Component Selection and Pipelining
using Stochastic Evolution

by

Mohammad Farook

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

June, 1996

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer. .

The quality of this reproduction is dependesi upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order. -

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Seisfeisleislidelfeisteldelfeilelaeitelolel el el el ol el el el Jelolel el el el

PIPELINING USING STOCHASTIC
EVOLUTION 2

BY

MOHAMMAD FAROOK

COMPONENT SELECTION AND %

v

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI! ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER SCIENCE

JUNE 1996

el el el ol el sl el el el el sl el

%WWWﬂWWWWWWWWWWﬁWWﬂWﬁQﬁgﬁ

e

P P P A e P AR P P P O o oo e

UMI Number: 1380769

UMI Microform 1380769
Copyright 1996, by UMI Company. AH rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by MOHAMMAD FAROOK under the direction of his
Thesis Advisor and approved by his Thesis Committee, has been presented to and
accepted by the Dean of the College of Graduate Studies, in partial fulfillment of
the requirements for the degree of MASTER OF SCIENCE in COMPUTER

SCIENCE.
THESIS COMMITTEE
Dr. Talal H. Maghrabi (Chairman)
SCA’-{"‘V jau' b f‘yl .
Dr. Sadiqg M. Sait (Co-Chairman)
e —
e) +
Dr. Khalid Al-Tawil (Member)
. Dr. J(zralla[{ Al-Ghamdi (Member)
AR S o
Department Chairman
C .,

{
Dean, College of GreduattStudies
Date: 2619 6

Dedicated to

My Parents and Brothers

Acknowledgments

First and foremost I thank Almighty Allah who gave me the opportunity, courage
and patience to carry out this work.

Acknowledgement is due to King Fahd University of Petroleum & Minerals for
providing support to this work.

I am indebted to my thesis chairman, Dr. Talal H. Maghrabi and Co-chairman
Dr. Sadiq M. Sait for their help and advice. I acknowledge them for their encour-
agement and support. I would like also to place on record my appreciation for the
cooperation and guidance extended by my committee members, Dr. Khalid Al-Tawil
and Dr. Jarallah Al-Ghamdi. I am also thankful to the department chairman, Dr.
Mulhem and other faculty members and staff for their cooperation.

I wish to express my gratitude to my parents, brothers, sisters-in-law, niece and
nephews for their support, encourégement and motivation.

"To all my friends, who have made my stay at KFUPM a memorable one, I thank

you for your wonderful company and for being there when I needed the most.

iv

Contents

Acknowledgements iv
List of Figures viii
List of Tables X
Abstract (English) xi
Abstract (Arabic) xii
1 Introduction 1
1.1 DProblem Definition 7
1.2 LiteratureSurvey e 10
1.2.1 Allocationtechniques 14
1.2.2 Scheduling techniques 16
123 DPipelining e 21

1.3 Solutiontechniques ot vttt et 24
1.3.1 TIterativetechniques 24

vi

1.3.2 Constructive techniques 26
14 Summaryt e e s e e e e e e e e e e e e e 28
Stochastic Evolution and Simulated Annealing 29
2.1 StochasticEvolution 30
211 Algorithm 30
212 PERTURB: it 33
213 TUPDATE it e e e 34
2.1.4 Issues Concerning Stochastic Evolution Algorithm 35
22 Simulated Annealing 36
221 Background oo 37
23 Algorithm e e 40
2.4 DProblem-specificdecisionso 42
25 Summary e e e e e e e e e e e e e e e e e e 43

Component Selection and Pipelining using Stochastic Evolution 44

3.1 Initial Solution Representation. 45
32 CostFunction, 48
3.3 PERTURBStrategy v v v v v vt e i oo v me i 49
331 RandomMoves 49
332 FixedRandomMoves 50
333 Top-DownStrategy 52
334 DBottom-upStrateSy + « v v o vt e b e e e e e 54

3.3.5 DPerturb Function

vii

34 TPostProcessing e e 59
35 UpdateFunction 60
3.6 DParallelizing Stochastic Evolution Algorithm 61
3.7 SumMMArY i e e e e e e e e e e e e e e 64

Component Selection and Pipelining using Simulated Annealing 65

4.1 [Initial, Current and Best Solution. 66
42 CostFunction e e 66
4.3 Generationof Moves 66
44 Metropolis Function L. 67
4.5 TuningofParameters., 69
4.6 [Parallelizing simulated anpealing 70
4.7 Summary e e e e e e e 72
Experimental Results 73
Conclusions and Future work 84
6.1 Conclusions i i i it e e e e e 84
62 Future Work. e 85
Bibliography 86
Vita

List of Figures

1.1 Relationship of HLS with logic and layout synthesis.. 3
12 HLSindesignhierarchy. 4
13 Stepsinvolvedin HLS. 6
14 Asampledataflowgraph. 9
1.5 One possible solution to the example shown in Figure 1.4. 11
1.6 Another solution for the example shown in Figure 1.4.. 211
1.7 Different states of the solutionspace. 13
1.8 Example of ASAP scheduling [4]. 18
1.9 Example of list scheduling [4]. i8
1.10 Exampleof FDS[4]. 20
21 HLSsystem.. uieaeain... 31
2.2 Stochastic Evolution algorithm. 32
23 PERTURBFunction. 34
2.4 UPDATE procedure. T 35
2.5 Simulated Annealing algorithm. 39
2.6 MetropolisProcedure. 41

viii

3.1
3.2
3.3
3.4
3.5
3.6

4.1

5.1

5.2
5.3

5.5

5.6

ix

Randommovestrategy. e 51
Fixedrandommoves. 52
Top-Downstrategy. i 53
Bottom-Up Strategy. 55
PERTURB algorithm. 57
PERTURB with post processing. 60
The Metropolis Algorithm. 68
Plot showing the comparison between SA and MSE during the initial

Stages. . . . L. e e e e e e e e e e e e e e 7

Barchart showing the results of SA and MSE during the initial stages. 78
A barchart showing the comparisons between SA, SE and MSE (post-
PrOCeSSINg). it it i e e e e e e -79

Plots for different DFG’s using SA and SE techniques: (a) EWF, (b)

Graph 1, and (¢) Graph 2 (comtd). 80
Plots for different DFG’s using SA and SE techniques: (d) Graph 3,
(e) Graph 4,and (f) Graph 5. 81
Plots for different DFG’s using SA and MSE (post-processing) tech-
niques: (a) EWF, (b) Graph 1, and (c) Graph 2 (contd). 82

Plots for different DFG’s using SA and MSE (post-processing) tech-
niques: (d) Graph 3, (¢) Graph 4, and (f) Graph 5. 83

List of Tables

1.1

3.1

5.1
5.2
5.3
5.4

5.5

Example of a component library. 10
Component Library. 47
Characteristicof input graphs. 74
Stochastic Evolutionresults. 75
Stochastic Evolution and Simulated Annealing results. 76
Modified Stochastic Evolution (post-processing) and Simulated An-

mealingresults. 76
Comparisons between SA, SE and MSE (post-processing). 79

ABSTRACT

Name: Mohammad Farook

Title: Component Selection and Pipelining
by stochastic evolution:

Degree: Master of Science
Major Field: Information & Computer Science

Date of Degree: June 1996

High-level synthesis is the process of translating a high-level program like specification
of the behavior of a digital circuit into a structural design in terms of interconnected
set of Register-Transfer level components. Component selection and pipelining is
one of the important problems in HLS. We investigate the application of Stochastic
Evolution (SE) for solving component selection and pipelining and compare it with
Simulated Annealing (SA) for the same computation time. The inputs are ¢ Data
Flow Graph (DFG), a realistic component library with multiple implementations of
operators and Latency end Pipe stage delay constraints. Component selection in-
volves replacing components of the DFG by slower components to minimize the cost.
The cost function is the sum of costs (in gates) of all the components of the DFG
and the pipeline registers. Pipelining is done based on the constraints of latency
and pipe stage delay specified. A new method of improving the results in SE, called
post-processing is proposed. This is called Modified Stochastic Evolution (MSE) tech-
nique. In post-processing, after obtaining a valid state the DFG is scanned to see
if there is a possibility of replacing one or more components by slower components
of the same type without violating the constraints. Fzperiments were carried out on
different types of DFGs. The performance of SA is better than SE without post-

processing, while SE performs better than SA in some cases when post-processing is
introduced.

Master of Science Degree
King Fahd University of Petroleum and Minerals, Dhahran.

June 1996

xi

Al LA

B9 2aoa : autl

sl Juddl Jua sl B2 g cligSall Lall Al ohsie
clagleadl g culall gl L

al38Tgaige s Baledll &u 6

oot A Aoy 5503 Chony 29953 e (5 shnall Mo iy Zan S e g3 sl o pranel
Soaslt ba g oliSal jlasd RN Jaanall (5 s 1) OB Sall (e Alidlia Ao gana Jlaxiuly JSas
5 Sl SRl Jab 9 sdall Juludl padtul G o sl Jlo prad (f Aagall galadl Os
Cla gleall ZaiS pusy b SN 5 czenih iy il Tl Bl g U 5 Ade 5 sl B
LEIN @aEy y Jaca gl As yay 3805 b g 5l Jad sel 330050 RS (5 505 Apadly i sSe A
3N o o ..ms:nm‘%idﬁuauwm?ﬂjaup@@mmﬂ\ sl
55 JLaa! Bkt e 50 A e 5 e gl Gk sy S5 SN gren IS @ sane g
Vaa gl Judad 35 yh 7 6385 Sl \gg_g,.dém,ﬂl&yﬁ_m,)&mi Ciy e balael
Aillaa o p ol (el e Ui G S 5SS el S aal Jaas A g kil adlely B
e il La 38kae 13 o e ghecdl BadS pgusy e AilESe g1 (o o jlaS 2B 5 a5 L da g A0
die VLA Laes b Agal 3LStas e Juadl (5352 Jorall 3 pall Gualedl oS0 puiell Jule

CHEEH e Le Als e JA

pse siuala 4,2
Odlaalt g Jg Al 2k Al dadly

Gagrad) dp)l AShaadl o o peEN

xii

Chapter 1

Introduction

Design automation is the automatic synthesis of a physical design from some higher-
level behavioral specification [1]. Automatic synthesis is much faster than manual
design as it reduces the design cycle considerably. It also gives the designer a scope
for experimentation. Synthesis is used for commercial implementations of systems
which are widely used for production-level design of digital circuits. Synthesis can

be divided into the following main categories.

o High-level synthesis converts a high-level program-like specification of the be-
havior of a circuit into a structural design in terms of an interconnected set of

Register-Transfer (RT) level components, such as ALUs, registers and multi-

plexors.

¢ Logic synthesis converts a structural design, an interconnected set of RT level
components, into optimized combinatorial logic, and maps that logic onto the

library of available cells.

o Layout synthesis converts an interconnected set of cells, which describes the
structure of a design, into the exact physical geometry (layout) of the design.

It involves both, the placement of the cells as well as their connection (routing).

Figure 1.1 shows the relationship of high-level synthesis with the logic synthesis and
layout synthesis in design automation.

High-level synthesis raises the level of abstraction to the algorithmic level, allow-
ing a more behavioral style specification. Behavioral specification aims at describing
only the functionality of a circuit representing the way the system or it’s compo-
nents interact with the environment. Structure refers to the set of interconnected
components that make up the system. Usually there are different structures that
can be used to realize a given behavior.

The place of HLS in design hierarchy is illustrated in Figure 1.2. The level of de-
tail increases from left to right in Figure 1.2. Also, five levels of abstraction show11- in
synthesis can take place, namely system, algorithmic, register-transfer, logic and cir-
cuit levels. Going from the algorithmic behavior to register-transfer level structure
is HLS as shown in Figure 1.2. High-level synthesis bridges the gap between behav-
ioral specifications and their hardware structure, automatically generating circuit
descriptions that can be used for logic synthesis [2]. As opp.osed to logic synthesis
which optimizes any combinational logic, high-level synthesis also deals with the
memory elements, the intercornection structure (buses and multiplexors), and the
sequential aspects of the design.

High-level synthesis is a formidable task. Although the main problems have been

addressed, further optimizations involving area, cycle time, and sequential behav-

Design Automation

A high-level abstraction

Behavioral Specification at the algorithmic level

Example :
vi=v2 +v3
High-Level véd =Vl +V5
Synthesis
Structural 1 An interconnected set of
Design Register-transfer level
components
Logic
Synthesis
Optimized
Combinational An interconnected
Logic mapped to set of cells in the
library cells library
Layout
Synthesis
l Placement of cells and
Physical Geometry their connection
(Layout) of Design f (Routing)

Figure 1.1: Relationship of HLS with logic and layout synthesis.

DOMAINS
LEVEL
l Behavior l Structure i Physical
Processors .
- ;
System Communicating Memories gzgigtsa S
processes Switches
Memory, Ports Board
I y
nput-Output Processors Floorplan
Register- §| Register ALUs, REGs, ICs
Transfer §l Transfers Muxes, Buses Macro Cells
Logic Logic. Gates Standard Cell
g Equations Flip flops Layout
o Network Transistors, Transistor
Circuit Equations Connections Layout

Figure 1.2: HLS in design hierarchy.

>

lor are necessary to obtain high quality designs. It is also difficult to describe the
hardware problem in terms of behavioral models. This makes it necessary to de-
velop synthesis systems that allow specifications at various levels. There is a lack of
effective high-level verification techniques that makes the application of high-level
synthesis difficult. Since correctness by construction cannot be expected from a soft-
ware system with several hundred lines of code, verification methods are necessary.

The main steps involved in high level synthesis are:

¢ Compilation of the HDL (High level description language is a sequential lan-
guage similar to a programming language) source into an internal representa-

tion, usually a data flow graph and/or a control data flow graph.

¢ Transformations of the internal representation into a form more suitable for
high-level synthesis. These transformations involve both compiler like and

hardware-specific transformations.

e Scheduling, involves assigning each operation to a time step. It is also called

control synthesis or control step scheduling.

¢ Allocation, which involves assigning each operation to a piece of hardware.
It consists of selection of the type of hardware modules from a library and
mapping each operation to the selected hardware. Allocation is also referred

to as data path synthesis or data path allocation.

e Partitioning, which consists of dividing the design into smaller pieces. Parti-

tioning can aim at obtaining a collection of concurrent hardware modules, or

can simply be used to generate smaller hardware pieces that may be easier to

synthesize further.

¢ Output generation which produces the design is passed to logic synthesis and

finite state machine synthesis.

Behavioral Specification vi=v2+v3

l vi=vi +vb
(Compilation } Y Usualy,a

control/data flow graph
. (CDFG)
Intermediate Form (IF)
3 v2

[Transformationsj v

: / / v5

More suitable IF

vi

&:mponent selection/Pipelining]
l v4

Figure 1.3: Steps involved in HLS.

"The steps involved in high-level synthesis are illustrated in Fi@re 1.3. In order to
extract the structure, the algorithmic specifications are first converted to an interme-
diate form such as Control/Data Flow Graphs (CDFGs), in which nodes correspond
to operations (for example addition, multip}ication, etc.,) and edges correspond to

data values (for example variables and constants) and control flow dependencies.

~]

Some compiler like high-level transformations (such as dead-code elimination, com-
mon subexpression elimination, etc.,) are applied to optimize the behavior of the
design resulting in a more suitable intermediate form. This intermediate form is
then used for allocation and pipelining.

Component selection and pipelining are some of the important steps in the syn-
thesis of circuits from behavioral descriptions [3]. Component selection involves de-
termining the best selection of componenté from a realistic library containing many
different implementations per operator, and pipelining involves providing pipeline
registers in the circuit such that the delay of each pipe stage is as close as possible

to the given constraints [4].

1.1 Problem Definition

An important factor in obtaining cost effective designs is the ability to use multiple
operator implementations in the datapath. Delay paths can then be balanced by
using slow components where possible and using faster components only when nec-
essary. For high performance applications it is necessary to combine pipelining with
the use of a multiple-implementation library to satisfy performance requirements at
a reasonable cost while satisfying certain constraints.

Given a data flow graph DFG(V,E) where V represents a set of versices, and
E C V1V, aset of directed edges, a component library CL consisting of a set
of three tuples (Component_type, Area, Delay), and constraints on pipe stage (PS)
delay and latency, find an assignment of vertices to components and a partition so

as to minimize the cost (given by the sum of the area of the datapath components).

The terms PS delay, Assignment and Partition are defined as follows:

¢ PS delay: Is the sample inter-arrival delay, that is, the delay between the
arrival of two consecutive input samples. This is also the clock cycle of the

design. Throughput, which is often the prime constraint on DSP systems, is

the inverse of the PS delay.

o Assignment: If we associate a type (such as *, =, +, -) called Vertez_type(v),
with every vertex v then an assignment is defined as a function from V — CL
such that if Assignment(v) = c then Vertez_type(v) = Component_Type(c).

This states that vertices can only be mapped to components of the same type.

¢ Partition: A Partition is a collection of subset of vertices, such that the union

of all subsets is the complete vertex set V, and the intersection of any two

subsets is the empty set.

Partitioning in the problem of component selection and pipelining refers to the
pipeline stages in the DFG.

The DFG shown in Figure 1.4 along with the constraints is an example of the
problem. The DFG consists of three multipliers and two adders. The PS delay con-
straint is 10 ns and Latency is 20 ns. The DFG consists of vertices which correspond
to different operators depending on the circuit and directed edges that determine
the interconnections between vertices and also the flow of operations between the
input and output stages. The objective is to map the components from the multiple
component library, shown in Table 1.1, onto the vertices to obtain a cost-optimal

solution. Cost-optimal solution for this problem is obtained by minimizing the area

Constraints
PS Delay <= 10 ns
Latency <=20 ns

Figure 1.4: A sample data flow graph.

occupied in terms of the number of gates without violating the constraints and also
pipelining the DFG. Pipelining is done by traversing the DFG from the inputs to-
wards the output. When the sum of all the delays in the path exceeds the specified
PS delay constraint then a register is placed. This is done for all the branches until
the entire DFG satisfies the PS delay constraint.

The multiple component library shows different types of operators along with
the area and delay of each of the operators. The availability of a large number of
operators of each type is assumed.

A cost-optimal solution is obtained by an appropriate mapping of components
from the component library onto the vertices of the DFG. Different types of iter-
ative/constructive techniques may be used to obtain a cost-optimal solution. Fig-

ure 1.5 shows one possible solution. This consists of two multipliers of type Mpy{,

10

Component | Component | Area | Delay
Type Name Gates | ns
* Mpyl 100 30
* Mpy2 200 20
* Mpy3 250 10
* Mpyv4 300 5
+ Addl 50 20
+ Add2 70 8
+ Add3 80 5
+ Add4 100 2
Register Reg 50

Table 1.1: Example of a component library.

one multiplier of type Mpy3 and two adders of type Add3 and Add2 respectively.
This solution requires three registers. The total cost is 1150 gates. Figure 1.6 shows
another solution. In this figure three multipliers of type Mpy2 and two adders of
type Add2 and Addj are used. This solution requires a total of four registers a:nd

it’s total cost is 1120 gates. Both the solutions satisfy the PS delay and the latency

constraints.

1.2 Literature Survey

‘The existing optimization techniques [5] can be classified into two types: itera-
tive/constructive and global. Iterative/constructive techniques assign elements to
vertices which represents the behavior of the circuit (operations, values or data trans-
fers), one at a time, while global techniques find simultaneous solutions to a number

of assignments at a time. More specifically, iterative/constructive techniques select

Mpy3

Figure 1.6: Another solution for the example shown in Figure 1.4.

11

12

an operation, value or interconnection to be assigned, make the assignment, and
then iterate until all the assignments are made. These techniques generally look
at a restricted window in the search space than global techniques, therefore are
more time efficient, but are less likely to find optimal solutions. The optimization
techniques are used in order to obtain cost-effective solutions within a limited time
period. The size of the solution space for component selection and pipelining can
be calculated as follows. If there are n number of vertices, m number of edges in
the DFG. and & are the number of components in the component library, then the
number of possible solutions are k® % 2™. A number of iterative/constructive tech-
niques have been developed for solving problems having a large solution space. Some
of these iterative techniques uses the hill-climbing approach. The hill climbing ap-
proach is to accept both solutions having higher and lower costs. Figure 1.7 shows
the different states in the solution space. This figure shows a plot of cost versus
states. The label L represents a local minima while G represents the global minima.
The state G is reached by moving from the current state to the state at point G
through a number of intermediate states. A new state is obtained by disturbing one
or more components of the current state. It is seen that from the local minima L,
we accept both costs that are higher than those that are present at L and and those
that are lessgr than it. Finally we reach a point G, the global minima.

Examples of systems using iterative/constructive techniques are found in [6, 7]-
Scheduling and allocation are two important phases in the synthesis of circuits from
behavioral descriptions. Com.ponent selection and pipelining are also important

steps in HLS. These are described in detail in the following sections.

13

Current State .
A
Neighbor state
Cost /
L
G -
-
States

Figure 1.7: Different states of the solution space.

14

1.2.1 Allocation techniques

Allocation assigns each operation, variable and communication path to a piece of
hardware. It naturally falls into three parts: Functional unit (FU) allocation, reg-
ister allocation, and connection allocation. In high-level synthesis, the main aim
in allocation is to share hardware units, i.e., operations can share functional units
(ALUs, adders, etc.), variables can be mapped onto common registers and memories
can share buses and multiplexors. The goal of allocation is to optimize the overall
hardware.

A problem closely related to allocation is module assignment. Whenever there
is more than one type of functional unit to perform a particular operation, that
operation has to be assigned to one specific functional unit type. Such problems are

solved using heuristic techniques. The different types of allocation algorithms that

can be used are:

1. Heuristic allocation, e.g., greedy and sequential allocation.

(S

. Linear programming approaches.

w

. Graph-based algorithms.

Heuristic approaches usually select one element (operation or variable) at a time
to' allocate and assign it to the hardware, with the selection done according to
different criteria. Heuristic approaches yield reasonable results, are fast and have
the potential to mix FU, regis’;er and communication path allocation.

Linear programming (LP) approaches formulate allocation (or allocation and

scheduling) as a linear programming problem. In the past, however, since linear

15

programming required extensive computational resources, it could only be used for
small examples. Recently, the method has reappeared, among other reasons because
modern large LP systems can solve problems with tens of thousands of variables.

The third group of algorithms formulate allocation as clique covering (or parti-
tioning) of a compatibility graph or node coloring.

Global allocation techniques include graph theoretic formulations, Branch and
Bound algorithms and mathematical programming techniques. Trickey [8] used a
graph theoretic approach in which the elements to be assigned to hardware, whether
they are operations, values or interconnections, are represented by nodes, and there
1s an arc between two nodes if and only if the corresponding elements can share
the same hardware. The problem then becomes one of finding sets of nodes in the
graph, all of whose members are connected to one another, since all the elements in
such a set can share the same hardware without conflict. An example of a system
using Branch and Bound technique is SPLICER [9]. Formulations of allocation and
component selection as a mathematical programming problem involves creating a
variable for each possible assignment of an operation, variable or interconnection
to a hardware element. The variable is one if the assignment is made and zero
if it is not. Constraints must be formulated which guarantee that each operation
must be assigned to one and only one hardware element, and so on. The objective
is to find a valid solution that minimizes some cost function. STAR allocation
system [10] uses an iterative improvement technique. It uses a rip-up reconstruct
approach to the allocation prol;lem. The data path is refined globally by evaluating
the binding quality of each object, probab}listically selecting a cluster of heavily

correlated objects (which may consist of variables, operations, and data transfers),

16

and rebinding them to form a better desigﬁ or determine that there can be no more
cost improvement.

Several optimization problems are computationally intractable, i.e., their deci-
sion versions are NP complete. There have been several deterministic heuristics
suggested in the past for solving specific NP-complete problems. However most of
these heuristics are essentially descent algorithms with respect to the cost function,
hence they are unable to escape the local minima with respect to the underlying
neighborhood structure. The simulated annealing (SA) algorithm introduced by
Kirkpatrick et al., {11] is an iterative stochastic procedure for solving combinatorial
optimization problems. Proofs of convergence to a global minima and successful
experimental implementations have led to the widespread use of SA and it’s ac-
ceptance as a viable general method for combinatorial optimization. However in
general SA suffers from two major drawbacks. The first one being that an actual
impleme_:nta.tion of SA requires careful tuning of some of it's parameters to achieve
good results. The second one is that it uses excessive computation time and it’s

often less effective when compared with some well designed deterministic heuristics

for the specific problem being solved.

1.2.2 Scheduling techniques

Scheduling assigns each operation in the behavior to a point in time. In synchronous
systems, time is measured in control steps. Scheduling aims at optimizing the num-
ber of control steps needed for completion of a function, given certain limits on hard-

ware resources and cycle time. A scheduling algorithm must take into account the

17

control constructs, such as loops and conditional branching, the data dependencies
expressed in the data flow graph, and constraints on the hardware. In synchronous
hardware the basic constraints are that every unit of the hardware can be used only
once during the control step, i.e., registers can be loaded only once, combinational
logic may evaluate once (feedback is forbidden) and buses may carry only a single
value. Other constraints on a design may restrict the size, the delay, and the power.

The first approach to scheduling in high-level synthesis was probably the ex-
haustive search. Since then, many scheduling algorithms have been proposed for
high-level synthesis have been proposed, some relying on methods known from mi-
croprogram optimization. Davidson et. al., [12] discuss an exhaustive search using
branch-and-bound techniques, as-soon-as-possible (ASAP) scheduling and schedul-
ing the critical path first.

In an ASAP schedule, all operations are assigned to the earliest possible control
step, corresponding to a topological sort of the graph in the depth-first order. An
example of CDFG with its ASAP schedule under the constraint of one adder and
one multiplier is shown in Figure 1.8 [5].

List Scheduling schedules operations into control steps, one control step at a
time. For the current control step, a list of data ready operators is constructed,
containing those operators whose inputs are produced in earlier control steps and
that do not violate any resource constraints. This list is then sorted according to
some priority function, the highest-priority operator is placed into current control
step, the list is updated, and t'he process continues until no more operators can be
placed into the control step. This process is then repeated on the next control step,

until the entire design is scheduled. List scheduling is illustrated in Figure 1.9 [3].

18

/+1 2 3 3 @@2 \1
06 IOXOX
(3 oA
NSO \®/

Figure 1.8: Example of ASAP scheduling [4].

The priority function is the path length from the node to the end of the block which
is shown in Figure 1.9a and the list schedule is shown in Figure 1.9b. Variations of

list scheduling are used in niany high-level synthesis systems, for example, CMU’s
System Architect’s Workbench [13].

PER| & ®

5/1@6\6)/3

(a) COFG {b) Scheduled CDFG

Figure 1.9: Example of list scheduling [4].

A more complex scheduling method is force — directed scheduling [14], which

uses a global criterion that indicates how crowded a control step is compared with

19

others to decide where to schedule an operation. The probability of operations being
in a given control step can be calculated by using mobility which is the difference
between the ASAP and the as-late-as-possible (ALAP) schedules. For example, if
an operation can be scheduled in three steps, it has a mobility of 3. Thus, the
probability of the operation to be scheduled in each of these steps is 1 /3. Adding
all the probabilities of any control step gives a measure of how crowded that control
step is. This measure is called the distribution because it tells how much hardware
will be required. After determining the distribution for all control steps, the effect
for each possible assignment of an operation v to a control step s can be calculated.
Then the operation/control-step pair can be scheduled to minimize the distribution
differences among control steps. The quantitative measure of scheduling v in s is
calculated on the distribution using an equation that is analogous to the force in
a spring (spring constant times displacement, where the constant is the original
distribution for a control step and the displacement is the change in the distribution
value). Thus, this scheduling algorithm is called forced-directed scheduling (FDS).
FDS is illustrated in Figure 1.10 [5]. A CDFG with three add operations labeled as
a1, ¢2 and a3 is shown in Figure 1.10a. Figure 1.10b shows time frames for add
operations, that is the probability of each operation being in a given control step.
Distribution is shown iz Figure 1.10c. Calculation of force involved in assigning a3
to control step 2 is shown in Figure 1.10. As we see in Figure 1.10c the control step
2 is heavily loaded, and thus the positive force indicates that a3 should not.go into
control step 2. -

All of the above scheduling techniques, except exhaustive search and branch and

bound techniques come under iterative/constructive techniques. Another approach

1 1/2
1
o 1| at 12
2 | a2
® |
3
(@) ©

Force involved in assigning a3 to step 2:

32 x 112 + 12 x (-1/2)=1/2

|

DGvalue Changeinads gimiar values Positive force

forstep2 probability for for step 3 indicates that a3
step 2 should not go
intostep 2

Figure 1.10: Example of FDS [4].

20

21

to scheduling by transformation is to use heuristics to guide the process. Starting
with an initial schedule, transformations that promise to move the design closer
to the given constraints or to optimize the objective are chosen. In the former,
we first assign each operation to a separate control step and then merge control
steps iteratively without violating any constraints. In the latter, we first assign all

operations to a single control step and then divide this control step until we have

no constraint violations.

1.2.3 Pipelining

Pipelining is a common technique to enhance the circuit performance. In a pipelined
implementation, the circuit is divided into stages. Each stage executes concurrently
and feeds it’s resuits to the following stage.

Pipelining has been applied to instruction set to support efficient execution of
different instruction streams and to signal/image processors. Conversely pipelined
digital signal processing (DSP) design may be simpler, because often the processor
is dedicated to an application.

Few techniques for synthesizing pipelined data paths have been proposed un-
der some limiting assumptions such as constant data rates. Unfoftunately efficient
instruction set processor design requires handling variable data rates as well as a
variety of other issues, such as stage bypasses, hazard analysis and support for con-
trolling the pipeline by allowing stalling and flushing. As a result, present synthesis
techniques are not yet applicable to the design of competitive instruction set proces-

sors, although they have been applied successfully to some DSP designs. To achieve

22

pipelining, the input task (process) must be subdivided into a sequence of subtasks,
each of which can be executed by a specialized hardware stage that operates con-
currently with other stages in the pipeline. Consecutive tasks are initiated at an
interval which is the integer multiple of a clock cycle and is shorter than pipeline
latency. Some ad hoc representation paradigms have been developed for pipelined
circuits. For example, pipelined circuits can be specified by modeling each stage
independently as well as the stage interfaces and the synchronization mechanisms.
"This corresponds to providing a mixed structural/behavioral circuit model that may
preclude architectural optimization of the circuit as a whole. In particular, the num-
ber of stages is prescribed. Circuits are modeled by pipelining sequencing graphs
where the source vertex is fixed at the throughput rate. The time interval between
two successive inputs is called the data introduction interval. Generally the data
introduction interval is smaller than latency. If the data introduction interval equals
latency, then the operations are performed without using any pipeline registers. If
the latency is greater than the data introduction interval then pipelining can be
introduced at different intervals in the circuit, so that delay between consecutive
pipeline registers is less than or equal to the data introduction interval.

The design objectives of pipelined circuits are four: area, latency, cycle — time
and throughput. Architectural exploration and optimization relate to determining
the tradeoff points in the corresponding four-dimensional space. Most approaches
consider the sequence of problems derived by choosing particular values of the
data introduction interval a.nd of the cycle-time (hence determining implicitly the
throughput) and a search for optimal (area, latency) tradeoff points. Several opti-

mization techniques can be used to obtain a cost-optimal solution. Some of them are

23

stochastic evolution, simulated annealing, genetic algorithm and integer program-
ming.

A scheduling and hardware sharing (allocation) algorithm for synthesizing both
pipelined and non-pipelined data paths is presented in [15]. In this the schedul-
ing algorithm tries to distribute operations equally among partitions to maximize
hardware sharing. Multiplexer delays are explicitly considered to produce a more ac-
curate scheduling. In hardware sharing the structural parameters such as the size of
the multiplexers, interconnect overhead, the size of smallest sharable operator etc.,
are employed to control the amount of sharing globally and produce a heuristically
optimized RTL structure. The scheduling algorithm is iterated until a satisfactory
structure is obtained. This algorithm could also be used for synthesizing pipelined
data path from a graphics process description that contains about 1000 components.

Jun and Hwang [16] describe the SODAS-DSP system, a pipelined datapath syn-
thesis system targeted for application-specific DSP chip design. Through facilitated
user interaction, the design space of pipelined datapaths for given design descrip-
tions are explored to produce an optimal design. Taking a signal flow graph as the
input SODAS-DSP generates pipelined datapaths through scheduling and module
allocation processes. New scheduling and module allocation algorithms have been
proposed for efficient synthesis of pipelined hardwares. The proposed scheduling
algorithm is of iterative/constructive nature, where the measure of equidistribution
of operations among pipeline partitions is adopted as the objective function. This
DSP system generates eﬁcient. pipelined datapaths compared to Sehwa [17].

A method for pipelining VLSI/ULSI systems for effective communication is pro-

posed in [18]. Propagation delays of data signals have been known to severely impair

24

performance of VLSI/ULSI interconnection networks. A simple but effective way
has been proposed to increase the performance. The basic idea of the technique
relies on the fragmentation of the wires and in reconnecting them with a special
device called a repeater in order to form a bidirectional pipeline. By employing this
technique the transmission speed is improved by 150% for 32-byte messages when

a 10 cm 3-bit bus is used. It is seen that the improvement increases for longer

messages and for larger skews.

1.3 Solution techniques

Iterative and constructive techniques have been used to solve a wide range of prob-
lems. The iterative techniques such as tabu search, simulated annealing, simulated

evolution, genetic algorithm, stochastic evolution etc., have been used.

1.3.1 TIterative techniques

Amellal and Kamenska [19] have proposed one such iterative technique that describes
a tabu search synthesis system for functional synthesis. The functional synthesis
of a digital system is the realization of a register-transfer level description from
the functional specification of the system. Synthesizing a digital system from a
functional description is a complex process requiring the solution of various different
problems A control and data flow graph for representation is developed and this
model generates a single graph representing both the data and the control flow of
a VHDL behavioral description. The use of conditional dependency edges in the

graph gives a better implementation of the control constructs. A new mathematical

25

formulation of the scheduling problem using a approach based on penalty weights
is developed. Penalty weights include the real costs of the hardware units available
in a given technology. The penalty weights take into consideration different area
parameters of the design to be generated. The number of functional and storage
units as well as the number of interconnections is optimized by the minimization of
an objective function including penalty weights.

Sait et. al., [20, 21] solve the problem of scheduling and allocation using two
iterative techniques namely genetic algorithm (GA) and tabu search. The problems
of allocation and scheduling are formulated as an optimization problem. A new
chromosomal representation for scheduling and allocation is proposed using GA
technique. Apart from this, two new crossover operators to generate legal sched-
ules has been developed. The problem of scheduling and allocation has been imple-
mented using the tabu search technique. Using this technique a good initial solution,
a neighborhood generation strategy, formulation and maintenance of tabu lists, a
proper aspiration level criteria and a good tabu list size has been developed.

'The related research based on pipelining and component selection can be cate-
gorized into two classes. The first class consists of tools like Sehwa [17], the tools
from the GS Corporation R&D laboratories [15], and PLS a pipelined scheduler
[22]. These tools pipeline a given DFG so as to optimize area and performance
for given constraints, usually on the throughput or latency of the design. However
they all assume a single implementation for functional units which force them to use
the same component on non-c1:itica.l and critical paths, resulting in designs that are
inefficient and costly. SLIMOS [23] and MOSP [24] differ slightly from the above

approach - they start from a multiple implementation library and then select one

26

single implementation per operator. Hence their final design also contains single
implementations, leading to the same design inefficiencies.

The second category contains algorithms such as Tabu search (TBS) [4] and the
module selection algorithm in [25]. Though these tools use unrestricted libraries
that allow multiple physical implementations for the same operator, they combine
component selection with non-pipeline scheduling, rather than pipelined scheduling.

Stochastic evolution (SE) is an iterative technique that has been applied to prob-
lems of certain complexities like network bisection and traveling salesman problems.
We wanted to investigate the application of SE to problems whose complexities are
similar to those of component selection and pipelining. This problem was also solved
by simulated annealing (SA) and the two techniques were compared. The reason for
comparing SE with SA is due to the similarities between the two techniques. Both
the techniques are stochastic in nature, both accept downhill moves and they have
control parameters that govern the probability of accepting the uphill moves. The
basic difference between these two techniques is in the determination of the range

of magnitude of the negative gains and in their method of acceptance.

1.3.2 Constructive techniques

Constructive techniques search a small part of the solution space. The heuristics
employed by these techniques generally do not produce a optimal solution, but these
produce effective results within a short duration. Many constructive techniques
have been implemented in HLS systems. Sait et. al., [26] describes a loop-based

scheduling algorithm. In this algorithm a subset of some high-level programming

27

language is used to describe the behavior of the intended design. An intermediate
form is generated by using the programming language compiler in the transformation
process. The use of the compiler results in optimization and avoids restricting the
language to certain data types or control constructs. In order to eliminate machine
dependency and complexity the intermediate form is converted into another form
which is machine independent and has simpler syntax and semantics, called Pseudo
Assembly language (PAL). PAL descriptions are used by the system components
to produce the intended hardware in an RTL description language. Scheduling in
this HLS system is done in a constructive manner using Loop Based Scheduling
(LBS). In LBS the control flow graph is partitioned into subgraphs, then each of the
subgraphs are scheduled individually and finally the individual schedules of all the
subgraphs are combined.

A constructive heuristic has been used to solve the problem of component selec-
tion and pipelining [3]. The objective is to maximize the use of slow components
and minimize the use of faster components while satisfying the constraints of PS
delay and latency. The components are selected from a realistic component library
that contains multiple implementations of operators. The key to the constructive
heuristic lies in judiciously selecting vertices to be slowed down in each iteration,
since slowing dow one vertex may prevent slowing down others due to graph depen-
dencies. Thus, the desirability of slowing down a vertex is evaluated with respect
to all the vertices that would be affected by it’s slow down. With every vertex is
associated a value, called vertez weight which gives a measure of it’s desirability
or priority in the selection process. The vertex with the highest weight is one that

is selected to slow down. This heuristic gives cost-effective results within a small

28

period of time.

1.4 Summary

The chapter described the various iterative techniques for solving combinatorial
optimization problems in HLS and their role in design automation. The problem of
component selection is one such problem in HLS. The following chapter describes
the SE and SA techniques. The solution strategies and the algorithms of SE and
SA that were used in solving the problem of component selection and pipelining are
described in chapters 3 and 4 respectively. The experimental results are presented

in chapter 5 and the conclusions and future work are presented in chapter 6.

Chapter 2

Stochastic Evolution and

Simulated Annealing

Stochastic Evolution (SE) and Simulated Annealing (SA) are two techniques that
can be used to solve a wide range of combinatorial optimization problems. The
SA algorithm introduced by Kirkpatrick et al. [11] is an iterative improvement
technique for solving combinatorial optimization problems. SE resolves the two

main drawbacks of SA. They are:

e An actual implementation of SA requires a careful tuning of some of it’s control

parameters to achieve good results and it uses excessive computation time.
o It does not have a suitable stopping criteria [27].

An important factor in obtaining cost-effective designs is the ability to use multi-
ple operator implementations in the data path. Delay paths can then be balanced by

using slow components where possible and the faster components only when neces-

29

30

sary. For high performance applications such as Digital signal processing (DSP) sys-
tems, designers often combine pipelining with the use of a multiple-implementation
library so as to satisfy performance requirements at a reasonable cost. In this re-
search SA and SE techniques were used to solve the problems of component selection

and pipelining of a DFG to give a cost-effective solution. This chapter gives an in-

troduction to these two techniques.

2.1 Stochastic Evolution

The inputs for component selection and pipelining are a set of constraints, a com-
ponent library, and a DFG. The output is a valid pipelined DFG with components
assigned to the nodes and the constraints being satisfied. The relationship of these
elements with the stochastic system is shown in Figure 2.1. The stochastic system
in our problem is the SE or the SA algorithm. Stochastic evolution is based on the
concept of state model [27]. A state model is described as a finite set M of movable
elements, a finite set L of locations and the state is defined as M — L satisfying
certain constraints. The idea behind the SE algorithm is that the suitability of
each movable element m € M in it’s current location S(m) leads to a lower cost of

the state S. SE algorithm is a special instance of a more general class of adaptive

heuristics by Nahar et. al. [28].

2.1.1 Algorithm

The input to SE is an initial state Sp, an initial value of the control parameter

Po, and parameter R used in the stopping criterion. The initial state S, is a valid

{Component]
Library

DFG —>

Constraints —>}

Stochastic

HLS —
System

Figure 2.1: HLS system.

Valid pipelined DFG
with Components
assigned to nodes

31

32

AlGORITHM SE

S=5 /* initial state */
Sgest =S /* save initial state */
P=Dpo /* initialize control parameter */
p=0 /* initialize counter */
REPEAT

Cpre = COST(S)

S = PERTURB(S, p)

Ceur = COST(S)

UPDATE(D, Cpre, Ceur)

IF (COST(S) < COST(Sg.s:)) THEN

SBest =S [* save best state */
p=p—R /* decrement counter by R */
ELSE
p=p+1 /* increment counter */
ENDIF
UNTIL p> R /* stopping criteria */
RETURN (Sg.s:) /* report best state */

Figure 2.2: Stochastic Evolution algorithm.

state satisfying all the constraints specified by the problem under consideration.
The initial state is assumed to be the best state on invocation of the algorithm.
This algorithm is shown in Figure 2.2. The cost function depends on the type
of the problem being solved. In a network bisection problem, cost is the number
of hyperedges cﬁt, where as in a traveling salesman problem, it is the sum of the
distances covering all the cities.

The SE algorithm retains the state of lowest cost among those produced by the
function PERTURB. Each tin;le a state is found which has a lower cost than the

best state so far, SE decrements the counter by R. The UPDATE procedure is used

to update the control parameter p.

33

The iteration bound R acts as the expected number of iterations the SE algorithm
needs until Coyr < COST(Spest), i.€., an improvement in cost takes place. If such
an improvement occurs at p < R iterations, then the remaining R — p iterations are
added to the next R iterations to be performed. Therefore, if I is the total number
of iterations performed by the algorithm, then I/R is the number of improvements
encountered. Consequently the quality of the final state obtained increases with the
running time of the SE algorithm. If R is set too large, then SE algorithm wastes
time during the last set of iterations because it cannot find better states. However

if R is chosen too small, the SE algorithm might not have enough time to improve

the initial state.

2.1.2 PERTURB

During each call to PERTURB the elements are scanned in a particular order. 'I—‘he

choice of this ordering is problem specific. The PERTURB function is shown in
Figure 2.3.

Let S : M — L be the existing function that may or may not satisfy the con-
straints of a state and assume that the cost function has been defined. Let element
m € M. If a unique move is associated with m from S then it generates a new
function S’ : M — L such that $'(m) # S(m). The move associated with m could
itself be a simple move or a compound move depending upon the problem being
solved. The gain is calculated.as GAIN(m) = COST(S) — COST(S") which gives
the change in costs after the move is performed. The function PERTURB stochas-

tically decides whether or not to accept the move associated with the element m

34

Function PERTURB(S, p)
FOR EACH (m ¢ M) DO /* m:vertex of the graph */
S' = MOVE(S, M) /* perform move associated with m */
GAIN(m) = COST(S) - COST(S") /* compute gain of move */
IF (GAIN(m) > RANDINT(~p,0)) THEN
S= 3’ [* accept move */
ENDIF
ENDFOR
S = MAKE_STATE(S) /* make sure S is a state ¥/
RETURN (S) /* return a neighboring state */

Figure 2.3: PERTURB Function.

being scanned with the help of a non-negative control parameter p.

The value of GAIN(m) is compared to an integer r randomly generated in the
interval [-p, 0]. If GAIN(m) > r, then the move to S’ is accepted, otherwise it-is
rejected. If r < 0, moves with positive gains are always accepted. The algorithm
then goes on to scan the next element in M. After scanning all the elements of M,
the final state is a,ccepteci if it satisfies all the constraints. If the state S does not

satisfy the constraints then the latest moves are retraced backwards until a state is

obtained which satisfies the constraints.

2.1.3 UPDATE

The UPDATE function shown in Figure 2.4 is mainly responsible for updating the
value of the control parameter p. p is used to determine the range of the negative
gains that are to be accepted. This has to.be selected carefully. Initially p is set

to a non-negative value close to zero. Such a choice for p means that only moves

35

Procedure UPDATE(p, Cpre, Ceur)

IF (Cpre = Cewr) THEN
pre

p = f(p)
ELSE

P=Dpo
ENDIF

Figure 2.4: UPDATE procedure.

with small negative gains are accepted. The value of p is increased only when costs
for two consecutive iterations are the same. If both the costs are same, then pis
increased to a new value f(p) > p. f(p) is obtained by increasing p by a certain
positive value. The value that is added to p depends on the type of the problem
being solved. The value is chosen such that a cost effective solution is obtained.
Otherwise p is reset to it’s initial value. The parameter p is increased to give the
algorithm a chance to escape a local minimum via an uphill climb. Depending-on

the problem more than one control parameter may be used.

2.1.4 Issues Concerning Stochastic Evolution Algorithm

The successful implementation of SE to achieve cost-effective results is based on four

factors.

1. An appropriate modeling of the state of the problem.

2. The notion of the move to be associated with the “movable” elements of the

state has to be carefully designed.

36

3. An initial value of the control parameter p and a method for updating it has

to be devised.
4. A value for the stopping criterion parameter R.

The above issues are interrelated and depend on the problem as well. The basic
requirement is a good representation of the given problem. This enables in designing
effective and efficient strategies. The move strategy inturn depends on the problem.
The choice of parameter p and it’s update method depends on the moves adopted.
The choice of stopping criteria depends on the second, third and the fourth choices.
In the state model, if the moves and the control parameter p are appropriately

chosen then a near optimal solution could be obtained.

2.2 Simulated Annealing i

Simulated annealing is a technique for solving combinatorial optimization problems
[11, 28, 29]. It is not an algorithm with a prescribed sequence of operations to solve a
problem but a paradigm for constructing algorithms to solve optimization problems
of a particular character. It belongs to a class of iterative improvement schemes.
It has been applied to several combinatorial optimization problems from various
fields like traveling salesman problem, graph partitioning, quadratic assignment,
matching, linear arrangement and scheduling [30]. Resource constraint problems [31]
have also been solved using SA' In the areas of engineering, simulated annealing has
been applied to VLSI design {1] (placement [32, 33], routing [34]), image processing,

code design, facilities layout, network topology design etc.

37
2.2.1 Background

Simulated annealing was derived using an analogy between the physical annealing
process of the solids and combinatorial problems. The term annealing refers to
heating a solid to a very high temperature and then slowly cooling the molten
material in a controlled manner until it crystallizes [1, 35].

A combinatorial optimization problem is one in which we seek to find some con-
figuration of parameters X = (X, X5, X3, ... ,Xr) that minimizes some function
f(X). This function is usually referred to as the cost or objective function. The
objective function is a measure of goodness of a particular configuration of param-
eters. Realistic design problems may require many parameters and a complex cost
function. Consider for example, deciding the placement of components on a surface
of an integrated circuit in an optimal way. We may seek to maximize the ability
to route wires to interconnect these components [34, 36], minimize the overall cl_lip
area, minimize the manufacturing yield of the chip, minimize the deviation from
specified timing constraints and so forth. The cost function for such a problem may
be very sophisticated with a large number of parameters.

Iterative strategies attempt to perturb some existing suboptimal solution in the
direction of a better, lower cost solution. An obvious approach is to explore easily
reachable neighboring configurations and to select the one with the least cost, i.e.,
the one giving the most improvement. In practice the current solution is randomly
perturbed. This process is continued until no further improvements are obtained, at
which point the process terminates. In such iterative techniques improvement is only

downhill and the solution gets stuck in a local minima [35]. In order to overcome this,

38

random initial configurations can be tried, improving each one of them and using
the best answer. However, for very large problems, the computational expense is
high, the number of random starts needed to adequately sample the cost surface is
unreasonable, and still there is no guarantee of finding a good solution.

Simulated annealing offers a strategy very similar to iterative improvement, with
one major difference that annealing allows perturbations to move uphill in a con-
trolled fashion. Because each move can transform one configuration into a worse
configuration, it is possible to jump out of a local minima and potentially fall into

a downhill path. Designing an annealing algorithm for a problem consists of five

major parts:

1. Configuration Space: The set of allowed configurations of the system must

facilitate easy representation of each state and easy generation of perturba-

tions.

2. Move Set: The set of feasible moves (eg., pair swaps) must be rich enough
so that all reasonable solutions can be found by applying a sequence of moves
from this set. In addition, these moves must be relatively inexpensive to

compute, since a large number of moves will be used.

3. Cost Metric: The metric must be incrementally computable so that the

time to evaluate each move is minimal.

4. Annealing Schedule: The manner in which the temperature T is lowered
during annealing, also known as the temperature schedule is crucial. Starting

too cold, stopping too hot, or cooliﬁg too quickly all produce suboptimal

39

Algorithm Simulated._annealing(Ss, Ty, ¢, 8, M, Maztime)

[* So is the initial solution */

/* Tp is the initial temperature */

/* a is the cooling rate (a constant) */
[* B a constant */

/* M represents the time until the next parameter is updated */
[* Maztime is the total allowed time for the annealing process */

Call Metropolis(S,, T, M)
Time = Time + M
T=a*T
M=g*M
UNTIL (Time > Maxtime)
Output best solution
END

Figure 2.5: Simulated Annealing algorithm.

solutions. Starting too hot or cooling too slowly wastes CPU time [1].

5. Data Structures: The ability to propose and evaluate moves efficiently

~ hinges on a good representation for the basic objects in the problem.

Although the simulated annealing framework is conceptually straightforward, design
of a successful annealing-based algorithm involves considerable engineering judge-

ment in the process of designing the five components described.

40
2.3 Algorithm

"The core of the simulated annealing algorithm shown in Figure 2.5 is the Metropolis
procedure, which simulates the annealing process at a given temperature T [37].
The procedure Metropolis is named after the scientist who devised a similar scheme
to simulate a collection of atoms in equilibrium at a given temperature.

Simulated annealing procedure starts with a initial solution Sp, initial temper-
ature Ty, cooling rate o, a constant § which controls the time spent in annealing
at a particular temperature, and Maztime which is the total time allowed for the
annealing process and M that represents the timé until the next parameter is up-
dated.

The Metropolis procedure shown in Figure 2.6 receives as input the current
temperature T, and the current solution S, which it improves through local search.
Metropolis is also provided with the value M, which is the amount of time for which
annealing must be applied at a temperature T. The procedure simulated annealing
simply invokes Metropolis at decreasing temperatures. Temperature is initialized to
a value Ty at the beginning of the procedure, and is slowly reduced in a geometric
progression; the parameter « is used to achieve cooling. The amount of time spent
in annealing at a temperature is gradually increased as temperature is lowered [11].
This is done using the parameter § > 1. The variable Time keeps track of the time
being expended in each call to the Metropolis. The annealing procedure halts when
Time exceeds the allowed time.

In simulated annealing the current state is disturbed to obtain a neighboring

state. The neighboring state may be obtained by performing a random perturbation,

41

Algorithm Metropolis(S,, T, M)

BEGIN
REPEAT
Sn = neighbor(S,)
Ac = (cost(S,) — cost(S,))
IF ((Ac < 0) or (random < e~4</T)) THEN
Se = Sp; /* accept the solution */
M=M-1
UNTIL (M = 0)
END

Figure 2.6: Metropolis Procedure.

such as moving a component or part to a new location or replacing a component
or a part by another one. After obtaining a new state the cost of the state is
computed. If the cost of the new solution S, is better then the cost of the current
solution S, then the new solution is accepted and S, is set to S,. If the new solution
has a higher cost in comparison to the original solution S,, Metropolis will accept
the new solution on a probabilistic basis. This is to accept uphill moves. At higher
temperatures the probability of large uphill moves is high and at lower temperatures
the probability is small. If this random number is smaller than e=4¢/T_ where Ac is
the difference in costs, (Ac = ¢(S,) — ¢(S.)), and T is the temperature, the uphill
solution is accepted.The probability that an inferior solution is accepted is given
by P(random < e~4¢/T). The random number generation is assumed to follow a
uniform distribution. At very liigh temperatures, (when T — o0), e4</T =1, and

hence the above probability approaches 1. When T — 0, the probability e=4¢/T
falls to zero [1]. .

42
2.4 Problem-specific decisions

‘The problem-specific decisions are concerned with the neighborhood structure and
the cost function. These have a significant effect on the success of an annealing
algorithm. As with generic decisions, it is not always possible to set down a series of
rules which will define the best choices for a given problem. However, it is possible
to outline some properties which are desirable. In making decisions about these

factors, two important objectives have to be considered.
o The validity of the algorithm is to be maintained.

e The computation time should be used effectively for as many iterations as

possible.

If the available computing time is to be used efficiently, it is vital that frequently
used routines should be as fast as possible. Generations of the neighborhood so-
lutions must be done in an efficient manner such that it does not consume much
time. It is sometimes complex if the neighborhood is large or if the solution space is
constrained by stringent feasibility conditions. As the cost function has to be calcu-
lated between two states after every iteration, it is important that the cost function
and the neighborhood structure be chosen in such a way that this calculation can
be carried out quickly and efficiently. It is often the case that it does not necessitate
recalculation of the complete cost function for the new solution, and such shortcuts
should be considered when deciding on the forms of the costs and the neighborhood.

If the number of iterations are to be kept reasonably low, it is necessary to avoid

neighborhoods which give rise to a spiky topography over the solution space. The

43

number of iterations that have to be carried out to obtain an optimal solution also
depends on the size of the solution space. If the solution space is smaller, optimal
solution can be obtained in lesser number of iterations. If the solution space is
large, it is necessary to reduce the size of the solution space by eliminating part
of the solution space based on certain criteria. This in turn is specific to a given
problem. In addition to keeping the solution space small, it is also useful to aim
for reasonably small neighborhoods. This enables a neighborhood to be searched
adequately in fewer iterations, but conversely means that there is less opportunity
for dramatic improvements to occur in a single move. But all the conditions cannot

be satisfied for a given problem, therefore compromises have to be made.

2.5 Summary

This chapter described the SE and the SA techniques. The various strategies that
were used to perturb the states have been described. The acceptance criteria for both
the techniques has also been discussed. The next chapter describes the application

of SE technique for component selection and pipelining.

Chapter 3

Component Selection and
Pipelining using Stochastic

Evolution

This chapter describes the application of Stochastic Evolution (SE) technique for
component selection and pipelining. The inputs for this problem are a Data Flow
graph (DFG), a multiple-component library and constraints. A DFG consists of
vertices that represents operators and edges that show the interrelationship between
the vertices. Each DFG consists of a set of inputs and a set of outputs. Mapping
components from a realistic component library (CL) on to the vertices of the DFG
is component selection. Pipelining involves placing registers on the DFG such that
PS delay constraint is satisﬁe;d, i.e., delay between any two consecutive registers
in the DFG should not exceed the specified PS delay. To design the problem of

component selection and pipelining using the SE technique the following issues have

44

to be addressed:

o Designing an initial representation of the solution.
e Determining the cost function.

e Designing appropriate perturb strategies.

o Defining appropriate acceptance criteria.

A careful design of these critical parts results in obtaining a cost-optimal solution.

"This chapter describes the various design issues that were considered and the effect

of each one of them.

3.1 Imitial Solution Representation

A DFG(V,E) consists of a set of vertices V, and a set of directed edges E. Each
of the vertices are connected to one or more vertices through edges. In order to
keep track of the edges that are coming into a particular vertex and going out of
the vertex, i.e., the sum of the indegree and outdegree of the vertex, all the possible
paths between the inputs and the outputs were stored. This type of representation
of the DFG keeps track of the successors and the predecessors of all the vertices
in the DFG. This design method helps in calculating the cost easily and efficiently
and also determines whether the current state satisfies the PS delay and latency
constraints which is explained .in detail in later sections.

Each of the vertices is assigned a unique number. If the DFG consists of n ver-

tices then the vertices are labeled 1 through n. Apart from containing the unique

46

ID number each vertex also stores the information about the component type, com-
ponent name, delay, and the cost in terms of the number of gates. The realistic CL
that is considered is shown in Table 3.1. The CL consists of eight different types of
multipliers and six different types of adders and subtractors. The various fields of
each component of the CL includes component type, component name, delay in ns
and cost in terms of the number of gates.

PS delay and latency are also given as inputs along with the DFG. Any initial
representation of the solution should be a valid initial solution. A solution is said
to be valid if its latency of the initial solution is less than or equal to the given
latency and the delay of each of the components mapped onto the DFG is less than
or equal to the specified PS delay. It is necessary to start with a valid initial solution
because in the worst case, when repeated perturbations of the current state does
not produce a valid solution, then, the initial solution will be the best solution. If
an invalid initial solution is used then the final solution that is obtained may not be
a valid solution. The initial solution consisted of mapping the fastest components
onto the DFG. In this method components with the smallest delays were mapped
onto the DFG. The multipliers corresponding to the Mpy8 and adders/subtractors
corresponding to Add6/Sub6 of the CL shown in Table 3.1 were used. As the
components with the smallest delays have the highest cost (in terms of number of
gates), the initial solution will start with the highest cost and lowest latency. The
advantage of using this method is that we always start with a valid initial solution
satisfying the constraints of I.’S delay and the latency. The initial solution also
consists of pipelining the DFG. This is done~ by traversing the DFG from the inputs

towards the output. The delays of each of the components is accumulated. At the

Component | Component | Delay | Cost
types Name (ns) | (Gates)

* Mpyl 57.97 | 2368

* Mpy2 4421 | 2400

* Mpy3 36.21 | 2600

* Mpy4 3298 | 2710

* Mpy5 28.57 | 2978

* Mpy6 25.00 { 3500

* Mpy7 22.00 | 4000

* Mpy8 20.50 | 4500

+/- Add1l/Subl | 25.80 62

+/- Add2/Sub2 | 20.00 125

+/- Add3/Sub3 | 13.50 187

+/- Add4/Sub4 | 10.00 | 250

+/- Add5/Sub5 | 5.50 375

+/- Add6/Sub6 | 3.00 500

Register Reg 200

Table 3.1: Component Library.

48

point where the accumulated cost exceeds the specified PS delay a register is placed.

Therefore the combined delay of the components between two successive registers is

less than or equal to the PS delay.

3.2 Cost Function

The cost function of the DFG is the cost (number of gates) of all the components

of the DFG and the number of pipeline registers. Total cost of the components is :

Total cost=Cost of Registers+ » Cost; (3.1)

=1
where 7 is the number of vertices in the DFG. The cost of the DFG after disturbing

the current state changes. This cost is computed such that the time needed to

calculate the new cost is minimal.

In order to calculate the cost, an array of size n is maintained where n is the
number of vertices in the DFG. The costs of each of the components of the current
state are stored in the array. When the current state is perturbed, then one of the
components is replaced by another component. Suppose that a component with ID
¢ whose current cost is C; is replaced by component with cost C.. If T is the current

total cost then the new cost is calculated by the formula shown by
New cost =T — C; + C,+ Cost of Registers (3.2)

The cost of the registers is obtained by pipelining the DFG. The cost of the current

component being perturbed is obtained from the array at the position corresponding

49

to the the ID number. After computing the new cost, the cost of the component at

position 7 in the array is replaced by the cost of the new component.

3.3 PERTURB Strategy

Each call to the PERTURB function involve disturbing all the elements of the
DFG. This is done by replacing each component by another component of the same
type from the CL. Initially fastest components are mapped onto the DFG. Then
subsequent perturbations involve replacing the components of the DFG by other
componénts of the same type from the CL which is chosen at random.

Whenever a multiplier has to be replaced then one of the eight multipliers is
chosen at random. Similarly if an adder/subtractor has to be chosen, one of the six
different adders/subtractors is chosen. Other different methods can be adopted. to
select the components from the library, but we have implemented it for the random
method only. On replacing a component the corresponding data about the delay
and the cost of the component is updated. The COST array that keeps track of the
costs of each of the components of the current state is also updated.

The components of the DFG are scanned according to some priori ordering.

Four different types of PERTURB strategies were tried. They are discussed in the

following subsections.

3.3.1 Random Moves

In this strategy the components are selected at random at every call to the PERTURB

function. Therefore the order in which the components are scanned in every iter-

50

ation differs. But in every iteration each of the components is scanned only once.
The overhead involved with this strategy is that during every iteration, on choosing
a component at random, a check has to be made to see if the component chosen has
been perturbed during the same iteration.

Figure 3.1 shows the Random move strategy. The DFG shown in this example
consists of four multipliers, and two adders. The vertices that represent the com-
ponents are labeled 1 through 6. The la;beling of the vertices is done randomly.
Figure 3.1a represents the initial state or the current state. On the next call to the
PERTURB function a different scanning order is chosen at random. This is shown
in Figure 3.2b. Similarly for every successive call to the PERTURB function differ-
ent random orders are gen‘erated for scanning the components. In this strategy it

has to be ensured that the components of the DFG are disturbed only once during

each iteration. -

3.3.2 Fixed Random Moves

In this strategy a fixed random order is used. The same random order is maintained
on every call to the PERTURB function. The order to be fixed is chosen at random.
Figure 3.2 shows the fixed random strategy. In this figure the numbers associated
with each of the vertices shows the order in which the vertices are scanned. On
every call to the PERTURB function, the same order of scanning the nodes is used.
The ordering is such that every node of the DFG is disturbed just once whenever

PERTURB function is called. Different fixed move random strategies were used for

experimentation.

Oo/P

(@)

orpP
(b)

Figure 3.1: Random move strategy.

51

Figure 3.2: Fixed random moves.

3.3.3 Top-Down Strategy -

In Top-Down strategy the vertices that are closer to the inputs are perturbed first.
This is followed by the next set of vertices at the lower levels. Hence the bottom
most vertex, i.e., the vertex preceding the output will be the last one to be disturbed.
In Figure 3.3 the vertices are labeled in the manner described above. In the figure
shown, vertices {1,2,3} are the first ones to be perturbed, followed by {4,5} and

then vertex {6}.

At any particular level of the DFG if there is more than one vertex, then three

different approaches can be used

1. Left to right approach: In this approach the order in which the elements

are scanned are from left to right. The same method is followed at all the

53

Figure 3.3: Top-Down strategy.

levels of the DFG. -

2. Right to left approach: In the right to left approach the components of

the DFG are scanned from right to left at every level.

3. Random approach: The random approach does not follow any particular
pattern. The components are chosen at random. In this method the random

approach could follow two approaches, namely

(a) Total random approach: In this approach the elements are disturbed
in a random order.. The order in which the elements are scanned in
subsequent iterations is different. This is done by choosing a particular
vertex at random at the particular level being scanned. This process

is repeated until all the components at that particular level have been

54

scanned and it is repeated for the other levels in the DFG. The order in

which the elements are chosen at each level in subsequent iterations also

differs.

(b) Fixed random approach: In fixed random approach the order in
which the components are chosen at a particular level is defined. Hence

in subsequent iterations the same order is maintained for scanning the

elements.

3.3.4 Bottom-up strategy

In this approach the components nearest to the output will be the first ones to be
scanned, while the components near the inputs will be the last one to be scanned.
In Figure 3.4 the vertex labeled {1} will be the first one to be disturbed, followed by

{2,3} and then finally by {4,5,6}. Within a particular level, the following approaches
could be used. |

1. Scanning the elements from left to right at every level of the DFG.

2. Scanning the elements from right to left at every level of the DFG.

3. Random method
(a) The vertices of the DFG are scanned in a particular order. The same
scanning order is maintained for every perturbation.

(b) A random order is chosen for scanning the elements. The order is changed

randomly for every perturbation..

55

Figure 3.4: Bottom-Up Strategy.

The order in which the vertices of the DFG are scanned does not matter as the
the components from the component library are chosen at random. For example, if
any of the methods suggested for perturbation is used and if a multiplier or an adder
is to be replaced, then it is replaced by another adder or multiplier which is chosen at
random from the CL. It is due to the randomness in selecting a component from the
CL, the four methods mentioned namely random approach, fixed random approach,
top-down approach or bottom-up approach did not affect the nature of the results.
For the top-down approach and the bottom-up approach, the order of scanning the
components at every level was done using all the three methods specified, namely

left-to-right approach, right-to-.left approach, and random approach. The results did
not differ in all the three cases.

56

3.3.5 Perturb Function

The first time the PERTURB function (Figure 3.5) is invoked the initial solution is
the current solution. A new solution is obtained by replacing one of the components
of the DFG by another component that is selected at random. The cost of this state
Shew is calculated. The difference between S_,. and S,.., determines the gain. If
the gain is less than the random number generated between —p and 0, then the
solution is rejected and the PERTURB function is again executed with S, state as
the current state. If the gain is greater than the random number then the state Spep
is accepted and the PERTURB function is invoked with S,.,, as the current state
Seur- Whenever a component is replaced by another component then the replaced
component is of the saﬁ:le type as the previous one. It is ensured that the delay of the
replaced component is less than or equal to the specified PS delay. Once a component
is disturbed the number of registers and the cost of the new state is calculated. 'I—‘he
algorithm is repeated until all the vertices of the DFG are perturbed. At this point
it is checked to see if the final state obtained satisfies the constraints. If the state
satisfies the constraints then the current state is returned else it is necessary to trace
back the moves until a state that satisfies the given constraints is obtained. But
as tracing back the moves is complicated and time consuming, a new method was
used to keep track of the last valid state that satisfied the constraints. The problem
of tracing back is further compounded because the components are disturbed in a
random manner.

A new method of keeping track of the last valid state that has to be returned

at the end of the execution of the PERTURB function was developed. In this

Algorithm PERTURB(S,p, lt, pd)

S— Current state

p— Non-negative control parameter
It — latency constraint

pd — PS-Delay constraint

Fori=1ton Do
Snew = Neighbor(S,,r, ?)

PIPELINE(S,ew) [* pipeline the DFG */

Gain = Cost(Seyr) - Cost(Spew)
If (Gain > RANDINT(-p,0)) Then
If (LATENCY TEST(Spew)) = TRUE)) &&
(PS-DELAY TEST(Snew) = TRUE))) Then
S:= Snew
Endif
Seur = Snew
Endif
Endfor
Return S;
End

Figure 3.5: PERTURB algorithm.

57

58

method whenever the new state that is obtained by disturbing the current state is
accepted it is also checked to see if it satisfies the given constraints. If it satisfies
the given constraints then the state is stored in S,. Hence after disturbing all the
components the state S; is the last valid state, which is returned. Therefore by
using this method it is not necessary to reverse the last few moves till a valid state
is obtained. A state is valid if the PS delay constraint and the latency constraints
are satisfied. The latency constraint is checked by traversing the DFG from the
inputs towards the output. If on any path between the input and the output the
latency of the DFG exceeds that of the specified latency then the state is rejected.
The PS delay constraint is checked by scanning all the components of the DFG.
If the delay of any of the components of the DFG is greater than the specified PS
delay then the state is rejected. For a particular state to be accepted as S, it is
necessary that both the constraints should be satisfied. }
The number of iterations for which the SE algorithm is made to run depends
on the parameter R, which specifies the reward criteria as explained in the previous
chapter. The algorithm was initially carried out with small values of R at first. It
was found that the algorithm ran for few hundred iterations and the results obtained
were poor. On increasing the the value of R the results improved and the algorithm
ran for larger number of iterations. It was found that best results were obtained
when the value of R was between 20 and 25. In general if the value of R is increased

then the chances of obtaining better results also improve.

3.4 Post Processing

Post-processing was introduced in the PERTURB function to check if it improved
the results. It is the last step of the PERTURB function. The PERTURB function
is made to disturb the components of the DFG once. After this is done the final
state that is obtained satisfies the PS Delay and the latency constraint. The reason
for introducing post-processing is that the cost of the DFG could further improve
because the combined PS delays of the components between two consecutive registers
maybe lesser than the specified PS delay constraint. The PERTURB function with
post-processing is shown in Figure 3.6.

In post-processing the entire DFG is scanned starting from the inputs towards
the output. The delays of the components between two consecutive registers is cal-
culated. If the combined delay of the components between two consecutive registers
is less than the specified PS delay then the possibility of replacing one or more com-
ponents by slower components of the same type is calculated. If this is possible then
the components are replaced. The replacement of the components should be done
such that the the PS delay and latency constraints are satisfied. By doing this the
number of slower components that are used increases and the cost of the solution
decreases. Post-processing is done once every time the PERTURB function is called.
The results obtained by using post-processing showed that there was considerable

improvement compared to the results of SE without post-processing.

Algorithm PERTURB(S, p, lt, pd)

S— Current state

p— Non-negative control parameter
It — latency constraint

pd — PS-Delay constraint

For:=1ton Do
Snew = Neighbor(S.,,)
PIPELINE(S,) /* pipeline the DFG */
Gain = Cost(Seur) - Cost(Snew)
If (Gain > RANDINT(-p,0)) Then
If (LATENCY .TEST(Snew)) = TRUE)) &&
(PS_-DELAY TEST(S;ew) = TRUE))) Then
St = Snew
Endif
Scur = Snew
Endif
Endfor
POST_PROCESSING()
Retumn S;
End

Figure 3.6: PERTURB with post processing.

3.5 Update Function

The update function is responsible for updating the value of the control parameter

p. Tuning of this parameter is important as it affects the results. Careful tuning of

this parameter is necessary for obtaining good results.

In our problem p is the cost associated with the operators. A value equal to the
least difference between two components of the component library (CL) was assigned

to p and f(p) was assigned a value equal to the maximum difference between two

60

61

components in the CL. While experimenting with these values of p and f(p) it was
observed that the initial drop in the cost was less because only adders/subtractors
could be disturbed. As the iterations increased the changes in the costs were high
as the value of f(p) was high.

On keeping the value of f(p) large it was observed that the variations in costs
were large. Therefore f(p) had to be reduced. This was done by decreasing f(p) in
multiples of 100. This was done until the range of variations were lessened. Further
reduction of f(p) produced poor results.

As the value of p is equal to the least difference between any two components of
the CL, only adders/subtractors could be disturbed. Therefore the value of p had
to be increased so that multipliers could also be disturbed at the initial value of p.
Hence p was increased keeping f(p) constant. By increasing the value of p better
results were obtained. On increasing p a certain point was reached beyond which

poor results were obtained. At theses values of p and f(p) the best results were

obtained.

3.6 Parallelizing Stochastic Evolution Algorithm

A common feature of all software tools for circuit design is the excessive demand
they place for CPU-time. Optimization problems can be solved to give near-optimal
solutions in polynomial time by searching the entire solution space. However the
size of the problem prohibits the use of this method due to time constraint. There
is hence a need to accelerate computation by using parallel processing techniques.

A move or a trial in SE for component selection and pipelining consists of the

62

following tasks:

1. perform a perturbation of the current solution to create a new solution;

2. compute the difference in the cost between the new solution and the current

solution;

. accept the new solution if it’s cost is less than the current solution, else accept

it with a probability;

. if the new solution is accepted, then replace the current solution by the new

solution. Also test if the solution satisfies the PS delay and the latency con-
straints. If it satisfies then store the solution as the temporary best state.
This is to ensure that we do not have to reverse the last number of moves
after executing the PERTURB fuﬁction to obtain a valid state that has to be

returned as the last temporary state will be the last valid state that has to be

returned;

. replace the new solution as the current solution and repeat the entire process

till all the components of the DFG have been disturbed once.

In SE, the parameter R controls the number of the iterations the algorithm

is supposed to run. Each time a state is found which has a lower cost than the

current best state so far, SE decrements the counter by R, thereby rewarding itself

by increasing the number of iterations. One of the important issues that have to be

addressed while parallelizing SE is to determine how R is to be decremented.

One of the simplest method of parallelizing SE involves running SE on different

processors with different initial solutions. Each of processors runs SE serially and

63

works on different solution spaces, without overlapping. After completion the best
solution among the processors is chosen. The major problem associated with this
method is that it is necessary to divide the solution space and it also has to be
ensured that the solution does not overlap with those of the other processors, or
there is minimal overlap. The division of the solution space such that overlapping
does not occur is a difficult task.

For component selection and pipelining, the SE algorithm can run on different
processors with the same initial solution. The value of the parameter R is initially
the same for all the processors. Then each of the processors runs the algorithm
serially. After completing the PERTURB function, the best state among all the
processors is chosen as the next state. The current value of p is chosen from the
processor that gave the best state. The value of p and the best state is communicated
to all the processors and the algorithm is executed. This entire process is repeated
until the end of execution. Another variation to this method could be to start with
different solutions.

In order to carry out the above process one processor is chosen as the master
processor. The master processor is the one that decides which processor has the
best current solution after every execution of the PERTURB function. It then
communicates the current best solution and the value of parameter R to all the
other processors.

In the above process some of the processors have to remain idle after every cycle
of PERTURB function as some of the processors may complete it faster. Hence these
processors are forced to wait until all the processors complete. After there comple-

tion the master processor decides which processor has the best solution and then

64

communicates it to the other processors. Some communication protocols have to be

designed for communicating between the processors and the the master processor.

3.7 Summary

This chapter described the application of SE technique for component selection and
pipelining. It also describes the various peérturb strategies used to generate neigh-
borhoods, defines the acceptance criteria, and also a method of parallelizing this
technique. Post-processing has also been introduced in the SE technique and this
has resulfed in an improvement in results. The next chapter shows the application

of SA for component selection and pipelining.

Chapter 4

Component Selection and
Pipelining using Simulated

Annealing

This chapter will discuss the Simulated Annealing (SA) technique for component
selection and pipelining. An introduction to SA was given in Chapter 2. The main

tasks necessary to formulate component selection and pipelining are:
¢ Finding a proper initial representation.
¢ Finding an appropriate cost function.
o Generating moves.
e Defining a proper cooling schedule

We will discuss these tasks in the remaining sections of this chapter.

65

66
4.1 Initial, Current and Best Solution

The initial solution consists of mapping components from the component library
(CL) onto the DFG. This was done by mapping the fastest components from the
component library to the DFG. The method used is the same as the one for Stochas-
tic Evolution (SE). This method always produces a valid initial solution. This initial

solution will be the current solution before the algorithm is executed and will also

be the Initial best state.

4.2 Cost Function

In SA the cost is calculated in the same way as it is calculated for SE. This method
of calculating cost reduces the time needed to calculate the new cost as it is done
incrementally, taking into account only the differences due to local disturbances.-'In
SA, in each iteration only valid solutions are accepted as neighboring solutions, and

the cost is calculated only if the current state produced is a valid state.

4.3 Generation of Moves

Generating a new state is done in a manner similar to the one that was followed for

SE. All these different methods of perturbations were carried out, namely:

¢ Random perturbation.
o Fixed random perturbation.

¢ Top-down approach

67

— Right-to-left approach
— Left-to-right approach
— Random approach

— Fixed random approach
¢ Bottom-Up approach

— Right-to-left approach
— Left-to-right approach
— Random approach

— Fixed random approach

4.4 Metropolis Function

The core of the SE algorithm is the Metropolis function which is shown in Figure
4.1. This is responsible for producing neighboring solutions and also defining the
basis for accepting the current state. The acceptance of a particular state is inturn
dependent on the following parameters: the cooling rate a, a constant 3, the initial
temperature Tj, the total time allowed for the annealing process Maztime, and M
which represents the time until the next parameter is updated. The tuning of these
parameters is explained in the next section.

The Metropolis function bégins by disturbing the current state to obtain a new
state. The new state’s cost is calculated and it is accepted if the cost is less than

the current state’s cost or it is accepted with a certain probability. But in the

Algorithm Metropolis(S.,., T, It, pd)

Scur — Current state

T— Initial temperature T
1t — latency constraint
pd — PS-Delay constraint

For i=1ton Do /* n - Number of vertices */

Snew = Neighbor(Ser, 1)
PIPELINE(DFG) /* pipeline the DFG */
Gain = Cost(Seyr) - Cost(Snew)
If ((LATENCY TEST(Sqew) = TRUE) &&
(PS_DELAY TEST(Sqew) = TRUE)) Then
If (Gain > RANDINT() < e~2</T) Then
Scur = Sncw
Endif
Endif
Endfor
Return S,
End

Figure 4.1: The Metropolis Algorithm.

68

69

problem being considered it also has to be determined if the current state satisfies

the constraints of PS delay and latency.

4.5 Tuning of Parameters

The set of parameters Ty, a, 8, and M specified in the previous sections constitutes
the cooling schedule. The cooling schedule can be determined by a trial and error
method or by a control mechanism that is problem independent.

‘The cooling schedule consists of choosing appropriate values for the parameters.

The method adopted for choosing these appropriate values is:

1. Initial Temperature Ty: The initial temperature was chosen such that

all the transitions are accepted initially. That is, the initial acceptance ratio

x(To) must be close to unity. -

Number of moves accepted at T,
x(To) = ! = 2

4.1
Total number of moves attempted at Ty (4.1)

Initially a very low value of Ty was chosen. The acceptance ratio was then
calculated by running the algorithm for a fixed number of iterations. At low
values of T it was found that x(T;) was less than 0.5. Then Ty was increased
in multiples of tens and hundreds. This procedure was repeated until the x(Tp)

was close to unity in the range between 0.9 and 1.0.

2. Choosing a : The choice of & should be such that temperature T should be
reduced at a uniform rate. Furthermore Tj should not approach zero quickly.

Therefore the temperature is reduced in geometric progression as shown in

Equation 4.2.

Topp =axTk, k=0,1,..., (4.2)

In our problem it was noticed that for values of @, between the range of 0.8
and 0.94 resulted in variations in the cost only for 100 - 150 iterations after
which the results remained constant and the results obtained were poor. At

a = 0.98 best results were obtained.

3. Choosing Maztime: Initially the algorithm was executed for 100 iterations.
At the end of the 100th iteration it was found that the cost was not stabilizing.
In order to stop the algorithm it is necessary to run the algorithm until the
result remains constant for a certain number of iterations. Then Maztime was

slowly increased in multiples of 50 until the cost remained constant for about

200 - 400 iterations. -

4. Choosing M: This is equivalent to the number of times the Metropolis loop

is executed at a given temperature. M was chosen to be equal to the number

of vertices in the DFG and it was kept constant.

5. Choosing f: § was kept at a constant value of 1 so that every time Metropolis

is invoked, all the components of the DFG are disturbed just once.

4.6 Parallelizing simulated annealing

Acceleration of simulated annealing has been a very important area of research since

the invention of simulated annealing algorithm itself. Several acceleration techniques

have been reported, which can be classified into three general categories [38]:
1. Design of faster serial annealing namely by using faster schedule [39, 40, 41, 42].

2. Hardware acceleration which consists of implementing time consuming parts

in hardware.

3. Parallel acceleration, where execution of the algorithm is partitioned on several

concurrently running processors [43, 44].

Parallel computation offers a great opportunity for sizeable improvement in the

solution of large and hard problems that would otherwise have been impractical to

tackle on a sequential computer.
The main task that has to be taken into consideration for parallelizing is to
determine the design, distribution and method of accepting the current solution

that is obtained by disturbing the current state. The PERTURB or the function

that disturbs the current state involves the following steps:
1. perform a perturbation to disturb the current solution to obtain a new solution,
2. test if the current solution satisfies the constraints of PS delay and latency,
3. compute the difference in costs between the current state and the new state,

4. if the cost of the new solution is lesser than the current state and it satisfies

the constraints then accept the solution, else, accept it with a probability, and

5. if the new solution is the best one that has been obtained so far then replace

the current best solution by the new solution.

72

The above method is similar to the SE process with the exception that in SE

the parameter p also has to communicated. Therefore the method of parallelizing

SA is the same as the one for SE.

4.7 Summary

This chapter described the SA algorithm for solving the problem of component
selection and pipelining. The various strategies to obtain neighborhood states, and
the acceptance criteria, have been explained. The next chapter discusses the results
of both the SE and SA algorithms that were obtained when they were applied to

the problem of component selection and pipelining.

Chapter 5

Experimental Results

Stochastic Evolution (SE) and Simulated Annealing (SA) were tested on different
types of Data Flow Graphs (DFG). They differed in the number of nodes, types of
operators and the complexity of the interconnections between the nodes. The depth
of the DFG’s varied from 7 to 15. The characteristics of the DFGs are shown in Table
5.1. A total of six different graphs were used for experimentation. The stochastic
evolution (SE) and simulated annealing (SA) techniques were applied. Each of the
DFGs were run a number of times and the results were tabulated. Latency and PS
delay for each of the DFGs were different as shown in the tables. The DFGs are
labeled EWF (Elliptical wave filter) and Graph 1 through graph 5. The results of
SE without post-processing for different values of R are shown in Table 5.2. The

results of SE and SA are shown in Table 5.3. Table 5.4 shows the results of SA and

MSE (post processing).

73

74

GRAPH | Depth | No. of Vertices
EWF 4 14
Graph 1 14 23
Graph 2 11 23
Graph 3 10 23
Graph4 | 15 27
Graph 5 13 17

Table 5.1: Characteristic of input graphs.

Tables 5.3 and 5.4 show the average cost, best cost and time (in seconds) of
both SA and SE, where the cost is indicated in terms of the number of gates.
Improvement of SA over SE is shown as % reduction. Table 5.5 shows a comparison
of the results of SA, SE and MSE with post-processing. It is also shown as a bar
chart in Figure 5.3.

The variations in costs for SA are initially large and then it gradually decreases
and remains constant after a certain period of time. This is because the cooling
schedule in SA decreases gradually hence it a.ccep'ts solutions with higher costs ini-
tially and then progressively accepts solutions with less variations in costs. Then a
point is reached when it accepts only good solutions, i.e., it accepts solutions whose
cost is lesser than the current solution.

In case of SE there is an initial drop in the cost in the first few iterations then

the cost varies within a range. The initial drop is because the initial cost is the

Cost (gates)

DFG | R | Avg. | best | Iterations | Latency | PS delay | Time
EWF |10} 23175 | 21100 27 86 37 7
15 | 22277 | 21100 55 86 37 19
20 | 21938 | 21100 118 86 37 27
25 | 21278 | 21100 129 86 37 29
Graph 1 | 10 | 36592 | 36013 94 247 63 223
15 | 36544 | 35641 185 247 63 431
20 | 35301 | 34749 328 247 63 753
25 | 33505 | 34958 234 247 63 621
Graph 2 | 10 | 72667 | 69360 342 203 63 223
15 | 68362 | 67896 346 203 63 815
20 | 68063 | 67889 622 203 63 1462
25 | 67883 | 67742 892 203 63 2060
Graph 3 | 10 | 39016 | 37847 119 187 63 161
15 | 38360 | 37101 175 187 63 234
20 | 37209 | 36689 398 187 63 533
25 | 37753 | 37447 328 187 63 434
Graph 4 | 10 | 59589 | 58912 136 307 63 591
15 | 57266 | 57158 308 307 63 1173
20 | 55841 | 55247 447 307 63 1719
25 | 55123 | 54259 831 307 63 3183
Graph 5 | 10 | 40235 | 39147 148 286 63 318
15 | 40492 | 39901 287 286 63 627
20 | 39647 | 38440 475 286 63 1071
25 | 39228 | 38926 513 286 63 1112

Table 5.2: Stochastic Evolution results.

75

76

Stochastic Evolution | Simulated Annealing
DFG | Latency | PS | Avg. | Best | Time | Avg. | Best | Time %
Delay | cost | cost cost | cost Red.
EWF 86 37 | 21865 | 21807 | 241 | 20674 | 20674 | 239 |[-5.48 %
Graph 1 247 63 | 36309 | 36053 | 2396 | 34596 | 34569 | 2138 | -4.29 %
Graph 2 203 63 | 69989 | 67717 | 2375 | 66281 | 66209 | 2237 | -2.27 %
Graph 3 187 63 | 3843238333 1380 | 37199 | 37198 | 1375 | -3.04 %
Graph 4 307 63 | 56310 | 55820 | 3650 | 52901 | 52696 | 3189 | -5.92 %
Graph 5 286 63 | 39916 | 39480 | 2241 | 39083 | 39042 | 2141 | -1.12 %
Table 5.3: Stochastic Evolution and Simulated Annealing results.
Stochastic Evolution | Simulated Annealing
DFG | Latency| PS | Avg | Best | Time| Avg | Best | Time %
Delay | cost | cost cost | cost Red.
EWF 86 37 | 21100 | 21100 | 241 | 2067420674} 239 | -26%
Graph 1 247 63 | 34743 | 34517 | 2451 | 34596 | 34569 | 2050 | +0.15 %
Graph 2 203 -63 | 67009 | 65931 | 2332 | 66281 | 66209 | 2237 | +-0.42 %
Graph 3 187 63 | 37221 | 36981 | 1388 | 37289 | 37199 | 1375 | +0.59 %
Graph 4 307 63 | 55909 | 54457 | 3939 | 52901 | 52696 | 3189 | -3.34 %
Graph 5 286 63 | 39183 | 38855 | 2283 | 39083 | 39042 | 2141 | +0.48 %

Table 5.4: Modified Stochastic Evolution (post-processing) and Simulated Annealing

results.

—s—-sel 1
—H— BA

eess H

M 3 2
() Y s wee wes T80

LX) "
Teme, in saconds

Figure 5.1: Plot showing the comparison between SA and MSE during the initial
stages.

highest and when each of the components are disturbed then they are replaced by
components with lesser cost, hence the total cost is much less.

It can be seen from the graphs that the performance of SA and SE is comparable
during the initial stages while SA outperforms SE in the later stages. Figure 5.1
shows an example of the plot for SA and Modified Stochastic Evolution (MSE)
during first few iterations. In this figure it is seen that MSE performs better than
SA. The barchart shown in Figure 5.2 shows that MSE performs better than SA in
four of the six DFGs.

This is because in case of SE, it allows hill-climbing throughout while SA allows
hill-climbing such that it progressively decreases the range of costs for accepting
poorer solutions and then a point is reached when it does not accept poor solutions,
1.e., a point is reached when it accepts only solutions that are better than the current
solutions thus preventing hill-climbing at later stages.

The performance of the DFGs for SE and SA are shown in Figures 5.4 and 5.5.

~J
[vs}

Figure 5.2: Barchart showing the results of SA and MSE during the initial stages.

The graphs are plotted to show cost (number of gates) versus time.

Figures 5.6 and 5.7 represents the plots of SA and SE with post-processing. It
is seen that in four of the six DFG’s SE performs better than SA. This is becalise
in post-processing, after every iteration the entire DFG is scanned and if there is
a possibility of replacing one or more components by slower components without
violating the constraints then they are replaced. It is due to this that the cost
decreases.

This chapter discussed the results of SA, SE, and MSE: with post-processing.

The conclusions and the future work are presented in the next chapter.

Simulated | Stochastic Stochastic
Annealing | Evolution Evolution
(post-processing)

20674 21807 21100
34569 36053 34517
66209 67717 65931
37198 38333 36981
52696 55820 54457
39042 39480 38855

Table 5.5: Comparisons between SA, SE and MSE (post-processing).

Figure 5.3: A barchart showing the comparisons between SA, SE and MSE (post-
processing).

80

Towe, by asconds

)

Figure 5.4: Plots for different DFG’s using SA and SE techniques: (a) EWF, (b)
Graph 1, and (c) Graph 2 (contd).

31

Timse, b sowtmds.

Y]

Figure 5.5: Plots for different DFG’s using SA and SE techniques: (d) Graph 3, (e)
Graph 4, and (f) Graph 5.

82

- =

it

“° [wens) s
Time, s cotands

©

Figure 5.6: Plots for different DFG’s using SA and MSE (post-processing) tech-
niques: (a) EWF, (b) Graph 1, and (c¢) Graph 2 (contd).

83

M . i " PR
IS s TS WS UMS WSS 1IN 20W IIMS
Tiwe, n cocands

o

Figure 5.7: Plots for different DFG’s using SA and MSE (post-processing) tech-
niques: (d) Graph 3, (e) Graph 4, and (f) Graph 5.

Chapter 6

Conclusions and Future work

6.1 Conclusions

Stochastic evolution is a promising optimization technique. This thesis has presented
its application to component selection and pipelining, a problem in high-level synthe-
sis. The work involved finding an appropriate representation of the problem. This is
necessary as it provides the flexibility to apply various optimization techniques. This
representation helps in maintaining and modifying the data in an efficient and sim-
ple way. Various ordering strategies have been experimented with for the problem
to determine a strategy that helps in obtaining cost-effective solutions. It was seen
that the solutions were not affected irrespective of the ordering being used. This
is because of the randomness in selecting components from the component library.
A method for tuning the parameters of the update function has been developed to
obtain cost-effective results. As the value of the parameter R, which determines

the number of iterations SE is to be run increases the chances of getting a better

84

85

solution also increase.

A new method of improving results in SE called post-processing has been in-
troduced. In post-processing, the DFG is scanned after obtaining a new state by
disturbing the previous state. The new state is checked to see if the components
can be replaced by slower components of the same type without violating the con-
straints. This has produced a substantial reduction in the costs. SE algorithm
was tested on six different DFGs with vafying complexities. It was found that SE
with post-processing performed better than SE without post-processing in all the
six DFGs.

Simulated annealing is another promising optimization technique. This thesis has
presented it’s application to component selection and pipelining. The representation
of the problem and the perturb strategies used were the same as those for SE.
An important part of SA algorithm is developing an effective cooling schedule.” A
method for tuning the various control parameters of the cooling schedule has been
defined and implemented. SA was also tested on the same six DFGs as that of SE.

SA performed better than SE without post-processing in all the six DFGs, while

SE with post-processing performed better than SA in four of the six DFGs.

6.2 Future Work

The future work in case of SE could be done in the following areas.

e Finding better methods of representing the problem for efficient management.

Work could also be directed towards finding ways to reduce the time taken for

processing.

86

o New methods could be designed to tune the value of R to obtain it’s optimal

value to obtain cost-effective results.

e The update function in the SE algorithm determines the range of negative
gains to be accepted. Different methods could be formulated to determine the

range of the negative gains to be accepted to improve the results.

In case of SA the work could be concentrated in developing better cooling sched-

ules. Different optimization techniques could also be used to solve the problem of

component selection and pipelining.

Bibliography

[1]

8]

[4]

[5]

[6]

Sadiq M. Sait and Habib Youssef. “VLSI Design automation: Theory and
practice”. Mc-GrawHill Book Co. Europe.1995.

M. C. McFarland, A. C. Parker, and R. Camposano. “Tutorial on high-level

synthesis”. In Proceedings of the 25th Design Automation Conference, pages
330-336, 1988.

S. Bakshi and D. D. Gajksi. “A component selection algorithm for high-
performance pipeline”. EuroDac 94 + Euro VHDL ’94, pages 400405, 1994.

L. Ramachandran and D. D. Gajski. “An algorithm for component selection in
performance optimized scheduling”. In Proceedings of the IEEE International
Conference on Computer-Aided Design, pages 92-95, 1991.

M. C. McFarland, A. C. Parker, and R. Camposano. “The high-level synthesis
of digital systems”. Proceedings of the IEEE, 78(2):301-318, 1990.

L. J. Hafer and A. C. Parker. “Register-transfer level digital design automation:

the allocation process”. Proceedings of th 15th Design Automation Conference,
pages 213-219, 1978.

87

88

[7] C.Y. Hitchcock and D. E. Thomas. “A method of automatic data path synthe-

sis”. In Proceedings of the 20th Design Automation Conference, pages 484—489,
1983.

[8] H. Trickey. “Flamel: A high-level hardware compiler”. IEEE Transactions on
Computer-Aided Design, 5(3):259-269, 1986.

[9] B. M. Pangrle. “Splicer: A heuristic approach to connectivity binding”. In
Proceedings of the 25th Design Automation Conference, pages 536-541, 1988.

[10] Fur-Shing, Tsai, and Yu-Chin Hsu. “An automatic data path allocator”. IEEE
Transactions on Computer-Aided Design, 11(9):1053-1064, 1992.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. Science, 220(4958):671-680, 1983.

[12] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallet. “Some experiments
in local microcode compaction for horizontal machines”. IEEE Transactions on

Computer Aided Design, 30(7):460-477, 1981.

[13] D.E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan, and R. L.
Blackburn. “Algorithmic and Register -Transfer level Synthesis: The Systems

Architects Workbench”. Kluwer Academic Publishers, Norwell, MA, 1990.

[14] P. G. Paulin and J. P. Knight. “Force-directed scheduling for behavioral synthe-

sis on ASIC’s”. IEEE Transactions on Computer Aided Design, 8(6):661-679,
1989.

89

[15] K. S. Hwang, A. E. Casavant, C. T. Chang, and M. A. d’Abreu. “Scheduling

and hardware sharing in pipelined data paths”. In Proceedings of the IEEE

International Conference on Computer-Aided Design, 1989.

[16] Hong-Shin and Sun-Young Hwang. “Design of a pipelined datapath synthesis
system for digital signal processing”. IEEE Transactions on Very large Scale
Integration(VLSI) systems, 2(3):292-303, 1994.

[17] N.Park and A. C. Parker. “Sehwa: A software package for synthesis of pipelines

from behavioral specifications”. IEEE Transactions on Computer-Aided Design,
7:356-370, 1988.

[18] Daniel Audet, Yvon Savaria, and Nicholas Arel. “Pipelining Communications
in Large VLSI/ULSI systems”. IEEE Transactions on Very large Scale Inte-

gration(VLSI) systems, 2(1):1-9, 1994.

[19] Said Amellal and Bozena Kaminska. “Functional synthesis of digital systems

with TASS”. IEEE Transactions on Computer Aided Design, 13(5):537-552,
1994.

[20] S. Ali, Sadiq M. Sait, and M. S. T. Benten. “Application of Tabu Search in High-
level Synthesis of Digital Systems”. International Conference on Electronics,

Circuits and Systems, pages 423—428, 1994.

[21] S. Ali, Sadiq M. Sait, and M. S. T. Benten. “GSA: Scheduling and Allocation

using Genetic Algorithm”. European Design Automation Conference with Euro-

VHDL, pages 8489, 1994.

90

[22] C. T. Hwang, Y. C. Hsu, and Y. L. Lin. “PLS: A scheduler for pipeline syn-

thesis”. IEEE Transactions on Computer-Aided Design, pages 24-27, 1989.

[23] R. Jain, A. Parker, and N. Park. “Module selection for pipelined synthesis”. In

Proceedings of the 25th Design Automation Conference, pages 542-547, 1988.

[24] R. Jain, A. Parker, and N. Park. “Module selection for pipelined synthesis with
multi-cycle operations”. In Proceedings of the IEEE Conference on Computer-

Atided Design, pages 212-215, 1990.

[25] A. H. Timmer, L. Stok, M. J. M. Heijligers, and J. A. G. Jess. “Module
selection and scheduling using unrestricted libraries”. In Proceedings of the

EBuropean Destign Automation Conference, pages 547-551, 1993.

[26] H. F. Al-Sukhni, H. Youssef, Sadiq M. Sait, and M. S. T. Benten. “A New

Loop Based Scheduling algorithm®. IEEE Phoeniz conference on Computers
and Communications, pages 76-81, 1995.

[27] Y. G. Saab and V. B. Rao. “Combinatorial optimization by stochastic evo-

lution”. IEEE Transactions on Computer-Aided Design, 10(4):525-535, April
1991.

[28] S.Nakar, S. Shani, and E. Shragowitz. “Simulated annealing and combinatorial

optimization”. In Proceedings of the 23rd Design Automation Conference, pages

293-299, 1986.

[29] David Connolly. General purpose simulated annealing. “Journal of Operations
Research Society”, 43(5):495-505, 1992.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

91

C. Koulamas, SR. Antony, and R. Jaen. “A survey of simulated annealing :
Applications to operations research problems”. International journal of Man-

agement Sciences, 22(1):41-56, 1994.

David E. Jeffcoat and Robert L. Bulfin. “Simulated annealing for resource-

constrained scheduling”. “European journal of operations research”, T0(5):43-
51, 1993.

S. A. Kravitz and R. B. Rutenbar. “Placement by simulated anealing on a

Multiprocessor”. IEEE Transactions on Computer-Aided Design, CAD(4):534~
549, july 1987.

D. W. Jepsen and Jr. C. D. Gelatt. “Macro Placement by Monte Carlo An-

nealing”. Proc. International Conference on Computer Aided Design, pages

495-498, Nov 1984.)

H. W. Leong, D. F. Wong, and C. L. Liu. “A simulated annealing channel
router”. Proceedings ICCAD, pages 226-228, 1985.

R. B. Rutenbar. “Simulated Annealing Algorithms: An overview”. IEEE cir-
cutts and Devices Magazine, pages 19-26, 1989.

M. Vecchi and S. kirkpatrick. “Global wiring by simulated annealing”. IEEE
transactions on Computer-Aided Design, CAD:215-222, 1984.

N. Metropolis et al. “Equation of state calculations by fast computing ma-

chines”. Journal of Chem, Physics, 21:1087-1092, 1953.

92

[38] Emile Aarts and Jan Korst. “Simulated Annealing and Boltzmann MAchines:

A stochastic Approach to Combinatorial Optimization and Neural Computing”.
John-Wiley and Sons Ltd, 1989.

[39] H. Szu and R. Hartley. “Fast simulated annealing”. Physics Letters, 122(4):157—-
162, June 1987.

[40] J. W. Greene and K. J. Supowit. “Simulated annealing without rejected moves”.

IEEE Transactions on Computer Aided Design, (5):221-228, 1986.

[41] P. J. M. Laarhoven and E. H. L. Aarts. “Simulated Annealing : Theory and
Applications”. Reidel, Dordrecht, 1987.

[42] F. Catthoor, H. DeMan, and J. Vandewalle. “A parallel simulated simulated-

annealing schedule with fully adaptive annealing parameters”. Integration,
(6):147-178, 1988.

[43] F. Darema, S. Kirkpatrick, and V. A. Norton. “Parallel techniques for chip

placement by simulated annealing”. IBM journal of Research and Development,

(5):391-402, May 1987.

[44] F. Darema, S. Kirkpatrick, and V.A. Norton. “Parallel algorithms for cell
placement”. Proceedings of International Conference on Computer Designs:

VLSI in Computers and Processors, ICCD-87(5):87-90, 1987.

Vita

¢ Mohammad Farook
¢ Born in Bangalore, India

¢ Received Bachelor of Engineering Degree in Computer Science from University

Visvesvaraya College of Engineering, Bangalore University, Bangalore, India
in 1991. B

¢ Joined the Department of Information and Computer Science at King Fahd

University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia as
2 Research Assistant in January 1994

o Received Master of Science (M.S.) degree in Information and Computer Sci-

ence from KFUPM, Saudi Arabia in June 1996

