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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The finitc element method (FEM) is one of the most popular numerical techniques to
solve a wide range of problems in applied science and engineering. The FEM has
been applied successfully and has provided satisfactory results. In general, the FEM is
used for large range of problems because it is a general-purpose method with mature
technology. It is most efficient for finite domains in which material properties are
nonhomogencous, and for finite domains where nonlinear behavior occurs. In the
general FEM, the region under consideration is discretized by finite elements, a
variation of the unknown is assumed within each element, and the element response
matriccs are then found. Finally the element response matrices are assembled to
obtain the response matrix of the problem domain. The final system of equations is

solved, and the appropriate response quantities are determined as required.

Another numerical method that is becoming popular is the boundary element method
(BEM). The BEM is most efficient for linear homogeneous problems with finite or
infinite domains. Unlike the domain-type methods such as the FEM, the discretization

process of the BEM is performed on the boundary only, which results in reducing the



(38

dimension of the problem and simplifying the modeling considerably. Another
important advantage of the BEM is its accuracy in predicting high gradients or stress
concentrations. The BEM procedure consists of the transformation of the governing
differcntial equations into equivalent integral equations relating only boundary
values. The result is a sct of linear algebraic equations that can be solved for the
surfacc response. Thereafter, values inside the domain can be obtained from the

boundary solution.

The two methods have their advantages and disadvantages. Each method performs
better than the other for some problems or some parts of the same problem.
Therefore, a combined analysis approach, which for example, models the nonlinear
region around an underground opening using the FEM while using the BEM for the

remaining infinite homogeneous region, would be both accurate and efficient.

Past cfforts on coupling the FEM and BEM employ an entire equation for the whole
domain, by combining the discretized equations for the FEM and BEM sub-domains.
The approach for constructing the entire equation, however, is highly complicated
when compared with that for each single equation. In order to overcome the stated
inconvenience, iterative domain decomposition coupling methods, i.e., the Sequential
Dirichlet-Neumann method, were developed. In these coupling methods there is no
need to combine the coefficient matrices of the FEM and BEM sub-domains. A
second advantage is that different formulation of the FEM and BEM can be adopted

as base programs for coupling the computer codes only. Separate computation for



each sub-domain and successive renewal of the variables on the interface of both sub-
domains, are performed to reach the final convergence. Unfortunately, the available
iterative coupling methods are limited to linear elastic or potential problems with
finite domains. The convergence of the iterative coupling methods is not fully
addressed. Furthermore, there are some cases where these methods are not applicable.
These include, i.e., tunnel problems where the natural (Neumann) boundary
conditions are prescribed on the entire external boundary of the FEM sub-domain.
Conscquently, the usefulness of the existing iterative coupling methods becomes

limited.

1.2 OBJECTIVES

The primary goal of the present study is to develop a hybrid FEM/BEM coupling
method, which is capable of solving a wide range of problems, particularly those
associated with infinite or semi-infinite domains in plane elasticity. The FEM sub-
domain can be nonhomogencous or nonlinear while the BEM sub-domain is linear
elastic, infinite or semi-infinite. More specifically, the objectives of the present study

are:

1. Investigate the convergence of the Sequential Dirichlet-Neumann iterative
coupling method.
2. Develop a new iterative method that avoids the limitations existing in the

available coupling methods.



3. Extend the Sequential Dirichlet-Neumann and the new iterative methods to clasto-
plasticity.
4. Verify the reliability and the efficiency of the proposed method through some

benchmark examples and practical applications.

1.3 ORGANIZATION OF THE DISSERTATION

The present chapter gives an overview and the objectives of this dissertation. The
sccond chapter presents a brief background on the BEM and FEM. It gives some
historical remarks on both methods. The chapter reviews the BEM formulation for
elasticity and potential problems. It also gives the computational steps of the FEM

and BEM and a comparison between the two methods.

Chapter 3 gives a critical review of the existing coupling methods. It also describes

their limitations.

Chapter 4 establishes the convergence conditions of the Sequential Dirichlet-
Ncumann iterative coupling method. It also discusses the factors involved in the

solution convergence.

Chapter 5 introduces a new overlapping iterative coupling method. The convergence
of the method is investigated. Applications to problems involving infinite and semi-

infinite regions are also illustrated.



Chapter 6 extends the Sequential Dirichlet-Neumann method and the new

overlapping method, presented in Chapter 5, to elasto-plasticity.

Chapter 7 gives some practical applications to verify the efficiency of the iterative
coupling methods. These include linear elastic and elasto-plastic fracturc mechanics
cxamples, and elastic/elasto-plastic analysis of deep and shallow tunnels. The solution
using the coupled FEM/BEM is compared to the conventional FEM solution in terms

of accuracy and CPU-time.

Finally, Chapter 8 summarizes the main conclusions and recommendations for future

research.



CHAPTER 2

BACKGROUND ON BEM AND FEM

2.1 GENERAL

The FEM and the BEM are the most prominent numerical techniques to solve a wide
rangc of problems in applied science and engineering. This chapter presents a brief
background on both methods. Some historical remarks arc given. For comparison
purposes, a brief derivation of the BEM and FEM formulation in elasticity, using the
weighted residqal technique, is presented. The basic computational steps of the FEM
and BEM are summarized. The chapter is concluded with a comparison between the
FEM and BEM, which clearly indicates the advantages and disadvantages of each

mecthod and the merits behind their coupling.

2.2 HISTORICAL REMARKS

The modern development of the FEM began in the early 1940s in the field of
structural engineering with the work of Hrenikoff [1], who introduced the so-called
framework method, in which a plane elastic medium was represented as a collection
of bars and bcams. The use of piecewise-continuous functions defined over a sub-

domain to approximate an unknown function can be found in the work of Courant [2],



who used an assemblage of triangular elements and the principle of minimum total
potential energy to study the St. Venant torsion problem. Although certain key
features can be found in the work of Hrenikoff [1] and Courant [2], the formal
presentation of the FEM is attributed to Argyris and Kelsey [3] and Turner et al. [4].
The term “finite element”, was first used by Clough in 1960 [73]. Since its inception,
the literaturc on finite clement applications has grown cxponentially, and today there
are numerous journals and conferences that are primarily devoted to the theory and

application of the method.

The BEM, on the other hand, is not based on a differential problem description but
rather on an integral problem formulation transformed to the boundary. The
development of integral equation methods is due to the Soviet mathematicians,
Muskhelishvili [5], Mikhlen [6], Smirnov [7] and Kupradze [8]. These methods, at
first hardly recognized by engineers, were more introduced into applied physics.
Under the names like *‘source method™ or “‘indirect method™, these techniques were
applied in fluid mechanics and in potential theory. Very extensive investigations of
the “‘indirect methods”, were performed by Kellog (9], Jaswon [10], Symm [11] and
Massonet [12], to mention a few. It is not easy to say who first formulated the
“direct” BEM, although in another representation one can find it already in
Kupradze’s book [8]. But from the engineering point of view, the beginnings of the
direct BEM applications in elastostatics have to be dated back to the papers of Rizzo
[13] and Cruse and Rizzo [14]. The term *“Boundary Elements”, was first used by

Brebbia [15] in 1978. The BEM is now firmly established as an important alternative



technique to the prevailing numerical methods of analysis. One of the most important
applications is for the solution for a range of problems such as temperature diffusion,
some types of fluid flow motion, flow in porous media, elastostatics, and many others
that can be written as a function of potential. By now, the existing literature on the
BEM is very extensive. For some specific applications, like problems characterized
by infinite elastic regions, the BEM proved to be superior to other numerical

techniques.

2.3 THE VARIATIONAL FORMULATION FOR PLANE ELASTICITY

Although there are different procedures for deriving the boundary integral and finite
element equations, the weighted residual technique is considered here. In addition to
its generality and applicability to any differential equation, regardless of the physical
interpretation, the method has the advantage of relating the BEM to the FEM. In the
following, the plane clasticity equations are first stated. Then the weighted residual

technique is used to generate the variational statements for the FEM and the BEM.

Consider an isotropic, linear elastic solid of domain Q enclosed by a boundary I as
shown in Figure 2.1. The basic field equations for linear elastostatics are given as

follows:

Equilibrium equations: c,;:+b, =0 2.n

§.j T Y

Kinematic relations: E. = %(ui' jtu;) 2.2)



“— 1,

i

Figure 2.1: Geometrical Representation for the Boundary Element Domain
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.. ) 2
Constitutive equations: c; =1T#2V7£u8,-j + 2[.18,-]- 2.3)

where, the indicial notation and Cartesian reference frame are used. The quantities
u;,0;,€; and b; denote the components of the displacement vector, the symmetrical
Cauchy stress tensor, the infinitesimal strain tensor, and the body forces, respectively.
u and v are the shear modulus and Poisson’s ratio, respectively. Using Equations
(2.2) and (2.3) in (2.1), the equilibrium equations in terms of the displacement

componcents can be obtained, i.e.,

Hu, ;+ 1—_%11]'], =-b, 24
Prescribed boundary conditions are given by:

u;=w;on Iand r;, =7, on I, (2.5)
where ¢, is the traction at a point on the surface, and is given by:

. =o,n; (2.6)

In Equation (2.6), n; is the jth component of the unit normal to the surface I' at the
point of consideration. One can weigh Equation (2.4) by a displacement type function

u, and orthogonalize the product, i.e.,

[(Lyu; +b,)u;d2 =0 @.7)
Q
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where, the operator L; on u; is as given by the L.H.S. of Equation (2.4). Integrating

Equation (2.7) by parts, one can obtain the weak variational form:

. H
—-J-ul-_j[#u,—'j +(szV—)ujJ }Q

Q

(2.8)
- # -
+lu |y j+———u;; pdl + |u;b,dQQ =0
-! ( I (1-2v) }I’ f[

Note that Equation (2.8) is the starting equation for the FEM.

Integrating Equation (2.8) by parts again yields the inverse variational form.

[legu;)usd@+ [ witdr = [ tfudr + [ wibd@ =0 2.9)
Q r r Q

y—J

where 1, are the tractions corresponding to the displacement type function u; .

Equation (2.9) is the starting equation for the BEM.

2.4 BEM FORMULATION IN ELASTOSTATICS

In this section, the theoretical foundation of the BEM in elasticity is presented. It
should be noted that the ideas presented in this section are necessary preliminaries for

the method. However, references [16-21] can be consulted for the detailed theory.

In Equation (2.9), u; can be chosen such that:

Lju; =-8(,x)e; (2.10)
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where &(¢,x) represents the Dirac delta function which has the well known

properties:

8(.x)=0 el =#x
5(.x)=0 el =x (2.11)

[rs@.xua=r¢)
Q

Notice that, { and x are the source and field points, respectively. The solution for

Equation (2.10) is known as the fundamental solution. Using Equations (2.10) and

(2.11) in (2.9), the following equation can be obtained:

u,-(é’)=_|‘ u,.'t,-dl"—_[ I,-'u,-dl‘-f-J‘ u;b;dQ (2.12)
y r Q

Equation (2.12) gives the displacements «; at any point { inside the domain Q in

terms of the boundary values. The tractions and displacements can be written in the

following form:
t; =15, x)e (2.13)
u;- = u,;.(C,x) e; (2.14)

where, u;;(£,x) and 1;(Z,x) represents the displacements and tractions in the j
direction at the point x corresponding to a unit force applied at the source point {

and acting in the e; direction.
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Equation (2.12) can now be written in the following form:

4, 0)= [ u; .0, 0d0 = [ 5. x)u;0dT + [ wj (€. )b, (0dQ .15
Q

r r

This equation is known as the Somigliana’s identity, and it gives the value of the

displacement at any point in terms of the boundary values u« ; and 1z, the forces

throughout the domain, and the known fundamental solution.

2.4.1 Fundamental Solutions

When using the integral Equation (2.15) to solve problems in solid mechanics,
different fundamental solutions are nceded to simulate certain problems properly. In
general cases, the Kelvin's solution is used. In case of semi-infinite mediums, the
more suitable fundamental solutions are the Mindlin's solution for 3D, or the Melan's
solution for 2D. As the work is limited to two-dimensional cases, only the 2D

Kelvin's solution and Melan'’s solution are given.

2.4.1.1 Kelvin's Solutions

In Figure 2.2, let us assume a domain Q" with boundary I"" that contains the domain

€2 with boundary I' under consideration. The elastic properties remain valid for both
cases. For the Kelvin fundamental solution, Q" is assumed to be an infinite elastic

planc, and consequently I" is taken to infinity. The tensor expressions u({,x) and

17(£,x) for the two-dimensional plane strain problems are given by [22]:



Figure 2.2: General Region Q +r’° containing the body Q+TI"

14
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-1

u,;- (C,.r):m[(3—4v)ln(r)6ij —rjr'.] (2.16)

J

oL 1 _ oar _
rij(g,.x)_———m(l_v)r[[a 2v)6,.j+2rjr.j]a—n (-2v)(r;n, r'jn,.)] 2.17)

For planc stress problems, v is simply replaced by v/(1 +v). In these expressions,
r(¢.x)=rr, with r, = x,(x)-x,(¢) (2.18)

represents the distance between the load point ({) and the field point (x), and the

derivatives of r{{,x) with respect to the coordinates of x are denoted with:

or
= 2.1
T ox; (x) (2.19)

2.4.1.2 Melan's Solution

Considering Figure 2.3, for semi-infinite problems the Kelvin region is subdivided by
an infinite horizontal plane T" and its lower part is considered as Q" +I"". Thus the
region of interest becomes a semi-infinite medium with the plane part I being
represented by the boundary surface T. This lower half-plane is always assumed to

contain the region Q+1I" and the plane x; =0 is taken to be the boundary surface r.

The stress solution corresponding to a unit force acting in the half-plane was

published by Melan [23] in 1932. During the first half century after its publication,



Figure 2.3: Body Q+1I" Located within thec Semi-Infinite Plane x; 20

16
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Melan's solution had been rarely used in calculations. It is mainly due to the
development of boundary elements that Melan's solution has gained an important role
in numcrical analysis. Although Melan has found the stresses of his solution, he did
not give the displaccment expressions, which are necessary for the boundary element
implementations. This work was accomplished by Telles and Brebbia [24] in 1981.
They gave the expressions of Melan's solution. For a good background on this area,

the reader may refer to [24-28].

The symbols and expressions proposed by Telles and Brebbia [24] are used
throughout this investigation. Melan's solution, represcnted by ( )™, may be
rcarranged into two parts, a Kelvin's solution part represented by ( )* and a

complementary part ( )°. The complete forms of the complementary part ( )

may be found in [24].

2.4.2 Stresses at Internal Points

Equation (2.15) is a continuous representation of displacements at any point { € Q.

Consequently, the state of stress at this point can be obtained by combining the

derivatives of Equations (2.15) with respect to &, to produce the strain tensor and

then substituting the result into Hooke's law. The final expression becomes:

0 (&)= uj €. x)k (x)dr - [ 15 €. xhy (x)aT + [ 4 €. 2P (0dQ  (2.20)
Q

r r
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*

ge and

For the Kelvin fundamental solution the new tensors u j& are given in

reference [23]. Telles and Brebbia [24] have presented the complementary

expressions for the tensors, corresponding to the half-plane fundamental solutions.

2.4.3 Boundary Integral Equations

In the preceding sections, the derivation of the Somigliana’s identity has been
presented without a need for the distinction bctween the different fundamental
solutions employed. In this section, however, it is instructive to consider first the
Kelvin solution, and then extend the complete formulation to semi-infinite type

problems, where full advantage of the traction-free condition can be taken.

Considering the Kelvin case, Somigliana's identity is not satisfactory for obtaining
solutions unless the boundary displacements and tractions are known throughout the
boundary I'. Therefore, it is interesting to examine the limiting form of Equation

(2.15) as { goes to the boundary. Assuming first that the body can be represented as
shown in Figure 2.4, with the point { as an internal point surrounded by part of a
circle of radius € . Equation (2.15) can be written in the following form:

u, Q)= [u;€.x);dr- [ (€. xu;(x)dr

r-r,+T, -+,

; (2.21)
+ j u (£, x)b;(x)dQ
&

Taking the limit as € — 0, Equation (2.21) finally takes the form:



Figure 2.4: Singular Point { on I surrounded by a semicircle

19
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c,-j(C)uj(g)=f u,-'j(C,_\')tj(x)dl“—_[ t,;(C,x)uj(x)dI"
r r (2.22)
+[ uj €. x)b; (0
Q

The integrals in Equation (2.22) present no special singularities and can be interpreted
in the normal sense of integration. The coefficient ¢, ({)=5,; /2 if the tangent plane
at { is continuous, but if this is not the case, closed form expressions for this
coefficient have been presented in reference [29]. For practical applications, however,

the coefficient c¢; can be indirectly computed by applying Equation (2.22) to

represent rigid body movements as will be explained in Section 2.4.5.

Equation (2.22) is the starting equation for the BEM using the Kelvin fundamental
solution. For semi-infinite domains, if the body that is being analyzed presents part of

its boundary coinciding with the surface of the semi-infinite domain (Figure 2.5), the
intcgral over this part which involves t,;- vanishes identically because of the traction-

free condition included into the fundamental solution. Consequently, Somigliana's

identity can be rewritten as follows:

u; €)= [ uz€.x),0d0 = [ ;€. )u;0dT+ [ uj (€. x)b;()dQ2 (2.23)
r r Q

where, I'” represents the part of I' in which x; >0. The state of stress at an internal

point is given by:
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T a—
N | D

Figure 2.5: Body with Part of its Boundary I' Coinciding with the Surface of the

Semi-Infinite Plane



6; €)= up . x0T = [ 1, €, xhedT + [ uj (. 6}, (x)d2 (2.24)
Q

r r

2.4.4 Infinite and Semi-Infinite Regions

The extension of Equation (2.22) to infinite regular regions is not valid without
further hypothesis on the functions involved. Such hypotheses are concerned with the
behavior of the functions on an infinitely distant surface, and are referred to as
rcgularity conditions [17]. Let g be the radius of a circle of surface I , and centered
at £, which encloses the cavity (or cavities) of the external problem as depicted in
Figure 2.6. Equation (2.22) can be written for the region I' and T, as follows:

¢ ;€)= [ uy €. x), (0 dT+ [ uy (€, x)r; (x)dT
T,

r

. L. (2.25)
r L,

Clearly, if the limiting case g — o is considered, Equation (2.25) can be expressed in

terms of the boundary integrals over I" alone if:

tim [ (€, x)u; () =5 €20, () dT =0 (226)
rq

One can substitute u ;(x) and r;(x) by the tensors corresponding to the fundamental

solution, and indeed verify that Equation (2.26) is satisfied. This statement is also

verified for semi-infinite problems where the semi-infinite fundamental solutions






dictate the corresponding conditions. In conclusion, provided the regularity

conditions are specified, infinite problems (Figure 2.6) can be represented by:

¢ @)u; €)= uj €. x)e;0dT - [ 1, x)u,(x)dT (2.27)

r r

and also semi-infinite problems that may have a loaded boundary I'-I"" (Figure 2.7)

can be represented by:

¢y @, €)= [ uz €. x), (0 dT — [ (¢ x)u;(x)dT (2.28)
r r

2.4.5 Numerical Implementation

In this section, a general numerical procedure for the solution of the BEM is
described. In order to concentrate on the main aspects of the process, the different
forms of boundary integral equation introduced in the previous sections will be
recpresented in a unified manner as follows (body forces are omitted here for

simplicity):

¢ @)y @)+ [ 15, x)u;dl = [ uj(€.x)e;(x)dT (2.29)
r r

where, depending on the fundamental solution employed (infinite or semi-infinite),

the appropriate expression for ¢, ({) and the substitution of I' by I'" in the first

integral are implied.



F
Figure 2.7: Semi q §
-Infinite Region Q\\\\§\ .



Instcad of attempting closed form solutions to Equation (2.29), which is a difficult

task and only attainable for simple geometry and boundary conditions, the BEM

cmploys a numerical approach. The basic steps involved in this approach constitute

the numerical essence of the technique. They are summarized as bellow:

!\.)

The boundary I' is discretized into a series of elements (NE is the number of
clements), over which displaccments and tractions are chosen to be piecewise

interpolated between the element nodal points (N is the number of nodes).

Equation (2.29) is applied in a discretized form to each nodal point { of the
boundary I' and the integrals are computed (usually by a numerical quadrature
scheme) over each boundary element. A system of 2N linear algebraic equations
is therefore obtained, involving the set of 2N nodal tractions and 2N nodal

displacements.

Boundary conditions are imposed, and consequently 2N nodal values (tractions
or displacements) are prescribed. The system of 2N equations can therefore be

solved by standard methods to obtain the remaining boundary data.

Values of displacements and stresses at any selected intemal point can readily be

computed by numerical quadrature using the appropriate Equations (2.15) and (2.20)

or Equations (2.23) and (2.24) also in a discretized fashion.

For the discretization of Equation (2.29), the boundary, I', is approximated by using

a seriecs of elements. The Cartesian coordinates, x, of points located within each
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clement I'; arc expressed in terms of interpolation functions ¥ and the nodal

coordinates x™ of the element, by the following matrix relation:

x=PTx™ (2.30-a)

where, x represents the x; and x, coordinates in two-dimensional problems. In a

similar way, boundary displacements and tractions arc approximated over each

clement through interpolation functions

u=o"u" (2.30-b)

t" (2.30-¢c)

where, #" and ¢" contain the nodal displacements and tractions, respectively. Note
that the superscript m in Equation (2.30) refers to the number of boundary points
required to define the geometry of each boundary element, whereas the superscript n
in Equations (2.31) and (2.32) refers to the number of boundary nodes to which the
nodal values of displacements and tractions are associated. These numbers may be

different in general. Also note that the functions @ and g are cxpressed in the

homogeneous system of coordinates (n).

It is now more convenient to work with matrices instead of the indicial notation. Let

us define the following vectors and matrices:



u={“'}, :={"} (2.31-a)
uz [2

e |ugy o ou - (th &
T N I A (2.31-b)
Uy Uy by Ixn
where, u;; and r; are the displacements and tractions in the j direction due to a unit

force at a point under consideration, acting in the i direction.

Now Equation (2.29) can now be expressed in a matrix form as follows:

cu+ J.t.udl"=fu°tdl“ 2.32)
r r

Substituting Equations (2.30) into Equation (2.32), the following equation can be

obtained:
NE . NE .

cu+Z(Il ¢Tmu"=z(ju pTdl)t" (2.33)
=l T, YL

where, the summation from j =1 to NE indicates the summation over the NE
clements on the surface, and I'; is the surface of the j element. It is common to

cmploy a numerical integration scheme in integrating Equation (2.33). Hence

Equation (2.33) becomes:

NE( L . NE( L .
c"*):(zm, w, (¢ 0" (), }4" =Z[Z,|JI, w, (" " (), ]t" (2.34)

j=I\ 1=l J=I\ =1
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where, |J| is the Jacobian transformation, and w; are the numerical integration

weighting coefficients. Note that Equation (2.34) gives a set of equations for node i

which, can be written as:

u, ¥
Ci”i'*‘D;n ﬁa ,;ii ’;w ]J u ’=[Gi1 G, ... G; .. GiN]< t:- ;
u‘v ~‘1VJ

(2.35)

where, l;,.j and G are the interaction coefficients relating node / with all the nodes

on the surface of the body. Note that, more than one element will contribute to I;,-j

and G; sub-matrices.

A matrix equation such as Equation (2.35) can be written for each of the nodes under

consideration as follows:

h’l .o ’;Il' .o hAIN ("’\ PGII oo GI" o G’N- (‘I‘
hy h; hy |34 }=| Gy G; Giv |$t ¢
_’;Nl hiy; hyy | lun) |Gy, Gy Gy ] U]

(2.36)
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where, the sub-matrices h; on the diagonal are: h;; =I;,-,- +c¢;. Now, Equation (2.36)

can be written as follows:

[t ] {u}=[G] e} 2.37)

Note that the diagonal clements of [H ] arc based on the computation of singular

intcgrals. However, a simpler, yet effective way, is by applying a rigid-body

displacement to the body in any one direction; Equation (2.37) then becomes:
[H]{1,}=0 (2.38)

where, {I,} is a vector defining a unit displacement in the direction /. Hence, the

diagonals of [H ] are simply:

H,=-Y H, (2.39)

izj

which means that neither the ¢; nor the H; coefficients nced be determined

cxplicitly.

2.5 BEM FORMULATION FOR POTENTIAL PROBLEMS

The application of the BEM for the solution of potential problems is considered in

this section. Consider a problem governed by Laplace equation:

kViu=0in Q (2.40)
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where, k is the material property and « is the potential. The boundary conditions

are such that:

L
- (2.41)

r=t onl,

where, ¢ is the flux vector, given by:

t =9u/on (2.42)

One can weigh Equation (2.40) by a weighting function «" . Integrating by parts twice

yiclds the inverse formulation:

[&v2u Juda+ [ w'tdr - [ u=0 (2.43)
Q r r

This is the starting equation for the application of the BEM for potential problems and
is equivalent to Equation (2.9). To avoid unnecessary repetition, one can follow the
same procedures as in the previous section to finally obtain the BEM equations given
by Equations (2.37). For a detailed formulation of the BEM for potential problems

references {16-21] can be consulted.

2.6 FINITE ELEMENT FORMULATION

Although the common procedure for deriving the FEM equations in solid mechanics

is based on energy principles, the weighted residual technique is used here for the
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reasons explained earlier. It should be noted, however, that both procedures

mathematically yield the same FEM model, but differs in their algebraic form.

The domain Q of the original problem is divided into sub-domains Q°, e=1,...,.N,
and construct the weak varaitional form by applying Equations (2.8) over element

Q°,ie.,

_{!:u,..j[,uu” - ) Y }/Q
(2.44)

+ju [yu” 2™ AT+ [ub,dQ =0
Q(

Equation (2.44) can be written as:

B”(ul.,ul)+ Blz(u,‘,uz)=ll(u;)

2.45
BZl(u;,ul)+ Bzz(u;,uz)=lz(“;) ( )

where, the bilinear and linear functions can be written by comparison to (2.44). The

nodal displacements can be approximated over Q¢ by the interpolation:

u = Zul;e)¢(e)
(2.46)

(e) 4
“2—2“2;¢e)

Note that ul ) and u2 ) are the nodal values of the primary variables. Substituting in

Equation (2.45) yields:



iB“(qD,-(‘),qb;’))u,(f) +ZB|2 @,(z) (e))uztje) = ! (¢i(¢))
=l

J=1
2le(¢;e)'¢}e))ul(j) +2Bzz@,‘ge)’¢;¢)) (o) _12(¢(¢))
J]= J=
or

v e e b2 o b}
o Ho bl T )

where,

© ' © 3¢
Kiljl(e) — J-[Cll a¢x J +c a¢: ¢J "ldtz

o ox, dy, > ox, ox,

() (e) e) (e)
KiljZ(e) KZI(e) I[CIZ g/’ dt} ve 39 09} }Ix

o ox, dx, > 9dx, ox,

() 91} © 3¢
KP = | (c 0" Ty, 907 9 x,dx,

33 22
o dx; ox, dx, OJx,

1= J.’1¢(e))dr+ I(bx¢( ))trld"z

29 = J.(t2¢i(e)hr+ I(’h‘f’im h"ldxz
r Q

2.47)

(2.48)

ldx2
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2
€11 =Cx2 = 'l:,,
2vu
C2 = ;
l-v
€3 = H

’ ’ V -
v’ =v for plane stress, and v’ = T—v for planc strain.
-V

The global system of equations can be obtained by applying the same procedure for

cach element and assembling the resultant equations to yield:
Ku-= f (2.49)

where K is the stiffness matrix for the system, and # and f are the nodal

displacements and force vectors, respectively.

Note that if, on the other hand, using the principle of virtual work, the basic

expressions required for solution can be obtained as [74]

jB’adQ-F-jN’bdg=o (2.50)
Q Q

where, F donates the external applied forces. N and B are the usual matrix of
shape functions and the elastic strain-displacement matrix, respectively. Thus the

stiffness matrix K will have the following form:
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T
K:jB D B dQ (2.51)
Q

where, D is the stress strain matrix.

For the elasto-plastic analysis [31], Equation (2.50) will not be generally satisfied at

any stage of computation, and thus:

w=[B"6dQ-F - [N"bdQ =0 (2.52)
Q Q

where, y is the residual force vector. For an elasto-plastic situation the material
stiffness is continuously varying, and instantaneously the incremental stress/strain

relationship is given by:

do=D,,de (2.53)

where, D,, is the elasto-plastic stress-strain matrix For the purpose of evaluating the

material stiffncss matrix at any stage, an incremental form of Equation (2.52) must be

employed. Thus within an increment of load we have:

Ay =[BT 46dQ - 4F - [NT 4bdQ2 (2.54)
Q Q

Substituting for 46 using Equation (2.53) results in

Ay =Ky du—-(4F + [NT 4bdQ) (2.55)
Q
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where, the tangential stiffness matrix Ky = [B' D,,B dQ.
2

For the solution of Equation (2.55), and for cach load increment, the incremental
nodal displacements and stresses are calculated. The updated stresses are then brought
down to the yield surface and are used to calculate the equivalent nodal forces. These
nodal forces can be compared with the externally applied loads to form a system of
rcsidual forces, which is brought sufficiently close to zero through an iterative

process before moving to the next load increment.

2.7 COMPUTATIONAL STEPS OF THE FEM AND BEM

This section broadly defines the basic computational steps followed in the FEM and

BEM. The basic steps of the FEM are as follow [20]:

1. Discretize the problem domain. The first step is to divide the problem domain
into a number of finitc clements each of simple geometry. An element has a
number of nodal points the locations in space of which are given by coordinatcs
rclative to a set of global axes. The shape of each element is defined in terms of
thesc coordinates by interpolation or shape functions. This is known as solid

modeling and is not only a feature of finite element analysis.

2. Assume a variation of the unknown inside each finite element. An

interpolation function is proposed for the variation of the unknown (e.g.
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displaccment, temperature) inside cach element in terms of values at the nodal

points.

Find element response matrices. For each finite element, coefficient matrices
that describe the response characteristics of the clement are determined. In solid

mechanics for example a matrix of stiffness coefficients is computed.

Assemble the element matrices to obtain the response matrix of the problem
domain. To find the response matrix of the system [K ] to be modeled, the
response matrices of the individual elements are combined to form a matrix

cquation expressing the behavior of the entire solution region.

Introduce boundary conditions. The global material response matrix is a
singular one. To remove the singularity problem, certain boundary conditions

must be invoked before the assembled system of equations can be solved.

Solve system of equations. In most problems the number of equations is large,
thus special solution techniques have to be employed to solve the system
cfficiently taking advantage of the properties such as symmetry and sparseness of

the matrix of equation coefficients.

Determine additional quantities as required. Using the nodal values and
interpolation functions, additional parameters can be determined such as strain

and stress inside each element.
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The basic steps of the BEM are as follow [20]:

l. Discretize the boundary of the given problem. By contrast with the FEM only

the boundary of the problem domain need be discretized.

2. Assume a variation of the unknown inside each boundary element. This is the
samc¢ as in finite clement method cxcept that only boundary values arc

interpolated.

3. Calculate the coefficient matrices. Unlike the FEM, the coefficient matrices,
[H ] and [G] are computed directly by integrating over the boundary elements
using the fundamental solution which satisfies the governing differential

equations exactly.

4. Solve system of equations. As in the FEM the system of equations is now solved.

The primary unknown values are obtained directly.

5. Compute values inside the domain. By contrast to the FEM the solution of the
boundary element equations give only unknowns (e.g. displacements, surface
tractions) at the boundary surface of the problem domain. If displacements or
stress values are required at specific points inside the domain, they can be
calculate from those boundary values. This is one of the distinct features of the
BEM in that output may be seclectively obtained after the analysis has been

completed.
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The main programming steps of the BEM and FEM are shown in Figure 2.8.

2.8 COMPARISON OF THE FEM AND BEM

Some of the major differences between the two methods are remarked on here.

Depending on the application some of these differences can either be considered as

advantagcous or disadvantageous to a particular scheme. The major differences can

be summarized as [30]:

1.

FEM: Secondary variables on the boundary are less accurate than the primary

variables.

BEM: Both the primary and secondary variables are of the same accuracy.

FEM: An entirc domain mesh is required.

BEM: A mesh of the boundary only is required.

Comment: Because of the reduction of the size of the mesh for the BEM, one can
say that the problem size is reduced by one dimension. This is one of the major
advantages of the BEM as construction of meshes for complicated objects,

particularly in 3-D, is a very time consuming exercise.

FEM: Entire domain solution is calculated as part of the solution.

BEM: Solution of the boundary is calculated first. Thereafter, the solution at

domain points, if required, is found as a separate step.
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Figure 2.8: FEM versus BEM program
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Comment: There are problems where the details of interest occur on the
boundary, or localized to a particular part of the domain, and hence an entire

domain solution is not required.

4. FEM: Differential equations are being approximated.

BEM: Only boundary conditions are being approximated.

Comment: The use of the Green-Gauss theorem and a fundamental solution in
the formulation means that the BEM involves no approximation of the differential
cquation in the domain. Approximation is only performed on the boundary

conditions.

5. FEM: Sparse symmetric matrix generated.

BEM: Fully populated asymmetric matrix generated.

Comment: The matrices are generally of different sizes due to the differences in
size of the domain mesh compared to the surface mesh. There are problems where
either method can give rise to smaller system and quickest solution. This depends
partly on the volume to surface ratio. For problems involving infinite or semi-

infinite domains, BEM to be favored.

6. FEM: Element integrals are easy to evaluate.
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BEM: Integrals are more difficult to evaluate, and some contain integrands that

become singular.

Comment: BEM integrals are far harder to evaluate. Also the integrals that
contain singular integrands have a significant effect on the accuracy of the

solution, so these integrals need to be evaluated accurately.
7. FEM: Relatively easy to implement.
BEM: More difficult to implement.

Comment: The need to evaluate integrals involving singular integrands makes the
BEM at least an order of magnitude more difficult to implement than a

corresponding finite elcment procedure.

It is now obvious that both methods have their own range of applications where they

arc most efficient. To summarize, the FEM is most suitable for problems [20]:
1. with a high ratio of boundary surface to volume;
2. where boundary stresses are not of primary importance;

3. where the material is nonhomogeneous, behaves nonlinearly and/or contain joints

and cracks.
The BEM on the other hand, is most suitable for applications involving:

1. alow ratio of boundary surface to volume;
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2. ahigh accuracy of boundary stresses;

3. homogencous and linear elastic materials.

Typical applications with a high boundary surface to volume ratio are plate and shell
structures. Extremely low surface to volume ratios, occur in geomechanics problems
where the domain in most cases is assumed to be infinite or semi-infinite. Cases
where boundary stresses arc of primary importance occur mainly in fracture

mechanics and many applications in mechanical engineering.

2.9 COUPLING THE BEM AND FEM METHODS

There are undoubtedly situations, which favor FEM over BEM and vice versa. Often
one problem can give rise to a model favoring one method in one region and the other
mcthod in another region. In a detailed analysis of stresses around an underground
opening, the FEM can be employed to analyze the problem of any shape with
complex stress-strain response of the soil media. However, the extent of boundary
distance to represcnt infinite domain and the necessity to discretize large domain
introduce some approximation in the results. Furthermore, the preparation and
checking of data are tedious and time consuming. The BEM on the other hand
requires very small input data, and the elastic infinite domain commonly encountered
in the underground openings can be fully represented. An efficient way of solving the
problem is to utilize the advantages of both the BEM and FEM by coupling them. For

cxample, in the vicinity of the opening (where the plastic behavior is anticipated), the
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FEM can be used, and away from the opening (where the elastic behavior is

cxpected), the BEM can be used.

Both the FEM and BEM are widely employed in fracture mechanics. However
neither method is effective for all fracture mechanics problems. Fracture analysis is
governcd by linear elastic fracture mechanics (LEFM) and elasto-plastic fracture
mechanics (EPFM). The former is ideally suited to analysis by the BEM, and there
arc numerous examples of the application of the BEM for LEFM [32,33]. Although,
the BEM is superior to the FEM for LEFM, the BEM is less attractive for EPFM.
Coupling of FEM and BEM may be most efficient for certain classes of applications.
In EPFM problems, the plastic region around the crack can be modeled by the FEM
while the remaining linear elastic region can be modeled by the BEM. In contrast, in
the analysis of LEFM problems, it is useful to utilize the BEM at the fracture tip to
accurately capture the singular behavior and then to apply the FEM for the rest of the

structure where the material properties may be non-homogenous.

For such applications a combination of FEM and BEM seems to be the most efficient
way of analysis. In a coupled analysis the user can have the best of both worlds, i.e.
utilize the advantages and avoid the limitations of both methods. This may result in
an efficient analysis of many engineering problems. Coupling the FEM and BEM is

discussed in details in the following chapter.



CHAPTER 3

BACKGROUND ON FEM/BEM COUPLING APPROACHES

3.1 GENERAL

As discussed above, both the FEM and the BEM have their own advantages and
disadvantages. It is desirable to develop a combined FEM/BEM technique, which
makes use of their advantages and rcduces or completely eliminates their
disadvantages, and to use the combined tcchnique in situations where it is
appropriate. Du-e to their distinct mathematical formulations, the FEM and the BEM
cannol be directly linked. The basic variablcs in the FEM are nodal displacements and
forces, and in the BEM the variables are surfacc tractions and displacements.
Zicnkiewicz ct al. [34] were the first authors who proposced the coupling of the two
methods. Subsequent contribution came from Atluri and Grannell [35] and Brebbia

and Georgion [36].

The conventional coupling methods employ an entire unificd cquation for the whole
domain by altering the formulation of one of the methods to make it compatible with
the other. The conventional coupling approachcs can be classified into FEM hosted

and BEM hosted. More recently, coupling the FEM and thec BEM has been achieved
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using itcrative domain decomposition methods. This chapter presents a critical review

of the available FEM/BEM coupling approaches.

3.2 FEM HOSTED APPROACH

There are many variations of the FEM hosted approach [34-47]. In general, the FEM
hosted approach treats the BEM sub-domain as a large finite element. The
displacement-traction cquations governing the BEM sub-domain are transformed into
FEM-like displacement-force stiffness equations. These stiffness equations are then

assembled with those of FEM sub-domain according to the direct stiffness concept.

Considering Figure 3.1, where the domain is decomposed into two sub-domains Qg
and Q.. The decomposed portions arc modcled using the BEM and FEM. The

corresponding boundary integral equation for the BEM sub-domain is given by:

[H]{u}=[GHe} er, 3.1)

For the FEM sub-domain, the assembled element equations are:

[klu}={r} e Qr (3.2)

Now, let us define the following vectors:

{ug}: displacement in the BEM sub-domain,

{u A }: displacement on the BEM/FEM interface (but it is approached from the BEM

sub-domain),



/—-— FEM/BEM Interface I'’

/

BEM
Sub-domain

FEM
Sub-domain

(a) Domain of the Original Problem

(b) FEM Modelling

Figure 3.1: Domain Decomposition
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Figure 3.1: Continued
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: }: displacement in the BEM sub-domain except {4 H }
fus}=tf.up |
{ur }: displacement in the FEM sub-domain,

{u,’r }: displacement on the BEM/FEM interfacc (approached from the FEM sub-
domain), and

{u 5 }: displacement in the FEM sub-domain except {u ¥ }
furY=tfutf

Similarly, onc can define the traction and force vectors for the BEM and the FEM

sub-domains, respectively.

In order to combine Equations (3.1) and (3.2), the first one can be reduced to a finite

clement form by inverting G as follows:

G} [H]{u}={} (3.3)

Next, a rclationship between the surface traction and the nodal forces should be

cstablished. This relationship can be written as:

{r}=[m]{} (3.4)

where, [M] is the converting matrix duc to the weighting of the boundary tractions

by the interpolation function on the interface. Equation (3.3) may now be written in

the form:
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(vl [0 {u}= [M14}={7} (3.5)

where, the right hand side vector has the same form as that in the FEM. Equation

(3.5) may be written as:
[K]{u}={r} (3.6)

where, [I? ]= [a1] [G]_' [H] is a stiffncss matrix obtained from the boundary clement
formulation. The equivalent finite element matrices of Equation (3.2) can now be
asscmbled with the matrices corresponding to the sub-domain Q4 to form a global

stiffncss matrix.

A major drawback of this approach is that the resulting assembled stiffness matrix is
asymmetric and fully populated in contrast to the symmetric sparscly banded stiffness

matnx of the FEM.

Zcinckiewicz et al. [34] and Brebbia and Georgion [36] forced a symmetrization on
the BEM stiffness matrix on the basis of energy or error minimization considerations,
respectively. Although the two symmeterized stiffness matrices are the same, no
theoretical justification was made. This forced symmeterization has been followed by
many rcsearchers who reported some successful applications, e.g., Beer and Meek
[37], Swoboda et al. [38] and Kohno et al. [39]. However, as pointed out by Li et al.
[40], Mang et al. [41], and Tullberg and Boltcus [48], that this symmetrization results

in a loss of equilibrium in a region near the interface. It was also found in [40,41] that
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coupling the asymmetric BEM stiffness with the FEM lecads, in general, to morc
accurate rcsults. Of course, in such a casc the resulting total matrix is asymmetric,
and hence general matrix equation solvers have to be used which are less efficient

than the symmetric equation solvers.

Instead of concentrating on the collocation BEM formulation, many symmetric BEM
formulations have been developed that can directly be combined with the FEM. Most
of these variational formulations are based on Galerkin or generalized principles of
the type proposed by Reissner [49] and Washizu [50], in which the field and
boundary variables are taken to be indcpendent of cach other, therefore leading to
hybrid BEM schemes. Onc can also mention herc thc work of Schnack [51],
Polizzoto and Zito [52], Sirtori et al. [53], Dummont [54], Fclippa {55], Defigueiredo
[56], and Brebbia and Defigueiredo [57]. However, attempts for obtaining symmetric
BEM were either mechanically inconsistent, due to the inherent nature of the

asymmetric BEM matrix, or computationally cxpensive.

3.3 BEM HOSTED APPROACH

In contrast to the first approach, the BEM hosted approach treats the FEM sub-
domain as an equivalent BEM one by converting the stiffness equations of the finite
clement sub-domain to BEM-like equations. Thesc cquations are then coupled with
thosc of the BEM sub-domain while satisfying the continuity and equilibrium along

the interface.
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Considering Figure 3.1, the governing Equations (3.1) can be decomposcd and

written in the following form:

B B
“sl-lG, G,l{' 3.7)
Up {g

The matrices for the finite element sub-domain can be written in a similar manner

[, H,]

using the concept of the converting matrix defined in Equation (3.4),

[k, K:]{"f }=[M, M;]{:f} (3.8)

Ur F

At the interface, the compatibility and equilibrium conditions should be satisfied, i.c.,
Wbl=btl=t'} er (3.9)
=it} er (3.10)

Using (3.9) and (3.10), Equations (3.7) and (3.8) can be rearranged and written

together as:
H, HZ -Gz 0 u _ GI 0 tg (3 11)
0 K, M, K;||¢ 0 M,||f ’
F
ur

These equations will of course need to be rearranged in accordance with the boundary

conditions.
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This method of coupling involves no matrix inversion as the FEM hosted procedures.
Unlike the first approach, the BEM hosted approach was employed in few
investigations [58-60], becausc in the FEM there is a lot of efficient software
available for pre- and post-processing and for solving the final large linear equation
system. Furthermore, the BEM hosted approach destroys the positive characteristics

of symmetry and bandedness that originally exist in the FEM.

3.4 ITERATIVE DOMAIN DECOMPOSITION METHODS

More recently, the coupling of BEM and FEM has been achicved through the iterative
domain decomposition methods. In these coupling methods there is no need to
combine the coefficient matrix for the FEM and the BEM sub-domains, as required in
most of the conventional coupling methods. A sccond advantage is that different
formulation for the FEM and BEM can be adopted as basc programs for coupling the
computer codes only. Scparatc computing for cach sub-domain and successive
rencwal of the variables on the interface of both sub-domains are performed to reach

the final convergence.

Gerstle ct al. [61] presented a solution method, which was itcrative in nature. Their
idea was to iteratively apply displacement boundary conditions on the interface of the
FEM and BEM sub-domains, calculate the resulting forces on the interface, and then
to use the unbalanced force vector on the interface as a predictor for the applied
displacements in the next iteration. However, their method was applicable only for

symmetric BEM formulation with the disadvantages discussed carlier.
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Percra ct al. [62] prescnted a parallcl mcthod that was based on the interface
cquilibrium of Steklov Poincare. Their method may not be suited for certain classes
of problems where the natural boundary conditions are specified for the entire
external boundary of the FEM or BEM sub-domains. In such case the specification of
Neumann boundary conditions over the whole boundary of any sub-domain, will

result in non-unique solutions.

Kamiya ct al. [63] employed the rencwal mcthods known as Schwarz Neumann-
Ncumann and Schwarz Dirichlet-Neumann. Both methods, however, are not suited
for problems where the natural boundary conditions arc spccified on the cntire
cxternal boundary of the FEM sub-domain. Kamiya and Iwase [64] introduced an
iterative analysis using conjugate gradient and condensation. However, the conjugate

gradient method is only applicable to symmetric BEM formulation.

Lin ct al. [65], and Feng and Owen [66] proposed a mcthod which is considered as a
scquential form of the Schwarz Dirichlet-Neumann method. The method was based
on assigning an arbitrary displacement vector to thc interface for the BEM sub-
domain. Then, the energy cquivalent nodal forces of the solved interface tractions
were treated as boundary conditions for the FEM sub-domain to solve for the
interfacial displacements. The solution was achiecved when these two sets of

displacements converge.

In the following sub-sections the formulation of the main iterative domain

dccomposition methods are critically reviewed.
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3.4.1 Parallel Schwarz Neumann-Neumann Method

In Parallel Schwarz Neumann-Neumann method, the traction (Neumann data) is

assumed in advance on the FEM/BEM interface [63]. The computations for FEM and

BEM are performed in parallel. The iterative method can be described as follows:

oy
.

!\)

Set initial values { B0 }= f}

Calculate {[ F.0 }

)5, 1}

Do for n=0,1, 2,...

Solve

Apply

Until

A S I AT e
[k, K:]{:f }={;7F } for fef )

F.n F.n

Bn+l} {Bn}“’ﬁ({‘rn} {IBn})
U wer }=- 1145, )

where, B is a relaxation parameter to speed up convergence

[hoo)-b5 Y
[t ]

where, € is a given tolerance.

A drawback of this method is that it requires a parameter B, which may be

cmpirically selected. Some trial and error and cxtensive experience are inevitable.

Another major drawback is that the method may not be suited for certain classes of
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problems where the natural boundary conditions arc spccificd for the entire FEM or

BEM sub-domains.

3.4.2 Parallel Schwarz Dirichlet-Neumann Method

In Parallel Schwarz Dirichlet-Neumann method {63], the assumed data on the
interface of the BEM sub-domain is the displacement (Dirichlet data), while that of
the FEM sub-domain is the traction (Ncumann data). The computations for FEM and

BEM are performed in parallel. The iterative method is described below:

1. Sect the initial guess {u ,',',, }= {E } and {f,.!.o }= {i}

2. Dofor n=0,1,2,...

Solve H, 112]{“,g }=[G, 62]{:’3 } for ¥4, }

uB.u B.n
X, Kz]{u;}={f{} for 4l |
uFJl F.n
Apply {";';...u }=(1—7){l£,..}+7 {lﬁ}

Uk s =M1t}

where, 7 is a relaxation parameter to speed up convergence

[fehner -t}

Until
" {‘;.nd}" <

where, € is a given tolerance.
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The parallel Dirichlet-Neumann method requires the selection of a parameter v,

which demands some trial and error, and cxtensive cxperience. Furthermore, the
mcthod may not be suited for problems where the natural boundary conditions are

specified on the entire external boundary of the FEM sub-domain.

3.4.3 Sequential Schwarz Dirichlet-Neumann Method

The Scquential Schwarz Dirichlet-Ncumann itcrative mcthod can be described as
follows [65,66]:
1. Sctthe initial guess fu’, }= {@}

2. Doforn=0,1, 2,...

Solve - [H, Hzl{",g ]»=[G, Gz]{:,g } for ¥2,, }

u B.n B.n

Solve [, KZ]{";}:{ fe }for{u},.}

]
F.n - M B.n

Apply A S YT SR R A

where, « is a relaxation parameter to speed up convergence

haet - Wb}
" {‘ Bansl }"

where, € is a given tolerance

Unul <€

The method has the same limitation as that of the parallel Shwarz Dirichlet-Neumann

method.
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3.5 SUMMARY

This chapter presents a background on the existing FEM/BEM coupling methods. The
conventional coupling methods employ an entire unified equation for the whole
domain, by combining the discretized equations for the BEM and FEM sub-domains.
Although the FEM hosted approach concecived morc convenience than the BEM
hosted approach, their shortcoming is that the algorithm for constructing the entire
cquation is highly complicated when compared with that for cach single equation. In
order to overcome the stated inconvenience, iterative domain decomposition methods
wcere developed. In these methods, scparate computing for the BEM and FEM sub-
domains and successive rcnewal of the degrees of freedom on the interface of both
sub-domains are performed to rcach the final convergence. Different methods were
critically reviewed. The iterative FEM/BEM coupling mecthods presented in Section
3.4 offers many advantages over the conventional coupling methods and appears to
bc promising. However, the important issuc of convergence of the iterative methods
is not fully addressed. Also the effect of scveral parameters such as the initial guess,
matcrial and geometrical propertics of the sub-domains, and relaxation are not
investigated. Moreover, the iterative domain decomposition coupling methods [61-
66] arc limited only to linear clastic or potential problems, and are not suited for cases
where the natural boundary conditions arc specified for the entire external boundary

of the FEM sub-domain.



CHAPTER 4

CONVERGENCE OF THE SEQUENTIAL DIRICHLET-

NEUMANN ITERATIVE COUPLING METHOD

4.1 GENERAL

Several methods for coupling the FEM and BEM were critically reviewed in Chapter
3. Although the iterative FEM/BEM coupling methods offer many advantages over
the conventional coupling mecthods and seem to be promising, the important issue of
convergence is still not fully addressed. The objective of this chapter is to establish
the convergence conditions for the Sequential Dirichlet-Ncumann iterative coupling
mcthod presented by Lin ct al. [65], and Feng and Owen [66]. Scveral factors
involved in the convergence of the method arc discussed. Benchmark examples arc

presented for validation.

4.2 CONVERGENCE OF THE ITERATIVE METHOD

In this section, the convergence of the Sequential Dirichlet-Neumann iterative
coupling method is investigated. The findings will be confirmed by numerical

cxamples in Section 4.3.
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For the sake of convergence discussion, the BEM and the FEM equations can be

rewritten in more detailed sub-structured forms:

l:H,, Hpy ) [uf| _[Gu Gi:][ef @.1)
H, Hj ||u} G: G|t

i eva
At the interface, the compatibility and equilibrium conditions are:

lupl={ut } er’ 4.3)
Utleimlfeg}=0 er 4.4)
The FEM/BEM iterations arc written as:

{uh, nur }= - @) {uf  Jra {ul,, } 4.5)

After applying the boundary conditions and rearranging, Equation (4.1), can be

written in the following form:

Gl a)fca) “s
l,’; Ay Ay “:r )
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where, X7 is a vector which contains all unknowns in thc BEM sub-domain except

the interfacial displacements uj and traction tf. Cp is a vector which contains all

BEM known quantities. Similarly, after applying the boundary conditions and

rcarranging, Equation (4.2) can be written as:

F F F,; | |[C
ur Fy Fijlfr
where, C, is a vector of known FEM values. Using Equation (4.4) in the second of
Equations (4.7) gives:
ujf =F,Cp —Fy, Mt} (4.8)

Using the second of Equations (4.6) in (4.8) gives:

ur =C uh+E (4.9-a)
where

C =~F,MA,, (4.9-b)
and

E=F,Cy —F;,,MA,C,g (4.9-c)

Substituting for u;-,,, in Equation (4.5) using Equation (4.9-a) gives:
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Up, =l-a)+aClup, +a E (4.10)
where, I is the unit matrix. Now, Equation (4.10) is an iterative method of the form:
X, =D,X,+d, 4.11)

which converges if and only if the set of eigenvalues o(D,) of the matrix D, is
contained in the unit ball B(0,1) in thc complex planc [67]. Equation (4.10)

converges if and only if:

oc(l-a)+aC)c B(0,1) 4.12)
or
oc@C)c Bla-11) 4.13)
or
11
c(C)cB(l—-—,—) (4.14)
a o

The ball is centered at Z =1—$, with the radius l Next, it can be shown that, if
a

/=x+iye o(C) with x<I1, then /e B(l—ai,é) for some «a. For this the

following inequality has to be satisfied:
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ll_(l_i) L @.15)
(04 a
or
2
[x—a-l)] +y? < 1, 4.16)
(04 a“”

which, upon simplification, gives:

4.17)

(I-x)P+y?< 201 -x)
o

Notc that inequality (4.17) immediately implies the necessary condition x<1.

Inequality (4.17) can be rewritten as:

2(1-x)
a< m (4. 18)

The forcgoing discussion shows that if Z; =x;, +iy;...Ay =X, +iy, are the

cigenvalucs of C, then,

ISisN

20-x;) }

a < min
{(l“xi)z +.Vi2

4.19)
and x; <1, i=L2,..,N

arc the necessary conditions for the convergence of the Sequential Dirichlet-Neumann

iterative coupling method.
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For a proper choice of «, the specteral radius of the iteration matrix ((1 - +acC )

which may be denoted by p((1-a)! +« C), may be minimized.

Let
A=A, 4,..4,) (4.20-a)
and
I'=01 1..1) (4.20-b)
then
p@~af +aC)=max{| Q-a)+a s | }=| A-a) T+a i . (4.20-c)

where, | (1-a) I+a 4 [, is the infinity norm of the itcration matrix. The problem
now is to choose & such that | (1-a) I+« 4|_ is minimized. Due to the fact that
|-]. is not differentiable, an explicit value for the optimum «a is not readily

obtainable.

However, noting that L".11]2 <[ldl. <|x],. one can uy to obtain a value of the

JN
rclaxation parameter (& ) that minimizes the Euclidean norm. If for such & , it turns

out that | (1-&) I+& 4|, <1, then so will be the infinity norm and consequently

the spectral radius of the iteration matrix. Proceeding with this idea let
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Fay=|-a)1+a z],’ (4.21-a)
then
F'(@) =2Re(” (4— D) +2a| i1’ (4.21-b)
and
Fia =2]i-1I* >0 4.21-c)

The initial values (4.21-a) correspond to the minimum a. Now sctting F’(a) =0, the

following cquations are obtained:

_Re('(i=1)

_ 4.22)
-1l

a =

and

o Rew G- DY’

= (4.23)
min R 2
[+-1|

Then a sufficient condition for convergence in this casc is F;;, <1. Moreover, this

condition implies that & necessarily satisfics Equation (4.19).

The two conditions for convergence depicted by Equations (4.19) give rise to a set of

factors that control convergence. The most important one is the selection of the
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parameter a, which greatly affects thc convergence of the Sequential Dirichlet-
Neumann itcrative coupling method. Beyond the values given by Equation (4.19), the
mcthod does not converge. Also from the discussion given in this section, it can be
concluded that convergence is dependent on the eigenvalues of the matrix C , which
in turn arc dcpendent on K, H, G and M matriccs. This indicates that convergence
is decpendent on the mesh density on the interface, specified type of the boundary
conditions for the given sub-domains, and the geomectrical and material propertics of
the sub-domains. It is interesting to notc that the initial guess is not involved in the

conditions for convergence.

4.3 BENCHMARK EXAMPLES

The conditions for convergence were cstablished theoretically in the previous section.
Also, the factors that affect convergence of the method were clarified. Two
benchmark examples are given for validation. These examples also serve to clarify
somc issucs related to the convergence of the Sequential Dirichlet-Ncumann iterative

coupling method.

4.3.1 Potential Flow Problem

The first benchmark example (Figure 4.1) is a potential flow in a rectangular domain
governed by Laplace cquation, i.e., &,V?u=0 in Q,, where k ; 1s the material
property in the sub-domain Q. and « is the potential. The decomposed portions are

modeled using the BEM and FEM. The domain is decomposed to the FEM and BEM
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Figurc 4.1: Potential Flow Problem
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sub-domains with 0<x<a and 0< y <& . The boundary conditions are selected as
u(0,¥) =0, u(a,y) =200, and zero flux (k;Vu ) elsewhere. The effect of the relative
malerial properties (kg/kp), relative size of the computational sub-domains
(ag/ar ), and initial guess is investigated. For ag/ap =1, the domain is modeled
using 18 lincar boundary elements and 40 linear triangular clements (Figure 4.2). Due

to the simplicity of the problem, the results agrec very well with the exact solution

and therefore, they are not given here.

The cffect of kgz/ky on the convergence of the solution is shown in Figure 4.3,
which clearly indicate that both the optimum value and the applicable range of «

vary with kg /k. . The Figure also shows the crucial role of a in achieving the
convergence. As an example, for kg /k =8, a should be within the range of 0.02 to

0.20, in order to assurc convergence. Beyond the value of 0.20, the iterative method

docs not converge.

Similarly, Figure 4.4 gives the applicable range of a for different relative sizes of the
computational sub-domains (agz/ar) with kg/kp =1. For example, Figure 4.4

indicates that for ag/as =0.2, the convergence can not be achicved when a > 0.32.

The optimum value and applicable range of a for diffcrent combinations of ag/ap
and kg /k; are given in Table 4.1. It is interesting to obsecrve that for combinations

of very high values of kgz/kr and low values of agz/ar, applicable range of a



Figure 4.2: Discretization for the Potential Flow Problem
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Table 4.1: Applicable Range and optimum values of a for Different Values of
ag/ar and kg [k,
kB/kF
a,fa, 0.1 0.50 1.0 2.0 8.0
0o Range  0.02-1.32 0.02-0.56 0.02-0.32 0.02-0.18 0.02-0.04
Optimum 0.68 0.28 0.16 0.1 0.02
04 range 0.02-1.58 0.02-0.88 0.02-0.56 0.02-0.32 0.02-0.08
Optimum 0.8 0.44 0.28 0.16 0.04
range 0.02-1.8 0.02-1.32 0.02-0.98 0.02-0.64 0.02-0.20
10 Optimum 0.9 0.66 0.5 0.34 0.12
40 range 0.02-1.94 0.02-1.76 0.02-1.58 0.02-1.32 0.02-0.66
Optimum 0.96 0.88 0.8 0.66 0.34
80 range 0.02-196 0.02-1.88 0.02-1.76 0.02-1.58 0.02-0.98
Optimum 0.98 0.94 09 0.8 0.50
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rcducces to a very narrow range. The limit and optimum values given by Table 4.1 are
found to be in good agreement with those determined using Equations (4.19) and

(4.22).

In order to investigate the effect of the initial guess of the potential u! on the

interface, the same problem is reinvestigated with agz/a. =04 and kg /k, =1, and

diffcrent values of u’. The results (Figure 4.5) show that, the arbitrary assigned «’
valucs have an insignificant effect on the spced of convergence. The applicable range
of «, remains between 0.02 to 0.56 for this problem. It is reasonable to start with
valucs of zcros on the interface for the initial potentials, which scems convenient as

well as, appropriate from the physical realization.
4.3.2 Steel Cantilever Beam Subjected to Uniform Tension

The steel cantilever beam shown in Figure 4.6 is analyzed, and the results are
compared with those from clasticity theory. The cantilever beam is subjected to a

uniform tensile loading of 20x10* units at its frec end, and is considered to be in a

state of plane stress with an clastic modulus, E =29x10° units, and a Poison's ratio
v =0.3. The becam is 20 units long and 10 units high, and is assumed to be
wcightless. The results obtained from the coupled BEM/FEM approach, using
different meshes as shown in Figure 4.7, match very well with the analytical

solutions.
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Figurc 4.8 illustrates the effect of the mesh size on the convergence of solution. It is
obscrved that the applicable range of a to assure solution convergence, varies with
the number of the interfacial nodes. For mesh (a). a should be within the range of
0.03 to 0.72, whilst the range for mesh (c) is 0.03 to 0.47. Beyond these values the
mcthod does not converge. The range from which the relaxation parameter to be
chosen becomes narrower with the increasc in the number of nodes on the interface.
Morcover, it is observed that different optimal values of a cxist for different FEM

and BEM meshes.

In order to address the effect of the geometry of thec computational sub-domains on
solution convergence, the problem is investigated for diffcrent relative areas of the
finitc and boundary element sub-domains, as shown in Figure 4.9. From Figure 4.10,
it is obscrved that the minimum applicable range of « is for problems having cqual

finitc and boundary clement arcas (ag/ar =1). As ag/ar increases or decreases,

the applicable range of & increases.

Using mesh (b) of Figure 4.7, the problem is investigated for different relative values

of modulus of elasticity for the BEM and FEM sub-domains (E, / E ). Figure 4.11
indicates that as E,/ E, decreases the applicable range of a increases. This range

rcduces to a very narrow one for higher values of Eg/ E.

Using the equivalent two different types of boundary conditions as shown in Figure

4.12, mesh (b) of Figurc 4.7 is also analyzed. As can bc seen from Figure 4.13,
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Figure 4.9: Relative BEM to FEM Computational Sub-Domains
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diffcrent types of boundary conditions results in different optimum values and

applicable ranges of the parameter « .

In order to investigate the effect of the initial guess of the degrees of freedom on the

interface, the same problem is reinvestigated using mesh (b) in Figure 4.7, and
diffcrent values of u’. Again, the results in Figurc 4.14 show that, the arbitrary

assigned initial values of u’ have an insignificant effect on the speed of convergence.
The allowable range remains between 0.03 to 0.53 for this problem. It is reasonable to
start with values of zeros on the interface for the initial displacements, which seems

convenicnt as well as appropriate from the physical rcalization.

Again, the numerical results obtained for this problem match with those of Equations

(4.19) and (4.22).

4.4 SELECTION OF THE RELAXATION PARAMETER

The theoretical analysis and benchmark examples presented in Sections 4.2 and 4.3,
respectively, clearly identify the factors that control the convergence of the Sequential
Dirichlet-Neumann iterative coupling method. These factors include the geometrical
and material propertics of the FEM and BEM sub-domains, specified type of
boundary conditions of the sub-domains, and the number of nodes on the FEM/BEM
interface. The most important issue regarding convergence, is the selection of the
paramcter . Beyond the values given by Equation (4.19) the iterative method does

not converge.
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It is also concluded that the initial guess is not involved in the conditions for
convergence and it has an insignificant effect on the speed of convergence. A further
cxamination of Equation (4.22) indicates that the optimum value of « is independent
on the initial guess of the potentials or displacements on the FEM/BEM interface.
This is also confirmed by the benchmark examples. It is reasonable to start with

values of zeros for the initial potentials or displacements on the interface.

For the sclection of the parameter a, Equations (4.19) and (4.22) should be utilized.
Alternatively, and to avoid the calculations required by Equations (4.19) and (4.22),
some trial and error and deep expericnce are rcquired. However, the following

guidelines may be helpful in selecting the parameter « :

1.  For combinations of low valucs of the relative sizes of the BEM to FEM sub-
domains, and high values of the relative stiffness of the BEM to FEM sub-

domains, the parameter « is assigned a rclatively low value.

8%}

For combinations of high values of the relative sizes of the BEM to FEM sub-
domains, and low values of the relative stiffness of the BEM to FEM sub-
domains, the applicable range of a becomes wider. Fortunately, most of the
FEM/BEM coupling applications satisfy these two criteria. In such case a@ may

be assigned a relatively higher value.



CHAPTER 5

OVERLAPPING ITERATIVE DOMAIN DECOMPOSITION

METHOD FOR COUPLING THE FEM AND BEM

5.1 GENERAL

A ncw iterative domain decomposition method for Coupling the BEM and FEM is
prescated in this chapter. The method has thc advantage of allowing different
formulation for the FEM and BEM, whilc preserving the identity of each method. It
utilizes a common region that is modeled by both mcthods. The method avoids the
limitations of the existing iterative coupling methods. It allows for the asymmetric
formulation of the BEM avoiding the limitation of the conjugate gradient method
presented by Gerstle et al. [61], and Kamiya and Iwase {64]. Furthermore, the method
is capable of handling situations where the natural boundary conditions are prescribed
on the entire external boundary of the FEM or BEM sub-domains. Such situations
cannot be modeled using the iterative methods prcsented by Perera et al. [62],
Kamiya ct al. [63], Lin ct al. [65], and Feng and Owen [66] as discussed earlier in

Chapter 3.
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The convergence of the method is investigated. Benchmark examples are given. The
mcthod is also presented to solve problems involving infinite and semi-infinite

rcgions.

5.2 OVERLAPPING ITERATIVE COUPLING METHOD

In this section an iterative overlapping domain decomposition method is presented.
The domain of the original problem is subdivided into FEM and BEM sub-domains,

such that the two sub-domains partially overlap each other. The common region is

modeled by both methods (Figure 5.1). The FEM/BEM interfaces (I'’! and I''2) arc

also shown in the figure. Now, let us define the following vectors:

ug: displacement in the BEM sub-domain,
uj': displacement on I'’! approached from the BEM sub-domain,

u g : displacement in the BEM sub-domain except « ,’;
B 1T
Ug = [uB yupg N

u,’ : displacement on I'? calculated as internal points for the BEM sub-domain,

u g : displacement in the FEM sub-domain,

u}' : displacement on T'’' approached from the FEM sub-domain

uf : displacement on I'’? approached from the FEM sub-domain, and
uf : displacement in the FEM sub-domain except uf! and u ;-2

F Il _I2\T
Up =lugp,up ,ug)
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Figure 5.1: Overlapping Domain Decomposition
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Similarly, the BEM traction are denoted by ¢5 and ¢}, and the FEM force vectors by

fE ff and f72.
The corresponding boundary integral equation for thc BEM sub-domain can be

written in sub-structured form as:

H; Hpl|ug G Gy ty .1)
Hy, Hy||ug, Gy Gy | |15, ‘
After solving for the unknowns in Equation (5.1), the displacement vector inside the

. 2 .
domain Wy, } can be obtained as:

{l,’f }= Hj, H;||ug + G, Gp||ts (5.2)
" H;Z H;.’ ugn G;l G.:.’ ‘é{n

For the FEM sub-domain, the assembled element equations are given by:

K,, K;; K “ff: f:
K, K, Ky "1’-"{:. = I-!I (5.3)
K; K; Ky “f,n ;z

The proposed method can be described as follows:
1. Setan initial guess {4,’,{0 }= @}

2. Doforn=0,1,2,...
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H, H, B G,, G, B
Solve [ 1 "] u',: }:l: 1 ":l ‘,’5 for ",f,,} and the
H; Hj|lug, G; Gy | |tg,

boundary unknowns

- - B - . B
sove b=\ TR LG G Lk}
H,, H,||upa G, 22 | |B.n

K, K, K “r‘T f:

- 1 1 11
- - - 2 2
53’ Ajz A33 Upn F

Apply b . }=1-obl o bl,)

where, « is a relaxation parameter

1 }_ {l i
B+l B
<&
7]
B.n+1 }"

Until "

where, € is a given tolerance.

The current method avoids the prescription of natural boundary conditions on the

interface I'’' or I''2, and therefore it overcomes the problem encountered in the
iterative methods presented in [62, 63, 65, and 66]. Another advantage is that the
method does not require the transformation of the BEM tractions on the interface to

the corresponding FEM forces.



5.3 CONVERGENCE CONDITIONS

A convergence analysis of the new overlapping method is presented in this section.

After applying the boundary conditions, rearranging and conducting a series of matrix
operations on Equation (5.1) and (5.2), the vector of unknowns {c ;5,,} can be written
as:

. o
{"llin }= 4, Al {u lf } (5.4)

B.n

where, Cjp is a vector of known BEM values and they are obtained from the initial
boundary conditions for the BEM sub-domain. Similarly for the FEM after applying
the boundary conditions, rearranging and performing a series of matrix operations on

Equation (5.3) the following equation is obtained:

u;’{n =|Fy Fy; Fj; c/ (5.5)
U 0 I ]|uF,

Note that C£ and C}' are vectors of known FEM values and they are obtained from

the initial boundary conditions for the FEM sub-domain. Substituting Equation (5.4)

in the sccond of Equations (5.5) gives:
uf, =Cug, +E (5.6)

where,
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C=Fy;Ap,
and
E =F,Cf +F,,C{ +F;;A,,Cy

Substituting for u/., in the iterations uj .., <(1-auy , +aull, gives:

ug g =ll-of+aClull, +a E (5.7)

which has the same form as obtained for the Sequential Dirichlet-Ncumann method.

It can be concluded that if 4, = x| +iy,,...Ay = x5 +iyy are the eigenvalues of C,

then,

o< min{ 21— x;) }

sV | (1—x, ) + y,°

(5.8)

and x; <1, i1=12,.,N

are the necessary conditions for the convergence of the new iterative method. The

optimum & is obtained as:

=
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5.4 INFINITE AND SEMI-INFINITE PROBLEMS

The new overlapping iterative method can be effectively used to solve problems with
infinite and semi-infinite domains. Consider the casc of a shallow tunnel as shown in
Figurc 5.2. This problem cannot be solved using the iterative methods presented in
[62, 63, 65, and 66], as these methods require the specification of the natural
boundary conditions on the FEM/BEM interface. According to the nature of the
problem this will result in non-unique solutions for the FEM sub-domain. Thus, the
itcrative methods presented in [62, 63, 65, and 66] are not applicable for such cases.
The procedure for applying the overlapping method to the semi-infinite and infinite

problems is given below.

Consider Figure 5.3; where a finite region close to the opening is modeled by the
FEM while the remaining infinite or semi-infinite region is modeled by the BEM. The
two sub-domains overlap over a finite common region. The proposed method can be

described as follows:
1. Sctinitial guess {l,’,{o }= fa}.

2. Doforn=0,1,2,...

Solve [H1§! }=lG1§2 }oor §22.}

solve W& }=[m" ]t} k" 14 )
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5.5 BENCHMARK EXAMPLES

In this scction two benchmark cxamples that show the efficiency of the new
overlapping iterative coupling method are given. The two examples show the
applicability of the new method to problems involving natural boundary conditions
on the entire FEM sub-domain. The two examples considered here can not be solved
using the iterative methods presented in [62, 63, 65, and 66]. Practical applications

are given in Chapter 7.

5.5.1 Potential Flow Example

Consider the potential flow example given in Chapter 4 with the following boundary
conditions: #(0, y) = -100, u(a, y) =200, and zero flux elsewhere as shown in Figure
5.4. The geometrical and material properties are such that ag,a,.,k; and k. are
fixed to unity. The problem is modeled using 30 linear boundary elements and 55

lincar quadrilateral finite elements with an overlapping distance a_ =0.1. The
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overlapping iterative method gives a solution that is in good agreement with the exact
solution. The range for the parameter « is obtained as 0.02-20, with an optimum

value of 10.
5.5.2 Elasticity Example

Consider a circular hole in an infinite planc subjected to uniform pressurc. The
cxample is indicated in Figurc 5.5 while the FEM/BEM discretization is shown in

Figure 5.6.

Figurc 5.7 shows the radial displacements with the overlapping iterative method
compared with the exact solution [72]. The results clearly show the excellent
agrcement between the coupled FEM/BEM and the exact solutions. The applicable

range of the parameter « is obtained as 0.02-6.6, with an optimum value of 4.

5.6 SELECTION OF THE COMMON REGION

In order to examine the selection of the common rcgion, the potential flow example
given in Chapter 4 is reinvestigated using the new overlapping iterative coupling

mcthod (Figure 5.8). The problem is investigated for different values of ag/a, and
kg/kp . For ag/ag =1, the problem is modeled using 30 linear boundary elements

and 55 linear quadrilateral finite elements (Figure 5.8).

The combined cffect of the size of the common region (a, ), and the relative material

propertics (kg /k g ), on the convergence of the solution is shown in Figure 5.9. The
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figure gives the maximum allowable a for diffcrent combinations of kg /k, using
diffcrent values of a_/ag . Figure 5.9 is sclf-explanatory, and it clearly indicates that
the applicable range of a vary with kg, /k.. As a_/ag decreases the applicable

range of & increases. Also it is observed from the figure that the new overlapping
mcthod provides a wider applicable range of a compared to the Sequential Dirichlet-
Ncumann iterative mcthod, which is more advantagcous. As an cxample the
applicable range is 0.02-0.18 for kgz/kr =10 using the Sequential Dirichlet-
Ncumann itcrative coupling method as compared to 0.02-18.36 using the new

overlapping iterative method with a_/ag =0.1. It is also concluded from Figure 5.9

that it is more advantageous to choose a common region, which is relatively small.

Similarly, Figures 5.10 through 5.12 givc the maximum allowable a for different

rclative sizes of the computational sub-domains agz/az =3, 10, and 1/3,

respectively. Similar observations can be made as for ayfa, =1.

It is interesting to observe that for all cases studied, and for different combinations of
kg/kr . ag/ag , and a_fa, , the applicable range of the parameter & is very wide
compared to the Sequential Dirichlet-Neumann iterative coupling method. The
maximum allowable a@ has a minimum value of 2, and only for combinations with

high a_/ag values. As the size of the common region decreases, the applicable range

of a incrcases. The limit values given by Figures 5.9 through 5.12 are found to be in

good agrecment with those determined using Equation (5.8).
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It is clear from the analysis conducted that the size of the common region can be
arbitrary chosen. However, the following guidelinecs may be helpful regarding the

sclection of the common region (a, ):

1. The width of the common region a_ should not be too small in order to avoid

the computation of singular boundary integrals.

1]

The choice of a_ should be small enough to have a wider range of a and to

avoid the reduction in the efficiency of the method, due to the increase in the

number of the coupling equations.

3. A rcasonable decision is to choose a common region with a_being equal to the

length of the boundary element on the BEM interface.



CHAPTER 6

EXTENSION OF THE ITERATIVE COUPLED FEM/BEM

METHODS TO ELASTO-PLASTICITY

6.1 GENERAL

As mentioned carlier, the conventional methods of coupling the finite element and
boundary element methods employ an entirc unificd equation for the whole domain
by combining the discretized cquations for the BEM and FEM sub-domains.
Applications of the conventional coupling methods in elasto-plasticity can be found
in [69-71]. The iterative domain decomposition methods [61-66] were developed to
overcome some limitations of the conventional coupling methods. Unfortunately,
these investigations [61-66] are limited to lincar potential or clasticity problems. In
this chapter, the extension of the Sequential Dirichlet-Neumann iterative coupling
mcthod and the new iterative overlapping coupling mcthod to clasto-plasticity is

presented. Practical applications are given in Chapter 7.

6.2 THE DIRICHLET-NEUMANN METHOD IN ELASTO-PLASTICITY

In this section, the extension of the Sequential Dirichlet-Neumann iterative coupling

mcthod to elasto-plasticity problems is presented. Considering Figure 3.1 where the
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domain of thc original problem is decomposcd to FEM and BEM sub-domains. The
FEM only needs to be applied to the plastic region and the BEM to the remaining
clastic region. The FEM equations in elasto-plasticity are given in Section 2.6. An

incremental form of the FEM equations can be written as:

{aw}=[K; Hau}-{ar} 6.1)

It should be noted that for each load increment, Equations (6.1) arc nonlinear and
therefore arc solved iteratively. The iterative coupling method can be described as
follows:

1. Sctan initial guess Llé‘o }= @}

2. Dofor n=0,1,2,...
H,, H,||uZ G, G, ||¢&
Solve I 12 u,B = " 12 ‘,8 for {t,’, ﬁ}
H, H; ||ug, G, G, | |tg,
Solve {fl'{n }= _[M]{:l,n}
For the FEM region

Fori=12,....m

where, m is a specified number of increments such that:

{fr,n}= {Afr,n}, +{AfF,n}2 +"’+{Afr,n},- +"'+{Afr,n},,,

Solve A'I’f'.n =[K111 Kle:I A“Eu _ Af:.
A'I’l’",n i KTZI KTZZ i Au:’,n i dfl'!.n i



i i
Aufm ’
Au,'ny,, )

where, & is a specified tolerance, and r—1 and r denote

r r-1
Adu ,f n Au E,,
Aug, dug,
Untl - <é

successive iterations

F F F
Up, u Aug,
Apply { §"e ={F"t +4°7F
Urn), |YFn),, |4¥Fa),
Urn| |UFa]_
Apply fubwor}=0-) fub  Jra el }

bt b )
[eha. )

An eclasto-plastic coupled FEM/BEM Fortran computer program EPFBE (Elasto-

Until <E.

Plastic Finite Boundary Element) is developed using the algorithm presented above.
The program permits the solution of the elasto-plastic problems by the tangential
stiffness, the initial stiffness, or a combination of both. It has options for Tresca, Von
Mises, Mohr-Coulomb and Drucker-Prager yicld criteria. Figure 6.1 shows the
primary subroutines called from EPFBE. The FEM subroutines such as INPUT,

DIMEN, LOADPS, ZERO, INCREM, ALGOR, STIFP, FRONT, RESIDU,



INPUTBE1

BEPARTI1

BEPART2

INPUT

DIMEN

LOADPS

ZERO

EPFBE

INCREM

ALGOR

STIFP

FRONT

RESIDU

CONVER

OUTPUT

FBCONVR

BEM

BEM

BEM

FEM

FEM

FEM

FEM

FEM

FEM

FEM

FEM

FEM

FEM

FEM

Figure 6.1: Structure of EPFBE Program
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CONVER, and OUTPUT have bcen adopied from rcference [31]. The BEM

subroutines such as INPUTBE, BEPART]1, and BEPART?2, are developed for the

solution of two-dimensional elastostatic problems using lincar boundary elements.

The FEM subroutines are briefly described below [31]:

INPUT:

DIMEN:

LOADPS:

ZERO:

INCREM:

ALGOR:

STIFP:

It accepts most of the input data required for the FEM sub-domain.

The function of this subroutine is to presct the values of FEM variables

employed in the program.

The purpose of this subroutine is to cvaluate the consistent nodal
forces for cach element duc to discrete point loads, gravity loading and

distributed edge loading.

This subroutine merely sets to zcro the contents of several arrays

cmployed for the FEM sub-domain.

The role of this subroutine is to increment the applied loading or any
prescribed displacements for thc FEM sub-domain, according to the

load factors specified as input.

The function of this subroutine is to sct an indicator to identify the

solution algorithm, e.g., initial stiffness, tangential stiffness, etc.

This subroutine evaluates the stiffness matrix for each element.



FRONT:

RESIDU:

CONVER:

OUTPUT:
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The function of this subroutinc is to asscmblc the contribution from
each eclement to form the global stiffness matrix and global load
vector, and to solve the resulting sct of simultaneous equations by
gausssian direct climination. The main feature of the frontal solution
technique is that it assembles the cquations and eliminates the

variables at the same time.

The function of this subroutine is to cvaluate the nodal forces, which
arc statically equivalent to the stress ficld satisfying clasto-plastic
conditions. Comparison of these cquivalent nodal forces with the

applied loads gives the residual force.

This subroutine monitors the convergence of the nonlinear solution

itcration process.

This subroutinc outputs FEM sub-domain results at a frequency

dctermined by the output parameters.

The BEM subroutines along with FBCONVR arc bricfly described below:

INPUTBE:

BEPARTI:

This subroutine reads the input data required for thec BEM sub-domain.

This subroutine employs the BEM using straight elements
charactenized by linear displaccments and linear tractions to evaluate

[H ] and b] matrices. The leading diagonal sub-matrices
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corresponding to [H ] arc calculated using rigid body translations. It
also reorders the system of cquations based on known boundary

conditions.

BEPART2: The function of this subroutine is to solve the linear system of
equations. It prints thc results for the boundary displacements and
tractions. It also employs the BEM to calculate the displacements and
stresses at sclected domain points. The subroutine evaluates matrix

[A] and it transfers the BEM interfacial tractions into FEM interfacial

forces according to Equation (4.4).

FBCONVR: The function of this subroutinc is to check the convergence of the
iterative  FEM/BEM solution process according to a predefined

tolecrance €. It also assigns ncw values for the BEM interfacial

displacements {u : ] } for the new iteration.

An outlinc of EPFBE is given in Figure 6.2.

6.3 OVERLAPPING COUPLING METHOD IN ELASTO-PLASTICITY

Considering Figure 5.1, the overlapping mcthod presented in Chapter 5 can be

modificd to solve elasto-plasticity problems and is described below:

1. Setan initial guess i, }= @}



Start

v

DIMEN
Presents the variables associated with the dynamic
dimensioning process

'

INPUTBE

Reads input data for the BEM sub-domain.

‘

INPUT |
Reads input data defining geometry. boundary conditions |
and material properties for the FEM sub-domain

'

LOADPS

" Evaluates the equivalent nodal forces for the FEM sub-
domain

:

BEPARTI

Evalvates [H] and [G]. and reorders system of equations
based on known boundary conditions i

’l

BEPART2 !

Solves BEM cquations, evaluates [M ], and transfers the
BEM interfacial tractions into FEM interfacial forces

'

| ZERO
Sets to zeros FEM arrays required for accumalation of
data

Figure 6.2: EPFBE Program Organization
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: INCREM

Increments the applied loads according to the specified
load factors.

»l

!

| E ALGOR
: Sets indicator to identify the type of solution algorithm,
; i e.g. initial stiffness, tangential stiffness, etc.

ﬁ v

| | STIFP

i assigns new values for the BEM interfacial displacements

a, Calculates the element stiffncss for clastic and elasto-
=) plastic material behaviour. |
< v
o FRONT |
o Solves the FEM sub-domain simultaneous equation i
"‘5 = system by the frontal method. d
S| |2 ‘ !
= = |E | RESIDU |
- E = ! Calculates the residual force vector. j
ot - L i
= = | v ,
= &  Ne—_ CONVER |
E Z Checks to see if the FEM solution process has converged.
r<Y P
= a Yes
é v
- OUTPUT
Prints the FEM sub-domain results.
No CHECKIFi=m
f Yes
1 v
! |
| | FBCONVR
‘ No : Checks convergence for the FEM and BEM coupling and

Y;s
—
STOP

Figure 6.2: Continued
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2. Dofor n=0,1, 2....

H, H;]||ul G, G, ||
Solve |: " "] ul” = [ e ] tl" for {‘{u } and boundary
H; H )| |ug, G, Gi]|tga
unknowns
. . B . - B
Solve {u A }= Hf’ ”£2 u’,; + Gf’ sz t,‘f
H;; Hj | |upa G, Gy (!B
For the FEM region

Set fuf }= 4}
Fori=12,....m

where, m is a specified number of increments such that:

{fF.n}= {Afr.n}, +{AfF.n}z +"'+{AfF.n}; +"'+{AfF.n},,,

Solve
Ayf | Kr; Krpp Krp) | 4dug Aff
A'/’Il’{n> Kr,y Kry; Kiry A“:-'{n - Aft!l
A'/’En‘,. Krs; Kr; Krss Aug, ; af¢’ ;
Au,f Au,f !
Au,’rf,, Au,'p'ﬁ
Aui—z’,, ; AuE,, .
Until n <é
Au,': ’
dup,,
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where, & is a specified tolerance, and r—1 and r denote

successive iterations

uf uf Auf

Apply {ug, ¢ ={up,{ +{dug,
[uf | [uf
Upin [ = UFn

Apply fll . l=0-ofl, a{al )

II {ln _{ u ]."
B.n+1 B.n
- <E.
{ln
[}

A Fortran computer program OVEPFBE (OVecrlapping Elasto-Plastic Finite

Until

Boundary Element) is developed using the new overlapping algorithm. The program
permits the solution of the elasto-plastic problems by the tangential stiffness, the
initial stiffness, or a combination of both. It has options for Tresca, Von Mises, Mohr-
Coulomb and Drucker-Prager yicld criteria. The FEM subroutines such as INPUT,
DIMEN, LOADPS, ZERO, INCREM, ALGOR, STIFP, FRONT, RESIDU,
CONVER, and OUTPUT have becen adopted from reference [31]. The BEM
subroutines such as OINPUTBE, OBEPART1, and OBEPART?2, arc developed for
the solution of two-dimensional elastostatic problems using lincar boundary elements

for infinite and semi-infinite domains.
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The FEM subroutines have becen mentioned while describing EPFBE. The BEM

subroutines and FBCONVR are described below:

OINPUTBE:

OBEPART1:

OBEPART2:

OFBCONVR:

This subroutine rcads the input data required for the BEM sub-domain.

This subroutine employs the BEM using straight eclements
characterized by lincar displacements and linear tractions to evaluate
[H ] and [G] matrices for infinitc or semi-infinitc domains. The
program utilizes the Kelvin fundamental solution for infinite domains.
For the semi-infinite case, the program utilizes Melan fundamental
solution for the evaluation of [H] and k;] matrices. The subroutine
also rcorders the system of cquations based on known boundary

conditions.

The function of this subroutine is to solve the lincar system of
cquations. It prints the results for the boundary displacements and
tractions. It also employs the BEM to calculate the displacements and

stresses at sclected domain points. The subroutine also cvaluates

displacements on I'’? and scts w? (=w? |
p F.n B.n

The function of this subroutinc is to check the convergence of the

iterative FEM/BEM solution process according to a predefined



tolerance €. It also assigns new values for the BEM interfacial

displacements {u e } for the new iteration.

An outlinec of OVEPFBE is given in Figure 6.3.



Start

’

DIMEN

Presents the variables associated with the dynamic
dimensioning process

'

: INPUTBE

Reads input data for the BEM sub-domain.

v

INPUT

Reads input data defining geometry. boundary conditions
and material propertics for the FEM sub-domain

v

LOADPS

_ Evaluates the equivalent nodal forces for the FEM sub-
domain

v

| BEPARTI
Evaluates [H] and [G] for infinite or semi-infinite
domains, and recorders system of equations based on
known boundary conditions

41

BEPART?2
: Solves BEM cquations and sets {(";’" }: {4”’2"}

l

ZERO

Sets to zeros FEM arrays required for accumalation of
data

e e

Figure 6.3: OVEPFBE Program Organization



124

BEM/FEM LOOP

LOAD INCREMENT LOOP

v
INCREM
Increments the applied loads according to the specified

i load factors.
)

ITERATION LOOP

No

! ALGOR
. Sets indicator to identify the type of solution algorithm,
; e.g. initial stiffness, tangential stiffness, etc.

v
STIFP

Calculates the element stiffness for elastic and elasto-
plastic material behaviour. :

r FRONT
| Solves the FEM sub-domain simultaneous equation
system by the frontal method.

v

RESIDU

Calculates the residual force vector.

v

CONVER !

- Checks to see if the FEM solution process has converged. ‘

Yes
5 L 4
| OUTPUT ;

Prints the FEM sub-domain results.

v

No

CHECK IFi=m l

Yes
v

| FBCONVR

i Checks convergence for the FEM and BEM coupling and
: assigns new values for the BEM interfacial displacements

Ye
es
STOP

Figure 6.3: Continucd



CHAPTER 7

APLLICATIONS

7.1 GENERAL

In this chapter, practical applications, which include two fracture mechanics and deep
and shallow tunnels problems are considered. The coupled FEM/BEM solution using
EPFBE or OVEPFBE programs is compared to the theoretical solution, where

available, and to the conventional FEM using PLAST [31].

7.2 FRACTURE MECHANICS

As mentioned earlier, the coupling of the FEM and BEM may be of particular
importance in fracture analysis, which is govermed by LEFM and EPFM. The two
cascs arc considered here using EPFBE program and the results are compared to

those obtained by PLAST [31].

7.2.1 LEFM Example

Considering a square plate, with a central crack, subjected to a uniform applied
traction on the opposite ends of the plate (Figure 7.1). This produces a Mode I type of

crack growth. The crack is assumed to be 10 units long, with a plate width of 20 units.
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Figure 7.1: Plate with a Central Crack (LEFM Example)



Young's modulus is assumed to be 0.3x10° units and a Poisson's ratio v = 0.3. A
uniform traction of 1 unit is applied at the opposite ends of the plate. Due to the
symmetrical nature of the problem, only a quarter of the plate is modeled. For the
FEM/BEM the problem is modeled using 42 non-uniform linear boundary elements
and 30 linear finite quadrilateral elements. The same problem is solved using the
FEM with 682 linear quadrilatcral elements. The FEM and FEM/BEM discretizations

arc shown in Figure 7.2.

The stress intensity factors at the tip of the crack using the FEM/BEM and FEM are
shown in Table 7.1. The coupled FEM/BEM gives a stress intensity factor that is only
1.9% different than the analytical solution [60], while the FEM gives an error of
5.9%. The difference in CPU time recorded for both methods is insignificant and

therefore a comparison is not given here.

7.2.2 EPFM Example

The geometry and loading assumed in this example is shown in Figure 7.3. Von

Mises yield criterion is assumed, and the material properties employed are as follows:
Young's modulus E =2.06x10° units, Poisson's ratio v =0.3, tensile yield stress
o, =480 units, and the tangent modulus for plasticity H = 2.06x10* units. Due to

symmectry, only one quarter of the plate is modeled. The FEM and coupled

FEM/BEM analysis are performed with the discretization shown in Figure 7.4.



[}
!
!
i
o ¢
<
)
! p
!
; <
Y
| Crack tip )
- 10 >
(a) FEM/BEM
A
ﬁ
|
|
|
E
=
|
|
5
i
|
-y =====:
' Crack tip |
F 10 >
(b) FEM

Figure 7.2: FEM/BEM and FEM Discretization for LEFM Example
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Table 7.1: Stress Intensity Factors for the Cracked Plate

Method Stress Intensity Factor % Error
Exact 4.71 -
FEM 4.28 5.9

FEM/BEM 4.62 1.9
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Figure 7.3: Geometry and Loading Condition for EPFM Example
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Figure 7.4: Discretization for EPFM Example
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Table 7.2 shows the computed remote stress ¢, vs. load-point displacement &,

normalized to the plate width (W). It also shows the results obtained in a previous

investigation [69], using the FEM and conventional FEM/BEM coupling mcthod. The
calculated yicld zones are also shown in Figure 7.5. The results in Table 7.2 and
Figure 7.5 indicate close agreement between the FEM and coupled FEM/BEM
solutions. Furthcrmore, the FEM and FEM/BEM solutions agree very well with those
obtained in reference [69]. Table 7.3 shows the CPU time required for analysis with
the FEM and coupled FEM/BEM. The table shows a less CPU time when the analysis

is performed using the FEM. The difference in CPU time increases as load increases.

7.3 TUNNEL PROBLEM

As an application for clasto-plastic infinite and semi-infinite problems the analysis of
deep and shallow tunnels is considered in this section. Both cases are investigated
using OVEPFBE program. The results are compared to those obtained by PLAST

[31].

7.2.1 Deep Tunnel

The problem considered here is the excavation of a circular tunnel in a geological
mecdium. The tunnel is deeply inserted in a surrounding medium, which is governed
by the true Drucker-Prager yield criterion without any hardening effect. The plane
strain condition is assumed to prevail. The radius of the tunnel R is taken as 100

units. The material properties employed are as follows: Young's modulus



Table 7.2: Remote Stress vs. Normalized Load-Point-Displacement for EPFM

Example
s, /W
o, (units) FEM FEM/BEM Ref. [69]
100 0.065 x10? 0.065 x10™? 0.07 x10%
150 0.098 x10* 0.096 x10°? 0.10 x10?
200 0.131 x10* 0.130 x10™2 0.13 x107?
226 0.149 x10* 0.146 x107° 0.14 x10*
250 0.166 x107? 0.162 x10? 0.16 x10?
284 0.194 x107 0.192 x10? 0.19 x107?
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Figure 7.5: Yielded Zones for EPFM Example
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Table 7.3: CPU Time for EPFM Example

CPU time (Sec.)

o, FEM FEM/BEM
100 3 5
150 4 5
200 4 8
226 5 8
250 5 8
284 6 11
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E =2.1x10" units, Poisson's ratio v =0.18, cohesion ¢ =10 units, and angle of
intcrnal friction ¢ = 41°. The stress condition in the geological medium is assumed to

be hydrostatic. The equivalent nodal loads on the excavated surface are calculated

and then applied in the opposite directions to simulate the excavation of the tunnel.

First, the excavation of the tunnel is analyzed with the BEM and the FEM using
PLAST [31]. For the FEM analysis, the infinite domain is truncated at 4.3, 8.7 and

15 R. The problem is then analyzed with the FEM/BEM using OVEPFBE program.

Figure 7.6 shows the discretization with the BEM, FEM and FEM/BEM.
The investigation of this problem can be divided into three parts as follows:

1. Elastic anal)_'sis.

8}

Effect of non-homogeneity of the surrounding media.

w

Elasto-plastic stress analysis.

7.3.1.1 Elastic Analysis

The purpose of this analysis is to compare the results of the BEM, FEM and coupled
FEM/BEM to the available exact solution [72]. The hydrostatic stress is taken to be
10 units. Table 7.4 shows the number of elements and CPU time required for the
analysis with BEM, FEM and FEM/BEM. The difference in the CPU time required

for the analysis by all methods is negligible.
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(a) BEM

(c) FEM (4.3R)

(d) FEM (8.7R)

Figure 7.6: FEM and FEM/BEM Discretization for Deep Tunnel
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(e) FEM (15R)

Figure 7.6: Continued
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Table 7.4: Number of Elements and CPU Time for Elastic Analysis of Deep Tunnel

Mecthod Number of Number of CPU Time
Finite Elements Boundary Elements (Sec.)
FEM (4.3 R) 288 - 2
FEM (8.7 R) 448 - 3
FEM (15R) 608 - 4
BEM - 32 2
FEM/BEM 256 32 3
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Figurc 7.7 and 7.8, respectively, show the radial displacements (x,) and radial
stresses (o, ) by the BEM, FEM and FEM/BEM as compared to the closed form

solution. For the FEM, It is obscrved that better accuracy is achieved as the extent of
boundary distance increases. The BEM and FEM/BEM solutions give higher
accuracy compared to the FEM. Table 7.5 shows the displacement at the excavated

surface of the tunnel (4, ) and the percentage error compared to the exact solution.

The results clearly show the advantage of using the FEM/BEM in terms of accuracy.
Another advantage, which cannot be seen from these results, is the incredible
reduction of data preparation required for the FEM/BEM analysis as compared to the

FEM.

7.3.1.2 Effect of Non-homogeneity of the Surrounding Soil

One of the major advantages of using FEM/BEM for the analysis of tunnel problems
is that the non-homogeneity of the surrounding geological medium can be easily
taken into consideration. Consider the case in which the change in material properties
ncar the tunnel is due to excavation. This can be handled by employing finite
elements in that region. Also as indicated earlier the input data are less, and the
infinity condition is rigorously fulfilled. To evaluate the cfficiency of the use of the
FEM/BEM over FEM in such cases, the example given in Section 7.3.1.1 is

rcinvestigated. Beyond the distance of 250 units, i.e., 2.5R, the constant value of
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Figure 7.7: Radial Displacements for Elastic Analysis of Deep Tunnel
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Figure 7.8: Radial Stresses for Elastic Analysis of Deep Tunnel
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Table 7.5: Displacement at the Excavated Surface of Deep Tunnel

Method ug/R % Error
Exact 0.0562 x10? -
FEM (4.3 R) 0.0488 x10* 13.17
FEM (8.7R) 0.0542 x10* 3.56
FEM (15 R) 0.0554 x10* 1.42
BEM 0.0557 x107 0.88
FEM/BEM 0.0559 x102 0.54
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Young's modulus (E,) is kept equal to 2.1x10" units. In the remaining region close to
the tunnel, the Young's modulus (E,) is varied as 1,1/2,1/4 and 1/10 times the

value of E,.

The displacements at the excavated surface of the tunnel are shown in Table 7.6. The

cases for which E,/E, >1 arc also investigated and the results arc shown in Tablc
7.7. The Young's modulus (E,) is varied as 2 and 4 times the value of E,. The
results in Table 7.6 and 7.7 indicate that for different values of E,/E,, the FEM

converges to the FEM/BEM solution as the extent of boundary distance for the FEM

increases.

7.3.1.3 Elasto-Plastic Stress Analysis

The elasto-plastic analysis is used to study the excavation of the tunnel. The
cxcavation is simulated in a single stage. The hydrostatic stress is taken as 25 units.
Again the problem is analyzed with the FEM and FEM/BEM using the discretization
shown in Figure 7.6. The radial displacements (u, ) determined by both methods are
shown in Figure 7.9. Again it is observed that the FEM converges to the FEM/BEM
solution as the extent of boundary distance for the FEM increases. The yielded zones
determined by all methods are identical and are obtained as 70 units from the

boundary of the tunnel.
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Table 7.6: Displacements at the Excavated Surface of the Deep Tunnel for E, /E, <1

uy /R

Mcthod E,JE, =1 E//E,=05 E/E,=025 E/E,=0.

FEM 4.3R) 0.0488 x10%  0.0886 x10>  0.1655x102  0.3931 x102
FEM (8.7R) 0.0542x102%  0.0969 x10%  0.1762 x10?  0.4058 x102
FEM (I5R) 0.0554x102  0.0990 x102  0.1791 x102  0.4096 x102

FEM/BEM  0.0559 x102  0.0998 x10°>  0.1798 x10?  0.4109 x102

Table 7.7: Displacements at the Excavated Surface of the Deep Tunnel for E, /E, 21

ug /R
Method E [E, =1 E /E, =2 E\/E, =4
FEM (43R)  0.0488 x10? 0.0273 x10? 0.0152 x10?
FEM (8.7R)  0.0542x107 0.00302 x107? 0.0164 x10?
FEM (15R) 0.0554 x10°° 0.0307 x10? 0.0166 x10?

FEM/BEM 0.0559 x10 0.0309 x1072 0.0166 x1072
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Figure 7.9: Radial Displacements for Elasto-Plastic Analysis of Deep Tunnel
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Table 7.8 gives a comparison between the FEM and FEM/BEM in terms of the
computation time required for convergence. The CPU time is least for the FEM with
a boundary distance of 4.3R. The FEM solution with boundary truncated at 15R, has

the same level of accuracy as that by FEM/BEM, but it requires more CPU time.

7.3.2 Shallow Tunnel

The Example considered here is the excavation of a circular shallow tunnel in a
geological medium. The surrounding geological medium rock is governed by the true
Drucker-Prager yield criterion without any hardening effect. The plane strain
condition is assumed to prevail. The geometry and material properties are shown in

Figure 7.10. The radius of the tunnel (R) and the depth from the center of the tunnel
to the ground surface (d) are taken as | and 5 units, respectively. The material
properties employed are as follows: Young's modulus E =210 units, Poisson's ratio

v =0.18, cohesion ¢ =10 units, and angle of internal friction ¢ = 41°.

7.3.2.1 Elastic Analysis

It is well known that the BEM is best suited for linear elastic infinite and semi-infinite
problems. The purpose of the elastic analysis is to compare the FEM/BEM to the
FEM and BEM in terms of accuracy. The stress condition in the geological medium is

assumed to be hydrostatic and the stress is taken to be 10 units. The problem is



Table 7.8: Comparison of CPU Time for Elasto-Plastic Analysis of Deep Tunnel
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Method

FEM (4.3 R)

FEM (8.7 R)

FEM(15R)

FEM/BEM

CPU-time (Sec.)

4
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Figure 7.10: Geometry and Material Properties of the Shallow Tunnel
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analyzed with the BEM, FEM and FEM/BEM with the discretization shown in Figure

7.11.

Tablc 7.9 shows the number of elements and CPU time required for the analysis with
different methods. Table 7.10 shows the vertical displacements («) and horizontal
displaccments (v) by the BEM, FEM and FEM/BEM at points (a) invert, (b)
springline, and (c¢) crown. Due to the non-uniqueness of displacements in 2-D
analysis (17), the vertical displacements are given with reference to the corresponding
displacement of the invert (u, ). It is observed that the FEM converges to the BEM

solution as the extent of boundary distance for the FEM increases. The BEM and

FEM/BEM solutions are in close agreement.

7.3.2.2 Elasto-Plastic Stress Analysis

The clasto-plastic analysis is used to study the excavation of the tunnel. The
hydrostatic stress is taken as 25 units. The problem is analyzed with the FEM and
FEM/BEM using the discretization shown in Figure 7.11. Table 7.11 shows the
displaccments for both methods. As the extent of boundary distance for the FEM

increases, the FEM converges to the FEM/BEM solution.

Table 7.12 gives a comparison between the FEM and FEM/BEM in terms of CPU
time. The CPU time is highest for the FEM/BEM. However, with the use of the

FEM/BEM, one can gain an incredible reduction of data preparation as compared
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Table 7.9: Number of Elements and CPU Time for Elastic Analysis of Shallow

Tunnel
Method Number of Number of CPU-time
Finite Elements Boundary Elements (Sec.)
BEM - 32 2
FEM (1) 288 - 2
FEM (2) 448 - 3
FEM/BEM 256 32 5

Table 7.10: Displacements at the excavated Surface of the Shallow Tunnel (Elastic

Analysis)

Node (a) Node (b) Node (¢)

(Invert) (Springline) (Crown)
Method u—u, v u—u, v u—u, v
FEM (1) 0 0 0.0617 0.0509 0.1246 0
FEM (2) 0 0 0.0599 0.0527 0.1209 0
BEM 0 0 0.0587 0.0557 0.1189 0
FEM/BEM 0 0 0.0587 0.0569 0.1197 0
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Table 7.11: Displacements at the Excavated Surface of the Shallow Tunnel (Elasto-

Plastic Analysis)

Node (a) Node (b) Node (¢)

(Invert) (Spningline) (Crown)
Method u—-u, v u—u, v u-—u, v
FEM (1) 0 0 0.1899 0.16 0.3836 0
FEM Q) 0 0 0.1865 0.1675 0.3752 0
FEM/BEM 0 0 0.1833 0.1804 0.3746 0

Table 7.12: Comparison of CPU Time for Elasto-Plastic Analysis of Shallow Tunnel

Method

FEM (1)

FEM (2)

FEM/BEM

CPU-time (Sec.)
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with the FEM and avoid the convergence analysis required for the FEM due to the

truncation of the infinite domain.

7.4 SUMMARY

The cxamples discussed in the preceding secctions cover a variety of practical
applications, where the FEM/BEM may be most efficient. As detailed above, the
results obtained are cncouraging in most cases. For the elastic problems considered,
the FEM solution is not as accurate as the coupled FEM/BEM. For the elasto-plastic
problems, the FEM/BEM seems to give more accurate results than the FEM, which is
confirmed by the convergence of the FEM solution to FEM/BEM solution. The
difference in CPU time is insignificant in most cases. The coupled FEM/BEM has an
important advantage which can not be scen from the results; that is the incredible
reduction of data preparation as compared to the FEM, especially with problems

characterized with infinite and semi-infinite domains.



CHAPTER 8

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

8.1 SUMMARY

In certain cases, it may be beneficial to couple the FEM and the BEM in the analysis.
The iterative domain decomposition coupling mecthods offer such altemative. The
concepts behind the iterative coupling methods have physical meaning, and are easy
to comprchend. In this study, the convergence of the Sequential Dirichlet-Neumann
itcrative coupling method is investigated and the factors involved in the convergence
arc identified. The study also extends the Scquential Dirichiet-Neumann method to

clasto-plasticity.

A major contribution of this study is thc development of a new iterative domain
decomposition coupling method. The new overlapping mcthed introduces a common
rcgion that is modeled by the FEM and BEM. The mcthod is capable of handling
cascs where the natural boundary conditions are specifiecd on the entire cxternal
boundary of the FEM or BEM sub-domains. Such cases cannot be handled using the

cxisting iterative non-overlapping coupling methods. The overlapping iterative

156



157

coupling method is most suited for problems involving infinite or semi-infinite

regions. The method is also extended to elasto-plasticity.

Practical applications involving fracture mechanics problems and the analysis of deep

and shallow tunnels are given.

8.2 CONCLUSIONS

Scveral conclusions can be drawn from the presented analysis. They are summarized

in the following points:

1. The convergence analysis of the Sequential Dirichlet-Neumann iterative coupling
mcthod provides an interval from which the rclaxation parameter has to be
chosen. The choice of this parameter is cssential to guarantee the convergence of

the iterative method.

2

Several factors control the convergence of the Sequential Dirichlet-Neumann
iterative coupling method. These include the mesh density on the FEM/BEM
interface, specified type of boundary conditions and the geometrical and material

propertics of the FEM and BEM sub-domains.

3. One of the strong points of the iterative methods is that the initial guess of the
dcgrees of freedom on the interface is not involved in the conditions for

convergence. Furthermore, the initial guess has an insignificant effect on the
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speed of convergence, at least for all cascs considered. Thercfore, it is rcasonable
to start with values of zeros at the interface for the initial displacements/
potentials, which seems convenient as well as appropriate from the physical

realization.

The new overlapping iterative coupling mcthod is very efficient in solving
problems where the natural boundary conditions arc specified on the entire
cxternal boundary of the FEM or BEM sub-domains. The method is best suited

for problems involving infinite or semi-infinite regions.

Unlikc the existing iterative methods, the new overlapping method has the
advantage of avoiding the computation of the transformation matrix relating BEM

interfacial tractions to FEM forces.

. The new overlapping method provides a wider range for the applicable range of
thc paramcter «, as compared to the Scquential Dirichlet-Neumann iterative

coupling method.

The extension of the Sequential Dirichlet-Ncumann and the new overlapping
iterative coupling methods to clasto-plasticity gives the best solution for all the
practical applications considered. The iterative FEM/BEM seems to give more
accurate results than the FEM, which is confirmed by the convergence of FEM

solution to coupled FEM/BEM solution.
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In many cases, although the FEM yiclds less CPU time than the coupled
FEM/BEM, its solution is not as accurate as thc coupled FEM/BEM. However,
the coupled FEM/BEM has an important advantage that cannot be seen from the
results; that is the incredible reduction of data preparation as compared to the
FEM. Moreover, the method avoids the need for convergence analysis as required
by the FEM, especially with problems characterized by infinite or semi-infinite

rcgions.

8.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Although this study aimed at developing an cfficicnt coupled FEM/BEM method,

future work can be conducted to cover the following:

1.

An integration of EPFBE and OVEPFBE programs, with an automatic mesh-
generation, and pre- and post-processing routines, is desirable in order to reduce

the amount of effort in problem input and output.

The cxtension of the iterative methods to 3-D problems is encouraged. The
advantage of the reduction of the input data is expected to be more appreciable,

cspecially with cases involving infinite/semi-infinite domains.

It is useful to implement the new overlapping mcthod for parallel processing. It is
possible to do this on a big supercomputer or smaller super-stations placed in

parallel with each other.
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4. Other useful applications of the new overlapping coupling method can be
considercd. These may include solid-fluid interaction, soil-structure interaction as

well as other problems involving infinite/semi-infinite domains.
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