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CHAPTER 1
INTRODUCTION

1.1 General Background

Network optimization is one of the most important practical branches of math-
ematical programming. Its importance stems from the wide range of practical
problems which can be modeled as networks and the availability of efficient algo-
rithms for solving large network formulations. Efficient algorithms have resulted
from the specialization of the simplex method and the special data structures for
storage and manipulation of network data. The first algorithm developed for solv-
ing the network problem based on the specialization of the simplex method is by

Dantzig [22] and Johnson [51]. A simple representation of a network is shown in

Figure 1.1.

The structure of the network may also be described as J x J matrix (see

Kennington [3, 53]). Mathematically, the minimal cost network flow problem may

be stated as follows:

Minimize CX

subject to

(1.1)
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Figure 1.1 Network Representation.




where A is a node-arc incidence matrix, C is a cost matrix, U is a vector of
a maximum amount of flow on the arcs, b is a supply/demand vector, and X
is the decision variable representing flow on the arcs. Many practically known
problems are special cases of the network problem. These are the assignment,
semi-assignment, transportation, transhipment, maximal flow, and the shortest
path problems. The schematic relationships joining this basic network shown in
Figure 1.1 to other network flow programming problems are shown in Figure 1.2.
The central point in this figure is the pure, linear, minimum cost flow problem.
The problems listefi to the left are less general because they are a specialization
of the network problem. Problems listed to the right are more general because a
network problem is a specialization of each of these problems. The general linear
programming problem is also shown in this figure to indicate its relationship to the
network programming problems. Algorithms have been developed to solve each
of the problem classes in Figure 1.2. Algorithms for the less general problems are
more efficient in computation and require less memory than those for the more
general problems. The decade of the seventies has experienced tremendous effort
in efficient implementation of network algorithms which results in codes 200-300

times faster than general purpose linear programming code [10, 24, 34].

The advantages of using network models are that network representation can
represent many real~world systems. Also, it seems that managers accept a network

diagram more easily than they do abstract symbols.
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PROBLEM

Figure 1.2 Network Flow Programming Problems Relationships [49]




1.2 Applications

As illustrated in Figure 1.1, a network is a collection of nodes and arcs. This

representation is useful for modeling a wide range of physical and conceptual sit-

uations.

Network flow models and solution techniques provide a rich and powerful frame-
work from which many engineering problems can be formulated and solved. Net-
works have been used in many applications [38], as inventory systems, river sys-
tems, distribution systems, military logistics systems, urban traffic systems, com-
munication systems, facilities location systems, routing and scheduling systems
and electrical networks. In fact, network representation is such a valuable vi-
sual and conceptual aid to the understanding of relationships between events and

objects that it is used in virtually every scientific, soéial, and economic field.

The focus of this thesis is on algorithmic development of a class of network
models. These are, the assignment, semi-assignment and transportation problems.

The three models have a wide variety of applications [38].



1.3 Thesis Objectives

In [30] an efficient successive shortest path (SSP) algorithm has been proposed
and tested for solving the assignment problem. The primary objective of this work
is to extend this approach to semi-assignment and the transportation problems.

Therefore, the objectives of the thesis are:

1. To test and identify the most efficient shortest path algorithm (Dijkstra [25],

Dantzig [20], and Pape [61]) which fits the SSP framework, for solving the

assignment problem.

2. To test and compare the developed SSP for the assignment problem obtained
in (1) above with the Hungarian, Qut-of-Kilter, and specialized primal sim-

plex algorithms.

3. To extend the SSP algorithm to solve the semi-assignment problem and

conduct computational testing with available software.

4. To extend the SSP algorithm to solve the transportation problem and to

conduct computational testing with available software.



1.4 Plan of Proposed Work

The proposed research work in the thesis starts with the implementation and
the testing of the shortest path algorithms to identify the one that best fits the
SSP framework for solving the assignment problem. The following shortest path
algorithms are selected for the study: Dijkstra [25]), Dantzig [20], and Pape [61].
Empirical testing and comparison is conducted to identify the most efficient one
that fits the SSP framework based on solution times and memory requirements for

each implemented SSP algorithm.

Then the available codes for solving the assignment problem which are imple-
mentations of the Hungarian method, Out-of-Kilter algorithm, and a specialized

primal simplex code named CAPNET are compared with the best selected SSP

code from the first objective.

The semi-assignment problem is a general case of the assignment problem. In
the case of the assignment problem, we have equal number of source and desti-
nations, each source should be assigned to only one destination that minimizes
the total cost. However, for the semi-assignment problem we have less number
of sources than destinations. Therefore, the extension of the SSP algorithm to
solve the semi-assignment problem needs only to consider how to make one source
assigned to more than one destination. Furthermore, an implementation of the

extended SSP algorithm is compared with the Out-of-Kilter, CAPNET and the




SSP algorithm developed in the first objective that will solve the semi-assignment

problem as an assignment problem.

The last part of the thesis focusses on generalizing the SSP approach for the
transportation problem. In this case, the concepts developed by Enguist [30] for
solving assignment problems have to be modified and theoretical results are devel-
oped. Then the modified algorithm has been implemented, tested and compared

to CAPNET and an Qut-of-Kilter Code.



1.5 Thesis Organization

This thesis is presented in six chapters. In Chapter 2, network definition, ter-

minology and storage schemes, are presented together with the relevant literature.

Chapter 3 presents the SSP algorithm for solving the assignment problem and
the methods for solving the shortest path problem. Computational tests of Di-
jkstra, Dantzig and Pape algorithms for the shortest i)ath problem within the
SSP algorithm are reported. Computational procedures and comparisons with the

available software are also presented in this chapter.

In Chapter 4, the SSP algorithm for solving the assignment problem is mod-
ified to solve the semi-assignment problem. Description, theoretical results and
implementation of the modified SSP algorithm is presented. Results and analysis

of the comparisons of the modified SSP algorithm with the available software are

also shown in this chapter.

Chapter 5 presents the generalization of the SSP algorithm to solve the trans-
portation problem. The theoretical results and the implementation of the gener-
alized SSP algorithm together with computational comparisons of the extended
SSP algorithm with the available software for solving the transportation problem

are presented. Chapter 6 concludes the thesis.



CHAPTER 2

NETWORK TERMINOLOGY AND LITERATURE
REVIEW

2.1 Introduction

Network representation on a graph is easy to understand and imagine how
it works. However, mathematically, there is a need to define all the variables;
associated with the network so that it can be understood and solved without
drawing the network. A network can be represented in a computer by many ways;
however, we seek the method for representing and storing a network with the

minimum memory requirements.

In this chapter, network terminology and storage schemes are presented in
Section 2.2. The literature review for a class of network problems, which are the
shortest path, assignment, semi-assignments and transportation problems is given

in Section 2.3. Section 2.4 concludes this chapter.

10
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2.2 Network Terminology and Storage Scheme

A directed network or simply a network G(N,A) consists of a finite set A of
arcs, where each arc a € A may be denoted as an order pair (u,v), referring to the

fact that the arc is conceived as beginning at a node u € N and terminating at a

different node v € N.

A directed path or a path is a finite sequence of arcs P = {a;,ay,...,a,} such
that for each ¢ = 2,...,n, arc a; begins at the end of arc g;_;. P is called a path
from node u to node v if a; starts at node u and arc a, terminates at node v. A
path P from u to v is called a circuit if u = v. A path for which a; # a; for i # j

is called arc-simple.

Let £(a) or £(u,v) denote a nonnegative length associated with arc a = (u,v)
of a network. Then we define the length of path P to be d(P) = )_£(a;). Path P
i=1

from one particular node to another node is called a shortest path if d(P) is the

minimum length of any path between these nodes.

A rooted tree, or simply a tree, is a network T'(Nr, A7) together with a node
r (the root node), such that each node of Nr, except r, is accessible from r by a

unique arc-simple path in 7.

In a minimum tree of shortest path tree the unique sequence of nodes beginning

with a node v # r and leading to r is called the path from v to the root and is
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denoted by S(v).

A network may be represented in a computer in several ways [3, 20, 24, 36], and
the manner in which it is represented directly affects the performance of network

algorithms.

In this thesis, all of the arcs that begin at the same node are stored together
and each is represented by recording only its ending node and length. A pointer is
then kept for each node which indicates the block of computer memory locations
for the arcs beginning at this node. This is motivated by the work done by Dial
et al [24]. Dial et al [24] developed one of the fastest algorithms that solves the

shortest path problem stores as network with N nodes and A arcs using a linked

list structure.

The set of arcs emanating from node u is called the forward star of node u and
denoted by FS(u). Similarly, the set of arcs entering a node u is called the reverse
star of node u and denoted by RS(u). If the nodes are numbered sequentially from
1 to N and the arcs are stored consecutively in memory such tha.§ the arcs in the
forward star of node ¢ appear immediately after the arcs in the forward star of
node (i —1), then this method is called, the forward star form, and it requires only
N + 2A units of memory. If the arcs of the forward star of each node are ordered

by ascending, this is called a sorted forward star form.

Figure 2.1 illustrates the storage of a network in a sorted forward star form. The

number in the square is attached to an arc of the network diagram is the arc length.
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2.3 Literature Review

Linear network flow models are special cases of the linear program. The spe-
cialization of the primal simplex algorithm [20, 41] by Dantzig and Johnson [20,
51] is of great importance, since it completely eliminates the need for carrying
and updating the basic inverse. In fact, when this specialization is used, the pri-
mal simplex method can be performed directly on a network diagram (called, the

simplex on a graph algorithm [18]).

Given the importance of linear network flow models many studies have been
carried out to develop more efficient Aa.],gorithms for it [20, 36, 51, 53]. Shortest
path, assignment, and transportation problems are important network structured
linear programming problems that arise in several papers and contexts and that
have deservedly received a great deal of attention in the literature. On the other
hand, because of its limited applications, the semi-assignment problem has not
received the same attention in the literature. Next, in the following subsections,
a review of the literature for the shortest path, assignment, seﬁﬁ—assignment and

transportation problems is presented.

2.3.1 Shortest Path Problem

In a network, there are many paths that go from node i to node j, and these

paths usually have different lengths. Therefore, the problem of finding the shortest
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path from a given node (e.g. r) to all other nodes in a network G may be stated

as follows:

Given a network G(NV, A) find a minimum tree T(Nt, A7) of G rooted

at node r.

Shortest path analysis is a major analytical component of numerous quantita-
tive transportation and communication models [21, 22, 24, 61] There are a host
of applications for the shortest path algorithm. Edan et al. [29] used the shortest
path algorithm to find the near optimum locations for fruits picking by a robot.
Another application of the shortest path is the median shortest path problem
which is the minimization of the path length and the total travel time required
for demand to reach a node on the path [19]. Algorithms incorporating shortest
path subroutines such as (Enguist 1982 [30], Glover et al. 1986 [43], and Hung

and Rom 1980 [48]) are coming to challenge network specializations of the primal

simplex method.

A diverse set of shortest path models and algorithms have been developed
to accommodate these various applications. The major versions of shortest path
models are: (i) finding the shortest path from one node to another node, (ii)
finding the shortest path from one node (called the root node) to all other nodes,
(iii) finding the shortest path from every node to every other node, (iv) finding
various types of constrained shortest paths between nodes (e.g., finding the k-th

shortest path). Dreyfus [28] has written an excellent paper classifying the types
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of algorithms and giving theoretical computational bounds for each class.

Algorithms for the shortest path problem have been developed by many indi-
viduals including Bellman (1958), Dijkstra (1959), and Whiting and Hiller (1960),
[3, 13, 25]. In 1974, Pape [61] developed a shortest path algorithm and then in

[62] he modified his algorithm to be more efficient.

Dijkstra algorithm [25] for finding shortest path to all nodes from a single
source node in a network is correct only when all arc weights are nonnegative.
However, in 1973 Johnson [50] has modified the Dijkstra algorithms so that it will

take care of negative weights.

In 1979, Shir [65] presented several new algorithms for computing K shortest
paths in a network. These algorithms utilize strategies which have proved to be

efficient in solving shortest path problems.

Recently, Glover et al. [39, 40] developed an efficient shortest path algorithm.

The algorithm is a polynomially bounded shortest path algorithm, called the par-

titioning shortest path.

Ahuja et al. [1, 2] survey some of the most recent contributions to the field of
network flow, and they concentrate on the design and analysis of good algorithms
for three core models: the shortest path problem, the maximum flow problem and

the minimum cost flow problem. They illustrate some techniques in developing
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faster network flow algorithms and their usefulness. In [2] they describe different
applications and present a different radix heap implementation of Dijkstra’s short-
est path algorithm. Gabow and Tarjan [33] have also presented a survey paper

on network flow algorithms giving an in—-depth account of some of the algorithms

discussed in [1, 2}.

Dial et al. [24] and Klingman et al. [56] examined different algorithms for
calculating the shortest path from one node to all other nodes in a network. The
power of computer implementation and efficient data structures are demonstrated
by the efficient method of implementation by Dial and Voorhees [23] for solving

the shortest path problem.

Gilsinn and Witzgall [34] as reported by [24] found that improved implemen-
tation technology caused solution times for shortest path problems to drop from
one minute to slightly more than one second, using the same general shortest path

algorithm, computer, and compiler.

Implementation and computational testing in the microcomputer environment
of several versions of a threshold shortest path algorithm for finding the shortest

path from one node to all other nodes in a network has been done by Klingman

and Schneider [57].

Hung and Divoky [47] studied the computational efficiency of five shortest

path algorithms. The algorithms include two using threshold functions, two using




18

heaps, and one using buckets for sorting node labels. They generate three different
cost functions to measure the senéitivity of each algorithm to cost distribution.
Their results show that the cost distribution does affect algorithm performance
differently for different algorithms. Their study showed that threshold algorithms

are superior in many cases.

Divoky a.nd—Hung [27] examine the way shortest path algorithms perform in
a simulated minimum cost network flow problem environment. The algorithms
include two using threshold functions, two using heap, and one using buckets for
sorting node labels. Empirical computational comparisons with other algorithms
are conducted. The results showed that heap and threshold algorithms require

more computation time when the number of subtrees increases.
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2.3.2 Assignment Problem

An important specialization of the network problem is the assignment problem.
The assignment problem is characterized by two sets of n entities, referred to here
as jobs and tasks, indexed by ¢ and j, respectively. Each job must be assigned
to exactly one task. There is a cost, ¢;, for assigning job i to task j, and the

objective is to minimize total cost for the n assignments. Mathematically, it can

be stated as:

n n
Minimize E E CiiTis
i=1 j=1
subject to
n
Y @i =1,i = {1,2,3,...,n} (1)
=1
n
Y = =1,7={1,23,...,n}
=1

z; 20, foralliandj

Assignment problems arise in numerous applications of flight scheduling, as-
signing vehicles to routes, project planning, assigning personnel to jobs and a va-
riety of other practical problems in logistics planning. Many studies of assignment

problem algorithm have been launched over the past three decades.

Perhaps the best known, most widely, and most written about method for solv-
ing the assignment problem is the “Fuangarian Method”, originally suggested by

Kuhn [58]. Carpaneto and Toth [16] have obtained an improvement and varia-
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tions in the Hungarian method. The efficiency of their algorithm is mainly due
to the pointer technique utilized to locate the unexplored rows and the zero ele-

ments of the current matrix. Their algorithm appears to perform better for denser

problems.

In the mid-1970’s, Barr et al. [10] developed a new specialized simplex al-
gorithm, called the alternating path (AP) basis algorithm, which examines only
certain basis. It is especially designed to overcome the large number of degenerate
pivots in the assignment problem. The AP algorithm was at least twice as fast as
previous algorithms. This algorithm turns out to be a special case of the strongly

feasible tree algorithm of Cunningham [19] that was independently developed for

general network flow problem.

Hung and Rom [48] used the major theoretical results of the alternating path
basis algorithm to develop a new algorithm which uses Dijkstra’s shoﬁ@t path
algorithm to construct an optimal alternating path basis for a relaxation of the
underlying assignment problem. Their algorithm is substantially faster than the

alternating path basis algorithm for dense assignment problems.

Balinski and Gomory [6] have described a simple calculation for the iassignment
which is “dual to” the Hungarian method. While the Hungarian is a dual method,

their method is primal and so gives a feasible assignment at each stage of the

calculation.
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An SSP algorithm for the assignment problem was developed in 1982 by En-
guist [30], which is a refinement of the Dinic-Kronrod algorithm [26]. The shortest
path algorithm is used to derive a computational very efficient algorithm for solv-
ing large, sparse assignment problems. The SSP algorithm goes through a series of
modified assignment problems in which some destinations are permitted to have
demand greater than one, while some demands are set to zero. The algorithm pro-
ceeds from the optimal solution of one of these modified problems to the optimal
solution of the next via a related shortest path algorithm. The algorithm termi-
nates when the modified problem coincides with the original assignment problem.
The SSP algorithm is found to be three times faster than the AP algorithm and

six times faster than the relaxation method by Hung and Rom [48].

Solving the assignment problems as a SSP algorithm also exists in USSR. In
1978, Gribov [45] developed an efficient SSP algorithm which has the property
that in the process of solving the original prob}em a sequence of problems is also
solved, each of which is related to a matrix that differs from the preceding by the

adjunction of a single row.

The SSP algorithm for the assignment problem was discussed by Glover et
al. [43]. The threshold shortest path subroutine is used to derive a computational
very efficient algorithm. It has been found that this algorithm is seven times faster

than the alternating basis algorithm. This algorithm is also discussed in [14].
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Balinski [4] suggested another approach based on the dual simplex and known
as Signature Method. In each step the signature method goes from one dual fea-
sible basis to a neighboring one. In [5], Balinski developed a competitive dual
simplex method for the assignment problem based on the Signature method. Effi-

cient algorithms based upon Balinski’s Signature method are described by Goldfarb
[44].

In [52] Jonker and Volgenant developed a shortest augmenting path for sparse

and dense assignment problems. It is one of the most efficient algorithms for the

assignment problem.

Bertsekas [15] developed a new approach for the assignment problem, called
the auction algorithm, which assigns jobs to persons using auction. Ahuja et al.
[2] suggest a new scaling algorithm for the assignment problem. Their algorithm is
based on applying scaling to a hybrid version of the auction algorithm of Bertsekas
and the successive shortest path algorithm. The algorithm proceeds by relaxing

the optimality conditions, and the amount of relaxation is successively reduced to

Z€ro.

The best polynomial algorithm to solve the assignment problem is due to
Gabow and Tarjan [33]. This algorithm uses a cost-scaling technique. The scaling

algorithm is used for simpler data structures.

Glover et al. [36] have done a study of computational time and memory require-
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ments of the primal approach for solving the transportation and the assignment
problems over the OQut-of-Kilter method. They presented an exténsive compu-
tational experience with special primal simplex algorithm. Then, they compared
this algorithm with several Qut-of-Kilter computer codes. it has been found that
the primal simplex algorithm is roughly twice as fast as the fastest known Out-
of-Kilter code (SUPERK). McGinnis [59] presented a computational testing of a
primal-dual algorithm. It has been found that the primal simplex methods are
more robust because they are insensitive to fluctuations in cost range. The primal-
dual methods are sensitive to cost range, but are competitive even when the cost
ré.nge is as large as 1-10,000. No comparisons exist in the literature between
the SSP algorithm, the Hungarian method, the Qut-of-Kilter algorithm and the

specialized primal simplex algorithm.

2.3.3 Semi-Assignment Problem

The semi-assignment problem is a network problem whose demand constraints
are the same as those of an assignment problem and whose supply constraints are
the same as those of a transportation problem. Semi-assignment problems arise
in numerous applications of scheduling and project planning. Most actual man-
power planning and “assignment” problems are semi-assignment problems, and a
variety of other practical problems contain embedded semi-assignment problems.

Mathematically the semi—assignment problem can be stated as
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m n
Minimize Z Z CijTij
i=1 j=1

subject to

> my= b, i={1,23,...,m} (2.2)

i=1

n -
Z Ti; = 1, ] = {1,2,3,...,11,}

i=1
z;; 20, foralliandj

Falling mid-way between the classical assignment and classical transportation
problems in its generality, it was bypassed by many researchers in networks. There-

fore, this important member of the network family has received scanty attention.

The Out-of-Kilter algorithm, was developed by Fulkerson [32]. The Out-of-
Kilter algorithm is not a specialization of a more general method. This algorithm
was developed specifically for network programming, and so it can be used to solve

the semi-assignment problem.

The algorithms available to solve the transportation problem can solve the
semi-assignment problem like the Out—of-Kilter algorithm. Therefore, the spe-
cialized primal simplex algorithm developed by Glover et al. [30] is one of the best

algorithms that can solve the semi-assignment problem.

The first algorithm specially designed for solving the semi—assignment problem
was developed by Barr et al. [8] in 1977 and was called the alternating path basis

method. This algorithm is a specialization of the network simplex method which




25

exploits the 0—1 flow structures of the semi-assignment problem. They conducted
a comparison of the alternative algorithmic approaches using codes for solving the
semi-assignment problem. Based on total solution times the alternating path basis

was found to be 2.55 times faster than the primal simplex algorithm.

The shortest augmenting path (SAP) algorithm for solving the semi-assignment
problem was developed by Kennington and Wang [54] in 1992. The algorithm
maintains dual feasibility and complementary slackness and works toward satis-
fying dual feasibility. An extensive computational comparison of SAP with the
best alternative approaches was conducted, and based on the results presented in
[54] SAP is uniformly faster than the best competing software for both dense and

sparse semi-assignment problems having a size up to 80,000 arcs.

"~ 2.3.4 Transportation Problem

In the direct sense, the transportation model seeks the determination of a trans-
portation plan of a single commodity from a number of sources to a number of

destinations. The data of the model include:

1. Level of supply at each source and amount of demand at each destination.

2. The unit transportation cost of the commodity from each source to each

destination.

Mathematically, the transportation problem can be formulated as
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m n
Minimize Z 2 Ci;Tij

=1 j=1
subject to

zij = a;, 1={1,2,3,...,m (23)
J

i=1

Z Tij = ij j= {1,2,3,...,17,}
=1

z;; 20, forallzandj

for a balanced transportation problem Z a; = 2 b;.

1

Transportation problems are perhaps the most visible in our everyday lives.
The traditional application of the transportation problem is illustrative. In the
transportation problem, a shipper with inventory of goods at its warehouses must
ship these goods to geographically dispersed retail centers, each with a given cus-
tomer demand, and the shipper would like to meet these demands incurring the

minimum possible transportation costs.

Hitchock [46] was credited with the first formulation and discussion of a trans-
portation model. Then, Dantzig [20,22] adapted his simplex method to solve trans-

portation problems. Dantzig method is known as Row-Column Sum Method.

Charnes and Cooper [17] developed an intuitive presentation of Dantzig’s pro-

cedure through what is called the “stepping stone” method.
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Balinski and Gomory [6] developed a simple calculation for the transportation
problem which is “dual to” the well known Hungarian method. This method is

primal and gives bounds on the number of steps required for the transportation

problem.

Barr et al. [11] developed a new primal extreme point algorithm for solving
capacitated transportation problems. The algorithm is called the generalized alter-
nating path (GAP) algorithm. The GAP algorithm is specifically designed to take

advantage of the often pervasive primal degeneracy of transportation problems.

Barr et al. [12] presented a new specialized simplex algorithm for solving ca-
pacitated transhipment network problems. The method exploits the combinatorial

possibilities available in degeneracy to obtain significant theoretical and computa-

tional advances.

Solving the transportation problem as a SSP algorithm has been developed by
Gribov {45]. The algorithm has the property that in the process of solving the
original problem a sequence of probléms are also solved, each problem is related

to a matrix that differs from the preceding problem by the adjunction of a single

Iow.

Glover et al. [36] developed primal and dual simplex algorithms for general
network flow problems. Testing these algorithms against the best Qut—of-Kilter

code (SUPERK) showed that the primal code is roughly two times faster.
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Glover et al. [37] presented an in-depth computational comparison of the
basic solution algorithm for solving transportation problems. The comparison
is performed using computer codes for the dual simplex transportation method,
the Out—of-Kilter method, and the primal simplex transportation method (Row-
Column Sum Method).

Glicksman et al. [35] coded the primal simplex method for the transportation
problem. The technique she used has been found useful in simplifying coding and

in reducing solution time on a computer.



29

2.4 Conclusion

This chapter reviewed network terminology and storage schemes used to rep-
resent a network in a computer memory. From the review of the literature, it
can be concluded that no algorithms for the semi-assignment and transportation
problems have been developed using the concept developed by Enguist [25). Since
the SSP algorithm developed by Enguist is one of the fastest algorithms for solving
the assignment problem, and there is a need for an efficient and fast algorithm for
the semi-assignment and transportation problems, it is felt that there is a need
to extend the SSP algorithm to solve these problems. Then test and compare
the developed algorithms with the most efficient ones in the literature for these

problems. This is the subject of the next chapter.



CHAPTER 3

AN EFFICIENT SUCCESSIVE SHORTEST PATH
ALGORITHM FOR THE ASSIGNMENT PROBLEM

3.1 Introduction

Successive shortest path (SSP) approach has been proposed for solving the as-
signment problem [30]. The heart of the SSP algorithm is the shortest path routine
used for solving the resulting shortest path problems. Therefore, the efficiency of
the SSP algorithm depends to a great extent on the choice of the shortest path
method. In [30] Dijkstra algorithm has been implemented in a SSP algorithm for

solving the assignment problem.

The purpose of this chapter is to identify the best shortest path method that
results in an efficient implementation of the SSP algorithm for the assignment
problem presented in [30]. The shortest path algorithms tested are Dijkstra [25],
Dantzig [21] and Pape [61]. Then the most efficient SSP algorithm is compared
with the best methods known for solving the assignment problem. The best meth-
ods used in the comparisons are: the Hungarian method, a specialized version
of the Simplex method and Out-of-Kilter algorithm. The code for the Hungar-

ian method is obtained from [16}, and for the Simplex method obtained from the

30
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University of Texas at Austin, a commercial code known as CAPNET [6]. The

Out-of-Kilter code is a package in Statistical Analysis System (SAS) software [63].

The rest of the chapter is organized as follows: Section 3.2 describes the steps
of the SSP algorithm. Section 3.3 reviews the three shortest path algorithms
used in the testing and outlines efficient data structures for implementing them.
Computational aspects and the design of the tests are discussed in section 3.4.
Section 3.5 presents the comparisons between the shortest path algorithms in order
to identify the best one that fits the SSP approach. Section 3.6 compares the most
efficient SSP algorithm for the assignment problem with the best known methods
for solving the assignment problem. The comparisons are based on average of

central processing unit (CPU) time and memory requirements.
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3.2 Description of the SSP Algonthm for the
Assignment Problem

A mathematical model for the assignment problem is given by the following:

Minimize E CiiTij
(.5)eB

subject to

z;; = 1,i € I ={1,2,3,...,n} (3.1)
(5,5)eFS(i)

zii=1jelJ= {1,2,3,...,n}
(s.5)ERS(5)

z; 20, (i,j)eE

where I is the set of origin nodes, J is the set of destination nodes, E is the set of

arcs, ¢;; is the cost of a unit flow on arc (z,7), FS(¢) is the forward star of node i

and RS(j) is the backward star for node j.

Next, we introduce a concept that is central to the development of the SSP
algorithm. Whenever a mapping A : I — J is given, then A defines a tentative
assignment provided that (3, A;) € E for i € I, and A; is the image of ¢ under this

mapping.

Since the assignment network will remain fixed in the following discussion,
denote the assignment problem equipped with a tentative assignment A by (C, A).
(C,A) is in standard form if ¢;; > 0 for all (i,j) € E and ¢;; = 0 when j = A;.

When (C, A) is in standard form and A is one-to-one, then A determines an



33

optimal solution of the assignment problem [30].

In the starting procedure for SSP a tentative assignment A is defined as follows.

First,

&= omin o) 3.2)
must be determined for ¢ € I. Next, for i € A, A; is defined to be some j such
that ¢;; = &. For this A, (C,A) may not be in standard form [30]. However, the

forward star of each origin ¢ may be scaled by setting
Cip & Cip — & (3.3)

for (¢,p) € FS(i). The resulting (C, A) is in standard form [30] This technique is
also used in the starting procedure for the SSP algorithm. Such scaling does not

affect the solution of the original assignment problem.

For a given tentative assignment A, let a; denote the number of elements in

{i ] =A,'}.

The modified assignment problem relative to (C, A) is defined as follows:
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Minimize Z CijTij5

(.J)EE
subject to
z; =1, 1€l (3.4)
(5,5)EFS(3)
zij = aj, j €J
(i9)eRS()

zi; 20, (i) eEE

When (C, A) is in standard form, A provides an optimal solution to the modified

assignment problem relative to (C, A).

A destination node is said to be abundant relative to A when a; > 1. Likewise,

j is said to be deficient relative to A when a; = 0.

Suppose that (C, A) is in standard form and d is some deficient node with
respect to A. Then the shortest path problem relative to (C, A) and d is denoted
SP(C,A,d) and is defined as follows. The network for SP(C,A,d), which is
referred to as the shortest path network, is derived from the assignment network.
We proceed by describing how this is done and how the arc lengths for SP(C, A, d)
are defined. The nodes of the shortest path network can be identified with arcs
(2,7) of the assignment network that satisfy j = A;. Such a shortest path node is
denoted by (: — A;) or (¢ — j), where j = A;. Also, it is referred to (i — A;)
as the :—th shortest path node. Clearly, there are n such nodes. Introduce one

more node (n + 1 — d) for the shortest path network and make this consistent
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with previous notation by extending A so that A,y = d. For SP(C, A, d), the
root node is (n + 1 — d), while a node (i — A;) is abundant, provided 4; is an
abundant destination relative to A. An arc exists in the shortest path network
from (i — A;) to (p = A,) in case (p, A;) € E. If this arc exists, its length is ¢,;

where j = A;.

The major steps of the SSP algorithm will be given below after the following

notations are defined.

R; = node potential for the i-th origin node

K; = node potential for the j—th destination node

D; = distance of the i-th shortest path node form the root
P =

= predecessor of the i~th shortest path node in the shortest path tree.

The use of R is to denote the mapping whose value at ¢ is R;. The use of K, D and
P is similar. When a shortest path problem is solved, denote the first abundant
node to be permanently labelled by v, and denote the distance of v from the root
by L. Let S(v) denote a unique sequence of nodes beginning with a node v #r
and leading to r in a shortest path tree. Let C® = {cJ; : (4,j) € E} denote the

costs of the origin (unmodified) assignment problem. Then the steps of the SSP

algorithm are:

0. Define A! and transform C° to C! by scaling as described in equation (3.3)

above so that (C!, A!) is in standard form. Set k = 1.
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1. Choose a destination node d* which is deficient relative to A*. If no deficient

nodes exist, stop, A* defines an optimal solution.

2. Solve SP(C*, A*,d*). The shortest path algorithm is terminated as soon as
an abundant shortest path node is permanently labelled. If the shortest path
algorithm fails to permanently label an abundant node, stop, the assignment

problem is infeasible. Otherwise, the results of this step are D¥, P*, v* and
L.

3. For each permanently labelled shortest path node (i — j) from step 2, set
Rf = Df—L* and K¥ = L*¥— D¥. For any remaining origins i or destinations

jrset RF=Ks=0.

4. Set &' = ¢k, — RE — K* for (i,]) € E.

1] (]

5. Whenever the i-th shortest path node is in S(v*), i# n+1, set A¥*! = A%
where £ = PF. For all other origins, i, A¥*! = A¥. Set k — k+1 and go to

step 1.

The theoretical properties of the above algorithm are shown in [30}. It has been
shown that the algorithm converges to the optimal solution in O(n®) computational
bound. Also, an example is given in [30] to demonstrate and fix the idea of the

SSP algorithm for the assignment problem.

The shortest path problem SP(C, A,d) in step 2 can be solved using many

algorithms developed for solving the shortest path problem. In the following sec-
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tion we introduce three shortest path algorithms (Dijkstra, Dantzig and Pape)
and outline efficient data structures for implementing them. They will be used in

the SSP framework in order to identify the most efficient one that fits the SSP
algorithm.

To clarify the steps of the algorithm, the following example is presented. The
example shows how SP(C, A, d) is defined in a particular case. Let the assignment

problem be as shown in Figure 3.1, where arc (2, j) is labelled with cost ¢;;.
Step 0

Put the problem into standard form:

Therefore,



Figure 3.1 An Example of an Assignment Problem

38
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Iteration 1.

Step 1: Choose a deficient ode, d! = 3.
Step 2: Solve SP(C?, A%, d").
The network for SP(C!, A!,d") is shown in Figure 3.2 where a shortest path node

(¢ = A;) is shown as a node with an upper label (:) and a lower label (4; = j).

The arcs of the shortest path network are labelled with their lengths.

The result of this step are:

1
Di=1,P!=3 '= and

Di=0,Pl=4 L'=1

Step 3:

Rl=D!-I['=1-1=0; K} =L'-D!=1-1=0

R=Di=L['=0-1=-1; K}=L'-Dy=1-0=1

R=Kl=0
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Figure 3.2 An Example of SP(C, A, d)
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Step 4:
Ch=C,—-Rl-K{=0-0-0=0;C,=CL-R-Ki=1-0-1=0
C§1=C’§1—R§—K1‘;—=0—0—0=0; Ch=ChL-R~-Ki=1-0-1=0
Ch=Cl~Ri—Kl=2-0-0=2

Step 5:

A?=(2,1,3)

Let K =2, go to step 1

Iteration 2

Step 1: No deficient node, stop.
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3.3 The Shortest Path Problem and Labelling Methods

The problem of finding the shortest paths from a given node r to all other nodes
in network G(N, A) may be stated as that of finding a minimum tree T'(Nr, A7)
of G rooted at node r. The best methods for solving the shortest path problem

are labelling methods, which are reviewed in the next subsections.

3.3.1 Labelling Methods

Labelling methods for computing such 2 minimum tree have been divided into
two general classes, label-setting and label-correcting methods. Both methods
typically start with a tree T(Nr, Ar) such that Ny = {r} and At = §. A label-
setting mgthod then augments Nt and Ar respectively, by one node v € N and
one arc (u,v) € A at each iteration in such a manner that u € Ny, v ¢ Ny,
and the unique path from r to v in T is a shortest path. A label-setting method
terminates when all arcs in A which have their starting endpoints in Nt also have

their ending endpoints in Nr.

A label-correcting method, on the other hand, always exchanges, augments,
or updates arcs in Ay in a manner that replaces or shortens the unique path form
r to v in T, but does not guarantee that the new path is a shortest path (until
termination occurs). Using the notation defined in section 2.2, we now give a

precise description of each of these general methods.
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3.3.1.1 General Label-Setting Method

1. Initialize a tree T(Nt, Ar) such that Ny = {r} and Ay = ¢. Further, set
p(t):=0,t € N; d(t) =00, t€ N —{r}; and d(r) := 0. (The notation

a := b sets a equal to b.)

2. Let S = {(u,v): u € Ny; vE€ N— Ny, (u,v) € A}. f S = ¢, go to step 4.

Otherwise proceed.

3. Let d(u) + £(u,v) = (:I;%Iels(d(p) + £(p, q)). Redefine

Ny := Np U {v}
Ar: = A7 U {(u,v)}
p(v):=u

d(v) : = d(u) + £(u,v)
and repeat step 2.

4. Stop. T(Nt,Ar) is a minimum tree and for each node v € N, d(v) is the

length of a shortest path from r to v # r.

It is worth noting that a label-setting method only works for non—negative arc
length. A label-correcting method, however, works for negative arc lengths as long

as there are no circuits of negative length in the network G(N, A).
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3.3.1.2 General Label-Correcting Method

1. Initialize a tree T(Nr, Ar) such that Ny = {r} and Ay = ¢. Further, set

p(t) :=0, t€ N; d(r):=0; and d(t) :=00,; t € N — {r}.

2. Go to step 4 if there does not exist an arc (u,v) € A such that d(u)+£(u,v) <

d(v). Otherwise, for such an arc, redefine

Nr:= Nrp U {v}
Ar: = Ar — {(s,v) € At} U {(u,v)}
p(v):=u

d(v) : = d(u) + £(u,v)
3. Repeat step 2.

4. Stop. T(Nt,Ar) is a minimum tree and for each node v € N, d(v) is the
length of a shortest path from r to v # r. Further, if a shortest path from
r to v exists (i.e., if p(v) # 0), then it may be constructed by successively

examining the predecessors of v until the root node r is encountered.
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3.3.2 Implementation Techniques for the Label-Setting Method

The implementation techniques and data structures for label-setting method
prepared by Dijkstra and Dantzig are obtained from [24] and presented in appendix

A. This includes Dijkistra nd Dantzig address calculation sort lists.

3.3.3 Implementation Technique for the Label-Correcting Method

In this subsection, we discuss an implementation of the general label-correcting

algorithm. The algorithm is Pape algorithm which is a modification of Moore’s
algorithm [61, 63).

3.3.3.1 Pape Method

The main idea of this algorithm centers around the “status” of a new—found
successor node j. If j has not yet been reached by the process, it is entered at the
end of the successor list; if it is currently in the list, no new entry is made, but if
it has already been processed and removed from the list, it is entered at the top
of the list so that it will be processed next. The current status of each node is

recorded by the values of the list which are stored as two—way linked list.

To implement this algorithm, the algorithm initializes P(v) =0, v € N; d(r) =

0 and d(v) = 00, v € N — {r}; and B(1) = r and B(:) = ¢, 2 < i < N, where
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B is the sequence list of length = N. The root node r is then scanned and the
improving node of FS(r) is “added to ” the two-way linked list of B. If this node
has not yet been reached then enter it at the end of the list. Ifit has already been
processed, then enter it at the top of the list. The first pass of the B list starts at
the top, examining the elements of B. Each node v associated with this element
is then either added or not added to the list. Then node v will be removed from

the top of the list and it will never be added to B and thus no steps are required

to remove it.

The great advantage of the above-mentioned technique is that errors in mini-
mal distance are often corrected as soon as they are detected and not allowed to

progress further. In practice, this leads to a considerable reduction in CPU time,

particularly for grid networks.
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3.4 Computational Aspects and Experimental Design

Perhaps the most difficult aspect of algorithm development is empirical eval-
uation, primarily because of the lack of standards for comparison. It is widely
recognized that it is simply not valid to compare algorithms across different prob-

lems sets, different implementations and different computing environments.

In the following subsections we discuss some comments regarding the imple-

mentation of SSP algorithm and computing environments.

3.4.1 Computational Aspects

We have developed a FORTRAN Codes called SPAN-I, SPAN-II and SPAN-
III, which are an implementation of the SSP algorithm. The only difference be-
tween the three codes is in step 2. SPAN-I solves the shortest path problem using
Dijkstra algorithm, SPAN-II solves the shortest path problem using Dantzig al-
gorithm and SPAN-III solves the shortest path problem using Pape algorithm. In

this subsection, we will discuss some of the details of these implementations.
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Let,
B = (a.:‘?eﬁil'ls(-'){c%}’i €I, K =0jeJ
m-—1 m-1 "
R"-m:ER?aiEI ,K;m'_"ZstjEJ
k=0 k=0

R;™ and K;™ are the accumulated node potentials for the modified assignment

problem relative to (C°, A™).

The major steps of SSP listed in section 3.2 were formulated for ease of expo-
sition and not for computational efficiency. For this reason, there is a difference
between steps 3 and 4 as listed and what is done in the codes. In step 3 node po-
tentials are defined for all nodes of the assignment network at each iteration, while
in the codes, the accumulated node potentials are maintained. Thus, at iteration
k, only the node potentia.ls-oorresponding to permanently labelled shortest path
nodes need to be updated. In step 4 the cost data for all arcs is updated; however,
this is not done in the codes. Instead, whenever a cost cf, is needed in the solution
of SP(C*, A¥,d*), it is computed using the relation c{‘, =cf;— Ry k K; k. Next,

we describe how the details of some SSP steps were handled in the codes.

In step 1 of SSP, there may be more than one d* that could be chosen. Enguist
[25] did some experimentation but was unable to develop a more efficient strategy

than simply choosing the smallest j such that j is deficient. This is the strategy

we used in the codes.

As mentioned in section 3.3.2.1, the length of the sort list employed in solving
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the shortest path problem SP(C*, A*,d*) using Dijkstra algorithm depends on
the maximum arc length in the problem. Ma.kiﬁg a complete pass through the arc
data to determine the maximum shortest path arc length at each iteration of SSP
would be very inefficient. In the codes, we simply maintain an upper bound on
the maximum shortest path arc length and use this upper bound in determining

the length of the sort list or the size of the radix. if we let

= 0
°= st

and

ok _ ok
K —1}151}1{KJ}
then the upper bound on arc lengths for SP(C*, A*,d¥) is € — K*. This upper

bound is easily updated along with the node potential K-*.

Using Dantzig algorithm.instea.d of Dijkstra algorithm for solving the shortest
path problem in step 2 is expected to take more time because in Dantzig each time
we scan a node we need to sort the array k. A modification to the algorithm will
minimize the execution time. Instead of sorting, we created an array containing
the ¢;;, each time a node wants to be scanned we search for the minimum c;; if we

find one we put ¢;; = co and we take arc ({ — j) as an improving arc. Then we

proceed with the SSP algorithm.

There is a final comment we would like to mention regarding adapting the Pape

algorithm (label-correcting) for SSP. Pape algorithm will not stop until all the arcs
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are scanned, this will take a lot of time and it will not fit with SSP framework,
because in SSP once an abundant node is permanently labelled the shortest path
algorithm is terminated. Therefore, finding an abundant node is not enough it
should be permanently labelled. Because, Pape algorithm does not guarantee that
this path is the shortest path to the abundant node, what has been don is the
following, when an abundant node is found the reverse star of this node is checked
and the predecessors of it until we reach the root node. If all the arcs entering

these nodes are scanned this guarantees that this node is permanently labelled.

3.4.2 Experimental Design

All of the developed codes are in—core codes, i.c., the program and all of the
problem data simultaneously reside in fast-access memory. They are all coded
in FORTRAN IV and compiled using the same compiler transactions and same
computer (AMDHAL 5850 with speed 9.3 million transactions per second and with
32M bytes of shared memory). The computer jobs were executed during periods
when the machine load was approximately the same, and all solution times are
exclusive of input and output. The total time spént solving .the problem was
recorded by calling a Real Time Clock upon starting to solve the problem and

again when the solution was obtained. Each test problem is solved five times and

the average solution time is reported.
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The problems used in the tests were randomly generated using FORTRAN
code, called NETGEN [55]. The code “NETGEN” can generate capacitated and
uncapacitated transportation and minimum cost flow network problems, and as-
signment problems. In addition to generating thctura.lly different classes of net-
work problems the code permits the user to vary structural characteristics within
a class. The assignment problems generated has been used previously in compu-
tational testing in [10, 30, 59]. We added some problems like the sizes 50x 50
and 150x 150 for more elaborate comparisons. The sizes of the problems were 50
x 50, 100 x100 with arc densities of 25%, 50%, 75% and 100%, 150x150 with
arc densities of 4.4%, 13.3%, 22.2%, 31.1% and 40%, and 200 x 200 assignment

problems with arc densities of 3.75%, 5.625%, 7.5%, 9.375%, and 11.25%.

The cost coefficients are randomly generated between 1 and 100 in the first
run with the same data generated using NETGEN. Then the same problems are
run using another cost coefficient range between 1 and 10000. The reason for this

design is because some algorithms can behave differently when the range of cost

coefficients varies [48].
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3.5 Comparison of Dijkstra, Dantzig and Pape
Algorithms for Solving the Shortest Path
Problem in the SSP Algorithm

Each one of the developed codes (SPAN-1, SPAN-II and SPAN-III) can solve
the assignment problem. To evaluate the efficiency of each code, their solution
times are compared for the same set of problems. Another important aspect of
evaluating an algorithm is its efficiency in storing the data (i.e. the amount of

memory required to store the data).

Tables 3.1, 3.2, and 3.3 show the size of the problems, number of arcs in each
problem, the cost range and the solution times in seconds for the three codes. The
solution time is an average of five runs for each problem. Graphical representation

of the solution times are also presented in Figures 3.3 to 3.5.

Based on total solution times for the problems shown in Tables 3.1, 3.2 and
3.3, SPAN-1 is about 2.4 times faster than SPAN-II and roughly nine times faster
than SPAN-III. Therefore, in terms of CPU time SPAN-I is more efficient than
SPAN-II and SPAN-III. This leads to the conclusion that Dijkstra implementation

for the label-setting is the appropriate method that fits the SSP approach for the

assignment problem.

Next, we compare the number and size of arrays required by the codes. Table

3.4 shows the codes memory requirements.



TABLE 3.1

Solution Times in Seconds for 50 x 50 Assignment Problems

Number Cost Time (seconds)

of Arcs Range SPAN-I SPAN-II SPAN-III
625 1-100 0.0084 0.0392 0.0871
1250 1-100 0.0273 0.0694  0.1943
1875 1-100 0.0293 0.0982  0.2582
2500 1-100 0.0318 0.1366  0.5067
625 1-10000 0.0338 0.1176 0.1525
1250 1-10000 0.0946 0.1503  0.3419
1875 1-10000 0.1250 0.2700 0.5621
2500 1-10000 0.1796 0.3688  0.8117
Total solution Times 0.5298 1.2501  2.9145
Ratio 1 2.36 5.50
SPAN-I = using Dijkstra algorithm

SPAN-II = using Dantzig algorithm

SPAN-III = using Pape algorithm




TABLE 3.2

Solution Times in Seconds for 100 x 100 Assignment Problems

Number Cost Time (seconds)

of Arcs Range SPAN-I SPAN-II SPAN-III
2500 1-100 0.0752 0.2470  0.9301
5000 1-100 01171 0.3029 1.283
7500 1-100 01972 0.4218 1.960
10000 1-100 02187 0.4873  2.829
2500 . 1-10000 0.0937 0.3587 1.341
5000 1-10000 0.2132 0.3739  1.965
7500 1-10000 0.2203 0.4517 2.845
10000 1-10000 0.2874 0.5133 3.461
Total Solution Times 1.4228 3.1566  16.6141
Ratio 1 2.21 11.6
SPAN-I = using Dijkstra algorithm

SPAN-II = using Dantzig algorithm

SPAN-III = using Pape algorithm
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TABLE 3.3

Solution Times in Seconds for 200 x 200 Assignment Problems

Number Cost Time (seconds)

of Arcs Range SPAN-I SPAN-II SPAN-III
1500 1-100 0.0533 0.3109 1.006
2250 1-100 0.1201 0.3508 1.294
3000 1-100 0.1631 0.4272 1.407
3750 1-100 0.2154 0.4963 1.467
4500 1-100 0.2054 0.5744 1.603
1500 1-10000 0.1058 0.4253  1.232
2250 1-10000 0.1604 0.4428 1.451
3000 1-10000 0.1830 0.5782  1.683
3750 1-10000 0.2495 - 0.6103 1.708
4500 1-10000 0.3673 0.6904 2.172
Total Solution Times 1.8233 4.9066  15.023
Ratio 1 2.69 8.23
SPAN-I = using Dijkstra algorithm

SPAN-II = using Dantzig algorithm
SPAN-III = using Pape algorithm
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TABLE 3.4 Code Specifications for the SSP Algorithm for the Assignment
Problem with Different Shortest Path Algorithms.

Developer Name Typé Number of Arrays
1. Duffuaa & Ghassab SPAN-I  SSP algorithm 11N +2A+ 2L

2. Duffuaa & Ghassab SPAN-II SSP algorithm 14N +3A4+2L

3. Duffuaa & Ghassab SPAN-III SSP algorithm 11N 4+ 34

where,

N = number of nodes

A = number of arcs

L = maximum arc length

Examining Table 3.4, it can be concluded that SPAN-I and SPAN-III have
similar memory requirements. Combining the comparison of the codes based on
total CPU time and amount of memory required by each code, it can be concluded

that the best shortest path algorithm that fits with SSP framework is Dijkstra

algorithm.
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3.6 Comparative Computational Tests

In this section the best SSP algorithm implemented (SPAN-I) is tested against

other efficient algorithms for the assignment problem.

3.6.1 Methods for Comparison

The competing algorithms selected are Carpaneto and Toth code of the Hun-
garian method [16, 58], a code of the Qut—of-Kilter algorithm, part of the SAS
system, [32, 63] and Barr et al. code of the specialized primal simplex method
[9, 36]. The first two codes are referred to as HUNG and ASSIGN, respectively.
The third algorithm is known as CAPNET. The four codes tested are written in
FORTRAN IV. Four sets of test problems were used. Test problems are generated

randomly using NETGEN code with the same random number seed used in [55].

3.6.2 Results and Analysis of the Computation

The cost coefficients for the test problems are randomly generated between 1
and 100 in the first set of problems. For the second set of problems, the cost is
randomly generated between 1 and 10,000. The results of the tests are summarized
in Tables 3.5 — 3.12. Each table shows the size of the problem, the number of arcs

in each problem, cost range and solution times for each problem.
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Based on total solution times for the problems shown in Tables 3.5 — 3.12
SPAN-I is about 10 times faster than CAPNET and roughly 16 times faster than
HUNG. ASSIGN code could not solve some problems because of memory limita-

tion, hence we did not include it in the calculation.

Graphical representation of solution times of SPAN-I and HUNG versus each

problem are shown in Figures 3.6-3.10.

From these results it is discovered that SPAN-I is better than HUNG in case of
sparse problems. In the case of 100% dense problems HUNG performed better than
SPAN-I. In either case CAPNET has not dominated either SPAN-I or HUNG. We
conclude that SPAN-I is about 50 times faster than HUNG in sparse problems,

and HUNG is 1.22 times faster than SPAN-I for 100% dense problems.




TABLE 3.5 Solution Times in Seconds for 50 x 50 Assignment Problems

with Cost Range 1-100

Number of Arcs

Code 625 1250 1875 2500 Total Solution Times Ratio
SPAN-TI  0.0084 0.0273 0.0293 0.0318 0.0968 1
HUNG  0.1301 0.0859 0.0853 0.0628 0.3641 3.76
ASSIGN 649 414 312 267 16.42 169
CAPNET 0.316 0496 0.6411 0.779 2.2321 23

TABLE 3.6 Solution Times in Seconds for 50 x 50 Assignment Problems

with Cost Range 1-10000

Number of Arcs

Code 625 1250 1875 2500 Total Solution Times Ratio
SPAN-T  0.0338 0.0946 0.1250 0.1796 0.433 1.11 -
HUNG 0.0779 0.1284 0.0866 0.0954 0.3883 1

ASSIGN 9.27 958 9.17 17.89 35.91 92.4

CAPNET 0.356 0.502 0.654 0.780 2.292 5.90
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TABLE 3.7 Solution Times in Seconds for 100 x 100 Assignment Problems
' with Cost Range 1-100

Number of Arcs

Code 2500 5000 7500 10000 Total Solution Times Ratio

SPAN-I  0.0752 0.1171 0.1972 0.2187 0.6082 1
HUNG 0.2754 0.2451 0.2252 0.2075 0.9532 1.56
ASSIGN 32.74 2346 16.81 1291 85.92 141
CAPNET 1.021 1.718 2250 2.996 7.985 13.1

TABLE 3.8 Solution Times in Seconds for 100 x 100 Assign-
ment Problems with Cost Range 1-10000

Number of Arcs

Code 2500 5000 7500 10000 Total Solution Times Ratio

SPAN-I  0.0937 0.2132 0.2203 0.2874 0.8146 1
HUNG 0.3925 0.3209 0.2617 0.2202 1.1953 1.46
ASSIGN 7325 17048 67.28 61.34 272.35 334

CAPNET 1.031 1.735 2249 3.007 8.022 9.84
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TABLE 3.9 Solution Times in Seconds for 150 x 150 Assignment Problems
with Cost Range 1-100

Number of Arcs

Code 1000 3000 5000 7000 9000 Total Solution Times Ratio

SPAN-T  0.0525 0.0720 0.1055 0.2204 0.2048 0.6552 1

HUNG 2.274 1.831 1.257 0.9433 0.6171 6.9224 10.5
ASSIGN 133.68 116.55 85.18 66.24 69.04 470.69 718
CAPNET 0.671 1412 2140 2657 3.428 10.308 15.7

TABLE 3.10 Solution Times in Seconds for 150 x 150 Assignment Problems
with Cost Range 1-10000

Number of Arcs
Code 1000 3000 5000 7000 9000 ‘Total Solution Times Ratio
SPAN-I  0.1007 0.1852 0.2635 0.2575 0.3861 1.193 1

HUNG 3.580 3.186 2.815 2.4163 2.216 12.0063 10.6
ASSIGN 266.01 288.71 296.72 272.65 CNR — —
CAPNET 0.670 1.480 2.151 2.667 3.519 10.487 - 879

CNR = could not run as a result of memory limitation
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TABLE 3.11 Solution Times in Seconds for 200 x 200 Assignment Problems

with Cost Range 1-100

Number of Arcs

Code 1500 2250 3000 3750 4500 Total Solution Times Ratio
SPAN-I  0.0533 0.1201 0.1631 0.2154 0.2054 0.7573 1
HUNG 5.831 5.090 4.578 3.917 2.157 21.573 284
ASSIGN CNR CNR CNR CNR CNR — —
CAPNET 1.043 1.58¢ 1.741 2.006 2.249 8.623 114

CNR = could not run as a result of memory limitation

TABLE 3.12 Solution Times in Seconds for 200 x 200 Assignment Problems

with Cost Range 1-10000

Number of Arcs

Code 1500 2250 3000 3750 4500 Total Solution Times Ratio
SPAN-I  0.1058 0.1604 0.1830 0.2495 0.3673 1.066 1
HUNG 1348 9.907 10.857 8.219 7.003 49.466 46.4
ASSIGN CNR CNR CNR CNR CNR — —
CAPNET 1.032 1.586 1.739 1.998 2253 8.608 8.07

CNR = could not run as a result of memory limitation
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In addition to solution-times, algorithms may also be compared on the basis
of central memory requirements. Table 3.13 shows the number and size of arrays

required by the various codes.

TABLE 3.13 Code Specifications for the Assignment Problem

Developer Name Type Number of Arrays
1. Duffuaa & Ghassab SPAN-I SSP algorithm 1IN +2A 4 2L
2. Carpaneto & Toth HUNG  Hungarian method 10N + N2

3. Barr et al. CAPNET Specialized primal simplex 6(N + M) + 34
4. SAS ASSIGN Out-of-Kilter algorithm  Not Available
where,

N = number of origins
M = number of destinations
A = number of arcs

L = maximum arc length
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3.7 Conclusion

In this chapter, a successive shortest path algorithm and its implementation is
presented. Three codes are developed using Dijkstra, Dantzig and Pape algorithm
for solving the shortest path problem in the SSP algorithm. Then, the three codes
are tested to find the most efficient shortest path algorithm that fits with the SSP
framework. We have verified through computational testing that SPAN-I, which
is a code that uses Dijkstra algorithm for solving the shortest path problem, is

the most efficient code for solving the assignment problem using a shortest path

approach.

SPAN-I is compared with the best known algorithms for solving the assign-
ment problem. Through empirical computational testing it has been verified that
SPAN-I is about 50 times faster than HUNG (an implementation of the Hungar-
ian method) on sparse problems, and HUNG is 1.22 times faster than SPAN-I for

100% dense problems. Also, SPAN-I is 10 times faster than CAPNET.

In the next chapter an extension of the SSP algorithm for the assignment

problem to solve the semi-assignment problem is presented.



CHAPTER 4

A SUCCESSIVE SHORTEST PATH ALGORITHM
FOR THE SEMI-ASSIGNMENT PROBLEM

4.1 Introduction

The semi-assignment problem is problem of optimally assigning m tasks to n
agents such that each task is assigned to exactly one agent but each agent is con-
strained only by the amount of a resource. It is a network problem whose demand
constraints are the same as those of an assignment problem and whose supply con-
straints are the same as those of a transportation problem. In chapter 3 the SSP
algorithm has been implemented and tested for solving the assignment problem. It
has been shown that the SSP algorithm solves sparse assignment problems more
efficiently than the best known algorithms for solving the assignment problem.
In this chapter, the SSP approach is extended for solving the semi-assignment
problem. Furthermore, computational testing has been conducted with various

algorithms for solving the semi-assignment problem.

The chapter starts by describing the modification needed for the algorithm
given in section 3.2 in order to solve the semi-assignment problem. Theoretical
results and implementation of the new algorithm are shown in section 4.3. Section
4.4 presents the computer environments used for empirical computational test-
ing. Computational comparisons of different codes against the SSP code are also

presented in section 4.4. Section 4.5 concludes the chapter.
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4.2 Description of the SSP Algorithm for
The Semi—Assignment Problem

An m X n semi-assignment problem is defined as:

Minimize ) ¢z

GJ)EE
Subject to
Tij = b,i€I={1,23,...,m} (4.1)
(s,5)€FS(s)
Z z;j=l,j€I={1,2,3,...,n}
(¢,5)€RS(4)

zi; 20, (i,j) € E

Given the semi-assignment problem, we say X = (z;;) is a tentative solution
provided 3 at least one j € J such that
T;=b, i€l (4.2)
(8.4)EFS(3)
Since the semi-assignment network will remain fixed in the following discussion,

we denote the semi-assignment problem equipped with a tentative solution X by

(m,n,C,b, X).

We say that (m,n,C,b,X) is in the standard form if ¢;; > 0 for (¢,5) € E and

cij =0if z;; > 0.

In the starting procedure for SSP a tentative solution is defined as follows.
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First,

{e} O @3)

= ioerse)
must be determined for ¢ € I. z;; = b; for some j such that ¢;; = &. For this X,

(m,n,C,b,X) may not be in the standard form. However, the forward start of i

may be scaled by setting
Cip — Cip — &,  for (i,p) € FS(i). (4.4)

The resulting (m,n,C, b, X) is in the standard form.
For a given tentative solution X, we let
aG= 3, (4.5)
(i.5)eRS(j)
The modified semi-assignment problem relative to (m,n,C, b, X) is defined as

follows:

Minimize ) ¢y

(i.d)eE
Subject to
zi = b, i€l (4'6)
(i.5)EFS(d)
Y wmi=a, jel
(§,4)ERS(s)

z; 20, (i,j)eE

We note that when (m,n,C, b, X) is in standard form, X provides an optimal

solution to the modified semi-assignment problem in 4.6 relative to (m,n,C, b, X )-
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A destination node j is said to be abundant relative to X when a; > 1. Likewise,

J is said to be deficient relative to X when a; = 0.

The method introduced in section 3.2 for solving the assignment problem is the
same for solving semi-assignment problem. However, there are changes in step 2
in constructing and solving the SP(C*, X*, d*) for the semi-assignment case. The
following are the major changes involved in constructing and solving the shortest

path problem for the semi-assignment case:

1. We refer to (i — A;) as the i-th shortest path node in the case of the
assignment problem and we have n such nodes. In the case of the semi-
assignment problem, we may have a source ¢ supplying several destinations.
Let the number of destinations supplied by node i (i.e. z;; > 0) be r; (e.g.,
(2 = Xi1), (¢ = Xi2),...,(¢ = Xi,;). This implies in the shortest path
problem SP(C*, X*, d¥), two nodes may have the same origin i, for example
(¢ = X;;) and (¢ = X;2). Therefore, in solving the SP(C*, X*, d*) a tie may
occur when scanning the predecessor of these two nodes. The tie is broken
arbitrarily. This does not occur in the case of the assignment problem, since

every source of the assignment problem supplies only one destination.

2. In step 5 of SSP in section 3.2, the assignments from the abundant node are

reversed in the following manner:



(4

Step 5 (modified)

Whenever the i~th shortest path node is in S(v*), i # m + 1, set
X,!fg' 1= Xf’q, where O is the destination assignment number for
node %, @ is the destination assignment number of node ¢, and
¢ = PF. For the abundant node X}t}; = X}q, if XF, receives
more than one unit from node i (i.e., Tixr, > 1). For all other
origins i, X[3! = X¥,. Set k — k+ 1 and go to step 1 of the SSP

algorithm.

In order to fix ideas, we present an example showing how SP(C, X, d) is defined
in a particular case. Let the semi-assignment problem be as shown in Figure 4.1,

where arc (2, j) is labelled with cost c;;.



SUPPLY DEMAND

1

2
1

1 1
1

2

1

Figure 4.1 An Example of a Semi-assignment Problem.
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Step 0

Put the problem into standard form:

Therefore,

Xl = (X%I’X%I’X;l = (4,4, 3) and
al=0, a}=0, ¢} =2, al=3, al=0

k=1.
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Iteration 1.
Step 1: Choose a deficient node, d* =1
Step 2: Solve SP(C!, X1, d").

The network for S(C?,X?,d") is shown in Figure 4.2 where a shortest path node
(¢ = X o) is shown as a node with an upper label (i) and a lower label (X;¢). The
arcs of the shortest path network are labelled with their lengths.

The results of this step are:

D} =2, Pl=4, o= and L'=2

Step 3:

R=D!-I'=2-2=0, Kl=IL'-D!=2-2=0



¥V

Figure 4.2 An Example of SP(C, X, d)
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Step 4
ch=c¢,—RlI-Kl=2-0-0=2, &=c3—Rl-Kj=5-0-0=5
d,= -K}=4-0-0=4, &,=c,~-RI-K;{=0-0-0=0

AGs=cls—Rj—K}=6-0-0=6
G=ch-Rj—K{=3-0-0=3, cp=c,;,—R—K}=5-0-0=5

~Rl-K}=6-0-0=6, &, =c,—R—Kl=0-0-0=0

= - Ry —K;=4-0-0=4

G=ch-R-K|=9-0-0=9, c=c—-R-Ki=0-0-0=0

h=ch-R-K}=5-0-0=5 &,

d,—R —K}=10-0-0=10

SGs=cls—RI—K!=12-0-0=12

Step 5

X = (X121’X122’X31’X§1) = (4, 1,4, 3)

let k=2, gotostep1
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Iteration 2.
Step 1 Choose a deficient node, d* = 2.

Step 2 Solve SP(C?, X2, d?%)

The results of this step are:

1
D=4, Pl=4, o*= and L?>=4

b}
4
After solving the shortest path problem the following nodes are permanently
labelled:

1 1 3
, and

1 4 3
Step 3

R=D!—I[?=4-4=0

K:=L'-Di=4-4=0

K}=1L*-Di=4-4=0

Ri=R}=K}=K}=K!=0
Step 4

& =CL-—R-K}=9-0-0=9
ng=5, %3=0, O?«)4=10, é5=12
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Step 5

( 1 m X3l) (21 43)
=0, ad=1, a3=2, ai=1, a¥=0

let k=3, gotostep 1
Iteration 3.

Step 1 Choose a deficient node, & =5

Step 2 Solve SP(C3,X3,d%)

The results of this step are:

D3=4, D3=4, D=9,
PP=2, P2=0, P3=1

3
v3=( ) and L3=9
3

R=D}-13=4-9=-5 R=D3-L[3=4-9=-5 RR=D3—[3=9-9=0

Step 3

K}3=I3-D¥=9-4=5 Ki=I[°-D3=9-9=0, K}=I?-D3=9-4=5

K}=I*-D}=9-4=5 K3=0
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Step 4

ch=¢,—R-K}=2, ¢}, =4—(-5)—-5=4, cls=5-(-5)-0=10
¢=0-(-5)-5=0, s=6—(-5)-5=11

h=Cc—R}—K}=38, ¢, =6—(-5)~5=6, &y =5-(-5)-0=10
°§4=0"(-5)-5=0, g =4-(-5)-0=9

Xt = (denXiiz’X;nngxgz) (4,1,5,3,2)
af=1, aj=1, a§=1, af=1, af=1

Let k = 4, go to step 1

Iteration 4.

Step 1 No deficient node exists. Stop.

Therefore, optimal assignments are:

(1-1), 1—-4), 2-5), 3-2), 3-3)

with total cost =10+ 8 +16 +9+4 = 47.



86

4.3 Theoretical Results and Implementation

In this section certain theoretical properties of the SSP algorithm for the semi—
assignment problem are examined. Theorem 1 is a convergence result, while the-
orem 2 deals with the computational complexity of the algorithm. Theorem 3
provides a verification of the infeasibility criterion in step 2 of the algorithm. Im-

plementation of the algorithm is discussed in subsection 4.3.2

4.3.1 Theoretical Results

Theorem 1 If SSP does not stop because of the infeasibility test in step 2, it

reaches optimality in at most n — 1 iterations.

Proof: We proceed by induction. We have (m,n,C%,b, X1) is in standard form
with at most n —1, deficient destinations. If we assume that (m,n,C¥,b, X*) is in
standard form with g > 1, deficient destinations, it follows that (m,n,C*+1 b, XF+1)
is in standard form with ¢ —1 deficient destinations. At each iteration the number

of deficient nodes is reduced by one. Therefore the theorem follows.
Theorem 2. SSP algorithm has a O(n®) computational bound.

Proof: When the algorithm does not indicate an infeasible semi-assignment prob-
lem, it requires at most n — 1 iterations by Theorem 1. This result, together with
the O(n?) computational bound, where n is the number of nodes in the shortest

path tree, for the Dijkstra shortest path algorithm, implies the O(n®) bound in
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this case.

Theorem 8. The original semi-assignment problem is infeasible if and only if the

shortest path algorithm fails to label an abundant node of SP(C*, X*,d*) on some
iteration k.

Proof: Half the proof follows from Theorem 1. We proceed with the remaining
half. Suppose that the algorithm fails to label an abundant node. Let N; be the
set of origins ¢ such that (i — ¢) is permanently labelled for some ¢, and let N,
be the set of destinations j such that (p — j) is permanently labelled for some
p- All arcs of the original semi-assignment network which terminate in N, must
originate in N; by the way SP(C*, X*,d*) is defined. Since N; contains one more

element than N; (namely, d¥) it is clear that the original semi-assignment problem

is infeasible.

4.3.2 Implementation of the SSP Algorithm for the Semi-Assignment

Problem

As in any computer code, there are still minor coding changes which could be

performed to enhance overall efficiency. Therefore, our goal has been to make the

code as efficient as possible.

An implementation of this algorithm is the same implementation discussed
in chapter 3 for solving the assignment problem. However, the implementation

techniques for creating and solving the shortest path algorithm (section 3.3.2.1)
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needs some modifications.

The assignment of each source node ¢ to a destination node j is stored in an
array called X (initially X := ¢) of length m. Each time a destination node j is

satisfied from a source node i, it is linked to the list in position ¢ of the array X.

When reversing the assignments in step 5, a destination node in S(v*) may
change its source node. If the abundant node in the modified semi-assignment
problem receiving only one unit from a source node i in $(v*), then the position
of this abundant node is occupied by the destination node of the predecessor of
node i in S(v*). If the abundant node j in the modified semi-assignment problem
receiving more than one unit from a source node : in S(v*), the destination of the
predecessor of node i in S(v¥) is supplied from node i and the abundant destination
node j is supplied also from node i. For the rest of the path S(v*) continue by

successively examining the predecessors of v until the root node is encountered.

previous.
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4.4 Comparative Computation Tests

4.4.1 Experimental Design -

An in—core FORTRAN code called SPSN, has been developed for the semi-
assignment problem utilizing the SSP algorithm, the computational considerations
presented in section 3.4.1 are used in SPSN. The computer environment introduced
in section 3.4.2 is the same environment we used to test SPSN. Also, the problems
used in the tests were randomly generated using NETGEN. In contrast to the
assignment test problems, the specification of the semi-assignment test problems
vary greatly in both the number of nodes and arcs. The test problems vary in size
from 50 origins and 500 destinations to 400 origins and 4000 destinations. The
number of arcs varies from 2000 arcs to 16,000 arcs. The cost data were randomly
generated between 1 — 1000 for the first test problems. In the second test problems
the cost data were randomly generated between 1 — 10,000. Solution times are an

average of five runs for each problem.

4.4.2 Computational Comparison

The codes which are used for comparison are CAPNET a code of specialized
primal simplex method [9, 36], TRANS, code of the Out—of-Kilter algorithm part

of SAS system [32, 65], and the third code is SPSAN. SPSAN is developed in this
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thesis to solve the semi-assignment problem as an assignment problem using the
SSP algorithm. The code originally is SPAN-I and we did some modification to it
so that it could convert the semi-assignment problem to assignment problem. All

of these codes are in—core codes and they are all coded in FORTRAN.

In order to compare the codes against SPSN, we solved the same semi-assignment
problems used by Barr et al. [6]. The results of the comparison are shown in Ta-
bles 4.1 and 4.2. Table 4.1 shows the problem size, the density (in terms of the
number of arcs), and solution times. Table 4.2 presents the same problems in Table
4.1 with cost range between 1 - 10,000. Upon examining Tables 4.1 and 4.2, the
results indicate that SPSN is fhe fastest method for solving the semi-assignment
problems in comparison with the tested codes. The SPSN times strictly dominate
the times of the other codes. Comparing the sum of the total solution times, the
SPSN code is 1.3 times faster than CAPNET and .1.8 times faster than SPSAN.

TRANS could not solve any problem because the size of the problems is too large.



TABLE 4.1 Solution Times in Seconds on Semi-assignment

Problems with a cost range of 1-1000.

No. of Nodes Times (in seconds)

mxn No. of Arcs CAPNET TRANS SPSAN SPSN
50 x 500 2,000 1.247 CNR 2179  0.6332
50 x 500 5,000 2.079 CNR 2.827  0.7456
50 x 500 10,000 3.740 CNR 4.158 1.568
50 x 1000 4,000 2.515 CNR 3.206 1.292
50 x 1000 10,000 5.384 CNR 5.820 2.904
50 x 1000 20,000 7.830 CNR 8.105 4.502
100 x 1000 4,000 3.064 CNR 3.763 1.742
100 x 1000 10,000 5.235 CNR 6.022 3.625
100 x 1000 16,000 7930 CNR 8.291  4.370
400 x 4000 10,000 19.56 CNR 2212 13.15
400 x 4000 16,000 25.13 CNR 2836  17.95
Total Solution 83.714 — 9436 524818
Times

Ratio 1.59 — 1.79 1

CNR = could not run as a result of memory limitations.
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TABLE 4.2 Solution Times in Seconds on Semi-assignment

Problems with a cost range of 1-10,000.

No. of Nodes Times (in seconds)
mxn No. of Arcs CAPNET SPSAN SPSN
50 x 500 2,000 1.483 3.680 1.113
50 x 500 5,000 2.563 4.529 1.498
50 x 500 10,000 4.112 7.664 2.448
50 x 1000 4,000 2.752 5.725  2.059
50 x 1000 10,000 5.692 1026  4.122
50 x 1000 20,000 8.042 14.85 6.751
100 x 1000 4,000 3.137 5.057 2.015
100 x 1000 10,000 5.652 9.475 6.074
100 x 1000 16,000 8.195 15.19 7.969
400 x 4000 10,000 21.30 34.80 21.14
400 x 4000 16,000 27.45 45.21  26.30
Total Solution 90.378 156.44 81.489
Times

Ratio 1.10 1.91 1
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4.43 Memory Requirements of the Codes

Table 4.3 indicates the number of origins, destinations, and arc length arrays
required for each of the codes tested for solving semi-assignment problems except
for the TRANS code. The storage requirements of this code were not available.
It should be noted that memory requirements of SPSN and CAPNET are quite
close. Further, it is important to note that based on the tested problems CAPNET
requires the least amount of memory of all the codes; this feature gives CAPNET

the advantage of solving large problems other codes can not solve.

TABLE 4.3 Code Specifications for the Semi-assignment Problem

Developer Name Type Number of arrays

1. Duffuaa and SPSN SSP algorithm 9M +3N +4A+2L
Ghassab

2. Duffuaa and SPSAN SSP algorithm 11N +2A+2L
Ghassab

3. SAS TRANS  Out-of-Kilter method Not available

4, Barr et al. CAPNET Specialized Primal 6M + 6N +3A
Simplex algorithm

where,

M = number of origins

N number of destinations
A number of arcs

L = maximum arc length
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4.5 Conclusion

The new algorithm presented in this chapter is a modification of the SSP al-
gorithm for the assignment problem in order to solve the semi-assignment prob-
lem. Coding this algorithm and comparing it with available codes for the semi—
assignment problem has indicated that the SSP algorithm is a very efficient ap-
proach for the semi-assignment problem. The results of the comparison have
shown that SPSN is 1.3 times faster than CAPNET and 1.8 times faster than
SPSAN. The code TRANS could not solve any problem because of memory lim-
itations. Based on memory requirements, no single code seems to dominate the |

others; it depends on the size of M, N, A and L.

In the following chapter the SSP approach is generalized to solve the trans-

portation problem.



CHAPTER 5

A SUCCESSIVE SHORTEST PATH ALGORITHM
FOR THE TRANSPORTATION PROBLEM

5.1 Introduction

The transportation problem is a type of network flow problem. Each source
node is able to supply a specified number of units; each destination node has a
demand for a specified number of units. A cost is incurred for shipping units
along arcs between sources and destination. The objective is to satisfy demands
at minimum total cost. Some arcs may have capacities and lower flow bounds
(capacitated transportation problem), this case is not covered in the thesis. Several
algorithms have been developed for solving uncapacitated transportation problems,
namely [6, 11, 17]. The SSP algorithm implemented and tested in Chapter 3 for
solving the assignment problem, has been extended in Chapter 4 to solve the semi-—
assignment problem. The purpose of this chapter is to generalize the SSP algorithm
to solve the transportation problem. Furthermore, to compare the performance
of the generalized SSP algorithm for the transportation problem with CAPNET
and TRANS. TRANS is an implementation of Qut-of-Kilter algorithm for the

transportation problem and is a part of the SAS system [64].
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This chapter begins by describing the SSP algorithm for the transportation
problem. Theoretical results and the implementation of the algorithm are pre-
sented in Section 5.3. Section 5.4 reviews the computer environment for the
computational study. Results of the performance of the SSP algorithm for the

transportation problem as compared to other algorithms is shown in Section 5.4.

Section 5.5 concludes the chapter.
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5.2 Description of the SSP Algorithm for
' The Transportation Problem

Consider one commodity in one time period. The commodity is available in
given quantities a; at m origins and required in given quantities b; at n destinations.
The total amount available equals the total amount required. The unit cost of
routing the commodity from origin ¢ to destination j is denoted by ¢;;. The
problem is to determine the number of units z;; to be routed from each origin
to each destination to minimize the total cost. The problem may be rewritten in

linear programming form as follows:

Minimize > i
(i)eE

Subject to

z"j = a.', i e I = {1,2, 3,. . .m} (5-1)
(:5)EFS()

x,-,-:b,-, j€J={1,2,3,...n}
(3,))ERS(j)
zi; 20, (i,j)€E

for a balanced transportation problem )_a; = ) b;.
i J

Given the transportation problem, we say X = (z;;) is a tentative solution
provided there exists at least one j € J, such that
Tij = @, i € I. (52)
(i.4)EFS()
Since the transportation problem will remain fixed in the following discussion,

we denote the transportation problem equipped with a tentative solution X by
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(m,n,C, a,b,X).

We say that (m,n,C, a,b, X) is in the standard form if ¢;; > 0 for (i,5) € E

andc.-,-:Oif:z:,-,-ZO.

In the starting procedure for SSP a tentative solution is defined as follows.

First,

A — ; . 5.3
&= oin o) (53)
must be determined for ¢ € I. z;; = a; for some j such that ¢;; = &. For this X,
(m,n,C, a,b,X) may not be in the standard form. However, the forward star of i

may be scaled by setting

Cip — Cip — G, for (i,p) € FS(3). (5.4)

The resulting (m,n,C,a, b, X) is in the standard form.

For a given tentative solution X, we let ¥, = Z z;;. The modified trans-
(3,5)€RS(5)
portation problem relative to (m,n,C, a,b, X) is defined as follows:

Minimize ) ¢z

(.d)eE
Subject to
Tij = @, tel (55)
(i.7)EF S(i)
z; =Y, jeJ
(4,7)ERS(5)

ri; 20, (31.7) €E

We note that when (m,n,C, a, b, X) is in standard form, X provides an optimal

solution to the modified transportation problem in (5.5), relative to (m,n,C, a,b, X )-
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A destination node j is said to be abundant relative to X when ¥, > b;. If
b < bj, the destination node is said to be deficient relative to X. A destination

node j is said to be neutral relative to X when ¥ = ;.

Suppose (m,n,C, a,b, X) is in standard form and d is some deficient node with
respect to X. The shortest path problem relative to (m,n,C,a,b,X) and d is
denoted SP(C, X, d) and is defined as in the case of semi-assignment problem ex-
plained in Section 4.2. However, one difference exists between the SP(C, X, d) for
the semi-assignment and the transportation problems, that in the case of the trans-

portation deficient nodes with positive shipment can be a part of the SP(C, X, d).

The major steps of SSP for the transportation problem are as follows:

0. Define X! and transform C° to C! by scaling as described above so that

(m,n,C',a,b,X?) is in standard form. Set k = 1.

1. Choose a destination node d* which is deficient relative to X*. If no deficient

node exists, stop, X* defines an optimal solution.

2. Solve SP(C*, X* d*). The shortest algorithm is terminated as soon as an
abundant shortest path node is permanently labelled. If the shortest path
algorithm fails to permanently label an abundant node, stop, the transporta-

tion problem is infeasible. Otherwise, the results of this step are D*, P¥ v¥

and LF.

3. For each permanently labelled shortest path node (i — 7) from step 2, set
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R} = D¥—L* and K} = L*— D. For any remaining origins i or destinations,

j)set Rf = K¥ =0.
4. Set cz:"l = ct’ - R{c -_— K:‘ for (i,j) € E.

5. Whenever the i-th shortest path node is in S(v*), i #m+1,let T =

min (b:, — by, z:.‘x!,o,bdk > zfd:.) where X,!fo is node j receiving
N (i,d*)eRS(d¥)

zk xx, units at step k. Set rftl = rk 41, and XHh = X}q if zF xx, > T.
If :cfx',‘o =T, set X3 = X}q, where O and Q are the destination number
for the source node ¢ and ¢, respectively, and £ = P¥. For all other origins 3,

XE' = X%,. Modify supplies in S(v*) accordingly, and set k¥ — k + 1 and

go to step 1 of the SSP algorithm.

In other words, step 5 identifies the amount by which the deficient node is
short, by which the abundant node is in excess, and by which each node in the
shortest path tree can ship. Then every node on the S(v*) path is examined to
find how much is available in that node. Further, the minimum is taken over

all the quantities and shipment is reversed along the path in order to reduce the

deficiency in the root node.
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5.3 Theoretical Results and Implementation

In this section certain theoretical properties of SSP algorithm for the trans-
portation problem are examined. Theorem 1 shows that during the steps of the
SSP dual feasibility is maintained for the original problem. Theorem 2 is a con-
vergence result, while theorem 3 deals with the computational complexity of the
algorithm. Theorem 4 establishes that if the algorithm fails to label an abundant
node in step 2 fo the algorithm, then the problem is infeasible. Implementation of

the algorithm is discussed in subsection 5.3.2.

5.3.1 Theoretical Results

The dual of the transportation problem given in (5.1) can be stated as

Maximize ) a;Ri+ ) b;K;

i=1 i=1

subject to - (5.6)
R+ K;<cj (i,j) € E '
R; and K unrestricted

The following theorem establishes that at every SSP step dual feasibility is main-

tained.

Theorem 1. At every stage k of the SSP algorithm, dual feasibility is maintained

Jor the original problem (i.e., RF + K} < ¢; for dll (i, §) € E).
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Proof: Consider the following six cases:

1. If (i — j) is a node of S(v*).

Rf + K} = (D¥ — L¥) + (L* - D¥) =0
= Rt + K} < c;;

2. If there exists p and ¢ such that (p — j) is the predecessor of (: — ¢) in
S(v*). (adjacent nodes). Hence, D¥ = DX + ;. It follows that

R} + K} = (Df = L*) + (L* — D}) = cf;
= RF + K} < ¢;

J =9
3. If there exists p and ¢ and (p — j) is not the predecessor of (i — g), in
S(v*). (not adjacent nodes)
R} + K¥ = (D} — L*) + (L* — D¥) = D¥ - D¢
but, Dfc< D";
= RF+ KF < o

i
4. If node (i — g) in S(v*), but node (p — j) is not in S(v*) and permanently
labelled.
R} + K} = (D¥ — L*) + (L* — D¥) = D¥ — Dk
but, Df < Df

=>R£°+K;-‘$cf-‘j

5. If node (i — ¢) in S(v*), but node (p — j) is not in S(v*) and not yet
permanently labelled.
R+ K*= (D} — I¥)+0=Dt~[* <0
= RF+ KF < c;

Otherwise, node (p — j) will be labelled before reaching the abundant node.
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6. If node (i — ) is permanently labelled but (p — j) is not labelled.

R+ K}=(DF-L¥)+0<0
= RF+ KfF < ¢

3 =9

Otherwise, node (p — j) will be labelled before the affluent node is labelled.

The SSP algorithm maintains dual feasibility and complementary slackness and

strives for primal feasibility. When it attains primal feasibility it stops.

Theorem 2. If SSP does not stop because of the infeasibility test in step 2, it

m
reaches optimalitly in at most A — nain(b,-) shortest path step, where A = Za,- =

" i=1
2 b

i=1
Proof: At each iteration the reduction in primal infeasibility is at least one unit.

Therefore, the maximum number for shortest path steps is A — min(b;).
j

Theorem 3. SSP algorithm for the transportation problem has a O((A + m)?)

compulational bound where A = Zag = Z b;.
, i i

Proof: At iteration k£ the maximum number of node in the shortest path problem
is (k4m). The computational bound on the shortest path is O(n?), where n is the
number of nodes in the shortest path tree. Therefore, the computational bound
on the SSP for the transportation problems is

(A~min; (b;)+m) (A—min(b;)+m) m

r?= Z 1*2---21'2

r=(k+m) r=1 r=1
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Using the formula for the sum of square of integers and simplifying, the computa-

tional bound on the SSP algorithm is ~ O((A + m)3).

Theorem 4. The original transportation problem is infeasible if and only if the
shortest path algorithm fails to label an abundant node of SP(C*, X*,d*) on some

iteration k.

Proof. Half the proof follows from theorem 2. Regarding the other half, we note
that whenever a path from the root to some abundant node exists, the shortest path
algorithm will eventually permanently label an abundant node. We proceed by as-
suming that there is no path from the root to an abundant node in SP(C*, X*, d*)

and that the desired conclusion - infeasibility of the transportation problem — does

not hold.

5.3.2 Implementation of the SSP Algorithm for the Transportation
Problem

Going from the implementation of the SSP algorithm for the assignment and
semi-assignment problem will not change much. The resulting shortest path prob-
lem is solved using a label-setting algorithm, Dijkstra implementation. The se-
lection of deficient nodes is done similar to the case of the assignment and semi-

assignment. The major changes are in the construction of the shortest path tree
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and reversing the shipments along the path S(v*) (Step 5 of the SSP algorithm).

Deficient nodes with positive shipments can be a part of the SP(C, X, d). The
construction of these nodes and the linkage to the other nodes in the tree is the
same as discussed in Chapter 3. We deal with these nodes similar to other nodes

except we have to keep in mind that it is deficient by a specific amount.

When reversing the shipment along the path S(v*), some destination nodes
may change their source of shipment, and some sources may reduce some of the
shipment from a destination node. This case is explained in step 5 of the SSP
algorithm and it depends on the amount T' that will be taken from the abundant
node to the predecessor of the abundant node and from the predecessor of the
abundant node to the predecessor of the predecessor of the abundant node. This
process is continued until we reach the root node. In order to fix the idea of
reversing the shipment, we present an example. Consider a deficient node d!,
where bp = 6 and ).  z}p = 4. After solving the SSP. Steps 1 to 4 we

(i:d")ERS(d")
found that the S(v') is as shown in Figure 5.1. Step 5 of the SSP algorithm
starts by identifying the amount T' that will be shipped along the path, T =
min(8 — 3,8,2,3,6 — 4) = 2. Then the shipment is taken from the abundant node
along the path S(v’) until we reach the root node. Therefore, by starting from the

abundant node until we reach the root node the following are the results.
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node 2 supplies node < with 2 units
(i.e. node & is deficient by 2 units.)

node £, supplies noded, with 3units, and r=1

node ¢, supplies node J, with 2 units, and r=1

node j, needs only 3 units

node (,z supplies node J, with 8 units
node _j3 is abundant by 5 units, and r=1

Figure 5.1 An Example of a Shortest Path (S(v)) to an Abundant Node
from a Root Node
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1. Because zh,;, =8> T, rh=1+1=2

Hence, Xi22,2 = Xil:?..l = j, and then ZTi2j3=8—2=06and :c,?zjz =2

1 —0_ 2 .1
2. Because 73, =2=T, rz=r3=

Hence, X3, = X, = ja and then zi3j, =2—2=0and 2}, =2

3. Becausez}, ;, =3>T,rl=1+1=2

Hence, X3, = Xk, =d and hence 2z} ;, =3—-2=1and 2} 5 =2
Then set k = 2 and go to step 1 of the SSP algorithm.

When an iteration k is completed it does not guarantee that the deficient node
d* is satisfied by the amount by which it is deficient. It might be worth while to
develop a strategy for picking a deficient node in the SSP algorithm; however, some
experimentation was done, but an efficient strategy was not formulated. Further

work is needed to develop such a strategy.
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5.4 Comparative Computational Tests

The SSP steps are coded using FORTRAN language and called SPTN. Com-

puter environment and the comparison of SPTN with the available software are

presented in this section.

5.4.1 Experimental Design

The computer environment used to test SPAN-I and SPSN is used here to test
SPTN code. The problems used in the tests were randomly generated using NET-
GEN [55]). The parameter specifications of the problems were picked to correspond

with the problems used for comparisons in [8, 37].

All problems were solved on an AMDAHL 5850 usi;lg FORTRAN compiler.
The computer jobs were executed during periods when the machine load was ap-
proximately the same, and all times are exclusive of input and output. The total
time spent solving the problems was recorded by calling a CPU clock upon starting
to solve the problem and again when the solution was obtained. The solution time

recorded is an average of five runs for each problem.

Ten problems were generated. The first five problems are 100 x 100 of density
varying from 13% to 29%, and the total supply of the 100 sources is 100,000 units.

Problems 6-10 are 150 x 150 of density varying from 14% to 28%, and the total
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supply of the 150 source is 150,000 units. The unit cost of these ten problems
varies from 1 to 100. In order to see the sensitivity of the codes solution times to
the value of the cost vector, the cost vector range was changed to be randomly
generated from values between 1 and 10,000. Then the same ten problems are

used again for comparison with the new cost range.

5.4.2 Computational Comparison

Two codes are used for computational comparison with SPTN. The codes are
CAPNET and TRANS. The first code is an implementation of a specialized pri-
mal simplex [9] and the second code is an implementation of the Qut-of-Kilter

algorithm developed by Fulkerson [32]. The two codes are in—core and coded in

FORTRAN.

The bench-mark problems obtained from [55] are solved using the three codes.
The CPU times for solving these problems are shown in Tables 5.1 and 5.2. Table
5.1 shows the problem size, the problem density (in terms of the number of arcs),
total supply, and solution times (in seconds). Table 5.2 contains the same infor-
mation contained in Table 5.1 for the same set of problems with a different cost

range. Graphical representations of the solution times for SPTN and CAPNET

are given in Figures 5.2 and 5.3

Based on the sum of the solution times for the problems in Table 5.1 with cost




110

range 1-100, SPTN is roughly 1.3 times faster than CAPNET, and the solution
times for TRANS is not comparable with SPTN solution times. For the cost range
from 1 to 10,000 (in Table 5.2), based on the sum of the solution times, it was
found that CAPNET is roughly 1.23 times faster than SPTN. Because of memory
limitations TRANS could not solve any problem when the cost range is between

1 and 10,000. Also, it is noticed that the change in the cost range did not alter

CAPNET CPU solution times.

The study indicates that the SPTN code is more efficient than CAPNET for
problem with low cost range. However, the results in Table 5.2 shows that CAP-
NET is more efficient than SPTN when the cost range is high. The reason that
CAPNET dominates SPTN in this case, because of the length of the sort list array

(K') needed for solving the shortest path problem in SPTN which depends on the

maximum cost value.
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TABLE 5.1 Total Solution Times in Seconds for Transportation
Problems with a cost range of 1-100.

No. of Nodes No. of Total Times (seconds)
mxn arcs Supply CAPNET TRANS SPTN
100 x 100 1300 100,000 0.830  42.68 0.7196

100 x 100 1500 100,000 0.868  40.89 0.7829
100 x 100 2000 100,000 1.007  31.87 0.8313
100 x 100 2200 100,000 1.100  28.27 0.8045
100 x 100 2900 100,000 1285 21.05 0.8466
150 x 150 3150 150,000 1.597 126.46 1.086
150 x 150 4500 150,000 2077 109.83 1.515
150 x 150 5155 150,000 2223  87.53 1.808
150 x 150 6075 150,000 2513  69.24 1.906
150 x 150 6300 150,000 2.532  69.95 2.039

Total Solution 16.032 620.77  12.329
Times

Ratio | 130 503 1
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TABLE 5.2 Total Solution Times in Seconds for Transportation
Problems with a cost range of 1-10,000.

No. of Nodes No. of Total Times (seconds)

mxn arcs  Supply CAPNET TRANS SPTN

100 x 100 1300 100,000 0.829 CNT 1.043
100 x 100 1500 100,000 0.867 CNT 1.251
100 x 100 2000 100,000 1.033 CNT 1.608
100 x 100 2200 100,000 1.047 CNT 1.472
100 x 100 2900 100,000 1.283 CNT 1.848
150 x 150 3150 150,000 1.592 CNT 1.560
150 x 150 4500 150,000 2.086 CNT 2.214
150 x 150 5155 150,000 2.251 CNT 2.683

150 x 150 6075 150,000 2.502 CNT 2.984

150 x 150 6300 150,000 2.526 CNT 3.161
Total Solution 16.016 —_ 19.824
Times

Ratio 1 — 1.23

CNT = could not run as a result of memory limitations
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5.4.83 Memory Requirements of the Codes

Table 5.3 shows the developer names, code name, type of the algorithm used
in each code and the number of arrays needed for each code for solving the trans-
portation problem. The storage requirements of TRANS code were not available.
Based on the tested problems, CAPNET has a relatively less memory requirements
than SPTN.

TABLE 5.3 Code Specifications for Solving the Transportation

Problem
Developer “Name Type Number of arrays
1. Duffuaa and SPTN SSP algorithm 10M + 4N +4A+2L
Ghassab
2. SAS TRANS  Out-of-Kilter Method Not available

3. Barr et al. CAPNET Specialized Primal 6M+6N+34
Simplex algorithm

where,

M = number of origins

N = number of destinations
A = number of arcs

L = maximum arc length
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5.5 Conclusion

The SSP algorithm discussed in this chapter is a generalized SSP algorithm for
solving the transportation problem. After coding this SSP algorithm and com-
paring it with the available software results indicated that SPTN is 1.3 times
faster than CAPNET for transportation problem with cost range between 1-100;
however, CAPNET is 1.23 times faster than SPTN for problems with cost range

between 1-10,000. Also, based on memory requirement, CAPNET has a relatively

less memory requirements than SPTN.




CHAPTER 6

CONCLUSIONS

6.1 Summary of Results

Application of minimal cost network flow problems are widely spread, [35, 36,
38] and new solution algorithms and implementations have stimulated further ap-
plications. A number of studies have concluded that implementations based on

the primal simplex algorithm are the most efficient for solving such problems.

In this thesis we have introduced a successive shortest path algorithm — SSP
— and an implementation of this algorithm — SPAN-I. We have verified through
computational testing that Dijkstra algorithm is the best shortest path algorithm
which fits the SSP framework. SPAN-I was also found to be more efficient than

the implementations of Hungarian and specialized primal simplex algorithms for

sparse problems.

An SSP algorithm for semi-assignment problem is developed and implemented
in the code SPSN. Computational comparisons have been performed with a special-
ized primal simplex code (CAPNET), an implementation of Qut-of-Kilter algo-

rithm (TRANS) and solving semi-assignment as an assignment problem (SPSAN).
117
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It has been verified that SPSN is the most efficient algorithm for solving semi-

assignment problems. It is 1.3 times faster than CAPNET and 1.8 times faster
than SPSAN.

Finally, the SSP approach is generalized for solving uncapacitated transporta-
tion problems. A code implementing the SSP for transportation problem is devel-
oped (SPTN). It has been verified through computational testing that SPTN is
more efficient for solving uncapicitated transportation problems than CAPNET,
for problems with cost range between 1 and 100. For such problems it is 1.3 times
faster than CAPNET. For problems with high cost range between 1 and 10,000,
the specialized primal simplex code (CAPNET) has dominated the code (SPTN)
developed in this thesis. For such problems CAPNET is 1.23 times faster than
SPTN.
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6.2 Conclusions

Concluding the work of this thesis, the following are the main findings:

1. The best shortest path algorithm which fits the SSP framework is a label-

setting algorithm using Dijkstra implementation.

2. One of the best algorithms for solving sparse assignment problems is SSP al-
gorithm. However, for 100% dense problems the Hungarian method performs

better than SSP algorithm.

3. The modified SSP algorithm for solving semi-assignment problems is one

of the most efficient algorithms, in comparison with the method used and

solution times reported in the literature.

4. For transportation problems with low cost range of 1-100, the generalized
SSP algorithm for solving uncapacitated transportation problems is verified
to be one of the best algorithms. However, if the cost range is between

1-1000, CAPNET outperformed the SSP algorithm.

5. In general SSP algorithms tend to be more efficient when the range of the
cost vector is small. This is expected because in this case the required list

of address calculation sort has smaller dimensions and requires less data

manipulations.
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6.3 Future Research

The following are some areas for future research:

1. Extension and implementation of the SSP approach for capacitated trans-

portation problem might be worthwhile.

2. New theoretical results for the generalized SSP algorithm have been devel-
oped. However, it would be of interest if a more general framework could be

set up which would relate the thesis work to the family of simplex algorithms.

3. Strategies for selecting deficient nodes for constructing the shortest problem

may influence algorithm efficiency and need to be investigated.

4. Large cost variations increase the CPU time for SSP algorithm because the
address calculation sort dimension in solving the SP problem depends on

the maximum cost. Therefore, scaling of the cost range that will reduce the

CUP time needs to be investigated.
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A.1 Implementation Techniques for the Label-Setting
Method

In this appendix, several implementations of the general label-setting method
are discussed. From an algorithmic viewpoint, the primary differences between
these implementations are the way in which the minimum in step 3 of the algo-

rithm description is found and the handling of original problem data.

A naive implementation of the general label-setting method would be to find
the set S of step 2 by examining all arcs in A and then calculating and discarding
node potentials to find the minimum of step 3. This involves examining all arcs
during every execution of step 2, as well as performing many unnecessary node
potential calculations in step 3. The implementations described in this subsection
make use of temporarily retained node potentials in such a way that each arc in

A is examined at most once, thereby avoiding extensive recalculation.

As a basis for understanding these implementations, it is useful to observe that
steps 2 and 3 of the label-setting method simply find an arc from a tree node to a
non-tree node which yields the minimum distance extension. Figure A.1 illustrates
one way of viewing these steps at some iteration where the tree T'(N7, A7) consists
of the solid line arcs and their associated nodes. The dashed line arcs and their
ending nodes Ng indicate possible tree extensions. (Note that N — Ny may not

be equal to Ng).
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Figure A.1 Label-Setting Iteration
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By reference to this diagram, it may be seen that steps 2 and 3 can be performed
by keeping a temporary node potential and predecessor for each one;, v in Ng such
that d(v) = :Iel]lv 3 d(u) + €(u,v)) and the predecessor of v is set to a node u which
yields the minimum node potential for v. Thus, if p(v) = u then —d(u) + d(v) =
{(u,v). Step 3 then adds a node v in Ng with the smallest temporary node
potential to Nt and correspondingly adds its arc (p(v), v) to Ar. After performing
this step, node v’s potential will never change (i.e., it is assigned a permanent node
potential at this time) and arc (p(v), v) is permanently assigned to the tree. The

name label-setting stems from this property of the algorithm.

In the following subsections, we discuss alternative implementations for carry-
ing out steps 2 and 3 in this manner. These implementations differ in the way they
handle the following fundamental operations: (1) the computation and updating
of temporary node potentials, (2) the assignment of one or more temporary node
potentials to a node in Ng, (3) the representation of the original network on the

external file, and (4) the buffering of arc data into central memory.

A.1.1 Dijkstra Address Calculation Sort

The first implementation to be discussed is the one originally developed by
Dial [23]. The Dial implementation then identifies the minimum temporary node
potential using the following observation. Each temporary node potential equals

a permanent node potential plus the length of some arc. Consequently, temporary



131

node potential values may be uniguely represented modulo (£ + 1) where £, =
max £(a). That is if d(p) # d(q) where d(p) and d(q) are temporary node potentials,

then d(p) modulo (£may + 1) # d(g) modulo (e, + 1).

To see this, suppose that node v has the minimum temporary node potential
at the current iteration. Then d(u) < d(v) for u € Nt and thus for t € Ng d(v) <
d(t) < d(v) + frax- In other words, at each iteration all temporary node potentials
are bracketed on the lower side by d(v) and on the upper side by d(v) + €iax. Thus

it is possible from one iteration to the next to uniquely represent all temporary

node potentials modulo ({yay +1).

To find the minimum by this procedure, it is convenient to use a computer

array k of size £y, + 1 where

k(i') _ 0 if 2 # d(v) modulo ({max + 1), for any v € Ng

pi if i = d(q) modulo (£yay + 1), for some g € Ng

where p; is a pointer which points to all nods in Nz that have a modulo temporary
node potential value of . The nodes in Ng that have the same modulo temporary
node potential value (and thus, on any given iteration, the same temporary node
potential value) are identified by chaining the nodes by a two—way linked list. Thus,
every node with the same temporary potential value is linked to an antecedent and
a successor node (which may be dummies at the “ends” of the list). When a node’s

temporary potential changes, the node is disconnected from the chain simply by

re-linking this antecedent and successor to each other. This array achieves an
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“automatic sort” of the nodes in N relative to their temporary node potentials.
Figure A.2 illustrates the sort structure induced by the k array and the two-way

linked lists, representing node names by the symbol n;.

The current minimum temporary node potential is found by sequentially exam-
ining the elements of k in a wrap—around fashion. Each time a nonzero element of
k is encountered, the current minimum node potential is that of the nodes associ-
ated with this element, and examination of k resumes at the next nonzero element

of k on the next iteration.

To describe the implementation of this algorithm, it is convenient to define the

following terms:

1. The imputed node potential value of node g, relative to the forward star of v,

denoted by d,(q), is d(v) + £(v,q). .

2. An improving imputed node potential d,(g) is one such that d,(q) < d(q);

i.e., d,(q) is smaller than the current minimum temporary node potential of

node q.

3. Node q is an improving node relative to F'S(v) if it has an improving imputed

node potential.

4. A node v is scanned by examining FS(v) and updating d(q) and p(q) for

each improving node g € FS(v); i.e., d(q) := d,(q) and p(q) = v.
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Figure A.2 Address Calculation Sort
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To implement this approach, the algorithm initializes p(v) = 0, v € N; d(r) =0
and d(v) = o0, v € N — {r}; and k(i) = 0,0 < vi < €pmaz- The root node r is
then scanned and the improving nodes of FS(r) are “added to” the appropriate
elements of k. The first pass of the k list starts at k(0), examining the elements
of k in sequence until the first nonzero element is encountered. Each node v
associated with this nonzero element is then removed from the two-way chained
list and sequentially scanned. Any improving node ¢ located during the scan of v
is removed from “its current position” in k and moved to its new position d,(q)
modulo ({max + L). (If d(g) = oo then node v has never been added to k and thus

no steps are required to remove it.)

At each subsequent iteration, the examination of array k resumes where it left
off (and wraps around if necessary) to find the first nonzero entry. This entry
identifies a node with the new .minimum temporary node potential. All chained
nodes with this temporary node potential are then removed from k and scanﬁed

in the manner previously indicated. The algorithm stops when a complete pass of

k is made without finding a nonzero entry.

This approach is called an address calculation sort because the insertion and
deletion of an item from the list simply involves calculating an address in a con-
venient and straight-forward manner. Its application to shortest path implemen-
tations, as proposed and coded by Dial, is known in the literature as CACM

Algorithm 360 (see [23]). This algorithm was found by authors of several studies
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to be the most efficient shortest path method for problems with nonnegative arc

lengths.

Two attractive features of this algorithm are its simplicity and the structuring
which assures that each arc is examined at most once. The major disadvantages

of this algorithm are the computer memory required to store k and the random

access required of arc data.
A.1.2 Dantzig Address Calculation Sort

The study of [24] shows that a majof time consuming task of Dijkstra imple-
mentation involves inserting and deleting nodes in the two-way linked array when
their node potentials are reduced. One way to reduce the effort of inserting and
removing nodes on the two-way linked list of the address calculation sort is to
postpone adding nodes to the list. This can be done by observing that it is unnec-
essary to scan the entire forward star of the node v when it is assigned a permanent
node potential. In particular, only the endpoint of a minimum length arc in such
a forward star needs to be considered for addition to k. This follows from the fact
that all temporary node potentials determined from node v will be greater than r
equal to the node potential determined for the endpoint of a minimum length arc

of FS(v)'. We now describe an approach designed to exploit this observation.
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In order to limit the nodes considered for addition to k by selecting a minimum
length arc form FS(v), it is convenient to store the network G(N, A) in a sorted
Jorward star form. Dantzig [22] was the first to suggest this type of scheme, and

it is referred to as the Dantzig address calculation sort.

The steps of the algorithm basically operate in the manner previously described
for Dijkstra except that: (A) the two-way linked list is replaced by a one-way
linked list. (B) The forward star of each node u in Nr is scanned until an improving
node v is found, whereupon v is placed on the linked list with its predecessor, u,
and p(v) is set to u and d(V) is set to d(p(v)) + &(p(v),v). (Node p(v) is not

scanned again until the ordered pair (p(v),v) is removed from the linked list.)

It should be noted in this implementation, however, that the next nonzero el-
ement of £ may not point to the next minimum. Thus, when a node v is removed
from the linked list, it is discarded if its paired predecessor differs from its current
predecessor in array p, since this implies that v has already been assigned a per-
manent node potential. In any event, the predecessor paired with v is a scanned
for its improving node. If an improving node is found, it is added to the linked

list in the manner already described.

In the case that v’s paired predecessor is equal to its current predecessor p(v),
then v’s temporary node potential is a minimum and v is assigned a permanent

potential and added to Nr. Further, node v is scanned as described in step B.
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The advantages of this implementation are: (1) the algorithm can be termi-
natéd when all nodes are permanently labeled; (2) a node is never moved on the
linked list when its node potential is improved; and (3) the postponement of adding
temporary node potentials to k keeps less information on k& and potentially avoids

adding dominated values to k.

The materials in this Appendix are summarized from [24]. For more details on

Dijkstra and Dantzig address calculation sort lists, see [22, 24].
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c

C THIS PROGRAM SOLVE THE ASSIGNMENT PROBLEM AS A SUCCESSIVE
C SHORTES PATH ALGORITHM USING DIJKSTRA ALGORITHM TO SOLVE
C THE SHORTEST PATH PROBLEM.
c
PROGRAM SPAN_I
PARAMETER (N=100, LA=10000, 1H=100)
INTEGER  PN(N+1),A(N+1),AJ(N),R(N),K(N),TN(LA)
INTEGER RN, P(N+1),V,L, PT,CT,Q, IV,DF, DK, LABEL(N), LB
INTEGER  AL(LA), TOTC,D(N+1),DEFI(N),COST,CP
INTEGER  NEXT(N+1), LAST(N+1)
INTEGER  HEAD(O:1H), TAIL(O: IH)
LOGICAL  SWAP, HOLD
CHARAGTER FROM*10, TO%10, TITLE*35
EXTERNAL CTIME
DATA (K(1), t=1,N)/N*0/
DATA (AJ(1), 1=1,N)/N*0/
READ( 1, #)FROM, TO
TITLE = FROM
L1 = INDEX(TITLE,' ")
L2 = INDEX(TO,' ')
TITLE(L1+1:L1+L2) = TO
L3 = L1 + L2 + 1
TITLE(L3:) = 'ASSIGNMENTS'
it =0
ML = -999
KK = 99999
PN(1) = 1
M =0
c
C IN THIS SEGTION THE DATA HAS TO BE READ AS :
C FTROM NODE, TO NODE, AND COST

c
10 READ(1,*,END=20) 1,J,COST
IM = M+ 1
TN(IM) = J
AL(IM) = COST
IF(11.NE. 1) R(1) = 999999
IF(VE.NE. 1) PN(I+1) = PN(I)
PN(I+1) = PN(1+1) + 1
IF(COST.LT.R(1}) R(1) = COST
IF(COST.LT.KK) KK = COST
IF(COST.GT.ML) ML = COST
o=
GOTO 10
c

C BRINGING THE PROBLEM INTO THE STANDARD FORM
[

20 T0 = CTIME()
no ko 1=1,N
HOLD = .TRUE.
DO 30 JK=PN(1),PN(I+1)=1,1
J = TN(JK)
COST = AL(JK) = R(1)
IF(COST.EQ.0.AND.HOLD) THEN

PAGE 0
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c

30
40
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A(l) =J
AJ(J) = AJ(J) + 1
HOLD = .FALSE.
ENDIF
CONTINUE

CONTINUE

RN =N + 1

CP = ML

ML = CP + 1

DK = 1

C CHOOSEING THE DEFICIENT NODES

C

(9]

[¢]

50

DO 50 1=1,N
IF(AJ(1).EQ.0) THEN
DEFI(DK) = |
DK = DK + 1
ENDIF

CONTINUE

DK = DK - 1

DE =1

SWAP = .TRUE.

SOLVING THE ASSIGNMENT PROBLEM

60

IF(DF.GT.DK.OR.(.NOT.SWAP)) GOTO 160

INITIALLIZATION

70

80

90

A(RN) = DEFI({DF)
DO 70 1=1,ML-1
WEAD(1) = O
TAIL(1) = 0

CONT INUE

Do 80 I=1,N
D(t) = 99999

CONT I NUE

PT =0
D(RN) = 0

NEXT(RN) = 0
LAST(RN) = O

P(RN) = O

HEAD(0) = RN

I = HEAD(O)
TAIL(0) = RN
SWAP = ,FALSE.

iB =0

L=0

V=0

IF(1.€Q.0) GOTO 160
IT(1.NE.RN) LABEL(LB) = |
IT(I.NE.RN.AND.AJ(A(1)).GT.1) THEN
SWAP = .TRUE.

v o o=

L =D(1)
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GOTO 130
ENDIF
c
C SHORTEST PATH ALGORITHM (DIJKSTRA ADRESS CALCULATION SORT)
C (LABEL SETTING ALGORITHM)
c
DO 110 NP=1,N
IF(1.EQ.NP) GOTO 110
DO 100 K1=PN(NP), PN{NP+1)-1,1
IF(TN(K1).NE.A(1)) GOTO 100
COST = AL(K1) = R(NP) - K(A(!))
V = D(1) + COST
J = NP
IT (V.LT.D(J)) THEN
IF (D(J).NE.99999) THEN
Q = MOD(D(J),ML)
IF (HEAD(Q).EQ.J) THEN
HEAD(Q) = NEXT(J)
FLSE
IF(TAIL(Q).EQ.J) THEN
TAIL(Q) = LAST(J)

NEXT(LAST(J)) = O
ELSE
LAST(NEXT(J)) = LAST(J)
NEXT(LAST(J)) = NEXT(J)
ENDIF

ENDIF

ENDIF

Q = MOD(V,ML)
IF (HEAD(Q).EQ.0) THEN
HEAD(Q) = J
LAST(J) = O
FLSE
LAST(J) = TAIL(Q)
NEXT(TAIL(Q)) = J
ENDIF
P(J) = 4
D(J) = V
TAIL(Q)
NEXT(J)
ENDIF
100  CONTINUE
110  CONTINUE
IF (NEXT(!).NE.O) THEN
I = NEXT(1)
LB = LB + 1
GOTO 90
ENDIF
HEAD(PT) = 0
DO 120 CT = 1,ML-1,1
PT = MOD(PT+1,ML)
IF(HEAD(PT).NE.O) THEN
LAST(HEAD(PT)) = |
NEXT(1) = HEAD(PT)
I = NEXT(1)

I}

I

o
QO
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LB = LB + 1
GOTO 90
ENDIF
120  CONTINUE
c
C UPDATING THE NODES NODE POTENTIALS
c
130 DO 140 J=1,LB
I1J = LABEL(J)
R(1J) = R(1J) + D(1J) - L
K(A(1J)) = K(A(1J)) + L - D(1J)
IF(R(1J).LT.KK) KK = R(1J)
140  CONTINUE
ML = CP - KK + 1
=1V
AJIA(L)) = AJ(A(1)) - 1
AJIA(RN)) = 1
c
C REVERSING THE ASSIGNMENTS ON THE SHORTESR PATH TO THE FIRST
C ABUNDANT NODE
c
150 IF(1_NE.N+1) THEN
AC1) = A(P(1))
I = P(1)
GOTO 150
ENDIF
DF = DF + 1
GOTO 60
160 T1 = CTIME()
TIO = T1 - TO
IF (.NOT.SWAP) THEN
WRITE(6,190)" THE ASSIGNMENT PROBLEM IS INFEASIBLE 111’

GOTO 260
ENDIT

c

C PRINTING THE OPTIMAL ASSIGNMENTS

c
WRITE(6,180)' ##% OPTIMAL SOLUTION REACHED ###!
WRITE(H,210)" TITLE : ',TITLE
WRITE(Y4,210)" SOURCE : ', FROM
WRITE(!H,210)'DESTINATION : ',TO
WRITE(!,220)
WRITE(Y,230)
WRITE(N,200)
TOTC = ©

DO 170 1=1,N
DO 170 J=PN(1),PN(1+1)-1,1
IF(TN(J).EQ.A(1)) WRITE(S,200)1,A(1),AL(.)
IF(TN(J).EQ.A(1)) TOTC = TOTC + AL(J)

170 CONT INVE
WRITE(N,200)
WRITE(4,250)TOTC
WRITE(!,*)'CPU TIME (SECONDS) : ',T10

180 FORMAT(///5X,A,//10X, 'STOP. . PROGRAM IS TERMINATED...")
190  FORMAT(1SX,'| ',13,' | ',13,* | ',15"'" 1")
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200 FORMAT(15X, "' =====m=mmemcme e e cmccmae e )
210 FORMAT(/5X,A14,A)

220 FORMAT(///1uX, ' ###% OPT|MAL ASSIGNMENTS ####' //{5%
+ e e o e e - - - - - l)

230 FORMAT(15X,'| FROM | T0 | cosTt (')

210 FORMAT(15X, ' | =====m-=osommmmomcmemenmn 1)
250 FORMAT( 15X, " TOTAL COST | ',16,' |',/31X,"=======cuen )
260 sToP

END
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All) = J
AJ(J) = AJ(J) + 1
HOLD = .FALSE.
ENDIF
30 CONTINUE

RN = N + 1

CP = ML

ML = CP + 1

DK 1

1

"

CHOOSEING THE DEFICIENT NODES

DO Ho 1=1,N
IF(AJ(1).EQ.0) THEN
DEFI(DK) = 1
DK = DK + 1

ENDIF

ho  CONTINUE

DK = DK - 1

IF(DK.EQ.0) GOTO 250

DF = 1

SWAP = .TRUE.

* SOLVING THE ASSIGNMENT PROBLEM

0 1F(DF.GT.DK) GOTO 250
A(RN) = DEFI(DF)

T OINITIALLIZATION

PO 70 1=1,N
D(1) = 99999
LIST(1) = ©
ARC(1) = 1

70 CONTINUE
DO 80 1=1,LA
NXT{1) = O
R0 CONTINUE
DO 90 1=0,ML
NEXT(1) = .FALSE.
LAST(1) = 1
FST(1) = LAST(I)
1F(B(1).EQ.0) GOTO 90
B(I) =0
a0 CONTINUE
D(RN) = O
P(RN) = O
I = RN
ARC(1) = 1
SWAP = .FALSE.
BI(1) = B(1)
18 =0
L=0
Iv=0
1.0C = 0

il
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FHLE: SPAN_11 FORTRAN A1

100

110
120

130
tho

LIST(1) = 0
IL=o0
IF(1.EQ.0) GOTO 250
IF(1.NE.RN) LABEL(LB) = 1|
IF(1.NE.RN.AND.AJ(A(1)).GT.1) THEN
SWAP = ,TRUE.
v =1
L =o0(1)
GOTO 210
ENDIF
IcC =2
IL = 1L+ 1
LIST(IL) = 1|

SHORTEST PATH ALGORITHM (DANTZIG ADRESS CALCULATION SORT)
* (LABEL SETTING ALGORITHM)

DO 130 iN=IL,1,-1

1 = LIST{IN)
IF(1.€Q.0) GOTO 130
MIN = 99999

IF(ARC(1).GT.N) GOTO 130
DO 120 NP=1,N
IF(1 .EQ. NP) GOTO 110
DO 110 J=PN(NP),PN(NP+1)-1,1
1IF(TN(J) .NE. A(1)) GOTO 110
COST = AL(J) =~ R(NP) = K(A(1))
IF(COST.GE.MIN) GOTO 110
V = D(I) + COST
IF(V.GE.D(J)) GOTO 110
MIN = COST
NODE = NP
CONT INVUE
CONT INUE
J = NODE
V =D(l) + MIN
ARC( 1) = ARC(1) + 1
IF(V.GE.D(J)) GOTO 130
P(J) = &
D(J) =V
Q = MoD(V, ML)
qQ=0q
IF(LAST{Q).GT.1) NEXT(Q) = .TRUE.
IF(LAST(Q).GT.N+1) NEXT(Q) = .FALSE.
IF{(LAST(Q).EQ.1) THEN
B(Q) = REAL(J) *+ REAL(P(J)) / 1000.0
ELSE
NXT(J)
ENDIF
LAST(Q)
CONT INUE
LOC = |
iF (B(1Q) .EQ. 0) GOTO 150
IF(NEXT(LOC)) THEN
F = NXT(!C)

REAL(J) + REAL(P(J)) / 1000.0

LAST(Q) + 1

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN
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NXT(IC) = O
GOTO 190
ENDIF
150 LOC = |
F =8(1Q)
B(1Q) = 0
190 Fh = (F - REAL(INT(F))) * 1000.0 + 1.0
I = INT(F)
IP = INT(FH4)

LAST(LOC) = LAST(LOC) - 1
IF(LAST(LOC).EQ.1) NEXT(LOC) = .FALSE.
IF(IP.EQ.P(1)) THEN

I = NXT(LOC+1)
GOTO 140
ENDIF
1B =18 + 1
GOTO 120

n

¢ UPDATING THE NODES NODE POTENTIALS

LI

210 DO 220 J=1,LB
1J = LABEL(J)
R(1J) = R(1J) + D(1J) - L
K(A(1J)) = K(A(1J)) + L - D{1J)
IF(R(1J).LT.KK) KK = R(1J)
220 CONTINUE
ML = CP - KK + 1
1= IV
AJ(A(L)) = AJ(A(1)) =1
AJ(A(RN)) = 1

[# )

© RFVERSING THE ASSIGNMENTS ON THE SHORTESR PATH TO THE FIRST

¢ ARUNDANT NODE

[N

230 1F(1.NE.N+1) THEN
A(1) = A(P(1))
I = P(1)
GOTO 230
ENDIF
DF = DF + 1
GOTO 60
250 T1 = GTIME()
T1I0 = T1 - TO
IF (.NOT.SWAP) THEN
WRITE(6,270)' THE ASSIGNMENT PROBLEM IS INFEASIBLE 111’
GOTO 350
ENDIF

«©

. PRINTING THE OPTIMAL ASSIGNMENTS

[

WRITE(6,270) "' ### OPTIMAL SOLUTION REACHED ###!
WRITE(H,300)" TITLE : ', TITLE

WRITE(H, 300)* SOURCE : ', FROM
WRITE(4,300) ' DESTINATION : ',TO

WRITE(!,310)
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?60

270
280
290
3nn
310

320
330
3nn
350

SPAN_I " FORTRAN A1 KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN

WRITE(UL,320)

WRITE(4,330)

TOTC = 0

DO 260 1=1,N

DO 260 J=PN(1),PN(1+1)=1,1

TF(TN(J) .EQ. A(1)) WRITE(4,280)1,A(1),AL(J)

IF(TN(J) .EQ. A(})) TOTC = TOTC + AL(J)

CONT INVE

WRITE(Y,290)

WRITE(Y4,340)TOTC

WRITE(U4,*)'CPU - TIME (SECONDS) :',T10

FORMAT(///5X,A, //10X, ' STOP. . PROGRAM IS TERMINATED...')

FORMAT( 15X, '] ',13," | ',13,' | ',15,' |")

FORMAT( 15X, ' ======mem e ce e ')

FORMAT(/5X, A14,A)

FORMAT(///1uX, ' ##¥#% OPTIMAL ASSIGNMENTS ####' /15X,
]

FORMAT(15X,'] FROM | TO | COST [')

FORMAT( 15X, ' | ==-=====-cmcmcmmcccaeeea 1)

FORMAT(15X,' TOTAL COST | ',16," |',/31X,"=====c-c-um )
sToP

END
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C

C THIS PROGRAM SOLVE THE ASSIGNMENT PROBLEM AS A SUCCESSIVE

C SHORTES PATH ALGORITHM USING PAPE ALGORITHM TO SOLVE THE
C SHORTEST PATH PROBLEM.

c
PROGRAM SPAN_11(
PARAMETER (N=100, LA=10000)
INTEGER  PN(N+1),A(N+1),AJ(N),R(N),K{N), TN(LA),CP
INTEGER RN, P(N+1),V, 1V,DF,DK,RST(N), PV, L, SCAN(N+1)
INTEGER  AL(LA),TOTC,D(N+1),DEFI(N),B(LA), H(N+1),COST
LOGICAL  SWAP, HOLD
CHARACTER FROM*10, TO*¥10, TITLE#*35
EXTERNAL CTIME
DATA (AJ( 1), I=1,N)/N*0/
DATA (K(1), 1=1,N)/N*0/
READ( 1, *)FROM, TO
TITLE = FROM
L1 = INDEX(TITLE,' ")
L2 = INDEX(T1O,' ')
TITLE(L1+1:L1+L2) = TO
L3 = L1 + 12 + 1
TITLE(L3:) = 'ASSIGNMENTS®
11 =0
M. = -99999
KK = 99999
PN(1) = 1
c

C IMN THIS SECTION THE DATA HAS TO BE READ AS :
C TROM NODE, TO NODE, AND COST

c
10 READ(1,%,END=20) §,J,COST
M= IM + 1
TN(IM) = J
AL{IM) = COST
IT(I11.ME. 1) R(1) = 999999
IT(IILNE. 1) PN(I+1) = PN(I)
PN(I+1) = PN(I+1) + 1
IT(COST.LT.R(1)) R(1) = COST
tF(COST.GT.ML) ML = COST
o=
GOTO 10
c

C BRINGING THE PROBLEM INTO THE STANDARD FORM
C

20 TO = CTIME()
DO ho 1=1,N
HoID = ., TRUE.
PO 30 JK=PN(1),PN{I+1)-1,1
J = TN(JK)
COST = AL{JK) = R(1)
IF(COST.EQ.0.AND.HOLD) THEN
AlE) = J
AI(J) = AJ(J) + 1
HOID = ,FALSE.
FNDIF
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CONTINUE
CONTINUE
RN = N + 1
CP = ML
ML = CP + 1

C CHOOSEING THE DEFICIENT NODES

c

(o]

O

50

DK = 1

DO 50 I1=1,N
IT(AJ(1).EQ.0) THEN
DEFI(DK) = |
DK = DK + 1

ENDIF

CONT INUE

DK = DK = 1

DF = 1

1F(DK.EQ.0) GOTO 180

SOLVING THE ASSIGNMENT PROBLEM

60

IT(DF.GT.DK) GOTO 180
A(RN) = DEFI(DF)

INITIALLIZATION

70

80
90

No 70 1=1,N
P(1) = 99999
P(I) =0
H(ty = 0
RST(1) = O
SCAN(1) = 0

CONTINUE

D(RN) = 0

P(RN) = 0

DO 90 1=1,N
DO 80 J1=PN(1),PN(I+1)~1,1

J = TN(J1)
Ir(J.EQ.A(1)) THEN
RST(J) = RST(J) + 1
EMDIF

CONT INUE

CONTINUE

1 = RN

SCAN(I) = 0

LOG = 0
=1
V=0

L = 99999

SWAP = . FALSE.
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C SHORTEST PATH ALGORITHM ( PAPE ALGORI!THM)
C (LABEL CORRECTING ALGORITHM)
Cc

100 DO 145 NP=1,N,1

DO 140 K1=PN(NP), PN(NP+1)=-1,1
IF(TN(K1) .NE. A{1)) GOTO 140

J = NP

IF(SCAN(1).EQ.0)RST(J) = RST(J) - 1
COST = AL{J) - R(NP) - K(A(1))

V = D(1) + COST

IF (V.GE.D(J)) GOTO 140

P(J) = |

nJ) =V

IF(H(J).EQ. 1.0R.AJ(A(J)).GT.1) GO TO 110
Loc = LOC + 1

B(LOC) = J

HJ) = 1
110 IF(AJ(A(J)).GT.1) THEN
IT(D(J).LT.L) THEN
SWAP = . TRUE.
I = D(J)
v =J
IF(RST(J).NE.O) GOTO 140
PV = P(IV)
120 1F(PV.NE.RN) THEN
IF(RST(PV).NE.O) GOTO 140
PV = P(PV)
GO TO 120
ENDIF
DO 130 1J = IL,L0C,1
IF(D(B(1J)).LT.L.OR.RST(B(1J)).GT.0) GOTO 140
130 CONT I NUE
GOTO 150
ENDIF
ENDIF
140 CONT INUE
IT(SCAN(1).EQ.0) SCAN(1) = 1
IF(IL.GT.LOC) GOTO 150
I = B(IL)
H(I) =0
1. = 1L + 1
14% CONTINUE
c
C UPDATING THE NODES NODE POTENTIALS
c
150 1F{.NOT.SWAP) GOTO 180
Do 160 J=1,N
IF(RST(J).EQ.0.AND.D(J).LT.L) THEN
R(J) = R(J) + D(J) - L
K(A(J)) = K(A(J)) + L - D(J)
1F(R(J).LT.KK) KK = R(J)
ENDIF
160 CONTINUVE
ML = CP - KK + 1
AJ(A(RN)Y) = 1
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OO0

170

180

Cc
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I =1V
AJ(A(L)) = AJ(A(L)) -1

REVERSING THE ASSIGNMENTS ON THE SHORTESR PATH TO THE FIRST
ABUNDANT NODE

1F(1.NE.RN) THEN
ACT) = A(P(1))
I = P(1)
GOTO 170
ENDIF
OF = DF + 1
GOTO 60
T1 = CTIME()
T1I0 = T1 - T0
1F (.NOT.SWAP) THEN
WRITE(6,200)' THE ASSIGNMENT PROBLEM 1S INFEASIBLE 111’
GOTO 280
ENDIF

C PRINTING THE OPTIMAL ASSIGNMENTS

c

190

200
210
220
230

2h0
250
260
270
280

WRITE(6,200) " ### OPTIMAL SOLUTION REACHED #i#!
WRITE(Y4,220)" TITLE : ',TITLE
WRITE(4,220)" SOURCE : ', FROM

WRITE(l,220) 'DESTINATION : ',TO

WRITE(N,230)

WRITE(U,200)

WRITE(Y,250)

TOTC = 0

D0 190 I=1,N

DO 190 J=PN(1),PN(1+1)-1,1

EF(TN(J).EQ.A(1)) WRITE(Y4,210)1,A(1),AL(J)
IF(TN(J).EQ.A{1)) TOTC = TOTC + AL(J)

CONTINUE

WRITE(N,270)

WRITE(4,260)TOTC

WRITE(4,*)'CPU - TIME (SECONDS) :',T10
FORMAT(///5X,A,//10X, 'STOP. . PROGRAM 1S TERMINATED...')
FORMAT(15X, 'L ',13,' | ',u3,' | ',15,' |'")
FORMAT(/5X,A1l,A)

FORMAT(// /14X, ' #### OPTIMAL ASSIGNMENTS ####! /r15%,
4 ]

FORMAT(15X,'] FROM | TO | cosT (')

FORMAT( 15X, ' | == ===memmmmm e e "

FORMAT (15X, ' TOTAL COST | *,16,' 1',/31X,"'~-----==n--
FORMAT( 15X, ! ===w=mommmem e e e mcmmmaoaee ")

sTop

END
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c
C THIS PROGRAM SOLVE THE SEMI-ASSIGNMENT PROBLEM AS A SUCCESSIVE

C SHORTES PATH ALGORITHM USING DIJKSTRA ALGORITHM TO SOLVE THE
C SHORTEST PATH PROBLEM,

c
PROGRAM SPSN
PARAMETER (N=50,M=500, LA=2000, H=1000, NM=LA)
INTEGER  PN(N+1),A(LA),R(N), K(M), BJ(M), T{LA), TN(LA)
INTEGER RN, P(N+1),V,L, PT,CT,Q, IV,DF, DK, LABEL(N), LB
INTEGER  AL(LA),TOTC,D(N+1),DEFI(M),COST,CP,SV(N), PV(N)
INTEGER  NEXT(0:N+1),LAST({0:N+1)
INTEGER  HEAD(O: IH), TAIL(O: tH)
LOGICAL  SWAP, HOLD
EXTERNAL CTIME
DATA (A(1), 1=1, LA)/NM¥0/
DATA (K(1),1=1,M)/M*0/
DATA (BJ(1), I=1,M)/M¥%0/
=0
M. = -999
KK = 99999
PN(1) = 1
M =20
C

C RFAD THE TOTAL NUMBER OF ASSIGNMENT FOR EACH SOURCE NODE.
c

DO 10 t=1,N
10 READ(S,*)P(1)
c
C IN THIS SECTION THE DATA HAS TO BE READ AS :
C FROM NODE, TO NODE, AND COST
c
20  READ(5,*,END=30) |,J,COST
M= IM+ 1
T™H(IM) = J
AL(IM) = COST
IF(11.NE. 1) R(1) = 999999
ITCIILNE. 1) PN(I+1) = PN(I)
PN(1+1) = PN(1+1) + 1
IF(COST.LT.R(1)) R(I) = COST
IF(COST.GT.KK) KK = COST
IT(COST.GT.ML) ML = COST
o=
G0 TO 20
C
C BRINGING THE PROBLEM INTO THE STANDARD FORM
C
30 10 = CTIME()
DO 50 1=1,N
Hotb = ,TRUE,
DO HO JK=PN( 1), PN(141)=1,1
J = TN(JK)
COST = AL(JK) = R(1)
IF(COST.EQ.0.AND.HOLD) THEN
BJ(J) = BI(J) + P(1)
A(JK) = J

PAGE
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C

ho

50

SPSN FORTRAN A1 KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN

T(JK) = P(1)
HOLD = .FALSE,
ENDIF
CONT INVE
P(1) =0
CONT INUE
RN = N + 1
CP = ML
M. = CP + 1
DK = 1

C CHOOSEING THE DEFICIENT NODES

C

OO0

OO0

60

DO 60 J=1,M
IT(BJ(J).EQ.0) THEN
DEFI(DK) = J

DK = DK + 1
ENDIF
CONTINUE
DK = DK - 1
pr =1

SWAP = .TRUE.

SOLVING THE SEMI-ASSIGNMENT PROBLEM

mn

IF(DF.GT.DK) GOTO 180

INITIALLIZATION

80

90

100

DO 80 1=1,ML-1

HEAD(1) = O
TAIL(1) = O
CONT INUE
no 90 1=1,N

Ni1) = 99999
P(1) = O
CONT INUE

PT =0
D(RN) = 0
NEXT(RN) = 0
LAST(RN) = 0
P(RN) = O
HEAD(D) = RN

I = HEAD(O)
TAIL(0) = RN
SWAP = .FALSE.
IB=0
L =0

v =0

IC =0
1F(1.EQ.RN) IR = DEFI(DF)
IF(1.NE.RN) IR = A(PN{1)+IC)

IT(1.EQ.0) GOTO 180
TF(1.NE.RN) LABEL(LB) = |
IF(1.NE.RN.AND.BJ(IR).GT.1) THEN
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SWAP = .TRUE.

v o=
IVC = IR
INC = PN(1) + IC
L = 0p(1)
GOTO 140
ENDIF

SHORTEST PATH ALGORITHM (DIJKSTRA ADRESS CALCULATION SORT)

(LABEL. SETTING ALGORITHM)

DO 120 NP=1,N,1
IF(1.EQ.NP) GO TO 120
DO 110 K1=PN(NP), PN(NP+1)-1,1
IT(TN(K1).NE.A{IR)) GO TO 110
COST = AL(K1) - R(NP) - K(IR)
V = D(1) + COST
J = NP
IT (V.LT.D(J)) THEN
If (D(J).NE.99999) THEN
Q = MOD(D(J),ML)
IF (NEAD(Q).EQ.J) THEN
HEAD(Q) = NEXT(J)
ELSE
IF(TAVL(Q).EQ.J) THEN
TAIL{Q) = LAST(J)
NEXT(LAST(J)) = O
FISE

LAST(NEXT(J)) = LAST(J)
NEXT(LAST(J)) = NEXT(J)
ENDIF
ENDIF
ENDIF

0 = MOD(V,ML)
IF (HEAD(Q).EQ.0) THEN

HEAD(Q) = J
LAST(J) = 0
EI'SE

LAST(J) = TAIL(Q)
NEXT(TAIL(Q)) = J

FMDIF

P(L) = 1
D(J) = Vv
SV(NP) = K1
PV(NP) = IR
TALL(Q) = J
NEXT(J) = 0
ENDIF

110 CONTINUE

120 CONY INUE
IC = 1C + 1
IR = A(PN(1)+1C)
IT(IR.EQ.TN(PN( |)+1C)) GOTO 100
17 (NEXT(1).NE.O) THEN
I = NEXT(!)
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P

IB = LB + 1
IcC=0
GOTO 100
ENDIF
HEAD(PT) = 0
DO 130 CT = 1,ML-1,1
PT = MOD(PT+1,ML)
| F{HEAD(PT).NE.O) THEN
LAST(HEAD(PT)) = |
NEXT(1) = HEAD(PT)
I = NEXT())
1B = LB + 1
1c =1
GOTO 100
ENDIF
130 CONTINUE

C
G UPDATING THE NODES NODE POTENTIALS

e}

10 DO 160 J=1,1B
iJ = LABEL(J)
R(1J) = R(1J) + D(1J) - L
DO 150 1C = PN(1J),PN(1J+1)-1,1
IF{R(1J) .LT. KK) KK = R(1J)
IR = A(IC)
IF(IR.EQ.0) GOTO 160
K(IR) = K(IR) + L ~ D(1J)
150 CONTINUE
160  CONTINUE
C
C REVFRSING THE ASSIGNMENTS ON THE SHORTESR PATH TO THE FIRST
C ARUNDANT NODE
C

BJ(1VC)
RJ(DEFI(DF))
(LY
170 1F ( 1 .NE. N+1 ) THEN
IT(T(SV(1)) .EQ. 1) THEN
A(SV(1)) = PV(I)
A(1AC) 0
T(SV(1)) = 1
T(1AC) 0
F\SE
A(SV(1))
A(1AC)
T(sv(1))
T(1AC)
ENDIF
IAC = SV(1)
' P(1)
IC = 1C + 1
GOTO 170
ENDIF
DF = DF + 1
ML = CP - KK + 1

BJ(IVC) - 1
1

PV( 1)

0

1

T(1AC) - 1

it
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GOT0 70
180 IF (.NOT.SWAP) THEN

WRITE(6,210)' THE SEMI-ASSIGNMENT PROBLEM |S INFEASIBLE 111!
GOTO 290
ENDIF
T1 = CTIME()
TI0=T1 - 70

(¢

C PRINTING THE OPTIMAL ASSIGNMENTS
C

WRITE(6,210)" ### OPTIMAL SOLUTION REACHED ###'
WRITE(6,210)
WRITE(G,250)
WRITE(6,260)
TOTC = 0
N 200 1=1,N
DO 190 J=PN(1),PN(I+1)=1,1
If (A(J).EQ.0) GOTO 200
IF(TN(J).EQ.A(J)) WRITE(6,220)1,TN(J),AL(J),1
IT(IN(J).EQ.A(J)) TOTC = TOTC + AL(J)
190  CONTINUE
200 CONTINUE
WRITE(6,230)
WRITE(6,270)TOTC
WRITE(6,280)
WRITE(6,*) 'CPU TIME (SECONDS) :',T10
210 TORMAT(/17X,A, /29X, 'FOR THE', /22X, "'SEMI ~ASSIGNMENT PROPLEM ')

220 FORMAT(15X,'l  ',13,' | ',13," 1',15,' | ',t5,°! "
230 TORMAT(15X, ' ---=m==cmmeccc e mcc e e e - ")

200 FORMAT{ /15X, '===-=ccccmmcmcccmcnccecccccc e ae—- "

250 TORMAT(15X,'| FROM | TO | COST | SHIPMENT |')

260 TORMAT({ 15X, ' |=====--crmcmeccccc e e 1)

270 FORMAT(,15X,' TOTAL SEMI~ASSIGNMENT COST = ', 16)
280 FORMAT(//21X,' ##% END OF QOUTPUT ###')
290 SsTop

END
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[M
¢ TI11S PROGRAM SOLVE THE ASSIGNMENT PROBLEM AS A SUCCESSIVE
¢ SHORTES PATH ALGORITHM USING DANTZIG ALGORITHM TO SOLVE
. THE SHORTEST PATH PROBLEM.
[ 94
PROGRAM SPAN_11
PARAMETER (N=100, LA=10000, IH=100)
INTEGER  PN(N+1),A(N+1),AJ(N),R(N),K(N),ARC(N+1)
INTEGER RN, P(N+1),V, L, IV, DF, DK, LABEL(N), LB,Q, COST
INTEGER  AL(LA), TOTC,D{N+1),DEFI(N),LIST(N+1),CP
INTEGER  LAST(O:N), TN(LA),BI(0: IH),FST(N)
REAL B(O: I1H), NXT(N)
LOGICAL  SWAP,HOLD, NEXT(0:LA)
CHARACTER FROM*10, TO*10, Ti1TLE*35
EXTERNAL CTIME
DATA (K(1}, I=1,N)/N*0/
DATA (AJ(1),1=1,N)/N*0/
READ( 1, *) FROM, TO
TITLE = FROM
L1 = INDEX(TITLE,' ')
L2 = INDEX(TO,' ')
TITLE(L1+1:L1+L2) = TO
L3 = L1 + L2 + 1
TITLE(L3:) = 'ASSIGNMENTS'

=0

ML = -999
KK = 99999
IM=20
PN(1) = 1

[

-

IN THIS SECTION THE DATA HAS TO BE READ AS :
FROM NODE, TO NODE, AND COST

-
o

10 READ(1,*,END=20) I,J,COST
IM = IM+ 1
TN(IM) = J
AL{IM) = cOST
IF(TI.NE.§) R(1) = 999999
EF(II.NE.1) PN(I+1) = PN(1)
PN{I+1) = PN(I+1) + 1
IF(GOST.LT.R(1)) R(1) = COST
IF(COST.LT.KK) KK = COST
1F{COST.GT.ML) ML = COST
o= 1
GOTO 10
C
© BRINGING THE PROBLEM INTO THE STANDARD FORM
[N
20 TO = CTIME()
Do 30 I=1,N
HOLD = .TRUE.
DO 30 JK=PN(1},PN(1+1)-1,1
J = TN(JK)
COST = AL(JK) - R(1)
1F(COST.EQ.0.AND.HOLD) THEN
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THIS PROGRAM SOLVE THE SEMI-ASSIGNMENT PROBLEM AS AN
ASSIGNMENT PROBLEM . THE SEMI-ASSIGNMENT PROBLEM
1S CONVERTED TO AN ASSIGNMENT PROBLEM . THEN THE
THE NEW ASSIGNMENTPROBLEM WILL BE SOLVED AS A SSP
ALGORITHM . DIJKSTRA ALGORt{THM IS USED TO SOLVE THE
SHORTEST PATH PROBLEM,

0O0OO000OO0OO0

PROGRAM SPSAN

PARAMETER (NS=50,M=500, LA=2000, 1H=1000)

INTEGER  PN(M+1),A(M+1),AJ(M),R(M),K(M), TN(LA)
INTEGER RN, P(M+1),V,L,PT,CT,Q, |V,DF,DK, LABEL(M),LB
INTEGER  AL(LA),TOTC,D{M+1),DEFI1(M),COST,CP
INTEGER  NEXT(M+1),LAST(M+1)

INTEGER  HEAD(O:IH),TAIL(0: [H)

LOGICAL  SWAP,HOLD

CHARACTER FROM#10Q, TO*10, TITLE*35

FXTERNAL CTIME

DATA (K(1), 1=1,M)/M¥*0/

DATA (AJ(1), 1=1,M)/M*0/

READ(1,*)FROM, TO

TITLE = FROM

1.t = INDEX(TITLE,' ')

L2 = INDEX(TO,' ')

TITLE(L1+1:L14L2) = TO

L3 = L1 + 12 +1

TITLE(L3:) = 'ASSIGNMENTS'

RFAD THE TOTAL NUMBER OF ASSIGNMENTS
THAT EACH SOURCE NODE CAN GIVE.

ODOO0O0

no 5 1=1,NS
READ(1,%) P(1)
5  GONTINUE
i1=0
ML = -999
KK = 99999
PN(1) = 1
M =0

IN THIS SECTION THE DATA HAS TO BE READ AS :
TROM NODE, TO NODE, AND COST

o000

10 READ(1,*,END=20) 1,J,COST
IM = IM+ 1
TN(IM) = J
AL(1M) = COST
1F(11.NE. 1) R(1) = 999999
IF(VI.NE. 1) PN(I+1) = PN(1)
PN(1+1) = PN(I+1) + 1
IT(COST.LT.R{1)) R(}) = COST
IT(COST.LT.KK) KK = COST
1T(COST.GT.ML) ML = GOST
o=

GOTO 10
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C

C TRANSFER THE PROBLEM FROM SEMI-ASS1GNMENT
C TO ASSIGNMENT PROBLEM

Cc
20 T0 = CTIME()
NEW = NS
NP = NS + 1
LY = IM

DO 26 1=1,NS
22 IF(P(1).EQ.1) GOTO 26
P(I) = P(1) =1
NEW = NEW + 1
R(NEW) = R(1)
PN(NP+1) = PN(NP)
DO 2% J=PN(1),PN(1+1)-1,1
PN(NP+1) = PN(NP+1) + 1
LT = LT + 1
TN(LT) = TN(J)
AL(LT) = 99999
2% CONTINUE
GO TO 22
26 CONTINUE

C
C RRINGING THE PROBLEM INTO THE STANDARD FORM

9]

N =M
no 1o =1,N
HOLD = . TRUE.
PO 30 JK=PN(1),PN(I+1)-1,1
J = TN(JK)
GOST = AL(JK) = R(1)
IF(COST.FEQ.0.AND.HOLD) THEN
ALYy =
AJ(J) = AJ(J) + 1
HOLD = ,FALSE.
ENDIF
30 CONTINVE
ho  CONTINUE
RN = N + 1
cP = ML
ML= CP + 1
DK = 1
c
C CHOOSEING THE DEFICIENT NODES
Cc
Do 50 1=1,N
IF(AJ(1).EQ.0) THEN
DEFI(DK) = |
DK = DK + 1
FNDIF
50 CONTINUE
DK - DK = 1
DF =1
SWAP = _TRUE,

O

PAGE Ot
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C SOIVING THE ASSIGNMENT PROBLEM
c

60 IF(DF,GT.DK.OR. (.NOT.SWAP)) GOTO 160

c

C INITIALLIZATION

c
A(RN) = DEFI(DF)
DO 70 I=1,ML-1

HEAD(1) = O
TAIL(1) = O
70  CONTINUE
DO 80 i=1,N
D(1) = 99999
80 CONTINUE
PT =0
D(RN) = O
NEXT(RN) = 0
LAST(RN) = 0
P(RN) = 0
HEAD(0) = RN
I = HEAD(O)

TAIL(O) = RN
SWAP = . FALSE.
LB =0
L=0
1V = 0
90 IF(1.EQ.0) GOTO 160
1F(1.NE.RN) LABEL(LB) = 1

IF(1.NE.RN.AND.AJ(A(1)).GT.1) THEN

SWAP = .TRUE,

v o=

L =D(1)
GOTO 130
ENDIF

c

C SHORTEST PATH ALGORITHM (DIJKSTRA ADRESS CALCULATION SORT)

C (1ARFL. SETTING ALGORITHM)
C

DO 110 NP=1,N
IT(1.EQ.NP) GOTO 110

DO 100 K1=PN(NP),PN(NP+1)-1,1
IT(TN(K1).NE.A(1)) GOTO 100

COST = AL(K1) = R(NP) - K(A(1))

V = D(1) + COST
J = NP
IT (V.LT.D(J)) THEN
IF (D{J).NE.99999) THEN
Q = MOD(D(J),ML)
IF (HEAD(Q).EQ.J) THEN
HEAD(Q) = NEXT(J)
. ELSE
IF(TAIL(Q).EQ.J) THEN
TAIL(Q) = LAST(J)
NEXT(LAST(J)) = O
FLSE
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LAST(NEXT(J)) = LAST(J)
NEXT(LAST(J)) = NEXT(J)
ENDIF

ENDIF

ENDIF

Q = MOD(V,ML)
IF (HEAD(Q).EQ.0) THEN

HEAD(Q) = J
LAST(J) = 0
EISE

LAST(J) = TAIL{Q)
NEXT(TAIL(Q)) = J
ENDIF
P(J) = 1
D(J) =V
TAIL(Q)
NEXT(J)
ENDIF
100 CONTINUE
110 CONTINUE
IT {NEXT(1).NE.O) THEN

non
[= 2 -

I = NEXT(1)
IB=11B +1
GOTO 90

ENDIF
HEAD(PT) = O
DO 120 CT = 1,ML-1,1
PT = MOD(PT+1,ML)
IF(HEAD( PT).NE.O) THEN
LAST(HEAD(PT)) = |
NEXT(1) = HEAD(PT)
I = NEXT(I)
IB=1LB+ 1
GOTO 90
ENDIF
120 GONTINUE
c
C UPDATING THE NODES NODE POTENTIALS
c
130 NO 110 J=1,LB
1J = LABEL(J)
R(1J) = R(1J) + D(1J) - L
K(A(1J)) = K(A(1J)) + L - D(1J)
IF(R(1J).LT.KK) KK = R(1J)
10 CONTINUE
ML = CP - KK + 1
=V
AJL(A(1)) = AJ(A(L)) - 1
AJ(A(RN)) = 1
c

C REVERSING THE ASSIGNMENTS ON THE SHORTESR PATH TO THE FIRST

C ABUNDANT NODE
c
150 IF(1.NE.N+1) THEN
ACT) = A(P(1))
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| = P(1)
GOTO 150
ENDIF
DF = DF + 1
GOTO 60
160 T1 = CTIME()
TI0 = T1 - TO
IF (.NOT.SWAP) THEN
WRITE(6,190)" THE ASSIGNMENT PROBLEM 1S INFEASIBLE 111
GOTO 260
ENDIF
¢
C PRINTING THE OPTIMAL ASSIGNMENTS
c

WRITE(6G, 180) " ##% OPTIMAL SOLUTION REACHED ##%!

WRITE(N,210)"
VIRITE(h,210)"'

TITLE : ', TITLE

SOURCE

', FROM

WRITE(%,210) 'DESTINATION : ',TO
WRITE(4,220)
WRITE(N,230)
WRITE(4,240)
TOTC = 0
no 170 I=1,N
DO 170 J=PN(1),PN(I+1)-1,1
1F(IN{J).EQ.A(1)) WRITE(4,200)1,A(1),AL(J)
TF(TN(J).EQ.A(1)) TOTC = TOTC + AL(J)
170 CONTINUE
WRITE(4,200)
WRITE(4,250)TOTC
WRITE(Y4,*)'CPU TIME (SECONDS) : ',T10
180 FORMAT(///SX,A,//10X, 'STOP..PROGRAM IS TERMINATED,..')
190  FORMAT(1S5X, 't ',13," | '",43," | ',15,"' ")
200 TORMAT( 15X, ' —===-=-emmmeoa e m oo ")
210 TORMAT(/5X,A14,A)
220  FORMAT(///14X, "#### OPTIMAL ASSIGNMENTS ####' /715X,
+ L DL LT Ty ')

230 TORMAT(15X,'] FROM | T0 | cosT }'")

210 TORMAT( 15X, ' | ==~==vmmmmm e m e e e e ")
250 TORMAT(15X,"' TOTAL COST | ',16,' |',/31X, ' ==-=m==mun-
260 SstOP

END
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: THIS PROGRAM SOLVE THE TRANSPORTATION PROBLEM AS A SUCCESSIVE

SHORTEST PATH ALGORITHM USING DIJKSTRA ALGORITHM TO SOLVE THE
SHORTETS PATH PROBLEM.

3

6
n

20

ho

30

PROGRAM SPTN
PARAMETER (N=150,M=150, LA=3000, | H=20000)
INTEGER  PN(M),A(M+1),R(N),K(M),BJ(M),T(LA),H(LA), TN(LA)
INTEGER RN, P(M+1),V,L,PT,CT,Q, IV,DF, DK, LABEL(M), LB
INTEGER  AL(LA),TOTC,D(N+1),DEFI(M),COST,DEM(M),CP
INTEGER  NEXT(N+1),LAST(N+1), TRNS(M), ORG(M)
INTEGER  HEAD(O: IH), TAIL(O: IH)
1.OGICAL  SWAP,HOLD
EXTERNAL CTIME
DATA (PN( 1), I=1,N)/N*0/
DATA (A(1),1=1,M+1)/(M+1)%*0/
DATA (T(1),1=1,N}/LA%0/
DATA (K(1),1=1,M)/M%0/
DATA (BJ( 1), 1=1,M)/M*0/

11 =0
ML = -999
KK = 99999
DO 5 1=1,N

READ(1,%*)P(1)
GONT | NUE
DO 6 1=1,M

READ( 1, *)DEM( 1)

ORG(!) = DEM(1)
CONT I NUE
READ( 1, %, END=20) 1,J,COST

M= 1M+ 1
TN(IM) = J
AL{IM) = COST

IF(11.NE. 1} R(1) = 999999
IF(COST.LT.R( 1)) R(1) = COST
1F(COST.LT.KK) KK = COST

IF(COST.GT.ML) ML = COST

1= 1
GOTO 10

DO 30 1=1,N

HOLD = . TRUE.

DO 4O JK=PN(1),PN(!+1)-1,1

J = TN(JK)

COST = AL(JK) - R(1)
IF(COST.EQ.0.AND.HOLD) THEN
BJ(J) = P(1) + BJ(J)

A(l) = J
T(1) = P(1)
HOLD = .FALSE.
ENDIF

CONT INVE

P(1) = 0

CONTINUE

10 = CTIME()

RN = N + 1
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CP = ML

ML = CP + 1
DK = 1

DO 70 J=1,M

IDIF = BJ(J) = ORG(J)
IF(IDIF.LT.0) THEN
DEFI(DK) = J
DK = DK + 1
ENDIF
70 CONTINUE
DK = DK - 1
DF = 1
SWAP = .TRUE.
80 IF(DF.GT.DK) GOTO 170
A8 A(RN) = DEFI(DF)
DO 110 1=1,ML~1

HEAD(I) = 0
TAIL(1) = O
110 CONTINUE
DO 57 I=1,N
D(1) = 99999
57  CONTINUE
PT =0
D(RN) = O
NEXT(RN) = 0
LAST(RN) = 0
P(RN) = ©
HEAD(0) = RN
| = HEAD(O)

TAIL(O) = RN
SWAP = ,FALSE.

8 =0
L=20

Iv=20
IC =1

120 I1F(1.EQ.Q) GOTO 170
IF(1.NE.RN) LABEL(LB) = 1

IF(1.NE.RN.AND.BJ{A(1C)).GT.ORG(A(IC))) THEN

SWAP = ,TRUE.

v =1
IvC = IC
L = D(1)
GOTO 150
ENDIF

(&

r: SHORTEST PATH ALGORITHM (DIJKSTRA ADRESS CALCULATION SORT)

© (1LABEL~SETTING ALGORITHM,
[
DO 130 Ki=1,N,1
IF(1.EQ.KT1) GOTO 130
COST = AL(A(1)) -~ R(K1) - K(IC)
V = D(1) + CcOST
J = K1
IF (V.LT.D(J)) THEN
IF (D(J).NE.99999) THEN

PAGE
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Q = MOD(D(J),ML)

IF (HEAD(Q).EQ.J) THEN
HEAD(Q) = NEXT(J)

ELSE

- TF(TAIL(Q).EQ.J) THEN
TAIL(Q) = LAST(J)
NEXT{LAST(J)) = 0O

ELSE
LAST(NEXT{J)) = LAST(J)
NEXT(LAST(J)) = NEXT(J)
ENDIF

ENDIF

ENDIF

Q = MOD(V,ML)
IF (HEAD(Q).EQ.Q) THEN
HEAD(Q) = J
LAST(J) = 0
ELSE
LAST(J) = TAIL(Q)
NEXT(TAIL(Q)) = J
ENDIF
P(J) = |
D(J) =V
TAIL(Q) = J
NEXT(J) = 0
ENDIF

130 CONTINUE

IC = 1C + 1
IF(A(IC).NE.O) GOTO 120
IF (NEXT(1).NE.O) THEN

1 = NEXT(1)
LB = LB + 1
IC =1

GOTO 120

ENDIF
HEAD(PT) = 0
DO 140 CT = 1,ML~1,1

PT = MOD(PT+1,ML)
IF(HEAD{PT).NE.O) THEN
LAST(HEAD(PT)) = |
NEXT(!) = HEAD(PT)

1 = NEXT(1)

LB = tB + 1

1IC =1

GOTO 120
ENDIF

10 CONTINUE

HW*****************ﬂ*ﬂ************KFK***************WH*M*H*****M*K

150 DO 321 JK=1,M

1?1

122

H{JK) = 0
DO 123 J=1,LB

Ic =1

1J = LABEL(J)

R(1J) = R(WJ) + D(1J) - L
IF(A(I1C).EQ.0) GOTO 129

FORTRAN A1 KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN
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IF(H(A(1J)) .EQ . 1) GOTO 322
K(A(1C)) = K(A(IC)) + L - D(1J)
H(A(IC)) = 1

322 IC = IC + 1
GOTO 122

179 IF(R(1J).LT.KK) KK=R(1J)

123 CONTINUE

ML = CP - KK + 1
MSHIP = DEM(DEFI(DF)) - BJ(A(RN))

1 =1V
IA = IV
IC =1

ISHIP = MIN(BJ(A(IVC))-DEM(A(!IVC)),T(IV))
IF (MSHEP LT, ISHIP) ISHIP = MSHIP

I = P(IV)

161 IF ( I.NE. N+1) THEN
Ic = 1
IM = 9999

162 IF(A(IC).NE.O) THEN
IN = AL{IA) = R(IA) = K(IC)
FF(IN.LT.IM) THEN
IM = IN
ISC = IC
ENDIF
165 IC = IC + 1
GOTO 162
MSHIP = T(1SC)
IF (MSHIP LT, ISHIP) ISHIP = MSHIP
IA =1
1 = P(1)
GOTO 161
ENDIF
HHEHRHHEHHEHNERH AR HEHREHEHH R HERREE R HEHERREEERERAREE RSN
BJ(A(IVG)) = BJ(A(IVC)) = ISHIP
TRNS(A(1VC)) = BJ(A(1VC))

r

BJ(A(RN)) = BJ(A(RN)) + ISHIP
1A = 1V
TAC = (IVC
I = P(I1A)
151 IF (I .NE. 0 ) THEN
IC =1
IM = 9999

152 1F(A(1C).NE.O) THEN
IN = AL(1A) = R(IA) - K(IC)
IF(IN.LT.IM) THEN
M = IN
ISC = IC
ENDIF
155 IC = IC + 1
GOTO 152
ENDIF
IC = ISC
14 = T(1AC)
IF(TRNS(1G).NE.O) THEN
T(IC) = T(IC) + ISHIP




(LR

191

1oNn2

100l

1nn1
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T(IAC) = T(IAC) = ISHIP
BJ(IC) = BJ(IC) + ISHIP
1F( 14 .NE. ISHIP ) GOTO 1004
13 = IAC
IF(A(13).NE.O) THEN

1F(13.FEQ.M) THEN
A(13) = 0
GOTO 1004
ENDIF
A(13) = A(13+1)
13 = 13 + 1
GOTO 177
ENDIF
GOTO 1004

ENDIF

11 = A(IAC)

12 = A(IC)

IF( T(1AC) .EQ. ISHIP ) THEN

A{1AC) = A(1C)

ELSE

DO 191 ID =1AC+1,M,1
IF(A(ID) .EQ. 0) THEN
A(ID) = A(IC)
GOTO 1002
ENDIF

CONT INUE

ENDIF

T(12) = ISHIP

T(11) = T(11) - ISHIP

1A= |
IAC = 1C
1 = P(1)
GOTO 151

ENDIF

1SS = BJ{DEFI(DF)) - DEM(DEFI(DF))

IF {(1SS.LT.0) GOTO 88

DF = DF + 1

GOTO 80

IF (.NOT.SWAP) THEN

WRITE{6,200)' THE ASSIGHMMENT PROBLEM 1S INFEASIRLE ttt'
GOTO 270

ENDIF

T1 = CTIME()

T10 = T1 - TO

WRITE(N, 190) ' ##% OPTIMAL SOLUTION REACHED ###'
WRITE(Y,230)

WRITE(4, 240)

WRITE(H,250)

TOTC = 0

DO 180 I=1,N

ic =1

IF (A(1C).EQ.0) GOTO 180
WRITE(4,200)1,A(1C),AL(A(1C)),T(A(IC))
TOTC = TOTC + AL(A(IC)) * T(A(IC))

IC = IC + 1

PAGE




FirF:

180

190
200
210
230
2h0
2n0
MH0
280
270
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GOTO 1001

CONT INUE

WRITE(4,210)

WRITE(6,260)TOTC

WRITE(6,%)'CPU TIME (SECONDS) :',T10

WRITE(Y4,280)

FORMAT( /17X, A, /29X, ' FOR THE', /22X, ' TRANSPORTATION PROPLEM ')
FORMAT(15X, 'l ',13,' | ',13,' 1',15,' | ',15' 1)

FORMAT (15X, ! =======m=m=mmmmmmmmmemm———————————— ")
FORMAT( /15X, '===m=m==mmcocmmcmmceomeemme—m——————— "
FORMAT(15X,'! FROM | TO | COST | SHIPMENT |')
FORMAT( 15X, ' | ~===-==m=mmeememmmcmmm e ——— i

FORMAT( /15X, ' TOTAL TRANSPORTATION COST = ',16)
FORMAT(//21X,' ### END OF OUTPUT #*##')

sTOP

END
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C

C THIS PROGRAM CREATED RANDOM NETWORKS FOR ASSIGNMENT,SEM-ASS|GNMENT
C AND TRANSPORTAION NETWORKS. THE LOGIC OF THIS PROGRAM IS BASED ON
C NETGEN CODE BY KL1GMAN.

C

C NOTE : TO RUN THIS PROGRAM FOR OTHER CODES THE FORMAT FOR THE
PRINT STATMENTS NEED TO BE CHANGED, BECAUSE EVERY GODE
HAS 1T'S STRUCTURE FOR THE INPUT DATA FORMAT. THE PRINT
STATMENTS OVER HERE ARE FOR THE SSP ALGORI!THM.

OO0

INTEGER SEED, SUP(100),NUA(2000),DES( 100, 100),DEM(100),AJ(100)
REAL U(150)
DATA  N,M, NARC,MCOST, TOTSUP/100, 100, 1300, 100, 100000/
OPEN(1,FILE='P53 DATA')
SEED=13502160
PO 5 1=1, 10000
SEED = RANUN(SEED)
5  GONTINUVE

2}

CRFATING SUPPLY FOR EACH SOURGCE NODE

SIM = 0
PO 10 1=1,N
U(1) = RANUN(SEED)
SUM = SUM + U(1)
10 CONTINUE
ISUM = 0
no 20 1=1,N-1
U(1) = U(1) / SuM
SUP(1) = TOTSUP * U(I)
IF(SUP(1) .EQ. 0) SUP(I) = 1
ISUM = ISUM + SUP(I)
WRITE(1,%*) SUP(I)
20 CONTINUE
SUP(N) = TOTSUP - ISUM
WRITE(1,#*) SUP(N)

CREATING DESTINATIONS

Oooo0o

SUM = 0
no 30 I1=1,N
3h U(1) = RANUN(SEED)
IT(U(1).GT,0.98) U(I) = 1
ANARG = REAL(NARC)
AM = REAL(M)
NUA(I) = U(1) * (ANARC / AM)
IF(NUA(!).LT.1) GOTO 34
SUM = SUM + NUA(1)
30 CONTINUE
ISUM = NARC - SUM
W IF(ISUM.NE.O) THEN
N5 XU = RANUN(SEED)
IF(XU.GT.0.98) XU = 1
JX = XU * N
IF(JX.EQ.0) GOTO 45
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IF(NUA(JX).LT.M) THEN

TA = MIN((M-NUA{JX)), ISUM)
NUA(JX) = NUA(JX) + 1A
ISUM = ISUM - IA

ENDIF
GOTO 44
ENDIF
[
c CREATING DESTINATIONS ASSIGNMENTS
c
PO 12 J=1,M
DFM(J) = O
AJ) =0
N2 CONTINUE
DO 50 I1=1,N
DO 70 J=1,NUA(1)
77 U(J) = RANUN(SEED)

IF ( U(J) .GT. 0.99) U(J) = 1
XD = M * U(J) + 0.05
DES(1,J) = INT(XD)
IF(DES(1,d4) .EQ. 0) GOTO 77
N0 71 K=1,4-1

IT(DES(1,J).EQ.DES(1,K)) GOTO 77

71 CONT I NUE
1 = DES(1,J)

AJ(IJ) = AJ(IJ) + 1

70 CONTINUE

50 CONTINUE

DO 51 J=1,M
52 IF( AJ(J) .EQ. O ) THEN
RN = RANUN(SEED)
IS = N * RN
PO 12 1=1,NUA(IS)
1J = DES(IS,1)
IF ( AJ(IJ) .GT. 1) THEN
DES(IS,1) = J
AJ(J) = AJ(J) + 1
AJ(1J) = AJ(1J) -1

ENDIF
12 GONT INUE
G010 52
ENDIF
51 CONTINUE
c
C CREATING DEMAND .FOR EACH DESTINATION
Cc
DO 75 I=1,N
SUM = 0

DO 80 L=1,NUA(1)
U(L) = RANUN(SEED)
SUM - SUM + U(L)
80 CONTINUE
ISUM = 0
DO 90 IL=1,NUA(I) - 1
UCIL) = U(IL) / SUM
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90

75

31

(2]

301

oD
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1J = DES(1,1L)
DEM(1J) = SUP(1) * U(IL) + DEM(1J)
ISUM = ISUM + SUP(I1) * U(IL)
CONT INUE
I = NUA(1)
1J = DES(I, IL)
DEM(1J) = DEM(1J) + ( SUP(1) - ISUM )
CONTINUE
DO 31 1=1,M
WRITE(1,*)DEM( 1)
CONTINUE

CRFEATING COST FOR EACH ARC

Do 15 I=1,N
DO 16 J=1,NUA(1)
14 = DES(1,J)
R = RANUN(SEED)
R = R * MCOST
IR = INT(R)
1F(IR.EQ.0) GOTO 301
WRITE(1,%#)1,1J,1R
CONT I NUE
CONT INUE
sToP
END

TUNCTION TO GENERATE REAL RANDOM NUMBERS BETWEEN 0. AND 1.0

C INPUT :

OO0

IX: ODD INTEGER ( NO MORE THAN NINE DIGITS )

FUNCTION RANUN( I1X)
IX=HOD(25173* I1X+13849,65536)
RANUN=REAL( 1X) /65536

RETURN

END

Yk
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