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In many practical situations, such as, in radar, sonar, spcech processing,
biomedical and gcophysics, samplcs of noisy signals arc available and it is
required to develop a suitable model or estimate its spectral contents. Tradition-
ally, modelling is done in the context of lincar prediction while spectrum cstima-
tion is determined via fast calculations on the periodogram. A multitude of mod-
crn modelling and spectrum estimation techniques have emerged the Iast decade
to improve the performance of the classical methods. A net success has been reg-
istercd with these new methods, specially in the often realistic situation of short
data length, a case where, gencrally, classical methods perform poorly.

A new optimal approach developed in the context of model reduction will be
applicd for the problem of modelling and spectrum estimation of signals. A
parametric ARMA modecl is explicitly derived to fit a finite sct of samples from
a noisy signal. Singular value decomposition of a Hankcl data matrix is per-
formed and a natural order of the model is suggested from the relative magni-
tude of the determined singular valucs. Unnceessary high order noise modelling
is thercfore climinated and noise frquencics are suppressed to produce the
desired deterministic frquencies of the signal.

The new algorithm for optimal signal modelling and spectrum estimation is
tested for various practical situations of short data length, different signal to
noise ratios and in the presence of close deterministic frequencies in the signal.
The performance of the new technique is compared, in all these cascs, with the
classical Pcriodogram and Blackman-Tukey methods and most of the popular
madcrn techiques of Yule-Walker, Burg, Cadzow, Beex, Kung, MUSIC, Prony,
Pisarenko and Tufts.

The mocrits of the new technique arc shown with respect to computational
complexity, relative performance under different noise levels and in the case of
short available data length.
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- CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

Spectral analysis plays a major role in modern communication systems . It
often forms the basis for distinguishing signals and cxtracting rclavent informa-
tion in the presence of noise and other interfering signals . In certain applica-
tions, measuring the waveform of the incoming signals in time domain does not
help in determining the different parameters of the signals . Consequently, encer-
gy content or power spectrum in frequency domain of the recevied signals is

often mcasured or estimated .

1.2 HISTORICAL REVIEW

In many practical situations, samples of noisy signals are available and it is
required to develop a suitable model or estimate its spectral contents . Consc-
quently, many mcthods have been proposed and developed achieving the spec-
trum cstimation . Some of these methods are called traditional methods and oth-

crs arc calicd modern methods .



There are two traditional methods in spectral estimation, both of which are
based on Fourier Transform . The first is the power spectral estimate based on
the indirect approach via an autocorrclation cstimate and was proposed by
Blackman and Tukey [27], [29], [41] . The sccond technique is based on the
direct approach via the Fast Fourier Transform opcration on the data and is
known as periodogram [27], [29], [41]. [61] . Schuster was the first to coin the
term “ periodogram “ [29] . He madc use of Fourier scrics fit to the variation in
sun - spot numbers in a trial to find ” hidden periodicitics “ in the mecasured
data . Then, Norbert Wicner treated stochastic processes by using a Fourier
Transform approach [29] . Later on, Welch [61] suggested a direct computation
of a power spcctrum estimate using Fast Fourier Transform . For short data
records, both traditional techniques perform poorly . Both of which have the
problem of windowing, which is assuming the data outside the interval to be
zero . Furthermore, they are poor in estimating very close frequencies [29] .

To overcome the aforementioned problems, new techniques were developed
based on assuming certain models for various systems . The parameters of these
models are estimated from the set of rcceived data . Rational functions can be
used as models . These rational functions can be all pole rational functions
(Auto-regressive (AR) models ) . The AR models were, firstly, used by Yule [62]
and Walker [60] to forccast trends in cconomic time serics . Then Burg [10], [ 1],
[12] in 1967 and Parzen [13] in 1968 employed these modcls in achicving spectral
estimation . The Burg’s method which is known as Maximum Entropy Method
(MEM) led to many concepts that arc now standard tools in spectral estimates .
Theoretical considerations concerning the development of MEM have been

introduced by Barnard ( in 1969 ), Edward and Fitclson ( in 1973 ). and Smylie



ct al (in 1973 ) . Van den Bos [59] showed that MEM is cquivalent to AR pow-
er spectral density(PSD) estimator .

Also, rational functions can be all zero rational functions ( Moving - aver-
age ( MA ) models ) [13], [29] . Or, in many applications, the models can be a
combination of both zeros ( notches ) and poles ( pcaks ) ( Auto - regressive
Moving - average ( ARMA ) models ) [13],[29] . The ARMA model is a com-
posite of an AR model and an MA maodel . Although, the ARMA modcl might
give better resolution and performance in spectral estimation for different appli-
cations, many practitioners prefer to usc cither AR or MA modecls .

Sinusoids at high signal to noisc ratios ( SNR ) can be modelled by all pole
model . While, at low SNR, the AR modcl of the signal containing both sinu-
soids and additive noise will give poorer resolution [64] . Pisarenko [45), in
1973, camc up with an alternative spectral estimation technique based on a time
series model of sinusoids plus additive white noisc . It is known as Pisarenko
H.armonic Decomposition ( PHD ) and is based upon a special case ARMA
model . MUSIC algorithm. proposed by Schmidt [52] , generalized Pisarcnko’s
method by rclaxing the uniform sampling restriction and is also capable of uti-
lizing all available autocorrelation lags in its solution . Recently, a new proposed
approach to the signal paramecter estimation probiecm called ESPRIT [68] ( csti-
mation of signal paramcters via rotational invariance techniques ) is used to csti-
mate the parameters of complex sinusoids observed in noise . MUSIC mcthod,
Pisarenko’s method, and ESPRIT cxploit the underlying signal model . ESPRIT
has advantages over MUSIC in direction finding applications and in spectral
cstimation with nonuniform sampling . Also, it and MUSIC have advantages

over Pisarenko’s mcthod in utilizing all available lags obtained from the data .



Prony, in 1795, developed a technique for modeclling data of cqually spaced
samples by a lincar combination of cxponentials while studying the cffects of
alcohol vapor pressures . Later on, Prony’s method has been cxtended to csti-
mate the power spectrum . It is applicable for a process consisting of damped
sinusoids in noise and it is known as Pi'()n}' Energy Spectral Density Estimation
[29] . A spccial variants of Prony’s method has been investigated for a process
containing undamped sinusoids in noise . This approach is known as Prony
Spectral Line Estimation [29] . Becx and Scharf [3] applied the modal decompo-
sition to a covariance sequence data instcad of a data as Prony’s method . Also,
they generalized the Pisarenko approach by fitting a deterministic damped sinu-
soid to the empirical correlations .

Capon [14] , in 1969, devcloped a technique for scismic array frequency -
wave number analysis . This technique can be applicd for estimating the power
spectral density ( PSD ) . It is well known as the Maximum Likelihood Spectral
Estimation ( MLSE ) [14], [29] . Lacoss [40] compared MEM with MLSE and
other conventional mcthods .

A common problem with all thc paramctric methods is the determination
and the sclection of the model order . Different criteria have becn proposed to
determine the appropriate madel order [29], [57] . The singular value decompo-
sition (SVD) technique can play an important role in sclecting the model order
and estimating the power spectrum .

Bascd on the above, ncw different techinques in spectral estimation depend-
ing on SVD approach have becn proposed . The SVD has been used by Tufts
and Kumaresan ( TK ) [34] in cstimating the frequencies of damped or

undamped sinusoids . Also, it has been used in the Suboptimal Hankel Method



( SHM) for cstimating the posver spectrum by Kung et al [37] and others . Fur-
thermore, Cadzow [13] has developed an cfficient spectral estimation technique
based on ARMA modcling z2nd has proposed that SVD can be applied . This
SVD based modelling perfoms well for the problem of short data records and
results in lm\; variance . It improves the accuracy of cstimation and it gives good
results . In the context of model order reduction of complex systems, Bettayeb
[5], [53] developed a model based on SVD approach known as Optimal Hankel
Model .

1.3 SCOPE OF THE THESIS

All the work in this thesic has been carried out on different sets of real data
. This data matches practical situations . Simulations were donc using Fortran
programs .

In this thesis, most of the popular methods of power spectral estimation and
frequency estimation will be reviewed and programmed in a single package .
Also, an algorithm based on Hankel approach developed in the context of model
reduction [5], [53] will be applicd to the problem of power spectral estimation.
This new optimal Hankel ( OHM ) algorithm will be evaluated and compared
with some of the above methods . These methods will be evaluated on various
different cxamples containing cither AR process, MA process, ARMA process,
sinusoids (damped or undamiped), or a combination of both sinusoids and
rational modcls. The cvalution will take place in the presence of noise. The

above will be considered for both direct data approach and covariance approxi-
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mation approach . Many important aspects of the problem will be investigated .
These include the cffects of data length and the signal to noise ratios ( SNR ) on
the performance of the algorithms . Resolution in terms of closseness of frequen-

cics in the spectrum will, also, be investigated .

1.4 THESIS ORGANIZATION

In chapter two, the traditional methods of power spectrum estimation are
described . Also, some of the aforementioned modern methods will be explained
in bricef .

The algorithm ( OHM ) for spectrum estimation will be presented and
cxplained in chapter three . Also, some sensitivity studies and model selection
criteria will be presented .

In chapter four, a comprehensive simulation study will be carried on for all
algorithms using different examples . Some conclusions and remarks will be
drawn .

Some of the frequency estimation techniques will be presented in chapter
five . Also, they will be tested for several examples and some conclusions could
be drawn .

Finally, conclusions and suggestions for further work are given in chapter



CHAPTER 2

POWER SPECTRAL ESTIMATION
TECHNIQUES

2.1 TRADITIONAL METHODS

There are two spectral estimation techniques based on Fourier Transforma-

tion.
2.1.1 Periodogram Method:
2.1.1.1 Definition of the periodogram:

Estimation of thc power spectral density of a discrete sampled deterministic
or stochastic data usually depends on algorithms based on the Discrete Fourier
Transform (DFT) . When the process x(m) is a wide sense stationary stochastic

process, the autocorrelation function

| Nedn- )
R,(n)=W f x(m)x(n+ m) i on=0,%1,.,=(N-1) 2.1

m=0

provides the basis for spectrum analysis rather than random process x(m) itsclf .
The Wicner-Kinchine thcorem relates the autocorrelation function via Fourier

Transform to the power spectral density,



0= ""f’l)nx'(nse'ﬁ'f" (2.2)
n (N-

With the assumption that the process is ergodic and knowing the Fourier
Transform of the scquence, it is possible to rewrite cquation (2.2) in another

form . Thc DFT of the real finite-length sequence x(m), 0smsN-1 is:

XM= Nzlox(m)c'jz"f’" (2.3)

Then, substituting (2.1) into (2.2), we get :
L=< X T (2.4)

where the discrete 7 (f) has been termed periodogram spectral estimate .
2.1.1.2 Welch method - Averaging over short, modified periodograms:

Welch [61] has suggested a direct computation of a power spectrum cstimate
using FFT .

Let x(i), i= 0,1, ..., N-1 be a sample from a wide-sense stationary scquence
with zcro mecan . Taking scgments, possibly overlapping, of length L with the

starting points of these segments D units apart, it will lead to :



x,(N=x(i) - (2.59)
x () =x(i+ D) . (2.5b)
x, ()= x(i+ (k-1)D) (2.5¢)

where (K-1)D+L=Nand i=0,1, ..., L-1

For cach scgment of length L, the modified periodogram will be calculated
That is, a data window, W(i). i=0,1, .... L-1, will be sclected. and we form the
scquences x, () H(1),...x ()H(i) . Different choices for the data window or
weighting function, such as Hanning and Bartictt, have been suggested . The
choice of onc depends on the type of applications . It i< usually chosen so that
the resultant spectral window arca is unity . Weighting functions have the com-
mon featurc of multiplying the unmcasured samples by zero . The particular
weightings applicd to the known samples goyerns the shape of the corresponding
frequency window which when convolved with the true power spectrum gives
the estimated spectrum . The Fourier Transform  will be computed for the
above scquences . That is,

Jond

J(n) = —I]—ijk(i) W@ e - (2.6)
{70

Finally, the K modificd periodogram will be obtained .

WO = Buel k=12, 0K 2.7)
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where

and

1 &
U=+ i 1) (2.8)

The spectral cstimate will be the average of these periodograms.

_ 1
PO =% 310 (29)

This method will be applied for different examples in the fourth chapter.

2.1.2 Blackman - Tukey Method:

This method will cstimate the power spectral density ( PSD ) via an auto-
corrclation cstimate . With a finite data record, only a finite number of discrete

autocorrclation function values can be computed . Blackman and Tukey pro-

poscd the spectral estimate [29]:

P, ()= At ﬁN R (n) ¢ (2.10)

-1
2At

1
2At

where

<f<

and R (n) can be computed from equation (2.1).

The above two methods have advantages and disadvantages as mentioned
before . Both of them are computation cfficient . The power spectral density

estimate is dircctly propotional to the power for sinusoid processes . On the oth-



cr hand, the frequency resolution is limited by the available data record dura-
tion and the cstimated power spectral density will be distorted due to the side-
lobe leakage, which is a result of windowing . Also, in the BT approach, some

" negative PSD values will appear .

2.2 MODERN METHODS

Given any sct of data with length N:
Y, =8, +w, ,SksSN (2.11)

where, y, is the received signal , 5, is the infermation signal and w, is any white
random noise . The problem is to estimate the power spectral density (PSD)
from the received noisy data . The parametric power spectrum estimation con-
sists of developing a lincar model in state space or frequency domain that fits
the data in some manner . A rational transfer function model can approximate
many dcterministic and stochastic discrete - time processes, the output sequence

¥, and the input sequence n, arc related by :

¥y =Jz‘abj Moy = '}:ai P (2.12)

cqn (2.12) can be rewritten as :

ibj My = 2‘% Ve (2.13)
o) 0

-

where ay=1
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Taking the z-transform for both sidcs in egnuation (2.13)
NZ) Y bz = Y@ Saz | (2.14)
j-o 10

Thercfore, the gencral transfer function is :

} B(z) ¢ i

A= 1@ _ B2 _ j 2.15

1(2) ) Y — (2.15)
r(li

And, the power spectrum of the output, P(z), is related to the input power

spectrum, P (2), as follows

P(z) = 1P P (2) (2.16)

With the assumption that the input is white - noise scquence with zero mean

and variance €2 . Thercfore, the input power spectral density function is given by

P (2) = £ At (2.17)
with
-1 1
PRy

This will reduce the problem to a matter of estimating the paramcters of the

filter .



Multiplying both sides of eqn.( 2.13 ) by v, . and summing over k will give

ibj iyk-n My = i"i i Pien Vi (2.18a)
8’ i Ko

i
Taking the cxpectation, equation (2.18a) will yield :

Yo R (=) = Y a R (2.18b)
sl A

Jj=

But R () = Ofort > 0 since a future input to a stable, causal filter docs not
affect the present output and n, is white noise process . Thercfore, equation

(2.18b) will be reduced to :

$4 8,0, M5
S Rewp = {f37 " (2.18¢)

-0 0 . otherwise

From the derivation of the Yule-Walker equations, it was proven that :

R"y(l) = g h_

4

where €2 is the variance of the white noise, and therefore,

i-0

2¥p o, M4
Ya Rni) = ALt (2.180)
0

. othenvise

Expression ( 2.18d ) is the gencral Yule - Walker cquations .



14

2.2.1 The AR PSD Estimation: [13,29]

Given a zero mcan signal y,, we wish to cstimate its PSD based on all pole
modcl via Yule-Walker equations . To determine the AR parameters, one need

only r cquations from (2.1&d) for n > 0, solve for { @,.a,.....a }, and then

find € from (2.18d) forn = 0.

Recalling cquation (2.18d), when n=0, it will be reduced to

:Zbai R(-) = ¢ (2.19)

The iterative Levinson-Durbin algorithm in solving equation (2.19) is given

in steps as follows :

1. For k=0, &5 = R(0)
2. For step k with q (k) = 1.
a. K== ¥ ak1) R
€. 70
b. a,(k)=K,
c. Fori=1 to k-1

a(k) = a(k-1y+K, a, (k-i)

d. a=c,(-K)

Where K, arc known as reflection cocfficients. Then, the estimated PSD for

modecl order r will be ;
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]

Tf.‘.\l ’
P\ = 4 (2.20a)
) , 2
lZa',(r') |
i-0
where
z = g (2.20h)

The problem of AR parameter identification is rclated to the theory of lin-

car prediction. Given an AR process, v, we wish to estimate &, as a linear com-

bination of the past values and the model is all-pole predictor . The lincar pre-

dictor [29] is :

% = =S, (2.21a)

Then { 5,,5,,...,5 } can be chosen to give the minimum prediction error
power .

The forward crror is ;

r

Ve = h = Yan, (2.21b)
1- 0
and, the backward crror is :
r41
6 = Y b v, (2.21¢)
i

By using the orthogonality principle,

E{fiy) =0, ,forl = k-1,k2,.. kr (2.21d)
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the minimum prediction error power can be found . Also, it was found that the

best lincar predictor is just when s, = a, for i = 1,...,r.

2.2.2 Maximum Entropy Method:

Burg [10] has proposed an identical method for AR PSD method . Both of
them arc identical for Gaussian random process and known autocorrclation

sequence of uniform spacing . It can be shown that the entropy rate for a Gaus-

. . . I . .
sian random process with zero mean and bandwidth B=-i—7-_- is propotional to

R
[ (2.22)
B

where, P, (f) is the PSD of the recevied data .

Pen( is found by maximizing cquation (2.22) subject to the constraint
that this function will be consistent with the given sct of (r+ 1) lags through the
Wicner-Kinchine relationship . The solution is found by using the Lagrange
multiplicr technique and it is all-pole model . Then, the problem is to find the

prediction cocfficicnts ;s of this model . So, we will be finding the value of K|

which minimizes the sum of the squarces of toth forward and backward crrors .

This is

l .
L= m,ﬁ ' j,?(') + (:".24 |(r) I (2'23)

where the forward and backward error are rclated by :
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F0) = fr1) + Ko 00 (2.242)

e (N = e, (r-1) + Kf, (1) (2.24b)
Therefore equation (2.23) will become :
] i-" [ LD+ Kefr-D) l2 + | efr-1) + Kf(r-1) 'z ] (2.25)

E= 557 2

Diffcrentiating cquation (2.25) with respect to the reflection coefficient K :

Al -
65: = (N‘.r) FK1Ar-1y + orly |+ 26-1) f(r-1) | (2.26)

Equating cquation (2.26) to zcro gives the following formula for K :

N-)
Zci(r-l)j;(r-f)

K =-2

r

. =22 (2.27)
'i A=) + -1 n

The Burg’s algorithm can bc summarized as follows :

For k=0
_| 2
a  RO=- f' v,

b. S(0)=y, and c(0)=y,,

For step k



a. Kk=-2%

b. a(k) = K,

c. For j=1 to k-1

a(k) = afk-1) + K, a, (k-1)
d. R =3 aIR ()
c. For i=k to N-1|

f(k) = fk-1) + Ke(k-1)

e(k) = e, (k-1) + K, [ (k-1)

Then the estimated PSD via MEM for model order r will be :

r.fAl
Py(n o, 2
1y am 2l
i-0
where
z= CJZ-.ﬁA'

2.2.3 Cadzow’s Method:

IR

(2.283)

(2.28h)

Cadzow [13] has proposed that the singular value decomposition (SVD)

technique can be applied to ARMA modecling . Rccalling equation (2.18d), we
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find that :

q P,
&Y bhy, - Z' a,R(nD) . I <q,

R}_(n) = ,
- zl a Ry(,,_,') , otherwise
=

Since, this modcl is rational with p,>g,. the extended Yule-Walker equa-

tions [13] can be found for n2q,+1 . It follows :

P
za‘. R (n-) = 0 , for n 2 g +1 (2.30)
=0

The extended Yule-Walker equations will be evaluated for 7 distinct values
of n which are satisfying /2p, + 1 and n2q,+1 . Equation (2.30) can be written in

matrix form as follows :

[ R4+ DR(q)...Req, —p, + D] 0
Riq, + 1) 9 0
=1 (2.312)
_Ry(qe +4. . Ry(qe -p, th 11 a, 0
or,
RA=0 (2.31b)

The Cadzow’s algorithm for power spectral density estimation is given in

steps as follows :



Perform the SVD to the autocorrelation matrix R_. R, is an Ixp +1

matrix .
— vy T
R =U%LI (2.32)

where, U and V are /> /and (p,+1) > (p,+1) unitary matrices respec-
tively, and X is a /> (p,+1) matrix . The required AR order r is

obtaincd by cxamining thc computed singular values . Therefore, the
net result of this step will be a rank R optimum approximation of the

[ » (p,+ 1 extended order autocorrelation matrix, that is,

R=Uvz 1" (2.33)

A simple matrix manipulation reveals that this rank r approxima-

tion may be cquivalently represented as:
R = Zloﬁu,.vz. (2.34)
&

where u, and v, are i” column vectors of U and V matrices .

Estimate the autoregressive parametcrs .

a. For ARMA(p,, q,) model .

The matrix R can be rewritten as follows :

R =R R) (2.35)

where, R) is a /> 1 column vector of R and R is the Ixp,

matrix of R} . The AR parameter vector A can be computed,
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with first component equals to one, as follows [13] :

= =RV RT'IRIR, (2.36)

Or, the minimum norm solution can be simplified to [13] :

i T"_( 0)\".

A N— (2.37)

14
Y, mof

i-rsil

-

where, v, is the i” column vector of the matrix V and ¥(0) is the
first component of the vector v, .

For ARMAC(r,q) modecl

Here, we will seck for an AR model with order r and r<p,.

The matrix S* will be formed as follows :

“r
p-ril

s = .21 IRY R, (2.3%)

where Ry is a [x(r+1) submatrix of R and it is composed of

the columns (i) through (i+1) of R . The AR parameter vector

A can be computed by solving the following equations :

§A=ae (2.39)



where the constant a can be found by letting the first compo-
nent of A cquals to onc and e, is the first column vector of the

identity matrix . |

3. Estimate thc moving average parameters .

These paramecters can be obtained dircctly by passing v, through
A(2) whose cocfficicnts correspond 1o AR paramecters obtained above .
The filtering yiclds the so-called residual time scries . This filtering caus-
es the residual time scrics to bc a moving average process of order q .
The autocorrclation lags of this residual time series can be computed as

follows :

.. Inl=q
i i a,q; Ry(n+.1-1) .

R,”(n) = iT0:-0 (2403)
0. otherwise
4. Computc the power spectral density
i R, () PiaE
Py = 2 (2.40b)

r . 2
1Y () 2l
i-0

2.2.4 Suboptimal Hankel Method:

Given any sct of data with length N,

y,=5tw, 1sks<N (2.41a)



where, v, is the received signal, s, is the information signal, and w, is any white

random noise . A state space representation is given as :

X

e = Ax, + by, (2.41b)
¥e=ox, (2.41¢)

where, x, is the state vector and it is a r @ 1 vector process . A, b, and ¢ are con-
stant matrices of sizes rxr,rx1,and | xr respectively . Also, v, and u, are

the output and the input vectors . Finally, r is the model order . The transfer

function rclated to the above state space representation as :

¥(2)
U(2)

= F2) = ccl-A'b= 3 bz (2.42)
0

where, F(z) is the frequency domain transfer function . Thercfore, the relation-
ship between the impulse response of the model and state space paramecters is

given by :

h, = eA*'h (2.43)

The infinite Hankel matrix is defined as:

[ A hyhy e ]
h, 113 h, . .. cA
2
TN BRI I L FT TS

= oC (2.44)
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where O is the infinite observability matrix ‘and C is the infinite controllability
matrix . Because our data is limited, then, the infinite Hankel matrix can not be
formed . So, we have to pend with different variants to justify the rcasonable
approach .

After the Hankel matrix has been formed, two steps should be carried in
order to determine the state space parameters . This approach is due to Kung
et al [37]. The algorithm can be summarized as follows :

1. Pcrform SVD of the N x N Hankel matrix H and order the singular val-

ucs of H in descending manner :

O

4 =

~

=z’ =1u, U,

l (2.45)

w—
R

where X, is the size 7> r matrix and it contains all the dominant singular
values . While, X, contains the smaller singular valucs . As a result of

the above, H can be approximated as :

- P P
=Uz1 =0C, (2.46a)

where

0,= UL , and C =5'¥ (2.46b)
Also, a balanced rcalization can be obtaincd by choosing:

O=Ux", ad C =317 (2.46¢)
If we define

1" = 04C, (2.47a)



25

then,
A=O/ I C=0/0,=C C | (2.47b)

where
0, = (0/0,)'0] (2.482a)
¢ =clicay' - (2.48b)

where, O is the submatrix of O, shifted up by onc row and C7 is the

submatrix of C, shifted left by onc cclumn .

2. The state spacc parameters can be fermed as @
a. b is the first column of C,
b. c is the first row of O,
C. A is given in (2.47b)

3. Obtain F(z) = c(zl-A)'b
4. Find the power spectral density (PSD) :

P = F&)F (2)

where, F (2) is thc complex conjugate of F(z) .

2.2.5 Covariance Approximation Method:

The parametric covariance scquence approximation for the purposes of

model identification and spectrum estimatior. was proposed by Beex and Scharf



[3] . The order - r covariance sequence approximant can be wrilten as :
Lok
R (r) = . IA,.z,.
[

R.(r) = R,(1)

2,
z,=pge

(2.49)

(2.502)

(2.50b)

where, z, is the i" complex parameter for frequency f,. with radius p. and A4, is

the corresponding mode weight . The problem is to estimate a finite covariance

string (R(0), R(D),..., R(N-1)) from a noisy data record and identifying the

parameters ( 4,z ) to fit R,(r) to the string . The covariance sequence can be

estimated as follows :

1 Nk
k= N—1k] YiVran

L Rk=0,%1,.,%(N-1)

The problem arises in fitting R, with R, (r) .

1. Lcast squares :

The squared crror between R (r) and R, is defined as follows :

(LA}
F= S (R-ROT
k= <«N-1)

(2.51)

(2.52)

Taking the derivatives of E with respect to ( 4,,2z,). i=1.2...,r, and sct-

ting them to zcro will yicld a discrete form of the Aigrain - Williams

cquation .
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‘5'-1; (A= . - ikl
JALCIRS [R-R.(N)Z" =0 (2.532)
A, ,‘-;M) ko Tk d
' (- )
e _ Y IR-RMIZMN Ak =0 (2.53b)
0z, Tk

fori=1,2,..,r
By using the symmetry of R, and R,(r) sequences. the above system

of cquations can be written as follows :

PTOR = P'OPA (2.542)
T 7 .
P QR =T QrA (2.54b)
]
Zl ZZ Zr
P =
z;" z:"
10 .0
020 0
002 0
Q =
00 . 2
where,

T _
RT = (R, Ry sy R )



2.

=3 4%l

The madified squared crror :

The modified squared crror can he written as follows :

(N o r
E.=Y (Y alR R (NI a=1 (2.55)
k=r 170

If we select the filters weights to give :

r

Y a: = fii-27") (2.56)
-0 i

The approximating scquence R,(r) will satisfy the following homoge-

nous cquation on its tail :

i aR =0, for k2r (2.57)
i

This will reduce cquation (2.55) to be :

(N-DH _r
E,= Y 1Y aR, P .a=1 (2.58)
~r (-0

Minimization with respect to a, will lead to a covariance method of

lincar prediction on the tail of the covariance scquence [3] :

RTRa= —R"r (2.59)



where,

[ B

N2 BN

ro=(RLR R

T _
a =(a,aq,... a,)

The algorithm will start in part(2) as follows:

1. Find the covariance lags from equation (2.51)

2. Solve for g, in cquation (2.59)

3. Find the coressponding modcs z, from equation (2.56)
4. Solve cquation (2.54) to get the mode weights A,

5. Perform the DFT for R,(r) to get power spectral density

2.2.6 MUSIC Method:

The multiple signal classification ( MUSIC ) algorithm is basically devel-
oped by Schmidt [52] . It estimates the frequencices of the sinusoids as the peaks
of the ” spectral estimator “ [52] . This mcthod is applicable for the data consist-

ing of r complex ( real ) sinusoids in complex ( real ) white Gaussian noise [27]



po= Y Al M (2.60)

For w_ is complex ( rcal ) white Gaussian noise with zero mean and variance

gn=12..,N.

The autocorrelation function for the random process given in (2.60) is given

as follows :

L4 U )
r(n) = ,Zl A?c + r.ZS(n) (2.61)

With the assumption that the phase is independent random variable and
uniformly distributed over the interval [0, 2 ) . So. the general AN~ N auto-

corrclation matrix Ry can be found as:

RAL N ’,-('N)-
r(1
R =1 | (2.62)

y

FURE r(0)

where the matrix R is Tocplitz .
The matrix Ry can be written in terms of the autocorrclation matrices of the

information signals and the noise .

R =R+l (2.63a)



r(0) (N
r(1)

R =1|" ' © (2.63b)

i rs(]\’) v .'"(6) )

Where the rank of the matrix R, will be r while the rank of the matrix R is

N, which is duc to the additive noise . The n:atrix R, can be rewritten as follows

R =Y Aec (2.642)
1

where

Jo, 3 cjm,(l\'- n

e, =11e¢ ] (2.64b)

and, ( * ) denotes the complex cojugate transpose .
The identity matrix can be written in terms of orthonormal set of vectors as

follows :

1=3 v - (2.65)

Where, V. is a N x 1 cigenvector corresponding to A, cigenvalue of the matrix
R, . The nonprincipal cigenvectors arc chosen to be (N - r) cigenvectors of R
that have smallest cigenvalues [27] . Based on the orthogonality between those

vectors Vs, the power spectral density can te cstimated via MUSIC method as

follows :



(2.66)

Equivalently, Kay and Demeure [26] shewved that P(f) can be computed this

way:
Py = T—_IN/T (2.672)
where
P = 2. ey VR (2.67b)
and,
¢ = V,‘.N ¢ (2.67¢)

Theoretically, the estimated power spectrum should go to infinity as f

approaches any sinusoidal frequency .

2.2.7 Maximum Likelihood Method:

Capon [14], in 1969, dcvcloped the maximum likelihood mclhod'( MLM)

for scismic array frequency - wave number analysis . This technique can be
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'

,
i

“applicd for cstimating the power spectral density ( PSD ) .
Supposc that a discrete time series is to be filtered, the sampled output is

“obtained as

Yo T i G Xpa1a (2.6%)

where x is the input and the a,’s arce the filter cocfficients .

This mcthod is applicable for the data consisting of complex ( rcal ) sinu-

soids in complex ( real ) Gaussian noise .

x, = Ad* + n

\ \ (2.69)

The filter weights are chosen to pass 4 ¢ and reject 1, . If v, is to be an

unbaiscd estimate of 4 ¢**,

At = ¥ g a0 (2.702)
1=
or,
§ a4t = (2.70b)
i=1
To obtain the cocfTicicnts of the filter, one minimizes the variance of_v,‘.' giv-
cn by

t2 = a Rn (2.71)

where R is the N x N covariance matrix of the noise process . Then, the estimat-

«d power spectrum is given by



_ (2.72)

Py =
where,

e =1 .. "N (2.73)

and * dcnotes complex conjugate transpose .

2.2.8 Prony’s Method:

Prony, in 1795, developed a technique fer modelling data of equally spaced
samples by a lincar combination of cxponentials . Prony’s method has been
cxtended to cstimate the power spectrum of a process consisting of cither
damped or undamped sinusoids . Originally. the exact procedure fitted an expo-
ncntial curve having r cxponential terms to 2r measured data . Here, an approx-
imate fit with r exponcntials to a data scquerce of length N is desired, such that
N>2r, a least squares cstimation procedarc is cncountered . The model
assumed in the extended Prony mcthod is @ sct of r exponentials of arbitrary

amplitude, frequency, damping factor, and phasc . The discrete-time function
5 =Y b2 s h=0,1,.,N1 (2.74)
=1

is the proposed model to approximate the N data mcasurcments. In general .

b, and z, arc assumed to be complex and

b= Ad" (2.75a)
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z = ot TR (2.75b)

Finding the parameters and r that minimize the squared error
E=S1in - 0P (2.76)
k-0

is a difficult nonlincar lcast squarcs problem . The solution comes by realizing
that equation (2.74) is the homogencous solution to a constant cocfficient lincar

difference cquation . Define the polynomial G(z) as
G(2) = krj_l(z -z) = Zoa 2 ey =L (2.77)
Equation (2.74) can be rewritten as follows :
- .Z. b 2" . 0< k-n S N-1 (2.78)

Multiplying cquation (2.78) by a, and summing over the past r+1 products

results in :

Z a., i h, i a z:‘"' (2.79)
i1 n-0
If in equation (2.79) the substitution, zf‘" = zf" “"is performed, then

> a,ﬁ“ Zb 3y a z" =0 (2.80)

=)

Therefore, cquation (2.80) yiclds the recursive difference equation
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%= -Yal, (2.81)

defined forr < n < N-1

Thercfore, the cocfficicnts a,'s can be determined by any AR parameter csti-
mation algorithm mentioned before . Then, the roots of equation (2.77) can be
determincd . After that, expression (2.74) reduces to a sct of lincar equations in

the unknown b, parameters, expressible in matrix form :

PB =Y (2.82)
where,
[ 1 1 ' i
zl 22 zr
P =
N C N
“1 2'

B=[bb,.57

V=182V

Thus, the amplitudes and phascs can be determined by :

B=1rr'ry (2.83)
Then, compute
A = |b] (2.842)
0 = | Im{b‘) 5 4b
{ t Reib) ] (2.84b)
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a, = Injz}| (2.R4¢)
1 '|ﬂ(ﬁ _
Relz) |
S = — (2.84d)

Finally, the spectrum can be obtained by computing the transform of expo-

nential model and taking the modulus .

Pl‘mnym = I ?(n |2 (2.85%1)
where,
z » 20,
Y = Y 4¢"— — (2.85b)
SR LR VA b

This mecthod will not be simulated and tested because it is more or less a
special case from Tufts-Kumarcsan method and related to Covariance Approxi-

mation mcthod .



CHAPTER 3

OPTIMAL HANKEL METHOD

3.1 OPTIMAL HANKEL ALGORITHM

The optimal Hankel approximation for a fgivcn N samples of noisy impulse

response was developed by Bettayeb [5,53] in tiw context of model reduction and

identification of lincar dynamical systems .

Let

¥(2)= ily,z"

where y/’s are the samplces, and lct

IR, = max a8

05052-
be the infinite norm. Then, the following result is given in [5,53].

Theorem :

The unique approximation g'(z) which minimizes ||Y(z2) —g(2)ll, over all

rational functions with r-stable poles is explicitly given by:

= N-J-1
Jgjz ilyl-m 1M 1
£

g(2)==
1

) i
i1

(3.1)

1



K _— T . . . . o e R
where M =[m, m, ... m,]" is the cigenvector corresponding to the (r+ 1) cigenva-

luc of H, and

_y‘ }’2 o yN .
J'z J’3 . 0
my =1 (3.3)
In .
-),N 0 e o e 0 i

It is noted [5,53] that the optimal g'(z) is not necessarily stable. The stable

part is obtained for power spectrum estimation by partial fraction cxpansion.

Of course, the ncw truncated g3(z) is not optimal in the sense that the infinite
norm || ¥(z) — g3l is not minimized to be @ . But, the corresponding Hankel
matrix in the time domain is optimal because it minimizes the spectral norm

WH — A'll, (Il X1, = max eigenvalue of/\'TX ), to be o,,, as any noncausal

unstable part of g'(z) has zero contribution to t:hc clements of the Hankel matrix
|

[5,53] . However, good suboptimality is ()bt.aifnccl. A constant term can be add-
|

i

cd to control the error || ¥(z) —g¥ Il [64]. |

The algrithm can summarized as follows :

I. Form the Hankel matrix H, given in (3.3)
2. Find the cigenvalucs of H,, by |H, — A|=0

3. Determine the model order (1)

4. Find the cigenvector M associated with the cigenvalue A ,,, where
{x,, | = o,,, and the singular \'alllcs of H, arc ordered in the

descending manner.

5. Form the transfer function g'(z)given in 3.2)
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6. Perform the partial fraction expansion on g'(2) to to get g3(2)

7. Dectermine the power spectrum Py(/) = ng',,(z)l2

3.2 SENSITIVITY STUDIES

The optimal Hankel Transfer function can be written in terms of state-space
i paramecters as follows [5]:

o o B !
A A) ey, (3.4)

£@=¥7) - o, 57—
Ve, U-zay!

- where,
Y(Z)= c(zI-A7'b (3.5)

- ©,,,is the (r+ 1)"singular value, e, is the (r+ 1)* column of the identity matrix.

A.b, and c arc balanced realizations and can be otained by starting with equa-

~ tion (2.46¢) and following the same procedurs explained in section(2.2.4).

Derivatives with respect to parameters:

i) with respect to b,’s where b=[ b, b, ... b

It can be shown that :

T -1
1 eHl(:I-A) e o
£)- ¥z 3.6
oy ey TG (3.6)

%) - 7700 +
2, 7" 0c,

where,

Z=l"'zt ..
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cA

ando = | ¢!

O is known in the litreturc as the observability matrix.

if) with respect to ¢'s where c=[ ¢, ¢, ... ¢]

It can be shown that :

, Toap Ay
®E) - T, LA G (3.7)
ac [ Bt r+t T -1 .
1 e, (I-z4)"b

where C is the controlability matrix.

C = [bbAabA®..)

iii) with respect to a,, where

a,a;, a, ]

a9 W,

_ arlarZ T |
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It can be shown that :

,(‘.l -A)! €. 270 —

22 _ 770 cz-q,,,
de, r el I(I-zA) '

1 ,”(zl A" e,

"(2)=Y(2)] :=C,Z 3.8
Soor el-zA) e [g'(2) - Y () =C, (3-8)

where

0,=Oe, and

_..T
C=e C
The observability Grammian is defined as ¢
W= 070=3 (A" ed" (3.9)
i=0
Similarly, the controllability Grammian is defined as :
W= ccT=3 AtbTa” (3.10)
i+ 0
The overall sensitivity is found by combining the sensitivities of the parame-
ters. The paramecter scnsitivity based on p-norm is defined as [7.9]:

W)= 2_11: j:'|n(d'°‘)|’dm (3.11)

and the overall sensitivity is defined as :

S = 65 (2) + ag(z)| - agr(z)nz 3.12
EDNE AR e AP ol (3.12)



Here, we will study the sensitivity based on /-norm and /-norm which have
been extensively used by Rao.
Using the /-norm critcrion, it can be shown by using Holder’s inequality

and Cauchy-Schwartz incquality that the individual sensitivitics are bounded .
Thercfore, the /- norm of the deviations with respect te b, is bounded as fol-

lows:

Rt ng (Z) ”l < ";0 2 (

"I

where

0 _ T - 2
U Kk~ Okok - ”Ok'lz

Also, the /- norm of the deviations with respect to ¢, is bounded as follows:
a r
n%}z’n, < Wi, (3.14)

where

- T e n2
Wfl" GG =G,
Also, the /- norm of the dcviations with respect to a,, is bounded as follows:

ilﬂll, S WIS+ a2, (W2, +1V)) (3.15)

Substituting cquations (3.13),(3.14), and (3.15) in (3.12), the overall sensitiv-
ity will be bounded by :
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S'S(H'ﬁf")laz." ;u"; + 207, + Zu “‘:Z"{ =0 (3.16)

where Q can be minimized for the balanced systems of coordinates by using the

following results [9]:

z W ): W "_(r/\) (3.17a)

}: e+ ;li’;zzm (3.17b)
k_

As a result, it can be shown that Q has a lower bound as follows:
Q2(1+r0l, J2rA)+ 2107, +(rA) (3.18)

where

This will Icad to bound the overall sensitivity by :

”ank I-(l + I'U r+ |)(2rA) + 2'0’ + (r,\)z (3' 1 9)

From [9] the balanced sensitivity is found to be bounded as follows:

S A +(rA)} (3.20)

balanced

If o,., is small enough the S,,,,,., will be reduced to the §

halanced *

Using the /,-norm, it can be shown that [7]:

Speaag S +r07 ”)(2;/\)+2m,”4 (rA) + 2(rA) ZHA I1? (3.21)
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where the balanced sensitivity is given as [9]: -
S,,,,,,,mdsm"W’”"'\”Z”A"ll’ (3.22)

If o, ,, is small enough the S, _,_, wil! be reduced to the §

halanced *

3.3 MODEL ORDER SELCTION

Since the best choice of the mode! order ( r ) is not generally known a priori,
it is usually necessary to assume several model orders . Too high a guess for
modcl order adds spurious detail into the spectrum.  Too low an order results
in a highly smoothed spectrum [29] .

Different criteria have been developed to achieve the sclection of the AR
modcl order . Akaike has introduced two criteria . The first one is the final pre-
diction crror ( FPE ) . This criterion chooses the order so that the average error
for a one step prediction is minimized. It is defined as the mean squarc pre-
diction crror . Or, alternatively , if for a given AR process we define #. as the

cstimated prediction of y,, then

FPE = E{(3, - )} (3.23)
which reduces to :

o = 2 N+r+1

FPE, E'(—_—N- — ) (3.29)
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Details for the derivation of cquation: (3.24) have been presented by Akaike

and Ulrych and Bishop [57] . Where N is the number of samples. r is the model

order, and €] is the prediction crror power . Notice that from cquation (3.24), ¢

?

gencrally, decrcases as the assumed model order ( r ) is increased. whereas the
term in parentheses incrcases . Therefore, the desired r will give the minimum
value of FPE . The FPE has been cxtensively studied for scveral applications
[29,57] . FPE works well fo'r AR process . However. it tends to give too low
orders when actual geophysical data is processed .

The sccond criterion proposed by Akaike is known Akaike information cri-
terion ( AIC ) . It is bascd on the minimization of the log likelihood of the
prediction-crror variance as a function of the filter order r . Akaike used maxi-
mum likclihood approach to derive the AIC . The AIC cstimates the model

order by minimizing an information thcorctic function . The AIC is.

AIC, = In(s2) + -%-(r+ 1y (3.25)

The derivation of equation (3.25) based on the assumption that the process

has Gaussian statistics . The term (r+1) can be replaced in some cases by (1),
since % is only an additive constant . The term In (£ ) indicates the penalty for

using cxtra AR cocfficicnts that do not result in a substantial reduction in the
prediction crror power [29] . Again, the order r selected is the one that the AIC
is minimized .

Parzen proposed another criterion in sclecting the model order . It is known
as the criterion autoregressive transfer ( CAT ) function . The order 1 is chosen

to be the one that minimizes the differance in the mean - square errors between
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the true prediction crror filter and the cstimated filter . The CAT is,

-

CAT, = - = (3.26a)

s
Ni-lﬁ;“-‘ ﬁf

where,

B = () (3.26b)

Again, the order r is chosen to give thc minimum CAT,. For short data
records, none of the aforementioned criteria work well in estimating the appro-
priate modcl order [29].  Also, for harmonic processes in noise, the FPE and the
AlIC undcrestimate the model order if the signal to noise ratio is high [65]. As a

solution in selecting the order for the case of short data recodrs. Ulyrch and Ooe

7
suggest that an order sclection between }:,— and Lz\- often give rcasonable

results.

Another cffective critcrion in model order sclection, cspecially when few
samples are available, is bascd on singular valuc decomposition ( SVD ) tech-
nique . It is effective in the presence of roundoff crrors of noisy data . It has
been applied to spectral cstimation because it provides an cfficient method in
the dtermination of the cffective rank ( modcl order ) . It operates on the
formed data matrix . Theoretically, the rank of the matrix is the total number
of nonzcro SV’s . Practically, the observed data matrix consists of the data
matrix perturbed by noisc .

The determination of the cffective rank ( # < N ') of the observed data matrix
by using its SV’s has bcen taken into account previously based on-different cri-

teria [31] .
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I. Critcrion 1 : 0, 20,2...20, > f},20,,,2... 20,
. o o,,
2. Critcrion2: -+ > g, > =L
G, 0,
3. Criterion 3:0,> >o0,,,
4. Criterion4:062,, + o?,, + .. + ox < B,
2 2 2
o s o, + o, + ..+ o .,
5. Critcrion 5: dy(r) = [ — 2 =1 > By
o, + o, + .. + 0Oy

The threshold values of B,, B, , and B; arc not based on any explicit analyt-

ical expressions . For a specific finite precision roundoff model, an analytical

formula for B, was proposed by Golub and Van Loan [66] . Konstantinides and

Yao [31] derived confidence regions for the perturbed singular values of matrices
with noisy obscrvation data . The analysis was based on the theories of pertur-
bations of SV’s and statistical significance test . In random modecl, the threshold
bounds rcly on the dimension of the data matrix, the noisy variance, and a pre-
defined level of significance [31] . They derived analytically the upper and lower
bounds on B, .

Clearly, the ratio d(r) approachces its maximum value of onc as r approach-

es N . Therefore, for matrices of low effective rank, the ratio d(r) is ncar to one

for valucs of r significantly smaller than N . Whereas, the matrices of high cffec-

tive rank, the ratio d(r) is closc to onc for higher values of r (i.c. r = N).
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CHAPTER 4

SIMULATION OF THE SPECTRUM
ESTIMATION METHODS

The algorithm proposed in chapter three will be applied for different exam-
ples . The comparison is donc against most of the methods described before . In
order to make a complete study , three different aspects have been taken into
account . Thesc are :

1. The signal to noise ratio (SNR )
2. The model order (1)
3. Number of data samples ( N )

In testing all methods , thirty statistically independent realizations cach of

length N were generated . These thirty realiztions are used to compare modeling

cffectiveness of optimal Hankel algorithm ( OHM ) with the other methods .

4.1 TWO AR MODELS IN WHITE GAUSSIAN NOISE

In this example , we will cxamine the time series as characterized by [13] :
yn= xn + zn + r'cen
which is a composition of two AR(2) time scries gencrated according to :

x,=04x , — 093¢ ,+ex
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z,=-05z,-093x ,+ ez

where e, , ex, , and ez, arc mutually uncorrclated white Gaussian processes
with zcro mean and variance onc . And , €, is the scaling constant for varying

the signal to noisc ratios (SNR) . The cxact power spectral density is shown in
Fig#1.

The Easect PSD of y{u)ey!{s}+y2{n)

1.0

¥ 40

1 0

LA ¥ 1 L] 1 L) L] L] ] K] v
000 050 L300 150 200 130 300 .35 400 45D .500
Nermsilzed Froqueney

Nermgllged P50

Figure I: The Exact PSD of the Two AR Modecls




For short data rccord , the traditional methods fail to give good approxima-
tion . The periodograms with different window lengths , different number of
samples , and different FFT lengths arc shown in Fig # 2 . Among all trials in
varying the aforementioned variants , the relatively best estimation is given with
64 window length and 128 samples . Fig # 3 illustrates the Blackman - Tukey
spectrum . When the number of autocorrelation lags is small the spectrum will
not show the exact peaks . Increasing the number of both samples and lags will
improve the results .

The AR PSD’s based on Burg’s algorithm arc shown in Fig # 4 . For higher
modcl orders , and large number of samples , these cstimated power spectral
densities give good results , cven for low signal to noise ratios . As . the number
of samples decrcases the performance of the method decreases . even for higher
model orders and high SNR's .

The ARMA modcling via Cadzow’s algorithm is onc of the used modern
techniques . The estimated PSD’s arc shown in Fig # 5. Cadzow’s method fails
to give a good cstimate , when the number of samples cquals 32 . As the num-
ber of samples increases , the cstimates are improved depending on diffcrent
ARMA maoadel orders . However , this is a big disadvantage , becuase chere is no
solid critrion to judge the appropriate orders .

The suboptimal Hankel method (SHM) behaves in a manner that is slightly
better than the the previous mcthods . As the model order increases with respect
to a fixed SNR , the power spectral densitics arc cstimated more accurately .
Grnerally , incrcasi.ng the number of data samples improves the results . As scen
from Fig # 6 , when cight samples arc used , SHM fails completely to cstimate

the power spectrum .
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Fig # 7 shows the estimated PSD’s via covariance approximation method .
PSD was estimated for different model orders and different number of samples
at different SNR’s . Most of plots show many peaks at different frequencics but
the higher peaks will be at the desired frquencies for high signal to noise ratios
and N = 32 and 16 . For N = R the mcthod fails to show any response .
Notice that , there arc ncgative PSD values which is due to the occurance of
spectral density zeros on the unit circle .

MUSIC mcthod of spectral estimation is not very different from the afore-
mentioned methods . The simulation has been done on the basis of different
modecl orders and different number of signal space vectors . As seen from from
Fig # 8 , the best estimates are obtained for the largest number of samples and
highest SNR’s . In addition , incrcasing the dimension ( number ) of the signal
spacc vectors improves on the results .

Finally , working with optimal Hankel method (OHM) shows the most reli-
able and cffcctive results . Fig # 9 shows a clear conclusive advantage of OHM
over the previously tested methods . For the case of number of samples , OHM
gavce the best results of power spectral estimation for N = 32, and 16 samples .
Even for cight data samples , we still have , relatively speaking , aceeptable
ersults . Similarly , for the casc of varying SNR , simulation results of OHM are
also considered the most accurate among the others . For the case of model
order , the minimum required is r = 4 as previously explained . It is obvious
from the figure that the increase in ( r ) gives a rclatively similar performance

which is expected . In addition to the previous advantages , OHM transfer func-
tion g'(z) is adequately modeled with the truncated transfer function g,(z) for

stable polcs .
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Concluding Remmarks
1. When r = 2, all the methods above failed to cstimate PSD
2. When N = 8, all the methods fail completely , but OHM givcs‘ rclative-
ly rcasonable results
3. g'(z) without partial fraction expansion gives practically similar results
as g’.(z) considered here .

4. When SNR = 0. dB, all the methods above failed but OHM and SHM

gives rclatively acceptable results .

As a special casc of the first example, a one AR modcl in white Gaussian
noise will be considered.

In this example , we will examine the time scrics as characterized by [13] :
P =x +ree
“-n n cn
which is a AR(2) time scrics generated according to :

x,=04x , —093x ,+ ex,

where e, , and ex, arc mutually uncorrclated white Gaussian processes with
zero mean and variance onc . And , €, is the scaling constant for varving the sig-
nal to noise ratios ( SNR ) . All simulation results of this example will not be
included for lack of space and it is a special case of the first example .
Pcriodograms with different variants ( window length , number of samples ,
and FFT length ) were obtained . They are unable to resolve the rfght pcak

cxcept only for large number of samples . Even BT mcthod is not able to show a

nice estimate-unless the-number--of ‘samples-is large and a-reasonably -chosen -+ -~ =
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number of autocorrclation lags .

The minimum model order required to cstimate the PSDis r = 2. Regard-
less of any combination of paramcter variations , Cadzow’s method fails com-
pletely to give any mecaningful results unless the number of samples is large
enough . Burg's mcthod gives good results for different model orders (r = 2, 4
,6,8,and 10), number of samples ( N = 32), and different signal to noise
ratios (SNR = 10, 20, and 30 dB ). But . it fails completely for N = & sam-
ples . For N = 16, it gives some rcasonable results .

The SHM gives very good results at (N = 32 and 16 ) with the same vari-
ants in model orders and SNR's .

Covariance approximation mcthod and MUSIC mecthod give good results
only for higher modcl orders . They show nice results for different number of
samples .

The OHM gives better results than all the other methods even for lower

number of samples .
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4.2 MOVING AVERAGE MODEL PLUS SINUSOIDS - - - - -

In this example , we will examine the tnqc serics plus sinusoids as chacter-

ized by [65] :

llnn nn
)"‘ 2 co, (T)

¥y, = x, + 2cos(

where , x, is of MA(4) time scrics gencrated according to :

x =e +2e —~2c¢
n n

n-1 -

n-3 n-4

where , e, is white Gaussian noise process with zero mean and variance one .

The relative cxact power spectral density is shown in Fig # 10 .

p{e)e2ens (n'lll)ﬂcu(! 1 '.'Il':l./ltl').:i'(l')ﬁlitl-‘)-ll(l-l)-l (1-4)

1.004

-

-

-
i

0.5
N
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Figure 10: The exact PSD of MA model nlus sinusoids
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For short data rccord , the traditional methods fail to give good approxima-
tion of PSD . The periodogram with different window lengths , different number
of samples , and different FFT lengths are shown in Fig # 11 . The best estima-
tion is given when number of samples = 128 and 256 FFT length . It can
resolve two peaks at the desired frequencics . Blackman and Tukey mcethod fails
completely to resolve the two peaks cven for larger number of both samples and
lags as shown in Fig # 12.

Burg’s mcthod gives rcasonable results |, but it docs not show clear peaks at
the desired frequencies . When N = 32 samples | it gives a nice cstimation only
atr = 8. When N = 16 samples , it gives a réasonablc estimation only at r=4.
- While at N = 8 , it fails completcly as shown in Fig # 13 .

Cadzow’s method docs not give that good :rcsults as Burg’s method . It fails
completcly to cstimate the right frequencics cven at N = 32 samples as shown
in Fig # 14.

Also , SHM is able to resolve the too clozc frequencies at number of samples
N = 32 and different model orders as it is clear from Fig # 15 . But for smaller
number of samples SHM docs not give results ,

Covariance approximation method gives rc?:asonablc results . When (N= 32
and 16 samples ) , it gives a nice estimation only when r = 4 |, while at N=8 it
fails completely as shown in Fig # 16 .

MUSIC method docs not resolve the too close frequencies even at different
number of samples and model orders as clear fi fnm Fig#17.

OHM gives better results . When N = 32 samples | it gives a nice cstima-
tionat(r =6,8,and 10). But, when (N = 16 and & samples ) , it does not

resolve the two frequencics as shown in Fig # 18 .
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As a special case of the second example, a moving average (MA) model will

be considered.

In this cxample , we will examine the time scries as chacterized by [65] :

Y= 6 + 2. en-l -2 cn-3 T €

where , ¢, is white Gaussian noisc process with zero mean and variance one .

Periodograms with different variants were obtained . They fail to show a
nice approximation for the cxact PSD . Also , BT method does not show a good
approximation .

Burg’s method gives reasonable results . When N = 32 samples |, it gives a
good cstimation only at r = 8 . While,, at N = 16, it gives a good approxima-
tion atr = 4 . It fails completely at N = 8 .

Cadzow’s method docs not show any improvement in estimating the exact
PSD . Increasing the number of samples N > 32 may improve the results .

SHM gives some good approximation for different number of samples .
when ( N = 32 and 16 ), it gives good results only at r = 4, while it fails for
N =8.

Covariance approximation mcthod and MUSIC method fail to show good
approximation for different model orders and different number of samples .

OHM gives some good results . When N = 32 samples , it gives good csti-
mation only at r = 4. While , at N = 16 samplcs , it gives good approximation
atr = 8. It fails completcly at N = 8 which is the problem with all the afore-

mentioned methods .
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4.3 TWO DAMPED SINUSOIDS IN WHITE GAUSSIAN
NOISE

The power spectral density of a process consisting of two cxponentially
decayed sinusoids with different frequencies in white Gaussian noise will be esti-

mated via most of the mcthods described before .
0.1n 0.0
Y, =€ cos(2nfin) + e cos(2nfin) + ¢,

where , e, is whitc Gaussian noisc process with zero mean and variance ¢?.

Three different cases will be studied :

4.3.1 Very Close Frequencies

In this casc the two frequencies ( f, = 0.2 Hz and S, =0.23125 Hz ) are
very close , where Af < 71\’— and N = 32,16, and 8 . The cxact power specrum

is shown in Fig # 19 .

Periodograms with different variants are shown in Fig # 20 . They fail to
show good approximation . BT mcthod shows good approximation for the cxact
PSD only at large number of both samples and lags as shown in Fig # 21 .
Burg’s mcthod fails completely as depicted in Fig # 22 .



71

Fig # 23 shows the estimated PSD’s via Cadzow method . PSD was cstimat-
cd for different number of samples and SNR's . Cadzow’s mcthod fails to give
approximation . Increcasing the model order the results are imprm;’cd .

SHM gives a very good results in PSD cestimation at high SNR’s and large
number of samples as shown in Fig # 24 .

Covariance approximation mcthod and MUSIC mecthod fail to give a good
approximation cven for different model orders as shown in Fig # ( 25 and 26)
respectively .

OHM is rcliable as SHM as depicted in Fig # 27 , they look better for low
SNR’s.
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Figure 19: The cxact PSD of two damped sinusoids with very close fre-
quencics
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Figure 22: Autorcgressive PSD’s via Burg algorithm (damped with very close freq.)
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Figure 23: ARMA PSD’s of damped with very close freq. via Cadzow approach
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Figure 27: OHM cstimates of damped sinusoids with very close freq.
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4.3.2 Close Frequencies

In this case the two frequencies ( f, = 0.2 Hz and f, =0.2625 Hz ) are
closc , where Af < % and N = 32,16, and 8 . The cxact power specrum is

shown in Fig # 28 .
Peridograms with different variants fail to cstimate the right PSD as shown
in Fig # 29 . BT mcthod shows good improvement at large number of both sam-

ples and autocorrlcation lags as depicted in Fig # 30 .
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Figure 28: The exact PSD of damped sinusoids with close frequencics
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Burg’s mcthod fails completely except for larger model orders and higher
SNR’s as shown in Fig#3l . Cadzow’s mcthod fails completely as shown in
Fig#32 .

The cstimated PSD’s via SHM are shown in Fig # 33 . They give good
results at different signal to noisc ratios ( SNR = 30, 20, and 10 dB ) and dif-
ferent number of samples (N = 32 and 16).

Covariance approximation mecthod gives reasonable results only when the
cxact model order is chosen. The plots for different varints arc given in Fig#34.

MUSIC mcthod fails completely to estimate the exact PSD even for higher
modcl orders . The graphs are shown in Fig # 35 .

The results obtained by OHM arc as good as SHM results . They are shown

in Fig # 36 for diffcrent number of samples . different number of SNR's |, and

different model orders .

4.3.3 Far Frequencies

In this case the two frequencies ( f, = 0.2 Hz and f, =045 Hz ) are

widely seperated , where Af 2 % and N = 32,16, and 8 . Periodogram csti-

mate fails to catch the exact two peaks while BT method gives better results but

with large number of samples and lags .
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Figure 33: PSD’s of damped sinusoids with close freq. via SHM
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Bufg's mcthod docs not show any good approximation even with different
variants . While , Cadzow’s mcthod gives some rcasonable results at (N=16)
and (SNR = 30dB). |

By choosing the cxact model order , Covariance approximation method will
give good results even with low SNR’s . MUSIC method works only with very
large model orders and number of samples .

OHM and SHM give better and cxcellant results . They are identical in
most of their results . But , OHM gives better only when the number of avail-

able samples is small (N = 8).

4.4 TWO UNDAMPED SINUSOIDS IN WHITE GAUSSIAN
NOISE

Estimation of frequencies via spectral estimation is a very important concept
in signal processing and could be cosidered as an appliction of power spectral
estimation . The power spectral density of a process consisting of two undamped
sinusoids with different frequencies in white Gaussian noise will be estimated via
most of the methods cxplained before . Considering the process given below |,

three different cases will be studied :
Y, =20 cos(2nfin) + 2 cos(2nfn) + e

where , e, is whitc Gaussian noise process with zero mean and variance €2 .
n

Three different cases will be studied :



91

4.4.1 Very Close Frequencies

In this case the two frequencies ( f, = 0.2 Hz and [, =0.23125 H:z ) are
very close , where Af < % and N = 32,16, and 8 . The exact power specrum

is shown in Fig # 37.

The frsct PSI s! Cedomped Stenselids
tle H-"s

1.88+
0.804
§.00

0.40

X Y

L 7 T Y T T T
(030 100 150 200 .250 (300 .35 400 458 .00
Sormellaod Froqueney

Figure 37: The cxact PSD of undamped sinusoids with very close fre-
quencics




92

Periodograms with diffcrent variants arc shown in Fig # 3R . They give good
approximation at large number of both samples and FFT length . Fig # 39
illustrates the BT spectrum . When the number of autocorrelation lags is small
the spectrum will not resolve the two frequencics . Increasing the number of
both lags and samples will not improve the results .

The AR PSD’s bascd on Burg’s algorithm arc shown in Fig # 40 . Burg’s
mcthod fails completely to determine the two frequencies . Also , Cadzow's
mcthod docs not resolve the two frequencies which is duc to the short data
length as shown in Fig # 41 . .

SHM shows very good resul:s at different isignal to noise ratios ( SNR = 30
» 20, and 10 dB ) at number of samples ( N. = 32 ) . The results are given in
Fig # 42 . |

Covariance approximation method is not able to resolve the desired f requen-
cies irrespective of any combination of its paramcters . It was simulated and the

results are depicted in Fig # 43 . 5

MUSIC mecthod gives good results and lt resolves the two frequencies only
at high signal to noisc ratios ( SNR = 30 dé ) at different number of samples
(N = 32 and 16) . The simulated results are shown in Fig # 44 .

OHM gives the same results obtained by SHM . These results are shown in

Fig #45.
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4.4.2 Close Frequencies

In this casc the two frequencies ( f, = 0.2 Hz and f, =0.2625 Hz ) arc

closc , where Af < % and N = 32,16, and 8 . The cxact power specrum is

shown in Fig # 46 ..
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Figure 46: The cxact PSD of undamped sinusoids with close frequencics
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For short data record , traditional methods failed to show two  different
pcaks at the desired frequencies . the periodograms with different variants |,
shown in Fig # 47 , arc unable to resolve the two frequencices cxcépt at ‘64 - win-
dow length and 128 samples . Fig # 48 illustrates BT spectrum . The results
will be improved only at large number of autocorrelation lags .

Burg’s method fails complctely irrespective of model order as shown in
Fig#49. Cadzow's mcthod gives some rcasonable results at different SNR's and
different number of samples . The results are given in Fig # 50 .

The cstimated PSD’s via SHM arc shown in Fig # 51 . They give good
results at different signal to noise ratios ( SNR = 30, 20 . and 10 dB ) and dif-
ferent number of samples ( N = 32 and 16 ) . When N = R | the method fails
completely .

Fig # 52 shows the cstimated PSD’s via Covariance approximation method .
PSD was cstimated for different model orders . This method does not resolve the
two frequencics .

MUSIC method gives goad results and resolves the two frequencies only at
(SNR = 30 dB) and different number of samples ( N = 32 and 16 ) . The sim-
ulated results are shown in Fig # 53 .

The results obtained by OHM arc as good as SHM results . They are shown
in Fig # 54 for different number of samples , different number of SNR’s , and

different model orders .
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4.4.3 Far Frequencies

In this case the two frequencics ( fi=02Hz and f, =045 Hz ) are

widcly seperated , where Af 2 % and N = 32,16 . and R .

For short data length , the traditional mcthods fail to resolve the two fre-
quencics . Increasing the number of samples , both of which will resolve these
two frequencics . Burg’s mecthod does not show sharp peak at f = 0.45 Hz.

Cadzow’s mcthod gives some very sharp pecaks at different variants . The
obtained results are very good cven for low SNR’s , but it fails for smaller num-
ber of samples (N = 16).

SHM shows good results at different signal to noisc ratios ( SNR = 30, 20
, 10 dB ) different number of samples ( N == 32 and 16 ), and different modcl
orders(r =4,6,8,10).

Covariance approximation mcthod does not resolve the right frequencies .
MUSIC mecthod is very sensctive to noise . It gives good cstimation only at SNR
= 30 and different number of Shmplcs (N = 32 and 16)

OHM shows good results at different signal to noise ratios (SNR = 30, 20
, 10 dB ), different number of samples ( N == 32 and 16 ), and different model
orders(r = 4,6,8,10).
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- CHAPTER 5

FREQUENCY ESTIMATION

In this chapter three different methods will be presented . These three meth-

ods will estimate directly the frequencies without going through spzctral estima-

tion .

5.1 FREQUENCY ESTIMATION TECHNIQUES
S.1.1 TK Method Based on Backward Linear Prediction (BLP) Technique:

Tufts and Kumaresan (TK) proposed the parametric model to estimate the
frequencies of the reccived samples . This method models the system by ARMA
model . It has the advantage of high accuracy and good cstimator for number of
sinusoids . There are two primary assumptions to this model :

1. The original signals arc exponentially damped sinusoidals
2. The noisc assaciated with the signal is additive white Gaussian noisc

with zero mean

The Tufts and Kumaresan (TK) algorithm can be summarized as follows :

1. Form the data matrix as follows :
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5 TR SR R
Y3 Y

A =
Pran Ypaz - w

where y, is the sample of the noisy signal, N is the number of reccived
samples . The dimension of the matrix is (N—=L)~ L . The number L
represents  the number of rows of A and it ranges between

M<L<(N-M).Mis twice numtzr of damped sinusoids .

Define

X=

N1

Compute the singular valucs of A
A=UzV

where U and V are orthogonal square matrices and the matrix X is a
diagonal matrix containing the singular valucs of A .
From the SVD, we can estimate accurately the number of exponentially

damped sinusoids . Taking the largest M values and solving for b in :

- Ab=-X
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where b can be found as

b= —|fo vulix

where V, represents the i column of V and U, represents the i row of
U.

4. The entries vector b arc used as coefficients of the polynomial:

a(z) = &+ b,z"”,' +..+h

Tufts and Kumarcsan have shown that in the absence of noise, the polyno-
mial a(z) has M roots outside the unit circle and the cxtra roots are inside the
unit circle . From the roots that arc outside the unit circle we can estimate the
frequencics of the noisy signal .

Also, they have used the Forward-Backward Lincar Prediction Technique
(FBLP) for cstimating the frequencics of undamped sinusoids . This algorithm

has been tested extensively by Kumaresan [69] and it will not be included .

5.1.2 Pisarenko Method:

Pisarcnko proposed the parametric model to estimate the frequencies and
line spectrum of the received samples . There are two primary assumptions to

this model :

I. The original signal are undamped sinusoids
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2. The noisc associated with the signal' is additive white Gaussian noise
with zero mean

Pisarcnko algorithm can be summarized as follows :

1. Form the autocorrelation matrix B as follows
n0) 1) .o.r(my
rn(-1) n0)

p=]" .

) o+ 1) )|
where r,s arc the autocorrelation lags defined in equation (2.3) . Then,
find the rank of matrix B and it will be the number of the sinusoids in
the signal .

2. Find the minimum cigenvalue and dcnote by A

3. Find thc cigenvector associated with A, and denote the components by :

Ay, @) ey @y

4. Find the zcros of the characteristic polynomial gencrated by the mini-

mum cigenvalue A :

A _
a,,z + .. +a'z + a, = 0

where M is twice num’bcq.of sinusoids .
5. Dectermine the frequencies of the sinusoids
Pisarcnko’s algorithm has some difficultics associted with it . His algorithm
docs not utilize the data cffcctivcly to obtain accuratc cstimates . Also, the

algorithm is only applicable for undamped sinusoids which is because Pisarenko

forced the autocorrelation matrix to be Tocplitz . Furthermore, the estimated =~~~
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frequencices ‘are biased which is duc to ‘the same reason mentioned . To over
come the aforementioned problems, Tufts and Kumaresan [69] proposed a new
improved Pisarcnko algorithm . This improved algorithm will be applicable for

both damped and undamped sinusoids .

5.1.3 Suboptimal Hankel Method:

The algorithm of this method is given in chapter two and it will be repeated

here in brief ;

l. Form the finitc Hankel matrix given in equation (2.44)

2. Perform SVD of the N x N Hankel matrix

3. Find A given in cquation (2.47b)

4. Find the cigenvalues of A

5. Determine the frequencics from the computed cigenvalucs

5.2 COMPUTER SIMULATION RESULTS

The results were tested by varying different paramcters of cach model .

Also, the frequency resolution was tested in the three algorithms .



5.2.1 TK'& Suboptimal Hankel Method Simulation Results:

The testing is given by :

_ ~0.In ~0.2n
y,=e¢ cosan}n +e c0521rf2n te

where, e, is whitc Gaussian noise with zero mean and variance ¢® . Three differ-

ent cascs have been studied -

. fi=02H:z and f, = 0.23125 H:

The two frequencies are very close Af < # . The TK method with

different number of samples, different SNR’s, and different values of

(L) fails completely to estimate the second frequency as shown in tables

2 and 3 . While, The Suboptimal Hankel Method ( SHM) gives reason-

able results in propotional to TK method only at N =
SNR =30 dB as shown in table 1 .

2. f,=02Hz and f, = 0.2625 H

The two frequencies are close . In this case, both of which give

good results at only high SNR’s and N = 32 . TK method gives better

estimation as the number of samples increases . The value of L should

be between M < L < N—M, and L is in this range then we would get

acceptable results as shown in tables 5 and 6 . SHM gives better estima-

tion than TK as shown in tablc 4 .
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fy =02 Hz and J, =045 H;

In this case, TK method gives good results only

at (SNR = 30, and
20dB),(N =

32,and 16 ) and a proper choice of L (L = § ). While
the SHM gives better results for different signal to noise r

atios and ( N
= 32,and 16).
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Table I: SHM cstimation for very close frequencics

N SNR (dB) fl1=0.2 f2=.23125
30 0.199662 0.2356439
32 20 0.072440 0.191132
10 0.025154 0.1641362
30 0.151242 0.202124
16 20 0.128506 0.197957
10 0.025689 0.101871
Table 2: TK cstimation for very close frequencies (N = 32)
N SNR(dB) L f1=0.2 f2=.23125
30 6 0.206799 -
30 10 0.205030 -
30 ‘16 0.206372 -
30 18 0.2064372 -
20 6 0.206718 -
32 20 10 0.204910 -
32 20 14 0.206192 -
20 18 0.161772 -
10 (3 0.206377 -
10 10 0.176954 -
10 14 0.181607 -
10 18 0.055147 -
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Table 3: TK cstimation for very close frequencies ( N = [6)

N SNR(dB) L £1=0.2 f2=.23125
30 6 0.207509 -
30 8 0.201745 -
30 10 0.194114 -
30 12 0.221537 -
20 6 0.207412 -
16 20 8 0.182421 -
16 20 10 0.147886 -
20 12 0.159408 -
10 (3 0.206826 -
10 8 0.186405 -
Table 4. SHM cstimation for close frequencics
N SNR (dB) f1=0.2 f2=.2625
30 0.200073 0.262306
32 20 0.199768 0.2629446
10 0.185112 0.406123
30 0.193846 0.273953
16 20 0.192857 0.272816
10 0.160226 0.375523
8 30 0.200501 0.412333

1
]
i
§
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Table 5: TK cstimation for closc frequencies ( N = 32 )
N SNR(dB) L fl1=0.2 f2=.2625
30 6 0.214560 0.268493
30 10 0.199889 0.262698
30 14 0.199902 0.262608
30 18 0.181992 0.253208
20 6 0.205009 -
32 20 10 0.173041 0.255857
32 20 14 0.199085 0.246004
20 18 0.171666 0.225706
10 6 0.205731 -
10 10 0.1749466 -
10 14 0.210995 -
10 18 0.232276 -
Table 6: TK cstimation for close frequencies ( N = 16 )
N SNR(dB) L fl1=0.2 £f2=.2625
30 6 0.228444 0.234276
30 8 0.229526 0.233042
30 10 0.166070 0.227644
30 12 0.226771 0.235732
20 6 0.1641677 0.212890
16 20 8 0.156484 0.226636
16 20 10 0.170555 0.243021
20 12 0.210342 0.228341
10 6 0.189882 -
10 8 0.195688 -
10 10 6.208800 -
10 12- 0.2006849 -




5.2.1 Pisarenko & Suboptimal Hankel Method Simulation Results:

The testing is given by :

= .
Y, = cos2nfin + coslnfn + e,

where, ¢, is white Gaussian noise with zero mean and variance o® . Three differ-
cnt cases have been studied ;

l. Ji, =02 Hz and J; = 0.23125 Hz

The two frequencies are very close Af < 71\’- . In this case, SHM

gives good results only at N = 32 a5 shown in table 7 . The estimation
of frequencies gets better for higher SNR's which is cxpected until the
noisc dominatcs the frequency components of the signal then, the esti-
mation is no longer valid . Pisarenka method gives better estimation for

smaller number of samples ( N = 16 ) as shown in table 8 .

2. f,=02Hz and f, = 0.2625 H

In this case, Pisarcnko method gives better cstimation than SHM
cestimation . This due to the assumption of pending with zeros is no

longer valid . The results are shown in tables 9 & 10 .

3. fi=02Hz and f, = 0.45 Hz



123

In this case, Pisarcnko method 'g'i‘vcs very good results and at differ-
ent signal to noise ratios ( SNR = 30, 20. and 10 dB ) and different
number of samples (N = 32, 16, and 8 ) . While SHM gi\'cs néccptablc
results only at N = 32 and different SNR's .

Table 7:  SHM cstimation for very close frequencics (undamped)

N SNR (dB) f1=0.2 f2=.23125

30 6.198988 0.231836
32 20 0.198950 0.231640

10 0.198459 0.230588
16 30 0.157754 0.203414
16 10 0.1325644 0.195055
8 30 0.102527 0.198579

Table 8: Pisarenko cstimation for very close f) requencics (undamped)
N SNR (dB) fi=0.2 f2=.23125
30 0.207694 0.284588
32 20 0.207377 0.286099
10 0.201207 0.291294
16 30 0.187221 0.248737
16 10 0.181676 0.260524
8 30 0.161880 0.251385
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Table 9: SHM cstimation for close frequencies:- (undamped)

N SNR (dB) fl1=0.2 f2=.2625

30 0.200055 0.318348
32 20 0.200017 0.451018

10 0.199629 0.486117
16 30 0.192747 0.292260
16 10 N 0.163607 0.421766
8 30 0.190698 0.4197461

Table 10: Pisarcnko estimation for

close frequencies (undamped)

N SNR (dB) fl=0.2 f2=.2625

30 0.209163 0.292338
32 20 0.209070 0.292930

10 0.205802 0.294400
16 30 0.159201 0.267185
16 10 0.160050 0.268910
8 30 0.181715 0.281364




125

-~ CHAPTER 6

CONCLUSIONS AND SUGGESTIONS
FOR FURTHER WORK

6.1 CONCLUSION

The most popular traditional and modern power spectrum estimation tech-
niques have been bricfly reviewed . These methods are optimal and suboptimal
with respect to different criteria . Also, it has been shown how signal processing
has developed recently to model -the data with cither all-zeros (MA), all-pole
(AR), or a combination of both poles and zcros (ARMA) . A new algorithm
developed in the context of model reduction by Bettayeb [5,53] was applied to
the problem of power spectral estimation . The implementation of the above
algorithms on typical simulation cxamples showed the performance of the vari-
ous techniques . All algorithms have been systematically tested on various differ-
ent cxamples of signals with colored noise containing pure or decayed sinusoids .
The simulation studies were done for different data length, different signal to
noise ratios, and for varicd frequency resolution .

Both of the traditional mct,ﬁods are computationally cfficient if the Fast
Fourier Transform (FFT) is uscd in the direct approach or if only a few lags are
nceded in Blackman-Tukey approach . In both of them , the cstimated power
spectral density (PSD) is dircétly propotional to the power for sinusoid processes

. Also, they can be cosidered.as good models for some applications . On the oth-
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cr hand, the weak signal main- lobe rcsp(.m'sc;s are supperessed by strong signal
side lobes . Also, the sidelobe leakage will introduce some distortion in the spec-
trum . Furthermore, some negative PSD valucs appear with the BT approach .
The frequency resolution is limited by the available data record duration . Two
main factors affcct the spectral resolution of the spectral estimate . The first is
the record length of the data and the autocorrelation lags . The second is the
windowing process applicd to autocorrelation function and the data . The spec-
tral resolution usually increases as the record length increases . But, this is not
always, e.g., the periodogram of white noise hecomes oscillatory [67] . Also. the
spectral resolution is decreased if the window is designed to reduce the sidelobe
or lcakage in spectral cstimate domain . The increase in spectral resolution can
be achicved by pending a sequence of zeros of the windowed autocorrelation
function and data prior to transfofming to the frequency domain .

Most of the modern mcthods do not suffer from the problems associated
with the traditional methods . They can achieve increased spectral resolution,
especially, for short data records and low signal to noise ratios . Also, their spec-
tral estimates do not have strong sidelobes . The autoregressive models based on
Yule-Walker cquations are related to linear prediction analysis and adaptive fil-
tering . They give better results than the conventional methods, but not as good
as the other AR methods . However, the implied windowing distorts the spec-
trum and the line splitting frequently occurs . In Burg’s maximum entropy
method, spectrum splitting and‘frcqucncy shifting frequently occur, cspecially
for sinusoidal signals . In gencral, MEM enhances the pcaky components of the
spectrum . However , while an AR model may give a good spectrum estimate,

the cocfficicnts may not predict the data well beyond a few points . Thus , the
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cocfficicnts arc nceded to be more frequently updated for some kinds of data
and less frequently for other kinds of data . Gencrally . all AR methods suffer
from sclecting the proper model order .

Although the ARMA model might give better resolution and performance in
spectral cstimation for different applications, many practitioners prefer to use
cither AR or MA modecls . This is because it is more computationally involved .
Itis required to compute the order of the model and the cocfficients in both the
denominator and numerator . Pisarcnko’s algorithm and MUSIC algorithm are
known to give supcrior resolution, yiclding cstimates that are asymptotically
unbiased and cfficient . Pisarenko’s method is computationally incfficient and it
docs not work well in high noise levels .

Since the available methods are not npplicaﬁlc for all types of signals, our
developed algorithm has a wider .scopc of applications as it treats indeferently
signals derived from AR or ARMA processes . The proposed optimal Hankel
mcthod gave accurate power spectral estimates, and compared favorably against
well known mcthods . Also, the algorithm has good robustness propertics
against noisc and computational crrors as it is based on the robust singular val-

ue decomposition ( cigenvalue decomposition of a symmetric matrix ) [29].

6.2 SUGGESTIONS FOR FURTHER WORK

The following can be considc.rcd as good points for further rescarch:
1. Direct optimal spectrum estimation.
In our work, minimization was done for the infinitc norm of the dif-
ference between the éxact transfer function and the transfer function

obtained using optimal Hankel approach. Instead. in the minimization..
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of the infinitc norm we could consider the difference between the exact
spectral density and the spectral density obtained by an cstimated mod-
cl. | |
Spectrum error bounds.

For the optimal Hankel approach model, derived tight bounds on
crror spectral estimates will be uscful to cvaluate the degrec of the
suboptimality of the approach considered.

Order sclection. .

The order sclection plays a significant role in the clarity of the con-
tents of the spectrum. Hence, we suggest for future work that a criterion
for proper sclection of order of our model be developed. The singular
values tools look promissing in this regard.

Computational rcductinn..

This work was mainly concerned with the degree of accuarcy of esti-
mation, rather than the computatioral complexity . Although computa-
tional complexity was not investigated, but it is expected that this meth-
od has a rcasonablc one. Therefore, it is suggested to further investigate
this point in futurc work. F(;r cxample, onc can save in computations if

only a partial number of cigenvalues of the Hankel matrix is computed

as only the (r + 1)" cigenvaluc is needed.
Muitichanncl optimal Hankel spectrum cstimation.

Our work was rcstr-iclcd to single input single output system. For
certain applications, such as image processing, our work could be

cxtended to include multichannel systems.



APPENDIX A

APPLICATIONS

Several applications of spectral cstimation methods will be presented cover-
ing radar, sonar, speech processing, and others .

In radar applications, it is a .comm()n practice that a transmitted signal is
always reflected by a target and other surrounding objects like the ground,
migrating bird flocks, and weather disturbances . The traditional objective here
is to mcasure range to a target . This is done by measuring time difference
between transmission and receiption of the signal ( At ) and converting the anal-
ysis from time processing to frequency processing . Consequently., over a certain
time overlap ( At ), there will be a constant frequency due to a rertain object .

This constant frequency is known as the beat f; requency ( f, ) . Power spectral

cstimation is employed here to find the beat frequencies and then by using :

1C
range (R) = fp SYiiG

the range will be computed, where T is the pulse width and BW is the radar
pulse bandwidth, and C is the spced of light .

Another radar apblication involves investigating target's velocity . The
range rate of the target can be located by the main lobe of cach PSD during a

given processing interval .
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Onec last radar application involves targert identification . The spectral con-
tent of the reflected signals helps in determining physical characteristics of the
targert . Since the unwanted objects usually share some prcvfnusly expected
power spectral distribution, they could be filtered out.

In speech processing, the estimation of the power spectrum will lead to the
dctermination of the pitch and formant frequencies, which have found extensive
usc in speech encoding. synthesis, and recognition

Also, bandwidth compression is an important problem in speech processing .
Reducing the redundancy of speech, more speech signals can be sent through a
fixed bandwidth . The basis of differential pulse code modulation ( DPCM ) is
to scnd only information that can not be predicted . If the speech waveform
were completely predictable from past samples, then the receiver, once it had
these samples, would be able to rc'construct the compiete waveform . In practice,
lincar prediction coding is used for bandwidth reduction, in which all- pole mod-
clling is used for representing the speech waveform [29] . If speech can be accu-
rately modcled as the output of an all-pole filter driven by an impulse train for
voiced speech, or driven by white noisc for unvoiced speech, then the speech
waveform could be reduced to a sct 61’ parameters .

In spcech encoding, vocal tract simulation and other applications, an autore-
gressive model appears to be a good model of the waveform ( Atal and Hanauer
1971 ) . This modcl is good for ‘modcling strong resonances . Sinusoids can be
considered as strong resonances . As a result at high signal to noise ratio ( SNR
), they can be modeled by all pole model . While, at low SNR, the all pole mod-

¢l of the signal containing both sinusoids and additive noisc will give poorer res-

olution .
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In sonar, where one has to determine the presence and location of the
objects in the sca by using underwater sound, the frequency of the received sig-
nals is found by the estimation of the power spectrum . This .\vill lcad to the
determination of the position of the target .

Also, power spectrum cestimation is important in determining the bandwidth
of random signals and in the subscquent design of filters to pass or reject those
signals . Furthermore, it has played an important role in geophysics especially in
scismic studics such as pctrolcu.m cxploration, nuclear dctection, carthquake
rescarch, and marinc scismic studics . In some of the above applications, only a
few samples arc available but a high resolution spectral analysis is required .
Thercfore, the proper choice of scismic signal processing techniques is important.
The ARMA modelling is considered as the most gencral lincar scismic signal
model that provides simple paraﬁctric representation of the signals . In theory,
the spectrum of any physical signal can be fitted perfectly by an AR model with
a proper choice of a model order . But, if the ARMA model is used, a better
spectral matching can be achiv_cd . The power spectrum esiimation is useful in
differentiating between a man-made explosion and an carthquake . Also. the
paramcters of the model arc very ﬁscful in classifying the tclescismic cvents .
Furthermore, good spectral estimation gives accurate computation of spectral
ratio, which is uscful in scismic discrimination .

High resolution spatial spectrum analysis using spectral methods has been
applicd to sonic well logging. The sonic waves are received by the array of
receivers in a sonic device. The velocitics of the various components of the
received waveforms at cach rccc-i\-'cr can determine propertics of the rock

through which the sonic wave travels. Wave components which propagate at
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lower velocities reach later in time and often overlap earlier wave arrivals. Since
the spatial extent of the array aperture is only with limited number of receivers,
high resolution spectral estimation is required for the spatial dimension of signal
processing. ’

The procedure is to estimate the spatial frequencies present in the complex-
valued sequences S(f;n) using any spectral estimation method, from which wave
velocities may be deduced. S(f;n) is obtained by calculating, at a single temporal
frequency f, the DFT of the n™ reccived waveform, s(¢,n), after a windowing
procedure has been excited to attenuate interfering signals. The estimation of
the spatial frequency lcads to the estimation of the velocity. The estimates of
temporal and spatial frequencics for various times used in clustering procedure

to identify individual wave components.
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