Timing Driven Floorplanning

by

Khalid Jawdat Kamel Al-Farra

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER ENGINEERING

June, 1995

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M1 48106-1346 USA
313:761-4700 800.-521-0600

\

4

A

P

el il e e e o 9 9 e o el e el ci%iiaisk@ei%@e@ei#e@ete%&b%g

Mo

% o
% Timing Driven Floorplanning :
= BY %
= Khalid Jawdat Kamel Al-Farra

s %
b A Thesis Presented to the &S
% FACULTY OF THE COLLEGE OF GRADUATE STUDIES %
= KING FAHD UNIVERSITY OF PETROLEUM & MINERALS %_:
- DHAHRAN, SAUDI ARABIA S
s >
& 3
: %
% In Partial Fulfiliment of the 3;
_.;% Requirements for the Degree of “z(,%:
:.;; MASTER OF SCIENCE %
3 In %
& . . =
Computer Engineering %‘
b o
b e
3 June 1995 3
%

R S R R S S T S Sk SR SR SRR S S S SRR SR SE SO N

UMI Number: 1375580

UMI Microform 1375580
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA
COLLEGE OF GRADUATE STUDIES

This thesis, written by

Khalid Jawdat Al-farra

under the direction of his Thesis Advisor, and approved by his Thesis committee, has

been presented to and accepted by the Dean, College of Graduate Studies, in partial

fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee :

SN

Dr. Habib Yousse}((Chairman) ~—

S&C\tq / Saw\‘ M
Dr. Sadiq Saif (Co-C

e

mmed S. T. Benten (Member)

=

Dr. Samir H. Abdul-Jauwad
Department Chairman

ot <L

Dr. Ala H. Rabeh
Dean, College of Graduate Studies

Q-H/é{ci\’

Date:

Timing Driven Floorplanning

MS Thesis

Khalid Jawdat Kamel Al-Farra

June, 1995

Dedicated to

My Parents,

whose prayers, guidance and inspiration

led to this accomplishment

O ed s A

Acknowledgment

First and foremost, all praise to the Almighty Allah Who gave me the courage and
patience to carry out this work. I am happy to have had a chance to glorify His
name in the sincerest way through this small accomplishment and ask Him to accept

my efforts. May He guide us and the whole humanity to the right path. Peace and

blessings of Allah be upon his prophet Muhammad.

Acknowledgement is due to King Fahd University of Petroleum and Minerals for

providing support to this work.

My deep appreciation goes to my thesis committee chairman, Dr. Habib Youssef for
his constant help, guidance and the countless hours of attention he devoted through-
out the course of this work. He was always kind, understanding and sympathetic

towards me. Working with him was indeed a wonderful and learning experience

which I thoroughly enjoyed.

I am thankful to my thesis committee co-chairman, Dr. Sadiq M. Sait for his deep
interest, and constructive criticism during the course of this work. I would also like

to thank Dr. Muhammed S. T. Benten, Dean of CCSE and my thesis committee

ii

member for his consistent support.

I am also indebted to the department chairman, Dr. Samir Abdul-Jauwad and other

faculty members for their support.

I am thankful to my fellow graduate students and my friends especially Mohammed

Shahid Tanvir, Khalid Nassar, and Amir Hashmi for their cooperation.

Lastly, I am very grateful to my family members for their encouragement and moral

support.

Contents

Acknowledgement
List of Tables

List of Figures
Abstract (English)
Abstract (Arabic)

1 Introduction

1.1 Overview of the System

.........................

iii

vii

xit

xiii

1.2 Organization of the Thesis

1.3 Conclusion

Literature Review

2.1 Floorplanning Approaches

........................

2.2 Work on Floorplanning

..........................

2.3 Work on Timing Driven Layout

.....................

2.4 Conclusion

Generation of Timing Constraints

3.1 Introduction

3.2 Timing Analysis Concepts

3.2.1 Long Path Problem

........................

3.2.2 Short Path Problem

3.3 Delay Model

iv

12

14

15

17

20

24

27

28

34 GraphModel 38

3.5 Critical Path(s) Prediction 40

3.5.1 The a-Critical Approach

..................... 41
3.6 Calculation of Timing BoundsonNets 51

3.6.1 Minimaz Approach 52

36.2 Minimax-PERT 55
3.7 ExperimentalResults 61
38 Conclusion. 63
Timing Driven Floorplanning 65
41 Imtroduction 65
42 Preliminaries 68
4.3 Problem Definition, 68

4.4.1 Force Directed Topological Arrangement
4.4.2 Floorplan Sizing

4.5 Timing Verification

4.6 Discussion

4.7 Experimental Results

4.8 Conclusion

Conclusion

Bibliography

Vitae

............

............................

...........................

.................................

vi

71

84

99

101

103

110

111

114

121

List of Tables

3.1

3.2

3.3

.34

3.5

3.6

3.7

3.8

3.9

Technology data for METAL-1 and METAL-2. 36
Net capacitance statistics. 43
Results for Example 3.2. 50
Delay bounds computation for Figure 3.6. 60

Test cases statistics.

........................... 61
Number of predicted paths as a functionofa. 62
Number of predicted paths for the 16-bit multiplier. 62
a™* values and delay and variance of longest path. 63
Minimar PERT testresults. 63

vii

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

viii
Results of running Cluster Growth on Example 4.2. 83

Dimensions for blocks in Example 4.3.

................. 91
Resultsfor Example 4.3. 93
Data from the Traffic Controller. 105
Data from the Fractional Multiplier. 107
Test casesstatistics. 107
Data from the edder circuit. 108
Data from the 16-bit parity checker. 109

Data from the 8-bit parity checker.

List of Figures

1.1

1.2

1.3

14

1.5

3.1

3.2

3.3

3.4

Classicdesign process. 6
Timing driven design process. 8
Overview of the TAP TDFPsystem.. 9
An AHPL petlistfile. 10
AVPNRinputfile. 11
A circuit example to illustrate the timingmodel. 36

Graph representation of a VLSI circuit

.................. 39
Critical Path Depth-First Trace with Pruning. 47
A circuit example to illustrate DFTP. 49

ix

3.5 Minimax-PERT Algorithm.

3.6 A circuit example to illustrate Minimax-PERT.

4.1 (a) slicing floorplan; (b) nonslicing floorplan

4.2 Place_Block procedure.

4.3 Cluster.Growth algorithm description.

4.4 A circuit example to illustrate the target location computation.
4.5 Target location for b: (a) at (z3,35); (b) at (z5,35); (c) at (x3, y3).

4.6 Circuit for Example 4.2

4.7 Force-directed floorplan for Example 4.2

4.8 (a) Illegal floorplan; (b) constraint graphs: Gy, Gy

4.9 Sufficient_.Constraint algorithm

......................

4.10 (a) Overlapping floorplan; (b) edge (1,2) retained; (c) edges (1,4) and

(1,3) retained; (d) sufficiently constrained set: Gy, Gy

4.11 A possible floorplan for Example 4.3

74

75

78

-3

9

4.12 Approximate Steiner tree. (a) Lo =y —y1; (b) Ly=22—2;. 101
4.13 Growth in execution time. 102
4.14 A 7-block example: (a) top(;logical assignment; (b) after sizing. . . . 104

4.15 A floorplan of the Traffic Controller.

Abstract
Name: Khalid Jawdat Kamel Al-Farra
Title: Timing Driven Floorplanning
Major Field: Computer Engineering

Date of Degree: June 1995

Increase in chip density and decrease of feature size have made the per-
formance of modern VLSI circuits dependent on signal propagation along
signal nets rather than the switching delays of the cells. Consequently,
physical design should be made timing driven. A timing driven physical
design tool requires necessary timing date about the design and a strat-
egy to use this data during physical design. In this work, we address
both of these issues. We describe efficient algorithms for the prediction
of interconnect delay requirement prior to layout. Nezt, we present a
timing driven floorplanning methodology. Our floorplanning approach
has two major stages. The first stage constructs a timing driven topo-
logical arrangement using a force directed technique. The second stage
is floorplan sizing which converts the topological arrangement to a le-

gal floorplan. The execution time of the floorplanning elgorithm grows
linearly with the problem size.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

xii

xiii

I IR I B I

Lpie) hbaiieaylsd s Ayl e
Y490 gui4y: mu_)!‘ég_)\ﬁ

Lplladl 32 yun 2307 b sl Sdle Blagall e dgal) 2 JSYY JEi B pon Cimpaad 30
03a ke el pjanalll Ula po oL 23303 o3 clm gl Jyle o oy . JalSS e 3 gl
B3 e glaill pyanal) 30 (S (S0 g Ay slaa) Tl e guny 8 Jine 355 o iy ey
$3a o) 2l LS gl sa g ppanall) dgie) oo LA laslen gd gy o uny Chagll Via
Al 23 b Dyia Sl e) gally datlaall de yuay 3 jinall ppanalll il gah pard g o Zila glaal)
TaiajTgajsn Jany Lad Ly o330 Ggha 30 lagladl Jlo Jpnmall Ba5 55 Jang ik
i 5 oy (oW U pal ol ga e Taghadal) Ga5 53 pST L JalSEH Glle 53 5l Jaglaaa)
dodade I LRAAN Qa5 Qusal (s 9 - (o0 03195 Tape plassaly Agilaidll LD
Dy 50 550 plasd oL2 Y ap Lylad il (o Libiaa 5y 0 Al yad 8 Luetia gy
r—r-seiek’awmhbb'ﬂ‘m&ﬂo‘u#ga--whﬂ‘u'-ﬁd»qhw

«pyasall

L B
Osbaadt 9 Jggedl) dgd S Lnalr
4 gradt g 01 A = O g a0

V440 gpigy

Chapter 1

Introduction

Very large scale integration (VLSI) has made it possible for the semiconductor in-
dustry to fabricate an integrated circuit consisting of thousands of components on
a single silicon wafer. The VLSI design process spans a wide spectrum of branches
in physics, chemistry, electronics and computer science. The complexity of the de-
sign process requires breaking it into a number of design steps. The hierarchical

decomposition enables the designer to work at any time on a task of manageable

complexity.

In most general terms, design can be viewed as a process of successive mappings
or transformations of specifications from one abstraction level (or domain) into an-

other. The VLSI design space can be divided into three areas: behavioral (func-

tional), structural, and physical . The behavioral level defines the system outputs
in terms of system inputs. The structural level represents the system as a network
of logic modules that implements the behavioral level. At the lowest level lies the
physical representation. The physical representation gives the required details that

can be used by layout synthesis tools to fabricate the desired system.

The complexity of the design process and the variety of applications have lead to

different design styles. These design styles can be classified into two general classes

[SY94]:

e Full-custom layout.

e Semi-custom layout.

In the full-custom approach, the circuit is designed manually by an expert artwork
designer. The circuit elements can be placed anywhere on the layout surface. The
design cost for this approach is very high because of very long design time (usually
years). Thus, only high-volume production can make the manufacturing process
profitable. Because of the flexibility in logic and layout design, circuits (e.g., micro-

processors) produced by this style can be highly optimized for area and performance.

The semi-custom approach constrains the layout elements to some structure in

order to reduce the complexity of the design process and consequently the design

time. This reduces the design cost, and makes low-volume production profitable.

The popular examples of this design style are gate array, standard cell, and general

cell layout styles.

Gate array provides a large two dimensional array of prefabricated transistors on
a silicon wafer. Gates, or basic cells, are designed and realized by the manufacturer.
The basic cells and their interconnection patterns are kept in a library. All basic
cells have equal dimensions. The interconnection of the basic cells is customized to
the desired circuit. Routing space in gate array is fixed and limited. The routing
regions are called channels. Sea-of-gates is a special case of gate array where over

the cell routing is allowed and no routing channels are provided.

The standard cell layout offers more flexibility. A library of standard cells gives
the cell name along with information about its geometry, structure, and delay char-
acteristics. All the cells are of the same height, but with varying widths. The cells

are laid out side by side into rows. Routing space is not fixed as in gate array.

The last approach is general cell layout. This style provides maximum flexibility
in both logic and layout design. This approach is often referred to as macro-cell,
or building block layout style. Macros are permitted to vary in height and width.
Consequently, macros with different degrees of sophistication can be implemented.

Examples of macros include registers, RAM, ROM, ALU, etc. This approach is

similar to the full-custom approach.

The objective of the physical design steps is to map the structural representa-
tion of the design into a physical representation that can be used to produce the
desired circuit. The major physical design steps are floorplanning, placement and
routing. Floorplanning is a preparatory step to placement!. Usually at this step, it
is assumed that the areas and connectivity information of modules are known, while
topology of chip and exact dimensions of modules are yet to be defined. Such flexi-
bility represents the designer’s freedom in selecting among several possible floorplan
configurations. Placement is concerned with finding geometric positions for the cir-
cuit modules on the layout surface. For placement, the module dimensions, shapes,
and pin locations are fixed. Placement is followed by routing which interconnects

the modules according to the netlist supplied by the structural level.

"The feasible solution space for the three steps is very large. If the layout surface is
unbounded the solution space is infinite. The floorplanning, placement, and routing
problems are NP-Hard problems. By imposing constraints and defining objective
functions for the search process, we can reduce the solution space and get superior
solutions. However, this transforms the problem to an optimization problem which
is much harder. As a result of this complexity, heuristic techniques are used to

find sub-optimal solutions that satisfy the stated design objectives and constraints.

!Floorplanning is sometimes referred to as global or loose placement.

Common objective functions in the layout design problem are chip area, total wire

length, routability, timing, or a combination of these.

Once considered to be electrically negligible, interconnects (nets) are becoming
a major concern in modern VLSI design because the capacitance and resistance
of wires increase rapidly as chip density grows larger and minimum feature size is
reduced. In recent years, performance driven layout has become a major issue in
VLSI design [DUN84, BURS5, JAC89, YOU90, NAI89, MSL89, BRA90]. For this
purpose, designers use various tools, generally called timing analyzers, to help them
control and improve the temporal properties of circuits before committing them to
hardware. The timing analyzer identifies a set of circuit paths called critical paths
and possibly a set of critical nets. The physical design step then tries to place the

modules belonging to the critical paths and nets in a topological proximity.

In conventional IC design methodology, layout is generated without any knowl-
edge about performance (timing) requirements of the design. Timing verification
is invoked after each step. If timing errors are detected, the higher design step(s)
is (are) repeated (see Figure 1.1). The timing problems are caused by long inter-
connects generated by the layout tools. Such philosophy usually results in very
unpredictable and expensive iterations of the design process. The lack of timing
information on the nets and paths of the design prior to layout, the quality of these

information, or the lack of integration between the layout and the timing analysis

Redesi
., Logic Design
Errors Logic Verification
< and simulation
Errors N
- Timing Verification
Redesign Physical Design
Floorplanning
Placement
Rouling
Errors \/‘

Timing Verification

Good Design
Figure 1.1: Classic design process.

steps are major reasons of the iterative nature of this methodology [YOU90}.

Due to recent advances in VLSI technology, the interconnect delays have become
a major factor in the overall speed performance of the circuit. The need for timing
driven layouts is increasing. It is thus necessary to consider the performance issue in

the layout process. In other words, the layout steps such as floorplanning, placement

etc., have to be made sensitive to the timing requirements.

In this work we adopt a design methodology that considers these issues. In this
methodology, the timing analysis step is integrated with the physical design step.
The timing analysis step is included after the logic design step where design has
already been mapped into a specific cell library. The timing step performs two
functions: (i) it computes delay constraints on all interconnects that are consistent
with the required clock rate of the design, and (ii) it identifies the most critical paths
in the circuit (Figure 1.2). For the timing step we implement algorithms similar to

those proposed in [YOU90]. We then use the timing data to implement a timing

driven floorplanning algorithm.

1.1 Overview of the System

The timing analysis algorithms are embodied in a program called Timing Anal-
ysis/Prediction (TAP). The Timing Driven Floorplanning is implemented in a

program called TDFP. The structure of the TAP_TDFP system is shown in Fig-

ure 1.3.

\

Two input formats are recogxlized by the system: AHPL [MS86] netlist or VPNR

[MCN90] netlist. The AHPL netlist consists of two files: the gate list and the 1/0

Logic Design

Design mapped to cell
Library

Timing
Analysis/Prediction

Timing Bounds on NETS
Critical Paths

Physical Design

Floomplanning

Placement
Routing

Timing Verification

Good Design

Figure 1.2: Timing driven design process.

AHPL or VPNR
netlist
A
Intermediate
Files

Delay Parameters

Figure 1.3: Overview of the TAP_TDF P system.

list. Each row in the gate list file corresponds to a single gate. The gate list gives
the gate number, gate type, input link and the output link. Using either the input
link or the output link along with the I/O list, the connectivity of the circuit can

be derived. An example of AHPL netlist is given in Figure 1.4.

The VPNR netlist is of two types: placed and unplaced domains. The placed
domain netlist specifies a complete standard-cell placement for the circuit. The
netlist consists of a list of rows giving the cells in each row. The unplaced netlist
consists of a single row. Figure 1.5 is a sample of an unplaced VPNR netlist. The
reader is referred to [MCN90] for details of the VPNR format. Starting from a
circuit description in AHPL or VPNR format, the description is compiled through

a preprocessor into the TAP intermediate files. The cell’s delay characteristics are

GATE LIST
GATE TYPE
101 4018
102 4018
103 4018
104 4018
107 4203
105 4203
106 4203
108 4203
109 4203
110 4018
111 4018
112 4018
113 4102
114 4018
IOLIST

LINK GATE 1
2 105
4 105
6 106
8 106
10 107
12 107
14 108
16 110
18 111
23 113
25 114

IN-LINK
0
0
0
0
13
9
11
15
17
19
21
0
24
26

GATE 2

OUT-LINK
2
4
6
8
14
10
12
16
18
0
0
23
25
0

NEXT LINK

[~ = I e I - e Y = = I]

Figure 1.4: An AHPL netlist file.

10

domain begin detect lib=scmos swap=0
profile top (0,0) (0,0);

profile bot (0,0) (0,0);

iolist

Seq.in T:(0,100) pintype=pi
Reset T:(0,100) pintype=reset
PhilH T:(0,100) pintype=clock
Phi2H T:(0,100) pintype=clock
Phil_test T:(0,100) pintype=clock
Out.pls B:(0,100) pintype=po
row 1

dsr2s INSI14 (19,113,Reset,Phi1H,Phil _test,Phi2H,I11,18)

11

dsr2s INSI16 (IlO,IlS,Reset,PhilH,Phil_test,Phi2H,Il2,0ut_pls)

ai2s INSI21 (Seq-in,I8,120)
ils INSI22 (Seq-in,I9)
ils INSI23 (120,110)

b
domain end detect

Figure 1.5: A VPNR input file.

12

extracted from the cell library. The TAP program requests the user to specify a clock
period for the circuit, and a confidence level for critical path analysis (Chapter 3).
The output from the TAP system is a list of timing critical paths sorted on their
criticality, and maximal delay bounds for all the nets in the circuit. Additionally, the
T AP program generates an efficient simple netlist description for the circuit. This

description has been used successfully by a timing driven genetic placer [NAS94).

The input to TDFP is a TAP-netlist. The necessary geometry data are ex-
tracted from the cell library. The user is requested to specify a desired chip aspect
ratio. The output generated by TDFP is a list of the blocks, along with their

heights, widths, and positions of their lower-left corners on the layout surface.

1.2 Organization of the Thesis

In this work, we are concerned with two issues: prediction of the timing requirements

of a VLSI circuit, and the usage of these predictions to drive the floorplanning step.

Our goal is to tie the physical design stage to the timing analysis step. The

timing analysis step performs two tasks:

e Prediction of the most timing critical paths.

13

o Computation of delay constraints on all signal nets.

This information is used to drive the physical design steps, so that layout will be free
from timing related problems. We demonstrate the usage of the timing data in the
physical design stage by describing a force-directed timing sensitive floorplanning

approach for general cell design style.

In Chapter 2, we review several reported works on the floorplanning problem.
The issues of critical paths prediction and the derivation of delay constraints on
signal nets are discussed in Chapter 3. We describe a new strategy for predicting
critical paths using statistical estimations. Next, we discuss a minimax algorithm
proposed by Youssef [YOU90] for the derivation of maximal delay bounds on net

delays, which are consistent with the path’s timing constraints.

In Chapter 4, we present our timing driven floorplanning approach. Our ap-
proach consists of two major steps. The first step is concerned with constructing a
timing driven topological assignment using a force directed technique. The output
from this step is an overlapping floorplan satisfying all timing constraints. The sec-

ond step is floorplan sizing. This step produces a legal floorplan that satisfies all

geometric constraints.

14

Finally, in Chapter 5, we summarize our work and discuss possible future exten-

sions.

1.3 Conclusion

In this chapter, a brief introduction of VLSI design process and motivation behind

timing driven design is given. An overview of the implemented system is described.

Finally, an outline of the thesis is presented.

Chapter 2

Literature Review

'The intractability of the floorplanning problem has led to a large number of heuris-
tic solution techniques. It is difficult to compare the quality of floorplans generated
by these techniques. This is due to the inherent differences in the solution meth-
ods, which is brought about by the multi-objective nature of the problem. Several
objectives are considered in floorplan design. The traditional objectives include
minimizing chip area, minimizing total wire length, ensuring routability, or a com-
bination of these. Recently, circuit performance has become a popular objective.
The classical approaches to floorplan design solve the problem in two steps. The
first step generates a topological arrangement. The next step is sizing, where ac-

tual dimensions of modules, routing area estimation and total floorplan area are

15

16

computed.

Floorplanning approaches can be classified into two general classes: constructive
and iterative. Constructive algorithms adopt a cluster-growth strategy to build a
complete solution. Some constructive algorithms require a partial placement as a
starting condition. Examples of constructive approaches include dual graph method
[LAI88], partitioning/slicing [LAP86}, mathematical programming, and force di-
rected methods. Iterative techniques on the other hand operate on complete solution
and try to improve the quality of the floorplan. For iterative algorithms, the initial
solution is generated randomly or by a constructive algorithm. The most widely

used iterative improvement technique is Simulated Annealing (SA).

Another possible classification for floorplanning techniques is deterministic tech-
niques and probabilistic techniques. Constructive algorithms that adopt an equation
solving method or based on connectivity information are deterministic because they

will always produce the same solution. Iterative techniques are usually probabilistic

and generate a different solution for each run.

17

2.1 Floorplanning Approaches

There are many methods for solving the floorplanning problem. Among them are

Jorce-directed, simulated annealing, dual graph formulation and analytical techniques.

A common aspect of force-directed algorithms is the method of computing the
location where a module should be positioned. This method is analogous to the
computation of the equilibrium location (the center of gravity) problem in physics.

"The equilibrium location corresponds to a minimum energy state for the module.

Starting with Fisk et. al., 1967 [FCW67), many force-directed techniques are in
existence today. There are two possible implementations of this approach: construc-
tive and iterative. The constructive method adopts an equation solving method.
The coordinates of each module are treated as variables. The equations are then
solved simultaneously to get a minimum-energy state configuration. Iterative force-
directed relaxation techniques try to improve the quality of an existing solution.
Two strategies are used. The first one tries to move each module to its equilibrium
location or to the nearest possible if the target location is occupied. The second
strategy randomly selects a pair of modules and interchanges their locations. If the

interchange results in a cost reduction (usually wire length) the move is accepted,

otherwise it is rejected [HWA76].

18

The force-directed approach adopts the point model for modeling the modules.
In other words, the size and shape of modules are ignored in the computation of
equilibrium location of each module. This makes it unsuitable for building block
layout due to the irregular dimensions of the blocks. On the other hand, this tech-
nique works well for gate array and standard-cell layouts, where points in the plane
can be easily mapped to the basic cells in each row of the layout surface. The
force-directed approach is best used as an initial solution generator because of its
superior execution speed and global view of the overall circuit connectivity. Fur-
ther more, the solutions generated by force-directed techniques are not restricted to

slicing floorplans [WL86](see Section 4.2).

The simulated annealing (SA) algorithm gets its name from the annealing process
in metals. In this process, a clean crystal structure of a certain metal can be restored
by heating it to a very high temperature, then cooling it very slowly. The first
attempts of applying SA to VLSI-CAD problems were reported in [KGV83, JG83].

Since then, several works have used SA to solve the floorplanning problem [WL86,

0G84, WT89).

The basic idea of SA is to perturb the current solution and to accept all per-
turbations that result in a reduction in cost. Moves that cause the cost to increase
are accepted with a probability that decreases with increasing cost and tempera-

ture values. This prevents the algorithm from getting trapped at a local minimum.

19

This process is repeated until a given stopping criterion is met. The quality of the

solutions produced by SA is excellent. A major disadvantage of SA is that it is

computing intensive.

In the dual graph technique a layout structure graph is first transformed into
a planar graph by deleting a minimum number of edges and/or adding crossover
vertices. Next, an optimal rectangular dual is found for the planar graph. The
faces of the dual correspond to modules and the edges of the dual represent module
adjacencies. It is not clear how this approach can be modified to take into account

the various constraints imposed by practical applications. More details about this

technique can be found in [SY94).

Floorplanning is an optimization problem. Thus, analytical techniques can be
used to solve the problem. A feasible floorplan is formulated as a set of mathemati-
cal equations. Then, mathematical programming techniques are used to solve these
equations. This approach is confronted with two main problems. The first problem
is the number of equations describing a feasible floorplan is very large resulting in
a very large mathematical program. To tackle this problem, a divide and conquer
strategy is adopted. The second problem is the nonlinearity of the floorplanning
problem leading to a nonlinear program. To overcome this problem, the nonlinear
program is linearized using approximation techniques. However, approximation will

impact the quality of the solution. A survey of the application of analytical tech-

20

niques to placement is given in [SM91]. The reader is referred to Chapter 3 of [SY94]

for a detailed description of floorplanning.

2.2 Work on Floorplanning

In this section, we review several other reported works on the floorplanning problem.

In [BRA90), a floorplanning algorithm and a global router that uses a sequence of
gradient descent operations based on force-directed functions were presented. The
best floorplan is selected and simulated annealing is then applied to remove cell
overlaps. Circuit timing is considered among other objectives of the floorplan. The

timing constraints are specified as critical net/path weights, maximum path length,

and maximum net wire length.

In [WIMB89], a branch and bound algorithm for selecting optimal aspect ratios
of building blocks in non-slicing floorplans was proposed. Each block is assigned
to a level of the enumeration tree. Each node in the tree corresponds to a partial

floorplan and each “root to leaf” path is a complete floorplan.

In [DON8Y], an iterative improvement floorplan procedure using constrained
graphs was described. The procedure has two steps. In the first step, the dimensions

of all the blocks are iteratively computed based on the length of the longest path

21

passing through the block in the constraint graph. In the second step, the blocks are
placed according to the imposed constraints. If the resulting floorplan has overlaps
additional constraints are introduced and the process is repeated. Such an iteration

is repeated until an acceptable solution is achieved.

In [SUT90], a general floorplan design algorithm based on a linear mixed integer
programming model was proposed. The objective is to minimize the overall area of
the rectangle enclosing all the basic rectangles. Successive augmentation is used in
order to avoid very large mathematical programs. Successive augmentation consists
of constructing a complete floorplan by optimally adding a new set of modules to
a partial floorplan until all modules are positioned. Each basic rectangle is inflated

by an estimate of the routing space of the corresponding module.

In [VIJ91], an approach based on constraint reduction and block reshaping to find
floorplans with optimal areas was employed. Two directed acyclic graphs (Gy, Gy)
are used to represent the left-right and bottom-top relations between blocks. A
complete topological constraint set is derived from a topological arrangement. A
constraint set is complete if it contains at least one constraint for each pair of blocks.
Then, redundant constraints (i.e., edges) are removed from the critical paths in either
Gy or Gy. A constraint is redundant if it is present in both Gy and Gy. Flexible
blocks are then reshaped in order to reduce floorplan area. For large designs, the

derivation of a complete constraint set and its optimization by removing redundant

22

constraints may require enormous amount of computation time.

In [YIN89], an analytical technique for floorplanning rectangular blocks is de-
scribed where the objective is the minimization of the total interconnect length and
total floorplan area. The approach consists of two phases. The first phase is a rel-
ative placement based on a potential energy model to layout the blocks such that
interconnects and size of blocks requirements are satisfied. The second phase is a

spacing phase to remove overlaps between blocks.

In [LAI8S], a graph theoretic approach to construct rectangular floorplans was
presented. The key point in this work was the reduction of the rectangular dual-
jzation problem to a matching problem in bipartite graphs. The resulting floorplan
was then optimized using a sequence of rectangular dual transformations while pre-

serving the adjacency requirements implied by the original structure graph.

In [DAI87], a constructive hierarchical floorplanning approach combined with
global routing was proposed. The approach consists of a clustering step based on
the connectivity information. This is followed by a mapping of the clusters onto
floorplan templates. Global routing is considered as a part of the floorplanning

Procedure. Each resulting floorplan is evaluated against an area goal and an I/O

Pad goal.

LaPotin et. al., [LAP86] proposed a floorplanning approach which combines min-

23

cut technique and slicing in order to reduce the complexity of the routing problem.
Multiple floorplans can be obtained by traversing the slicing tree. Floorplans are
evaluated in terms of area and overall wire length using a global router. Module

dimensions are derived based on the global routing area.

In [UEDS8S), a semi-automatic VLSI chip floorplanning algorithm was proposed.
The algorithm has two stages: initial block placement, and block packing process.
The target for the initial placement is to place highly connected blocks in close prox-
imity, whereas weakly connected blocks are placed far from each other. The initial
placement is generated by an attractive and repulsive force method (AR method).
In the block packing process, overlaps between blocks or blocks and chip boundary
are removed by gradually shifting and reshaping blocks with chip boundary shrink-
ing. The block packing process is repeated until an acceptable layout is obtained. A
disadvantage of the AR method is that it places weakly connected blocks far from
each other. This may not be suitable for timing driven floorplanning because those
weakly connected blocks could be part of a timing critical path; if the blocks are far

apart, this path will most likely have a timing problem in the final layout.

24

2.3 Work on Timing Driven Layout

Numerous attempts have been reported on timing driven physical design. These

attempts can be classified into three general approaches.

One approach to correct timing errors is to modify some of the logic on the

critical paths [MIC86, KIC87].

Another approach relies on transistor re-sizing to reduce delays along the slow

paths [JOU87, MICS86).

The third approach avoids any logic modification by imposing delay constraints
on the interconnects and paths of the design. Then, the objective for the physical
design step is to satisfy these constraints. The possibility of increasing the clock
speed of a layout system by 5%-30% without making changes to the logic design
makes this approach superior to the other two approaches. Representative works

of this approach are reported in [DUN84, HAU87, NAI89, YOU92, SRI92, SUT93).

Our work adopts this approach.

Timing analysis is path oriented as opposed to layout tools which are net ori-
ented. This suggests two approaches for timing driven design: (1) path oriented
approach, and (2) net oriented approach. The path oriented approach predicts a

set of paths called critical paths. This set is then used by the physical design step.

25

On the other hand, the net oriented approach computes delay constraints for each
net based on paths slacks [YOU90, HAU87]. Another net oriented approach assigns
a level of criticality to each net [BUR85, DUN84]. A disadvantage of the latter

approach is that minimizing the length of the critical nets often causes other nets

to become excessively long.

In [DUN84], nets were assigned weights based on a delay analysis performed
first with the assumption that net delays are function of their fanouts. The paths
with maximum delays are considered as critical and nets covered by these paths are
the critical nets. Critical nets are given higher weights which are used to bias the
placement and routing steps. After a first layout, actual routing data are passed

back to the timing analysis step. This process is repeated until the layout has no

failing paths for the desired working clock.

In [BURSS}, a preliminary timing analysis prior to layout is performed based on
the assumption that all interconnects are equal to an average length. A net-slack for
each net is defined to be the slack of the worst path traversing this net divided by
the number of nets along that path. The computed net slacks are used to categorize

nets into three classes: critical, admissible and regular. The value of the net slack

determines its degree of criticality.

In [HAU87], delay bounds on all the nets are computed using a procedure called

26

Zero Slack Algorithm (ZSA). The computed bounds are transformed into length
constraints on the nets and supplied to the physical design steps. Penalties (0, 1, 2)
are raised when violations of these constraints occur. Higher penalties imply more

attention is given to circuit timing.

In [JAC89), linear programming has been invoked at each stage of recursive
partitioning to track path constraints dynamically during placement. Constraints on
the physical and timing characteristics of the design are considered in formulating the
linear program. Timing constraints on the paths are transformed into constraints on
cell locations. Net length estimation is performed using the half-perimeter method.
This method for net length estimatioﬁ is very optimistic, which will hide all timing
problems that the layout might have. Furthermore, solving a linear program at each

stage slows down the system significantly.

In [FRA92], an algorithm, called the limit-bumping algorithm, for computing
upper limits on interconnect delays is proposed. This algorithm is similar to the
Iterative-Minimaz approach in [YOU90]. These upper limits are used to improve
the layout performance. This is achieved by iteratively decrementing the upper
limits on connection delays without violating the lower limits. Frankle shows the
necessity for having lower limits on connection delays in order to get realistic upper
limits; however, the derivation of such lower limits is not clear. The timing data

has been used by a timing driven FPGA router. An average of 14% improvement

27

in system clock periods has been reported.

2.4 Conclusion

In this chapter, we reviewed several approaches to floorplanning as reported in the

literature. A classification of solution methods was given. Several timing driven

design approaches were reviewed.

Chapter 3

(Generation of Timing Constraints

3.1 Imntroduction

With advances in integrated electronics technology, the interconnect delays have
become a significant factor in determining the timing characteristics. This situation
makes it almost impossible to verify the required clock speed at the logic design step.
It is no longer the case that timing verification can be done prior to physical design,
and physical design itself should be governed by timing requirements. Timing driven

layout has become a popular topic among researchers in the CAD area.

In order to produce layouts optimized for timing, the timing analysis/ prediction

28

29

step should guide the layout tool by supplying necessary and accurate information
about the timing aspects of the design. This information may be supplied as max-
imal constraints on interconnect delays, or a list of the most critical paths in the

design, or both.

In this chapter, we present a new approach to predict timing critical paths in
a given VLSI design, which is a variation of one of the approaches reported in
[YOU90]. The predicted critical paths’ information has been successfully used by
a timing driven genetic placer for standard cell design style. The critical paths
enumerated after placement were a proper subset of the predicted paths. For details
of this layout system, the reader is referred to [NAS94]. Next, the implementation of
an algorithm due to [YOU90] for computing delay upper bounds on all the nets will

be presented. The net bounds are functions of the nets’ electrical characteristics.

The rest of the chapter is organized as follows. In Section 3.2 we present some
basic timing analysis concepts. Section 3.3 discusses the delay model adopted in
this work. In Sections 3.4 to 3.6, we focus on the development of timing information

about the design at hand. Experimental results are presented in Section 3.7. We

conclude in Section 3.8.

30

3.2 Timing Analysis Concepts

Timing simulation! and timing analysis are two popular approaches to verify the
timing behavior of a digital circuit. By exercising the circuit for a large set of input
signals, the simulator checks the functional and timing behavior of the design. Tim-
ing analysis, on the other hand, ignores the logic properties of the circuit elements
and checks only the timing behavior of the circuit. This fact makes timing analysis
very time efficient compared to simulation. Ignoring the functionality of the circuit
elements is however, responsible for the main difficulty in timing analysis: the false
path problem. This problem can be eliminated by using a path sensitization criterion

to determine whether a path is sensitizable or not {CD93).

Nowadays, timing analysis is replacing simulation for VLSI circuits. Simulation

is used only for testing the functionality of the circuit.

Timing analysis tools can be classified into two classes: transistor/switch level
analyzers, and gate/macro level analyzers. Switch level analysis is usually more
accurate than gate level analysis; however, it is suitable only after physical design
(placement and routing) has been completed. Switch level analyzers are very de-
manding in terms of computing resources. Gate level analysis can be done before

or after physical design. Post-layout gate level analysis includes interconnect delay

!Simulation is sometimes referred to as dynamic timing analysis.

31

in the verification process. The accuracy of gate level analysis is contingent on the

quality of the gate (also block, or cell) delay model. In this work, we perform timing

analysis at the cell level.

In general, timing analysis of VLSI designs is concerned with checking for long
and short path problems. A path is an alternating sequence of circuit elements and
signal nets. The first element of the path is called the source, and the last element is
the sink. Input pads and outputs of storage elements are sources. Output pads and
input pins of storage elements are sinks. In this work, storage elements are assumed

to be flipflops. Both the source and sink of a path are controlled by the same clock.

3.2.1 Long Path Problem

The long-path slack of a path = is defined as
SLACK, = LRAT, - T, (3.1)

where LRAT, and T, are the “latest required arrival time” and the “actual arrival
time” of the signal at the path sink, respectively. A design has a long path problem
if for some ;')ath, the long-path slack is negative. A negative slack indicates that the
signal will fail to propagate through the path within the required time. For flipflops,

LRAT, is given by

LRAT, = CP =Ty — Ty (3.2)

32

where,

CP is the clock period in nanoseconds,
T., is the maximum clock skew, and

Ty is the setup time at the path sink.

3.2.2 Short Path Problem

The short-path slack of a path 7 is defined as
SLACK, = ERAT, - T, (3.3)

where ERAT, is the earliest required arrival time.

A design is said to have a short path problem if SLACK, is positive. A positive
short slack indicates that the signal is arriving earlier than what is required and

hence will cause a premature gating. For flipflops, ERAT, is given by,

ERAT, =T., + Thoua (3.4)

where,

Thotd is the hold time,

Now the challenge for performance driven layout tools is to produce designs such
that the total path delay for any path is greater than its earliest required arrival

time and less than its latest required arrival time.

33

While short path problems can be detected and corrected during logic design,
long path problems are most difficult to avoid. The maximum clock period for a
given circuit is determined by the total delay of its longest path. In this thesis, we
concentrate on the long path problem and ignore the short path problem. Short

paths are easier to eliminate and are less likely to occur in VLSI designs.

For the timing analysis/predictions to be of any value, a suitable delay model
should be adopted. The delay model must accurately abstract the essential electrical

properties of the circuit elements.

3.3 Delay Model

Timing analysis at any level strongly depends on the delay model used to abstract
the timing behavior of circuit elements. The model should accurately illustrate
the temporal properties of the components of the design. Approximations should
be avoided as much as possible as this will dramatically affect the quality of the

analysis and hence the quality of the final layout.

A suitable delay model should consider the following essential characteristics:

¢ The switching delay of a cell consists of two components: the base (intrinsic)

34

delay of the cell and the loading delay.

® Unateness (polarity) information. Some cells invert the incoming data signal

(e.g., NAND); others do not (e.g., AND).

e Differences between rising and falling delays can be order of magnitude apart.

In this work, a linear cell delay model which considers these characteristics has been
adopted. With this model, the time needed to charge the capacitances at the loading
pins of a given net is the same. Using this model, the total switching delay of a
given cell v is given by

CD, = BD, + LF, x AcL, (3.5)

where,
BD, is the base (intrinsic) delay of cell v in nanoseconds.
LF, is the load factor in Kilofds. It is the resistance as seen at the cell output pin.

AcL, is the input capacitance on the loading pins.

For ease of explanation, the unateness of cells as well as differences between

rising and falling delays are ignored (but not in the actual calculations of the Timing

Analysis Program (TAP) system).

Using the lumped RC model, the total delay seen by the output pin of cell v is

35

expressed as follows:
TD,=CD,+ID, (3.6)

where,
ID, is the interconnect delay of the net driven by cell v output pin, and is expressed
as follows,

ID,=LF, xC,+ R, x (AcL, + C,) (3.7
where,
C, is the total interconnect capacitance (area + fringe) of the net driven by cell v
output pin.

R, is the total interconnect resistance of the net driven by cell v output pin.

Based on this delay model, the interconnect delay is a function of three parame-
ters: the load factor of the driving cell which is layout independent, the interconnect
capacitance, C,, which is layout dependent, and the interconnect resistance which
is also layout dependent. As will be demonstrated with an example, for metallic
wires the contribution of the resistance parameter to the interconnect delay is neg-
ligible compared to the capacitance parameter. In most timing analysis tools, when
nets are included in the verification process, only their capacitive effect is considered

while their resistive effect is ignored, or at best lumped with the estimated resistance

of the driver.

36

BD=0.35 LF=5.18

AcL=.068

Acl=0.068

4
o

Figure 3.1: A circuit example to illustrate the timing model.

METAL [[Sheet_Resistance Area_Capacitance | Fringe.Capacitance
Q/0 10~%pF/u? 10~*pF/u
1 “ 0.06 0.26 0.82

2 | 0.033 0.15 0.85
Table 3.1: Technology data for METAL-1 and METAL-2.

Example 3.1 Consider the circuit depicted in Figure 3.1 where cell A is driving cells

B and C. The switching delay of A is given by 0.35+5.18 x (0.068+-0.068) = 1.054ns.

To compute the interconnect delay for the net in Figure 3.1, assume that the ver-
tical connection is in METAL-1 and its height and width are 10004, 34 respectively.
The horizontal connection is implemented in METAL-2 with 1000y height and 3p
width. Table 3.1 gives the worst case values of sheet resistance and capacitance
(area and fringe) for METAL-1 and METAL-2 as provided by Orbit Semiconductor
[Orb92]. The interconnect capacitance consists of two components: the area (sur-
face) and the fringe capacitances. Let Cjy; be the interconnect capacitance due to

METAL-1 and Cpy2 be the interconnect capacitance for METAL-2. Then, using the

37

technology data in Table 3.1 and the dimensions for METAL-1 and METAL-2 given

above, Cy is computed as follows:

Cm1 = area_capacitance + fringe_capacitance

= 1000 x 3 x 0.26 x 10~* 4 2 x (1000 + 3) x 0.82 x 10~*

= 0.24249pF

Similarly, we get Cpy2 = 0.21551 pF. The total interconnect capacitance is C;,; =

C1+Crya = 0.458 pF.

The total resistance is given by

Rine = Rpi+ Rupo
= 0.06 x wﬂ+.033x 1—002
3 3
= 0.033KQ

ID 4, the total interconnect delay seen by cell A output pin is therefore,

IDA = LFA X C,',,g + Rint ¥ (ACLA + C,',,t)

5.18 % 0.458 + 0.033 x (0.136 + 0.458)

= 2.392ns

Observe that the contribution of the delay due to resistance R, is only 0.0196 ns.
Thus, interconnect delay is dominated by its capacitance. This value of 1D 4 is more

than double the delay seen by the signal when the interconnect delay is ignored

38

(1.054 ns). These values are for 2 technology. This ratio of interconnect delay to

cell delay is expected to increase as feature size continues to decrease.

In the subsequent discussions, we shall ignore the resistance effect in interconnect

delay computations. Thus, Equation 3.7 can be simplified as,

ID,=LF, x C, (3.8)

A timing driven physical design tool expects necessary timing information. This
information may consist of either or both of the following: (i) a list of the most
critical paths, (ii) timing constraints on all the nets. Before we describe the algo-

rithms used to derive such information, we shall first describe a graph model for

representing a VLSI circuit.

3.4 Graph Model

The netlist information is transformed into an acyclic directed graph G = (V, E),
where V is the set of vertices representing the signal nets, and E is the set of edges
representing adjacency relations between signal nets. Vertices with zero in-degree
are called source vertices (e.g., input pads, output pins of flipflops), and vertices

with zero out-degree are sink vertices (e.g., output pads, input pins of flipflops). All

39

other vertices are called the internal vertices. We shall denote the source vertex set,
the sink vertex set, and the internal vertex set by V,, V;, and V,, respectively. We
shall use the symbol 7 to refer to a path in G. A path is a sequence of vertices. A
path is a complete path if it starts at a source vertex and terminates at a sink vertex,

otherwise it is a partial path. Figure 3.2 illustrates this graph representation. The

[N

ot

(®)

RO
G E

Figure 3.2: Graph representation of a VLSI circuit.

timing information related to the logic cells (i.e., BD, LF, AcL) are stored in the
net-vertices. Therefore, we do not need to include the logic cell in the graph model.

This will significantly reduce the memory space required by the model.

40

3.5 Critical Path(s) Prediction

Since the total number of paths in a VLSI design may grow exponentially with the
size of the design, it is impractical to enumerate and monitor every path in the
circuit. However, usually a small subset of these paths are timing critical. A path 7
is critical if its total delay, Ty, is very close to its latest required arrival time LRAT,.
If T, exceeds LRAT,, path 7 becomes a long path. The task of the timing tool is
to predict those critical paths. The accuracy of this prediction has a direct impact

on the temporal performance of the final layout.

One approach to path prediction is to report the most critical path in the design.
This approach is also referred to as the Block Oriented Approach. Representative
examples of this approach are reported in [HIT82, KIRKG6]. Reporting the most
critical path is not sufficient to correct/prevent timing errors for the whole layout.
The second approach reports all the paths which are greater than or less than a
given threshold. A variation of this technique is to report the I’ most critical paths
[YEN89]. In these approaches the criticality of a given path is measured based on
the path slack. The smaller the slack, the more critical the path is. For very dense

designs, the slack metric may not lead to a good prediction.

The third approach is based on the notion of categorization [YOU90]. In this

approach, a score is computed for each enumerated path. The score is a function

41

of parameters that are correlated with the total path delay. Examples of these
parameters include: load factors, number of nets on the path, slack, etc. The K
paths with worst scores are the K’ most critical. As in the second approach K could

be fixed or a function of a given threshold.

For path enumeration, all the above mentioned strategies are based on a depth
first search (DFS) with/without pruning, breadth first search (BFS), or PERT-
like trace [KIRK66]. The time complexity of these algorithms is proportional to
the reported number of paths. The path enumeration phase is always preceded

by a graph construction phase. Next, we present a new strategy for critical path

prediction.

3.5.1 The a-Critical Approach

As stated earlier, for VLSI designs, the interconnect delay is a major part of the

overall path delay. It is then of prime importance, for pre-layout timing analysis, to

predict the interconnect delay requirements.

Youssef [YOU90] experimented with the linear regression approach to predict
interconnect delays at the net level as well as at the path level. In net-level point
prediction, data about delays of individual nets were collected and used to build a

regressional model. The model is then used to predict the response for new cases.

42

On the other hand, in path-level prediction, data about total path’s interconnect
delay along with other path related parameters (e.g., number of nets on the path,

sum of load factors, etc.,) are used to build the predictor (model). The following

lines are extracted from [YOU90J:

regressional approaches to point prediction of the interconnect delay of
paths, and especially of nets, for the purpose of predicting before layout

all paths with tight timing requirements, do not produce desirable results.

The deficiency of this approach is due to the low prediction power (i.e., large pre-
diction errors) of the model. The situation is not as bad as it seems. Net-level
prediction can still provide the desired accuracy. That depends on the design size,
design density, and the variability in net length compared to the overall path in-
terconnection length. We wish to have the variances on net lengths much smaller
than the total path interconnect length. The a-critical approach is a variation of

the above mentioned approach. A description of this approach follows.

The total path delay consists of two components: the total switching delays of
logic cells which is known prior to layout and the total interconnect delay which
is unknown. As demonstrated in Example 3.1, the interconnect capacitance is a
key element in the total interconnect delay. The average and standard deviation of

net length for different types of nets (2-pin, 3-pin,.. .,k-pin) are collected from past

43

designs of similar complexity. These are transformed into interconnect capacitances.
These statistics are shown in Table 3.2. Nets are classified according to the number
of pins they are connecting. For example, a 2-pin net has an average capacitance of

0.0496613614 pF, and a standard deviation of 0.0381922414 pF.

Pins | Mean (pF) | Standard Deviation (pF)

2]0.0496613614 0.0381922414
3]0.0642885151 0.0269860004
4 | 0.1045077916 0.0474687684
5 |0.1239954827 0.0564270349
6 | 0.1325196250 0.0574357545
7 | 0.1486822222 0.0440815179

Table 3.2: Net capacitance statistics.

Let m = {v1,v2,...,u} be a path in the circuit graph, where v, is the source

and v, is the sink. The total delay on 7 is given by,

T, = E(CD",. +1ID,,) (3.9)
i=1

where,

CD,, is the switching delay of net vertex v; as defined by Equation 3.5, and

ID,, is the interconnect delay of net v; as defined by Equation 3.8.

But, C,;, the total interconnect capacitance of net v;, in Equation 3.8 is unknown

prior to layout because it is a function of the net length. Therefore, we characterize

each net vertex v by two elements:

44

1. an average capacitance ¢, , and

2. a standard deviation s,,.

The expected delay on net v, ID,, is computed as,

ID,=LF, x5 (3.10)

The delay variance on net v is computed as

S2=LF?xs? (3.11)

Assume that the nets are statistically independent. Thus the expected delay on

any path 7 can be expressed as,

k-1
I, = Z(BD!'- + LFv.' x (ACLU.' + c—u)) (312)

=1

The delay variance on path 7 is defined as the sum of the delay variances of

its nets. Using the already introduced notation, the delay variance of path 7 is

expressed as follows,

k-1
Sz=2_ S, (3.13)

i=1

Let Tnar be the expected delay of the longest path in the circuit. Tp,, can be

expressed as follows,

Trnaz = lerleal")l((T”) (3.14)

45

where II is the set of all paths in the circuit graph G.

Definition 1 A path 7 is a-critical iff:

Ty + ayfS2 > Tonae (3.15)

The parameter a (interpreted as a confidence level) is a user supplied input.

T+ a‘/S,": means that we are a‘/Sz ns confident that path = is critical. The higher
a is, the larger the number of reported paths will be, and the higher is the probability

of capturing all the critical paths. Reasonable values of a\/S?, are < 4 ns.

Lemma 1 The confidence level that will cause full path enumeration is given by,

Tmar - Tmin

QAmaxr = _‘/S'*’? (316)

where Ti,n is the delay of the path with minimum Ty and S,":,,-n is its delay variance.

The algorithm used to extract paths according to Definition 1 is a variation of
the algorithm in [AS85]. Figure 3.3 gives a formal description of this algorithm.

We call this algorithm Depth_First_Trace_with_Pruning (DFTP). An informal

description of this algorithm follows.

Let 7 = {s,v;,vy,..., 0, v} be a partial path starting at source s and terminating

at v; T, and S? are the expected delay and variance along that partial path. When

46

ALGORITHM DEPTH FIRSTTRACEWITH_PRUNING
NOTATION

I'(v) : all successors of vertex v

Tmar : delay of longest path

T, : delay of path 7 (i.e. Tt,)

MDS,: Maximum delay to sink of vertex v

MVS,: Maximum variance to sink of vertex v

t : delay of v including estimated interconnect capacitance

S2 : Variance of path =
S2 : Variance of the net driven by cell v
INITIALIZE

FOREACHv € (V,UV,)
COMPUTE S2 = LF? x s?;
ENDFOREACH
GENERAL STEP DFTP
BEGIN
1 step 1: Backward Trace
FOREACH v € (V,UV,) DO
MDS, «t, + ma.x.,er(‘,)(AJDSu);
MVS, «— S2 + maxyer(s)(MVS,);
ENDFOREACH
step 2: Forward Trace
FOREACH v € V,
PUSH(v);
ENDFOREACH
10 step3: Path Trace
11 7m«[]; K0
12 WHILE (stack is not EMPTY) DO

WO 00 ~1I O Ot > WO

13 BEGIN

14 v «— TOP(stack);

15 IF (v € V;) THEN

16 BEGIN

17 SavePath([n!,v]); K « K +1;
18 POP(stack);

19 END

47

20 ELSEIF (v is marked) THEN

21 BEGIN

22 POP(stack);

23 REMOVE v from 7;
24 Ty & Ty —ty;

24 S? — §2 - 82,

25 END

26 ELSEIF (T, + MDS, + a x \/(S?, + MVS,) > Tinaz) THEN
27 BEGIN

28 MARK(v);

29 FOREACH u € I'(v) DO
30 PUSH(u);

31 ENDFOREACH
33 Ty — Tx + t;

34 S? — 52 4 S2;

35 T« [lm,v);

36 END

37 . ELSE

38 BEGIN

39 POP(stack);
40 UNMARK(v);
41 END

42 ENDIF

43 ENDIF

44 ENDIF

45 ENDWHILE
46 step 4: Report Critical Paths
Let IT = {m, ®a,..., 7} such that
SLACK(m) < SLACK(m;4,);
FORi=1TO K
PRINT path =;
END_DFTP.

Figure 3.3: Critical Path Depth-First Trace with Pruning.

48

v is reached, the criticality test (line “26" in Figure 3.3) is performed using T,
the maximum v-to-sink delay M DS(v), and S2, the maximum v-to-sink variance
MV S(v). If the test is positive the search continues, otherwise the search terminates
and backtracks to the immediate predecessor. Hence, the knowledge of M DS(v) and

MYV S(v) is necessary to prune away all paths prefixed by the partial path =.

Informally, the algorithm proceeds as follows. The first step (step “1” in Fig-
ure 3.3) consists in performing a backward trace from the graph sinks to the sources.
This step saves within each vertex: (i) its maximum delay to the sinks, and (ii) its
maximum variance to the sinks. The second step (step “2” in Figure 3.3) consists

in performing a forward trace from the sources to the graph sinks. The aim of this

step is to enumerate the critical paths.

During the enumeration process, three possibilities may occur:

1. A sink is reached: a full path is found. When a full path = is found, its
SLACK is computed by LRAT, — ¥ ,¢y. CD, where V; is the set of vertices

traversed by path = excluding the sink vertex, and CD, is the switching delay

of net vertex v.

2. A pruning case : let 7 = {s,v1,19,...,v,v} be a partial path starting at

source s and terminating at v; T, and S? are the expected delay and variance

49

(0.74,4.5710.088) (0.87.4.0310.087)
[]

(BD.fML)

Figure 3.4: A circuit example to illustrate DFTP.

along that partial path excluding v. Because

T,r +MDS, + a x V(S’zr +MVSv) < Thaz

the trace stops at v, and backtracks to ;.

3. The a—critical test is successful: the trace continues.

In the algorithmic description of Figure 3.3, the elements of a sequence are
enclosed within brackets (“["and“|”). The notation “!S” should read, the elements of

sequence “S”. The operations PUSH, POP, TOP are the standard stack operations.

Example 3.2 The graph in Figure 3.4 is used to illustrate the a-critical approach.
For this graph, V, = {1,2,3,4}, V; = {5,6}, and V,={7, 8, 9, 10, 11, 12, 13}.
Assume that for 2-pin and 3-pin nets, the average interconnect capacitance, G,

is 0.04966 pF and 0.06428 pF respectively, and the standard deviation, s,, is

VERTEX | LFZx s> | MDS, | MVS, | BD + LF x (AcL + ©)
1 0.001459 [2.933975 [0.047132 0.117661
2 0.001459 | 5.917657 | 0.086031 0.117661
3 0.001459 | 5.917657 | 0.086031 0.117661
4 0.001459 | 5.731253 | 0.090362 0.100661
7 0.015209 | 5.799995 | 0.084572 1.655319
8 0.015209 | 2.816314 | 0.045673 1.742149
9 0.019541 | 5.630591 | 0.083903 1.485914
10 0.015209 [4.144677 | 0.069363 1.828979
11 0.023690 | 2.315698 | 0.054153 1.344175
12 0.023690 | 1.074165 | 0.023690 1.074165
13 0.030464 | 0.971522 | 0.030464 0.971522

Table 3.3: Results for Example 3.2.

0.03819 pF' and 0.02698 pF respectively. The results of executing step 1 in Fig-
ure 3.3 are shown in the third and fourth column of Table 3.3. The last column in
Table 3.3 shows the switching delay for each vertex including interconnect delay. If

the confidence level is set to “1” then only the following paths will be enumerated:

o m:{2,7,10,11,13,6} T, = 5.918 nanoseconds S2, = 0.086
o m:{3,7,10,11,13,6} Ty, = 5.918 nanoseconds S2, = 0.086

o m3:{4,9,10,11,13,6} Ty, = 5.731 nanoseconds S2 =0.09

For this example Tyq; = 5.918 nanoseconds.

The question now is about the domain of applicability of the o-critical prediction

strategy. The accuracy of the prediction results is dependent upon the quality of the

51

database supplying the estimated interconnect capacitance data. For example, for
the test cases that we experimented with the database was constructed from previous
designs with similar complexity. It is not practical to use the same database for
analyzing other circuits of different complexity as this will significantly impact the
prediction quality. One way to overcome this limitation is to construct a database
for each class of circuits (1K, 2K, 100K, ..., etc). Then depending on the circuit size
the timing analyzer will select the appropriate database. Another point is that if
the net capacitance distributions significantly deviate from Gaussian distributions,
then the possibility of using the confidence lepel to draw conclusions about path
criticality is weakened. The Central Limit Theorem from the theory of statistics

indicates that this effect is usually minimal especially for large sample sizes. The

Central Limit Theorem applies in our case.

3.6 Calculation of Timing Bounds on Nets

Layout tools work on individual nets as opposed to timing analysis tools which work
on paths. Thus, a logical approach would be to transform the path constraints into
constraints on nets. While path constraints ought to be satisfied, net constraints
need not be satisfied in their entirety. In Chapter 4, we shall demonstrate the usage

of net constraints in driving the floorplanning step.

52

There are three approaches to develop timing information on nets. The first ap-
proach classifies nets according to their covering paths [DUNB84]. The nets belonging
to the critical paths are the critical nets and have highest priority during physical
design. The second approach transforms the path constraints into constraints on
cell positions [JAC89]. The third approach assigns weights to nets according to the

timing requirements of their covering paths [HAUS7, YOU90]. Examples of these

weight functions for of a net v are

1. Wy(v) =1 [HAUST]
2. Wa(v) = LF, x AcL, [YOU9(]

3. W3(v) = source_fanout(v) [HAUS7]

A good weight function (e.g., Wa(v)) should consider the electrical and physical

characteristics of the nets in distributing the path slack on its constituent nets.

3.6.1 Minimaz Approach

In this work, we implemented an algorithm due to Youssef [YOU90]. The algorithm
is called minimaz and consists of deriving upper bounds on interconnect delays
which are consistent with their covering paths timing constraints. The key idea of

minimaz comes from the fact that a net usually belongs to more than one path, and

53

hence the propagation delay on this net should be consistent with the longest path

delay traversing this net. Next, we briefly explain the Minimaz approach.

Let 7 be a circuit path in the graph G=(V, E), andh V, is the set of vertices it

traverses. The delay along path = is given by,

T.=) CD,+) ID, (3.17)

veEV, veVg

where, CD, (Equation 3.5) and ID, (Equation 3.8) are the switching delay and the

interconnect delay of net vertex v, respectively.

Path = will not have a long path problem iff:

T, < LRAT, (3.18)

But T, has two components: a layout independent component (i.e., sum of the
switching delays) and a layout dependent component which is the sum of intercon-
nect delays. Therefore, for the final layout to be free from long path problems, the

interconnect delays must satisfy the following constraint:

}: ID, < LRAT, — Z CD, Vrell (3.19)
vEV, vEV,

where II is the set of all paths in the circuit graph G.

Now the problem for deriving timing constraints on all nets can be stated as
follows: Given a VLSI design represented by a graph G = (V, E), find net delays

ID, for each netv € V such that inequality (3.19) holds.

54

Minimaz consists of computing upper bounds on interconnect delays (i.e., ID,)
which satisfy inequality (3.19). This is achieved as follows. Each net v on path = is

assigned a timing bound given by the following expression,

Wy

u; = Slack, x (3.20)

u€ Vw u,“

where,

w, : the weight of net v defined as the product of the capacitance on the loading
input pins driven by the net, and the load factor of its driving output pin, i.e.,

w, = LF, X AcL,;

Slack, : LRAT, - Yvev, CD, and CD, is as defined in Equation 3.5.

Let II, be the set of paths going through net v. A consistent timing bound for

net v should be the smallest bound among those bounds for paths traversing this

net. Such a bound is derived as follows:

w, = min u’ 3.21
' relly " ()

The reader can observe that the problem of finding u, requires enumerating all
the paths in the design. But the number of paths in a VLSI circuit can be very high.
It was demonstrated in [YOU90] that the problem of computing u for all nets is
NP-Hard. Three efficient approximation algorithms for the Minimax problem were
proposed in [YOU90]. These algorithms try to enumerate a small subset of paths

such that all nets are covered, and every selected path has minimum slack. The

55

selected paths are then used in the derivation of the timing bounds for all nets as

dictated by the Minimaz.

In this work, we implemented one of those algorithms namely the Minimaz--

PERT algorithm. Our selection was based on the execution time.

3.6.2 Minimax-PERT

The path slack LRAT, — ¥y, CD, and the path weight functions are additive
functions and hence satisfy the optimality principle [HOR78]. The Minimaz-PERT
algorithm obtains an approximate solution for Equation 3.21 by exploiting this idea.
For the Minimaz-PERT the problem of finding u; can be formulated as,

,,, mingen, Slack,
U, = w, X
MaXeelly Luev, Wu

(3.22)

v

The algorithm enumerates a polynomial number of paths using a PERT-like
[KIRK66] trace of the graph. The algorithm consists in finding for each net v the
slack of the longest path traversing v, and the weight of the path that has maximum
weight among all paths traversing v. Figure 3.5 is a complete description of the
algorithm. Our implementation of the Minimaz-PERT depends on the following

definition for the slack of net v.

Definition 2 Let AAT, and LRAT, be the actual and latest required arrival times

56

ALGORITHM Minimaxz_PERT

NOTATION

I't(v) : all successors of vertex v

I'=(v) : all predecessors of vertex v

Slack™ : slack of worst path traversing net v

W maXeeren(Wy + W)

w} : maximum weight to sink for net v

D, : delay of longest path segment terminating at v inclusive
W, : weight of the longest path terminating at v inclusive
L, : latest required arrival time at net v

CD, : switching delay of v

w, : weight of net v

U, : Delay bound

step 1: Initialize
FOREACH v € (V,UV,) DO
(#BD, LF, AcL ARE FROM CELL LIBRARY#)
CDy, = BD, + LF, x AcL,;
w, = LF, x AcL,;
ENDFOREACH
wave + V,;
step 2: Forwardtrace
WHILE (wave # ¢) DO
BEGIN
newwave « [|;
FOREACH v € wave DO

D,~CD,+ maXyer-(v) D,;
Wy —w, + maXyer-(v) We;
newwave + newwave U ['+(v);

ENDFOREACH
wave «— newwave;

ENDWHILE

57

step 3: Backwardtrace
wave « Vi;
WHILE (wave # ¢) DO
newwave « |};
FOREACH (v € wave) DO
(#Compute the latest required arrival time at net v#)
L, — minuel""(v)(Lu —dy);
(#Compute the maximum weight to sink for each net v exclusive#)
Wt — maxuers(v) W
newwave «— newwave U '~ (v);
ENDFOREACH
wave «— newwave;
ENDWHILE
step 4: Find_Bounds
FOREACH (v e V,,)
Slacky™ = L, — D,; (#Minimum SLACK#)
Wi =W, + W, (#Maximum weighted path#)
(#Delay bound assigned to net v#)

u, = w, x JeRT
ENDFOREACH

END Minimax.PERT.

Figure 3.5: Minimax-PERT Algorithm.

58

at the loading pins of net v. The slack of net v is given by,

Slack, = LRAT, — AAT, (3.23)

As pointed out in [YOU90], a single run of the Minimaz-PERT algorithm is not
sufficient to distribute all available slacks on the nets. Consequently, the resulting
bounds will be loose. To make the computed delay bounds tight (maximal), the re-
maining path’s slacks should be distributed over nets in proportion to their weights.
After the first pass of the Minimaz-PERT algorithm, we compute the remaining

slack for all nets. Then, the delay bound of each net v is incremented by,

w,
Wy

x Slack, (3.24)

where,
w, is the weight of net v,
W% is the maximum-weight path traversing vertex v, and

Slack, is the remaining slack on vertex v.

This process is repeated until slacks are near zero. Observe that we need to
compute %% only once for each net, because it is a function of static parameters

(ie., LFy, AcL,). It was demonstrated in [YOU90] that following this iterative

approach, the slacks go monotonically to zero.

Example 3.3 The partial graph of Figure 3.6 is used to illustrate the execution

59

of the Minimaz-PERT algorithm. The results are summarized in Table 3.4. The
table has four columns, one for each nonterminal vertex, and five rows. The first
row labeled “Slack™™” gives the slack of the longest path traversing net v. The
second row “W;"**" gives the weight of the path with maximum weight among all
the paths traversing net v. The third row “D™®=” is the delay of the longest path
traversing net v. The fourth row “w,” gives the weight of each net v, and the last
row “u,” indicates the timing bound of net v as computed by Minimaez-PERT. The

latest required arrival time at vs is assumed to be 18 nanoseconds.

(2,2i3) (2,212)

(BD,LFIAcL)

Figure 3.6: A circuit example to illustrate Minimax-PERT.

LRAT=18

Time Complexity

Let N be the number of vertices in the circuit graph G; N represents the number of

nets in the circuit. Let k be the in-degree of any vertex in G. Further assume that

60

L] Vg V3 | s
Slack}"" ns || 2 5 4 | 2
Wner ns 12| 9 10 | 12
D} ns 16| 13 |14 |16
w, NS 6 3 416
u, NS 111667]161] 1

Table 3.4: Delay bounds computation for Figure 3.6.

the graph G is levelized. An acyclic directed graph G with n vertices is said to be

levelized if the level of any vertex v is defined as follows,

1. All source vertices are assigned level zero.

2. The level of a non-source vertex v is,

I(v) = l
() =1+ max it

where I'"(v) is the set of predecessor vertices of vertex v.

For each net, computing Slack™™" and W™= (Figure 3.5) requires O(k). Since
the graph is levelized, then each vertex will be processed exactly once. Thus, the

time complexity of this algorithm is O(kN). If k is small then the algorithm will

exhibit a linear time complexity of O(N).

61

chip Description Format [IOpads [Cells [CLOCK |
fract || fractional multiplier | VPNR 24 125 38 ns
strcut || 16-bit multiplier VPNR 64 1888 | 140 ns
highway || traffic light controller | VPNR 11 45 20 ns

Table 3.5: Test cases statistics.

3.7 Experimental Results

The algorithms described in this chapter were implemented in C language on NEXT
workstations. The critical paths predicted by the DFTP algorithm were used by
a timing-driven genetic placer [NAS94] developed at KFUPM. The critical paths
enumerated after layout were a proper subset of the predicted paths. The imple-
mentation was tested on three benchmark designs (Table 3.5). All the test cases are

implemented in the standard-cell design style for 2yt p-well SCMOS technology.

Input to the system is either a VPNR or AHPL net list. There are three stages
in the program execution. The first stage is responsible for reading the cell delay

parameters as described in Section 3.2. The necessary information is extracted from

the OASIS standard-cell library [MCN90)].

The second stage transforms the netlist description of the design into an acyclic

directed graph. The vertices of the graph correspond to the circuit elements and

the edges represent the connections.

62

| a " fract | highway |

0 || 1 1
1 Ha 2
2 || 7 3
3 || 8 4
44|9 4
5 11 5
o™= 369 | 65

Table 3.6: Number of predicted paths as a function of a.

o [o JoisTo5 |1
Critical paths || 28 | 420 | 13160 | > 90, 000
CPU (min) |[[2.17]3.33[417 | > 11

Table 3.7: Number of predicted paths for the 16-bit multiplier.

The third step consists of using user specified confidence level a and clock pe-
riod for validating the specified clock period?, prediction of critical paths and the

derivation of delay bounds on all the interconnects.

Table 3.6 shows the number of predicted critical paths for various values of a
for three test cases. The last row in Table 3.6 gives the number of critical paths
for a™?*. All the test cases in Table 3.5 took less than 105 seconds of CPU time
with a™** as confidence level. Table 3.7 gives the results of executing DFTP on
the 16-bit multiplier. Table 3.8 gives the delay and variance of the longest path, and

the value of a™** for each design.

2If the clock period is not large enough, the system will report paths with negative siacks.

63

fract | highway | struct

Delay of longest path (ns) || 34.141 | 15.524 | 122.183

Variance of longest path || 0.542 | 0.328 | 1.659
a™e (163 | 62 132

Table 3.8: a™** values and delay and variance of longest path.

Tachievea | iterations | smallest bound | largest bound
Design “ (ns) | (ns) ____(ns) (ns)
fract 38 5 0.1 7.3
highway 20 3 0.038 6.464

Table 3.9: Minimaz.PERT test results.

The results of executing Minimaz-PERT algorithm on two test cases are sum-
marized in Table 3.9. The first column gives the minimum clock period which the
genetic placer in [NAS94] was able to achieve. The second column gives the num-

ber of iterations required to distribute the remaining slacks. The third and fourth

columns give the minimum and maximum delay bounds.

3.8 Conclusion

We have introduced the a-critical approach, a new prediction strategy for timing
critical paths prior to layout. This strategy is based on the usage of estimated
interconnect capacitance information from past designs in measuring the criticality

of paths. A confidence interval is built around the longest path in the design. The

64

paths that fall inside the interval are the critical paths. The span of the interval
depends on the confidence level. Experimentation with real circuits has shown that

the critical paths enumerated after layout were a proper subset of the predicted

paths.

We implemented Minimaz-PERT, a procedure proposed in [YOU90]. This al-
gorithm which is based on minimax ideas to derive maximal delay bounds for nets
has been described. The timing bounds are maximal in the sense that all slacks are

distributed among the nets, thus maximizing degrees of freedom for physical design

tools.

In the next chapter, we demonstrate the usage of timing constraints on nets to

implement a timing driven floorplanner.

Chapter 4

Timing Driven Floorplanning

4.1 Introduction

As any other design step, floorplanning represents a certain level of abstraction. The
floorplanning process views the circuit as a set of rectangular blocks interconnected
by signal nets. The goal of floorplanning is to come up with a placement plan that
will decide topological proximity as well as appropriate shapes and orientations of
each block. A floorplan solution is supposed to satisfy geometric constraints while

optimizing certain objective function, e.g., chip area, performance, wirelength, or a

combination of two or more of these.

65

66

Floorplanning is a preparatory step to placement. It can be seen as a feasibil-
ity study of the placement. If floorplanning is not successful, then placement will
also be not successful. Floorplanning is an essential step in a hierarchical design

methodology. Floorplanning helps in solving problems such as overall required area,

sizes and shapes of blocks, pin and pad locations, etc.

A top-down hierarchical IC design methodology reduces the computational com-
plexity of the design process by decomposing the design process into several steps
of reasonable complexity. During the early synthesis steps, designers usually make
several decisions on block parameters, e.g., timing, area, aspect ratio, and I/0 pad
locations. It is hoped that, at later design stages, these decisions can be realized
in an efficient manner in terms of layout. However, it is difficult to predict the
consequences of these decisions on the final layout. In fact, the consequences of the
initial decisions may only appear at a much later stage of the IC design process.
As a result, a significant amount of iteration is required between logic design and

physical layout steps to converge to a good layout [YOU90).

The amount of iteration can be significantly reduced if all the design steps are
consistently made sensitive to the stated objectives and constraints. For example,
suppose we want to design an IC chip which should run at the best possible clock

period, then it is more logical to make all the design steps sensitive to this objective.

67

As stated in Chapter 1, this work adopts a design methodology for which timing,
interconnection length and area are the main objectives. The floorplanning step has
a dominant effect on circuit performance. It is of extreme importance to make
the floorplanning step timing-sensitive since this step helps decide several major
questions with respect to the structure and timing performance of the circuit. In
this chapter, we show how to make the floorplanning step sensitive to the timing

predictions generated by the timing analysis step.

Our floorplanning heuristic can be summarized in the following steps:

1. Construction of a timing driven topological arrangement using a force directed

approach.

2. Conversion of the topological arrangement into a legal floorplan (floorplan

sizing). This step consists of two tasks:
e derivation of efficient graph models which capture the topological ar-

rangement;

o block resizing in order to optimize area and satisfy geometric constraints,

this is followed by two steps:

— computing block locations on the XY-plane;

— calculating an enveloping rectangle.

68

The rest of the chapter is organized as follows. Section 2 presents some concepts
related to floorplanning. A formal definition of the floorplanning problem is given in
Section 3. In Sections 4-5, we present our solution approach to timing driven floor-
planning. Advantages and disadvantages related to our floorplanning methodology

are discussed in Section 6. Experimental results will be provided in Section 7. We

conclude in Section 8.

4.2 Preliminaries

A floorplan of k blocks is a partitioning of a rectangular layout surface into n basic
rectangles (blocks) such that each basic rectangle is wide enough to accommodate
one block. A floorplan is a slicing floorplan if it consists of a single block, or there
is a horizontal or vertical line that cuts the floorplan into two blocks such that each
block is a slicing floorplan. Otherwise, the floorplan is nonslicing. Figure 4.1 shows
examples of slicing and nonslicing floorplans. QOur floorplanning approach generates

general floorplans. It is not restricted to slicing structures.

4.3 Problem Definition

Our floorplanning problem can be formulated as follows:

69

(a) (b)

Figure 4.1: (a) slicing floorplan; (b) nonslicing floorplan.

Given:

1. A set of rectangular blocks B = {b;,bs,...,b;,...,b;}. For each b; € B we

have

® w;, h;: width and height of b;. These are constants for rigid blocks and

variables for flexible blocks.

o wMin

mar
[} w;

: lower and upper bounds on the width of b; if b; is a
variable-shape hlock.
® a; : area of b; (i.e., a; = w; x ;). a; is constant.
2. Aset of nets N = {ny,ny,...,n;,...,m} describing the connectivity informa-

tion. Each n; is assigned a weight u; equal to the delay upper bound computed

by the Minimaz-PERT algorithm (Chapter 3).

3. A set of timing critical paths. Each path is associated with a slack value.

70

4. Desirable floorplan aspect ratio : p = H/W where H and W are the height
and width of the floorplan.
Output:

A legal floorplan, that is, a floorplan satisfying the following constraints and objec-

tives:
1. each block b; is assigned to a location (z;, y;),
2. minimize chip area,
3. no overlaps between blocks,
4. W™ < w; < WP and a; = w; x h; for each flexible block b;,
5. meet chip aspect ratio constraint, and

6. meet timing constraints on the critical paths.

The reader can see that the above problem is an NP-Hard problem [HOR78]. If
all the blocks are fixed-shape blocks, the problem reduces to a placement problem.

The placement problem is a generalization of an NP-Hard problem: the quadratic

assignment problem.

In the next section, we present our approach to timing driven floorplanning.

Our approach consists of two steps. The first step builds a floorplan that satisfies

71

all timing constraints on the critical paths using a constructive force directed ap-
proach. The second step is a floorplan sizing step aiming at satisfying the remaining

constraints and objectives while preserving the relative positions of the blocks as

derived from the first step.

4.4 A Floorplanning Heuristic

The number of feasible solutions to any physical design problem is at least expo-
nential with respect to the number of blocks being placed. Thus, heuristic methods
should be used to get suboptimal solutions to such problems and which satisfy all
the stated constraints. Among several possible solution methods to the floorplan-
ning problem, we selected a solution method in which the problem is divided into
two major steps. In the first step, we adopt a cluster growth technique that enables
us to constructively build a timing sensitive solution by adding blocks to an already
constructed solution. This is followed by an iterative reshaping step to optimize

area and satisfy the remaining constraints on geometric fit and aspect ratio.

4.4.1 Force Directed Topological Arrangement

The constructive floorplan consists of two main procedures:

72

o selection of a block for assignment, and

¢ finding a suitable location for the block.

The selection procedure combines two criteria: timing and connectivity. The timing
criterion is an evaluation of the timing constraints on the nets connecting the block

to the partial floorplan. The connectivity criterion is the number of interconnects

between the block and the partial floorplan.

The delay bounds computed by the Minimaz-PERT algorithm are transformed
into timing costs. The timing cost is increasing with decreasing values of delay
bound. The delay to cost transformation is done using the following function,

CLOCK — u;
0 = ~GLoCK “h

where, CLOCK is the clock period and u; is the delay bound on net n; € N.
CLOCK is an upper bound on u;, and therefore, all the cost;’s will be in the real
interval [0,1]. Binding the cost;'s to a certain range is very crucial to avoid possible

numerical stability problems during program implementation.

A gain function that combines both timing and connectivity is evaluated for each

unassigned block having connections to the partial floorplan. The objective function

for block b; has the following form:

Gi= Y c; + 8 Y (1-p;)xcost; (4.2)

JEF; i€B; , jJEN,

73

where,

Fi : set of blocks in the partial floorplan at step k of floorplanning,

Bj; : set of blocks interconnected by net n;,

Nj: set of partial nets' at step k of the floorplanning process,

p; : percentage of placed blocks of B;, where 0 < p; < 1, (p; is initially zero and
increases as more blocks of B; get added to the partial floorplan),

cij : connectivity of block b; to block b; € F, and

B : real positive weight coefficient.

The gain function G; consists of two terms: connectivity of block b; to the partial
floorplan Fj, and a weighted sum of timing f:osts on nets connecting b; to blocks in
Fj.. Selecting the block with the maximum number of connections will minimize the
connection length on the floorplan, and it will in some sense group highly connected
blocks together. The weighted sum of timing costs (the second term in G;) will favor

the selection of those blocks that are involved in tight timing constraints (i.e., high

timing cost).

Unassigned blocks are selected one at a time. The block with maximum gain,

Gi, is selected next and passed to the Place_Block procedure for positioning (see

Figure 4.2).

1A net connects a set of blocks. If some of these blocks are already in the partial floorplan, we
call the net a partial net.

74

ALGORITHM Place_Block

NOTATION

b : selected block for placement

D(1,I'): Manhattan distance between locations !, !’

BEGIN

Compute target location, I, for block b;
IF (1 is VACANT) THEN

Assign b to I, and mark | as OCCUPIED;
ELSE

Find a VACANT location I’ such that D(1,!') is minimum;

Assign b to I', and mark ! as OCCUPIED;
ENDIF
END.

Figure 4.2: Place_Block procedure.

The Cluster_Growth procedure grows greedily a topological assignment using a

variation of the force.directed approach [SM91] (see Figure 4.3).

‘Two types of attraction forces act on a pair of connected blocks: a timing-
based force and a connectivity-based force. The timing-based force is a function of
the delay bounds on the nets interconnecting the blocks. This force is inversely
proportional to the value of the delay bound. The smaller the timing bound, the
higher is the attraction force. As a result, the blocks which are connected by timing
critical nets will be assigned locations in topological proximity. On the other hand,
the connectivity-based force is directly proportional to the number of connections
between the blocks. Thus, highly connected blocks will be placed close to each other.

This will minimize connection length. The timing-based force f! is set equal to the

75
ALGORITHM Cluster_Growth

NOTATION

B : set of blocks to be placed;

B, : set of already placed blocks (placed set);

B, : set of blocks having common connections with blocks in
B, (adjacent set);

N; : incidence set of nets for block b;;

(bi,b;) : connection between b;, b;;

G; : gain function for selecting block b; (Equation 4.2);

BEGIN
Step 1: Initialize
Compute initial chip dimensions H, W
Select seed block by;
Assign by to a seed location (center of chip (W/2, H/2));
B, — B, U {bo};
B, « B, U {b; | b; € B and (bp,b;) € Ny,)};
B « B - {bo};

Step 2: Cluster Growth
WHILE (B # ¢) Do
BEGIN
IF(B, # ¢) THEN
Select block b, such that G, = maxy.cp, g; ;
CALL Place_Block;
B, « B, U {b,};
B, ~ B, U {bJ I bj € Band (ij ba) € Nb.)};
Ba - Ba - {ba};
B —~ B - {b,};
ELSE (# The circuit has disconnected components #)
Select a new seed by ;
B, — B,U {bo};
B, — B, U {b. I b; € Band (bo,b,') € Nbo)};
Be~B- {bo};
ENDIF
ENDWHILE
END.

Figure 4.3: Cluster_Growth algorithm description.

76

timing cost, cost; (Equation 4.1),

Ji = cost; 4.3

Let c;;j represent the number of connections between blocks b; and b;j, The exerted

connectivity-based force on b; due to b; is given by,

f; = C,'j (4.4)

The Place.Block procedure utilizes the above mentioned forces in the derivation
of a zero-force location for the selected block. The zero-force location is called the
target location. Let b, be the block selected at step k of the floorplanning process,
and B, = {b,,, byy,..., by,..., b,,} be the set of blocks which are connected
to b, and have already been positioned. Let f! and f7 be the forces between b,
and b,; € B,. The zero-force timing sensitive location (z%,3!) and the zero-force

connectivity sensitive location (z5,yS) are computed as follows:

t E?.—:l pa.'fat,-xa;

T, = >N (4.5)
t ?:l psifa'~ya.-

= ?:l pﬂ.’f:; (4.6)
€ Z?:l pa.-f:,-xa;

xs - E?:l pa.' :.- (47)

y: - ?:l pa.‘fac,-ya; (48)

E?:l Ps; ac,'

7

where, p,, is percentage of placed blocks belonging to the net connecting b, and by, .

The target location for b, is derived as follows:
T, = a1} + 0pxs (4.9)

Yo = @14 + a2yl (4.10)

where, 0 < a1,a2 £ 1, and a; + a = 1. ¢ and a, are weight coefficients to define
the relative importance of (3,y;) and (x5,y5). (x!,4!) and (25,y¢) as defined in
Equations (4.5-4.8), minimize the weighted sum of the squared Euclidean distances
from b, to its adjacent blocks in the partial floorplan. We illustrate the above

computations with an example.

Example 4.1 Referring to Figure 4.4, suppose the selected block for positioning
is b3. Assume also that b; and b, are located at (5,5) and (1,7) respectively. The

forces exerted on b3 due to b; for CLOCK = 5ns are,

5—-2 5-05
t C
fi==7%"+ s =15 fi=2

The forces exerted on b3 due to b, are,

5—0.2
fi==—5"=09, f5=1

Thus, the timing sensitive location of b3 is,

5%1.5+1+0.96
t = = 3.
3 1.5+ .96 343

78

u=2 ns
b
u=0.5 ns

u=0.2 ns

b2

Figure 4.4: A circuit example to illustrate the target location computation.

ox1.54+ 7%0.96
t —
B="T1s5t96 >

Similarly, the connectivity sensitive location is,
z3 = 3.67, y5=>5.67

Let a;,0a; in Equations (4.9-4.10) be equal to 0.5, then the target location of bs is

given by,

3 = (0.5 x (3.43 + 3.67)) = 4, ys = 0.5 x (5.78 + 5.67) = 6.

Figure 4.5 shows three possible assignments for the circuit in Figure 4.4: (a) when
b is assigned to its timing sensitive location, (b) b3 at its connectivity sensitive

location, and (c) when both criteria are considered.

In computing a block’s target location, the Place_Block procedure considers the
connections of the block to the I/O pads. At the floorplanning step, we assign
I/0O pads to sides of the floorplan, but without identifying their exact locations on

the floorplan boundary. The I/O pads assigned to a particular side are assumed

79

1 2 3 4

(c)

llllllll o
1 1 1
d e d ele d - -
1 11
“-l-l|-|1| 3\.0’
Lol ~
_ll_ll.l..ll.z
L.l -
[N
1 | |
-« O N - °
ot R lalada] - T Sy DI PR R
I I T | — I [T R T
PN T L) role d e tre b o= -
RN Mg IR
Lol e~ .M.'l.l.nlr..rl_l.rl
[I I Y | L R B B B |
1)) 9 o - p 0 19t}
¢« 0O 0N - ~ © B e 0o N -

[}
Figure 4.5: Target location for b3: (a) at (x5, %5); (b) at (2§, ¥5); (c) at (3, y3).

80

to reside in the middle of that side. The I/O pads of the design are distributed
equally on the four sides. Our strategy for considering the I/O pad locations in the
target location computation can be summarized as follows. If the block is connected
to some unassigned pad, we compute the target location without considering its
connection to the unassigned I/O pad. Next, we assign this pad to the closest side
to the computed t#rget. location. Then, recomputation of the target location for
the block is carried out (considering the location of the I/O pad). Considering the
I/O pads in computing target locations will pull those blocks that have connections
to I/O pads toward the periphery of the chip. As our experiments demonstrated,
including the I/O pad locations in the target location computations, reduces the
probability of finding the target location of some block being occupied by another

block, and to some extent improves the circuit timing.

The computation of the target location according to Equations (4.5-4.10) is simi-
lar to finding the center of gravity in physics. It is an intrinsic nature of this method
that it will assign most of the blocks to the center of the chip, as this will definitely
lead to a minimum-energy state. As a result, it is very likely that the target location
for the new selected block will be occupied by an already placed block. In case the
target location of the new block is occupied, the following strategy is adopted to
avoid displacing a block very far from its target location. The new block is moved to

the nearest free location (using minimum Manhattan distance measure). Figure 4.2

81

is a general description of the Place.Block procedure. The complete algorithm for
generating the topological arrangement of the blocks is presented in Figure 4.3.

We call this algorithm Cluster_Growth. An informal description of this algorithm

follows.

The algorithm maintains three disjoint sets: a placed set, an adjacent set, and
an unplaced set [KAN83]. The placed set contains the already positioned blocks.
The set of blocks having common connections with the elements of the placed set

constitute the adjacent set. The unplaced set contains the remaining blocks of the

design.

The algorithm starts by computing initial dimensions for the chip using the

supplied aspect ratio, p, and the total area of the blocks. The initial height and

width of the chip are computed as follows:

H= ‘[I’Z_a (4.11)

W=£
p

(4.12)
The calculation of initial H and W is required for making the growth of the chip
controlled by the supplied aspect ratio. Next, the algorithm selects a seed block.
We experimented with three seed selections. The first seed selection was the block

with maximum connections. The second seed selection was a block belonging to the

82

most critical path. The third seed was a batch seed (a group of blocks belonging
to the most critical path). The second and third seeds exhibited similar results,
and produced superior floorplan solutions than those obtained with the first seed
selection. As a general guideline, one should avoid selecting a seed which is connected
to I/O pads (especially if the seed will end up at the center of the chip). After
initializing the above mentioned sets based on the selected seed (Step 1 in Figure 4.3),
the algorithm proceeds to Step 2. Suppose that there are n blocks in the adjacent
set at the kth iteration of the floorplanning process. The algorithm computes gain
function G; for each of the n blocks (Equation 4.2). The block with maximum
connections and worst timing constraints is selected: this corresponds to the block
with maximum G;. The selected block is then passed to the Place_Block procedure
for positioning. This process is repeated until all the blocks of the design are placed.
The output from this algorithm is a list of the blocks with their zy-coordinates, and
a list of the I/O pads and their assigned sides. Since the force-directed technique

models the blocks as points, the xy-coordinates are interpreted as the block’s center

locations.

Example 4.2 Referring to Figure 4.6, let by be the seed block. Assume that the
clock period is 10ns, 8 = 0.5 in Equation 4.2, and a; = ay = 0.5 in Equations (4.9-
4.10). Table 4.1 summarizes the results of running the Cluster Growth algorithm.

The floorplan for this circuit is shown in Figure 4.7. In Figure 4.7, the blocks are

83

modeled as dots because, as mentioned earlier, the force-directed technique ignores

the shape and size of the blocks and considers them as points.

W/

by 1ns by

Figure 4.6: Circuit for Example 4.2.

iteration placed adjacent G values
set set
0 b5 4b5r,b4,b2 G2 = 1.42, G3 = 1.48, G4 =145
1 bs, b3 b3,b2,by | G2=1.42,G; =1.4,G, =1.45
2 b5, ba, b4 ;, bl Gz = 288, G] = 2.85
3 b5, b3, b4, b2 b; Gl =2.385
4 b57 b31 b41 b2a bl ~ -

Table 4.1: Results of running Cluster Growth on Example 4.2.

Time Complexity of Cluster Growth

Let K be the number of blocks in the adjacent set at step k of the floorplanning
process, and m be the average number of connections per block. Selecting one block
for positioning requires O(mK) time. The computation of the target location is

almost constant, O(m). Therefore, the Cluster Growth algorithm has an overall

time complexity of O(mK).

84

Figure 4.7: Force-directed floorplan for Example 4.2.

Although, the floorplan generated by the Cluster Growth algorithm is optimized
for timing, it does not satisfy geometric fit. Thus, the next logical step is to legalize
the resulting floorplan and optimize its area. In the next section, we describe an

algorithm that converts the topological arrangement to a legal floorplan. This step

is known as floorplan sizing.

4.4.2 Floorplan Sizing

In this section, we are concerned with the actual floorplanning where block attributes
(e.g., absolute locations, dimensions for the variable-shape blocks) are defined and
constraints on geometric fit and aspect ratios are satisfied. The output from the

Cluster_Growth algorithm is a topological arrangement optimized for timing and

85

connectivity. In order to get the final legal floorplan, we must remove all overlaps.
This step is called floorplan sizing and is performed without undoing any of the
decisions of the timing-sensitive force-directed step, i.e., blocks are not allowed to

jump over each other.

We adopted a constraint-based approach to convert the topological arrangement

into a legal floorplan. This floorplan sizing phase consists of two major steps:

1. construction of constraint set, and

2. shape optimization.

Before we describe the details of each step, we shall discuss the graph model used

to represent the constraint set.

Graph Model

The topological arrangement produced by the Cluster_Growth algorithm is inter-
preted as a set of topological constraints. An example of a constraint is that one
block should be placed to the left or above another block. Two directed acyclic
graphs are used to capture the constraint set: a horizontal constraint graph Gy
and a vertical constraint graph Gy. The vertex set of Gy is the set of blocks plus

two dummy vertices: L and R. Similarly, the vertex set of Gy is the set of blocks

86

plus two dummy vertices: T and B. The dummy vertices L, R, T, B correspond,
respectively, to left, right, top, and bottom boundaries of the chip. The edge set of
Gy models the to-the-left/to-the-right relationships. Hence, an edge (b;,b;) € Gy
indicates that b; is to the left of bj. All vertices in Gy are to the left of the dummy
vertex R, and to the right of vertex L. Thus, Gy contains the edges (L,b;) and
(b, R) for each block b;. The edge set of Gy models the on-the-top/on-the-bottom
relationships. Hence, an edge (b;,b;) € Gy indicates that b; is below b;. All vertices
in Gy are above the dummy vertex B, and below vertex T. Thus, Gy contains
the edges (B,b;) and (b;,T') for each block b;. Figure 4.8 shows an example of an

overlapping floorplan and its corresponding topological constraint graphs.

Construction of Constraint Graphs

‘Two blocks are constrained if the center of one block must be to the left /below the
center of the other. Vijayan and Tsay [VIJ91] introduced the notions of completeness
and strong completeness for a topological constraint set. A constraint set is complete
if there exists a directed path between every pair of blocks (bi, b;) either in Gy, in
Gy, or in both. In a strong complete set each pair of blocks is adjacent either in
Gy, in Gy, or in both. Two blocks are adjacent if they are the end vertices of some
edge (i.e., constraint). It is clear that a floorplan that satisfies a (strongly) complete

set will have no overlaps. Two blocks are overconstrained if they are constrained in

(a)

Figure 4.8: (a) Illegal floorplan; (b) constraint graphs: Gy, Gy.

87

88

both the horizontal and vertical directions; trying to produce a floorplan satisfying
both the constraints will negatively affect the area optimality of the floorplan. A
timing-optimized topological arrangement usually requires the satisfaction of one

constraint; the other constraint is redundant.

A key observation to our approach is that for two blocks not to overlap, only one
constraint (either in the horizontal or the vertical .direction) is necessary and suffi-
cient. A key question then is which of the constraints to keep, the horizontal or the
vertical constraint? Before we describe our approach for constructing a constraint

set (Gy,Gyv), we introduce the following definition.

Definition 1 A constraint set (Gy, Gy) is sufficiently constrained if there ezists an

edge between every pair of blocks (b;,b;) either in Gy or Gy.

Clearly, a sufficiently constrained set (Gy,Gy) is a strongly complete set. The
approach in [VIJ91] starts with an overconstrained set, i.e., a set with many over-
constrained blocks. This set is then reduced to a sufficiently constrained set by
removing redundant constraints from only the longest paths in Gy and Gy. A
problem with this approach is that the size of the overconstrained set could be very

large, and hence may require large computing resources (i.e., memory and time).

We believe that a better approach would be to build directly a sufficiently con-

89

strained set using a constructive (greedy) procedure. If two blocks are overcon-
strained (i.e., horizontally and vertically), the constructive procedure will select
either to constrain the two blocks in the horizontal direction or in the vertical direc-
tion. The selection is based on which of the constraints will lead to a smaller-area
floorplan. If two blocks are constrained in only one direction (i.e., they have the
same z or y coordinate), the algorithm in this case has only one choice. This process
greedily generates a constraint set (i.e., Gy, Gy) according to Definition 1 and, at
the same time, eliminates all redundant constraints right from the beginning. This is
different from the algorithm given in [V1J91], where only redundant edges belonging
to the critical paths in Gy and Gy are examined. Removing all redundant con-
straints produces a more compact floorplan and as our experiments demonstrated
does not create timing violations. The algorithm for generating a sufficiently con-
strained set is presented in Figure 4.9. The algorithm examines each pair of blocks
and inserts topological constraints in Gy and Gy according to their centers. If two
blocks i, j are constrained in the horizontal and vertical directions, i.e., r; # r; and
¥ # y; (CASE 1 in Figure 4.9), the algorithm inserts an edge (i, 7) in the horizontal
graph, Gy, and similarly an edge (i, j) in the vertical graph, Gy. Next, the algo-
rithm enumerates the longest path ¢y (i, j) (€y (i, 7)) that goes through the inserted
edge (i,5) in Gy(Gv). The edge that yields the shorter path will be retained and
the other will be removed (i.e., IF statement in Figure 4.9). The other case (CASE

2 in Figure 4.9) is that the blocks i and j are constrained in only one direction

90

ALGORITHM Sufficient_Constraint

NOTATION :

B: Topological arrangement;

€y(7,7): length of longest path traversing edge (i,) in Gy
€y(,5): length of longest path traversing edge (i,) in Gy;

BEGIN
FOREACH pair of blocks (,7) in B DO
BEGIN
CASE 1: 4, j are overconstrained (z; # x; and z; # z;)
Insert edge (7,7) in G and Gy;
Compute €4(¢, 5), by (i,);
IF (€4 (i,) < €y (i, j)) THEN
Remove edge (i, j) in Gy;
ELSE
Remove edge (%,7) in Gy;
ENDIF

CASE 2: i, j are constrained in only one direction
¢ is to the left of j (z; < z;): insert (i,5) in Gy;
i is below j (y: < y;): insert (i, 5) in Gy;
ENDFOREACH
END.

Figure 4.9: Sufficient_Constraint algorithm.

91

(either to the left or below, i.e., z; = z; or y; = y;). In this case the algorithm has
only one choice and therefore the enumeration of longest paths is not required; the
algorithm inserts the appropriate edge in the corresponding graph. We next give a

simple example to illustrate the above algorithm.

[« OO O O
T “0 ®0 O

(a) ®)

Q0 90 ~q T

Figure 4.10: (a) Overlapping floorplan; (b) edge (1,2) retained; (c) edges (1,4) and
(1,3) retained; (d) sufficiently constrained set: Gy, Gy.

Block | Height | Width
1 P 1
2 2 2
3 1 3
4 2 1

Table 4.2: Dimensions for blocks in Example 4.3.

92

Example 4.3 Referring to the illegal floorplan of Figure 4.10(a), the horizontal
constraints are (1,2), (1,4), (1,3), (2,3), and (2,4). The vertical constraints are
(1,2), (1,3), (2,3), (4,2), and (4,3). Assume that the dimensions of these blocks
are as given in Table 4.2. Let €4(i,7), €y (4,7) be the length of the longest paths
traversing the newly created edge (¢, j) in Gy, Gy respectively. The length of a
path is the sum of the widths (heights) of the blocks along that path in Gy (Gy).
For the edge (1,2), the algorithm computes €4(1,2) and ¢,(1,2) in the partially
constructed graphs Gy and Gy. €y(1,2) is 3, while €y(1,2) is 4; therefore edge
(1,2) is kept in Gy and removed from Gy. The result of this step is shown in
Figure 4.10(b). The contents of Gy and Gy after processing edges (1,4) and (1,3)
are shown in Figure 4.10(c). Table 4.3 summarizes the steps in constructing a
sufficiently constrained set (Figure 4.10(d)) for the floorplan of Figure 4.10(a). A
“" in the €y(,7), €v(i,j) columns in Table 4.3 indicates that the two blocks are
constrained in only one direction and hence the algorithm inserts the edge in the

corresponding graph without computing the longest paths traversing the new edge

because it is the only choice. A possible floorplan satisfying the constraint set is

shown in Figure 4.11.

93

Figure 4.11: A possible floorplan for Example 4.3.

Constraint | €4(i,7) | év(i,j) | Retained by
1,2 3 4 Gy
14 - - Gu
1,3 4 3 Gy
2,3) 3 Gy
4,2 - - Gy
43 - - Gy

Table 4.3: Results for Example 4.3.

Time Complexity of Constraint Graph Construction

Checking all possible block pairs requires O(K2) for K blocks. This is the “FORE-
ACH?” loop in Figure 4.9. For the computation of longest paths, we implemented
a greedy algorithm proposed by Youssef [YOU90]. If the constraint graphs are lev-
elized, this algorithm exhibits an O(K') time complexity. The number of calls to the

longest path procedure depends on the number of over-constrained blocks.

94

Block Reshaping

The next step in our floorplanner consists of resizing the variable-shape blocks in or-
der to optimize the floorplan area and satisfy the remaining constraints on block/chip
aspect ratios. Resizing is done such that the topological constraints as stated by the
constraint set are preserved. A two-dimensional block resizer algorithm has been
implemented. The resizer determines dimensions and positions of the blocks so that
floorplan area is minimized and constraints on block shapes are satisfied. This is

achieved by iteratively reshaping flexible blocks on the critical paths.

In this work, we adopt the general cell design style. In this design style, block
dimensions are considered as continuous variables. Thus, if block b; has width w;

and area a;, then its height h;, is given by a;/w;.

The resizing algorithm utilizes the constraint graphs Gy and Gy developed in

the previous section to compute the dimensions of the floorplan and decide on a

candidate block for resizing.

Suppose we want to reduce the floorplan dimension in the Y-direction without
enlarging the floorplan in the X-direction. This can be achieved as follows: let é(my)
and ¢(ny) be the length of the critical paths in Gy and Gy respectively. Let block b;

be such that b; € my and b; & my. If 7}, is the longest path traversing b; in Gy, then

95

the width, w; of b; can be increased by an amount 07 = l(wy) — (%) — € without
increasing the overall area of the floorplan. Hence, 67 is the maximum block’s width
increment that is guaranteed not to cause an increase in the length of the critical
path, 7y, in Gy. The constant € is used to avoid wasting CPU time in resizing
iterations which will result in negligible area reductions, and to avoid oscillation,
i.e., the same block keeps getting selected in Gy then in Gy and so on. But, usually

the block width has an upper bound w**, therefore the legal 07 is given by,
;' **" = min(d7, W™ — w;) (4.13)
'Thus, the new dimensions w/, b} for block b; are derived as follows,
w, = w; + ¢ x 8;'*" (4.14)

h; = a;/w} (4.15)
where c is a positive real number (¢ < 1) specified by the user to control how large
the z-increment should be. We have observed that resizing the blocks in small
increments (¢ < 0.5) helps achieve a smaller floorplan with the correct aspect ratio.

In our experiments, we set this parameter to 0.5. Optimization in the X-direction

is similarly formulated.

If the constraint graphs Gy and Gy do not contain multiple critical paths, then
the reshaping of block b; according to Equations (4.14-4.15) will reduce the floorplan

area. If multiple critical paths exist then the floorplan area will remain unchanged.

96

This observation is stated in the next theorem.

Theorem 1 The resizing process will not increase the area of the floorplan.

Proof:

Let b; be the block that has been resized. To show that the resizing of b; does not

increase the floorplan area, consider two cases:

Case 1: b; belongs to the critical path of Gy and Gy

Therefore,

5 = 67 =,
Thus,

w} = w;,

h} = h;,

Hence, there will be no increase in floorplan area.

Case 2: b; is on the only critical path in Gy but not in Gy
Therefore,
6?‘:.-' > 0'

Therefore,

97

h:- < h.',

Hence, the length of the critical path in Gy will decrease and therefore, the overall

area will decrease. This case can be generalized to the case when b; belongs to

multiple critical paths in Gy. a

The resizing process continues as long as there are candidate blocks for resizing,.

A key question is that will the resizing process converge?. The next theorem answers

this question.

Theorem 2 The resizing process is converging.

Proof:

At each iteration, the area of the floorplan is reduced by a positive number. Ob-
viously, the overall area cannot go to zero. Furthermore, a block which is selected
for resizing in the current resizing direction will not get selected for resizing in the
orthogonal direction (i.e., the block will not oscillate between the most critical paths

in the horizontal and vertical directions); therefore, the resizing process must stop

after a finite number of steps. o

98

Time Complexity

The computation of the longest path can be achieved in O(K) (assuming that Gy

and Gy are levelized). Thus, resizing one block requires O(K) where K is the

number of blocks.

After completing the resizing process, the next task is the positioning of the
blocks on the layout surface. The lower left corner of the floorplan is the origin at
(0,0). The lower left corner of block b; is placed at (z;,3y;) where z; is the longest

L-b; path in Gy and y; is the longest B-b; path in Gy.

Finally, the blocks are enclosed inside a bounding rectangle with the desired
aspect ratio p. The height H of the bounding rectangle is the longest B-T path
in Gv, and its width W is the longest L-R path in Gy. If H/W is equal to the
correct aspect ratio, p, then H and W are the required dimensions of the bounding
rectangle; otherwise the blocks are enclosed inside the smallest bounding rectangle

‘with an aspect ratio p. The area of the bounding rectangle is the area of the

floorplan.

The final step is to verify the timing aspects of the resulting floorplan. The next

section addresses this issue.

99

4.5 Timing Verification

The timing characteristics of an IC design are path oriented rather than net oriented.
Thus, the path delay constraints ought to be satisfied; otherwise the design will have
long path problems. On the other hand, the delay bounds on nets need not all be
satisfied. In fact, satisfying all net bounds is a very strong constraint, and as our
experiments demonstrated, the satisfaction of all net constraints becomes harder as
the circuit gets denser. A path is safe if its total interconnect delay is less than
its slack value. Recall from Chapter 3 that the interconnect delay is a function of
its length. For net length estimation we assume a generalized pin located at the
center of each block?. We estimate the wire length, net.length, of net n; with m

pins located at (xy,u1),...,(zi,%),-- -, (Tm,Ym) using the following procedure,

1. Let (x.,y.) be the net center point,

Y X L Ui
Te = T Ye = T

2. Let (z1,31), (z2,¥2) be the lower left and the top right corners of
the smallest bounding rectangle enclosing all the pins of the net

€ = max{zy — 1,92 — 1 }

2A more realistic assumption is to consider a pin on each side of the block.

100

3. IF (z9 — 2y > y» — y;) THEN
b6 =X (Y —)
ELSE

b = XL, (2c — =)

4. netdength = ¢, + ¢,

The above procedure constructs an approximate rectilinear Steiner tree for an m-pin
net (Figure 4.12). For 2 and 3 pin nets, this procedure is an exact approximation.
Our experiments showed that, for nets with more than 4 pins, this metric overesti-
mates the wire length by less than 10%. A major advantage of this metric is that it
never underestimates the wire length. This makes it more suitable for dense designs
than the half-perimeter metric. The estimated net lengths® are transformed into net
delays. These net delays represent the actual interconnect delays. Next, the delays

of all the interconnects along each critical path are summed and checked against its

slack.

3In actual implementation, netlength has two components: horizontal (METAL-1) and vertical
(METAL-2).

101

- '
' —O F- Q===
é'__ _: x4 Y|/
\11-71) to -
(a) ®)

Figure 4.12: Approximate Steiner tree. (a) Ly = y, — 41; (b) Ly = x5 — ;.

4.6 Discussion

In this section, we discuss advantages and disadvantages related to our floorplanning
methodology. The floorplanning problem was treated as a constrained optimization
problem. Two types of constraints are considered: timing constraints and geomet-
rical constraints. During the Cluster_Growth step, blocks are greedily added to the
partial solution based on their timing delays and connectivity. A block is selected
by the maximization of a gain function G; which combines both of these criteria.
Including connectivity in the selection minimizes connection length and improves
timing on the floorplan. Also, considering connectivity information during block se-
lection as well as when computing its target location avoids making the floorplanning

process totally biased toward timing.

A major advantage of our approach is that it is not restricted to slicing structures.

102

Moreover, the execution time of the algorithm is very small. Our system was able to
generate a legal floorplan for a 125-block circuit in less than 3 minutes on a 33 MHz
80386 IBM PC. Figure 4.13 shows the effect of the problem size on the execution
time of our ﬂoorplanning algorithm. The graph indicates that execution time grows
linearly with the number of blocks in the design. This makes the algorithm a good

tool for generating good initial solutions for iterative improvement algorithms such

as Genetic algorithms, Simulated Annealing, etc.

Figure 4.13: Growth in execution time.

The constructive floorplanning (Cluster-Growth) is a greedy algorithm. The de-
cision made at each step is based on the partial solution (i.e., local information). To
improve this point, the constructive procedure can be followed by a force relaxation

procedure which will iteratively improve the global aspects of the solution.

An advantage of the floorplan sizing step is that it optimizes floorplan area while

respecting all the decisions of the timing-sensitive force directed step.

103

At present our floorplanner does not consider routability of the floorplan. Our
motivation for ignoring routability is because routability is usually not a problem
for the general cell design style. This is in contrast to gate array design style where
routing resources are very critical. We should mention that routability can be easily
incorporated into our system. We need to integrate a global router with our system.
The task of the global router is to compute routing space requirements between
blocks. These space requirements can be specified as edge weights in the constraint
graphs Gy and Gy. Then, the algorithm will use the edge weights (as well as

node weights) to compute the correct locations of all the blocks as well as the final

dimensions of the floorplan.

4.7 Experimental Results

The floorplanning approach described in this chapter has been implemented in the
C language. Experiments were run on a 33 MHz 80386 IBM PC. We experimented
with five test cases. The first test case is a simple 7-block example. The other two
test cases are the Fractional Multiplier and the traffic controller described in the
experimental section of Chapter 3. The fractional multiplier has 24 1/0O pads and
125 cells and running at 41 ns clock period. The Traffic Controller has 11 I/O pads

and 45 cells and running at 20 ns clock period. These test cases are implemented in

104

1
13 °

®

eYololS

C)
©

® ®
Figure 4.14: A 7-block example: (a) topological assignment; (b) after sizing.

standard cell design using a 2y p-well SCMOS technology [MCN90]. For the sake of

experimentation, we treated the cells as general cells (i.e., flexible dimensions).

The first test case is used to demonstrate the quality of solution produced by
the floorplan sizing step. Figure 4.14(a) shows the floorplan as obtained from the
timing-sensitive force directed step. We specified an overall aspect ratio, p, of 1.00.

Figure 4.14(b) shows the final floorplan which has minimum area.

For the computation of the target locations in the Place.Block procedure, we set
the parameters a; and a; to 0.5. For the parameter 3 in the selection function G;,

we experimented with values 0, 1, and 4.

Table 4.4 summarizes the results for the traffic controller. When timing is in-
cluded in the selection function (i.e., 3 > 0), the average connection length has
decreased by 7% to 20% (row “avg. net.len” in Table 4.4). Also, the average re-
maining path slack (row “avg. slack” in Table 4.4) has improved by 40%. For this

circuit, the timing analyzer reported 65 critical paths. The longest path has a slack

105

of 2.179 ns, while the 65th longest path had a slack of 13.358 ns. All these paths
remained safe when floorplanning was guided by timing (row “satisfied paths%’ in
Table 4.4). On the other hand, even with timing driven floorplanning we could not
get 100% satisfaction for net delay bounds. Achieving less than 100% net satisfac-
tion does not mean that the design will suffer from timing problems. The reason
behind this is that usually the loss on one net is accompanied by a gain on other
nets. The total block area for this circuit is 88624 A\2. The floorplan area after
resizing is shown in row “chip area” in Table 4.4. The total execution time for this

example was 1:00 min. Figure 4.15 shows the floorplan of the Traffic Controller.

B [o 1 4
avg. netlen [270 | 251 [215
avg. slack 5.7 8.05 | 8.15

satisfied nets% || 63 89 91
satisfied paths% || 90 100 | 100
chip area 98500 | 98076 | 97465

Table 4.4: Data from the Traffic Controller.

Table 4.5 summarizes the results for the Fractional Multiplier. When timing is
included in the selection function (i.e., 8 > 0), the average connection length has
decreased by 31% to 33% (row “avg. net.len” in Table 4.5). The percentage of
satisfied net timing bounds has increased from 87% for 8 = 0 to 97.6% when B was

set to 1, and to 98% when § was set to 4. Also, 100% critical path satisfaction

106

22
e 14 21 32
27 20
m a6 41
16
18 30
- L2 i 28
12 19 50 17 3¢
e 13 28 37
13 g | a“
P 3s
1 25 52 48 3
40 ss « i
"
Q2 s¢ || S 1 28
o =2 1
. I 48 39 36
" . 13 e e ”"ne "

Figure 4.15: A floorplan of the Traffic Controller.
was possible when 3 was set to 4, and the average remaining slack was 18.5 ns
(row “avg. slack” in Table 4.5). For this circuit, the timing analyzer reported 100
critical paths. The longest path has a slack of 10.236 ns, while the 100th longest
path had a slack of 33.786 ns. All these paths remained safe after floorplanning
(row “satisfied paths%’ when = 4 in Table 4.5). The total block area for this
circuit is 225504 A\2. The floorplan area after resizing is shown in row “chip area”
in Table 4.5. We should mention that the timing-driven genetic placer in [NAS94]
was able to place the Fractional Multiplier with a clock period of 38 ns. On the
other hand our floorplanner required 3 ns more to generate a timing-problems free

floorplan (i.e., 41 ns clock period) in less than 3.0 min CPU time. This is due to

two reasons:

¢ The timing-sensitive force directed step is a one pass constructive heuristic.

Further improvements may be achieved, if a force relaxation phase is used

107

Ji] 0 1 4
avg. net_len 459 316 306
avg. slack 16.16 18.1 18.5

satisfied nets% 87 97.6 98
satisfied paths% 93 98 100
chip area 282997 | 265126 | 263908

Table 4.5: Data from the Fractional Multiplier.

| chip “ Description | IOpads | Cells | CLOCK | Critical Paths |

[adder [simple adder | 5 11 10 ns 13
parl || 16-bit parity 17 20 48 ns 16

par2 || 8-bit parity 9 30 | 32ns 100

Table 4.6: Test cases statistics.

after completing the constructive pass.

e The Genetic placer uses the half-perimeter method to estimate net length.
This method is optimistic in wire length estimation, especially for nets with
more than 4 pins. The fractional multiplier has several 5-pin and 6-pin nets.

On the other hand, our system uses a more accurate wire length metric (see

Section 4.5).

We experimented with three more circuits in VPNR format (Table 4.6). Table 4.7
summarizes the results for the adder circuit. The longest path has a delay of
7.198 ns. The total block area for this circuit is 25985 A2. The aspect ratio was

specified as 1.00. With § = 4 the average remaining path slack has increased by 5%

108

B | o 1 4
avg. net.len 126.27 | 109.64 | 100.45
avg. slack " 202 | 206 | 212
satisfied nets% || 72.73 | 81.72 | 82
satisfied paths% || 84.62 | 100 100
chip area Il 29972 | 29789 | 29683

Table 4.7: Data from the adder circuit.

compared to that of 3 = 0.

Table 4.8 and Table 4.9 summarize the results for the 16-bit parity and 8-bit parity
circuits. The longest path delays are 23.049ns and 36.834 ns respectively. The total
block area are 408322 and 39440)2, respectively. The reader can observe that when
the timing weight, 8, was set to 4, the average connection length has increased from
35.55 (B = 1) to 60 (8 = 4) (Table 4.8), and increased from 65.44 (8 = 1) to
109.6 (8 = 4) (Table 4.8). Consequently, the average remaining path slack and the
percentage of satisfied net constraints have decreased. The reason is that, increasing
the value of the timing weight 3 beyond the circuit’s requirement causes some nets

to become excessively long, and hence the circuit timing gets worse.

B [o 1 4
avg. net.len 58 13555 | 60
avg. slack 16.04 | 17.33 | 159
satisfied nets% 83 92 91
satisfied paths% || 91 100 100
chip area 44544 | 44095 | 44584

Table 4.8: Data from the 16-bit parity checker.

8 H 0 1 4
avg. net.len 70.37 | 65.44 | 109.6
avg. slack 0. 89 2.1 1.58
satisfied nets% il 90 89.6
satisfied paths% || 71.6 100 100
chip area || 47026 | 46878 | 48203

Table 4.9: Data from the 8-bit parity checker.

109

110

4.8 Conclusion

In this chapter we described a timing driven floorplanning program. Two types
of timing data are used: a set of the a-critical paths and delay upper bounds on
interconnects. The floorplanning algorithm has two major stages. The first stage
constructs a timing driven topological arrangement using a constructive implemen-
tation of the force directed technique. Both timing and connectivity information are
used in the derivation of block target locations. The second stage is floorplan sizing
which converts the topological arrangement to a legal floorplan. This is achieved
by mapping the topological arrangement into efficient topological constraint graphs.
Then, a two dimensional resizer uses these graphs to reduce floorplan area and
satisfy all geometrical constraints while satisfying the timing requirements and the
shape and area constraints of the design. Experimental results are positive in terms

of timing, area, and average connection length.

Chapter 5

Conclusion

Increase in switching speeds and decrease in feature size have made the performance
of modern VLSI designs dependent on interconnect delay efficiency. It is no longer
the case that the clock speed can be verified prior to physical design, and physical

design itself should be governed with the timing requirements of the design.

To achieve its goal, a timing driven physical design tool requires two elements:

e necessary and accurate information about the temporal properties of the de-

sign, and

¢ a strategy to use this information during physical design.

111

112

In this thesis, we addressed both of these problems.

In Chapter 3, we addressed the issue of generating proper timing constraints
prior to layout. We introduced the o-critical approach, a new prediction strategy
for timing critical paths. The parameter « is interpreted as a confidence level,
and is used along with the path’s delay standard deviation to construct confidence
intervals around the delay of the longest path. A path is critical if its total expected
delay falls inside the a-critical interval. The number of critical paths increases with
increasing values of a. The critical path data has been successfully used by two
physical design tools: a Genetic placer for standard cell design style [NAS94], and
a Genetic floorplanner for general cell design style [TAN94]. The critical paths

enumerated after layout were a proper subset of the predicted paths.

We implemented Minimaz-PERT, a procedure proposed in [YOU90]. This al-
gorithm uses minimaz ideas to derive maximal delay bounds for nets. The timing
bounds are maximal in the sense that all slacks are distributed among the nets, thus

maximizing degrees of freedom for physical design tools.

In Chapter 4, we demonstrated the usage of the generated timing data to drive
the floorplanning step. The floorplanning algorithm has two major stages. The
first stage constructs a timing driven topological arrangement using a force directed

technique. Both timing and connectivity information are used in the derivation of

113

block target locations. The second stage is floorplan sizing which converts the topo-
logical arrangement to a legal floorplan. This is achieved by mapping the topological
arrangement into topological constraint graphs. Then, these graphs are utilized by
a resizing algorithm to reduce floorplan area and satisfy all geometric constraints

without undoing any of the decisions of the timing-sensitive force directed step.

Next, we discuss some possible extensions to the work that has been done. At
present, our floorplanning approach ignores routability. It needs to be integrated
with a global router. The task of the global router will be to compute routing space
requirements. These requirements can be interpreted as edge weights in the con-
straint graphs described in Chapter 4. The floorplan sizing step needs to be modified
to consider the edge weights in the computation of block positions. The floorplan-
ning approach described in this work performs the resizing process while maintaining
the topological arrangement. A better approach would be to integrate the two steps

to consider trade-offs between timing optimization and area optimization.

Bibliography

[AS85]

[BRA90]

[BURSS)

[CD93]

[DAI87]

T. Asano and S. Sato. Long Path Enumeration Algorithms for Timing
Verification on Large Digital Systems. Graph Theory with Applications

to Algorithms and Computer Sciences, John Wiley, pp.25-35, 1985.

D. R. Brasen and M. L. Bushnell. “MHERTZ:A New Optimization Algo-

rithm for Floorplanning and Global Routing,” 27th ACM/IEEE Design

Automation Conference, pp. 107-110, 1990.

M. Burstein and M. Youssef. “Timing Influenced Layout Design,” Pro-

ceedings of the 22nd Design Automation Conference, June 1985, pp. 124-

130.

H. Chen and D. Du. “Path Sensitization in Critical Path Problem,” IEEE

Transaction on CAD, Vol. 12, No.2, Feb. 1993, pp. 197-207.

W. Dai and E. S. Kuh. “Simultaneous Floorplanning and Global Routing
for Hierarchical Building-Block Layout,” IEEE Transaction on CAD, Vol.

114

[DONSY]

[DUN84)

[FCW67]

[FRA92]

[HAUS7]

[HITS2)

[HOR7S]

115

CAD-6, No.5, Sep. 1987, pp. 828-837.

S-K. Dong, J. Cong, and C. L. Liu. “Constrained Floorplan Design for

Flexible Blocks,” in Dig. Int. Conf. Computer-Aieded Design, Nov.1989,
pp. 488-491.

A. E. Dunlop et.al. “Chip Layout Optimization Using Critical Path

Weighting,” Proc. of 21st Design Automation Conf., pp. 142-146, 1987.

C. J. Fisk, D. L. Caskey, and L. E. West. “Automated Circuit Card

Etching Layout,” Proc. IEEE, November 1967.

Jon Frankle. “Iterative and Adaptive Slack Allocation for Performance-

Driven Layout and FPGA Routing,” 29th ACM/IEEE Design Automa-

tion Conference, pp. 536-541, 1992.

P. S. Hauge, R. Nair, and E. J. Yoffa. “Circuit Placement for Predictable

Performance,” Proc. of ICCAD, pp. 34-37, 1987.

Robert B. Hitchcock, Sr., Gordon L. Smith, and David D. Cheng. “Tim-

ing Analysis of Computer Hardware,” IBM J. Res. Develp., Vol. 26, No.1,

pp. 100-116, 1982.

Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algo-

rithms. Computer Science Press, Inc., Rockville, Maryland 20850, 1978.

116

[HWA76] M. Hanan, P.K. Wolf, and B. J. Agule. “A Study of Placement Tech-

[JACS9]

[JGs3]

[Jous?)

[KAN83]

[KGV83]

[KIC87]

niques,” Journal of Design Automation and Fault-Tolerant Computing,

pp. 28-61, October 1976.

M. Jackson and E.S. Kuh. “Performance-Driven Placement of Cell Based

IC’s ,” in Proc. of 26th Design Automation Conf., pp. 370-375, 1989.

D. Jepsen and C. Gelatt. “Macro Placement by Montecarlo Anneal-

ing,” Proc. of ICCAD. 3:495-498. 1983.

Norman P. Jouppi. “Timing Analysis and Performance Improvement of
MOS VLSI Design,” IEEE Transaction on CAD, Vol. CAD-6, No.4, pp.

650-665, July 1987.

S. Kang. “Linear Ordering and Application to Placement,” inProc. of

20th Design Automation Conf., pp. 457-464, 1983.

S. Kirkpatrick, C. Gelatt, and M. Vechi. “Optimization by Simulated

Annealing,” Science 220, 4598:671-680, May 1983.

Bernhard Kick. “Timing Correction in Logic Synthesis,” Proc. of ICCAD,

pp. 209-302, 1987.

[KIRK66] Kirkpatrick, T.I. and Clark, N. R. “PERT as an aid to logic design,” IBM

J. Res. Develop., vol. 10, no.2, pp. 135-141, March 1966.

[LAPS6]

[LAISS)

[MCNS90]

[MICS6]

[MS86)

[MSL89]

[NAIS9]

[NAS94]

117

D. P. La Potin, S. W. Director. “Mason: A Global Floorplanning Ap-
proach for VLSI Design,” IEEE Transaction on CAD, Vol. CAD-5, No.4,

October 1986, pp. 477-489.

Y. Lai, and S. M. Leinwand. “Algorithms for Floorplan Design Via Rect-
angular Dualization,” IEEE Transaction on CAD, Vol. 7, No.12, Decem-

ber 1988, pp. 1278-1289.
MCNC Group. OASIS 2.0 Reference Manual, 1990.

Alexander Miczo. Digital Logic Testing and Simulation. Harper & Row

Publishers, New York, 1986.

M. Masud and Sadiq M. Sait. “Universal AHPL - A language for VLSI de-

sign automation,” IEEE Circuits and Devices Magazine, 2:8-13, Septem-

ber 1986.

M. Marek-Sadowska and S. P. Lin. “Timing Driven Placement,” Proc. of

ICCAD, pp. 94-97, 1989.

Ravi Nair et al. “Generation of Performance Constraints for layout,” in

IEEE Transaction on CAD, Vol. CAD-8, No.8, August 1989, pp. 860-874.

Khalid Nassar. Timing Driven Placement Algorithm for Standard-Cell

Design. MS. Thesis, Dept. of COE, KFUPM, Dhahran, June 1994.

[0G84]

[Orb92]

[PRESS)

[SMo1]

[SRI92]

[SUT90]

[SUT93]

118

R. Otten and L. Van Ginneken. “Floorplan Design Using Simulated An-

nealing,” Proc. of ICCAD. 3, 1984.

Orbit Semiconductor Inc., Sunnyvale, California. Foresight Manual, July

1992.

B. Preas and M. Lorenzetti. Physical Design Automation of VLSI Sys-
tems. The Benjamin/Cummings Publishing Company, Inc., Menlo Park,

CA94025, 1988.

K. Shahookar and P. Mazumder. “VLSI Cell Placement Techniques,”

ACM Computing Surveys, Vol. 23, No. 2, June 1991,pp. 143-219.

A. Srinivasan, K. Chaudhary, and E. S. Kuh. “Ritual: A Performance-
Driven Placement Algorithm.” IEEE Transactions on Circuits and Sys-

tems - II, 39(11):825-840, November 1992.

S. Sutanthavibul, E. Shragowitz, and J. B. Rosen. “An Analytical Ap-
proach to Floorplan Design and Optimization,” in the 27th Design Au-

tomation Conference, 1990, pp. 93-98.

S. Sutanthavibul, E. Shragowitz, and Rung-Bin Lin. “An Adaptive Tim-
ing Driven Placement for High Performance VLSI’s.” IEEE Transaction

on CAD, 12(10):1488-1498, October 1993.

[SY94]

[TAN94]

[UEDS8S]

[V1I91]

[WIMS8Y]

[WL386]

[WT89)

119

Sadiq M. Sait and Habib Youssef. VLSI Design Automation: Theory and

Practice. McGraw-Hill Book Co., Europe, 1995.

Shahid, Tanvir. Genetic Algorithm for Timing Influenced Floorplanning

of VLSI Designs. MS. Thesis, Dept. of COE, KFUPM, Dhahran, Decem-
ber 1994.

K. Ueda, H. Kitazawa, and I. Harada. “CHAMP: Chip Floorplan for Hier-

archical VLSI Layout Design,” IEEE Transaction on CAD, Vol. CAD-4,

No.1, January 1985, pp. 12-22.

G. Vijayan and R. Tsay. “A New Method for Floor Planning Using

Topological Constraint Reduction,” IEEE Transaction on CAD, Vol. 10,

No.12, December 1991, pp. 1494-1501.

S. Wimer, 1. Koren, and 1. Cederbaum. “Optimal Aspect Ratios of Build-

ing Blocks in VLSI,” IEEE Transaction on CAD, Vol. 8, No.2, February

1989, pp. 139-145.

D. F. Wong and C. L. Liu. “A New Algorithm for Floorplan Design,” Proc.

of the 23rd DAC, pp. 101-107, 1986.

D. F. Wong and Khe-Sing The. “An Algorithm for Hierarchical Floorplan

Design.” Proc. of the ICCAD, pp. 484-487, 1989.

120

[YEN89] H.C. Yen, S. Ghanta, and H. C. Du. “Efficient Algorithms for Extracting
the K Most Critical Paths in Timing Analysis,” 26th ACM/IEEE Design

Automation Conference, pp. 649-654, 1989.

[YIN89] C. Ying, J. S. Wong. “An Analytical Approach to Floorplanning for Hi-
erarchical Building Blocks Layout,” IEEE Transaction on CAD, Vol.8,

No.4, April 1989, pp. 403-412.

[YOU90] Habib Youssef. Timing Analysis of Cell Based VLSI Designs. Computer
and Information Sciences, University of Minnesota, Ph.D. Thesis, Jan-

uary 1990.

[YOU92] H. Youssef, Rung-Bin Lin, and E. Shragowitz. “Bounds on Net Delays
for VLSI Circuits.” IEEE Transactions on Circuits and Systems - II,

39(11):815-824, November 1992.

Vitae

¢ Khalid Jawdat Kamel Al-Farra
¢ Born in 1967 at Taif, Saudi Arabia.

® Received Bachelor of Science degree in Computer Engineering from the King

Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Ara-

bia in January 1990.

¢ Completed Master's degree requirements at KFUPM, Dhahran, Saudi Arabia,

in June,1995.

121

