2]; ro =.
d = Simplify[D[g12 , ro]];
dx12 = Coefficient] % , x1];

dx21 = Coefficient] d , x2};



10/

APPENDIX B

COMPLEX MIXTURE MODEL FROM THIRD AND FOURTH
VIRIAL COEFFICINTS

fdx1l=1/10(c},+ 603,60 ,,+ 156,63, 200}, + 80 };)
1 B.1
+———[cj,oj,/5(-13ci,+180072-6337,0,,-1050,,c§,+c§2)}/’ -1
3o,
fdx22 = 1/10(8c}, +156},0 1, + 60,0}, ~ 200}, +03,

+

2
E&'gzc;’gﬁ(cf, +180c3, - 1056,6,,- 630,62, —130';2)]/2 ®-2)
302

: 1
ficl2 =07, -—;-Ex‘,‘,cj_, [3(-13c}, +180c}, ~63%,G,, ~ 1056 03, +0'}'_,):r" B.3) -
60,

1
fdx21=0'§_,———3—E:§_,0'f2/5(o'f,+1800'f1—]050';’,0'2_,—630',,c§2—130';3)]/2 (B4)
661,

The model parameters are given as follows:

fu=x071,+x,fdx11 (B.5)
S =x,dx12 +x, fdx21 (B.6)

Ju= xzo':.zz +x, fdx22 (B.7)

i
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APPENDIX C
DERIVATION OF MIXTURE MODEL FOR CHAIN MOLECULES

gll = l+aro(clllxl+¢ll12x2),
gl2 = l+aro(cl2l x1 +¢122 x2);
g22 = l+aro(c221 x1 +¢222 x2),
z = 1+bro(x1"2d1"M3gll+
2 x1 x2 d12°3 g12 +x2/2 d273 g22);
cc = 1/2 D[z,ro,ro];
a = S5pi/I12;b = 4pi/6;
ro = 0;c = Expand[cc];

C111 = Coefficient[c,x1"3];

C112 = Coefficient[c,x1"2 x2];

C122 = Coefficient[c,x1 x2"2];

C222 = Coefficient[c,x2"3];

cl112 =d173 f112[d2/d1];d2¢112 =D[c112,d2];
cl121 =d173 f121[d2/d1];d2c121 =D[cl121,d2];
c122 = d173 £122[d2/d1];d2c122 = D[c122,d2];
c221 = d173 221[d2/d1];

d1c221 =D[c221,d1];

dlcl121 =D[c121,d1];

dlc122 =Djc122,d1];



cl12 =d1”3 f112[x];

cl21 =d1”3 f121[x];

c122 =d1”3 £f122[x];

c221 =d1"3 221[x];

ccl12 =2/3 (pi/6 N)*2 d1"3\
(d173-18 d1 d1272 + 32 d1273);

(d273-18 d2 d12°2 + 32 d12°3);

eql = 5pi*2/18 (d1"3 cl112 +
2d12”°3 ¢121)= =3 ccll2;

eq2 = 5pi*2/18 (d2"3 c221 +
2 d12”3 ¢122) = =3 ccl22;

Solve[eql,f112[x]];

Solve[eq2,f221[x]];

f112[x] = -(-(d1"3*N"2) + 18*d1*d12"2*N"2 -
32*d1273*N"2 + 10*d1273*£121[x])/(5*d1"3);

221[x] = -(-32*d12"3*d2"3*N"2 +
18*d1272*d2"4*N"2 - d276*N"2 +
10*d173*d1273*£122[x])/(5*d173*d2"3);

d2 =xdl;d12 =d1 (x+1)/2;

eq3 = d1"2 D[f112[x],x] + d12*2 (d1"2 f121'[x] -\
(3d172 f121[x]-d1 d2 f121'[x])) = =O;

eq4 = d2"2 (3d2"2 221[x]-d1 d2 ]')[f221[x],x]) +\
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d1272 ((3d172 f122[x]-d1 d2 f122'[x])-

d172 f122'[x]) = =0;
DSolve[eq3,f121[x],x];
DSolve[eq4,f122[x],x];



APPENDIX D

EVALUATION OF MIXTURE PROPERTIES USING FROM TAO
AND MASON, (1994) PURE EQUATION OF STATE

Off]General::spell];Offf General::spelll];

tc1=304.2;tc2=305.4;pc1=73.8;pc2=48.8;tb1=720.4;tb2=770.8,
al=-0.0648;a2=1.8067;c1=2.6038;c2=0.9726;kij=0.08;
aal1=0.143;aa2=1.66;k=1.093;x1=.;x2=;t=.;241.15;r=83.14;
w1=0.225;w2=0.098;vc1=94.0;vc2=148;vb1=63.9;vb2=90.6;

tc-1=150.8;tc2=209.4;pcl=48.7;pc2=55;tb1=401.4;tb2=556.9; ‘

a1=-0.0648;a2=1.8067;c1=2.6038;cé=0.9726;vb1=42.5;vb2=52.3;

aal=0.143;aa2=1.66;k=1.093;x1=0.485;x2=0.515;r=83.14; kij=; |

tc12=Sqrt[tcl tc2] (1-kij);

pcl2=4tc12 (pcl vel/tcl + pe2 ve2/te2)/
(velN(1/3)+ve2™(1/3)13;

Im1 =0.4324-0.3331w1;lm2=0.4324-0.3331w2;

Im12=0.4324-0.3331w12;tb12=Sqrt[tb1 tb2];

vb12=1/8 (vb17~(1/3)+vb2~(1/3))"3;w12=0.5(wl+w2);

ts1=t/tb1;ts2=t/tb2;ts12=t/tb12;

i



trl=t/tc1;tr2=t/tc2;tr12=t/tc12;
zxcl=pcl/t/tcl;zxc12=pcl2/r/tc12;
zxc2=pc2/r/tc2;kr1=k tcl/t;kr2=k tc2/t;kr12=k tc12/t;
bblu ,w_,zxc_]:=1/zxc (0.1445-0.33/u-0.1385/u"2-
0.0121/u"3-0.000607/u™8
+ w (0.0637+0.331/u"2-0.423/u"3-0.008/u"8));

ro=1/v;

f1[x_]:=al Exp[-cl x] + a2 (1-Exp[-c2/x"0.25]);
f2[x_]:=al(1l-cl x) Exp[-cl x] +
a2(1-(1+c2/4/x0.25) Exp[-c2/x"0.25]);

model fij
cl11=vbl;
cl112=1/5 (2 vb12~(1/3)-vb1N(1/3))2 (vb1~(1/3)+
4 vb127(1/3));

c122=1/5 (vb2"2/vb12)~(1/3) (vb12*(1/3) (3 vb127(1/3)+
2 vb27(1/3)) - 3(vb12~(1/3)-vb2(1/3))™2);

c222=vb2;

film=x1clll +x2cl12;2m=x1 ¢122 +x2 ¢222;

f12m=x1 c112 + x2 c122;

vrl=ro flm;vr2=ro 2m;vr12=ro fl12m;
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cl11=b[tsl,vbl];

c112=1/5 (2 (b[ts12,vb12])"(1/3)-(b[ts1,vb1])"(1/3))*2
((b[ts1,vb1])N(1/3)+ 4 (b[ts12,vb12])(1/3));

c122=1/5 ((b[ts2,vb2])"2/(b[ts12,vb12]))(1/3)
((b[ts12,vb12])"(1/3) (3 (b[ts12,vb12])N(1/3) + 2
(b[ts2,vb2])N(1/3))
- 3(b[ts12,vb12]7(1/3)-b[ts2,vb2](1/3))*2);

c222=b[ts2,vb2];

flm=x1 cl111+x2 c112;2m=x1 ¢122 + x2 ¢222;f12m=x1 c112 +
x2 c122;

vrl=ro flm;vr2=ro f2m;vr12=ro f12m;

cl11=(b[ts1,vbl]+vbl)/2;
c112=1/5 (2 (b[ts12,vb12}/2+vb12/2)(1/3)-
(b[ts1,vb1]/2+vb1/2)*(1/3))*2
((b[ts1,vb1]/2+vb1/2)Y(1/3) +
4 (b[ts12,vb12]/2+vb12/2)"(1/3));
c122=1/5 ((b[ts2,vb2]/2+vb2/2)*2/(b[ts12,vb12]/2+vb12/2))(1/3)
((b[ts12,vb12])/2+vb12/2)"(1/3) (3
(b[ts12,vb12])/2+vb12/2)"(1/3)+2 (b[ts2,vb2)/2+vb2/2)"(1/3))
- 3((b[ts12,vb12]/2+vb12/2)N(1/3)~(b[ts2,vb2]/2+vb2/2)~(1/3))"2);
c222=(b [tsz,vb2]+vl32)/2;
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flm=x1 cl11+x2 c112;f2m=x1 ¢122 + x2 ¢222;f12m=x1 c112 +
x2 cl22;

vrl=ro flm;vr2=ro f2m;vr12=ro f12m,;

zpurel=-p/ro/r/t + 1 +(bb[trl,wl,zxc1]-vbl fl[ts1]) ro +
vbl ro fl1[ts1}/(1-lm1 vbl ro f2[ts1]) +
aal (vbl fl[ts1]-bb[trl,wl,zxcl]) f2[ts1] vbl ro™2
(Exp[krl]-aa2)/(1+1.8 2[ts1]*4 (vb] ro)*4)==0;
zpure2=-p/ro/t/t + 1 +(bb[tr2,w2,zxc2]-vb2 f1[ts2]) ro +
vb2 ro f1[ts2]/(1-lm2 vb2 ro £2[ts2]) +
aal (vb2 fl1[ts2]-bb[tr2,w2,zxc2]) f2[ts2] vb2 ro"2
(Exp[kr2]-aa2)/(1+1.8 £2[ts2]"*4 (vb2 ro)*4)—0;

abl =f1[ts1]/bb[trl,wl,zxcl];
ab2 =f1[ts2]/bb[tr2,w2,zxc2];
ab12=f1[ts12]/bb[tr12,w12,zxc12];
flvb_,ab ,ft ,kr ,Im ]:=1-vbab + vb ab/(1-Im ft vb ro) +\
ft21=2[ts1];fi22=12[ts2];£1212=f2[ts12];
eql=-p/ro/r/t + 1 + x1°2 bb[trl,wl,zxcl] ro
flvbl,abl,ft21,krl,Im1]+
2x1 x2 bb[tr12,w12,zxc12] ro f[vb12,ab12,ft212 kr12,lm12}+
x272 bb[tr2,w2,zxc2] ro flvb2,ab2,ft22 kr2,im2]=0;
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t=310.939;x1=0.8223;x2=1-x1;

TableForm[Table[ {t,x1,p,FindRoot[eql,{v,70}]},{p,75,700,25}]};
t=310.939;x1=0.6687;x2=1-x1;

TableForm[Table[ {t,x1,p,FindRoot[eql,{v,60}]},{p,75,700,25}1];
t=310.939;x1=0.4868;x2=1-x1;

TableForm[Table[ {t,x1,p,FindRoot[eql,{v,60}1},{p,75,700,25}]];
t=310.939;x1=0.3237;x2=1-x1;

TableForm[Table[ {t,x1,p,FindRoot[eql,{v,60}]},{p,75,700,25}1];
t=310.939;x1=0.1720;x2=1-x1;

TableForm[Table[ {t,x1,p,FindRoot[eql,{v,60}]},{p,75,700,25}1];
FindRoot[zpure2,{v,35.17}];



