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Chapter 1

Introduction

1.1 Definitions

Detecting defects in materials is an unconditional stage in the quality control process
of engineering systems. Such a procedure is variously known as NonDestructive Test-
ing (NDT), NonDestructive Evaluation (NDE), NonDestructive Inspection (NDI),
but also as Quality Control of materials. The American society for NDT adopted

the following definition for such a procedure.

Definition 1.1.1 [1] NonDestructive evaluation (NDE) is an examination of an

object or material in a manner which will not impair its future usefulness.

Besides the ultrasonic NDE method, other techniques are being utilized as well.

These are :
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e Radiographic Inspection
e Magnetic-Particle Inspection
o Liquid-Penetrant Inspection

Ultrasonic NDE is the main concern of this thesis, a brief definition of the technique

is given below.

Definition 1.1.2 /2] Ultrasonic nondestructive inspection is a method used for
detection of hidden flaws in the material being tested. It employs an ultrasonic
signal that propagates through the material, then the reflected echoes from defects

and discontinuities in the material are received by an ultarasonic transducer and

then recorded for further processing.

A general ultrasonic inspection setup is shown in Fig. 1.1. Complete review and

definitions of the other techniques can be found in [3].

1.2 Problem Formulation

Mathematically, the model usually assumed for the ultrasonic NDE setup consists

of a system whose response y(k) to an input z(k) are related by :

y(k) = z(k) * ha(k) + n(k) (1.1)
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Figure 1.1: A general ultrasonic inspection system.

where n(k) and * represent the system and/or measurement noise and the linear
convolution operator, respectively. The reflector and/or the propagation medium
is characterized by its impulse response h4(k). The main assumptions leading to a

mathematically tractable solution of Eq. 1.1 are summarized below :
o The ultrasonic pulse propagates through a linear medium.
o n(k) and z(k) are statistically independent.

The first assumption allows us to isolate the impulse response of the defect from
the effects of the transducer and the propagation medium as much as possible.
While, the second assumption is at the heart of a variety of well known identification
methods [4, 5. If one models the overall system as a cascade of many linear time-

invariant (LTI) systems, such that (see Fig. 1.2b) :
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e Pi(k) : Forward path impulse response (IR).
e Py(k) : Backward path IR.
e Ti(k) : Forward transducer IR.

e T5(k) : Backward transducer IR.

then, Eq. 1.1 becomes :

y(k) = u(k) * T1(k) = Pi(k) * ha(k) * Pa(k) * Ty(k) + n(k) (1.2)

where u(k) is the driving impulse to the transducer which is assumed ideal. It is
assumed that the IR of a flawless material approximates closely to an impulse, i.e., a
Dirac impulse (see Fig. 1.2a) then, the corresponding echo from the material, which

is z(k), can be expressed as :

z(k) = u(k) = Ty(k) * Pi(k) = 6(k) * Pa(k) * To(k) (1.3)

since §(k) is the neutral element of convolution operation, Eq. 1.3 becomes :

z(k) = u(k) * Ty (k) * Py(k) * Py(k) * Tp(k) (1.4)

As suggested by Eq. 1.2, the defect signature, hy(k), is subject to :

1) Transducer effects.
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2) Propagation paths effects.
3) Additive noise effects.

The problem is therefore that of deconvolution or identification of hy(k).

By deconvolution, it is desired to unravel the masking effects mentioned above on

the defect impulse respone. For instance, the ultrasonic signals for a particular
reflector recorded under the same conditions, but using different transducers can
be quite different. Also, the same reflector existing in different materials can be
characterized by different signatures. Deconvolution task therefore, aims to unravel
the masking effects and extract the defect signature which is an essential step for the
identification and classification of defects. A major cause that strongly influences the
role and success of ultrasonic NDE in structural engineering is the inspector using
the instrumentation [6]. A number of factors contribute to make the job tedious and
increase the likelihood of error through boredom. Complete automation of defect
classification is viewed as a potential solution for the classification problem. Taking
these problems into account, high resolution signal processing techniques have been

proposed for ultrasonic NDE processing to achieve two main objectives :

1) Deconvolution of the defect IR to unravel the masking effects of the propagation
paths and measurement system and reduce the noise effects on the defect

signature.
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Figure 1.2: The linearity property of the model of Eq. 1.1. (a) Flawless specimen.
(b) Exact model of a defective specimen. (c) rearranged LTI systems by linearity
principle. (d) Equivalent model of Eq. 1.1.
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2) Defect classification in an automatic fashion to icrease the decision making reli-

ability.

1.3 Summary of the Thesis Work

Aiming to contribute with some methods for use in ultrasonic NDE processing,
a deconvolution scheme based on higher-order statistics (HOS) is developed using
polycepstra principles. HOS are known to be robust to additive Gaussian noise
and preserve the true phase character of the underlying system. For the task of

ultrasonic defect classification, a modular system is introduced.

1.4 Thesis Objectives and Organization

1.4.1 Thesis Objectives

The overall objective of this thesis is twofold: (1) apply a robust approach for ultra-
sonic NDE deconvolution, subject to additive white or colored Gaussian and white
symmetrically-distibuted noise classes, by exploiting the properties of HOS, and
(2) propose a modular learning strategy for ultrasonic defect classification. These

objectives are achieved through the following tasks :

¢ Review the application of the existing deconvolution techniques to the UNDE

deconvolution problem and identify their limitations and drawbacks.
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e Investigate a non-adaptive technique for ultrasonic NDE deconvolution (sub-
Ject to additive noise), by looking beyond the second-order statistics (SOS)
which are sensitive to additive Gaussian noise and blind to the phase informa-

tion.

e Evaluate the performance of the proposed method by using synthetic and

experimental ultrasonic NDE data.

e Provide a comprehensive comparison between the proposed method and the

existing ones.

o Develop an automatic modular defect classification paradigm.

In what follows, a description of the thesis organization is given.

1.4.2 Thesis Organization

Following this chapter where definitions and problem formulation are given, Chapter
2 concentrates on the review and analysis of the existing ultrasonic NDE processing
techniques that have been applied for deconvolution and defect classification. Some
of the problems encountered when applying these techniques on experimental ultra-
sonic NDE data are discussed, and possible solutions for performance enhancement
are provided whenever possible. Chapter 3 deals with the mathematical prelimi-
naries important to the development of the proposed scheme for ultrasonic NDE

deconvolution. Exploiting the attractive properties of the higher-order cumulants,
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important results, useful to the proposed scheme are summarized. In the first part
of Chapter 4, the proposed HOS-based deconvolution method is introduced. The
method estimates the defect or flaw IR by using the complex cepstrum of the third-
order cumulants. As such, the proposed method is capable of reconstructing the
impulse response of the defect without resorting to any prior knowledge about the
noise statistics and perform in high signal-to-noise ratio (SNR) domain. In the sec-
ond part of Chapter 4, details about the proposed automatic defect classification
are given. The adopted network architecture is presented along with the different
training paradigms used in the system. Comparison, by means of computer simu-
lation using synthetic and experimental data, between the proposed deconvolution
scheme and the existing methods is carried out in Chapter 5. Data length effects
and performance at different SNR levels are also investigated. It is demonstrated
in the simulation that the HOS-based scheme outperforms the existing methods
when operating in severe contexts (such as short data length and low SNR levels),
at the expense of higher computational complexity. The performance of the new
defect classification system is demonstrated using artificial defects modeled by LTI
systems. Finally, summary of the main results and conclusions are given in Chapter
6. Some problems associated with the proposed techniques are mentioned and po-
tential solutions are suggested as future research work. Some results and properties
of HOS and other topics which are important but not essential for the continuity of

the text, are given in appendices.



Chapter 2

Review of Existing Ultrasonic

NDE Processing Techniques

2.1 Ultrasonic NDE Deconvolution

2.1.1 Preliminaries and Definitions

High resolution methods of digital signal processing have been applied to the ul-
trasonic NDE deconvolution problem. An excellent review of these applications is
given by Chen and Sin (7, 8]. Hayward and Lewis [9] compared the application of
some non-adaptive deconvolution techniques to the same problem. Because of the
inherent ill-conditionning nature of the deconvolution, the proposed methods suffer

from this severe limitation, although they are known to be of high resolution. The-

10



Chapter 2: Review of Existing Ultrasonic NDE Methods 11

oretically, an optimal solution can always be found if the noise statistics are known
a priori. Neal [10] used the prior knowledge about the noise statistics to derive
an optimal Wiener filter that overcomes the ill-conditionning problem. Neal and
Thompson (10, 11] recognized that the proposed method is far from being realistic
since the assumptions made are not easily verified experimentally. This puts a se-
rious limitation on the applicability of Neal’s optimal Wiener filter to experimental
ultrasonic NDE deconvolution problems and calls into question its practical useful-
ness. An interesting adaptation of the available deconvolution methods commonly
used in seismic deconvolution problems has been proposed by Chen and Sin [7, 8, 12].
Chen and Sin noticed the strong similarity between the two problems (seismic and
ultrasonic deconvolution) then, tested most of the available techniques on the ul-
trasonic problem. Based on the obtained results, they retained and recommended
for use those methods which gave satisfactory performance. However, it should be
pointed out that although the seismic and ultrasonic deconvolution problems are in
many ways similar, they are also substantially different from each other. Caution
must be used when attempts are made to generalize the findings from the seismic
problem to the ultrasonic one {7, 8] 1. The deconvolution methods, in general, can

be categorized in three different broad classes [4, 3, 13] :

1. Time domain deconvolution techniques.

1Seismic deconvolution looks for the spikes in the deconvolved IR, while ultrasonic NDE decon-
volution is interested in the shape of the deconvolved IR.
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2. Frequency domain deconvolution techniques.
3. Cepstral or homomorphic domain deconvolution techniques.

The first two classes can be implemented either in a parametric or nonparametric
fashion [4, 3]. The cepstral method is nonparametric since no model-based formu-
lation is involved. Ljung and Glover [14] compared time and frequency domain
techniques and stated that they complete each other. The presented techniques
are said to be SOS-based, as opposed to HOS-based methods, requiring only the
knowledge of the first two statistics of the involved processes, since the Gaussianity
of the noise is inherently assumed [4, 15]. The time domain class contains among

others [4, 5, 7] :

1. Correlation Method.

2. Least Squares (L; norm) Method.

3. Least Absolute Value (L; norm) Method.

4. Minimum Variance Deconvolution MVD Method.
While the frequency domain class contains [4, 5, 7] :

1. Spectral Analysis Method.

2. Wiener Filter A Method.

3. Wiener Filter B Method.
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4. Spectral Extrapolation Method.
The cepstral or homomorphic class consists of two methods :

1. Complex Cepstrum method.

2. Power Cepstrum method.

Chen and Sin (7. 8, 12] found that the Wiener filter method is the most suitable SOS-
based method for ultrasonic NDE deconvolution. In what follows details pertaining
to this technique are given since the obtained results in this Thesis are compared to
those obtained using Wiener filter method. Details about other techniques can be

found in {7, 8, 12].

2.1.2 Wiener Filter A

A schematic representation of the ultrasonic NDE model given by Eq. 1.1 is shown
in Fig. 2.1(a). Exploiting the commutativity of the linear deconvolution operation
of Eq. 1.1, we can use z(k) or hy(k) as input to the system of Fig. 2.1(a). Hence,
the system shown in Fig. 2.1(a) can be put in the form shown in Fig. 2.1(b). The
classical Wiener filter used as an inverse filter to retrieve the ”pseudo” input to
system hg(t) is shown in Fig. 2.1(c). This inverse filter is obtained by minimizing

the following cost function [16] :

E [ (hatk) - hu(®))’]
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Figure 2.1: Wiener Filter Structure for Ultrasonic NDE Deconvolution.
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and which is given by [16] :

_Y(Hx() 21

4P =
D = PP +q

where f is the frequency variable and X™(f) is the complex conjugate of the Fourier
transform of z(k). ¢ is a positive real number called the noise-desensitizing factor.
Walden [16] gave its optimal form for a robust Wiener deconvolution filter as (see [8,
12}) :

Sa(f)
She(f) (22)

qo(f)=p

where p is a positive real number, S,(f) is the power spectral density (PSD) of the
additive noise n(k) and Sp,(f) is the PSD of the hy(k). It should be pointed out

the major difficulties associated with Eq. 2.2 are :
o S5p,(f) is an unknown parameter.

o S.(f) is the noise PSD that is difficult to estimate a priori. A method for
estimating the noise PSD is given in [4]. Such an estimate gives information

on the actual SNR.

Neal [10] in his PhD Thesis developed a different optimal form of the Wiener filter,
and a corresponding value of the g parameter, with a priori statistical knowledge.

But, this seems quite far from the ultrasonic NDE problems reality. Neal [11], in
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a private communication, recognized that this does not hold in practice. In the
formulation of Wiener filter A of Eq. 2.1, X(f) and Y(f) are estimated directly as
Fourier transforms of (k) and y(k), respectively. This constitutes a violation to
the stochastic nature of the signals x(k) and y(k) since they are corrupted by mea-
surement noise. However, the asymptotic equivalence between the various classical
Fourier-Type methods of PSD estimation is a known result in the literature [13, 17].
For small sample size, this result does not hold anymore as in the ultrasonic NDE
case at hand. So caution must be used when using these estimation techniques for
small sample size. Also, Wiener filter A suffers from its limited resolution and high
variance. Besides these shortcomings, the computational efficiency and the imple-
mentation simplicity of this filter, must be highlighted as attractive and desirable

properties. A summary of the Wiener filter A is given in Table 2.1.

2.1.3 Wiener Filter B

In an attempt to take advantage of the attractive properties of Wiener filter A and
remedy to its shortcomings mentioned above, Wiener filter B is formulated using

the following assumptions :

1. z(k) in Eq. 1.1 is considered as the output of an AutoRegressive (AR) system

whose input is a white driving noise.
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2. y(k) in Eq. 1.1 is considered as the output of another AR system whose input

is a different white driving noise.

This formulation has removed the violation associated with the computation of the
PSD’s of z(k) and y(k). Hence, the high resolution characteristic of the parametric
method of AR spectral estimation is gained at the expense of increased computa-

tional complexity (see Table 2.3 for details). Then, Eq. 2.1 becomes :

_ Yir(f)Xir(f) (2.3)

i ‘
D = X AE +a

where X4p(f) and Y4p(f) are the AR spectra of (k) and y(k), respectively. A
major difficulty is associated with the parametric AR modeling and consists of
the selection of the orders of the models to be used in Eq. 2.3 of Wiener Filter
B [17, 18, 19] . If, the Maximum Entropy Method (MEM) is used to estimate the
involved PSD’s in Eq. 1.2, the result will have higher resolution and the required
order selection procedure wil be bypassed [20], since MEM is known to be auto-
order selector [20]. However, the increased resolution may be affected by an artifact
known as " Spectrum Line Splitting” (See Chen [21] for solutions to this problem).

A summary of the Wiener filter B is given in Table 2.2.
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2.1.4 Comparison and Discussion

Chen and Sin [2, 8, 12] discussed the usefulness and the limitations of some of
the existing SOS-based deconvolution methods, and compared their computational
complexity. First, they noted that the Wiener filter A suffers from the oscillations
effects which are due to the band-limited nature of the involved signals. Wiener
filter B has better resolution. The resolution enhancement is mainly due to the
fact that this technique models better the signals z(¢) and y(¢t) by AR models of
Eq. 2.3. It is known that this representation (AR) is capable of perfectly modeling
single spike signals, which have a transient nature [4, 15, 22]. This improvement
is achieved at the expense of increased computational complexity. The spectral
extrapolation can also well handle the modeling of the involved UNDE signals that
have single spike nature [12]. However, this technique presents a limitation that
consists of the determination of the spectral region where the SNR is known to be
high. In the spectral analysis, where spectral windows are introduced to reduce
the variance of the PSD estimates, the resolution of the estimation is increased
without increasing much the computations. Among the time domain methods, the
correlation analysis seems to require less computations and can even be efficiently
implemented if FFT routines are used [13]. The LS approach is a time domain
technique that requires perfect alignment of the signals before being run. Any

misadjustment may cause severe degradation in the quality of the estimated IR (see
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Chapter 5 for details). The L; method involves intensive computation load and is
rarely implemented on Personal Computers (PC’s) [8]. Besides this, this method
is not really appropriate for the ultrasonic NDE deconvolution [7, 8, 12]. On the
other hand, the use of a phase unwrapping procedure [13, 23], in the homomorphic
deconvolution will increase its computational load. For comparison purposes, the

following simplifications are needed [12] :

o The record length of x(k) and y(k) are both equal to N.

¢ The number of real multiplications required by an N-point FFT is the same
as that required by an inverse FFT of the same order, which is approximately

equal to (3N/2)Logs V.
¢ A real division has the same complexity as a real multiplication.

¢ One complex multiplication is equivalent to four real multiplications.
An additional assumption is needed for the homomorphic method :
® Phase Unwrapping algorithm requires at minimum N complex multiplications.

The comparison is summarized in Table 2.3.

2.2 Automatic Defect Classification

Aiming to help in making correct decisions about possible defects present in the

material under test, attempts have been made to classify these defects according to



Chapter 2: Review of Existing Ultrasonic NDE Methods 20
their :

a) Geometry.

b) Size.

c) Orientation in the case of angular flaws.

To achieve such an objective, two different approaches have been adopted in the

literature, namely :
e Pattern recognition approach using cluster analysis [2].
o Intelligent approach using artificial neural networks (ANN) [24].

The first approach is based on statistical pattern recognition techniques such as [2,

23] :

1) Bayes or maximum likelihood decision rules.
b) Nearest neighboor decision rule.

c) Tree classification method.

The second approach is motivated by the universal approximation capabilities of

ANN [26]. Both approaches make direct use of z(k) and y(k) 2. Hence, the classifi-

cation is affected by the following factors :

2In the proposed classification system (see Chapters 4 and 5), the deconvolution using the
proposed HOS-based scheme is considered as a preprocessing step.
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- The additive noise n(k) effects.
- The propagation paths effects.

- The transducers effects.

2.2.1 Pattern Recognition Approach

In his pioneering work, Chen {2, 25] developed the main ideas of the first approach,
borrowing ideas from the statistical pattern recognition area. He proposed different
features that convey information about the defects in the material under test. The

proposed features can be cast into :
¢ Time domain features.

e Frequency domain features.

e Correlation domain features.

¢ Impulse response features.

Then, identified certain effective features to classify the defects according to their

geometry and size. However, it should be noted that [2] :

1) Feature extraction is key to any pattern recognition problem. Features can

be extracted mathematically, or based on the physical understanding of the

problem at hand.
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2) Features must provide significant discriminating information among the pattern

classes considered, while they can properly describe the patterns.

3) It is unrealistic to exhaustly search for the best features. A good subset of

features can always be selected from given ones.

4) Feature extraction is inherently problem dependent. Thus the most suitable fea-

tures are not the same for different ultrasonic defects classification problems.

5) Most feature extraction/selection work has assumed that the signals are stationary
which is not always valid in practice. A better classification performance can
be achieved using joint time-frequency analysis (JTFA). The role of JTFA can

be quite important in defect classification problems (see Chapters 4 and 3).

6) It is always difficult to evaluate theoretically the feature performance in pattern

recognition.

After a plethora of tests, Chen [2] established several effective mathematical features
for most UNDE classification problems. However, it should be noted that it is
not possible to find a one-to-one mapping between the selected features and the
defect class although there is good correlation between them. Details about effective
features proposed by Chen can be found in [25] where they were used with the tree

classification method.
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Figure 2.2: Block Diagram of the Classification Scheme.
2.2.2 Neural Networks Approach

Chen [2] suggested the use of ANN without giving details about the architecture
and the implementation. Udpa and Udpa [24] proposed an ANN architecture for
defect classification using Fourier descriptors (FD) [1, 24] . They motivated the use

of Fourier descriptors for their invariance under [24] :
¢ Rotation.

e Scaling.

e Translation.

Their system is based on Eddy current [1] signals for which they derive FD co-
efficients. Then, these coefficients constitute the input pattern to the ANN for
classification using the backpropagation (BP) algorithm. Fig. 2.2 shows the block

diagram of the classification scheme. The network architecture is :
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1) An Input layer of eight (08) neurons. The input vector consists of eight (08) FD

coefficients.
2) A hidden layer of five (05) neurons.

3) An output layer of two (02) neurons. The output is coded in binary to represent

one of the four possible defect classes.

2.3 Summary

In this chapter, a review of the existing ultrasoni NDE processing techniques is given.
Two major signal processing tasks are reviewed. The first task is the SOS-based
deconvolution methods that are used to unravel the masking effects of the propa-
gation paths and measurement system on the defect IR. The second one consists
of automatic ultrasonic defect classification using artificial intelligence approach.
Most of the merits of the SOS-based deconvolution methods are highlighted, and
their limitations revealed. For ease of analysis, tables summarizing their implemen-
tation are given. A comparative study of their relative computational complexity
is presented in a summary table, to allow better analysis and comparison between
these methods. Fig. 2.3 shows a tree structure of the algorithms being applied to
ultrasonic NDE deconvolution. It is shown that ill-conditionning is a difficulty com-
mon to all the methods since deconvolution is involved. Also, their vulnerability to

additive Gaussian noise is evident. A need for a remedy to these problems urged
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Figure 2.3: Tree structure of Classical Ultrasonic NDE Deconvolution Techniques.
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the search for methods that are more robust to the noise present in the ultrasonic
NDE model. Solutions using emerging HOS that proved robustness and immunity to
additive Gaussian noise and have been successfully applied in communications, sys-
tem identification and other applications [27, 28, 29| are applied to ultrasonic NDE
deconvolution in the following chapters. Also, a new modular learning paradigm is

proposed for ultrasonic defect classification is proposed.
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The implementation of Wiener filter A requires:
z(k) : The reference signal
y(k) : The echo signal
(1) Take the Fourier Transform of z(k) via FFT
(2) Take the Fourier Transform of y(k) via FFT
X(f) = FFT[z(k)
Y(f) = FFT[y(k)
(3) Use Wiener A Equation to estimate the defect IR :

Hy(f) = B0

X+

where the factor ¢ is given by :
g = 0.1 * mazx(|X(f)|)
(4) Take the inverse FFT of Hy(f) as the estimated IR :

ha(k) = IFFT(Hy(f))

Note: The factor ¢ may be changed to improve the quality of the estimated IR.

Table 2.1: Summary Table of Wiener Filter A Deconvolution Algorithm.
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The implementation of Wiener filter B requires:
z(k) : The reference signal
y(k) : The echo signal
(1) Model z(k) as the output of pth-order AR model.
(2) Model y(k) as the output of qth-order AR model.

z(k) = Liz1 a;2(k — J) + w(n)
y(k) = Li=i by(k ~ j) + v(n)

where the ai’s and b;’s coefficients can be found via LP or MEM methods.
where LP: Linear Prediction and MEM: Maximum Entropy (or Burg) Method.
Note 1: Both signals z(k) and y(k) can assume the same order p.
(3) Estimate the Power spectrum of both signals z(k) and y(k) via:

Xar(f) = W
'd — 1
ar(f) = T R

(4) Use Wiener A Equation to estimate the defect IR :

Ha(f) = TERET
where the factor ¢ is given by :
g = 0.1 % maz(|X(f)|)
(5) Take the inverse FFT of Hy(f) as the estimated defect IR:
ha(k) = IFFT(Hy(f))

Note 2: The factor ¢ may be changed to improve the quality of the estimated IR.

Table 2.2: Summary Table of Wiener Filter B.
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Table 2.3: Compuational Complexity of the deconvolution algorithms.
No. of Real No. of Real

Method

Multiplications Required

Additions Required

Wiener Form A

6N.Logo(N) + 8N

9N.Logy(N) + 2N

Wiener Form B

6N.Logao(N) + 13N +2NP

(P is the order of the AR filter)

9N.Logy(N)+ 3N +2NP

Spectral Extrapolation

6N.Logs(N) + 8N + 2N P

9N.Logy(N) + 2N +2NP

Spectral Analysis

6N.Loga(IV) + 9N

6N.Logo(N) + 3NV

Cepstrum Method

6N.Loga(N) + 8N

6N.Logs(N) + 9N

Correlation Analysis

22X Loga(N) 4+ 6N

2X.Log:(N) + 3N

Least Squares (Ly norm)

8N.Logy(N) + 6N + 2N2

12N.Logy(N) + 3N +2N?




Chapter 3

Review Of Higher-Order

Statistics

3.1 Introduction

HOS is a rapidly evolving signal analysis area which finds broad applications in
engineering and science. Last years, have witnessed a great interest in HOS-based
techniques. Applications of HOS methods span a broad range that include telecom-
munications, sonar, radar, geophysics, image processing, speech processing and other
applications [27, 28, 29, 30]. Most of the efforts made in the last three decades in the
area of power spectrum estimation, were based on the properties of the autocorre-
lation function. However, the information contained in the autocorrelation function

provides a complete statistical description of Gaussian processes only, since then the

30
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SOS-based methods almost exclusively rely on the Gaussianity assumption. Such
an assumption has been justified in the past for leading to mathematically tractable
solutions in the Least-Squares sense, and by the central limit theorem (CLT). By
virtue of CLT theorem, the sum of many random processes tends to be normally
distributed [31]. Furthermore, SOS are blind to the phase information and hence
are appropriate only for the description of Gaussian processes governed by linear
mechanisms. Recently, Johnson and Rao [32] have questioned the mere existence
of Gaussian data in real problems. Also, in many applications where non-Gaussian
processes or nonlinearities are present, SOS-based methods fail to provide correct
description of the involved models. In such situations, one must look beyond the
power spectrum of the process, into higher-order spectrum; i.e., polyspectra, to ex-
tract phase information, as well as information about deviation from Gaussianity
and the presence of nonlinearities, such as quadratic and cubic phase coupling [30].

In the sequel, the motivations behind the use of HOS are given :

e Extract information due to deviation from Gaussianity.
o Recover the correct phase character of signals and systems.
e Detect and quantify some nonlinearities in time series.

e Suppress additive Gaussian noise of unknown spectrum characteristics (white
or colored), also the third-order statistics suppress non-Gaussian white noise

with symmetric probability density function (pdf).
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The first motivation is based on mathematical relations between Gaussian and Non-
Gaussian processes having same SOS description (statistical mean and autocorrela-
tion), given in the following section. The second one relies on the attractive feature
of HOS (cumulants and polyspectra) to preserve the true phase character of signals
and systems, while the third motivation is a natural result of the introduction of
HOS in the analysis of nonlinear systems operating under a random input. It should
be noted also, that HOS are nonlinear in their formulation. The property that for
Gaussian processes only, all cumulants spectra of order greater than two are identi-
cally zero, represents the basis for the fourth motivation. As it can be deduced from
the motivations given above, HOS-based techniques become high signal-to-noise ra-
tio (SNR) domains where detection, parameter estimation and signal reconstruction
can be performed, provided that a sufficiently large number of signal samples are
available [30]. Henceforth, any statistical solution using SOS can be recast into the
HOS formulation automatically boosting the effective SNR. A polyspectra classifi-
cation map is shown in Fig. 3.1. Reasons behind the use of moment or cumulant

polyspectra will be given in the following sections.

3.2 Definitions

The material of this section is taken, for the most part from [27], [29], [30] and [33].

Given a set of n real random variables {z;, zs, ..., z,}, their joint moments of order
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Higher-Order Spectra
(Polyspectra)
Cumulants Specira: Moments Spectra:
Stochastic Signals: Deterministic Signals:
- Stationary - Finite Energy
- Nonstationary - Inffinite Energy

r=k +kat--

where

Figure 3.1: Polyspectra Classification Map.

+ k, are given by [31] :

k kay A k1 k2 kn
Mom[z§', 28, ... 28] & E{zhzk | 2F

,6’®(w1, Wwa,..., wn)
Qws uwk? ... Owk

= (=J)

w=wy=--=w,=0

®(wy, wy,...,w,) 4 E{exp(j(wiz) + wazs + -+ - + woz,))}

33

(3.1)

(3.2)
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is their joint characteristic function. E{.} denotes the expectation operator. An-
other form of the joint characteristic function is defined as the natural logarithm of

Q(wly wa, ..., wn); i'e'a

U(wy, wy, ..., wy,) a log[®(w;, ws, ..., w,)] (3.3)

This form of joint characteristic function is called Cumulant-generating function

The joint cumulants of order r, denoted by Cum[z¥, 2% ... zk=] of the same set

of random variables, are defined as the coefficients associated with the Taylor series

expansion of the cumulant-generating function about zero [30, 31]; i.e.,

O (wy,wa, ..., wy)|

3.4
Qwi dws? .. Jwk» (34)

Cum[zf, 28 .. k] & ()

W) =up=--=w, =0

Thus, the joint cumulants can be expressed in terms of the joint moments of a set of
random variables (see Kendall and Stuart [34] for such relations up to order r = 12).

For example the moments up to order 4 of one random variable {z,} are given by :

my = Mom|[z,| = E[z,); me = Mom|zy, z9] = E[z?]

m3 = Mom[z,, s, 23] = E[z}]; my = Mom|z|,23,13,24) = E[z}] (3.3)
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The moments are related to the cumulants by :

c1 = Cum|zi] = my; ¢z = Cumlz),z5] = ma — m?

c3 = Cum|zy, T2, 23] = m3 — 3mam; + 2m3

cs = Cum|zy, T3, 3, T4] = My — dmamy — 3m3 + 12mym? — 6m] (3.6)
If the mean E[z,](i.e.,m;) is zero, then it follows that :
Cp = may; C3=mgz;, ¢ =my—3m]

A similar representation of cumulants of vector processes is given in the work of
Manzano [35]. From the definitions given above, it should be noted that the com-

putation of nth-order cumulants requires the knowledge of the nth- and lower-order

moments.
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3.3 Moments and cumulants of stationnary pro-

cesses

Let {z(¢)} be a real nth-order stationary random process and its moments up to

order n exist, then

Mom[z(k),z(k + 71),...,2(k + Tu_y)] &

Elz(k), z(k +71),...,2(k + 7he1)) (3.7)

Because of the stationarity assumption (weak of order n), the nth-order moments
are only a function of the time difference (71, 7,...,7,_;). Now, the moments of

nth-order stationary process can be written as:

mE(1, 7, ... Tam1) 2 Elz(k),2(k +71), ..., 2(k + Tn1)] (3.8)

Similary, the nth-order cumulants of {z(¢)} are also (n-1)-dimensional functions of

(n-1) variables, written in the form :

Ci(m, T2y ey Taz1) 2 Cum|z(k),z(k + 7),...,z(k + Tn-1)) (3.9)
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It is interesting to note that the nth-order cumulant function of a non-Gaussian

stationary random process {r(t)} can be written as (for n = 3,4 only) [36] :

C:.(le T2:.--, Tn—l) = mf;(‘rlv T2y e v ey Tn—l) - mf(le T2y v oy Tn—l) (3'10)
where mZ(7,72,...,T,—1) is the nth-order moment function of {z(¢)} and
m&(m,Ta,....Ta_1) is the nth-order moment of an equivalent Gaussian process that

has the same mean value and autocorrelation sequence as {z(t)}. Clearly, if {z(t)}
is Gaussian, m(m, 7, ..., Tao1) = m&(m, 7, ..., T_;) and thus Ci(mi, T2y yTam1)
are identically zero. Note, however, that this is only true for orders n = 3,4. Eq.3.10
gives a measure of the deviation of the random process from Gaussianity. Variance,

skewness and kurtosis measures are given in terms of cumulant lags.

3.3.1 Moments Versus Cumulants

When developing algorithms based on HOS, cumulants are preferred to moments

for the following reasons :

¢ As the covariance/correlation function of a white process is an impulse func-
tion and its spectrum is flat, the cumulants of higher-order white processes
(definition will be given later) are multidimensional impulse functions, and
their polyspectra (definition will be given later) are flat as well. Hence, the

whiteness and flatness properties are conserved with cumulants, unlike with



Chapter 3: Review of HOS 38

moments. For illustration, Figure 3.2 gives 3-d plots of third-order cumulants

and moments of third-order white one-sided exponential sequence.

e The cumulants of the sum of two statistically independent random processes
equals the sum of the cumulants of each individual process, whereas the same is
not true for moments. This property allows an easy manipulation of cumulants

as a linear operator when processes are statistically independent.

o Higher-order moments of Gaussian processes are not zero, unlike cumulants.
However, all the statistical information about Gaussian processes is contained
in the moments of order (n < 2) (i.e., mean and autocorrelation). Therefore,
all moments of order equal or greater than two (n > 2) have no new informa-
tion to provide. This property is illustrated with the third-order moments and

cumulants of a Gaussian process shown in Fig. 3.3.

3.4 Properties of Cumulants

Some useful properties of cumulants which are of key importance to this thesis, are

summarized below for ease of later use, and reference.

P1. If A, ¢ =1,...,n are constants and z;, t = 1,...,n are random variables, then

Cum[A 1, AaZg, ..., AnZy,] = H’\i Cum[zy,Zs,...,Z,) (3.11)

=1
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P2. Cumulants are symmetric in their arguments, i.e.,

Cum|zy,zy,...,2,] = Cum|zi, Tia, - - . , Tin) (3.12)

where (21,142, ...,%) is a permutation of (1,2,...,n). The symmetry property

of cumulants will be further detailed in the sequel.

P3. If a is a constant, then

Cumla + 11, 2s,...,2,] = Cum[z),Za,...,T,] (3.13)

P4. If the random variables {z(t)} are independent of the random variables {y(t)},

then fort =1,2,....n

Cum[‘rl +.7;/1,1»'2 + Y2,...3Tn + yn] =

Cum[zy,zs,...,2a] + Cum[y, ya, - - - , Yn) (3.14)

PS5. If the random variables {z(¢)} with ¢ = 1,2,...,n can be divided into any two
or more groups which are statistically independent, their nth-order cumulants

are identical to zero, i.e.,

Cum[z),z2,...,2,] =0
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P6. Cumulants are additive in their arguments :

Cum[z, +y1,Z2,...,2a] =

Cumlzy,zs,...,2,.] + Cumfys, zo,...,2,] (3.15)

this property is shared also by moments

Mom[z) + y1,22,...,2,] =

Mom(zy,x,,...,z,) + Mom[y,, za, . .., z,] (3.16)

P7. Cumulants are blind to any linear phase shift. Given a zero-mean stationary
random process {r(t)} with finite moments up to order n, and its delayed
version {y(t)} defined as: y(t) = z(¢t — d), where d is a constant integer, then

it follows that :

Cumly(t),y(t + 1), ..., y(t + Ta1)] =

Cumfz(t —d),z(t —~d+7),...,z(t ~d + 74_1)] (3.17)

because of the stationarity assumption, Cum|z(k —d),z(k—d+7),...,z(k —

d + T,—1)] will depend only on the time differences (1,73, ... ,Ta—1), hence,
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Eq. 3.17 becomes :

Cumly(t),y(t + 1), ..., y(t + Taz1)] = CE(T1, T2y« -y Tam1)

= Cum/(z(t),z(t + 71),.... 2(t + Ta1)] (3.18)

which implies that process {z(¢)} and {y(¢)} have identical cumulants. Stated
in a different way, cumulants suppress any linear phase shift. However, cross-
cumulants do preserve linear phase shifts, which makes them suitable for time

delay estimation [30].

3.5 Cumulants Spectra (Polyspectra)

Given a real random process {z(t)}, stricly (or weakly) stationary, up to order n,

with nth-order cumulants sequence defined as :
Cilm, 72, .., Tacy)

its nth-order spectra (or polyspectra) are defined below :

Definition 3.5.1 [30, 37, 38/ The nth-order cumulants spectra of the process {z(t)},
denoted by C;(wy, w2, . .., wn_;) exist and are defined as the (n-1)-dimensional Fourier

transforms of the nth-order cumulants, if CZ(1y,7y,...,Ta-1) satisfy the following
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condition :

0

Z z e Z IC:(T11T27---,Tn—1)I < (3.19)
TI=—00 M=—00

Th=1=—00

in other words, the nth-order cumulants sequence must be stable. Other expressions
for the condition of polyspectra existence can be found in the seminal work of
Brillinger and Rosenblatt {37, 38] !. Eq. 3.19 represents the higher extension of the
usual conditions for a Fourier transform to be well defined. The nth-order cumulant

spectra is thus defined :

0 0 0
Ci(wn,wy,...,wee) 2 S Y o S C¥Hmumy.. .y Tact)
TI=—00 TP=—00 Ta—1=—00
exp{—j(wn + wora +--- + Wp—1Tn-1)} (3.20)

In general, CZ(w;, ws, ..., ws—1) are complex, i.e., they can be written in terms of

magnitude and phase :

CE(wy, ..., wae1) £ [CZ(wy, ..., wary)| exp{FTE(wy, .. ., wai)} (3.21)

!Brillinger and Roseblatt [37, 38] make use of the following condition :

o0 o [ =]
Z E Z I+ IC (T, T2y .y 1)l < 00
T=—00 Tp=—00 Ta—1=—00

for j = 1,2,...,n ~ 1, which is stronger than Eq. 3.19. It ensures faster decay to zero of the
cumulants than Eq. 3.19.
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where |C (w1, ..., wa—1)| and ¥Z(wy,. .., w,—1) are the polyspectra magnitude and
phase, respectively. The cumulant spectra is also periodic with period 27 with

respect to all its argumeants, i.e., :

Ci(wi,wy, ..., way) = C2(wy +2m,wp + 27, ..., Way + 27)

Historical notes regarding the definition and terminology of polyspectra can be found
in (30, 37, 38]. Other definition than that given in Eq. 3.20 is possible using the
Cramer spectral representation [30], in this thesis the definition of Eq. 3.20 is pre-
ferred. However, the Cramer spectral representation allows the introduction of the
nth frequency variable w,, that when added to the remaining frequency variables
will yield zero. When using the latter definition, the notion of the hidden frequency
Wp = —W; — Wy — -+ — Wy should be kept in mind [30]. In practice, only few
special cases of polyspectra gained interest. This is mainly due to the fact that
higher-dimensional Fourier transforms do not have easy interpretation and their

manipulation is quite difficult.

3.6 Polyspectra of Linear Systems

Let {z(t)} be a non-Gaussian random process with all its moments finite up to
order n (nth-order stationarity) and with cumulants spectra Ci(wy,wa, ..., wa1),

and h(t) be the IR of an LTI system. The Barlett-Brillinger-Rosenblatt [35, 37, 38]
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summation formula relates the input {z(¢)}, and output {y(¢)} of the LTI system

through h(t) as follows :

A
Ciwy,...,wa) =

H(wl) ce H(wn—l)'H‘(wl +---+ wn-1)~Crf(wla RN ) wn-l) (322)
where
Hw) 2 [ ” h(t) exp{—~juwt}dt

is the stable LTI system TF. Since H(w) and CZ(w;, wo, ..., w,_,) are complex, in

general, they can be written as :
H(w) = |H(w)|exp{jon(w)} (3.23)

where |H(w)| and ¢x(w) are the magnitude and phase of the transfer function of

the LTI system, respectively, and

Calwi, wa, ..., wa 1) = |CZ(wy, w2, . .., weey)|

exp{j U5 (wy, wa,...,wee1)} (3.24)
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where |C7(w1,ws, ... ,wn_1)| and UZ(wy, wy, ..., w,-) are the magnitude and phase
of the nth-order cumulants spectra of the input {z(t)}, respectively. Then, Eq. 3.22

is expressed as follows:

|Cawr, wa, - wa)| = [H(wn)| | H(ws)] . . . | H(wa-y)].

lH'(w1 +we+---+ w,,_l)I.IC,f(wl, wa,..., wn_1)| (325)

and

Uh(wr, wa, ..., wao1)} = Or(wy) + On(wa) + - -+ + Op(Wa-y)

~on(~wr — w2 — -+ —wn_y) + Vi (wy, wa, ..., wa_y) (3.26)

Eq. 3.26 shows that the output cumulants spectra of order n > 2 carry phase

information about the LTI system. By setting n to specific values in Eq. 3.22, useful

special cases of polyspectra are obtained.
1. n= 2 Power Spectrum.
2. n= 3 Bispectrum.

Details about the case (n = 3) are given in [39)].
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3.6.1 LTI systems driven by white noise

Theorem 3.6.1 [{0] Let H(w) be the transfer function of a finite-dimensional,
LTI, causal, exponentially stable system whose impulse response is h(t). System

input {z(t)} is an independent and identically distributed (i.i.d.) sequence with nth-

order cumulants given by :

¥ n=n=-=T_=0
CHmi,Tae.. Tamt) & (3.27)

0 otherwise ,

where v; denotes the nth-order cumulant of the random variable {z(t)}, which ezists
if the nth-and lower-order central moments of {z(t)} exist. Then, the nth-order

output cumulants are give by :

C¥m,T2...,Tn1) =71 Z h(h(i+7)...h(i + Tazy) (3.28)
t=0

Using Theorem 3.6.1, Eq. 3.22, in the special case where {z(¢)} is non-Gaussian

nth-order white, will have the following form (30, 36, 37, 38] :

A
C}((wl, . ,w,,_l) =

YeH(wy).... H{wa-1).-H (w1 + -+ + wp_y). (3.29)

where 77 is the nth-order cumulant spectra.
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3.7 Cumulants Cepstra (Polycepstra)

3.7.1 Preliminary

Extensions of the power spectrum to higher orders have been introduced in the last
section. Similarly, in this section, the complex cepstrum of higher-order cumulants
(polycepstra) is discussed. This section provides an exposition of the properties and
computation of polycepstra, where their applications to nonminimum phase signal
reconstruction and identification are highlighted. Concepts useful to the derivation
of the polycepstra-based deconvolution technique presented in the next chapter, are

introduced.

3.7.2 Definitions

The impulse response hq4(t) of Eq. 1.1, is in general modeled as an AutoRegressive
Moving Average (ARMA) energy sequence. Its Z transform is generally nonmini-

mum phase (has zeros outside the unit circle) and can be written as [30] :

H(z) = Az"I(z71)0(2) (3.30)
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where A is a constant defined as " system gain”, and r is an integer representing the

" system delay’ , and

Ly — .1
- Mty —aiz7) (3.31)

-1
1= 2,1 — ciz1)

0(z) = ﬁ(l —biz1) (3.32)

=1

are the minimum and maximum phase components, respectively with |a;] < 1,
|bil < 1 and [c;| < 1. Poles {c;} and zeros {a;} are inside the unit circle whereas
zeros {4} are outside. There is no restriction to have also poles outside the unit

circle. The minimum phase component of h4(k) is given by :

N
i(k) = ziﬁ S I(w)- e, k>0, (causal part), (3.33)
0

whereas the maximum phase component is given by

l N )
o(k) = 5 Y O(w)-e™*, k<0, (anti-causal part), (3.34)
0
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where I(w) = I(e™7*) and O(w) = O(e’”). A linear convolution operation relates

i(k) and o(k) with hq(k) as follows :

1%
ha(k) =" i(r).o(k — T) (3.35)

-N

Now, to compute the complex cepstrum, the natural logarithm of Eq. 3.30 is used :

L
log{H (2)] = log(|A]) + log(z™") + ) _log(1 — a;z~!)

=1

2 Ls
+ LZ log(l —b;z) — > _log(l — c;z7") (3.36)

=1 =1

The term z~" corresponds to a linear phase shift which is suppressed in HOS domain
(see properties of cumulants in section 3.4). The gain parameter A does not affect
the shape of the signal, but causes a scale ambiguity that may be serious in some
cases [13]. The algebraic sign of A can be determined via a procedure due to Hayes
et al. [41] given specific conditions. Hatzinakos and Nikias [42] estimate A using
second- and fourth-order cumulants at zero lags (i.e., c(0) and cZ(0,0,0)) in the
case of communications signals. Now, taking the inverse Z transform of Eq. 3.36,

yields the complex cepstrum [13] :

c(m) = 5= § loglH(2)]2"dz = 2 log{H (:)] (3.37)
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where the contour of integration C is within the region of convergence which includes

the unit circle. Using FT, Eq. 3.37 is written as :
1 = : _ g
ea(m) = 5= [ loglH(w)]| exp{jum}dw = F{[log|H(w)| + jon(w)]  (3.38)

where |H(w)|, and ¢p(w) are the magnitude and phase of the transfer function H(w),
respectively. Zy[.], Z{![.] denote the 1-d forward and inverse Z transforms, respec-
tively. Also, Fi[.], F{'[] denote the 1-d forward and inverse Fourier transforms,
respectively. Problems related to the continuity of the complex logarithm have been
adressed in Chapter 2 where phase unwrapping technique due to Tribolet [23] was
presented, to overcome the phase discontinuity problem (see Chapter 2 for details).
The complex cepstrum as defined, can be related to the underlying ARMA model

parameters (poles and zeros) given in Egs. 3.30, 3.32 as follows [13, 30, 43] :

(
log|A|, m=0

ea(m) =4 _am g (3.39)
B(:). m<0

\

where

L L;
AM =% "o -5 cm (3.40)
=1

=1
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L2
B(m) — Zb:" (3.41)

=1

are cepstral parameters which contain the minimum and maximum phase informa-
tion, respectively. Note that for MA signals (systems), the second term of A(™) in

Eq. 3.40 is identically zero.

3.7.3 Bicepstrum of Deterministic and Random Signals

Since, the complex cepstrum is a nonparametric signal processing technique, where
no statistical model is assumed a priori, a common framework for both deterministic
and random signals is possible. Using Theorem 3.6.1, any stochastic process {z(k)}
can be modeled as the output of an LTI system driven by a zero-mean non-Gaussian

white process with skewness 7§ such that :
C3(z1, 22) = vy H(21)H(2)H(27 " 251) (3.42)
with
3 (21, 22) =Z_°° ﬁ—z-oo c3(m, 1)z M zy (3.43)

and cj(ri, 2) are the third-order cumulants of {z(t)}, defined previously. On the

other hand, if A(k) is a deterministic energy signal, the 2-d Z transform of its third-
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order moments is given by [30] :

.'M:;I(Zl, 22) = H(Zl )H(ZQ)H(Z;I.Z;I) (344)

Note that Eq. 3.42 and Eq. 3.44 are similar apart a scaling factor 75, although they
represent signals of different classes (random and deterministic). This similarity
allows to have a common framework for both types of signals, assuming 7§ equal to
unity, without loss of generality. No distinction will be made further between the
two types of signals, the term C§(zy, z,) is used henceforward. Pan and Nikias [43]

were the first to define the complex cepstrum of higher-order cumulants.

Definition 3.7.1 [{3] The bicepstrum is defined as the inverse 2-d Z transform of

the natural logarithm of the bispectrum, i.e.,

bu(m,n) = Z ' {log[Cl(z1, 22)]} (3.45)

where C§(z1, 22) is the bispectrum of H(z) defined in Eq. 3.30.
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Pan and Nikias [43] showed that :

r log|43] , m=0, n=0
—LAm  m=0, n>0
—2A™ m>0, n=0
=BC™ . m<0, n=0

bp(m.n)={ ™ (3.46)

—iB" | m=0, n<0
—ip" | m=n>0
iB=" | m=n<o

\ 0 , otherwise

where A'™ and B(™) are the cepstral parameters defined in Eq. 3.40 and Eq. 3.41,
respectively. When comparing Eq. 3.46 with that giving the complex cepstrum, i.e.,

Eq. 3.39, it clearly appears that :

ca(m) = bp(m,0) = by(0,m) = by(—m,—m), m #0 (3.47)

The definition of the bicepstrum in Eq. 3.45 suffers from the same difficulty as
that of the complex cepstrum, i.e., the phase unwrapping problem [13, 23, 43]. In
an attempt to overcome this problem, Pan and Nikias [43] derived the differential

bicepstrum corresponding to the differential cepstrum proposed by Polydoros and
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Fam [44]. The differential bicepstrum is defined as :

( Am=1) ;> =
Bl-m m <2 n=
Ba(mn)={ AW | m=nt1, n<-1 (3.48)
B®) , m=n+1 n>1
‘ 0 , otherwise

Remarks:

Several remarks regarding the continuity of the complex logarithm used in Eq. 3.45

are made :

e Cj(z,29) is a rational polvnomial in z; and z,.
o 2-d phase unwrapping algorithm [45] is needed.
e Analycity of C3(z1, z2) must be guaranteed.

Dudgeon [45] defined the conditions for the existence of cepstra for 2-d rational

polynomials in the following lemmma.

Lemma 3.7.1 [4{5] Any 2-d array having a rational Z transform will have a well

defined 2-d complez cepstrum provided :
(i) Its Fourier transform is not equal to zero or infinity,

(ii) Any linear phase trend because of time shift is eliminated.
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With third-order cumulants, the first condition is satisfied by the use of 2-d expo-
nential windows to move zeroes (or poles) away from the unit bicircle. The second
condition of Lemma 3.7.1 is always satisfied when using HOS quantities, since any
linear phase term is suppressed by higher-order cumulants. Pan and Nikias [43] de-

veloped an LS approach for the computation of cepstral parameters from third-order

cumulants as follows :

Y (A7 mhi(n —7,1) = mi(n + 7,0 + 7)]
r=1

+BOmi(n -7l —7) —mh(n+7,1)]} = —n.mf(n,l) (3.49)

where m/(n.!) represents the third-order moments of h(t). Eq. 3.49 provides a direct
relationship between cepstral parameters A" and B("), and the third-order statis-
tics. Using the properties of the cepstral parameters given previously (exponential

decay with 7), Eq. 3.49 can be truncated to obtain an approximate form as :

P
Y ADmi(n - 7.0) = mb(n+ 7,1+ 7)]
r=1

9 .
+ ) BOmg(n —j,1 - j) - mh(n +j,1)] = —n.mh(n,)  (3.50)
j=l1
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The truncation points, p and g have been empirically chosen by Pan and Nikias [43]

as :
_ log(c)
P= Tog(a)
_ log(d) -
~ log(a) (3-51)
where

max[la,-l,[cj” <a<l, 1<i< L, and 1<753< L

max[lbe]] <b<1, 1<k< L, (3.52)

where a;, b; and ¢; are defined in Eq. 3.30. c is avery small number, such that
A =0 for 7 > p and B = 0 for 7 > q. The truncation limits in Eq. 3.30 require
some a priori knowledge about the pole-zero location of H(z), i.e., the values a and
b in Eq. 3.532. Pan and Nikias [43] used the following rule of thumb to determine

limits of the arguments (n,1) of mi(n,) :

w = max[p,q] and z=[%]

n=-w,...,0,...,w, and | = -2,...,0,..., 2z,
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where |a| denotes nearest integer to a towards —oo.

z and w are integers to form the overdetermined system of equations:

Ya=y (3.33)

Yisa [(2w+1) x (2z2+1)] X (p+ ¢) matrix whose entries are expressions of the form
{m§(n,\) — mi(o,v)}. ais the unknown (p + q) x 1 vector of unknown parameters

in the form :

a= [A(I),A(2). o 7_4(?)' B(l), 3(2), e, B(q)]T

and y is a [(2w + 1) x (22 + 1)] x 1 vector whose entries are terms of the form

{n.m4(n,l)}. The LS solution of Eq. 3.53 is given by [30, 43] :

a=[YTy] YTy (3.54)

An alternative method for computing the cepstral parameters in Eq. 3.46 based on

FFT’s was proposed by Pan and Nikias [30, 43] :

_ 1 [ Fa[rimi(m, )] .
m.by(m,n) = F;! { Fz[mf;‘?ﬁ,rg)] } (3.55)

where F; denotes the 2-d Fourier transform and F;! its inverse.
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Proposed Solutions

4.1 Introduction

Solutions to two distinct signal processing tasks for UNDE are proposed in this

chapter. These solutions are :

1) HOS-based deconvolution of ultrasonic defect IR to unravel the masking effects

of the transducer and the propagation paths.

2) Ultrasonic defect classification using a new modular learning strategy based on

different functional blocks.

60
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4.2 HOS-Based Deconvolution

The general convolutional model of UNDE is given by Eq. 1.1, which is reproduced

below for convenience :

y(k) = z(k) « hg(k) + n(k) (4.1)

assumptions usually made about Eq. 4.1 are given in Chapter 2. The recovery of z(k)
or hy(k) from noisy environment, represents a difficult signal processing task with
a broad range of applications. The techniques developed in Chapter 2 can be cast
into HOS formulation, to produce more robust deconvolution schemes. The HOS-
based deconvolution method, developed in this chapter, belong to the polycepstra

approach. Fig. 4.1 gives a classification map of the different HOS approachs.

4.2.1 Model and Assumptions

In the HOS context, the reference and echo signals, z(k) and y(k), respectively, are

assumed to satisfy the following assumptions :

1. Shanks or Prony [46] modeling of both signals does not produce poles or zeros
on the unit circle to guarantee the existence of stable HOS quantities and yield

a well-posed deconvolution problem.
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HOS-Based UNDE
Deconvolution Methods

! ¥

Polyspectra-Based Polycepstra-Based
Methods Methods

|
! |

Parametric Nonparametric
Appproach Appproach

Figure 4.1: HOS-Based Ultrasonic NDE Deconvolution Classification Map.

2. No pronounced resonance and antiresonance exist in both signals i.e., poles

and zeros are not located in the vicinity of the unit circle.

Some constraints made on the model of Eq. 4.1 in the SOS context are relaxed when

using HOS formulation. Among the relaxed constraints, there are :

(i) The noise, n(k), does not have to be white, it can be correlated (i.e., colored)

in the Gaussian case.

(ii) When using third-order statistics, the noise n(k) can assume any symmetric

pdf (for example Laplacian pdf) if the whiteness condition is satisfied (47].
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The proposed HOS-based deconvolution scheme utilizes the complex bicepstrum
(see Chapter 3). Extensions to the fourth-order methods are quite straightforward.
Other HOS-based schemes using the bispectrum can be proposed however they suffer

from the large estimation errors engendered by the signal recovery method [48, 49].

4.2.2 The Complex Bicepstrum Method

Using results of Chapter 3 and the model assumptions discussed in the previous

section, the third-order cumulants of Eq. 4.1 are (27, 28, 30, 37, 38] :

(i m) = (. 12). 3 ha(kha(k + 71 )ha(k + ) (4.2)
k=0

where c§( 71, 72) and ¢Z(7;, T»), are the third-order cumulants of y(k) and z(k), respec-
tively. The noise n(k) has zero third-order cumulants since it is assumed Gaussian
(white or colored) [27, 30, 33]. Eq. 4.2 is the Barlett-Brillinger-Rosenblatt summa-
tion formula defined in Chapter 3. The form of Eq. 4.2 assumes causality of the
system given by hq(k). Taking 2-d Fourier transform of both terms of Eq. 4.2, gives

the following bispectral relation :

B3 (w1, wp) = B (wy, wa).H(w,).H(ws).H*(wy + wy) (4.3)
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64

B3(wy,ws), Bj(wi,w,) and H(w) are the bispectra of y(k), (k) and the system

TF. It should be noted that H™(w;, + wp) = H(~w, — w,), since hq(k) is assumed a

real sequence. In general, H(w) is complex, hence :

H(w) = |H(w)| - %)

(4.4)

where [H(w)| and ¢(w) are the magnitude and phase response. The notation used

in Eq. 4.4 applies also to polyspectra quantities, such that :

B(wy, wa) = | BY(wy, wp)| - & ¥3(wrw)

and

Bj (w1, wa) = |Bj (wy, wp)| - /3w w2)

Similarly, Eq. 4.3 is written using Eqs. 4.4, 4.5 and 4.6 as :

|B3 (w1, wo)| = | Bi(wy, wo)| - |H(w1)| - |[H(ws)| - [H (w1 + w2)|

and

3wy, wo) = 3(wy, wa) + ¢(w1) + d(w2) — ¢(w) + ws)

(4.5)

(4.6)

(4.7)

(4-8)
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The last two relations form the basis for the deconvolution of hy(k). An alternative
approach is to get directly the " bispectrum H(wy,ws) ”. The following lemma gives

the definition of the IR bispectrum.

Lemma 4.2.1 The discrete IR, h(k), has a bispectrum given by :

H(wy,wp) = H(w,) - H(ws) - H*(wy + wa) (4.9)

where H(w) is the Discrete Fourier Transform (DFT) of h(k) given by :

N-1
H(w) =Y h(k)-e 7 (4.10)
k=0
N N-1
(w - —'2—!---7-_2_-)

The proof of this lemma is given below.

Proof:

Since h(k) is deterministic, then it has third-order moments given by [30, 37, 38] :

mi(r, ) & 3" h(k) - Ak +11) - h(k + ) (4.11)
k=-00
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where 71 and 7, are specified by the domain of support of m&(m, 7). Then, the

bispectrum is simply the 2-d DFT of mf(r,m) :

H(wy,wy) 2 Z Z A, m) - emiwintwn) (4.12)

TI=~00 T2 =—00

Eq. 4.12 is rewritten using Eq. 4.11 as :

H(w1,w2 i Z ( i h(k) .h_(k+1-1).h(k+r2)) . e~ (w1mitwena)

TI=~00 M=-00 \k=-o0

= i Z h(k)- h(k + 1) - e79w2" ( i Wk + 1) - e-—jwln)

k T =—20

k

=3 h(k)-H(wl)-ef“’"‘-( > h(k+7’2)-e‘f(“’m>

k=-o0 ™=—0Q

)- h(k + ) - €772 . H(w,;) - &*1F

'I'MS
"[\’]8 u

= 3 h(k)- H(w) - &** - H(w,) - e72*

k=—o00

= H(wl) : H(IUz) . ( i h(k) . ejk(wl+w2)) (413)

k=—00

since h(k) is assumed real, then :

H(wy, wy) = H(wy) - H(wy) - (Z h(k) - ‘Jk(w1+w2))
k=—o00

= H(w;) - H(wsz) - H™(w) + wp) (4.14)
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where * denotes complex conjuguation. (]

Using Lemma 4.2.1, Eq. 4.3 is written as :

Bi(wy, wy) = Bj(wy, ws) - H(wy, w) (4.15)

The complex cepstrum of Eq. 4.15 can be obtained, by considering Bf(w;, ws) and

Bj(w,w,) as "2-d deterministic signals, and using the technique developed by Dud-

geon (45, 50]. However, this will necessarily call for the use of a phase unwrapping
algorithm to remove the effects of the ambiguity associated with the use of the com-
plex logarithm [13, 43, 50|, under the conditions of Dudgeon’s Lemma (see Chapter
3 for datails). It is shown in Chapter 3 that the bispectra BZ(w;,ws,), taken as
the 2-d FT of the third-order cumulants [30], have a well-defined complex cepstrum
since they always satisfy Dudgeon’s Lemma. However, the elegant method of Pan
and Nikias [30, 43] is used instead, since it cleverly uses the notion of differential
cepstrum developed by Polydoros and Fam [13, 44] to bypass the computational
difficulties associated with Dudgeon’s technique. Applying Pan-Nikias method on

Eq. 4.15 yields :

bn(m,n) = by(m,n) — b.(m,n) (4.16)
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where bn(m,n), by(m,n) and b.(m,n) are the bicepstra of ha(k), y(k) and z(k),
respectively. Hence, the knowledge of b,(m, n) and b,(m, n) directly yield the bicep-
strum of the defect impulse response without any mathematical difficulty such as
existence issue [50, 45] or ill-posedness. It is interesting to note that Eq. 4.16 can be

efficiently used in the identification of linear systems subject to multiplicative noise

or a certain class of nonlinear systems [30]. From the results of Chapter 3, it is
clear that by(m.n) leads to the terms 4™ and B(™ through Eq. 3.46 in the linear
case [51]. A(™ and B(™ are used used to estimate the defect impulse response hq(k)

using the recursive Oppenheim-Schafer method [13] which is reproduced below :

in(0) =1 and op(0)=1

1 k+1
lh(k) = '—; A(m—l) lh(k‘ —-—m+ l) k > 1
m=2
1 0
on(k) =7 Y. BU™ok—m+1) k< -1 (4.17)
k m=k+1

where ix(k) and ox(k) are the minimum and maximum phase parts of hq(k), respec-
tively [30, 43]. ha(k) can be considered as a cascade of two subsystems with IR’s,

in(k) and on(k) such as:

hd(k) = ih(k‘) * Oh(k) (4.18)



Chapter 4: Proposed Solutions 69
Comments on the implementation of the bicepstrum method

The estimation of b,(m, n) and b;(m, n) aims to obtain the cepstral parameters A(™)

and B™). This step can be done using two different approaches that are :
e Linear system approach using Eq. 3.53 (LS).
e Fourier Transform approach using Eq. 3.55 (FFT).

The first approach is highly affected by the numerical unstability usually associated
with the LS solution, however it allows to independently estimate i,(k) and ox(k)
by using different lengths for the truncation points p and g parameters in Eq. 3.51.
The FFT method is unaffected by the the numerical unstability problem. However,
this is achieved at the expense of a limitation in the choice of the parameters p and
q unlike the LS method. The minimum and maximum phase of hy(k) are treated
equally. This certainly affects the quality of the estimated defect IR with a dominant
part (maximum or minimum phase part). A thorough comparison of both methods

can be found in Chapter 3.

Summary of the Bicepstrum Deconvolution Method

The different steps of the implementation of the direct bispectrum-based deconvo-

lution are summarized below :

1) Reference and echo signals, z(k) and y(k) are available.
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2) Check the nullity of the bispectra of both z(k) and y(k) using the available

Gaussianity/linearity tests [52, 53].
3) Estimate the bicepstra b,(m,n) and b.(m,n) using :
= LS method using Eq. 3.53.
or
== FFT method using Eq. 3.55.

4) Obtain the bicepstrum of the defect impulse response as :

br(m,n) = by(m,n) — b.(m,n) (4.19)

5) Get the cepstral parameters A™ and B™ from by(m,n) using Eq. 3.46.

6) Use Oppenheim-Schafer method to recover hy(k) from A(™ and B'™) using

Egs. 4.17, 4.18.

4.3 Automatic Defect Classification System

Once an accurate and reliable defect impulse response is obtained from the deconvo-
lution step using any of the techniques described above, it is fed into an automatic

defect classification system based on a sophisticated learning paradigm to faithfully
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identify the type of defect present in the material under test. Automatic defect clas-
sification constitutes an important signal processing task on which relies the overall
performance of the ultrasonic inspection system. It is a difficult signal processing
task, particularly when the inspection system operates at moderate and low SNR
levels. Existing automatic defect classification systems use features extracted from
the time and frequency representations of the echo signals [54], which are usually
corrupted by the material and noise effects. This approach combines both uncertain
time and frequency information present in the echo signals and its performance may
be severely affected by the inspection environment which can be in some practical
situations very noisy, such as pipes welding inspection. Here, a novel modular learn-
ing strategy for defect classification and detection is described. The design of this
technique is motivated by the information preservation rule [55]. The information
preservation rules states that [53] :

" The information content of a defect impulse response should be optimally pre-
served in a statistical sense and efficiently used in a computational sense, until the
defect classifier is ready for final decision-making ”.

The classification strategy makes no assumption on the ultrasonic inspection envi-

ronment. It incorporates three functional blocks :
(1) Joint Time-Frequency Analysis (JTFA).

(2) Features Extraction using Principal Components Analysis (PCA).
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Figure 4.2: Block Diagram of Proposed Automatic Defect Classification System.
(3) Decision Making.

The joint time-frequency analysis, implemented using the Wigner-Ville Distribu-
tion (WVD) [56, 57], transforms the defect impulse response into a time-frequency
“image” that accounts for any time-varying nature of the signal’s spectral contents.
This "image” provides the input to an unsupervised artificial neural network (ANN)
that constitutes the PCA functional block used for feature extraction in an optimal
fashion. The compressed features are then introduced into a supervised multilayer
perceptron (ANN) performing the defect classification. The block diagram of this
automatic and modular defect classification strategy is shown in Fig. 4.2. In what

follows, details on each of the blocks shown in Fig. 4.2, are presented.
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4.3.1 Joint Time-Frequency Analysis

Nonstationary signals have time-varying spectral properties, requiring the use of
some form of joit time-frequency analysis. JTFA is a well-developed technique [56,
57]. In particular, Cohen’s class [57] of time-frequency distributions (TFD), has
been applied to a variety of signal processing problems [56]. This technique has two

objectives [33, 58] :
(1) Bring out the nonstationary behavior of the defect IR in a visible fashion.

(2) Allow the separation of multiple components contained in the defect impulse

respounse.

The aim of JTFA is to approximate the time-frequency energy distribution function
E_(t, f), which is defined as the energy contained in a signal z(¢) within an infinites-
imally small neighborhood around time ¢ and frequency f [56, 57]. It is question
of "approximate” function because of the disjoint nature of time-frequency concen-
tration. That is, a signal z(t) cannot be concentrated in both time and frequency
simultaneously, by virtue of the uncertainty principle [56, 57, 58]. As mentioned

earlier, in the proposed paradigm, JTFA is performed using WVD for the reasons

that are given next.
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Wigner-Ville Distribution

Cohen [57] has developed a general framework for time-frequency distributions.
TFD’s are usually classified into linear and linear methods. The latter category
includes the subclass of bilinear TFD’s (BTFD’s). A particular BTFD that has
gained interest in a broad range of science and engineering [58] is WVD. WVD of a
signal z(t) is given by [56, 58] :

W.(t.f) = / z (t + -;:) x” (t — 12:) e 2 f7dr (4.20)

o

where the lag variable 7 plays the role of a dummy variable, * denotes the complex
conjuguate. It should be noted that any other TFD derived by smoothing in the
time-frequency plane is singular [57], in which case there is loss of information due
to the smoothing operation [35, 56, 57, 58]. This highlights the fact of the ” optimal
information-preserving” of the standard WVD. Three properties make the standard

WYVD highly desirable from a signal processing viewpoint [53] :

(1) W.(t, f) is real for any complex-valued signal z(t).

(2) It exhibits the least amount of spread in the time-frequency plane.
(3) Optimal information-preserving, i.e., lossless transform.

For the reasons given above, WVD has been selected to be the tool for performing

JTFA which is the first step in the proposed defect classification system. It should
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be noted that the presence of cross-terms that are usually considered as a severe
limitation of the standard WVD, is positively used in the classification scheme,
since they bear information about the nature of defects present in the material
being tested !. Hence, cross-terms play a major role in the proposed system, and
based on their presence and nature, an accurate and reliable decison is made at the
level of the third stage of the classification system (see Fig. 4.2). Boashash et al. [58]
developed various algorithms for the digital computation of the standard WVD. Two
interesting algorithms are based of their counterpart for spectrum estimation [17],

namely :

(a) Low Resolution Classical Fourier-based WVD Estimation.

(b) High Resolution Parametric WVD Estimation.

The first algorithm is numerically efficient and is based on the use of FFT, but it
suffers from its low resolution [38]. However, the second algorithm uses a parametric
model (AR or ARMA) to produce a high resolution standard WVD at the expense
of an increased computational complexity [58]. In the first stage of the proposed sys-
tem, the standard WVD is estimated using the first algorithm for its computational

simplicity. The discrete version of the standard WVD is given by [58] :

(N-1)/2 .
Welnk)= Y z(l+m)z"(l — m)e~4mmk/¥
m=—(N-1)/2

It is a common practice to use the analytic form of z(t) by using its Hilbert transform in
Eq. 4.20 to reduce the cross-terms [56].



Chapter 4: Proposed Solutions 76

0<n<N and 0<k<N (4.21)

where V is the length of the discrete version, z(k), of the signal z(t). It is that N
is even for implementation reasons [38]. n, k and and m are the discrete variables
corresponding to the continuous variables ¢, f and 7, respectively. It should be note
that W;(n, k) represnts an image of size N-by-N, where N represents the number of

frequency samples in the discrete standard WVD for each time sample n.

4.3.2 Features Extraction

It is clear from the first processing step presented above that the use of WVD dras-
tically increases the amount of data initially available, i.e., the deconvolved defect
IR. This increase is actually due to to the combination of the information present
in the time and frequency representations of the defect IR at hand. At the output
of the first stage, the data is V times the initial one where N is the length of the
defect IR. However, the obtained data is highly redundant [55]. A solution to this
problem may be provided by a compression scheme such the Discrete Cosine Trans-
form (DCT) or the Karhunen-Loeve Transform (KLT) [59]. The former method
has been successfully used in still image compression, however it is used in a lossy
fashion. The lossy nature of DCT makes it inappropriate for the proposed defect

classification strategy. KLT is an optimal transform [59], variously known as PCA,

Eigenvector Decomposition (EVD). PCA has been largely applied in chemometrics
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and statistics [60]. However, KLT in its general form requires the knowledge of
the exact autocovariance matrix (ACM) of the signal to be compressed [60]. This
constitues a major limitation in its application in real world problems. However,
PCA is a good candidate for optimal features extraction because it satisfies the

information-preserving rule stated earlier.

Review of Principal Components Analysis :

An excellent review of PCA with its application to image compression can be found
in [60].

Let X represent a vector that varies over the set of observations vectors and de-
note the cordinates of X by z;,zs,...,ry. The set of observations is denoted by

X1,X2,...,Xxy. The sample mean, M, of the observations is given by [60] :

| S
My = Kl: (.Xl +Xo+---+ _XN) (4.22)

The mean-deviation set of observations is given by [60] :
B = [X1 —.'Wx,Xg—Mx,...XN—lWx] (4.23)
From Eq. 4.23, the sample covariance matriz is given by [60] :
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where T" denotes the matrix transposition. The goal of PCA is to find an orthogonal
pXp matrix P = [v, va,. .., v,] that determines a change of variables, B = PU such

that :

bl uy

= [y, va,.... 0 (4.25)

b..v J Up J

with the property that the new variables u;,us, .. ., Up are uncorrelated and are
arranged in order of decreasing variance. The unit eigenvectors vy, vy, .. ., vp of the

ACM matrix S are called the principal components of the data (in the matrix of

observations B). Eq. 4.25 shows that the new data U is uncorrelated and retains
all the statistical information contained in the original data B. PCA cannot be

" optimal’ if the ACM matrix is not available or known a priori.

Principal Components Analysis Using Neural Networks :

Recently, attempts have been made to implement the PCA technique using ANN

that learn adaptively the ACM from the data directly. Oja [61] was the first to

develop an unsupervised ANN that is capable of performing PCA without resorting
to the computation of the ACM matrix. However, it has been shown [62] that Oja’s

paradigm can estimate only the first principal component v; of Eq. 4.25. Later,
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Sanger [62] employed the generalized Hebbian algorithm (GHA) to estimate the p
principal components of Eq. 4.25. The algorithm operates in a recursive fashion to

implement Eq. 4.25. Hence, Sanger’s algorithm is capable of estimating the ezact ACM,

making it a linear method for dimensionality reduction such as signal/image com-
pression. Diamantaras and Kung [63] improved Sanger’s algorithm such that the
latter can estimate the (p+1)th principal component from the pth one recursively.
The task of features extraction that constitues the second processing step of the
proposed automatic defect classification is implemented using Sanger’s algorithm
for its implementation simplicity compared with that proposed by Diamantaras and
Kung.

Sanger’s Algorithm :

Fig. 4.3 shows the unsupervised ANN structure for the implementation of Sanger’s
algorithm. The goal of Sanger’s algorithm is to produce an ANN that performs PCA
of arbitrary size on the input vector [62]. Let the input vector be in mean-deviation

form and denoted by :

B =[B(1),B(2),...,B(L)] (4.26)
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Ni

Figure 4.3: Implementation Structure for Sanger’s Algorithm.

where N in the input vector dimension and L is the number of the available input

vectors. Each input vectot B(7) is given by :

a .
b1i

B(i) = b (4.27)

byi

The network input/output relation is given by :

U=VB (4.28)
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Two assumptions about the feedforward network of Fig. 4.3, are made [64] :
(1) Each neuron in the output layer of the network is linear.

(2) The network has NV inputs and p outputs, both of which are specified as the the
input and output dimensions, respectively. Moreover, the network has fewer

outputs than inputs (i.e., p < N).

{V} constitute the synaptic weights of the network tha are subject to training [62].
{vji} connects the source node i in the input layer to computation nodes j in the
output layer, where i =1,2,...,N and j =1,2,...,p. The output u; of the neuron
J» produced in response to the set of inputs {b; | i =1,2,..., N}, is given by (see

Fig. 4.4) :

p
u; = Z‘Uj,‘bj ] = 1,2,...,]) (429)

=1

The synaptic weight v;; is adapted in accordance to the GHA technique as given

by [62] :

i=1,2,....N
el (4.30)

J
Avji = 7 |uibi — u; Y v
k=1

where Auvj; is the change applied to the synaptic weight vj;, and 7 is the learning-

rate parameter.



Chapter 4: Proposed Solutions 82
b -

3) Features Extraction bj Input Reconstruction

Figure 4.4: Signal-Flow Diagram Representation of GHA Algorithm.

Algorithm Summary:

1. Initialize the synaptic weights of the network, v;;, to small random values at time

index n = 1. Assign a small positive value to the learning-rate parameter 7.

2. Forn=1,j=1,2,...,p,and i = 1,2,..., N, compute

uJ(n) = zj:l vj,-(n)b,-(n)

Avji(n) =1 [u,-(n)b,-(n) - u;(n) i vki(n)ur(n)

k=1
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where b;(n) is the ith element of the N x 1 input vector B(n) and p is the

desired number of principal components.

3. Increment n by 1, go to step 2, and continue until n = L where L is the number

of input trainining vectors.

4.3.3 Decision Making

The pattern classification is the last processing step in the proposed defect classifi-
cation system, which is required to discriminate between different defects that may
be present in the material under test. Features extracted from WVD ”"images” us-
ing Sanger’s algorithm are processed by an ANN classifier for final decision-making
about defect present in the inspected material. The classifier uses a supervised
learning [64] based on a multilayer perceptron (MLP). The design of the latter is
motivated by the fact that it is able to construct arbitrary decision boundaries be-
tween variours vectors in the defect feautures space [26]. The MLP consists of three

different layers :

1. Input layer of dimension equal to that of the output of the second block in the

classification scheme (see Fig. 4.2).
2. Hidden layer of variable dimension.

3. Output layer of dimension equal to n = log,(D) where D represents the number

of possible defects to be classified.
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Figure 4.5: MLP Classifier Network Architecture.

It should be noted that the output of the MLP is of binary type, where each binary
combination indicates one defect type. To force the output of the MLP network to
binary, a competitive learning rule is used [64]. In competitive learning, the output
neuron with the largest analog value is set to one and all the other outputs are set

to zero. Fig. 4.5 gives the architecture of the MLP classifier network.

4.3.4 Training Procedures

The proposed defect classification system, using a modular learning paradigm, in-

corporates two distinct learning strategies:
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1) Unsupervised learning on WVD "images” using Sanger’s algorithm.

2) Supervised learning on " optimal” features extracted from PCA network.

The overall training of the classification systems incorporates :

a) A Preprocessing step where the HOS-based deconvolution technique, described

previously in this chapter, is used to estimate hy(k) from z(k) and y(k). The

deconvolved IR is the input database for the next processing step.

b) WVD computation for each defect IR hy(k) using the discrete standard WVD
formula given by Eq. 4.21. The obtained "images” constitute a new 2D

database.

c) Training of the PCA network, using Sanger’s algorithm, with each WVD database
obtained from the WVD computer of the previous step. Details about the

training are given below.

d) Training of the MLP network to learn the different possible defects with ” opti-
mally” reduced features obtained from the step (c) above, using the classical

backpropagation (BP) algorithm [64].

PCA Network Training

The PCA network training is based on Eq. 4.30. To be specific, for a successful use

of the proposed scheme, it is assumed that :
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(i) The training database consists of D WVD "images” datasets corresponding to

D-1 artificial defects and the flawless case.

(ii) The datasets are labeled D) for the flawless case and D) for the artificial

defect 1.
(iii) Each dataset contains A WVD "images”.

The procedure for training the PCA network is given below :

PCA Network Training Algorithm:

1. For i = 1, start with dataset D) of the flawless case.

2. Initialize the synaptic weights of the network, V), (See Eq. 4.30) to small random

values. Assign a small positive value to the learning-rate parameter 7.
3. Pick a WVD "image” from D) at random.
4. Use Sanger’s algorithm.
5. Put back the learned WVD "image” in the set D).

6. Go back to step 3 if Sanger’s algorithm has not converged. Otherwise go to step

7.

7. Save the converged synaptic weights V() corresponding to dataset D).
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8. Increment i by 1, to train with the next dataset D(+1), go to step 2, and continue
until i = D.

Decision Making Using MLP Network With BP Algorithm:

Ouly few differences exist between the training paradigms used in the PCA and

MLP networks that can be summarized in :

(i) An unsupervised learning technique governs the PCA network using GHA algo-

rithm.
(ii) WVD "images” constitute the training input to the PCA network.
(iii) No target outputs are needed for the PCA network.
(iv) The MLP network is trained with a supervised scheme using the BP algorithm.

(v) The MLP network is trained using the output of the PCA network as training

vectors.

(vi) The MLP network requires the presence of target/reference outputs. The ref-

erence is the binary representation of each artificial defect .

Given these differences, it should be noted that the training procedure for the MLP
network is similar to that used for PCA network that is presented previously, except

that there is error feedback to the input of the MLP network. The procedure for
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training the MLP network is as follows :

MLP Network Training Algorithm:

1. For i = 1, start with dataset D{!) of the flawless case, where D{) represent the

” optimally” reduced features obtained from the PCA network for defect i.

2. Imnitialize the synaptic weights of the network, Wl(i), and W'zi) to small random

values. Assign a small positive value to the learning-rate parameter p.

3. Pick a features vector from D{) at random, along with the corresponding target

output.
4. Use Back Propagation BP algorithm [64].
5. Put back the learned features vector in the set D).

6. Go back to step 3 if the BP algorithm has not converged. Otherwise go to step

7.
7. Save the converged synaptic weights Wl(i) and W2(i) corresponding to dataset D{.

8. Increment i by 1, to train with the next dataset DG+1), go to step 2, and continue

until ¢ = D.
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Computer Simulation and

Experimental Results

The applicability of the proposed HOS-based deconvolution and defect classification
techniques presented in Chapter 4, to both synthetic and experimental ultrasonic
signals, is examined in this chapter. For the sake of objectivity, the performance
analysis of the proposed deconvolution technique is carried out to study the effects

of different implementation parameters such as :
1) The data length of the involved ultrasonic signals.

2) Estimation procedure used in the computation of the HOS quantities such as

cumulants, polyspectra and polycepstra.

3) Signal-to-Noise Ratio SNR level used.

89
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4) Statistical properties of the additive noise [n(k)].

It is worth mentioning that the performance analysis is carried out exclusively using
synthetic signals assuming a valid ultrasonic model. In this case, comparisons are
made possible given that the knowledge about the true defect model is available.

In real ultrasonic data, the definition of a valid comparison criterion is a difficult

task [63].

5.1 Computer Simulation

5.1.1 Introduction

The simulated ultrasonic signals, used throughout this chapter, follow the following

simple model representing real ultrasonic inspection systems.
The Model: In this model, the transducer and the propagation paths are assumed

to be LTI systems. The reference signal z(k) is modeled as a shifted version of the

transmitted ultrasonic pulse. In this case, the reference signal r(k) is written as [1]

z(k) = A(k — 1,) cos [27 fo(k — 7)) (5.1)
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where 7, is the time delay introduced by the propagation paths, f, is the transducer
center frequency, and A(k) is the envelope of the transmitted ultrasonic pulse that

is a Gaussian pulse and is given by :

2
A(K) = exp [— (2”“'“ ) } (5.2)

g

where ¢ = 1.5 7. This simulation model presents certain characteristics that can be

summarized in :

1) It is convenient for use in nonparametric deconvolution schemes.

2) z(k) is the output of an analog modulation system, i.e., amplitude modulation

(AM).
3) Modulated signals are usually characterized by pronounced resonance modes [30].

4) Parametric modeling of pronounced resonance and antiresonance models yields

poles at the vicinity of the unit circle [30].

A simulated reference signal following this model is illustrated in Fig. 5.1. A
parametric model for this signal is obtained using the prediction error method
(PEM) [4, 5]. The pole-zero map of the obtained parametric ARMA model is
shown Fig. 5.2. The closeness of the poles to the unit circle has the undesirable
effect of making the cepstral parameters A™ and B(™ of longer duration. This

leads to the use of larger values of p and ¢ in Eq. 3.51 (See Chapter 3 for details),
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Figure 5.1: Synthetic Ultrasonic Reference Signal x(k).

requiring a larger system of linear equations in Eq. 3.533, or the use of larger FFT
lengths in the FFT-based solution of Eq. 3.55. The cepstral parameters A(™) and
B™) corresponding to the ARMA model of the reference signal z(k) are shown in
Fig. 5.3. For a fast decay of A(™ and B(™) exponential windowing may be used
in the HOS domain to keep the poles far away from the vicinity of the unit circle.
Such a solution preserves the stationary character of the involoved signals unlike 1-d

exponential windowing on the signals themselves.
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Figure 5.2: Pole-Zero Map of (5,5) ARMA Model of Reference Signal x(k).
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Figure 5.3: Cepstral Parameters A‘™) and B(™) of Reference Signal x(k).
5.1.2 Artificial Defect Models

The adopted ultrasonic model follows the linear formulation of Eq. 1.1, i.e., :

y(k) = z(k) * hq(k) + n(k)

For a qualitative analysis of the proposed HOS-based deconvolution method, differ-

ent models for hy(k) are proposed. These models are selected based on :
= The model must quantify the behavior of the real defects existing in material.

= The model must represent different possible experimental situations.
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= The model can be either parametric expressed in terms of parameters coeffi-

cients or nonparametric formulated in the time or frequency domain (i.e., IR

or TF).

=> The real defects IR’s can be either minimum or mixed phase systems, so must

be the selected models.

Bearing in mind these facts, five (05) models are selected to represent different

defects situations, namely;

1) Minimum phase (MP) moving average (MA) system, i.e., nonparametric model
to compare results obtained using SOS-based deconvolution methods. This

model is called System I.

2) Nonminimum phase (NMP) MA system, to illustrate the contribution of the
proposed HOS-based schemes to preserve the true phase character of the defect

IR. It will be refered to this model as System II.

3) MP AR model, i.e., a parametric model which better models the oscillatory

character of the defects IR’s. The third model is called System III.

4) MP ARMA model that represents the general case in the deconvolution step.
Minimum phase is selected to be able to compare with results obtained using

SOS-based algorithms such as PEM. This model is named System IV.
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Figure 5.4: IR’s of the Different Selected Models.

5) NMP ARMA model to be in agreement with experimental results using real
signals that are known to be of NMP character. In this case, it is shown
later that the proposed methods are able to discriminate between spectrally
equivalent ARMA systems (SE). It will be refered to this model by System V

in the remaining of this chapter.

The selected models are illustrated, by their IR’s, in Fig. 5.4. Their corresponding
TF’s are shown in Fig. 5.5. Fig. 5.6 illustrates the cepstral parameters A(™) and B(™)
associated with all the selected models. Only the first 20 parameters are shown (i.e.,
m = 1,2,...,20). Note from Fig. 5.6 that the B(™)’s parameters associated with

the MP systems are vanishing since they convey information about any maximum
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Figure 5.6: Cepstral Parameters A(™) B(™) of the Different Selected Models.

phase term existing in the model.

5.1.3 The Deconvolution Method

To illustrate the efficiency of the HOS-based method, the deconvolution of System
IT is investigated. It should be noted that System I can be deconvolved using SOS-

based methods since it is a MP system.

Deconvolution of System II

System II represents a nonparametric model that is characterized by its IR or TF

only. The deconvolution of this model is performed at different SNR levels where
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Figure 5.7: True and Estimated IR’s of System II Using the Bicepstrum Method at
30 dB (a) and 0 dB(b).

the additive noise is white Gaussian. Fig. 5.7a shows the true and estimated IR’s at
SNR = 40 dB. The case of SNR = 10 dB is illustrated in Fig. 5.7b. The truncation
points for the cepstral parameters are both set to 7 (see Eq. 3.53 for details). The
selection of the truncation point is based on Fig. 5.3 which gives information about
the extent of the cepstral parameters A(™) and B™ in the quefrency domain [13].
However, it should be noted that the selection of p and g follows an empirical rule
suggested by Pan and Nikias [43]. Some remarks regarding the performance of the

bicepstrum method in the deconvolution of System II are made :
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== Due to its nonparametric formulation, the bicepstrum method does not require

any a priori knowledge about the order of the underlying model.

= The empirical rule for the selection of the truncation points p and ¢ can be
based on a knowledge about the positions of the system poles and zeros in the

Z-plane. This can drastically reduce the dimension of the system of Eq. 3.53.

=> The scale ambiguity can be removed by using Hatzinakos-Nikias gain recovery

method [42].

Performance in Noise Analysis

As stated previously, the bicepstrum method is characterized by its robustness to the
addditive noise. This proposed deconvolution scheme produces accurate estimates
of the true IR at extremely low SNR. levels. Also, the estimated IR has excellent
resolution of the peaks and smoothness. Additive white Gaussian noise is generated
corresponding to different SNR levels ranging from 40 dB to -5 dB. The performance
measure is given by the norm of the error defined as :

L -
E =Y [has) — h(3)]" (5.3)

=1

where i(k) represents the estimated defect IR using the deconvolution method. The
performance of the bicepstrum method at different SNR levels is shown in Fig. 5.8.

The error norm is normalized with respect to that of the Wiener filter method.
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For comparison, the performance of Wiener filter A method is also included. From
Fig. 5.8, it is clearly seen that the proposed bicepstrum method outperforms all its

SOS-based counterpart schemes. For the sake of analysis completeness, it should be

kept in mind that :

e Wiener filter method (both A and B schemes) has satisfactory performance at

relatively high SNR levels.

e At moderate and low SNR levels, Wiener filter method performance is severely
affected by the noise. This is also valid for Neal’s optimal Wiener filter. This
calls into question the practical usefulness of the optimality of Neal’s Wiener

filter.

e The IR estimates obtained using the bicepstrum method are usually high resolu-

tion and accurate.

e Bicepstrum method is robust to the additive Gaussian noise, and produces ac-
curate estimates at very low SNR levels. However, this achievement is made
possible only at the expense of a drastic increase in the computational com-

plexity.

Analysis of the Noise Statistics Effects

The analysis of the noise statistics effects on the performance of the bicepstrum

method is carried out using the following noise statistics :
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Figure 5.8: Bicepstrum and Wiener Filter A Methods versus SNR.

1. White Gaussian noise.

2. Correlated Gaussian noise using an AR correlating filter.
3. White Uniform noise.

4. White Laplacian noise.

White two-sided exponential noise.

(S]]

It is worth mentioning that all the noise types listed above belong to the symmetrically-

distributed noise class, which is known to have zero third-order statistics (cumulants
and bispectra) [30] if the whiteness assumption is satisfied [47]. The colored Gaus-

sian noise is obtained by passing a white Gaussian noise through a correlating AR
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Figure 5.9: ACF of : (a) typical white Gaussian noise. (b) Correlated gaussian
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filter that has the following transfer function :

1

= 15kt (5.4)

H.-(2)

where the factor k is a parameter that controls the correlation of the colored Gaus-
sian noise at the AR filter output. The ACF of a white Gaussian noise is shown in
Fig. 5.9(a). The ACF of the output of the correlating AR filter for k = 0.9 is illus-
trated in Fig. 5.9(b). The performance of the bicepstrum method in the presence of
the different noise distributions previously introduced is shown in Fig. 5.10 in the

case of System II. From this figure, it is seen that the bicepstrum method has a
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Figure 5.10: Bicepstrum Method Performance in Different Noise Statistics (System

1I).

similar performance in the different cases, with a slightly better performance in the

case of the white Gaussian noise. From a theoretical viewpoint, HOS are assumed

to be insensitive to all these noise distributions, the slight variations in performance

in our simulation are possibly due to :

e Gaussian and uniform noises are generated using professional routines in the

MATLAB® environment. The other distributions are generated based on

personal routines using basic random variables transformations [31]. These

routines are not tested in a statistical sense to verify their exactitude.
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Analysis of the Truncation Points Effects

The performance of the bicepstrum method in the deconvolution of the five differ-
ent selected systems is shown in Fig. 5.11. The additive noise is white Gaussian. It
clearly appears that the bicepstrum method performs better in the case of the de-
convolution of System II. This is due to the fact that the selected truncation points
in this case; p = 7 and ¢ = 7; are more suitable for the case of System II. This fact
highlights the importance of the choice of the truncation points and hence suggests
the study of the effects of this choice on the performance of the bicepstrum method.
To better see these effects, consider Figs. 5.12- 5.14 where the true and estimated
IR’s of System II, System III and System V, respectively, are shown for SNR level
of 5 dB. It is worth mentioning that the truncation points (p and q) in the previ-
ous figures are set to 7. This gives us more insight about the performance of the
bicepstrum method when these points are not appropriately selected. The cepstral
parameters shown in Fig. 5.3 represent a good tool for the selection of these points.
It is clear from Fig.5.3 that a choice of p = 7 and ¢ = 7 in the case of System III
and System V has the undesirable effect of truncating many non-zero cepstral terms
that contribute in the system IR. This truncation can be thought of as Gibbs effects
in the quefrency domain. Hence, Fig. 5.3 suggests that for the last two systems, a
choice of a larger order is more appropriate say 10 or 12 for the parameters p and

q. The performance of the bicepstrum method for diffent choices of the parameters
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Figure 5.11: Bicepstrum Method Performance for the Five Selected Systems in

White Gaussian Noise.



Chapter 5: Computer Simulation and Experimental Results 107

10 ST M T ooy M T A2 n r— T
~—— Tue IR
ST ~——— Estimated IR
[}
v
.—3- ‘/
g' 0 S—
<
c
-5F
10 eadgda e —l A 1 e d e
20 10 0 10 20
Sample Number

Figure 5.12: True and Estimated IR’s of System II at SNR = 5 dB.

p and q is given in Fig. 5.15 for SNR = 30 dB in the case of System III and System
V. It should be noted that the combinations of the values of p and q range from (5,
5) to (9, 9). In Fig. 5.15, the obtained performance does not necessarily correspond
to the higher values of p and q. The performance index (i.e., the error norm) is not
directly proportional to the values of p and q. Table. 5.1 shows the relation between
the error norm and the values of p and q. Table 5.1 reveals interesting insights about
the influence of the choice of (p, q) values on the performance of the bicepstrum.

Some remarks about Table 5.1 are given below :

e System III is of MP type. However, it requires the use of q which corresponds

to the maximum phase terms that do not exist theoretically in its IR. This is
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Figure 5.13: True and Estimated IR’s of System III at SNR = 5 dB.

probably due to the inherent phase shift intrduced by HOS.

¢ The bicepstrum with System V achieves better performance when using greater

values for p and smaller ones for q (see Table 5.1).

Fig. 5.15 indicates that the choice of the truncation points highly affects the quality
of the estimated IR. This is due to the loss of information when some contributing
cepstral points (A™) and B{™ for large values of m) are not included in the solution
of Eq. 3.53. This problem clearly appears when dealing with the deconvolution of
real ultrasonic signals as shown in the results obtained using experimental data.

Also from the knowledge gained in this simulation study, the following must be
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Figure 5.14: True and Estimated IR’s of System V at SNR = 5 dB.
observed :

a) Any oscillation present in the estimated defect IR must be contributed to the

selected truncation points.

b) HOS-based parametric modeling methods represent a good tool for extracting
a-priori information about the positions of the poles and zeros of the system

under analysis. This procedure may constitute a preprocessing step for a suc-

cessfull deconvolution procedure using the bicepstrum technique. Note also
that the bicepstrum itself may give an idea about the extent of the cepstral

parameters A™ and B™ in the quefrency domain for the linear case [51].
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To conclude this analysis part, it is worth mentioning that one of its merits is that
the analysis of the effects of p and q has not been documented in any published

work related to polycepstra.

5.1.4 Automatic Defect Classification System

To highlight the practical merit of the new defect classifier system, a case study is
performed using synthetic ultrasonic signals involving the classification of defects
using their IR’s obtained from the proposed HOS-based deconvolution scheme. The

collection of the defects data is performed as follows :
1) Use the five synthetic defects systems (System I, ..., System V).
2) Set the SNR to 25 dB.

3) Apply the bicepstrum-based deconvolution technique to estimate the systems

IR’s.
4) Obtain for each system 50 different IR estimates.

5) The overall 250 estimates constitute the training (exemplar) set for the proposed

intelligent classification system.
6) Set the SNR to 20 dB.

7) Repeat Steps 3-4.
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Figure 5.16: WVD "Images” of the Five Systems IR’s.

8) The new 250 IR estimates form the testing set for the proposed defect classifier

system.

WVD Computer

To appreciate the importance of the WVD block for the defect classification problem
at hand, WVD "images” of the artificial defects IR’s and real ultrasonic signals are
presented. Fig. 5.16 shows the WVD "images” of the IR’s of the five defects systems.
From these figures, it is clear that WVD “images” present a combined information
about the behavior of the defects in both time and frequency domains. Also note

the existence of cross-terms in the different WVD “images” that make the latter
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an attractive tool in the problem at hand. To clearly see the cross-terms effects,

consider the following signal :

s(t) = s1(t) + so(t)

where
exp(j2xfit) 0<t <.
si(t) =
0 otherwise.
and
exp (J2mfat) t3 <t < t3.
so(t) =

0 otherwise.

with fi < fz and ¢, < ¢; < t3. Fig. 5.17 shows the signal s(t). Theoretically, any
JTFA distribution must have only two peaks corresponding to f; and f in the case of
the signal s(t). However, WVD will have in addition to these two peaks, a third one
corresponding to the interaction between f, and f, located at f, = ﬁ%ﬁ [56]. These
cross-terms allow WVD to preserve the information pertaining to the interaction
between the different frequency components existing in the defects IR’s [56]. The
cross-terms effects are illustrated in Fig. 5.18. The cross-terms appear in Fig. 5.18

as the center line located at the frequency f, = ﬁ%ﬁ In Fig. 5.18, the frequency
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Figure 5.17: Time Representation of Signal s(t).

increases in the column direction from left to right and the time in the rows direction
from up to down. Both positive and negative frequencies are shown. The cross-terms
clearly appear and are located at the midfrequency f. = ﬁ%ﬁ The analytic form
of s(t) using the Hilbert transform reduces the effects of the cross-terms. Fig. 5.19
shows the WVD of s(t) using its analytic form. Only the positive frequencies are
present in Fig. 5.19 due to the analytic form of the signal used. Note from Fig. 5.19
the clear representations in the WVD "images” when the analytic form of the signals

is used.
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Exact WVD

Figure 5.18: Cross-Terms Effects in the Exact WVD Image of s(t).
Feature Extraction

Feature extraction is a difficult task and problem-dependent as reported by Chen [2].
In the proposed scheme, WVD "images” corresponding to each defect are compressed
using GHA algorithm in an unsupervised fashion. This kind of training requires

many passes through the images of interest to optimally and globally learn their

statistical characteristics, unlike the KLT method which is locally optimal [62] and

relies on the stationarity assumption of the images being coded or compressed [64].
Fig. 5.20 shows the learning curves of the unsupervised algorithm when applied on
the WVD representing the five different defects. The step size is set to 5.10~3 for the

first four systems. However the algorithm failed to converge in the case of System
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Analytic WD

Figure 5.19: Analytic WVD Image of s(t) with Reduced Cross-Terms.

V when using this step size. In last case, the step size is set to with 5.10~%. The
learning curves are shown only for the first 200 epochs ! of the convergence process.
To see the effect of the step size on the convergence rate of the GHA algorithm,
the latter is set to 1072 for the first four systems and to 10~3 for System V. The
corresponding learning curves are illustrated in Fig. 5.21. Note that the learning
curves in both cases are not smooth because no ensemble averaging is performed,
i.e., the curves are obtained for only initialization of the PCA random weights.
From the carried simulation, it is concluded that the step size cannot set to a value

greater than 102 for the first four systems and 10~3 for the last system. From the

1One epoch represents a complete pass through one WVD "image”.
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comparison of the last two figures, it appears that the GHA algorithm converges

after 50 epochs. Also, it should be noted that the steady state cannot be reached

after only two passes as reported by Sanger [62]. In both cases, the step size is set

fixed unlike Sanger [66] who used a variable step size according to the convergence

of the PC vectors to their final values. Using the SVD of the compressed WVD

"images”, the most dominant singular values are retained as effective features and

fed into the ANN defect classifier block. All singular values of the compressed WVD

"images” are illustrated in Fig. 5.22. From this figure, it clearly appears that the

first 10 singular values, in all cases, are sufficient to describe the different feature

spaces.
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Defect Classification
Two different sets of features are fed to the ANN classifier block as follows :

1) Features set of estimated IR’s at 25 dB. These features constitute the training

set.

2) Features set of estimated IR’s at 20 dB. These features constitute the testing
set.

The performance of the classifier block is represented by its learning curve in Fig. 5.23.
Five independent training realizations are shown in Fig. 5.23(a). Their ensemble
average is shown in Fig. 53.23(b). It should be noted that one epoch represents a
complete pass through all the vectors of the training set. The ANN classifier block
has the following architecture :

1) Input layer consisting of 10 neurons. The input vector is formed by the 10 most

dominant SV’s of the compressed WVD "images”.
2) First hidden layer with 8 neurons.
3) Second hidden layer with 5 neurons.

4) Output layer having 3 neurons. The output is of binary form, where each binary

combination represents one defect class as shown in Table 5.2.

It is clear from Table 5.2 that not all the binary combinations correspond to de-

fects classes since among 16 combinations only 5 ones are being used. The remaining
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binary combinations are considered as unknown or unclassified defects classes. The

results of the defects classification using both sets of features are summarized in

Table 5.3. A second network architecture is proposed using :

1) Input layer consisting of 10 neurons. The input vector is formed by the 10 most

dominant SV’s of the compressed WVD "images”.
2) One hidden layer with variable size.

3) Output layer having 5 neurons. The output is of binary form, where only one

output is activated to indicate the classified defect class.

However, with an increasing number of hidden neurons, the second network did not
achieve the desired classification. Comparing both networks architectures highlights

the following :

o The first network has two hidden layers which enables it to efficiently and rapidly

learn the defects feature space.

o The defects space is too complicated to be resolved by only one hidden layer.
Hence, the defect classification problem at hand constitutes a multidimensional
space approximation problem [26, 64] that cannot be solved using only one

hidden layer.

¢ The computational complexity is higher when using the first network architecture.
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From the carried simulation, the ANN classifier block needs at least two hidden

layers to converge.

5.2 Experimental Results

To highlight the practical merits and limitations of the proposed HOS-based de-
convolution scheme, different artificial defects are created in the test material. The
experimental data is obtained from the inspection of the test material. The dif-
ferent defects geometries and sizes considered are illustrated in Fig. 5.24. Results
using SOS-based deconvolution techniques reviewed in Chapter 2 are also shown for
comparison purposes. The main experimental results shown here are those corre-
sponding to the specimen with defect of angular cut at 10°. The test is performed
using an ultrasonic transducer whose center frequency is 15 Mhz. The sampling
frequency is 100 MHz. It is refered to this defect by T15A2. This flaw specimen
is illustrated in Fig. 5.24. The reference signal obtained from the flawless specimen
AO using a 15 MHz transducer is shown in Fig. 5.25a. The signal is called T15A0.
The echo from the defect A2 at 15 MHz is shown Fig. 5.25b. It is refered to this

signal by T15A2.
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Figure 5.24: Artificial Defects Considered.
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Figure 5.26: IR Using Wiener Filter A Method.
5.2.1 SOS-Based Deconvolution

Both Wiener A and Wiener B filters are used to estimate the IR of defect T15A2.
The deconvolution results are shown in Fig. 5.26 and Fig. 5.27. The obtained results
are in good agreement with those obtained by Chen and Sin [7, 8] for the same
desensitizing factor q equal to 0.1 max|X(f)|. However, it should be noted that
in the case of Wiener B, the prewhitening filter order is chosen according to the
SVD of the correlation matrix of both reference and echo signals. The parametric
formulation of Wiener B filter allows it to yield smoother and better resolution defect

IR than that of Wiener A. Fig. 5.28 shows the singular values of the corrrelation
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Figure 5.27: IR Using Wiener Filter B Method.

matrices of both reference and echo signals T15A0 and T15A2, respectively. The IR
obtained using the spectral extrapolation (SE) method is shown in Fig. 5.29. The
method extrapolates the spectral densities of the signals in both directions of the
frequency domain. This extrapolation is performed using an AR model of order 10.
The comparison of Figs. 5.26- 5.28 and Fig. 5.29 shows that the obtained IR’s are
quite similar. Also, time domain SOS-based methods are tested. The estimated IR
using the LS method is shown in Fig. 5.30. Both signals were aligned before running
the algorithm (7, 8] using the cross-correlation lag at which occurs the maximum
correlation between the two signals. The lag of maximum correlation is found to be

equal to -17 with a maximum normalized correlation level of -0.601. Hence, the echo
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Figure 5.29: IR Using Spectral Extrapolation Method.

signal T15A2 is circularly shifted to the left side by an amount of 17 time samples.
It clearly appears that the defect IR is highly affected by the noise. This is due to
the ill-conditionning of the signal matrix using T15A0 which has many null entries
making it almost singular [67] (see Chapter 2 for details). In an attempt to improve
the resolution of the LS method, a solution based on SVD is proposed. Both signals
are aligned and truncated in the time interval of [225 : 360]. The estimated IR is
shown in Fig. 5.31. The truncation effects on the obtained IR clearly appear in this
figure. However, it should be noted that this truncation interval are found to the best
after many trials. The correlation method is implemented to yield the estimated

defect IR shown in Fig. 5.32. This method has defined confidence limits for the



Chapter 5: Computer Simulation and Experimental Results 130
0.6 T Ll L) L) 1

IR Amplitude

04}

200 400 600 800 1000 1200
Sample Number

-0.6 -
0

Figure 5.30: IR Using Time Domain LS Method.

estimated IR. The length of the correlation used is 128. The prewhitening filter is
selected to be an AR model with order 10. The computed confidence limits at 95 %
clearly show that the estimated IR is not consistent. This is mainly due to the nature
of the ultrasonic signals where the poles closeness to the unit circle make their true
IR’s larger which will necessitate the solution of a very large system of equations
which is usually ill-conditioned [67). Finally, the homomorphic deconvolution is
applied using the complex cepstrum method. In theory, this methods works only if
both signals are well separated in the quefrency domain, which does not hold in the
case of experimental ultrasonic NDE signals. The result shown in Fig. 5.33 confirms

this assertion. Clearly, the performance of homomorphic deconvolution reported
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Figure 5.31: IR Using SVD-Based LS Method.

by Bhagat and Shimmin [68] cannot be achieved when dealing with real ultrasonic
signals. This is due mainly to the fact these signals do not necessarily follow the

models assumed by Bhagat and Shimmin [68].

5.2.2 HOS-Based Deconvolution

The bicepstrum method yields the IR shown in Fig. 5.34 for cepstral orders set
both to 6. The obtained IR has a high resolution and satisfactory smoothness.
The proposed method requires the estimation of a cumulants matrix of size (91 x
36) in the case of p = ¢ = 6. It is worth mentioning that the data used contains

only 512 time samples. To demonstrate the performance of the bicepstrum, the
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Figure 5.32: IR Using Correlation Method.

bispectrum has been used to estimate the defect IR. The deconvolution result is
shown in Fig. 5.35. As shown in the figure, the method yields a noisy IR estimate.
This is due to the short data used in the estimation which is of 512 length. Elgar et
al. [69, 70] have investigated the statistics of the bispectrum and the trispectrum and
noticed that the required data length to yield low variance polyspectral estimates is
of the order of 10000 data samples. The oscillations seen in Fig. 5.35 are also due to
the signal recovery method which is based on the Matsuoka-Ulrych algorithm [48].

The effects of short data length on the bispectrum estimation are given in [30].
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Figure 5.33: IR Using Complex Cepstrum Method.

5.3 Discussion and Conclusion

5.3.1 Discussion

In this chapter, the application of both SOS- and HOS-based techniques to ultra-
sonic NDE deconvolution is treated. A new HOS-based approach is proposed. In
the computer simulation part, to make the deconvolution results comparable and
accomodate both deconvolution classes (SOS and HOS), appropriate data lengths
and simulation conditions are selected. For an objective comparison between both

approaches, it must be kept in mind that :

e SOS-based methods produce longer defects IRs.
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¢ Wiener filter method is the best SOS-based deconvolution method as reported by
Chen and Sin (7, 8] and verified experimentally in this chapter. Hence, most

comparisons are made using the latter technique.

e An improved version of the LS method is proposed in this part. It is based on

the SVD solution of the linear system.

e Results using the complex cepstrum-based deconvolution are presented for com-
parison with those obtained using the bicepstrum and verify the failure of the

assertion made by Bhagat and Shimmin [68] in practice.



Chapter 5: Computer Simulation and Experimental Results 135

1 . L) o ) i T

0.8f

061

0.4f

0.2+

IR Amplitude

-02r

-041

~06F

-0.8 1 i L ] 1
0 20 40 60 80 100 120 140

Sample Number

Figure 5.35: IR Using The Bispectrum Method.

o The proposed HOS-based method produces shorter defects IR’s. This is due to
the fact that the IR length is governed by the choice of the cepstral orders p

and q.

The obtained results are generally in good agreement with the theory which states
that HOS are insensitive to Gaussian and any white symmetrically-distributed noises
(in the case of TOS). In the case where existing defect in the material is characterized
by a system which has singularities are located in the vicinity of the unit circle,
the underlying system IR will be larger enough to make its output more likely
Gaussian by virtue of the CLT theorem [71]. This problem does not rise with SOS-

based methods which inherently assume the data Gaussian. In this case, HOS-based
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schemes will fail to recover the defect IR [71]. However, for the proposed bicepstrum
method, a solution is possible by using exponential windowing in the HOS domain.
This windowing affects the statistical shape of the system output without altering
its stationarity. From the implementation point of view, SOS-based methods are not
as affected by the data length unlike their HOS counterparts. Also, they are known

to be computationally efficient compared to the latter. Their major limitations are

e Poor performance at moderate and low SNR levels.

¢ Phase insensitivity since they always vield minimum phase systems.

5.3.2 Conclusion

At the end of the simulation carried out in this chapter where the performance
analysis of the proposed ultrasonic NDE processing techniques, some conclusions

are given :

1) The bicepstrum method is a very efficient nonparametric HOS-based scheme
with improved perfomance even in the case of small data length as shown
in the case of experimental data. Hence, It is suggested for ultrasonic NDE

deconvolution in severe contexts such as correlated noise and low SNR levels.

2) The nature of the experimental ultrasonic signals do not allow to have larger data

lengths. The large data length will consist mainly of identically zero samples
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which are located at both tails of the ultrasonic echo. Hence, the experimental
ultrasonic NDE inspection system must have the possibilty to record different
realizations of the echo signals in order to have a consistently large amount of
data to produce low variance HOS estimates. This is made possible in the case
of ultrasonic B-scans where different measurements are recorded at different

transducer positions.

3) The proposed defect classification scheme due to its modular architecture can be
adapted to learn new defects features where the training is performed inde-
pendently. This enables the proposed scheme to "adaptively learn” the defects

feature space where the size of the ANN network can be increased to handle

more difficult contexts.
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l System III [ System V |
(P,q) Comb. Index | (p,q) Values | (p,q) Comb. Index | (p,q) Values
0 (5,5) 0 (6,6)
1 (5,6) 1 (6,7)
2 (7,9) 2 (6,5)
3 (7.7) 3 (8.6)
4 (6,5) 4 (5,5)
5 (9,9) 5 (5.,6)
6 (6,7) 6 (6,8)
7 (8,6) 7 (8.8)
8 (6,8) 8 (7,7)
9 (7.6) 9 (7.6)
10 (9,7) 10 (7,9)
11 (6,6) 11 (9,7)
12 (8,8) 12 (9,9)

Table 5.1: Effect of the (p,q) Values on the Bicepstrum Performance.

Defect / Output | Output &g | OQutput b, | Output b,
System I 0 0 0
System II 1 0 0
System III 0 1 0
System IV 1 1 0
System V 0 0 1

Table 5.2: Output Binary Combination of Defects Classes.

Procedure | Training at 25 dB | Testing at 25 dB | Testing at 20 dB

Results 96 % 96 % 80 %

Table 5.3: Classification Performance Using Both Features Sets.
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Chapter 6

Conclusions and Suggested

Future Work

6.1 Summary

Motivated by the recently increased interest in the use of HOS, deconvolution of ul-
trasonic NDE signals based on HOS and automatic defect classification using mod-
ular learning strategy are investigated in this thesis. A potential class of HOS-based
deconvolution is proposed based on polycepstra principles, along with its perfor-
mance evaluation through simulation, using computer generated and experimental
data. The proposed method exploit the properties of cumulants and polycepstra.
As such, its implementation depends on the knowledge of higher-order cumulants

of the involved signals. Also, being blind to Gaussian and all white symmetrically-
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distributed noises in the special case of third-order statistics (TOS), enables this

scheme to :

operate in high signal-to-noise ratio (SNR) domain.

operate efficiently in both white or colored Gaussian noise environments.

operate well in any white symmetrically-distributed noise environment.

preserve the exact nonminimum phase character of the underlying defect IR’s.

The bicepstrum method, of batch type, is described in Chapter 4. It is demon-
strated by means of computer simulations and comparisons with existing methods
(those described in Chapter 2), that the bicepstrum-based deconvolution method
performs effeciently with low sensitivity to additive white or colored Gaussian and
other white symmetrically-distributed noises. Main simulation results are summa-
rized in Chapter 3. It is shown in Chapter 4 that the estimation methods associated
with the proposed method can be complex and highly ill-conditionned due to the
singularities location in the Z plane. The solution is based on the application of
multidimensional exponential windowing in the HOS domain. The efficiency of the
proposed method is demonstrated through computer simulation and performance
analysis carried out in Chapter 5. For the sake of objectivity, it is highlighted that
the improved performance of the HOS-based method is achieved at the expense of

higher computational complexity and storage requirements, a limitation common



Conclusions and Suggested Work 141

to most HOS-based techniques. Finally, an automatic and intelligent defect classi-
fication system is developed. The proposed classification system consists of three
different functional blocks where each block is assigned a specific processing task.
The system uses JTFA to correctly handle any nonstationary character of the defects
IR’s and simultaneously combine time and frequency information. WVD ”images”
of the simulated defects IR’s are optimally compressed to yield efficient defects fea-
tures. The extracted features are fed into an ANN classifier for decision making
about the defect class using the backpropagation (BP) algorithm. The performance
of the classifier is characterized by an efficiency index defined as the number of
correctly classified defects versus the total number of defects. Last but not least,
the existing and proposed deconvolution methods are collected in a software tool-
box that has been developed at the growth of the computer simulation carried out
during this thesis work. The software toolbox, called NDETOOL, operates under

MATLAB® environment. It consists of :
1) Set of deconvolution routines based on SOS and HOS.

2) Automatic defect classification routines that implement the proposed defect clas-

sification system.
3) Set of utility routines for display, scaling, shifting and other capabilities.

The toolbox contains also a user-friendly demo routine called NDEDEMO. Further

deatils about NDETOOL can be found in Appendix A.
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6.2 Suggested Future Work

In this section, interesting investigations related to this thesis study are presented

for further research. The investigation topics are briefly descriped in what follows.

6.2.1 Exploitation of HOS symmetries

As reported in Chapter 3, HOS have useful symmetry regions, that can drasti-
cally reduce the computational complexity associated with the method described
in Chapter 4. The proposed method based on TOS can efficiently take account of

these symmetries.

TOS Symmetry:

Instead of estimating the third-order cumulants in all (71, 72) -plane, only cumulants
for lags defined by the wedge 7, < 7, and 7; > 0, 7 > 0 are computed, then using
the property of the symmetry of the third-order cumulants of real signals, the latter
are estimated only in the principal domain. Then, to estimate the bispectrum, the
method proposed by Bessios and Nikias [72] is used to compute the bispectrum on
polar rasters giving only the principal domain (see Chapter 3), again the twelve
symmetry regions of the bispectrum of real signals are exploited to determine the
bispectrum over the whole (w;, wy)-plane. Some efforts are made to develop com-

puter programs that estimate the HOS only in their respective principal domains.
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21

Figure 6.1: Principal Domain of Third-Order Cumulants c3(r, 72).

For illustration the principal domain of the third-order cumulants consists of the

wedge shown in Fig. 6.1.

6.2.2 HOS-Based Adaptive Deconvolution

It is assumed throughout this thesis that the used signals are stationary, hence,
ultrasonic NDE deconvolution is performed off-line (i.e., batch). It is expected
that the adaptive implementation will exhibit better performance when operating
in slowly-varying environments, where the algorithm is equipped with nonstationary

tracking capabilities.
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6.2.3 Non-Linear Deconvolution

Throughout this thesis, the system is assumed to operate linearly. It can be shown
that most of the existing nonlinearity statistical tests are not suitable for use with
ultrasonic NDE signals [73]. An intuitive test based on bicepstrum can be used
where the statistical analysis is possible, but appears to be more involved than that
of Hinich and Rao-Gabr [52, 33]. HOS can be used for deconvolution of non-linear
systems but the developed schemes are restricted to particular cases (i.i.d inputs
and second-order Volterra systems). Results reported by Kim and Powers [74] can

be investigated for a possible use in the ultrasonic NDE deconvolution problem.

6.2.4 Wavelets and wavelets Packets

Wavelets [75] is a rapidly evolving signal processing area with growing applications
in science and engineering. The proposed research in this direction consists of ex-
ploiting the denotsing property [75] of wavelets. Early work on noise reduction with
wavelets was very much lossy compression using DCT [75]. A threshold is chosen
and those transform coefficients with amplitude below the threshold are set to zero.
The choice of the threshold is usually empirical and application-dependent. Most

recently, Donoho [76] formalized this approach by an optimal soft thresholding tech-

nique. In soft thresholding, additional shrinkage by the threshold value is applied

on those coefficients that are not set to zero [76]. Denoising using soft thresholding
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achieves near optimal MSE that is obtained by using the theoretical KLT, subject

to the constraint that the denoised signal is at least as smooth as the pure one [73].

More details about soft thresholding can be found in 75, 76]. The proposed proce-

dure is as follows :

1) Take the wavelets decomposition of both reference and echo signals z(k) and

y(k) using any type of the available wavelets family.

2) Apply denoising techniques using hard or soft thresholding [76]. Abbate et
al. [77] proposed the use of a wavelet transform processor in ultrasonic flaw

detection. Their work is based on the wavelet property of denoising.

3) Reconstruct both signals using reliable approximations that retain the most im-
portant characteristics of the original signals. In wavelets literature, approx-
imations correspond to the low frequency content of the signal while details
correspond to their high frequency content which are usually affected by noise.

The reconstructed signals are called £(k) and §(k), respectively.
4) Apply the proposed HOS-based deconvolution technique on #(k) and §(k).

A block diagram for the proposed scheme using wavelets and HOS is given in Fig. 6.2.
An interesting test signal is proposed by Donoho [75, 76]. The pure and noisy version
of this signal are shown in Fig. 6.3. The SNR level is set to -0.5 dB. The denoised

signal using the wavelet decomposition by symmetric mother wavelet is shown in
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Mother Wavelet : w(k)

Figure 6.2: Block Diagram of Proposed Scheme Using Wavelets and HOS.
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Figure 6.3: Pure (a) and Noisy (b) Test Signal.

Fig. 6.4. The 5th decomposition level [75] is used in the reconmstruction of the

denoised signal.
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Figure 6.4: Denoised Signal Using Wavelet Decomposition With Symmetric Mother
Wavelet.



Appendix A
The NDETOOL Toolbox

At the growth of the computer simulation carried out during the thesis research
work, a set of different routines have been collected into a MATLAB-based toolbox,
called NDETOOL. The toolbox contains four different categories :

1) Routines for some of the SOS-based deconvolution schemes reviewed in Chapter
2. Table A.1 gives summarizes the main SOS-based deconvolution techniques
in the toolbox.

2) Routines for the HOS-based deconvolution methods presented in Chapter 4. It
should be noted that the parametric methods are based on available routines in
the Hi-spec toolbox [78]. Table A.2 summarizes the implemented HOS-based
methods in the toolbox.

3) Routines for performing special transforms such as the Wigner-Ville distribution,
and the parametric normalized bispectrum (bicoherence). The implemented
transforms are shown in Table A.3.

4) Routines for performing automatic defects classification using a multilayer per-
ceptron MLP, and WVD images compression using GHA algorithm. A sum-
mary is given in Table A 4.

The guided tour of the toolbox is implemented in the ndtdemo routine. The demo
is based on a graphical user interface (GUI) which allows interaction between the
toolbox and the user. Some of the interactive sessions are shown in Fig. A.1- A.5.
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Figure A.1: First Window of the Demo Routine.
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Figure A.2: Second Window of the Demo Routine.
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Figure A.3: Third Window of the Demo Routine.
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Figure A.4: Information Window of the Demo Routine.
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Appendix

at

D: The NDETOOL Toolbox 15

| SOS-Based Deconvolution Routines 1

wiener | Both Wiener A and B Filters
xcorr | Correlation Method

ndtls | LS Method Using SVD Approach
cepsl | Complex Cepstrum Method

Table A.1: Implemented SOS-Based Deconvolution Routines.

—

HOS-Based Deconvolution Routines j

direbisp | Direct Bispectrum Method Using Both Approaches
indbisp | Indirect Bispectrum Method
bicep | Complex Bicepstrum Method
bispsim | Direct Bispectrum Simulation
inbsim | Indirect Bispectrum Simulation
bicsim | Complex Bicepstrum Simulation
noise | Generation of Different Noise Statistics

Table A.2: Implemented HOS-Based Deconvolution Methods.

Transforms 1

wvd | Wigner-Ville Distribution

pwvd | Pseudo Wigner-Ville Distribution

bicoh | Normalized Bispectrum Using Parametric Approach

Table A.3: Implemented Special Transforms.

ANN |

PCA | WVD image compression using GHA Algorithm

matic | ANN for defect classification using a MLP

Table A.4: Implemented ANN Techniques.

Demo )

| ndtdemo

| Guided Tout to NDETOOL ]

Table A.53: GUI-Based Demo Routine
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