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CHAPTER 1

INTRODUCTION

Plates are important elements of machines and structures. With the increasing use
of such structures, the need for dynamic analysis of their characteristics has become
evident. Moreover, laminated composite plates have become increasingly popular for a
wide range of applications, especially for high performance structural components. They
are used as primary structural components in modern applications due to their high ratio
of strength and stiffness to weight. Such applications include aircraft and automotive

structures.

Propagation of waves in plates is of great interest in seismology, ultrasonic
material characterization, and ultrasonic nondestructive evaluation of defects. Therefore,

this type of study has been the subject of numerous investigations in recent years.



Since plates are widely used in numerous applications, they are exposed to several
types of loading. One type of loading is fluid loading on either or both sides of plates.
This type of loading can be widely found in nuclear reactors and marine structures. Other
type of loading is the one in which the load is moving. In this type, the problem of
calculating the dynamic response of plates is very important in many engineering
applications, which include for instance various transport systems. The moving load
might be a conventional vehicle, a landing airplane, or a train. Studying such cases is of
great importance in order to find critical values of load velocity leading to significant

vibrations, which subsequently lead to some annoying or maybe failure problems.

1.1 LITERATURE SURVEY

The effect of fluid loading on the flexural vibrations of infinite isotropic plates has
received wide attention by many researchers. Schroter and Fahy [1] analyzed the acoustic
interaction between a layer of compressible fluid and a coupled isotropic, infinite panel,
which separates the layer from a half-space of identical fluid. The response of the panel
when driven by a point harmonic force was evaluated using Hankel Transformation in
conjunction with complex variable integration techniques. Dispersion curves of the half-

space/panel/layer coupled system were presented.



Dabirikhan and Turner [2] studied the coupling of the lowest antisymmetric modes
(Ao) and interface Scholte modes (4S) in fluid-loaded isotropic plates. They presented the
phase velocity dispersion curves of 4, and A4S modes for a fluid loaded aluminum plate for

various values of fluid density.

Selezov and Tkachenko [3] investigated the propagation of unsteady flexural
waves in an elastic isotropic plate, placed on the surface of a finite depth liquid. The
motion of the plate was described by a refined theory that included the inertia of rotation
and the shear deformation, while the fluid was regarded as an inviscid fluid. They used the
Fourier transformation approach to solve the governing equations of motions of the

model.

S. Soedel and W. Soedel [4] developed equations of motion of elastic isotropic
plates carrying liquids. The liquid was treated as incompressible with free surface
oscillations. A closed form solution leading in the natural frequencies and modes of the
plate-liquid combination was employed. The harmonic response of the liquid-plate system
to a dynamic pressure distribution and also to point load on the plate was expressed in

terms of the plate liquid modes.

Jurnu Wu and Zhu [5] studied theoretically the influence of liquid layer on the

propagation of "Lamb" waves in an isotropic plate of finite thickness. The dispersion



equations of Lamb waves in this system were derived. Numerical solutions of the
equations showed that the plane velocity of Lamb waves changed with the thickness of

the liquid layers.

Sean Wu and Zhu [6] examined the effect of mean flow on dynamic responses on
an infinite isotropic plate subjected to a time-dependent force excitation. An analysis of
the transient response problem of isotropic plates with arbitrary shape in contact with fluid
whose surface was excited by a general dynamic pressure was presented by Kosuke
Nagaya [7]. Both Laplace and Fourier transformation were utilized to study the response
of different shape plates, namely circular, rectangular, rectangular with round corners and

oval plates.

Bao et al. [8] presented dispersion curves of lower modes of isotropic plate
loaded with two different fluids. Experimental dispersion curves of a poly-
ethylenethorephtalate film loaded with different types of fluids on both sides were
presented by Desmet et al. [9]. The effect of fluid properties on the dispersion curves was

studied.

Dickey et al. [10] developed dispersion curves of isotropic plates loaded with

fluids on either or both sides using the impedance method. It was found that there can be



no local maxima at the critical frequency in the response of a fluid-loaded plate because

the fluid presents infinite impedance.

Langley [11] used the harmonic Green function to study the sound fields of an
infinite fluid-plate system excited by a point force. The plate was modeled as a linear
elastic, isotropic, homogeneous layer of constant thickness bounding two different
homogeneous fluid half spaces. Experimental and theoretical analysis of dispersion
curves of a fluid layer between two elastic isotropic plates was investigated by Hassan

and Nagy [12].

For the moving load problem, Nugroho et al. [13] investigated the displacement of
an elastic, isotropic plate resting on fluid when two types of moving loads are applied:
point and distributed circular loads. Two types of approaches were used, namely, Fast

Fourier Transformation (FFT) and large-time asymptotic analysis.

The dynamic responses of an infinite homogeneous isotropic plate on an elastic
foundation subjected to constant amplitude or harmonic moving loads were studied by
Kim, S et al. [14] using formulations in the transformed field domains of time, space, and
moving space. Effect of load speed on the maximum displacement was presented. For
moving harmonic loads, critical velocities were studied for different frequencies.

Furthermore, the effect of multiple loads was discussed. Several issues were investigated



such as phase between loads and effect of velocity on the maximum displacement in this
type of loading. It was found that when the loads were moving, a change in phase between

the loads could significantly reduce the maximum displacement.

Dieterman and Metrikine [15] determined the critical (resonance) velocities of a
harmonically varying point load moving uniformly along an elastic isotropic layer as a
function of the load frequency. It was proved in their study that the critical velocity of the
load was equal to the group velocity of the waves generated by the load. Moreover, the
critical depths of the plate were determined as a function of the load velocity. Fourier

integral transformation was used in this analysis too.

Barber [16] investigated the normal surface displacement of isotropic elastic half-
space, due to a normal point force, which moves with constant speed. The Smirnov-
Sobolev technique was used to reduce the problem to a linear superposition of two-

dimensional stress and displacement fields.

Finite Element Method (FEM) was utilized to evaluate the dynamic response of
pavements subjected to a constant-amplitude-moving load by Zaman et al. [17]. The
pavement-foundation system was modeled by a series of thick isotropic plate elements
supported by discrete springs and dashpots at the nodal points representing the

viscoelastic foundation. The moving loads were represented by masses each supported by



a spring and dashpot suspension system and having a specified horizontal velocity and
acceleration. The accuracy of this algorithm was verified by comparing the finite element
solution with the available analytical results. A parametric study was conducted to
determine the effects of various parameters on the dynamic response of pavements to

moving loads.

Bodin et al. [18] formulated a self-consistent boundary-value problem for
isotropic plate subjected to moving loads using Hamilton Principle. The equations of
energy and momentum were derived. Pesterev and Bergman [19] calculated the response
of a general class of nonconservative linear distributed parameter systems excited by a
moving concentrated load. A method of solution based on the series expansion of the
response in terms of complex eigenfunctions of the continuous system was proposed. A
set of ordinary differential equations in the time-dependent coefficients of the expansions

was presented.

1.2 OBJECTIVE OF PRESENT WORK

Since all of the previous works were performed primarily for isotropic plates using
classical theory, the main objective of our present work is to analyze the laminated
composite plates with fluid loading on either or both sides. Several aspects are studied

under this type of loading such as transient responses and dispersion curves. Dispersion



means that a pulse consisting of a range of frequencies does not retain its initial shape as it

propagates through the dispersive medium. When the phase velocity depend on frequency

or (wavelength), then the propagating wave is dispersive. Such dispersion may be caused

by:

1. the presence of specimen boundaries (geometric dispersion).

2. the frequency dependence of material constants (material dispersion).

3. the scattering of waves by densely distributed fine inhomogeneities in a
material (scattering dispersion ).

4. the absorption or dissipation of wave energy into heat or other forms of energy in an
irreversible process (disspative dispersion ).

The effects of various properties of both plate and liquid are investigated. These

properties include density, thickness, depth and plate type.

Moreover, laminated composite plates under moving loads are investigated.
Critical velocities of the moving load are studied with and without fluid loading. The
effect of fluid depth on those velocities is studied as well. Finally, plates under two
moving loads are analyzed. Effects of the moving load speeds and phase differences are

presented.



Due to the complexity of the analytical solution for multilayered laminates, and
because thin composite plates are investigated here, a higher order approximate solution
will be considered. This solution is based on the plate bending theory, which includes the
effects of transverse shear and rotary inertia. This solution is an extension of Mindlin’s
plate theory for homogeneous isotropic plates [20]. Such an extension was originally due
to Yang, Norris, and Stavsky [21] who extended Mindlin’s theory to laminates consisting

of an arbitrary number of anisotropic layers.

The original classical plate theory is based on the Kirchhoff hypothesis, which
assumes that a line normal to the midplane before deformation remains straight and
normal to the midplane after deformation, and hence neglects transverse shear
deformation effects. For homogeneous, isotropic linear elastic thin plates, the effects of
the transverse shear deformation are negligible. However, these effects are significant in
the case of laminated composite plates due to the relatively low transverse shear modulus.
As a result, the higher order laminated plate theory, which incorporates the effects of
transverse shear deformation, and rotary inertia should be used in the analysis of
composite plates. There are two good textbooks written by Whitney [22] and Cacote [23],

which cover in detail the theoretical background of this theory.
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1.3 THESIS OUTLINE

Three types of plates, namely 3, 6 and 12 plys plates under fluid loading are
studied. Dispersion curves and transverse displacement plots are introduced for these
plates. Effects of several parameters are precisely discussed. These parameters include:
fluid heights, fluid densities, and types of plates. Furthermore, for moving loads,
several issues are studied. Effects of load speed at different frequencies as well as the
effect of fluid loading are taken into account when studying the response to moving

loads.

The thesis begins with introductory chapter (Chapter 1) in which important
previous works in the field of wave propagation in plates are introduced. A brief section

of the main object of the present work is then written.

The second chapter is devoted primarily to theoretical formulation of the present
problem. It starts with general assumptions on which the solution of the laminated plates
is based. Geometry of the laminated composite plate loaded by liquid is then presented.
Next, equations of motion for all types of loading are introduced. The methodology,

type and difficulty of the problem solution are treated as well in this chapter.
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Results, discussions and interpretations are the main subject of Chapter 3.
Dispersion curves are computed for various liquid loadings. Transient responses of
laminated composite and isotropic plates are then investigated under different loading
conditions. Group velocity is also discussed and calculated as well. For single moving
load, the critical velocity of the load is investigated under different loading conditions for
both isotropic and laminated plates. This chapter is concluded by studying isotropic and
laminated plates subjected to double moving loads. Effects of phase difference and speed

of the two loads are discussed.

Major conclusions and remarks are presented in the last chapter. Moreover, some
suggestions are introduced for future work in this area. The thesis closes with Appendices

providing some expressions mentioned in the course of the text.



CHAPTER 2

THEORETICAL FORMULATIONS

2.1 STATIONARY LOADS

2.1.1 PROBLEM STATEMENT

The problem under consideration is described in Figure 2.1. The plate is modeled as
laminated orthotropic plate, which is constructed of an arbitrary number of transversely
isotropic laminas. Schematic diagram of one lamina is declared in Figure 2.2. A plate with
a thickness H is loaded, in general, by two liquids; liquid 1 and liquid 2, having heights of
H; and H,, respectively. The plate is subjected to a concentrated vertical force At) in the

negative z-direction. This force can be stationary or moving.

12
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Figure 2.1:

Geometric representation of a fluid loaded composite plate



N

Figure 2.2:

Geometry of a single lamina

14



2.1.2 GENERAL ASSUMPTIONS

The formulation of the governing equations of the preceding problem is

mainly based on the following basic assumptions [22]:

1. The plate is constructed of an arbitrary number of layers of
transversely isotropic laminas bonded together. However, the
orthotropic axes of material symmetry of an individual layer need not
coincide with the x-y axes of the plate.

2. The plate is thin, i.e., the thickness H is much smaller than other
physical dimensions.

3. The material of each lamina is elastic and homogeneous (the fiber
diameters and the lamina thickness are small compared to the
dominant wave length).

4. The displacements of the mid-plane are small compared to the plate
thickness.

5. In order to include in-plane force effects, nonlinear terms in the
equations of motion involving products of stresses and plate slopes

are retained. All other nonlinear terms are neglected.
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6. Tangential displacements # (in x-direction) and v (in y-direction) are
linear functions of the z-coordinate.

7. There are no body forces.

8. The deformations are such that straight lines, initially normal to the
plate middle surface, remain straight lines but no longer normal to the
middle surface, which means that deformations due to transverse
shear are considered. In addition, the effects of rotary inertia are
included.

9. The transverse normal strain e.. is negligible.

10. The liquid is assumed inviscid and incompressible and potential flow

theory is adapted.

2.1.3 EQUATIONS OF MOTIONS

2.1.3.1 Upper Liquid. Both liquids satisfy the Laplace equation, which is
considered the governing equation of motion for them.
The upper liquid is assumed to have a depth H;, and its top surface is free. The

liquid is assumed to be incompressible and must satisfy

Vi, = Q @.1)
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where @, = ®; (x, y, z, t) is the velocity potential.

The boundary condition at the free surface of the upper liquid (z=H/2 + H,) is that

the pressure must be zero. The other boundary condition (z=H/2) is that the normal

velocity of solid is equal to the normal velocity of the liquid i.e. continuous contact. So one

can write,
oD,
A7 =0
ot z=H,+g£
(2.2)
& _m
ez |,.H o
=2

where p, is the density of the upper liquid and w, is the normal displacement of the

plate.

2.1.3.2 I.ower Liquid. Similarly, equations for the lower liquid can be written

as: 2.3)

Vo, =0,

where ®; = @, (x,y,zt) is a velocity potential.
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The boundary condition is such that the velocity of the lower liquid is equal to zero at z =-

(H2>+H/2) and equal to the plate velocity at z = - H/2. So one can write:

3

od,

=0
% lz=—(H,+4)
(2.4)
o0, _ 9
oz z=—% ot

2.1.3.3 Plate. For convenience, we use the common (Xx, y, z)for the coordinate
and (u,v,w)for the corresponding displacement components. The displacement

components are assumed to be of the form:

u(x,y,z,t) = uo(x,y,t) + zc,//x(x,y,t)
v(x,y,z,t) = vo(x,y, 1)+ z:,//y(x, ,1)

w(x, y,2,¢) = wo (x,y,0)

where u,and v are the mid-plane displacement components in the x- and y-axis,
respectively; and y, and vy, denote the rotations of a line element, originally perpendicular

to the longitudinal plane, about the y- and x-axes respectively. (See Figures 2.3 and 2.4.)
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Figure 2.3:  Section before and after deflection.

Source: Szilard [24]
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Figure 2.4:  Angular distortion.

Source: Szilard [24]
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The stress-strain constitutive equations for the k% layer is given by:

[ _(®) @)
% (0® o® o o o®] |°x

% <11 %12 ¥16 &

® 1 =12 £ 3()

oM o® o o o®

®| _ k) Ak (k)
erZf =10 0 ~$13 O() 0 J yzr (2.6)
B o o o® Q(k) o | |®

xz k) (k KBl

W [0d 05 o o off |
"y | )

where the reduced stiffness terms Q; ®’are given by :

c®) (k)
O(k) _ C(k) _ 13 13 i, ] =1,2,6 = plane — stress reduced stiffness Q@7
N/} ij C(k) i,j=4,5 = transverse shear stiffness

with C;,k) terms denoting anisotropic stiffnesses.

The force and moment resultants per unit length are defined as follows:

(NN N_)= f((k) (k),r(k)) .

vyl g, y Ty
k) (k
(©.Q0))= HI ( ,(cz) T f,z) ) dz 2.8)

i) = f (60,000
—H/2
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where N and Q are the force resultants per unit length and M is the moment resultant per

unit length . (See Figures 2.5 and 2.6)

To write the force and moment resultant, in term of strain, we have to write strain-
displacement relations as follows:

ou oy

_.0 __0 X

ax—8x+z;(x——ax +z =
0 * .. %%y 2

E =€ +zy =—+4z—=

vy =%y Yy & dy

e_=0

z

}’xy=sfy+zz,y=au°+av°+z oV, OV,

oy ox oy ox

—y +

7.!:.‘! X &
_ ow

ey

Using Equation (2.9) in conjunction with Equations (2.7) and (2.8) yields the following

constitutive relations for the plate (in abbreviated notation):

)2 2]

These constitutive relations are given in detail in Appendix I and the plate stiffness terms

A;,B; and D, which appear in Equation (2.10) are defined by:



Figure 2.5: Moment and transverse shear resultant on a plate

Figure 2.6:  Resultant stress on a plate
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HI2

4B, D)= [0z i j=126 @1
~-H/2
From Equation (2.8), additional relations involving transverse shear are obtained as:

A A y,
G4 2l
0, A Ass ||l7 =

where
4=[Ca (. = 4,5 o

-H/2
and «is the shear correction factor and it is assumed to be 5/6. This factor is introduced to
account for the fact that the transverse shear strain distributions are not uniform across the
thickness of the plate. For symmetric laminates, the coupling between stretching and
bending is eliminated and therefore B;=0. In addition, for orthotropic cross-ply laminates,

we have A16= A26= A45=0 and D15= D_75=0.

Neglecting body forces, the equations of motion are:

aNx +ale}' _ azuo +R62Wx
=p 2 2

& 5.4 ot
aN,, an, a2 +R621//y
=p 2 2

%Y o X

ax

@ @y 2 @1 ‘azwo

- T +F(xsyyzst)+p2 ~P—= =p 2.14)
& @) =H/2 ] a 2=H/2 az

v, aM, oy, _Fu

x Ty &G R

M M &

R e
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where
HI2

I= I pzdz,
~H12

F(x,y,z,¢) isthe applied force, and p is the density of a single layer.

o = Hfzpdz is the plate density,

-HI2

and,

P, %"L £ 9%, are the liquid loading on both sides of the plate with p; and p, denoting the
t ot

two liquid densities. The coupling normal-rotary inertia coefficient .R is zero for the case of
symmetric laminates or laminates constructed of the same unidirectional material. By
substitution of Equations (2.6) and (2.12) into Equation (2.14), one can obtain the
equations of motion in terms of the displacements and the rotations. The equations of
motion decouples into two sets of equations governing the in-plane and the transverse

(out-of-plate) motions.

The governing equations for the out-of-plane displacement can be expressed in the

form:
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& & Y a

. ZEEED 5T s
Sv. . T

Sy ., Py [ } a3
52 T oty Dscséiv2 a;a ‘QASS'/’::"‘Ass—a? 2 0

v % . Ty 62% o | Ty _
Dssa@wuassa;wkl)m%@; —K| Ay Auay IaZ—O

J

H
K'[Ass 6;/, 4, Fwy o oy, +A4azw°j,—/l. aD(xy,7,1) .

(2.15)
D,

where 1 (t) 8 (x) 8 (y) is the applied force.

® Elastic foundation: Stiffness of elastic foundation was taken into account in some

cases, as we will see later. The stiffness is modeled as an ideal spring. The term Kw, is
added to the first equation of Equation (2.15) in order to incorporate the elastic foundation
effect where K denotes the spring constant.

While the two governing equations for the in-plane motions are:

&, 62l
-p

An Asé 2+ (4, + 4

ayz oy
) 1 azv
A4S a@ A“ P

=0
(2.16)

2.1.3.4 Solution Of The Model.

The transient response (normal

displacement) of the plate can be obtained by applying a triple Fourier Transform in space

(x, y) and time to the out-of-plate equations. So, this leads to:
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7 1 ra i X+

V. (xy,0)= — [ ¥, (&.¢,.0)e 508 g

~ 1 ra: (&, x+

y,(x,y,0)= pp [ W, .¢,,0)e = qs dE. o

Y l Y (& x+

Wo(%,3,0) = —— [ [Wo (1.4, )" 5d g dg,
where y_(x,y,0), ¥, (x,y,w), and W,(x,y,w)are the Fourier time transforms of
v(x. 3.8 , wv,(xy0) and wy(x,y,1) respectively. Here, & and &, represents the

wavenumbers along the x and y directions respectively. The unknown functions b 0

,and W, satisfy the system of linear equations:

M1V} ={F}

where [M] is a 3x3 symmetric matrix given in Appendix I.

Vi=wm v w}
FY ={f(@) o o

Therefore, to recover the normal physical displacement w(x,y,z,¢), we have to obtain the

inverse Fourier transform of W, (x,y,w) .

2.1.3.5 Dispersion Relations. The determinant of the matrix [M] gives the

characteristic equation for flexural wave propagation (first anti-symmetric mode). The

characteristic equation has more than
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one root. However, only one root approaches ® = 0 as the wave number & approaches
zero, and this is the root corresponding to the lowest anti-symmetric mode.
For the extensional and in-plane waves, we consider plane waves of the type:
u, =Ue"*“ ", v, =Ve@ M, (2.18)
where U and V' are constant amplitudes, & is the wavenumber, c is the phase velocity
(c=w/&) , and a is given by:

a = xcos(@) + ysin(p)

where @ is the angle between the direction of wave propagation and the x -axis.

By substituting Equation (2.18) into Equation (2.16), a system of two
homogeneous equations for the two constants / and ¥ can be written. For nontrivial

solutions, the determinant of the resulting coefficients matrix is set equal to zero:

A“cosqz)+A66sin2q)—pHc2 (A12+A66)cos¢sin¢

=0 (2.19)
(4, +4gg)cosgsing A66c052¢+A225in2¢—pH02

By expanding, we obtain a quadratic equation in ¢’ as

¢t —Bic> +B2=0
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where,

B, =(4,cos’ p+A,sin* p+A4.)/ pH
8. = 1 |A,cosp+A,sin®p (A4, +A,)cospsing
, =

(PH)* (A, + A )cospsing A, cos’ p+ A, sin’ @

It is noted that the phase velocity ¢ does not depend on the wavenumber &, thus these
waves are nondispersive. It is evident that there exist two-phase velocities corresponding
to two modes of wave propagation. Although the two waves involve both in-plane
extensional deformation as well as in-plane shear, we are able to tell from the eigenvectors
which one is dominant. Thus, we label the two waves as extensional wave and in-plane
shear wave accordingly.
Extensional and shear waves:

1. For waves propagating in the x-direction (¢ = 0°), the phase velocity of the

extensional mode is

while the phase velocity of the in-plane shear mode is

A
pPH

c, =

Both modes propagating in this direction are pure modes (uncoupled).

2. For waves propagating in the y-direction (¢ = 90°), then
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and

Since this is also a symmetry axis of the orthotropic laminates, both modes propagating
in this direction are also pure modes. However, for propagation at (@ = 45°%), both modes

become quasi-modes (coupled).

2.1.3.6 Evaluation Of The Double Integrals. The major task in the calculation

of the normal displacement is the evaluation of the double integrals of Equation (2.17). The
flow chart of the computer code used to find the displacement is shown in Figure 2.7. The
integrand Wo(&,;, &,w) has special properties that make the evaluation of the integral a
difficult job. It has a singularity of O(@™) at ® = 0. Thus, we should start the integration at
frequencies away from zero. This presents a big problem if the low-frequency end of the
forcing function £{%) is not band limited. Moreover, the integrand has extremely irregular
behavior, which gets worse at higher frequencies. It has irregular oscillations and sharp

spikes at isolated points. This can be confirmed by plotting the real part of Wy(&,,0,0) for a



FOURI1
Transform the force into
frequency domain using FFT

Solve the dispersion equation
using “Bisection method™

QROMBI & 2
Performs integration procedures in

Frequency vs. Wave number
(Dispersion)

two dimensions

WF
Evaluate the functions
under integration

/ Response in frequency domain

FOURI

Transform the response
into time domain using IFFT

Figure 2.7:  Flow chart of the computer code
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plate against &, for different frequencies and this is shown in Figure 2.8. The locations of
these sharp spikes represent the roots of the flexural dispersion equation. Since standard
integration algorithms will not be practical to evaluate the double integrals of such an
extremely ill-behaved function, an efficient algorithm with good accuracy must be
implemented. Based on the one-dimensional Romberg’s method for numerical integration,
a modified computer code was written to calculate the normal displacement. Basically, the
integration domain in one direction , i.e. &-direction divided into a number of rough sub-
domains by choosing an initial step-size. For each one of these upper sub-domains, the
integration domain in the other direction, i.e. &>-direction, is similarly divided into lower
rough sub-domains. Then, the function under integration is evaluated before the step-size
in the &-direction is decreased by a factor of 4 to calculate the relative error. If the
relative error is within the required accuracy, the next lower sub-domain (in &-direction) is
considered. Otherwise, the relative step-size will be refined until this accuracy is achieved.
The step-size for the upper sub-domain (&;-direction) will also be refined if the specified
accuracy in that direction is not satisfied. The fractional accuracy used in our computations

was 1.0x 107 (in both directions).
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2.2 SINGLE MOVING LOAD

For moving loads, we will write equations of motion of the problem described in
Figure 2.9 in term of the moving coordinate system (1 , { , z) , where (m,0) is a moving
coordinate system defined by [(x-V.t),(3-V,t)]. The load moves with a constant speed V.

V:and V, are the components of V in x and y directions respectively.

2.2.1 UPPER AND LOWER LIQUID

Equtions for both liquids are written as:
V0, =0, (2.:20)
where ®; = ®,(7,4,2,?) is a velocity potential and i is 1 and 2 for the upper and lower

liquids, respectively.

The boundary condition is similar to those mentioned in the fixed coordinates

(x.y.z,¢). They can be summarized as follows:



Figure 2.9:

Geometric representation of a plate exposed to a moving load on
elastic foundation
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oD,
PA—F =0
Ot |z=H,+H
2 (2.21)
oo, M,
& |,-H &
=2
oD, —o
O |z=—(H,+H)
2 (2.22)
oD, _ dw,
O |, H o
=2

2.2.2 PLATE

Equations of motion of the plate are written in terms of the new moving coordinate

as well. For out-of-plane motion:

on T on’ og og* a
oD,(1,4, 7,1 « o
—Kw, — > = f({t)o(n)S
yo) & W, — P pY: JS@®omé(S) (2.23)
5 e & & o & ’
Du =5l + Dl o5 + D =20 + D 2% — i s + s | -1 T ¥
an o o onog enj o
621// 321// aZyI 62’{/ ~ aij
D21 4 DY T+ Dy b — + A |~ I—=-=0
“omg e amg  Drap MW T e
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Note the appearance of the parameter K in the previous equations. It stands for the
stiffness of the foundation, which is taken into account in this type of problem.

For the in-plane motion, one can write:

41&72 A&;——+(4, LML

2
opg T a (2.24)
M, oV, azv
“, +456) R D B WAy A
of o ¥
° Applying Fourier Transformations for Moving Coordinate Systems:

Now, we will describe how to take the Fourier transform of a given function
G(r;, $,z, t), where the moving coordinate system (ﬂ,{ R z) is related to the stationary

coordinate system as:

-Vt

x

X
y-Vi (2.25)

-
P4

Ny 3
N

First, let us define the Fourier as :
3lGm.¢, z.0)}= G, &, z.@)
where £, is the wavenumber and @ is the frequency related to the new moving coordinate

system.

Go9G on_ oG o4 4G

hain rul
on ot "o o Ta (chainrule)



but,

M=X-Vyt and ¢ =y-Vy! Therefore, one can write:

on oc¢

—=-V, ,and —=-V

a a 7

- é__anG_V;aG_*_EG
on o ot

= 3(G) = VidEG VGG +ial
= (@i —Vd& ~V,i5)G

=i@ -V.& -V,&)G

And for 8 :

36) = 3(%—?—) = i@ -V.& -V,E)3G)

=@ -V.& -V,&)'G

° POST TRANSFORMATION:

37

After performing the Fourier Transformation to equations of motion for liquids and

plate, one can write the governing equation in this form:

M{V}={F}

where {V}" =(w, ¥, ¥}, {F}={f@) 0 0

and [ M ] is a 3x3 symmetric matrix given in Appendix II.
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2.2.3 SOLUTION:

In general, the dynamic displacement can be obtained using the triple inverse
Fourier transforms as:

1
(2z)y’

w(n,, 0 = J: _‘: f_: W.(E,E,0)e" e e™dE dE,diw.

If the moving load has a harmonic variation of the amplitude as in our case and only
the steady case response is of interest, the displacement

1
(27)?

w(n,¢,1) = [ Lw. G E)e e dE dE,

hence W,z Z, )« fm{[M(E,E, Q)] F}

where Q is the load frequency.

The transformed force F is evaluated by

F(&.&.0=fle®™ [ |7 rm.)e%e® dnag

2.3 TWO MOVING LOADS

The effect of two-force loading (Figure 2.10) on the response is investigated here.

L, and L, are the center-to-center distances of the loads in the n- and {-directions, and 0
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Figure 2.10: Geometric Representation of a plate exposed to two moving
loads
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is the phase between the loads. The approach followed here is the same approach used by
Kim [14].
Tow harmonic loads, namely, sin Qr and sin(Q¢ +80) are applied on the plate.

The amplitude of the normal response of the plate can be obtained as:

Jaz +B8? +a? +b2 +2[(a,a, +bb, )cos8 —(a,b, —b,a, )sin 6]
where a,,b,,a, and b, denote a,(1n,¢),b,(n,{),a,(n—- L,.,l—L. )and

b,(n—L,,{ —L,), respectively. These terms are extracted from the following two

expressions:

a6 +ib 0= [ [ W@ E e dEE,

and,

a,(n-L,.§—L)+ib(n—L,,{~-L,)= (2;)2 L w.(E.E)e " em“ I gE qE,

For multiple forces (more than two), the response can be obtained similarly using the

above approach.



CHAPTER 3

RESULTS AND DISCUSSIONS

Four types of elastic plates, namely, isotropic; and 3-plys, 6-plys, and 12-plys
laminated plates were investigated in this work. These plates were exposed to
different loading conditions e.g. stationary loads, liquid loadings, and a single or

multiple moving loads.
As shown in Figure 2.1, the plate was loaded by liquids on both sides.

Dispersion curves were calculated for plates under those mentioned conditions.

Effects of both liquids on dispersion curves were investigated as well.

41



42

Normal transient responses were also computed for the plates along three
main directions, namely, 0°, 45°, and 90° directions. We studied the effects of the
liquid logding on these responses. Furthermore, group velocities were calculated
and compared with each other under different circumstances and along different

directions.

Finally, two types of plates, namely, an isotropic plate, and the 6-ply
laminated plates were studied under moving harmonic loads. Critical velocities
were computed for both plates under different load velocities. Moreover, the two
plates were subjected to two moving harmonic loads. Effects of phase differences

between the two forces and their velocities were investigated for both plates.

Throughout this chapter, the following notations are used to define the

important parameters for the present work:

H : plate thickness

H, : the upper liquid depth
H, : the lower liquid depth
p : the plate density

P1 : the upper liquid density

P2 : the lower liquid density
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3.1 STATIONARY LOADS

In this section, the plates are investigated under a harmonic stationary load.
First, dispersion curves are computed for the 3-ply laminated plate along the three
main directions and under different liquid load conditions. The properties of the 3-

ply E-glass/epoxy fiber reinforced plate are given in Table 3.1.

TABLE 3.1: Properties of the Composite Plates
P 1857 Kg/m’
H 0.762 x 10 m
(Gl 38.0 x 10° N/m?
Cy’ 3.10 x 10° N/’
(Ol 11.75 x 10° N/m?
Cr 5.30 x 10° Niim?
Cr 4.60 x 10° Nym?




3.1.1 DISPERSION CURVES FOR WATER/PLATE/MERCURY

SYSTEM ALONG THE 45° DIRECTION

Dispersion curves were calculated for the 3-ply composite plate when
loaded by water on the upper side and mercury on the lower side. They are shown
in Figures 3.1 and 3.2 for high and low depth of mercury respectively. In these two
figures, changes in dispersion curves due to the change of H;, observed for high
and low H;, are not noticeable. This is because of the following:

e Effects of boundary conditions
e Effects of density

First: Effects of boundary conditions:

By studying the dispersion relation we notice that it is affected by the term
p.o°A L; (defined earlier in chapter 2), where i is equal to 1 and 2 for the upper
and lower liquid, respectively. This term, which is by definition a function of
liquid depths, is always greater for the lower liquid. Subsequently, the influence of

changing the lower liquid’s depth on dispersion curves is greater.



45

f.H (MHz. mm)-

Figure 3.1:  Dispersion curves for the 3-ply laminated plate along 45° direction
for water/plate/mercury system, H, = 0.05H, for various water
depths.
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Figure 3.2:  Dispersion curves for the 3-ply laminated plate along 45° direction
for water/plate/mercury system, H, = 100H, for various water
depths
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Second: Effects of density
The term mentioned above is a function of the densities of the two liquids
and so is the dispersion relation. Therefore, the effect of the denser liquid on the

dispersion curves will be more pronounced.

By comparing dispersion curves in Figure 3.1 with those in Figure 3.2, one
can clearly see the effect of the depth of the lower liquid i.e. mercury on dispersion
curves. For a given frequency, the phase velocity is larger for higher depth of
mercury than that of a lower depth. For instance, with H; equal to 0.05 H, the
phase velocity is about 0.8 km/s at 1.2 MHz.mm for the lower depth case and

almost equal to 0.94 km/s for the higher depth case at the same frequency.

However, when the depth of the lower liquid i.e. mercury is varied,
dispersion curves change considerably. By looking at Figures 3.3 and 3.4, the
phase velocity changes from about 0.7 km/s, with H, equal to 0.05 H, to almost 0.9
km/s, with H> equal to 0.05 H, at 1 MHz.mm. This considerable change (29 %) is

again due the reasons stated earlier.

In both figures, it is noted that at low frequencies (less than 4.5 MHz.mm),
the effect of the liquid depth is more pronounced than at higher frequencies.
Furthermore, for higher frequencies, as the mercury depth increases beyond 0.30

H, its effect on dispersion curves becomes less pronounced.
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By comparing the dispersion curves in Figure 3.3 (where the water depth is
lower) to those in Figure 3.4 (where the water depth is higher), it is easy to see that

both sets of curves show almost identical behavior for the whole frequency range.

3.1.2 DISPERSION CURVES FOR MERCURY/PLATE/WATER
SYSTEM ALONG THE 45° DIRECTION

In this section, dispersion curves were studied when the two liquids were
switched i.e. the mercury occupies the upper and the water occupies the lower
portion of the system. Dispersion curves for this system are plotted in Figures 3.5

and 3. 6 for high and low values of H, respectively.

In both figures, at a given frequency, it is noted that as the mercury depth
increases, the phase velocity decreases significantly e.g., it drops from 0.95 to 0.74
km/s as H, increases from 0.05H to 100H at 0.5 MHz.mm for H, equal to 100H.
Moreover, the phase velocity of the flexural wave tends to converge to higher

values as the mercury depth decreases.

Although the two sets of curves behave similarly, they differ noticeably in
phase velocity values at a given frequency. Numerically, in Figure 3.5, as stated
earlier, the phase velocity is 0.95 ,for H; equal to 0.05H, and 0.74 km/s, for H;
equal to 100 H, at 0.50 MHz.mm, where as in Figure 3.6, it is 0.85 and 0.70 km/s

respectively, at the same conditions.
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Figure 3.5:  Dispersion curves for the 3-ply laminated plate along 45° direction
for mercury/plate/water system, H, = 100H, for various mercury
depths
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Figure 3.6:  Dispersion curves for the 3-ply laminated plate along 45° direction
for mercury/plate/water system, H, = 0.05H, for various mercury
depths
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In contrast to the previous case, the effect of changing the water depth is
studied for high and low depth of mercury. The effects on the dispersion curves are
relatively less noticeable for higher H; value as shown in Figure 3.7. Phase
velocity changes with 4.60% from 0.70 to 0.67 km/s for Hz equal to 100H and 0.05
H respectively at 0.40 MHz.mm. However, as H; i.e. mercury depth becomes small
the effect of water depth is more pronounced. The percentage increases up to

14.0% at the same conditions. (See Figure 3. 8).

3.1.3 DISPERSION CURVES FOR WATER/PLATE/WATER

SYSTEM ALONG 0-DIRECTION

In the previous systems, dispersion curves were calculated when the two
liquids were different. However, in the present system both liquids were water.
Dispersion curves were calculated along the 0°-direction, and shown in Figure 3.9.
H,; value was varied from 0.05H to 100H while H, value was kept low at 0.05H.
No significant change in phase velocity, less than 1.50% between 0.05H and 100H
at 1 MHz.mm, is observed. This is due to the boundary condition effects described
earlier. It can be also noted that at low frequencies, less than 0.40 AHz.mm,
dispersion curves almost coincide. However, at higher frequencies, greater than

0.75 MHz.mm dispersion curves tend to diverge.
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Figure 3.7:  Dispersion curves for the 3-ply laminated plate along 45° direction
for mercury/plate/water system, H; = 100H, for various water
depths
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In Figure 3.10, dispersion curves were calculated when the value of H, was
increased to 100H. The percentage change in the phase velocity increases to almost
5%. However, both groups of curves in Figures 3.9 and 3.10 converge to the same

phase velocity (almost 1.30 km/s).

The effect of the lower water on dispersion curves was studied along the
same direction and the results are presented in Figures 3.11 and 3.12 for low and
high value of H;, respectively. It can be easily noticed for both sets of dispersion

curves that as H, increases, the phase velocity increases.

In Figure 3.11, where H; was kept low at 0.05H, the dispersion curves
diverge considerably for frequencies between 0.20 and 1.50 MHZmm, as H;
changes (with the exception of H, equal to H and 100H). At 0.5 MHz.mm, the
phase velocity increases from 0.96 to 1.17 /s (22% increase) as the H; increases
from 0.05H to 100H. However, the percentage drops to (5.20%) at 1.50 MHz.mm,
where the phase velocities tend thereafter to converge to a constant value of

almost 1.32 km/s.

In Figure 3.12, Hy value is increased to 100 H. Dispersion curves here
exhibit similar characteristics to those of Figure 3.11. However, by comparing the
two figures, one can find that there are some slight differences in dispersion
curves. For example, the percentage change of the phase velocity drops slightly to
20% at 0.5 MHz.mm and to 4.63% at 1.50 MHz.mm. This slight change is due to

the weaker effect of changing H; value.
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3.1.4 DISPERSION CURVES FOR WATER/PLATE/WATER

SYSTEM ALONG 90° DIRECTION

The effects of the upper liquid depth on dispersion curves along the 90°
direction are shown in Figures 3.13 and 3.14, for low and high depth of the lower
liquid. Furthermore, the effects of the lower liquid along the same direction are
also shown in Figures 3.15 and 3.16 respectively. Similar effects, due to the
change of parameters studied along the 0°-dirction, can be observed here as well.
However, under all circumstances, the phase velocity values are greater along the
0°-direction than those along the 90™direction. For instance, the phase velocity is
1.27 km/s in Figure 3.11 versus 1.10 km/s in Figure 3.15 at a frequency of 1
MHz.mm provided that the plate is under the same loading conditions for both
cases. This observation is expected because more fibers are oriented along the 0°-
dirction, which means that the rigidity is greater along this direction for 0°/90°/0°

composite plate.

3.1.5 EFFECTS OF LIQUID DENSITY ON DISPERSION

CURVES

The next step was to study the density effects of both liquids on the
associated dispersion curves. The 3-ply composite plate was loaded with liquids on

both sides with depths equal to 100 H.
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Figure 3.13: Dispersion curves for the 3-ply laminated plate along 90° direction
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Figure 3.15: Dispersion curves for the 3-ply laminated plate along 90° direction
for water/plate/water system, H; = 100H, for various values of H,



1.4 T T T

H2=0.05 H
H2=0.10 H
............. H2=0.20 H
...... -  H2=1.00H
-——-  H2=100H

ot s s .
0 0.5 1 1.5 2 2.5

f.H (MHz.mm)

Figure 3.16: Dispersion curves for the 3-ply laminated plate along 90° direction
for water/plate/water system, H, = 0.05H, for various values of H,



First, dispersion curves were calculated for several values of p1 ,with low
and high values of p,, and they are shown in Figures 3.17 and 3.18, respectively. In
Figure 3.17, p, was kept as low as 800 kg/m’, whereas p; was varied from 800 up
to 13,570 kg/m’. It can be easily seen that the phase velocity decreases as p;
increases at a given frequency. For instance, at 0.2 MHz.mm, it drops from around
0.864 to 0.573 km's (51 % decrease) as p; increases from 800 kg/m3 to 13,570

kg/m’.

In Figure 3.18, p; was kept as high as 13,570 kg/m3. Dispersion curves
exhibit the same general characteristics as those of Figure 3.17. However, it can be
noted that the phase velocity is smaller here. Numerically, the phase velocitv at 0.2
MHz.mm is around 0.568 km/s compared to 0.864 km/s of Figure 3.17 for p, equal
to 800 kg/m’. Moreover, by comparing closely Figure 3.17 with Figure 3.18, we
can notice that the change in phase velocity with respect to the change in density is
less in Figure 3.18. For example, at 0.25 Mhz.mm, the percentage change in phase

velocity is 15.0% in Figure 3.18 compared to 33.0 % in Figure 3.17.
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Figure 3.17: Dispersion curves for the 3-plv laminated plate along 0° direction
for various p; values (p, = 800 Kg/m3)
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Figure 3.18: Dispersion curves for the 3-ply laminated plate along 0° direction
for various p; values (p; = 13,570 Kg/m®)
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The effect of varying p, was also studied. Again, the dispersion curves
were produced for the two cases of low and high values of p; and they are shown

in Figures 3.19 and 3.20, respectively.

In Figure 3.19, p; was kept low at 800 kg/m”, whereas P2 was varied from
800 to 13,570 kg/m’. Similar observations are noticed here. The phase velocity
decreases as p; increases, e.g. it drops from 0.983 to 0.659 km/s (32.0 % decrease)

as p, increases from 800 to 13,570 kg/m’ at 0.3 MFEz.mm.

In Figure 3.20, p; is kept as high as 13,570 kg/mj. The same behavior of
dispersion curves is found. Once more, it can be noted that the phase velocity
values are smaller than those of Figure 3.19. This can be checked at, for instance,
0.30 MHz.mm., where the phase velocity is 0.559 im/s, for p; equal to 13,570
kg/m’, and 0.662 km/s for p; equal to 800 kg/m”. Similar to Figures 3.17 and 3.18,
it can be noticed that dispersion curves are more compact in Figure 3.20 than those

in Figure 3.19.
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Figure 3.19: Dispersion curves for the 3-ply laminated plate along 0° direction
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Figure 3.20: Dispersion curves for the 3-ply laminated plate along 0° direction
for various p> values (p1 = 13,570 Kg/m”)
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3.1.6 THE NORMAL TRANSIENT RESPONSE OF 3-PLY

COMPOSITE PLATES

The first investigation set to study the normal transient was done on the 3-ply
composite plate. This plate is 3-ply symmetric plate, where the plys stacking order is

[0°/90°/0°]. The properties of the plate are given in Table 3.1.

The plate was loaded on both sides by water with water depths and density given

in Table 3.2.

TABLE 3.2: Properties of the Upper and Lower Water

Property Value
H; 100 H
H, 100 H
P1 1000.0 kg/m’
P2 1000.0 kg/m’




The plate was excited by an amplitude modulated 0.20 MHz central frequency
force. This excitation force and its power spectrum are shown on Figure 3.21. The
frequency of this force is bounded between 0.13 MHz as a low end and 0.26 MHz as a
high end. The transient responses for the plate were computed along three axial directions,

namely, 0°-,45°- and 90°-direction, at three different locations: 10H, 20H, and 40H.

Figure 3.22 shows the normal transient responses of the plate along the 0°-
direction at the three locations. It can be seen that the amplitude of the wave decreases as
the location distance increases. This attenuation is expected because the attenuation effect
was introduced in the numerical model for the composite plate to account for the fact that
most composite plates are made of highly attenuating materials. An attenuation of
approximately 59% is observed on the wave as it travels from the first to the third
location. Furthermore, its shape is distorted because the propagating mode exhibits some
dispersion as it travels along the plate. One can notice that the wave is broadened as it gets

far from the force source.
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Figures 3.23 and 3.24 show the normal transient response of the plate along 45°-,
and 90°-direction, respectively. Attenuation and distortion of the wave are observed along

these directions as well.

Group Velocity:

The group velocity is defined as:

where wis the frequency and £is the wavenumber. The group velocity has been
computed along the 0°-, and 90°-dirction, and plotted in Figure 3.25. We can see that the
group velocity along the 0°-dirction is greater than its value along the other directions. Its
value for this plate is around 1300 m/s along the 0°-dirction and 1209 m/s along the 90°-
dirction at 0.20 AMHz. Figures 3.22, 3.23 and 3.24, can also verify this result. The
difference in the group velocity was due to the fact that more fibers were oriented along
the 0°-dirction i.e. the plate is more rigid along the 0°-direction. In the 45°-dirction, the

effect of the fibers would be in the middle between the two extreme cases.
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different locations



1400 T T T i

1200

1000

800

600

Group Velocity (m/s)

400

200

0 0.5 1 1.5 2 2.5
Frequency (Hz) x 10

Figure 3.25: The group velocity of the 3-ply plate along the 0° and the 90° directions

79



80

3.1.7 THE__NORMAL _TRANSIENT RESPONSES OF 6-PLY

COMPOSITE PLATES

The second task was to compute the normal transient responses of 6-ply laminated
plate. This plate is 6-ply E-glass/epoxy fiber reinforced plate with a thickness of 1.524

mm and a stacking order of [G°/90°/0°/0°/90°/0° Its properties are given in Table 3.3.

TABLE 3.3: Properties of the 6-Ply Composite Plate
0 1857 Kg/m’
H 1.524 x 107 m

73 38.0 x 10° N/m”
CH

(K) 3.10 x 10° N/m"*
C12

(KX) 2
sz 11.75 x 10° N/mi’

3 5.30 x 10° N/m’
C,

3 4.60 x 10° N/m*
CSS

The plate was loaded by water on both sides with the same parameters given in
Table 3.2. The plate was excited by the same 0.20 MHz central frequency force shown in
Figure 3.21. Its normal transient responses were calculated along the three main
directions, i.e. 0°, 45°, and 90° directions at three different locations, namely, 10H, 20H,
and 40H. These responses are shown in Figures 3.26, 3.27 and 3.28, along the three

directions, respectively.
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Similar to the 3-ply laminated plate, the attenuation and dispersion behavior of the
flexural waves can be observed along the three directions. Differences in group velocity
along the three directions can be seen as well. The group velocity was estimated along the
0° direction and was found to be approximately 1418 m/s, and 1406 m/s along the 90°

direction at 0.20 MH=.

If the response of the 6-ply plate is compared to that of the 3-ply pate, differences
in wave behavior and group velocity can be seen clearly. Distortion in the wave shape is
more pronounced in the 6-ply laminated composite plate. This is due to the fact that the 6-
ply laminated plate is more dispersive than the 3-ply one. Moreover, the amplitude of the
normal response is less in the 6-ply laminated plate. We can also notice that the group
velocity is greater for the 6-ply plate. This difference in group velocity is due to the
existence of more fibers in the 6-ply laminated plates, which subsequently increase the

rigidity of such plates.

3.1.8 THE NORMAL TRANSIENT_ RESPONSES OF_12-PLY

COMPOSITE PLATES

In this section, the normal transient response of a 12-ply E-glass/epoxy fiber
reinforced plate, with a stacking order of [0°/90°/0°/0°/90°/0°] sym, Was computed. The

properties of this plate are given in Table 3.4.
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TABLE 3.4: Properties of the 12-Ply Composite Plate
P 1857 Kg/m’
H 3.048 x 107 m
C.’ 38.0 x 10° N/m’
(Ohek 3.10 x 10° N/m?
C,’ 11.75 x 10° N/m’
C,’ 5.30 x 10° N/m?
C,’ 4.60 x 10° N/m’

It was exposed to the same loading conditions mentioned in the previous two
sections. The 0.20 MHz central frequency, shown in Figure 3.21 along with its spectrum,
was used to excite the plate. Again, the normal transient response of the
plate was computed along the three main directions i.e. 0°,45°, and 90° directions, at three
different locations, namely 10H, 20H, and 40H. These responses are shown in Figures

3.29,3.30 and 3.31.
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The computed flexural wave exhibit similar behavior as observed in the previous 3
and 6-ply plates. The group velocity can be estimated along the 0° direction to be 1470

m/s.

3.1.9 THE NORMAL TRANSIENT RESPONSE OF THE ISOTROPIC

PLATE

An isotropic plate is also investigated. An aluminum plate with the following

specifications was selected:

p= 2800 Kg/m’ | E = 72 x 10° N/n?’,
u=27x10° Nom?, H=1.524 mm,

Hence, from these data, it can be found that:

v=0.33, Cs=3100 m/s,

r=Cr/Cs=1.985



87

0.01 T T T T T T
0.005 - J
x=10H
N
-0.005 - -
™
S
-0.01+ .
£
= -0.015
'3 - \/\A/F x=20H
2
= -0.02- .
£
< 0.025} ;
x=40H
-0.03 SIS
-0.035 .
-0.04 . : : : : L
0 20 40 60 80 100 120
Time (u second)

Figure 3.29: The transient response of the 12-ply plate along the 0° direction, at three
different locations
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The same 0.20 MHz central frequency amplitude modulated force was used to
excite this plate. The plate is loaded by the liquid on both sides with same ioading

conditions given in Table 3.2.

In Figure 3.32, the transient normal displacement of the aluminum plate is plotted
at three different locations, namely 10H, 20H, and 40H. It is
clear that as the location gets far from the force source, the amplitude of the displacement

gets smaller.

1If the displacement of the isotropic plate of a given thickness, were compared to
that of the composite plate of the same thickness, we would find that the amplitude of the
displacement of the isotropic plate is greater. Furthermore, the wave suffers less distortion
in its shape. This refers to the fact that the isotropic plate is composed of less dispersive
materials. The group velocity was calculated for the aluminum plate and shown in Figure
3.33. Obviously, the group velocity of the isotropic plate is greater than that of the
laminated composite plate. It is estimated to be approximately equal to 2528 m/s for the
aluminum plate versus 1418 m/s for the 6-ply laminated plate under the same

circumstances.
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Figure 3.32: The transient response of the isotropic plate at three different locations
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3.1.10 RESPONSE OF THE 6-PLY LAMINATED PLATE WITH AND

WITHOUT LIQUID LOADING

The lower liquid effect on the normal transient response of the 6-ply laminated
plate was investigated. First, we computed the normal response of the plate without the
liquid loading. Then, we compared it with the response of the plate when the lower liquid
loading was present. Both responses were calculated along the 0° direction at a location of
1O0H from the source. The two responses are shown in Figure 3.34. It is clear from the
figure that the amplitude of the normal transient response of the plate is greater when the

liquid is absent.

The group velocity for both cases were calculated and shown in Figure 3.35. It is
clear that this group velocity when the liquid loading is absent is higher than its value

when the liquid is present for all frequencies.

Next, the effect of changing the lower water liquid depth was investigated at a
distance of 20H. The depth was varied from 0.05H up to 100H and the resulted responses
are shown in Figure 3.36. We see that as the liquid depth increases, the amplitude of the
normal transient response decreases. Figure 3.37 gives a closer look at the normal
responses when the liquid depth is 0.05H and 100H. Clearer differences in the amplitude,
signal phase and the group velocity of the wave are observed. The amplitude is reduced
by a percentage of 12.50 and the group velocity drops from approximately 1354 m/s to

1332 m/s, as the depth increases from 0.05H to 100H. (See Figure 3.38)
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3.2 SINGLE MOVING LOAD

The second part of the present work was to investigate the plates under moving
point loads with and without liquid loadings. The plates were excited by a moving
harmonic point load having a magnitude of unity. Two types of plates were tested,
namely, an isotropic plate and a 6-ply laminated composite plate. The properties of the
isotropic and the 6-ply laminated plates are given in Tables 3.5 and 3.3, respectively. The

plates were subjected to moving loads with continuous harmonic waveforms.

TABLE 3.5: Properties of the Isotropic Plate

P 366 kg/m’

1% 0.35

A 1.310 x 10° N/m*
K 5.615 x 10° N/m’

An important term called the critical velocity of the moving load was investigated
for both types of plate at two values of frequency, namely, 5 Hz and 50 Hz. The critical
velocity of a moving load is defined as the velocity at which the maximum normal
displacement of the plate occurs. The effects of both the liquid loadings and the foundation
stiffness on the critical velocity were studied. Furthermore, the effect of the liquid depth on

the critical velocity was investigated as well.
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3.2.1 RELATION BETWEEN THE PLATE THICKNESS AND THE

CRITICAL VELOCITY

First, the relation between the critical velocity and the plate thickness was
investigated at a low frequency value of 3 Hz. Typically, the isotropic plate was studied in

this case.

Initially, a 150 mm thick isotropic plate, was considered. The load speed was
varied, and the maximum displacement of the plate was calculated at every speed and then
plotted as in Figure 3.39. From the figure, the critical velocity ( the velocity where the
maximum normal displacement peak occurs) can be found to be approximately 193 m/s.

Similar figures were generated for other values of thickness at the same frequency.
For instance, for a plate thickness of 4 mm, the critical velocity was approximately 13.0

m/s. (See Figure 3.40)

Critical velocities were calculated for several values of plate thickness and the
results are shown in Figure 3.41. The plot shows the proportionality between the critical
velocity of the moving load and the plate thickness at 3 Hz. It is clear that the critical
velocity decreases as the plate thickness decreases. It drops from 193 m/s to 13 m/s as the

thickness decreases from 150 mm to 4 mm.
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3.2.2 ISOTROPIC PLATES UNDER A MOVING LOAD OF 5 HZ

FREQUENCY

The 4 mm thick isotropic plate having the properties of Table 3.5 was investigated
under three different conditions for a low load-frequency of 5 Hz. First, no water loading
on the plate was present whereas the stiffness of the elastic foundation was taken into
account and was assumed to be 0.095 x 10° N/m’. The maximum normal displacement of
the plate was computed for various load velocities and shown in Figure 3.42. It can be

seen from the figure that there exists a critical velocity = 13.0 m/s.

Second, the maximum normal displacement was calculated when the lower liquid
loading, with a depth of H, was present. The stiffness of the foundation was ignored in
this case. The result is shown in Figure 3.43. From the figure, one can notice that the
critical velocity is shifted toward zero. Moreover, a sharp drop in the maximum

displacement is observed, once the force velocity increases beyond the zero.

Finally, the maximum normal displacement was computed when both the lower
liquid loading and the foundation stiffness were taken into considerations. The result is
shown in Figure 3.44. We notice that the curve is smoother than those of Figures 3.42

and 3.43 and more broadened than that of Figure 3.43. The critical velocity is still zero.
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3.2.3 ISOTROPIC PLATES UNDER A MOVING LOAD OF 50 HZ

FREQUENCY

The previous investigations were repeated for the isotropic plate but under a
moving load with a relatively higher frequency of 50 Hz. For the first case, where only the
foundation stiffness was taken into consideration, the result is shown in Figure 3.45. It is
notably clear that there are two critical velocities as the frequency is increased to 50 Hz.
By comparing the current figure to Figure 3.42, it can be concluded that, for a low
frequency load (near to zero), only one critical velocity  will appear. However, for
relatively higher load frequencies ( around 50 Hz), another critical velocity was expected.

The two critical velocities for this case are 11.0 m/s and 13.5 m/s.

Figure 3.46 presents the result for the case where only water loading exists. The
curve rises to a peak value at a relatively low velocity (3.50 m/s), then drops steeply, and
thereafter fluctuates as the velocity becomes higher. Therefore, it can be concluded that
with the absence of the foundation stiffness, fluctuation in the maximum displacement are
more pronounced, especially with higher frequency loads. This can be demonstrated by
comparing the curve Figure 3.46, where the frequency is 50 Hz, with that of Figure 3.43,

where the frequency is 5 Hz.
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For the last case, when both lower water loading and foundation stiffness are
considered, the effects of the water loading and foundation stiffness add. The critical
velocity shifts to zero due to the presence of water and the curve is quite smooth with no

fluctuations due to the presence of foundation as shown in Figure 3.47.

3.2.4 6-PLY LAMINATED PLATES UNDER A MOVING LOAD OF §

HZ FREQUENCY

The 6-ply laminated plate was investigated under a moving load with a low
frequency of 5 Hz for the three cases mentioned earlier. Similar to the isotropic plate, one
critical velocity was found for the first case but with a higher value of approximately 90.0
m/s as shown in Figure 3.48. If this figure were compared to the corresponding one of the
isotropic plate Figure 3.42, we can see that the magnitude of the critical velocity is higher

for the laminated plate.

In the second case, as shown in Figure 3.49, similar to what has been noticed for
the isotropic plate, the critical velocity is shifted toward zero with a maximum value of
displacement, then the curve drops steeply and converges to a constant value of

displacement as the velocity increases.

In the last case, where both lower liquid loading and foundation stiffness were
considered, the critical speed was shifted towards zero and the curve is quite smoother and

more broadened (See Figure 3.50).
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3.2.5 6-PLY LAMINATED PLATES UNDER A MOVING LOAD OF

S0 HZ FREQUENCY

Here, the 50 Hz moving load is applied to the 6-ply laminated plate under the three
cases mentioned earlier. Dissimilar in the first case to the low frequency force, two peaks
corresponding to the two critical velocities can be observed at approximately 92.0 m/s and
105 mvs, as shown in Figure 3.51. Thereafter, fluctuations in the maximum displacement

curve start to appear for higher velocities (beyond the second critical velocity).

In the second case, where only water loading was considered, the curve starts
smoothly rising to its maximum peak clearly, at a speed of 17.0 m/s (See Figure 3.52).
Only one critical velocity can be seen. For higher velocities, fluctuations are more

pronounced in contrast to the low frequency case where they were almost absent.

Figure 3.53 shows the results when both the water loading and the stiffness of the
foundation were considered. The critical velocity is shifted to zero, and the curve exhibits
smooth characteristics without noticeable fluctuations. It is also worth mentioning here
that the curve is a little bit more broadened in the vicinity of zero velocity when compared

to the corresponding low frequency case (See Figure 3.49).
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3.2.6 EFFECT OF THE UPPER LIQUID DEPTH ON BOTH PLATES

In this section, the maximum displacement was calculated against various load
velocities for three depths of the upper liquid, namely, 0.05H, H, and 100H while the
lower liquid depth was kept constant at 100H. The 50 Hz moving load was applied to both
the isotropic and the 6-ply plates and the results are shown in Figures 3.54 and 3.55. In
both figures, as the depth increases, the critical velocity is shifted to the right and the
maximum displacement magnitude becomes larger. Moreover, it should be noted that the

fluctuations in the composite plate is more pronounced here.

3.2.7 EFFECT OF THE LOWER LIOUID DEPTH ON BOTH PLATES

The same calculations were performed for both plates again to see the effect of the
lower liquid depth as well. In contrast to the last case, as the depth increases the critical
velocity is shifted to the left, while the maximum displacement curve is reduced as shown
in Figures 3.56 and 3.57. Moreover, the fluctuations are observed to be more pronounced

in this case.
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Figure 3.55: The upper liquid depth effect (H;) on the maximum displacement versus
load velocity curve for the 6-ply laminated plate
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3.3 PLATES UNDER TWO MOVING LOADS

The last task of this work was to investigate the dynamic response of both the
isotropic plate and the 6-ply laminated plate, with elastic foundation, when subjected to
two simultaneous moving loads. Both loads were traveling with a velocity V in a direction
parallel to 77 direction (refer to Figure 2.5 in Chapter 2), with a frequency of 10 Hz. The
distance between the two loads are chosen to be as follows:

Lﬂ=0.5 m, and L;=0.0 m.

. The effect of the phase difference between the two loads on the maximum
displacement of both the isotropic and laminated plates was studied. Furthermore, the

effect of the load velocities was also investigated.
3.3.1 THE ISOTROPIC PLATE

Figure 3.58 shows the relation between the maximum dynamic displacement
divided by the maximum static displacement (displacement when the velocity is zero at a
frequency near to zero) of the isotropic plate, and the phase difference between the two
loads for various load speeds. The maximum displacement decreases, as the phase
becomes close to 180° then it increases again. The curve is symmetric with respect of a

phase of 180° for stationary harmonic loads (V = 0), but not for moving
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loads (V # 0). One can observe the large difference between the maximum displacements
for phase angles O and 180° (45% change). Therefore, a phase difference between loads
can reduce the maximum displacement significantly. Moreover, it is obvious that the
maximum displacement increases with the load speed for all the phase values, which is

also shown below.

Next, the variation of the maximum displacement of the isotropic plate with
increasing speed of various phase angles was investigated as shown in Figure 3.59. For all
value of phase angles, the maximum displacement increases as the speed increases.
Change in the maximum displacement with 0° and 90° phase angle is almost 6.50%
whereas it is almost 9.60% with 180° phase angle. The figures also show that at low speed

(less than 30.0 m/s) the change in maximum displacement is negligible.

3.3.2 THE 6-PLY LAMINATED PLATE

_Figure 3.60 shows the relation between the maximum dynamic displacement
divided by the maximum static displacement for 6-ply laminated plate, and the phase
difference between the two loads for various load speeds. A large difference (about 55 %)
between the maximum displacement for the phase angles of 0 and 180° is observed in this
case. Notice that this percentage difference is greater than that of the isotropic plate
(Figure 3.58). Thus, changing the phase angle can considerably reduce or increase the

maximum displacement.
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Finally, the variation of the maximum displacement of the composite plate with
increasing speed at various phase angles was studied for the laminated plate and shown in
Figure 3.61. From the figure, it is noted that the maximum displacement increases as the
speed increases. For 0° phase angle, a negligible change in maximum displacement can be
noticed until the speed reaches 30 m/s, where the maximum displacement increases
noticeably. For the same phase angle, the maximum displacement change is
approximately 1.40 % when speed changes from 0 to 100 m/s. For 90° phase angle, this
change is approximately 0.76 % whereas it is about 0.50 % for 180°. These percentages
are much less than those of the isotropic plate. Furthermore, complexity of the composite

plate appears in Figure 3.61 in terms of fluctuations especially for 180° phase angle.
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CHAPTER 4

CONCLUSIONS

The propagation of waves in laminated composite plates is more complex than that
in isotropic plate. This is due to their higher degree of anisotropy (more elastic properties
needed to describe the material), the fact that the composite plate may be constructed of
several layers of different properties, and the interaction of the propagating waves with
fibers and the layers interfaces. Most of the previous work done in the field of wave
propagation in plates was performed for laminated plates without liquid loading and under
a stationary load. However, in the present study, laminated plates behaviors were
investigated under different loading conditions, specifically, liquid loads, stationary or
moving loads, and two moving loads. Dispersion curves were constructed under different
loading conditions. Normal transient responses were calculated for four plates; namely,

isotropic, 3-ply, 6-ply, and 12-ply laminated plates along three main directions at three
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different locations. Furthermore, plates subjected to a single or double harmonically

moving load were investigated.

Dispersion curves of the 3-ply laminated plate under the liquid loadings were
calculated at the three main directions. The wave propagation in plate was first modeled
when the two liquids are different. The simulation was repeated for the plate under two
identical liquid loadings and was validated for an isotropic plate by Bao [8]. It has been
seen that the effect of the denser liquid on dispersion curves is more pronounced. We also
saw. that the dispersion curves were affected more by changing the depth of the lower
liquid. The phase velocity increases as the depth of the lower liquid increases whereas it
decreases as the depth of the upper liquid increases. Effects of density of both liquids on
dispersion curves were studied as well and this was validated for an isotropic plate by
Dabirikhah [2]. In contrast to the liquid depth effect, the effect of changing the liquid
density is independent of the liquid location. In other words, the phase velocity decreases
as the density of either liquid increases no matter which liquid density is chosen to be

varied.

The normal transient responses were computed for an isotropic plate, and for the
three laminated plates under liquid loadings. To perform this computation in laminated
plates, multiple transform technique was applied to the higher order approximate solution
for laminated plates. Even though, it was an approximate solution, the computational time

was high. This was due to the irregular behavior of the integrated function. Also, this
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solution required the double integration procedures to be done at discrete frequencies. To
carry out the evaluation of such function, a one dimensional integration algorithm based
on Romberg’s method was modified to a two dimensional algorithm. This technique
predicts transient responses of the flexural (a,) mode only. Therefore, it is used at low
(f*H) values where only the flexural mode is likely to exist. From the results, the
phenomenon of anisotropy in laminated plates is found to be more pronounced when
compared to isotropic plates. The effects of liquid loading on the normal transient
responses of plates were discussed. We saw that as the lower liquid depth increases, the

magnitude of the response decreases, and so does the group velocity.

The final part of the present work was to investigate the plates under moving
loads. First, a harmonically single moving point load was used. For low frequency load,
one critical velocity of the load is found, however, two critical velocities were found for
higher frequencies. The critical velocity was found to be higher for the laminated plates.
Moreover, the addition of liquid loading and/or the foundation stiffness to the system
could considerably affect its critical velocities. Second, the plates were investigated under
two hai'monically moving point loads. Changing the velocity of the loads resulted in a
bigger change in the maximum displacement of the plate. It has been also seen that the
phase difference between the two loads can considerably affect the responses of the plate.
A phase value of 7 produces the lowest response of a plate subjected to such loading. In

this type of loading, the irregular behavior of the laminated composite plates can be
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noticed here as well. The investigation of isotropic plates under a single or double moving

loads was validated by Kim [14].

The major conclusions drawn from the present work can be summarized as
As the upper liquid depth increases, the phase velocity decreases, whereas as the
lower liquid depth increases the phase velocity increases.
As the density of either liquid increases the phase velocity decreases.
The group velocity is greater in the direction where more fibers exist.
The attenuation of the normal transient response becomes larger as the number of the
lamina increases.
The amplitude of the normal response and the group velocity are greater when the
liquid loading is absent.
As the depth of the lower liquid increases the amplitude of the response decreases and
the group velocity decreases.
For moving loads, the critical velocity of the load decreases as the thickness of the
plate decreases.
For low frequency moving load (5 Hz), one critical velocity exists, however, for
relatively high frequency moving load (50 Hz), two critical velocities exist.
The existence of the water loading in moving load case shifts the critical velocity of
the load toward zero whereas the existence of the elastic foundation smoothens the

maximum displacement vs. load velocity curve.
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e For two moving loads, the maximum displacement is the smallest when the phase

difference between the loads is equal to =.

As an extension of this work, some suggestions can be introduced for future work
in this area. An experimental work can be done for the laminated plates under the
pre\".i._ously mentioned conditions and subsequently compared with the theoretical one. The
type 6f the liquid can be changed to viscous compressible in order to be more analogous
to the real life applications. Moreover, other systems can be investigated such as
plate/fluid/plate system. Finally, other solving techniques such as Finite Element Method

can be utilized and compared to those used here.
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Appendix I

STATIONARY LOADS

The matrix [M ] for the approximate plate theory is defined as

—(xAssEL +xAuE] —p Ha)+ pro’a T —pr07A D, xAdss&yi xAus&2i
xdss&y i Duflz +D66§22 +xAss — Io? (D + D)€,
KA i (D12 + Dgs )51 42 Dnéf + D&l + KAy — Io?

Where

1
N = G e peatlal s el
I = cosh( ﬁ%)— coth[ﬂ(H 1+ %)]Smh(ﬂ%)
1
% = Fank[(H; + Dleosh(p7)- fainn(5 )

and,

I, = cosh(B4)— tanh[B(H , + £)}sinh(8 %)

with ,

B= V‘}::lz +§22



The constitutive relations of Equation (2.10)

=
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Appendix I
MOVING LOADS

The matrix lﬁ ] for the approximate plate theory is defined as

—('64555-12 +KA44522 —p.ng)*' Plgzxxﬁ —Pzgzxzfz xAssEi xAuEyi
A ssEri Du&* + D&’ +xAss —I0” (Dy; +Dgs )1 &,
KAy i (D12 +Dg )&, &, Dzz*fz2 +Dssgnz +KAu —122
Where
o=0-V.E -V,5
A

1
'~ Bsinh (B Z)- B coth[B(H, + £ )Jcosh(p £)
T = cosh(BL) - coth[B(H, +4)]sinh (5 £)
1

Az = B tanh|B(H, + £)Jcosh(B L) Bsinh (B £)
and,

I, = cosh(BZ) - tanh[B(H, + £)fsinh(F £)

with ,

B =& +&
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Nomenclature

English Symbols

Ay By, Dy Plate stiffness terms

c Phase velocity

Cg Group velocity

Cij Elastic constants

F Force vector

J Applied force

H Plate thickness

H, - Upper liquid depth

H; Lower liquid depth

L, L, Distance components between the two loads
M] Determinant matrix

NMQO Force and moment resultant
Oy Reduced stiffness terms

(u,v,w) Displacement components



(Uo, Vo, Ws)
(x.y.2)

W,

Greek Symbols

n¢

130

Displacement components of the middle surface
Stationary coordinate system
Load velocity components

Transformed displacement

Velocity potential
Plate density

Upper liquid density
Lower liquid density
Rotation

Stresses

Strains

Transformed rotation
Frequency
Wavenumber

Referred to moving coordinate



VN7,

Angle between wave direction and x-axis
Shear factor

Poisson ratio

Fourier Transform

Lame constants
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