INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M| 48106-1346 USA
313:761-4700 800:/521-0600






Oljder Number 9412585

Globally stable adaptive pole placement

Cherid, Ali Abdelkader, Ph.D.

King Fahd University of Petroleum and Minerals (Saudi Arabia), 1988

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106






v
/.

a0

A
!

A
A

3z

a

’ . . . l . ? o .
et

' .
e

o

*
e

’4/
e

a

e

. ‘I ¢ .
AN
~A

o

o~
-

RARX Y R Y R ?
s

A

+..
A

-
~
¢

23

*
N
Y

'

Nz

*

el

’
-

O A I N e A N A

J

-

54

GLOBALLY STABLE ADAPTIVE
POLE PLACEMENT

BY
ALI ABDELKADER CHERID

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfiiment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In
ELECTRICAL ENGINEERING

\BRARY
EING FAHD UNIVERSITY OF PETROLEUM & MIRERALS
Dhanran - 31261. SAUDI ARABIa

January 1988

\J¢

RS

‘ .

v
\4

K

NP IESESEIE S0 O g I S 90 O SE SESE S

.4
o

,'/1& 5‘(\" ‘)




KING FAHD
UNIVERSITY OF PETROLEUM AND MINERALS

DHAHRAN, SAUDI ARABIA.

This dissertation, written by Ali Abdelkader Cherid under the direction of
his Dissertation Advisor and approved by his Dissertation Committee, has beeﬁ
presented to and accepted by the Dean of the College of Graduate Studies, 1n
partiai fulfillment of the requirements for the degree of DOCTOR OF

PHILOSOPHY in Electrical Engineering.

%L‘u‘/ Dissertation Committee
TTTT—
A yawr-l" / 4 ‘S
1 fséentit{&ghaipnén

-C 4T
C 4 M{ Dl Ans )
C.Z Member

4Bic! /85/753 Q(@

jS—

Member

Allo oy

L4

M

—Member

partment Chairman

ean, College of Graduate/Studies

Date:a?é /%/ /?%

(i)

Jezl



Dedication

Dedicated to my dearest parents, wife, and daugthers Sarah and Safa

11

Jezt



Acknowledgement

Praise be to Allah the Almighty for his help and guidance to complete
this thesis. ‘

I express my heartiest gratitude to Dr. Youssef L. Abdel-magid, As-
sociate Professor of Electrical Engineering, for his valuable guidance and
encouragement during the course of this work.

I am also indebted to my advisor and thesis committee members Dr.
Mohammad S. Ahmed, Associate Professor of System Engineering, Dr.
Suleyman S. Penbeci, Associate Professor of Electrical Engineering, and
Drs. Ubaid M. Saggaf and Talal Bakri, Assistant Professor of Electrical
Engineering, for reading the thesis and offering many helpful suggestions
for its improvement.

The financial support provided to the author by the King Fahd Univer-

sity of Petroleum & Minerals is greatly appreciated.

v

3eeL



TABLE OF CONTENTS

List of Tables - A x
List of Figures xi
Abstract xvii
1 INTRODUCTION AND LITERATURE REVIEW 1
L1 Introduction. ... .......... ... . .. . .. . 1
1.2 Literaturereview . . ... .. ... ... .. .. .. .. . 3
1.3 Problem formulation and proposed approach ... ... .. 8
14 Contributions . . . . ... ... ... .. . . . .. . . 12
BASIC CONCEPTS FOR MODELING ESTIMATION AND
CONTROL OF LINEAR SYSTEMS 14
2.1 Imtroduction. ... .. ... .. .. .. .. .. . . . . . 14
2.2 Preliminary concepts from polynomial matrix theory . . . . 16
2.2.1 Degree of a polynomial matrix ... ......... 16

Jcel



2.2.2 Row proper and column proper matrices . . . . . . . 16
2.2.3 Relative prime polynomial matrices ... ... ... 17
23 Systemmodeling . . ... .......... .. .. .. . . . 17
-2.3.1 State space representation . . . ... ... ...... 17
2.3.2  Difference operator representation . ... ... ... 18
2.3.3 Controlability and observability . . .. ... ... .. 19
2.3.4  Deterministic autoregressive moving-average models 20
2.4 Parameter estimation for deterministic systems . . ... .. 21
2.4.1 Projection algorithm . . . . ... .... ... . .. . 21
2.4.2 Least-squares algorithm . . ... . ... ... . . . 23
INDIRECT ADAPTIVE POLE PLACEMENT FOR SISO
LINEAR SYSTEMS 25
3.1 Imtroduction. . .......... . ... ... . . .. . 25
3.2 System modeling and problem formulation . . . . . . . . . . 27
3.3 Fixed controlstrategy . ............. .. .. . . 28
3.3.1 Pole assignment control strategy based on left model
representation. . . . . ... ... ... ... ... .. 28
3.3.2  Pole assignment control strategy based on right model
representation. . . . .. ... ... ... ... .. 30
3.4  Assumptions and adaptive control algorithm. . . . ... .. 32
3.5 Technicallemmas . ... ......... . .. .. . . . 37

vi

L



3.6

Global stability analysis . . . ... ........... . . . 40

3.6.1 Global stability of adaptive pole assignment based

4 INDIRECT ADAPTIVE POLE PLACEMENT FOR MUL-

TIVARIABLE SYSTEMS 62

41 Introduction. ... ........ . ... ... .. ... .. 62

4.2 Modeling and fixed control strategy . ............ 64

4.2.1 Fixed control structure . . .............. 65

4.3 Technicallemma . ............... .. .. . . .. 67

4.4 Assumption and proposed algorithm ... ... ... ... . 72

4.5 Stability analysis . . ... ........... ... .. . .. 74

5 SIMULATION RESULTS 87

9.1 Imtroduction. ... ..... ... ... . ... . .. .. . .. 87
9.2 Simulation examples of indirect adaptive algorithms for SISO

systems . ... Lo 89
5.2.1 Simulation 1for SISO . . .. ... ... .. ... .. 90
5.2.2 Simulation 2for SISO . ... .......... .. . 95
9.2.3 Simulation 3for SISO . ... ... ........ . . 95

vii

Jeel



5.2.4 Simula.tion 4for SISO . . .. .. ... .. .. ... . 100
9.3 Simulation examples of indirect algorithms for MIMO systems109
5.3.1 Simulation 1 for MIMO .. ... . ... .. .. . . 118
9.3.2 Simulation 2 for MIMO ... ... ... . ..., . 125

5.4 Effect of the block length N on the rate of convergence . . . 132

ADAPTIVE POLE ASSIGNMENT OF A DC MOTOR 135

6.1 Introduction. . ... ... ... ... ... .. ... . . . . 136
6.2 Computer hardware and software . . . ... ... ... . .. 136
6.3 System modeling and control . ... ...... ... . . 137
CONCLUSION 146
Appendix 150
A.l Proofoflemma2l ........... ... .. .. . . . 150
A.2 Proofoflemma22 ........... . . .. . .. . . . 151
A3 Proofoflemma31 ......... .. . ... . . . . . . 153
Ad 156
AS 167
Glossary 160
Bibliography 162

viii

gzt



ix



9.1

5.2

LIST OF TABLES

Effect of NV on the rate of convergence when tested on a

SISOsystem . .................... ... .. 133
Effect of V on the rate of convergence when tested on an
MIMO system . ................... ... . . 134

3eel



LIST OF FIGURES

2.1 General Block Diagram of Adaptive Control

---------

3.1 Block diagram of pole assignment controller based on (L m.r.) 29

3.2 Block diagram of feedback controller based on (r.m.r.) . . .

5.1 Configuration of a feedback centroller based on (l.m.r

9.2 Output trajectory of second order system
9.3 Input trajectory of second order system

9.4 Error trajectory of second order system

9.5 Controller parameters trajectory of second order system . .
5.6 Controller parameters trajectory of second order system . .
5.7 System parameters trajectory of second order system . . . .
5.8 System parameters trajectory of second order system . . . .
9.9 Output trajectory of third order system

...........

9.10 Input trajectory of third order system

9.11 Error trajectory of third order system

9.12 Controller parameters trajectory of third order system . . .

xi

30

89
91
91
92
92
93
93
94
96
96
97
97

aeel



5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
9.27
5.28
5.29
.30
9.31
9.32
5.33

Controller parameters trajectory of third order system . . .
System parameters trajectory of third order system . . . .
System parameters trajectory of third order system . . . .
Output trajectory of fifth order system . . . . .. ... ..
Input trajectory of fifth order system . . . .. ... ... | .

Error trajectory of fifth order system . . . . . . ... ...

Controller parameters trajectory of fifth order system

Controller parameters trajectory of fifth order system

System parameters trajectory of fifth order system . . ..
System parameters trajectory of fifth order system . . ..
Output trajectory of fifth order system. . .........
Input trajectory of fifth order system . . . . . . e e

Error trajectory of fifth order system . . . . .. ... ...

Controller parameters trajectory of fifth order system

Controller parameters trajectory of fifth order system

System parameter trajectories of fifth order system . . . .

System parameter trajectories of fifth order system . . . .

Configuration of a feedback controller based on (r.m.r.)

Output trajectory of second order system

Input trajectory of second order system . ... ... ...

Error trajectory of second order system .. ........

xii

---------

Jeel



5.34
5.35
5.36
8.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48

5.49

9.50

Controller parameters trajectory of second order system . . 111
Controller parameters trajectory of second order system . . 112

System parameters trajectory of second order system . . . . 112

System parameters trajectory of second order system . . . . 113
Output trajectory of third order system . .......... 114
Input trajectory of third order system . ........... 114
Error trajectory of third order system . ... ........ 115
Controller parameters trajectory of third order system . .. 115

Controller parameters trajectory of third order system . .. 116
System parameters trajectory of third order system
System parameters trajectory of third order system . . . . . 117
Output trajectories of the (2 x 2) MIMO fourth order system120
Input trajectories of the (2 x 2) MIMO fourth order system 120
Error trajectories of the (2 x 2) MIMO fourth order system 121

System parameters trajectories of the (2 x 2) MIMO fourth

ordersystem .. ................. ... .. . . 121
System parameters trajectories of the (2 x 2) MIMO fourth
ordersystem . ................. ... . 122

System parameters trajectories of the (2 x 2) MIMO fourth

ordersystem . ................. . .. .. . 122

xill

Jeel



9.51

5.52

5.53

9.54

9.85

5.56

9.57

9.58

5.59

5.60

5.61

5.62

Controller parameters trajectories of the (2 x 2) MIMO
fourth ordersystem . ... .... ... ... ... ... . . 123
Controller parameters trajectories of the (2 x 2) MIMO
fourth order system . ............ .. ... .. . 122

Controller parameters trajectories of the (2 x 2) MIMO

fourth ordersystem . ... ... ... .. ... .. . . . 124
Controller parameters trajectories of the (2 x 2) MIMO
fourth ordersystem . ............ . . ... . . 124

Output trajectories of the (3 x 2) MIMO sixth order system 126
Input trajectories of the (3 x 2) MIMO sixth order system . 126
Error trajectories of the (3 x 2) MIMO sixth order system . 127
System parameters trajectories of the (3 x 2) MIMO sixth

ordersystem . ................. . . .. .. . 127
System parameters trajectories of the (3 x 2) MIMO sixth

ordersystem . .................. . . ... . . 128

System parameters trajectories of the (3 x 2) MIMO sixth

ordersystem . ............... .. .. . . . . 128
System parameters trajectories of the (3 x 2) MIMO sixth
ordersystem ... ............. . .. ... . . 129
Controller parameters trajectories of the (3x2) MIMO sixth
order system . . ............. e e e e e e e 129

xiv

ac2s



5.63 Controller parameters trajectories of the (3x2) MIMO sixth
ordersystem . .................. .. ... ..
9.64 Controller parameters trajectories of the (3x2) MIMO sixth
ordersystem . .................. ... . .. .
9.65 Controller parameters trajectories of the (3x2) MIMO sixth
ordersystem . .................. . ..., .
5.66 Controller parameters trajectories of the (3x2) MIMO sixth

ordersystem . ............ ... ... .. .. . .

6.1 Basic digital feedback control

6.2 Feedback controller based on (l.m.r.)

6.3 DC motor speed trajectory for the case of desired closed-
loop poles 0.9, 0.95,and 0 . . . .. ........... .. .

6.4 Armature input voltage for the case of desired closed-loop
poles 0.9, 0.95,and 0. . . . . L

6.5 Error identification of the speed adaptive control system for
the case of desired closed-loop poles 0.9, 0.95, and 0

6.6 System parameter trajectories of speed control system for
the case of desired closed-loop poles 0.9, 0.95, and 0

6.7 DC motor speed trajectory for the case of desired closed-

loop poles 0.9,0,and 0 . ........ ... . . . . .

Xv

142

.. 142

3cel



6.8 Armature input voltage for the case of desired closed-l(;op
poles0.9,0,and 0 . ... ...... ... . ... . .. .. .
6.9 Error identification of the speed adaptive control system for
the case of desired closed-loop poles 0.9, 0,and 0 . . . . . .

6.10 System parameter trajectories of speed control system for

the case of desired closed-loop poles 0.9, 0, and 0

xvi

ezl



Abstract

Name: Ali Abdelkader Cherid
Subject Title: Globally Stable Adaptive Pole Placement
Major Field: Electrical Engineering

Date: January 1988

The problem of global stability of indirect adaptive pole assignment
for time-invariant system forms the issue addressed in this thesis. Two
different algorithms are discussed. The first one is based on the right model
representation (r.m.r.), and the second on the left model representation
(Lm.r.). The adaptive control based on (r.m.r.) as well as (L. m.r.) and its
associated stability analysis are discussed in detail for the SISO case. The
key idea to establish global stability is to show that any possible unbounded
signal is observable from the equation error. Linecar boundedness of a
partial state vector dérived from the equation error is then used to establish
boundedness of all signals. Moreover the equation error is also shown to
converge asymptotically to zero.

The result of global stability is applicable to a wide class of estimation
schemes. It is proved that uniform boundedness of system signals and
convergence of the equation error to zero is not conditional on convergence
of the estimated parameters to their true values. This results in a minimum

number of required assumptions. In particular neither the assumption on
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the block length IV nor on the persistency of excitation of the reference
signal is required.

To obtain convergence of the system parameters to their true values,
knowledge of the system order n is required, together with the persistency
of excitation of the reference signal. Furthermore, if the idea of block
processing is used, bounds on the rate of convergence could be obtained.
The analysis includes a number of estimation schemes.

The global stability of adaptive pole assignment based on the (l.m.r.)
is extended to MIMO systems. It is shown that the resultant closed-loop
system is globally stable with convergence of the system parameters to
their true values when driven by a persistently exciting external reference
signal or signals. Fast exponential convergence is obtained for some version
of least-squares algorithms which gives some robustness properties to the
adaptive algorithms. It is also shown that uniform boundedness of all
signals is independent from the convergence of the system parameters to
their desired values.

Several computer simulations and results on a real experimental set-
up using microcomputers are presented to validate the effectiveness of the

theory presented.
DOCTOR OF PHILOSOPHY DEGREE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
ahran, Saudi Arabia

January 1988
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CHAPTER ONE

INTRODUCTION AND
LITERATURE REVIEW

1.1 Introduction

In many practical situations a system which is only inaccurately known,
or is operating over a wide range of different operating conditions is to
be controlled. In such situations, the usual fixed-gain controller may be
unsatisfactory and controller gains that suitably adapt to operating points
may have to be used.

From this, the fundamental adaptive control concepts arise. Given a
Multi-Input Multi-Output (MIMO) lincar time-invariant system, the pa-
rameters of which are completely unknown, the problem is to find a con-
trol scheme, which will appropriately adjusts its own controller gains from
available input-output information, while at the same time controlling the

unknown system.
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In reality, adaptive control is of real interest when the parameters of
the system are time-varying; in such case, the above principle of adaptive
control is also applicable. The only major difference is that now the param-
eter estimator must be capable of continuously tracking the time varying
parameters.

The simplest conceptual scheme is when the system is parameterized in
a natural way (i.e. left or right fraction decomposition), and the design
calculations are carried out based on the estimated system model. The
adaptive control algorithm reduces now to an appropriate selection of an
estimation scheme and a control strategy. The control strategy that is
being used is based on pole assignment. The idea of polc assignment is
to relocate the closed-loop poles to any arbitrary desired locations. The
adaptive control problem is solved by estimating the system parameters
on-line and calculating the corresponding feed-back law. This class of
adaptive algorithms is commonly called ’indirect’.

It is important to have a comprehensive theory of these indirect ap-
preaches, not only to provide guidelines for designs, but also to point the
pitfalls and limilations of the adaptive algorithms. Both of these are es-
sential to successful practical applications. A key question in adaptive pole
placement concerns the stability of the resultant closed-loop system. Also,

1t is highly desirable that the adaptive algorithms be simple and easy to
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implement, since the adaptive control requires on-line estimation proce-
dures to update the parameters (at least the parameters of the system),
within the time span between successive samples. Also, there exists a close
link between the convergence theory and the performance of algorithms
in practice. In this thesis, approaches are given to solve some of these

problems.

1.2 Literature review

The past decade has seen a considerable growth in theories as well as ap-
plications of adaptive control systems. During this period, some significant
progress in designing globally stable adaptive control schemes for unknown
time invariant Single-Input Single-Output (SISO) systems was observed.

Many apparently different approaches to adaptive control have been

propased in the literature [1]-[20]. Two schemes in particular have at-

tracted much interest: Model Reference Adaptive Control (MRAC) and
Self-Tuning Regulator (STR).

In MRAC algorithm, the controller gains are directly computed (di-
rect approach) in order that the unknown system asymptotically behaves
as a given reference model. Only recently, considerable progress in ob-
taining fairly general results and rigorous stability proofs have been made

[12,16,17,21]. However, the model reference adaptive control approach is
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associated with the short-comings that the unknown system must be known
to be minimum-phase which appears to be inherent in the model reference
concept, and that further prior knowledge such as the sign of the gain and
the relative degree of the sysiem transfer function must be available. This
substantially limits the practical applicability of the method.

The other alternative approach that has attracted much interest is the
self-tuning regulator [22]-[25]. The basic idea of the self-tuning regulator
was presented in [24]. The idea was further developed by the use of least-
squares parameter estimation with a minimum variance controller (25].
This technique is equivalent to one-step ahead optimal control as shown in
[25].

These schemes are commonly classified as direct approaches, in the sense
that there is no explicit estimation of the system parameters. Instead, the
system is parameterized directly in terms of the control law parameters.
In both of these algorithms the system is required to be stably invertable.

Another adaptive control technique which has attracted researchers is
to identify the parameters of the unknown system and to use the cur-
rent parameter estimates for synthesizing suitable controller gains, while
the control system is in operation(3,5,7,8,11,14,15]. Because the controller
gains are determined indirectly via identifications of the unknown system

parameters, this approach is called indirect. Although this indirect ap-
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proach has been applied successfully in practical applications, one of the
unsolved problems associated with it has been to obtain algorithms that
yield global stable closed-loop systems under relatively weak assumptions,
(such as no prior boundedness of input-output models), and that applies
to a wide class of estimation schemes.

Many researchers have developed local convergence results of indirect
adaptive control systems such as Goodwin and Sin [20] and Kreisselmeier
[2] etc. However, it is only recently that global stability and convergence
of indirect adaptive control of SISO systems have been studied under rel-
atively general assumptions as in [3,8,14].

The proof of Kreisselmeier [8] is established for cases where a priori
bounds on the unknown plant parameters are known and where for each set
of parameter values with these bounds the plant has no unstable pole-zero
cancellation. Anderson and Johnstone [14] addressed the discrete adaptive
pole placement problem and established global convergence under certain
general assumptions. Their goal was to first guarantee boundedness of the
system input-oulput data and then show persistency of excitation. Al-
though their scheme allows for a more relaxed definitions of persistency of
excitation of the reference signal, a prior knowledge of a lower bound on
the Sylvester resultant determinant associated with numerator and denom-

inator polynomials in the transfer function is required. Furthermore, the
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use of arbitrary controller during the so-called special strategy deteriorates

the performance of the transient.

Elliott, Christi and Das [3] also established global stability with some
restriction on the exciting reference signal. Their adaptive scheme make
use of block processing in the sense that N data samples are taken, and
N iterations of the estimation algorithm are performed between control
parameter updates. The procedure is to show persistency of excitation
without requiring bounded data. Boundedness of all signals follows indi-
rectly from proof of parameter convergence.

The MIMO systems have seen less significant progress in designing
global stable adaptive control schemes than their SISO counterparts. The
extension of SISO idea to MIMOQ has been slowly progressing. It is only
during the past few years that some insight has been gained into the prob-
lems associated with the design of multi-variable model-matching adaptive
controllers for minimum phase systems [9,16,23,26].

The most general class of MIMO systems were first considered by Elliott
and Wolovich [27]. They have shown that the design of model reference
adaptive control for the general class of MIMO system of minimum phase
is possible if and only if one had a priori knowledge of the system inter-
actor matrix. Goodwin and Long [26] extended the work presented in 9]

to the general class of MIMO minimum phase systems. Of course, the
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minimum phase restriction yields these approaches impractical in many
applications. Thus it is necessary to consider other strategies that applies
to nonminimum phas.e systems.

The situation for nonminimum phase system is much worse. In fact the
extension of SISO pole assignment algorithms to the MIMO case proved
to be quite challenging. Elliott, Wolovich and Das [7] have used a direct
strategy which does not require the system to be minimum phase. It is
based on arbitrary pole assignment. However, the complete proof of global
stability remained unresolved, because of the restriction imposed on the
reference input.

This lack of global stability analysis can be explained in two ways.
First, much of the SISO theory deals with direct algorithms. More im-
. portantly, extension of indirect SISO strategies to the MIMO case is not
straight-forward and can lead to algorithms which require complex real-
time numerical calculations in order to map estimated process parameters
into controller parameters.

Inspite of all this, in this research the indirect methods have been se-
lected for the following reasons. First, by using a new algorithm for poly-
nomial matrix division which has been presented in [28] and requires essen-
tially only real multiplications, additions and subtractions, it is now pos-

sible to develop computationally attractable indirect multi-variable strate-
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gies. Second, indirect strategies are more likely to lead to a reduction in
the number of parameters to be estimated. Also, it is natural to expect
prior knowledge regarding physical quantities in a system to be more eas-
ily mapped into prior knowledge of parameters in an input-output model
of the process, than into prior knowledge regarding controller parameters.
Simplification of the estimated problem by use of prior knowledge is critical

to the practical application of multi-variable adaptive control.

1.3 Problem formulation and proposed ap-
proach

In general, if a system which is not completly known is required to be
controlled, adaptive controller may suitably solve the problem. In this
thesis, the choice of an adaptive control approach is based on the indirect
adaptive pole assignment.

Suppose an MIMO linear system which is known to be controllable and
observable is given. Such systems can be represented in operator form
by either a right or left matrix fraction decomposition (i.e. the transfer
function can either be written by R(z)Pg'(z) or P7(2)Q(2) ).

Although in adaptive control problem the parameters are assumed un-
known, it will be assumed that the system is controllable and observable.

In addition the observability indices v; and the controllability index u are

3¢zl



assumed to be known. The first part of the design concerns the estimation
of the parameters. As mentioned earlier, in the left representation, the
output can be expressed as a linear combination of past outputs and past
inputs. There are various estimation schemes available in the literature
that can be applied directly to the above model for estimation of param-
eters such as least-squares and its variants and projection algorithms [29].
However, the emphasis will be given to the least-squares and its variants
for the following reasons. First, generally the least-squares schemes have
much faster convergence than the projection algorithms. Second, it has
been shown that the least-squares algorithm can be used essentially unal-
tered with noisy signals as mentioned in [29].

Based on the output of the parameter estimator, it is now possible to
design the control law depending on the control strategy adopted with
emphasis on pole assignment. The calculations of the feedback law from
the parameters of the system to assign arbitrarily the poles of the closed-
loop require the solution of the diophantine equation [30]. It is of interest to
note that in Wolovich and Antsaklis [31], a new computational algorithm is
given for solving polynomial matrix diophantine equations which involves
the inversion of only a single real matrix of dimension equal to the system

order n.

It was felt necessary to first consider the SISO system before embarking
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to the MIMO case. The reasons are two-fold. First, in analyzing SISO,
more understanding of the convergence of the adaptive algorithms will be
gained. Second, the indirect adaptive algorithm based on the right fraction
decomposition for SISO are in general not convenient for MIMO case. This
is because the control strategy used requires knowledge of the parameter
of the right fraction representation. Specifically, the algorithm given in [3]
is not convenient to MIMO systems.

So, the first part of the research deals with global stability of indirect
adaptive control algorithms of SISO systems with minimum required as-
sumptions. It is shown that global stability (i.e. boundedness of all system
signals and convergence of the equation error to zero) is derived without a
persistency of excitation requirement. For a generalization of the proof, the
analysis will include indirect adaptive algorithms with controller parame-
ters updated at different time frame from the system parameter updates,
in a similar manner as given in [3].

The use of the idea of block processing in adaptive control algorithms

has the following practical advantages:
(1) It separates the bandwidth of the control law from that of the system.

(2) It will be shown that it is possible to ensure persistency of excitation
condition on the input-output signals from persistency of excitation

of an external reference signal. Moreover, it is possible to obtain fast
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exponential convergence if certain conditions are satisfied.

(3) The system parameters are first calculated from input-output data,
then from these estimates the control law is designed online. If the
complete processing cannot be done fast enough one may have to

maintain the previous controller till the new one is computed.

The proof is derived for arbitrary values of N. Global asymptotic con-
vergence with specified bounds on the rate of convergence is guaranteed if
the persistency of excitation of the reference signal and the block length
satisfy some assumptions.

The global convergence of the indirect adaptive pole assignment based
on left fraction representation is also given. This later approach can be
easily extended to MIMO case.

The global stability analysis includes a large variety of least-squares al-
gorithms that are available in the literature and summarized in {29]. One
reason is that, some of the algorithms are faster than others in partic-
ular applications. Moreover, if exponential convergence can be obtained
for some of them, then, certain robustness properties are automatically
guaranteed, in particular, certain type of noise can be accommodated.

Second, as typically done in analysis of adaptive systems, the unknown
plant is assumed to be time-invariant. Toward this, the analysis is also

carried out for several modified version of least-squares that retain rapid
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initial convergence while ensuring that the gain does not go to zero, namely
least-squares with exponential data weighting, covariance resetting and
covariance modification. Finally the theoretical analysis will be confirmed
by simulation of some selected systems (test cases) to verify the validity of
the algorithms.

One more point of practical importance is the investigation of the rate
of convergence of these different algorithms. A performance comparison
between different estimation schemes when used in indirect adaptive algo-

rithms is also given.

1.4 Contributions

The contributions of this work are summarized in the following main

points:

* A novel proof of global stability of indirect adé.ptive pole assignment
of SISO systems is presented. It is shown that global stability is inde-
pendent from the convergence of the system parameters to their true
values. The key idea is to show boundedness of all signals and conver-
gence of the equation error to zero without persistency of excitation
requirement. This result is valid for any arbitrary value of N if block

processing is used.
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* Bounds on the rate of convergence of the paramelers to their true
values are obtained for a number of estimation schemes namely stan-
dard leasi-squares and its variants, and projection algorithms. In par-
ticular exponential convergence is obtained for certain least-squares
algorithms with forgetting factors. This result is based on the use of
block processing together with appropriate choice of the block length

N and the persistency of excitation of the reference signal.

Extension of the global stability to MIMO systems. The result ob-
tained is similar to SISO case, in the sense that uniform boundedness
of all signals and convergence of the equation error to zero are ob-
tained with similar assumptions. Also bounds on rate of convergence
are obtained for different estimation schemes if persistency of excita-

tion, together with the use of block processing are assumed.
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CHAPTER TWO

BASIC CONCEPTS FOR MODELING
ESTIMATIONS AND CONTROL
OF LINEAR SYSTEMS

2.1 Introduction

This chapter is intended to discuss a number of mathematical concepts
related to modeling, estimation and control of linear system, and introduce
certain key mathematical notations which will be used throughout the rest
of this thesis.

To start, certain key mathematical notation is given. Then models for
linear deterministic finite dimensional systems are discussed. In particu-
lar difference operator representation and autoregressive moving-average
models are given. This is important, since the choice of the model is often

the first step toward the estimation and control of a process. An appropri-
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Figure 2.1: General Block Diagram of Adaptive Control

ately chosen model structure can greatly simplify the parameter estimation
procedure and facilitate the design of control algorithms for the process.
As the basic structure of an adaptive controller of Fig. 2.1 shows that un-
derlying each of the problems of adaptive control, there is some form of

parameters estimator.

In fact parameter estimators form an integral part of any adaptive
scheme. The discussion includes the gradient algorithms, standard least-
squares and its variants. Again there are a vast array of design techniques
for generating control strategies when the model of the system is known.

The present approach which is of interest relies on the pole-assignment,
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with one based on the left model representation and the other on the right
one. Most of the material presented in this chapter can be obtained from

[29,30] and wherever possible the original notations were retained.

2.2 Preliminary concepts from polynomial
matrix theory

Certain preliminary concepts associated with the class of matrices whose
elements are finite degree polynomials with coefficients in the field of real

numbers (R) are introduced in the following sections:
2.2.1 Degree of a polynomial matrix

The degree of a square polynomial matrix P(z), denoted by d[P(z)] is
defined to be the degree of its determinant. The degree of the ith column
(ith row) of P(z), denoted as 8.,[P(z)] ( ,,[P(z)] ) is defined to be the
de.gree of polynomial element of highest degree in the ith column ( ith row)
of P(z). We will denote by I'[P(z)] ( T,[P(z)] ) the constant matrix with
elements consisting of the coefficients of the highest degree terms in each

column (row) of P(z).

2.2.2 Row proper and column proper matrices

A polynomial matrix P(z) is said to be column (row) proper if and only if

T [P(2)] (T.[P(2)] ) has full rank. It is thus clear that a square polynomial
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matrix P(z) is column (row) proper if and only if det T.[P(2)] ( det I',[P(z)]

) is not equal to zero.

2.2.3 Relative prime polynomial matrices

A pair of polynomial matrices { Pg(z), R(z) } which have the same number
of columns are said to be relatively right prime (r. r. p.) if and only if
their greatest common right divisor (g. c. r. d.) is a unimodular matrix.
Similarly, a pair { Pr(z), Q(2) } of polynomial matrices which have the
same number of rows are said to be relatively left prime (r.1. p.) if and only

if their greatest common left divisor (g. c. 1. d.) is a unimodular matrix.
2.3 System modeling

Throughout the remainder of this thesis, we will consider l-input, m-output
linear shift-invariant discrete time systems. The result given below applies

also to SISO systems as a special case.
2.3.1 State space representation

The general state space representation of a discrete linear dynamical sys-

tem can be written as

z(k + 1) = Az(k) + Bu(k) (2.1)

y(k) = Cz(k) + Hu(k) (2.2)
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where u(k) is the (I x 1) system input vector sequence, y(k) the { m x 1 )
output vector sequence, and z(k) the ( n x 1) state vector sequence. For
this state space representation, let the controllability indices p;, 1 < i < l
and observability indices v;, 1 < i < m, be defined in the standard manner
by sequencing through the columns of the controllability and transposed
observability matrices from left to right finding the first n independent

columns [29].

2.3.2 Difference operator representation

As shown in {29], Eqns 2.1 and 2.2 can also be represented by the operator

equations

PJu(k) = Q(z)u(k) (2.3)
y(k) = R(z)u(k) (2.4)

where w(k) denotes the system partial state and with P(z), Q(z) and R(z)
polynomial matrices in the delay operator z with appropriate dimensions.
To ensure existence and uniqueness of the solution to Eqns 2.3 and 2.4, we
require P(z) to be square and nonsingular (det P(z) # 0 for almost all z).
The difference operator representation includes the state-space model as a
special case.

Here we shall be particularly interested in two special forms of the dif-

ference operator representation. Right difference representation and left
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difference representation.
In a right difference operator representation, the model of Eqns 2.3 and

2.4, if it is controllable, takes the following form:

Pp(2)w(k) = u(k) (2.5)

y(k) R(z)w(k) (2.6)

This is an equivalent description to a controllable state-space model and
is completely controllable.

In a left difference operator representation, the model of Eqns 2.3 and

2.4, if it is observable, takes the following form:

Fr(2)y(k) = Q(z)u(k) (2.7)

This form turns out to be equivalent to an observable state-space model and
is completely observable. Pp(z) (Py(z)) is a column proper (row proper)
polynomial matrix and 0.[P(z)] = w; ( 8,,[P(2)] = v; ) [29]. It can be
assumed without loss of generality that I'[P(z)] is upper (T, [P(z)] is lower)

triangular with ones on the main diagonal.
2.3.3 Controlability and observability

Consider the general difference operator representation given in Eqns 2.3
and 2.4, then the system is said to be controllable (observable) if there

are no zero-pole cancellation between R(z) and Pp(z) ( Q(z) and Pi(z) ).
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A system is called stabilizable (detectable) if all uncontrollable (unobserv-

able) modes have corresponding eigenvalues strictly inside the unit circle

[30].

2.3.4 Deterministic autoregressive moving-average mod-
els

In this section an alternative model format of Eqn 2.7 is introduced in

which the current output vector is expressed as a linear combination of

past outputs y(k), and past inputs u(k). Eqn 2.7 can be rewritten as:
v—1 . v—-1
Pry(k +v) = =3 Ply(k+3) + 3 Qu(k + ) (2.8)
=1 7 =0

where P} are square matrices containing the coefficients of the matrix
polynomial Pr(z), and Q' are matrices containing the cocflicients of the
matrix polynomial Q(z). The dimension of y(k) and u(k) are m and I
respectively and v is the observability index. The model of Eqn 2.8 is
termed the deterministic autoregressive moving average (DPARMA) model
[29].

Moreover, from the structure of the left model representation, it follows
that PP can be assumed to be lower triangular with ones on the main
diagonal without loss of generality. In general, Eqn 2.8 can be normalized

so that P} = I by multiplying both sides by the inverse of P?. With
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PP = I, the DARMA model can be expressed as
y(k+v) =0T¢(k+v—1) (2.9)

where 67 is an (m x p) matrix of parameters in Pr(z) and Q(z) and (k)
is (p x 1) vector containing past values of the output and input vectors.
We shall find models of the form Eqn 2.9 particularly convenient in the
subsequent development. For the remaining part of the thesis the subscript

R and L will be droped from P to simplify the notations.

2.4 Parameter estimation for deterministic
systems

Online algorithms for estimating the system parameters are of principal
importance in adaptive control. These schemes deals with sequential data,
which requires that the parameter estimates be recursively updated within
the time limit imposed by the éa.mpling period.

Based on the model Eqn 2.9, which is linear in the parameters, one can

introduce the following online parameter estimation schemes [29)]

2.4.1 Projection algorithm

) =80k ~1) + By e~ 1) ok - 1)

(2.10)
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with §(0) arbitrary initial estimate, and ¢ > 0. The vector d(k) is an
estimate of 6, and ¢(k) is a regression vector containing all past inputs

and outputs. Introducing the following notation:

o) = 6(k) —8, (2.11)
e(k) = y(k) —0(k —1) Tp(k - 1) (2.12)
= 0(k—1)T¢(k—1) (2.13)

elementary properties of the projection algorithm necessary for our analysis

are summarized in the following lemma.

Lemma 2.1 for the algorithm Egn 2.10 and subject to Eqn 2.9, il follows

that

(@) 116(k) =6l < 116k ~1) = 8l < [16(0) — 6,117, k>1

(2.14)
e . e TC
(2?) iMoo The s v _(8 T(q';)(k =) < oo (2.15)
and this implies
. e(k)T e(k) _

(B)  limpooo ||6(k) —O(k = D2 =0  for finite I (2.17)

where the symbol ||.|| is defined as || M|| = trace(MT M)
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Note that these propertics do not guarantee the convergence of é(k) to
the true value 0,, nor the convergence of the output error e(k) to zero.
However, these properties are of great importance since they have been
derived under extremely weak assumptions. Such as no prior knowledge of
the exact order of the system is assumed, as well as no prior boundedness

of the input output models is required.
Property(i) ensures that §(k) is never further from 8, than 4(0) is.

Property(ii) implies that the modeling error, e(k), when appropriately

normalized is square sumable.

Property(iib) shows that the parameter estimates error is non-increasing

as k — oo.

Considerable use of these properties are made in the subsequent develop-

ment.

2.4.2 Least-squares algorithm

P(k — 2)p(k — 1)

b(k) = 6(k—1) +

Pk —2)~ PE=2¢(k—1) ¢(k 1) TP(k - 2)

P(k—1) 1+ ¢(k — 1) TP(k — 2)p(k — 1)
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(2.18)

(2.19)
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with §(0) arbitrary initial estimate, and P(—1) is any positive definite
madtrix.
The basic convergence properties of the least-squares algorithms nec-

essary for the subsequent analysis can be summarized in the following

lemma:

Lemma 2.2 for the algorithm Eqns 2.18 and 2.19 and subject to Lqn 2.9,

i follows that

(i) I6(k) — 8,12 < x[l6(0) — 6,] k>1
(2.20)
where & = condition number of [P(—1)~1] = gi-z{,%—{;_;)lll (2.21)
.. . ! e(k)Te(k)
(lz) llml—;oo Zk=1 1+¢(k —_ 1) TP(k—2)¢(k . 1) < (e 0] (2-22)

and this implies

(@) B = Iy 70— 1)7 = (2:23)
(6)  limp_oo ll0(k) (kD=0  for finite I (2.24)

There are variant least-squares algorithms that have the above prop-
erties. In particular these are the least-squares with exponential data
weighting, covariance resetting and covariance modification. An impor-
tant effect of the modification of the lat-ter three cases is that they render

the least-squares algorithm applicable to time-varying system.
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CHAPTER THREE

INDIRECT ADAPTIVE POLE
PLACEMENT FOR SISO
LINEAR SYSTEMS

3.1 Introduction

In this chapter we turn our attention to the control of linear systems whose
rarameters are unknown. Essentially, the approach adopted is to combine
the parameter estimation scheme of section 2.4 with the well known pole
assignment control strategy presented in [3]. The parameters of the system
are estimated explicitly, then based on these estimates, feedback controllers
are calculated. This leads to the name of indirect adaptive pole assignment.

In this chapter we will focus on the SISO case. We begin our discussion
of adaptive pole assignment by developing an adaptive version of the pole
assignment. The approach considered is to first estimate the parameters on

a given model (right or left model representation) for the system, then these

25

Jeet



are subsequently used to generate the feedback control law via intermediate
calculations.

For a SISO system, parameters of the right model representation are
directly mapped to the left model representation.Thus one can use then
left representation for estimation purposes then, extract the parameters of
the equivalent right model representation. The final step is to combine the
estimated parameters with the corresponding control strategy.

A detailed stability analysis of the adaptive control with the assump-
tions required for a global convergence result are given. The present deriva-
tion eliminates the persistency of excitation requirement. The key idea in
this proof is to show that any unbounded variation in the input-output
data is observable from the equation error by exploiting the detectability
property of the system obtained from the closed-loop and the identification
error. The proof will be carried out for the standard least-squares and its
variants, namely least-squares with exponential data weighting, covariance
reset, and covariance modification. These schemes have in general superior
convergence over the slandard least-squares, and can handle system with
time varying parameters [29].

The organization of this chapter is as follows: Starting with a brief
introduction to modeling and problem formulation, we proceed next to the

fixed control strategy that achieves the desired closed-loop pole assignment.
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The assumptions required for global result together with the algorithm is
then presented. It is then followed by some technical lemmas that are
needed in subsequent derivations. Finally the issue of global stability is

discussed in details.

3.2 System modeling and problem formula-
tion

Let us consider the problem of controlling a linear shift invariant discrete

time system characterized by either of the following SISO models:

p(z)wk—n+1) = ulk—n+1) (3.1)
ylk—n+1) = r(2)wk-n+1) (3.2)
or p(z)y(k—-n+1) = g(2)u(k—n+1) (3.3)

where all the notations possess their usual meanings as discussed in chapter

2. For the (. m.r.) of Eqn 3.3, let the transfer function be represented as

T(z) = %—; (3.4)

In the development to follow we assume that the transfer function is strictly

proper. Thus, it will be assumed that p(z) and g(z) have the following

general forms:

p(z) = z"+’§p;zi (3.5)
9(2) = 'gq,-z" (3.6)
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in addition we assume that the order of the system is known. The pole
assignment problem now consists of designing a suitable feedback for the

system represented by Eqns 3.1-3.2 or Eqn 3.3.
3.3 Fixed control strategy

The indirect pole assignment control strategy depends on the estimated
model (left or right model representation). Although, only parameters of
the left model can be estimated directly by use of one of the standard
estimation schemes available in the literature, the pole assignment control
based on right model representation does not create a problem because the
parameters of the left model representation are directly mapped into the
parameter of the right one.

3.3.1 Pole assignment control strategy based on left
model representation

Consider the fixed control strategy [27]
u(k —n+1) = (h(2)/c(2))y(k —n+ 1)+ v(k —n+1) (3.7)

where

() = q"(z) — k(2) (3.8)
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u(k) u(B) [ y(®)

q(z)/p(z)

Compensator

h(z)/c(2)

Figure 3.1: Block diagram of pole assignment controller based on (l.m.r.)

and ¢*(z) is arbitrary stable polynomial of degree n — 1, h(z) and k(z) are

controller polynomial of degree n — 1 and n — 2 respectively. Defining
yk—n+1)=c(z)wlk —n+1) (3.9)

Using Eqn 3.7 as a feedback to control the system model Eqn 3.3, the

closed-loop system becomes

[7°(2)p(2) — h(2)q(2) = k(2)p(2)]w(k —n +1) = g(z)v(k — n+ 1) (3.10)

Solving the following equation, one can then obtain a unique pair of
polynomials k(z) and h(z) such that
q°(2)p(2) — h(2)q(2) — k(z)p(z) = p"(2)q"(2) (3.11)

for arbitrary polynomials p*(z) and ¢*(z). As a result, the new desired
closed-loop polynomial becomes p*(z)q*(z). The gencral block diagram of

pole assignment controller based on (lL.m.r.)is shown in Fig. 3.1.
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v(k u(k Plant k
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k(z) -—@* h(z)

7 '(2)

Figure 3.2: Block diagram of feedback controller based on (r.m.r.)

3.3.2 Pole assignment control strategy based on right
model representation

Following the scheme illustrated in [3,29], consider the fixed control strat-
egy
g (2)u(k —n+1) = h(2)y(k —n+1) + k(z)u(k — n+1) + ¢*(2)v(k — n + 1)

(3.12)

where v(k) is an external reference signal. The control law depicted in
Fig. 3.2 can be interpreted as a combination of input dynamics and linear
state variable feedback via asymptotic state estimation, where roots of

q*(z) represent the stable arbitrary uncontrollable poles.

Using this control strategy the closed-loop system becomes
[97(2)p(2) =~ h(2)r(2) — k(2)p(2)]w(k — n + 1) = ¢"(2)v(k ~ n + 1)(3.13)
y(k —n+1) = r(z)w(k — n +1) (3.14)
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choosing ¢*(z) and p*(z) as stable polynomials of degree n — 1 and n re-
spectively of the following form:

n—2

(z)=2""1+ z_: q;'z" ' (3.15)
P ="+ 35 (3.16)

and defining k(z) and k(2) as the solutions to

h(z)r(z) + k(2)p(2) = ¢"(2)[p(2) - p*(2)] (3.17)

the closed-loop system simplifies to

g (2)p" (2)w(k —n+1) = ¢*(z)v(k —n+ 1) (3.18)

y(k —n+1) =r(2)w(k —n+1) (3.19)

As readily seen from Eqn 3.18, the closed-loop poles are the roots of
q"(2)p*(2). The roots of q*(z) are interpreted as uncontrollable poles, and
those of p*(z) are the new assigned pole locations. Let the polynomials
h(z) and k(z) satisfying Eqn 3.17 take the following forms:
n—1
h(z) = hi (3.20)

i=0

n—2

k(z) = Z k;zt (3.21)

where the degrees of h(z) and k(z) are chosen to guarantee uniqueness of

the solution of the diophantine equation.
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3.4 Assumptions and adaptive control algo-
rithm

In this section we list all the assumptions required for a global result, to-
gether with the algorithm. The algorithm makes use of block processing.
It is used in the sense that N data samples are taken, and N iterations of
the estimation scheme are performed between control parameter updates.
The final estimate at each interval is used to generate the control parame-
ters h(k, z) and k(k, z), which in turns are used during the interval which
follows. The block processing which also implies the block length NV is not
a necessary condition to establish the global stability proof. However, it
has been introduced for practical reasons that has been clearly presented
in chapter 1.

The proof derived in [3] is applicable only with the constraint that the
block length N is fixed by the number of component frequencies available
in the reference signal. This constraint is associated with the shortcoming
that the reference should have a finite number of frequency components
which is not always desirable. Moreover, less a priori assumptions are
required to establish global stability (i.c. boundedness of all signals and
convergence of the equation error to zero). The global stability results
obtained docs not depend on the convergence of the system parameters to

their true values.
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Let us define the time axis as a set of intervals I; of length N. Then we

have

I; = {klk; <k < k; + N(=k;41)} k integer,

The choice of the positive integer N will be discussed later. Assuming that
the control parameters are updated only at time k;, using the fixed control
strategy which is based on the left model representation, the feedback
control law becomes:

b (k;, 2)
q*(2) — k (k;, 2)

where h(k;, z) and k(k;, z) arc estimates of k(z) and k(z) at time k; and

ulk—n+1)= yk—n+1)+v(k—-n+1) (3.22)

satisfying the following diophantine equation:
h (ks 2) (ks 2) + k (k3,206 (kir2) = (2P (k) ~p"(2)]  (3:23)

the polynomials § (k;,z) and p (k;, z) are estimates of the polynomials
q(z) and p(z) using the estimation scheme given in section (2.4). When

there is pole cancellation between § (k;, z) and p (k;, 2) i. e. the Sylvester

resultant determinant of ¢ (k;, z) and p (k;, z) defined as det M(k;) is zero,

the algorithm will run into difficulty. A solution to this problem is to
assume a lower bound on the det M (k;), then if the det M(k;) is less than
this lower bound value, the control parameters are not updated [3]. The

algorithm is summarized as follows:
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Algorithm 3.1 The identifier is run N times during the interval I;, af the
end of which the paramelers are updated if det M(k;) # 0 using Eqn 3.23.
When det M(k;) = 0 the control paramelers remain unchanged during the

interval I;y,.

In the case of the right model representation, if we assume similarly
that the parameters are updated only at time instants k;, the control law

becomes

g (2)u(k—n+1) = A (kj, 2)y(k—n+1)-+k (k;, z)u(k—n+1)+q*(z)v(k—n+1)
(3.24)
with A (k;, z) and k (k;, z) are estimate of h(z) and k(z) obtained from the

solution of the following diophantine equation

h (kj, 2)F (ks 2) + k (ks, 2)P (K, 2) = 0°(2)[p (k. 2) — p7(2)]  (3.25)

Before proceeding, the following theorem is needed for succeeding results

[29].

Theorem 3.1 Two polynomials (a(z),b(>)) of order n are relatively prime.

if and only if the Sylvester resullan! delerminant det M is nol equal to zero,
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where M is defined 1o be the following (2n x 2n) matriz

( a9 bo \
a; .. E c.
M= @ bo (3.26)
a,, ag bn
\ an b /

where

a(z) = zn:a,-z"_"

=0

b(z) = zn:b,-z""'.

=0
It is clear that the values of p (k;,z) and § (k;, z) that give rise to an
exact pole-zero cancellation and hence exact singularity of M are on set of
measure zero [3]. Thus Eqn 3.23 is solvable with probability 1. However,
in the analysis to follow, one require £ (k;,z) and h (k;, z) to have bounded
coefﬁc.:ients and hence near-singularily of Eqn 3.23 musl be avoided.
The assumptions required to establish global stability i.e. boundedness

of all signals and convergence of the equation error to zero are:

A1: p(z) and q(z) are relatively prime polynomials.

A2: order of the system n is known

A3: The desired closed-loop characteristic polynomial g (2)p*(2)

has all roots strictly inside the unit circle.
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Moreover, asymptotic convergence with specified bounds on the rate of

convergence of the parameters to their desired values require the following

additional assumptions:
A4: y(k) is persistently exciting.
A5: The number of sample N > 2n—2+ L (where L > 3n—2).

A6: The covariance matrix P in the least-squares algorithm does

not vanish to zero.

Remark 3.1 A precise definition of persistently ezciling signal is given
subsequently, roughly the signal must be frequency rich (i-e. the reference

signal should have enough frequency components to excile all the modes of

the sysiem).

Remark 3.2 The minimum required value of the block length N 1o esiab-
lish the global convergence (i.e. convergence of the syslem paramelers to
iheir true values) is not necessary bul sufficient. Therefore, values of N
less than the minimum required condition still yield global stability (i.e.
boundedness of all system signals with convergence of the equation error

converging 1o zero). The value of I in the ezpression of N will laler be

eleboraled.

Remark 3.3 There are a number of variants of leasi-squares algorithm

which have the property that the covariance matriz does nol vanish o zero.
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As mentioned earlier this makes the least-squares algorithms applicable to

time varying systems.
3.5 Technical lemmas

In order to analyze the stability of the overall adaptive control system we

need the following lemmas which appeared frequently in the literature.

Lemma 3.1 [29] If the following condilions are salisfied for the given se-
quences {s(k)}, {a(k)}, {a(k)}, and {b(k)}

s(k)T s(k)

N O OO

0 (3.27)

where {a(k)}, and {b(k)} are scalar sequences and {c(k)} and {s(k)}, are

real veclor sequences.

(2) Uniform boundedness condition, i.e.
0<a(k) < K<oo, 0<bk)< K <oo, forallk>1 (3.28)
(3) Linear boundedness condition,
() < G+ Cs g Isi)] (3.29)

where Cy and Cy are finile positive numbers, then follows thai:
(i) limp,o0 s(k) = 0
(ii) {|lo(k)|1} is bounded
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Proof is available in appendix.

Definition 3.1 [1{] The sequence v(k) is persislently exciling, of order r

and persislency interval L if there exisls positive ¢,, €, such thal for all j

. v(k)
J+L-1 v(k — 1)

al < 3 (v®) o(k~1) - v(k—r+1)) <el
k=j

vk —-r+1)
(3.30)
Remark 3.4 [14] It is notl hard to secure salisfaction of this condilion.

The signal v(k) should conlain al least r complex frequencies.

Lemma 3.2 (1] Consider the plant p(z)y(k) = gq(z)u(k) with p(z) end
g(z) coprime, and suppose thal a coniroller of the form Eqn 3.22 is used.
Furthermore, suppose that y(k) and u(k) are bounded and v(k) is persis-

tently exciting of order 3n — 2 1. e.

v(k+2n—1)
J+L-1 k+2n -2
al < ) o .n ) (v(k+2n—l) vk+2n—-2) -.. v(/c—n+1))$ezI
k=j :
’ vik—n+1)
(3.31)

For some posiiive €, and €3, some inleger L and any arbilrary j. Then for

#(k) defined as

6(k) = (y(k) y(k~1) --- ylk—n+1) u(k) - u(k-n+1))

(3.32)
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there holds

J+L+2n-2

BI< > o(k) §(k) T < BT (3.33)

=i
for some posilive §, and ;.
Proof is available in appendix.

From lemma 3.2, it is now clear that the regression vector ¢(k) is per-
sistently exciting if the reference input is persistently exciting It is also
clear that Eqn 3.31 is satisfied if L > 3n — 2. This implies that if the refer-
ence input signal is persistently exciting, the input-output signals are also
persistently exciting over a different time interval. Hence, to ensure per-
sistency of excitation of the regression vector one requires the use of block
processing of length N =2n — 2+ L. The 2n — 1 term in N is contributed
by the delay in the persistency of excitation between the reference input
and the system signals. Therefore if N > 5n — 3 it is possible to ensure the
persistency of excitation of the regression vector from the reference input.
It is important to note that this condition will only be used to establish
global asymptotic convergence of the parameters to their desired values.

Morcover, bounds on the rate of convergence are also obtained.
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3.6 Global stability analysis

The global stability proof to be given is without the use of persistency
of excitation of the reference signal. Moreover, if block processing is used,
then global stability is guaranteed for any value of N. This results from the
fact that boundedness of all signals does not depend on the convergence of
the system parameters. This reduces the assumptions to minimum. Also,
it is possible to obtain asymptotic stability with bounds on the rate of
convergence if the idea of block processing is used with appropriate choice
of N together with the assumption of persistency of excitation.

The first part of the analysis tackles in detail the global stability of the
adaptive pole assignment based on the (l.m.r.). The analysis for (r.m.r.)

follows later.

3.6.1 Globalstability of adaptive pole assignment based

on (l.m.r.)

To start, the indirect adaptive control based on (l.m.r.) is given in detail.
The assumptions stated carlier will be used whenever required in the proof.

The following theorem states the complete result.

Theorem 3.2 Given the assumplions A1—-A3 and either one of the algo-
rithm statement of section 2.4, then e(k) — 0 as k — co. The sequences

u(k) and y(k) remain bounded.
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Moreover if assumplions A4—A6 are salisfied, then §(2z) — q(z2), p (2) —
p(z) exponentially fast as k — oo. Also the closed-loop [q"(2)—k (k;, 2)]p(z)—

h (k;,2)q(z) = ¢*(2)p"(2) ezponentially fast.

For clarity of the proof, some intermediate results are first presented before
establishing the final proof. The procedure can be summarized as follows:
we first establish a linear boundedness of an equivalent state vector of the
resultant closed-loop in terms of the equation error e(k), which later, will
be converted into a linear boundedness of the regression vector ¢(k) in
terms of the equation error. Then, the key technical lemmas of section 3.5
can be used to establish boundedness of the input-output data as well as
the convergence of the equation error to zero. This global stability rvesult
requires only the assumptions A1-A3. To obtain asymptotic convergence,
the assumptions A4—A6 need to used. The remaining statement of the
theorem 3.2 follows in a straightforward manner.

Given Eqn 3.3, the system equation, and Eqn 3.22 the feedback control

law, the closed loop system becomes

lg"(2)p(2) — I (k;,2)q(2) — k (k;, 2)p(2)]w(k —n+1) =g(2)v(k—n+ 1)

(3.34)

y(k — n+1) = [q°(z) — k(k;, 2)]w(k —n +1)

=é(z)w(k—n+1) (3.35)
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The input can then be expressed as follows:
u(k) = h(k;, 2)w(k — n +1) + v(k — n + 1) (3.36)

with k; fixed during the interval I; and where w(k — n + 1) represents

the partial state of the closed-loop system. The degree of the closed-loop

system is 2n — 1.

Next we shall rewrite e(k + 1) which we recall from Eqn 2.12 as follows
e(k+1) = [p (k,2) —p(2)ly(k —n+1) = [§ (k, z) — g(z)]u(k —n+1) (3.37)

Substituting y(k) and u(k) by their respective expressions of Eqns 3.35
and 3.36 in Eqn 3.37, we obtain

e(k+1)

M(k,2)w(k —n+1)— g (k,z)v(k—n+1) (3.38)

where A'I(k) z) = [ﬁ (k, z)q'(z) —p (k1 z)]; (kj) z) —§ (k) Z)il (k.i1 Z)]

where k is variable and k; is fixed during I;.

The key words now are to find an equivalent state space realization of
the system obtained from Eqns 3.34 and 3.38, where e(k +1) is assumed to
be the output of the system, and w(k —n+1) is its partial state. One then,
can argue that the state vector of the equivalent system is detectable from
e(k+1). Prior to this, one needs to establish the detectability property.

This will take us to the next lemma.

42

ezt



Lemma 3.3 Recalling the definitions of M(k, z), logether with the obser-
valion that M(k;,z) = q*(2)p*(2), there ezisls a finile lime ky beyond

which the roots of M(k, z) remain inside the unil circle.

Proof: Observing that M(k;, 2z) = ¢*(z)p*(z), then by lemmas 2.1 or
2.2, ||6(k) — (k;)]] = 0 for k € I;, and j — co. Thus given any arbitrary

6 > 0, there exists a k; such that for all j > J and k € I;
(k) —b(k;|) < 6 (3.39)

Also, since the roots of a polynomial are continuous function of the poly-
nomial coefficients and using, the observation that the output polynomial
M(k;, z) has all roots inside the unit circle, therefore there exists a re-

gion in the parameter space centered on §(k;) and having radius § > 0

sufficiently small such that if
N6(k) —6(k;)l| <6 (3.40)

it implies that the roots of M(k,z) remain inside the unit circle during
the whole interval I;. Thus by choosing § = 6, we guarantee that for
k; > k;, all roots of the output polynomial remain inside the unit circle.
This completes the proof.

It is now possible to state that the system obtained from the resultant

closed-loop and identification error equations is detectable because any
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possible pole-zero cancellation is a root of the desired closed-loop polyno-
mial which is stable by definition.

Having established a detectability property we shall next find an equiv-

alent state space realization.

Lemma 3.4 Given the essumplions A1-A3, and the above definition Egqn 3.38
of e(k + 1), then defining D(z) = [¢*(2) — k (kj, 2)lp(2) — b (k;, 2)q(2) and
Q(2) = q(2) during the interval I;, the closed-loop system of Eqn 3.34 has

an equivalent slate space realizalion of the form:
z(k+1) = Az(k) + bu(k —n + 1) (3.41)
wath

z(k) = ip(2)wlk —n+1)+1g(2)v(k —n+1) (3.42)
iD(Z)T

1q(2)”

(T 7' (2) - th(2)] (3.43)

(15 (2) - 1h(2)] (3.44)

The polynomials ti,(z) and t'é(z) are the Tchirnhausen Polynomials' for

D(z) end Q(z), respectively defined as

2n—i—1

th(z) = Y Djzri-i (3.45)

i=0

'the state space model obtained for (k) is in obscrver form. Thus the coefficient of

the resulting state space model appear directly in the corresponding left diffcrence model
[29).
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2n—i—1 ..
t‘é_(z) = ) Qi (3.46)
j=1
2n—-2 .
with D(z) = 27"+ Y D;2it (3.47)
i=1
2n—~2
and Q(z) =

q(z) = Y @;z™3!
1

.

J:

It 15 possible to show thal the enlries of the mairiz A and veclor b are

direcily related to the coefficients of the polynomials D(2), Q(z) as follows:

-D; 10 --- 0
__D2 01 --- 0
A= S
~Dypz 0 0 -o- 1
—Dzgay 0 0 --- 0

T = ( Q1 Q2 - Qo )
Moreover the oulpul error e(k + 1) can be ezpressed as
e(k+1) = cx(k) + d(z)v(k —n+1) (3.48)
Jor some veclor ¢ and polynomial d(z), with the equivalence relalion valid
over the inierval I;. Similarly, the eniries of the row vector ¢, and polyno-
mial coefficient of d(z), have simple relation with the coefficients of D(z)
end Q(z).
Proof: From [29], defining z(k) in Eqn 3.42 as state vector, then the

resultant closed-loop system Eqn 3.34 is equivalent to Eqn 3.41, with the

equivalence relation holding over the interval I;. Next, let us define
tp(z) =Tp¥(2) (3.49)
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where
V()T =(1 2z - 2>2) (3.50)

A comparison between Eqns 3.43 and 3.49, reveals that Tp is a square

non-singular matrix of the following form:

1 0 0 0
D, 1 0 0
Tp=| D: Dy 1 0 (3.51)
D2n—2 D2n—-3 D2n—4 - 1
substituting in Eqn 3.42, we obtain:
¥(z)w(k —n+1) =Ty 'z(k) — Tp'tg(2)u(k —n +1) (3.52)
With the definition of ¥(z) as ( 1 2 ... Z271 ), the polynomials M (k, z)
and D(k;, z) can be rewritten as:
M(z) = ((Mony Moy - Mo )¥(z)
= MU(z) + Myz>"!
and D(Z) = ( D?n-—l Dgn_z cee 1 )‘i’(Z)

= D‘I’(z) + 2271

From Eqn 3.38, the error e(k+1) is a linear functional of ¥(z)w(k—n+1),

the reference input v(k) and the w(k + n) term which can be written as

e(k+1)

{M¥(z) + Moz* " }w(k — n + 1) — G(k, 2)v(k — n + 1)

MU (z)w(k —n+ 1) + Mow(n + 1) — G(k, z)v(k —n+1)
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From Eqn 3.34, we have
w(k + n) = —D¥(2)w(k — n;+ 1) + g(z)v(k = n +1)
Thus, the equation error becomes:
e(k+1) = (M — MyD)¥(z)w(k — n + 1) + (Moq(z) — §(k, z))v(k —n +1)
(3.53)

Using Eqn 3.52, it is now possible to express e(k +1) in the form Eqn 3.48

as follows:
e(k +1) = (M — MyD)T5'z(k) +
{Mog(2) — G(k, 2) — (M — MoD)T5 g(2)}v(k — n + 1)
This ends the proof of lemma 3.4.

Using the results of lemmas 3.3-3.4, we conclude that the state vector
z(k) mapping the input v(k) to the output error e(k+1) remains detectable
while k > k.

The next lemma makes use of the detectability property to establish a
linear boundedness of the state vector z(k) in terms of the output error
e(k +1).

Lemma 3.5 Assume the same hypotheses as lemma 3.4, together with the
definition Eqn 3.38 of e(k + 1), and with the result of Lemma 3.9 and 3.4,

(i-e. that the closed-loop system is delectable), then

llzm(DI < C1 max [em(i)] + C (3.54)
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with z,(j) = maxer; z(k) and en(j) = maxier; e(k + 1), and where C,

and Cy are posilive conslanls.

Proof: Let us consider the equivalent state space model given by
Eqns 3.41 and 3.48 and assume 7 zero—bole cancellations, then there exists
a linear transformation, z(k) = Qz(k), which transforms the system of
Eqns 3.41 and 3.48 into the following state space form:

z u(k + 1) Au I fllz T u(k) bl
—— =| —— —— - +| — |v(k—n+1)
z °(k+1) 0 | A z °(k) b,
(3.55)
where " denotes the unobservable state vector of order (7 x 1), and z°
denotes the observable state vector of order (2n —1 — 7 x 1), and
z *(k)
e(k+1)=( 0 c ) ——— | +d(2)v(k—n+1) (3.56)
z °(k)
we proceed to the analysis by induction. It is possible to verify that
Eqn 3.54 is true for the interval Io when Z(0) is bounded because the
system can change only by a finite amount during any finite time interval.
Let us assume that Eqn 3.54 is true for j — 1, next we need to prove that, it
is also true for j. The observable states Z ° of Z (k) can be obtained for an
interval of suitable length by observing the output e(k + 1) and reference

input v(k) over the same interval.
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Hence during the interval of time I, there exists positive constants K,

and K, such that

12 ()1l < Kilem(3)] + Kz max [u(k)]| (3.57)

Since the sequence {v(k)} is bounded then

12 7D < Kilem(5)| + K2, K2 >0 (3.58)

For the unobservable states, we can derive similar result, if one observes

that by successive substitution of Eqn 3.55, the solution of z "(k) for k € I;
given Z(k;) is
k—k; u ;
Z (k) =A; 3 k) + Y ANRE(i- 1)+
i=k;+1
k .
Y AfTARE(E-1) (3.59)
i=k;+1

where v(k — n 4 1) is replaced by #(k) to simplify the notation. Then

taking the norm of both sides we have:

k
1z )l < NATTY IR+ Do A IblIBG - 1))+

i=k;+1
k
> AT AllizeG - 1))
i=k;+1
k . k -
< K@ k) + Ke Y Mimax[ai—1)]+ Ky S Aijae(i — 1)]]
i=kj+1 i=k;+1

(3.60)
where K3, K¢ and K7 are finite real positive numbers.
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We have used the fact that A,, is asymptotically stable, then [|4i,]|] <

KX where 0 <X <1and 0 < K < co. Eqn 3.60 can be simplified to give

k . k .
IZ I < KallZ*(k)ll + Ke >0 A7+ Kymax|lz°(i ~1)]] 35 A%
J

i=k;+1 i=kj+1

< Ka||34 (k)| + Ks + Killz2,G)] (3.61)

where K4 and Kj are all positive constants. Since k; € I;_,, then using

Eqns 3.61 and 3.58 we have

IE2mGW < (125, (DI + NlZ5 ()
< 6’1525%_ lem(i)] + Cq (3.62)

where C, and C, are positive constants. Since the state vector z(k) is

related to Z(k) through a linear transformation, therefore Eqn 3.54 follows

from Eqn 3.62.
Our real interest is to find a linear boundedness on the regression vector

rather than on the state vector. The next lemma shows how the result

carries over to ¢(k).

Lemma 3.6 Assume the same hypolheses as lemma 3.4.and recalling ihe

definition Eqn 3.41 of x(k), and the resull of lemma 3.5, then there exisis

consianls C3 and C; such that
ll6(R)II < Cs max lem(i)] + Cy (3-63)
when k € I; and ¢(k) is as defined in Eqn 3.32.
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Proof: If one recalls that the terms involving the output of the con-

trolled system in ¢(k) can be represented using Eqn 3.35 as follows:

n—1

ylk =) =e(2)wlk—-1)= D &wlk—1+1) (3.64)

1=0
forl=0---n-1
For a compact expression of the entries of the regression vector that in-

volves the outputs in terms of the state vector one can consult appendix
A4

From Eqn 3.64 and the definition Eqn 3.32 of ¢(k), we observe that
all terms of ¢(k) involving the output are functional of w(k + n — 1) to
w(k —n + 1). Hence the entries of the vector ¢(k) can be obtained from
the state vector z(k) through a lincar functional as seen from Eqn 3.52,
plus a term involving the reference input v(k). Thus the model outputs
contained in ¢(k) are linearly bounded by e(k+1). Similarly we proceed for
the remaining term of ¢(k) involving the input which can be represented

using Eqn 3.36 as follows:
w(k—1) = h(2)wlk—1)+v(k-1)
= nz—jl how(k — 1 +i) +v(k — 1) (3.65)
il':: [=0---n-1
For a compact expression of the entries of the regression vector that in-

volves the inputs in terms of the state vector one can consult appendix
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A4
Then for I = 0 to n — 1 the input involves terms of z(k) plus terms in-

volving the reference input v(k), and hence the result follows immediately.

Corollary 3.1 Assume the same hypotheses as lemma 3.4, then as k —

oo, e(k) — 0, and ||¢(k)|| remains bounded.

Proof: Using the result of the lemma 3.1 and 3.6 one concludes that
e(k+1) — 0 as k — oco. Also we conclude that ||¢(k)|| remains bounded.

This completes the proof of the theorem 3.2 that deals with the input-
output boundedness and the convergence of the equation error to zero. The
only assumptions that were used so far are A1-A3. However, nothing has
been said about the convergence of the systern parameters to the true val-
ues. Therefore it is important to note that the global convergence result is
unconditional on the convergence of the parameters to their desired values
and hence is independent on the persistency of excitation requirement. To
prove the remaining part of the theorem 3.2, we need the use of the re-
maining assumptions, namely the length of the block length N > 5n — 3

and a persistently exciting reference signal.

Lemma 3.7 Given the assumplions A1—Ab5 and elgorithm slalement 3.1,

then G(k) — 6, as k — oo asymplotically. If A6 is salisfied, then the

convergence is exponential.
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Proof: The proof will first be given for standard least-squares.
Case 1 Standard least-squares:
To show the convergence for the case of standard least-squares, define

the Lyapunov function [29]
V(k) = 0(k) TP(k — 1)"'4(k) (3.66)

where 6(k) = (k) — 6, and P(~1)"' =¢, ¢ >0

Applying the matrix inversion lemma to the covariance matrix formula
[29] ,. we can write

~ ki -
V(k;) = 8(k;)T[(P(-1)"" + ,§¢(k)¢(k)T)]9(kj) - (3.67)
Dividing the time axis into two time frame, one over each interval of length
N and the other over the union of these intervals, one can write:
j N-1

V(k;) = 6(k;)TI(P(=1)" + 32 3= (Vi + D)$(Ni + DT))d(k;)

=0 1=0

(3.68)

Using the lower bound condition of Eqn 3.33 which is satisfied if N > on-3,

it 1s possible to write:

V(k;) 2 (o + jBu)I16(k;)IP? (3.69)

Since V (k) is nonnegative, nonincreasing (see appendix A.2), hence it

is bounded. Thus, the subsequence {||6(k;)||,7 = 0,1, - --} must converge
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to zero as j increases. Since V'(k) is nonincreasing, it can be readily seen
from Eqn 3.66 that { ||§(k; + i)||?> < ||8(k;)||? for i = 1,2,... N}. Thus we
have that the sequence {]|#(k)]|, k = 0,1,...} converges to zero.
Case 2 least-squares with covariance resetting
For the case of covariance reset, define V (k) as before, but observe that
in this case, at the reset instances k' (for simplicity assume k' as subset of

the set of instance k; ), the scalar function V (k) becomes
V() = oll0(k")I? (3.70)

Applying the matrix inversion lemma to the covariance matrix formula

[29], we can write

~ N -~
V(k;) = 0(k;)T[P(kj—1) ™ + 37 dki—s + D(kjmr + DTI6(R;)  (3.71)
=1
Assuming that k;—; < k' < k; then, using Eqn 3.33, which is satisfied
if N > 5n — 3 (assumption A5) and the persistency requirement of the

reference signal (assumption A4), the definition of V'(k), we have

V(k;) > (o + BB (k;)I? (3.72)
Now using the monotonicity of V(k), and observing that k;—; < k' < k;

we have
V(kj) < V(k') < ol6(k;-1)|I? (3.73)

combining Eqns 3.72 and 3.73 yields

I6(kIP < +ﬂl||5(kj—1)||2 (3.74)
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Since §; > 0, we can conclude that the subéequence 8L =0,1,...}
is exponentially convergent to zero. Moreover, since V (k) is nonincreas-
ing, it is possible to show that {||8(k; +:)[|2 < ||#(k;)||? for i = 1,2,...N}.
Thus we have that the sequence {{|f(k)|], k = 0,1,...} converges exponen-
tially fast to zero.

For the case of least squares with exponential data weighting or the
least squares with covariance modification we have

P~!(k) > oI for any arbitrary time k.

Hence the proof follows in a manner similar to the least squares with
covariance reset.

Recalling the result of Lemma 3.7 and Corollary 3.1, the complete proof
of Theorem 3.2 is established.

This completes the global stability proof of the first case namely the

adaptive pole assignment based on (l.m.r.).

3.6.2 Global stability of adaptive pole assignment based

on (r.m.r.)

To avoid repetition of what has been presented in the case of (I.m.r.), we
limit ourselves to the discussion of the main differences between the two
adaptive algorithms. Boundedness of all system signals will be established
first together with the convergence of the the equation error to zero. The

asymptotic convergence of the parameters to their desired values is then
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given.

Recalling Eqn 2.12, the equation error can be rewritten as

e(k+1) = [p(kj2) —p(2)ly(k — n + 1) + [r(2) — # (kj, 2)]u(k — n + 1)
= M(k,2)w(k—n+1) (3.75)
M(k,z) = # (k,2)p(z) =k (k, 2)r(2) (3.76)

Similarly, the key words now is to find an equivalent state space realization
of the combined system obtained from the output error e(k + 1) and the
resultant closed-loop obtained from use of the feedback law Eqn 3.24. The

next lemma shows how this can be obtained.

Lemma 3.8 By applying the feedback conirol law Eqn 3.2/ to the system

defined by Eqns 3.1 and 3.2, the following resullant closed-loop system is
oblained:

D(kj, z2)w(k — n+ 1) = ¢"(2)v(k — n + 1) (3.77)

D(kj, 2) = p(2)q"(2) = p(2)k (kj, 2) — r(2)h (;, 2) (3.78)

The resultant closed-loop system has an equivalent siale space realizalion

of the form Eqn 3.}1 where the stale veclor is defined by:

z(k) = tp(2)wlk —n+1) +1g(z)v(k — n+ 1) (3.79)
th(z) = 2ni_lp,-z2"~"-f-l (3.80)
to(z) = ni;)—lezz"“‘j“ (3.81)
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with Q(z) = ¢*(2) and where t([',)(z) and tg)(z) are the Tchirnhausen poly-
nomials of D(z) and Q(z) respectively. Moreover the error e(k + 1) in

Egqn 3.75 can be expressed as
e(k + 1) = cz(k) + d(z)v(k — n + 1) (3.82)

for some row veclor ¢ and polynomial d(z) depending only on the coeffi-
cients of D(k;,z), and the desired closed-loop polynomials p*(z) and ¢*(2)

coefficients, with the equivalence relation valid over the inierval I;.

Proof The proof of this lemma follows the same manner as discussed in
lemma 3.4. The first part of the proof follows directly if we observe that
the system Eqn 3.77 has similar structure to system Eqn 3.34, and hence
an equivalent state space realization of the form Eqn 3.41 can be obtained
by using the transformation of Eqn 3.79.

The second part of the proof that involves writing the equation error in
term of the state space vector and the reference input follows in a similar
manner by observing that the expression of the equation error in 3.75 is
similar to Eqn 3.38. Hence, the equalion error will have the following form:
e(k+1) = (I\_I—J\'IOD)TBI:c(k)+{ﬂfoq'(z)—(1ff—Mof))T,;th(z)}v(k—n+l)

(3.83)
where M, D, and M, retain the same maining as given in the proof of

lemma 3.4, but with M(z) and D(z) given by Eqns 3.76 and 3.78. This

completes the proof of the lemma.
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The next step is to establish detectability property of the system ob-
tained from the closed-loop and output polynomials over the interval k; >
ks. This results from the fact that the output polynomial M (k,z) and the
resultant closed-loop polynomial D(k;, z) have possible pole zero cancella-

tion ohly inside the unit circle.

Lemma 3.9 Given the definitions of D(k;, z), M(k;, z), and the diophen-

line equation [g*(z) — k (k;, 2)]p(k;, z) — b (kj, 2)7(kj, 2) = q*(2)p*(2) then

all possible exact pole-zero cancellations lie inside the unil circle.
Moreover, there ezist a lower bound distance belween each root of D(k;, z)

and the rools of M(k;,z) ouiside the unil circle.

Proof: Let us consider z, as a common root for both the output polyno-
mials M (k;, z) and the resultant closed-loop D(k;, z) defined by Eqns 3.76

and 3.78 respectively. Then, we have

B (kj, zo)r(z,) — # (kj, 20)p(20) = 0 (3.84)

h (k;,20)7(2,) — [77(2,) - k (k;y 25)]p(2,) = 0 (3.85)

Now either p(z,) or 7(2,) is non-zero since p(z) and r(z) are coprime by

assumption A1, hence we get:
r(z,) — 7 (kj, 2,) — q7"(z,) —k (kj, 20)
P(Zc) ﬁ (kj, zo) h (kj, Zo)
The last two terms of Eqn 3.86 together with Eqn 3.25 yield:

(3.86)

(97 (20) = & (s, 20l (ks, 20) = b (ks 2007 (ks, 20) = " (z)p"(20) = 0 (3.87)
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It implies that z, is a root of either ¢*(z,) or p*(2,) which are stable by
(assumption A3).

We shall next prove that there exist a lower bound distance separation
between all roots of the output and the resultant closed-loop polynomials
that are outside the unit circle.

Suppose the claim is not true. Let us assume that M(k;,2,) = 0, then
there exist an infinite sequence z; with limit zo such that lim,, .., D(k;, z;) =
0. Since r(z) and p(z) are prime polynomials, with lower bound distance
between each root of r(z) and all roots of p(z), therefore z, and the limit
of the infinite sequence z; cannot be common roots of both r(z) and p(z).

Moreover, since the roots of these polynomials are continuous [unction

of their coefficients, therefore we have

) _ o rla)
p(z0) = A 5z (388)

This implies that

i" (kj’ za)f(kj’ z!') - [q‘(ZO) - I:: (kJ'r 20)]ﬁ(kj’ 2;) =0 (389)

Taking the lim,,_.,, of the left hand side of Eqn 3.89, it is possible to show
that z, should be a root of the desired closed-loop polynomial which is by

definition inside the unit circle.
This yields an immediate contradiction to the assumption that z, is

outside the unit circle. This completes the proof.
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It is possible to show that the output and closed loop polynomials have
possible pole zero cancellations only inside the unit circle, beyond a finite
time instant ky, in a way similar to the discussion of the (L.m.r).

The next lemma establishes the detectability of the state vector from

the output error e(k + 1) beyond some finite time instant k;.

Lemma 3.10 Given the system Eqns 3.75 and 3.77 and ils equivalent
stale space given by Eqns 3.41 and 3.82; the siale variable z(k) defined

by Eqn 3.79 mapping the input v(k) into e(k + 1), is detectable.

Proof: Since the system defined by Eqns 3.75 and 3.77 is equivalent to
Eqns 3.41 and 3.82 (by Lemma 3.8), then from [30], the statc z(k) is
detectable from e(k + 1). This completes the proof of the lemma.

The remaining part of the proof follows, in a straight forward manner,
the analysis of the (I.m.r.) given in detail in section 3.6.1.

It is important to mention that the analysis of the proof of global sta-
bility when the projection estimation scheme is used follows in a similar
manner to the proof given above for the least-squares. This follows from
the fact that the stability analysis given here is only based on the common
properties of these estimation schemes.

To conclude this chapter, I would like to summarize the important
points. The global stability of indirect pole assignment based on the (l.m.r.)

and (r.m.r.) has been presented under relatively weak assumptions in com-
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parison to [3,14]. The global stability obtained is unconditional on the con-
vergence of the parameters to their desired values. This results is obtained
under the assumptions A1-A3. So, uniform boundedness of all signals and
the convergence of the equation error is guaranteed for arbitrary values of
N if block processing is used.

However, to obtain asymptotic convergence w'ith bounds on the rate of
convergence we require the use of block processing with values of N >

on — 3, as well as persistency of excitation of the reference signal.
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CHAPTER FOUR

INDIRECT ADAPTIVE POLE
PLACEMENT FOR MULTIVARIABLE
SYSTEMS

4.1 Introduction

The adaptive algorithms discussed in the previous chapter namely, indirect
adaptive approaches with control strategies based either on the (L. m.r.) or
(r.m.r.) cannot be extended in a straightforward manner to the MIMO
case. In fact, the adaptive control based on the right model representation
requires the estimation of the parameters of the right model representa-
tion. These in general cannot be estimated directly using the standard
estimation schemes. This was not a problem in the SISO case because the
parameters of both representations are related in simple manner.

As pointed out earlier, the indirect adaptive control has some advan-
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tages over the direct approach in the sense that it can handle non-minimum
phase systems. Also, it is natural to expect prior knowledge regarding
physical quantities in a system to be more easily mapped into prior knowl-
edge of parameters in an input-output model of the process, than into prior
knowledge regarding control parameters. This simplification is critical to
practical applications of multivariable adaptive control. The algorithm
presented here requires less number of estimated parameters to find the
feedback conirol in comparison to the algorithm given in reference [7].

In this chapter we consider the problem of adaptive control of multivari-
able systems, using the indirect adaptive pole assignment algorithm that
is based on the left model representation. As pointed out in the previous
chapter, the usual approach in tackling the scalar version of this problem
involves inversion of (21 x 2n) dimensional Sylvester resultant matrix. In
extending the same idea to the multivariable case, one faces the uphill task
of finding the pseudo inverse of v({ 4+ m) x (n +[v) dimensional generalized
Sylvester resultant matrix, where n is the system older, v the observability
index, while [ and m denote the number of inputs and outputs of the plant
respectively.

A new algorithm that requires only the inversion of an (n x n) matrix
has been given in [31] to solve the diophantine equation. So the on-line

solution of the diophantine equation does not really represent a problem
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for large order systems.

The organization of this chapter is as follows. Starting with a brief in-
troduction to the modeling assumptions and a fixed control strategy that
achieves the desired closed-loop pole assignment, we then proceed to the
technical lemmas required for stability analysis. The issue of global sta-
bility is discused in section 4.5. We have included a few remark regarding

the implementation of the proposed scheme.

4.2 Modeling and fixed control strategy

Consider the control of an l-input, m-output lincar time-invariant system

modeled by the state equation

z(k+1) = Az(k)+ Bu(k) (4.1)

y(k) = Cz(k) (4.2)

where u(k) is the (I x 1) input vector, y(k) is the (m x 1) output vector,
z(k) is the (n x 1) state vector. It is assumed that the system represented
by Eqns 4.1 and 4.2 is both controllable and observa'b]e. For this state
space representation, let the controllability indices, j1;, 1 <i <1, and the
observability indices v;, 1 < i < m , be defined in the standard manner
by sequencing through the columns of the controllability and transposed
observability matrices from left to right finding the first n independent

columns [29].

E1>r ]



As shown in [29,30], and explained earlier, systems of the form of

Eqns 4.1 and 4.2 can also be represented in the operator form as follows:

P(z)y(k) = Q(z)u(k) (4.3)

Without loss of generality, it can be assumed that 8,,[P(z)] = v; and that
I'.[P(z)] =T is a lower triangular matrix with ones on the main diagonal,
and where 0,,[P(z)] denotes the highest polynomial degree in the ith row
of P(z), and the real (m x m) matrix I',[P(2)] consists of the coeflicients
of ¥ terms in each row of P(z). In the proposed algorithm P(z) and Q(z)
are assumed to be unknown, but the system observability indices »; (all
of which are equal), and an upper bound y: on tl;e system controllability

index, are assumed to be known.

4.2.1 Fixed control structure

Consider the following control structure [27]

u(k) = H(z)C(2)""y(k) + v(k) (4.4)
with C(z) = Q*(2) — K(2), (4.5)

defining,
y(k) = [Q"(2) — K(2)]w(k) (4.6)
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then using the representation of Eqn 4.3 and the control structure of

Eqn 4.4, the closed-loop equation becomes

D(z)w(k) = Q(z)v(k) (4.7)
where D(z) = P(2)Q"(2) — P(2)K(z) — Q(2)H(z) (4.8)

Using the dual result of the diophantine equation given in [30], one can
then obtain a unique pair of polynomials matrices K(z) and H(z) such
that

P(2)Q"(2) — P(2)K(2) — Q(2)H(2) = P*(2)Q"(2) (4.9)

for arbitrary polynomial matrices P*(z) and @*(z) (desired closed-loop
matrix polynomials).

In order o ensure that the solution of Eqn 4.9 exists (which also guar-
antees that the control law Eqn 4.4 is physically realizable), constraints
must be imposed on the structure of /(z), K(z), @*(z), P*(z) [30]. A set
of sufficient conditions that meet these requirements can be obtained in

particular by setting:

zit1 0 .o me(z)
. qm?(z)

Q*(Z)T — 0 -1 ‘.. qm.'!(z) (4'10)
0 0 ... 2l gun(2)
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where

p—2

Qi = D GGi1)(p-1)4j 2 (4.11)

Jj=0
fori=1,2,...m

H(z) = "z_jl oz (4.12)
K(z) = 'iz K7 (4.13)
T, [P*(;)] =1 (4.14)

Remark 4.1 evalualing det Q*(z2) by last row minor, i follows that
det Q" (2) =ao+arz+ ...+ Gpmy_ypoy 2™ ™1 4y (4.15)

and therefore, any erbitrary polynomial of degree my — m can be chosen

as det Q*(z) through appropriale selection of gmi(z).

Remark 4.2 It is of inlerest o nole that in [31], ¢ new compulational
algorithm is given for solving the polynomial matriz diophantine equalion,
whick involves the inversion of only a single real malriz of dimension n,

where n is the system order.

Remark 4.3 In [28], a left division algorithm for polynomial malrices,
that need real mairiz mulliplications alone, is presenied. Thus when used
along with the algorithm of [31] that solves the diophaniine equalion, cal-

culalions can be tremendously simplified.
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4.3 Technical lemma

The analysis of discrete-time multivariable adaptive control algorithm re-
quire the following technical results. The result of the following lemma is
not a necessary condition for global stability i.e. boundedness of all signals
with convergence of the equation error to zero. It is only required to obtain
asymptotic convergence of the system parameters with specified bounds on

the rate of convergence.

Definition 4.1 [32] A sequence of veclors f(k) of finile dimension is said
lo be persistently exciling of order r if there ezisls posilive €, €3, and an

inieger L such that for ell j

1(k)
gl I TCEY

G]_IS Z

k=y

(Fe) fk=1) - flk—r+1)) <el

flk—r+1)
(4.16)

Lemma 4.1 Consider the plant Eqn 4.3 with Q(2) and P(z) left coprime.
Suppose further thal the controller Eqn 4.4 is used. Then if the exlernal
reference signal is persislenily exciling of order r i.c.

vik+7r—1)
LY y(k+7—2)

E]_IS Z

A
(4.17)
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with (r = 2n+ mp+ p+ v — m — 2), for some positive ¢, and €2, some

inlegers L and j. Then with ¢(k + v — 1) defined as

$k+v—1)T=(yk+v-1)T - yk)T u(k+v—-1)T --- u(k)T )
(4.18)

the following is true

J+L—-142n+mp—m
6.1 < > ¢(k+v—1)p(k +v—1)T < 6,1 (4.19)

k=3

for some posilive 8§, and §,.

Proof: The upper bound is trivial if one assume that the sequences {u(k)}

and {y(k)} are bounded. Suppose now the lower bound fails i.e. there ex-

ists a vector ( o) of - o ol --- oyt BO ... grt )T denoted
by ( g ) of unit length such that:
(o BT )pk+v—-1)=0 (4.20)

fork=jj+L-1+2n+mp—m

If now one sets o(2)7 = ( o1(z) az(z) - am(2) ) and
B)T = (Bu(z) Balz) -+ Bal2) ) with ei(2) = T4zt al27, and i(z) =
Z_’;;é ﬂ‘(-j)zj, then Eqn 4.20 is equivalent to

o(z)Ty(k) + B(2)Tu(k) =0 fork=3j,j+L—1+2m+ mp —m (4.21)
Using Eqn 4.21 and the fact that P(z) and Q(z) in Eqn 4.3 are left prime,

there exist right prime polynomial matrices Q(z) and P(z) of dimension
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(m x 1) and (I x I) respectively, such that P(z)~'Q(z) = Q(z)P(z)~!. Thus

Eqn 4.21 can be rewritten as
[(2)"Q(2) + B(2)" P(2)] P(z) " u(k) = 0 (4.22)
fork=j,j+L—l+2n+mu—m

Let us define Ap(z) = det[P(z)], then

_ 1 -
P(z)™' = ——P,y4(z 4.23
(27" = 5o Pesl) (4.23)
where P,4(z) is the adjoint of P(z). Hence Eqn 4.22 becomes
[2(2)"Q(2) + B(2)" P(2)] Pagi(2)u(k) = 0 (4.24)
fork=j,j+L—-14+n+mpu—m

Our interest is to find a condition of persistency on v(k) rather than u(k).

Using Eqns 4.4 and 4.6, then Eqn 4.24 can be rewritten as
[(2)7Q(2) + B(2)" P(2)) Pai(2)[H (2) D(2) ' Q(2) + Iu(k) = 0 (4.25)
fork=jj+L—-14+n+mu—m

Let us now define D,4(z) as the adjoint of the matrix polynomial D(z),
and Ap(z) = det[D(z)], then then Eqn 4.25 becomes:
[2(2)7Q(2) + B(2)" P(2)] Pagi (2)[H (2) Dt (2)Q(2) + Ap (2)TJu(k) = 0
(4.26)
fork=jj+L-1
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Since v(k) is persistently exciting, therefore we have:
[2(2)" Q(2) + B(2)" P(2)] Pasi(2) [ H (2) Dot (2)Q(2) + Ap(2)I] = 0 (4.27)

Observing that the elements of the polynomial matrix H (2)Dag; (2)Q(2)
are of degree < n4+mp—m, thus the degree of the determinant of the matrix
polynomial H(2)D.4i(z)Q(z) + Ap(2)I is of the same order as Ap(2))'.
Since Pag(z) and H(2)Degi(2)Q(2)+Ap(z)I are nonsingular matrices, then
the left side of Eqn 4.27 implies that o(2)T Q(z) + B(2)TP(z2) = 0.

To complete the proof we need to show that the polynomial vector
a(z)TQ(z) + B(2)T P(z) cannot be made null for any arbitrary unit vector
( ; ) The polynomial vector a(2z)TQ(z) + B(z)T P(z) can be represented
as

(o 6% ) MU(z) = a(2)7Q(2) + B(2)" P(2) (4.28)

where ¥(z)T = Block diag( 1 2 ... zwiv-l ), and M is the eliminant
matrix of the matrix pair P(z) and Q(z) which are prime. The polynomial
vector a(2)T Q(z) + f(2)7 P(z) cannot be made null for any arbitrary unit
vector ( g ) for the following reason:

Since P(z) and Q(z) are right prime, the rank of A is n + v [30].
Hence ( af g7 ) M = 0 cannot be true if || ( g ) I = 1. It follows that
a(z)"Q(z) + B(2)T P(z) is a polynomial vector with elements of degree

S v+ p—1. Thus Egn 4.26 is in contradiction with Eqn 4.17, which
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implies that the assumption we have made is wrong. Hence Eqn 4.19 is
true. This completes the proof of the lemma.

Eqn 4.19 is relevant for system identification with asymptotic conver-
gence. It is therefore clear that for the result to be of interest, we require

the value of L > Ir.

4.4 Assumption and proposed algorithm

The assumptions required for a global result, as well as the algorithm are

listed below.

Assumptions:

A1: The plant has strictly proper transfer function and is mini-

mal.

A2: An upper bound of the the controllability indices (y;, i =
1,2---1) and the observability indices (v;, i =1,2---m), all
of which are equal, are known.

A3: The desired closed-loop characteristic, i.e. det[P*(2)Q*(z)]

has all roots inside the unit circle |z| < 1.

Similar to the SISO case, the following additional assumptions are re-

quired to cstablish fast exponential convergence:
A4: The reference inputs v(i)(k), i = 1,2---1 are persistently

exciting.
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A5: Theinteger N > 2n+mp—m+ L — 1

A8: The covariance matrix P(k) in the least-squares algorithm

does not vanish to zero.

We will first establish global stability i.e. boundedness of all signals
and convergence of the equation error to zero. This result requires the
assumptions A1-A3. We will assume that the control law parameters are
updated in different time frame from that of the system parameters in a
similar manner to SISO case. The assumptions A4-A6 are required to
establish global stability with fast exponential convergence.

Then during the time interval I;, the control structure of Eqn 4.4 be-

comes

w(k) = I (k;, 2)Ckj, 2) " y(k) + v(k)
= M (k;, 2)w(k) + v(k) (4.29)
y(k) = C(kj, z)w(k) (4.30)
where C(kj, z) = Q*(z) — K (k;, z). The matrix polynomials /I (k;, z) and
K (k;, z) arc designed based on the matrix polynomials P(k, z) and Q(k, z)
which are estimates of polynomial matrices P(z) and Q(z) respectively

using the estimation scheme of section 2.4. The algorithm can be stated

as follows:
Algorithm 4.1 The identifier is run N-times during the inlerval I;, at the
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end of which the conirol paramelers are updaled using Eqn 4.9, if P(kj, z)
and Q(kj,z) are prime. When P(k_,-,z) and Q(kj,z) are nol prime the

conlrol paramelers are left unchanged during the inlerval I.

The next section gives the global stability proof of the indirect adaptive

control algorithm.

4.5 Stability analysis

In this section, the global stability of the indirect adaptive pole placement
scheme is derived. The statement of the global result is summarized in the

following theorem.

Theorem 4.1 Given the assumptions A1-A3, and the ebove mentioned
algorithm statement, then e(k) — 0, and the veclor sequences {u(k)} and
{y(k)} remain bounded. Moreover, if assumplions A4—AG6 are salisfied
then, P(k, z) — P(2) and Q(k,z) — Q(z) ezponentially fast. Also the
closed-loop P(2)[Q"(z) — K (k;, 2)] — Q(2)H (kjyz) = P*(2)Q"(2) ezpo-

nentlially fasi.

The proof of the theorem is complicated. We will proceed in a similar
manner to the SISO case. To start, we first need to establish a linear
boundedness of an equivalent state space vector of the resultant closed-loop
system in terms of the equation error e(k), which will later be converted

into a relation between the regression ¢(k) vector and the equation error
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e(k). Boundedness of all signals with convergence of the equation error to
zero follows by making use of technical lemma 3.1. This result requires only
assumptions A1-A3. The persistency of excitation with the condition
on the block length IV is not required for this result. The asymptotic
convergence of the system parameter to their true values with specified
bounds on the rate of convergence is guaranteed if persistency of excitation
and condition on the block length N are satisfied. This final result will be
obtained using lemma 4.1.

Combining the system representation Eqn 4.3 with the control structure
Eqn 4.29, and substituting y(k) by its expression in Eqn 4.30, the closed-

loop equation becomes:

D(k;, z)w(k) = Q(z)uv(k) (4.31)
where
D(k;,z) = P(2)[Q"(2) — K (k;, 2)] — Q(2)IT (k;, 2)

(4.32)

with k; fixed during the interval I;.

It is verified that the closed-loop polynomial matrix D(k;,z) is row
reduced of degree n + mp — m, and satislying 8,,D(k;,2) = p+ v — 1.
Recalling Eqn 2.12, the equation error can be rewritten as

e(k +v) = [P(k, z) — P(2)|y(k) + [Q(z) — Q(k, z)]u(k) (4.33)
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To assist in obtaining the linear boundedness of the regression in terms of

the equation error, we need to define

&k +v) =[P (kj,2) - P()ly(k) +[Q(z) - Q (kj, 2)|u(k)  (4.34)

It is possible to express the equation error in terms of the partial state vec-
tor w(k). To do so, substitute u(k) and y(k) by their respective expressions
in Eqns 4.29 and 4.30, we obtain

E(k+v) = [P(k;2)Q(2) = P (kj, 2)K (k;,2) — Q (k;, 2)H (k;, 2)]w(k)
—Q (kj, 2)v(k)
= P (2)Q(2)w(k) - Q (k;, 2)v(k) (4.35)
From [29], any differential operator representation given by Eqns 4.31 and

4.35 has an equivalent state-space realization of the form Eqns 2.1 and 2.2.

The next lemma shows how an equivalent state space representation can

be obtained.

Lemma 4.2 Given the system Eqn 4.31, with D(k;, z) row reduced and of

degree n + my — m, then for k € I;, an equivalent stale space realization

of the form:
z(k + 1) = Az(k) + Bu(k) (4.36)
can be oblained by defining the n + mp — m stale veclor
z(k) = ip(z)w(k) + to(2)v(k) (4.37)
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tD(Z) — lei uDlZ uDlm (438)
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B ) )
to(z) = | Jait Lot Lau (4.39)
G0 eV e G0
\ t‘;?m(z) giz(z) SL,() )

where ig)_.j(z) and tgzj(z) are the Tchirnhausen polynomials of D;j(z) and
Qi;i(2) respectively. The polynomials D;;(z) and Q;;(z) denole the entries
of the polynomial matrices D(z) and Q(z). The pair (A, B) is in observer

form.

Moreover the error é(k) in Eqn 4.35 can be ezpressed as
e(k + v) = Cz(k) + E(2)v(k) (4.40)

for some malrices C and I(z) depending only on D(z), Q(2) and the
desired closed-loop polynomial P*(2)Q*(z), with the equivalence relation

valid over lthe interval I;.

Proof: Since D(z) is row reduced and 8,;[D(k,2)] > 8.:(Q(z)], then

from [29], the system has an equivalent state space rcalization of the form
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Eqn 4.36 which is in observer form. The state vector can also be written

as:
z(k) = TY(z)w(k) + 1o(z)v(k) (4.41)
where the (n + mp — m) x m matrix ¥(z) is given by
¥(2)T = block dia.g( 1 z ... gvte—2 ) (4.42)

and where the matrix 7 is block element such that

T = [T] (4.43)
(1 0 --- 0)
* 1 -0
Ti=| . . 0
\ %« e 1)
(=0 = 0)
* ok -0
fori>jT; =
, : 0
\** -*/
(00 - 0
* 0 -0
fori<jTy;= .. 0
\ = 0

where * represents possible non-zero element.

Now, in view of the special structure of the square matrix T of dimension
(n+mp—m), the rank of the matrix 7'is (n+mp—~m). Thus, it is possible

to uniquely determine the vector

Y(2)w(k) = T 'z(k) — T '1o(2)v(k) (4.44)
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With the definition of ¥(z) as:
¥(z)" = Block diag ( 1 z --- z"#~1) (4.45)
the polynomials P*(z)Q*(z) and D(k;, z) can be rewritten as:

P'(2)Q(2) = G¥(2)
= GU(z) + Gzt 1
and D(z) = DV¥(z)

= D¥(z) + Dz

with G, 5, D, and D are constant matrices of appropriate dimensions,
with D square and nonsingular.

Since the vector ¥(z)w(k) contains the vector ¥(z)w(k) plus w(k + v +
p—1), therefore the equation error (k) as given by Eqn 4.35 can be written

as

&k + 1) (G¥(z) + Gz VYw(k) — Q(k;, z)v(k)

= GU(2)w(k) + Guw(k + v+ p — 1) — Q(k;, z)v(k)
From Eqn 4.31, it follows that:
w(k +p+v —1) = —D" DU(2)w(k) + Q(z)v(k) (4.46)
Thus, the equation error becomes:
&k + 1) = (G — GD™ D) (2)w(k) + (GQ(z) — Ok;, z))u(k)  (4.47)
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Using Eqn 4.44, it is now possible to express e(k + 1) in the form Eqn 4.40
as follows:

-1

&k+1) = (G-GD™ D)T'z(k)+{GQ(2)—Q(k;, 2)+(G—GD ™ D)T'1¢(z)}u(k)

(4.48)
This ends the proof of lemma 4.2.

The key idea is to prove that the state variable system z(k) mapping
v(k) into é(k) is detectable.

Lemma 4.3 Given the assumplions A1-A3, the syslem Egqns 4.31 and
4.35 and ils equivelent slate space given by Eqns 4.36 and §.40, the staie
variable z(k), defined by Eqn 4.37 and mapping the inputl v(k) into e(k),

1s deleclable.

Proof: The equivalent state space representation given by Eqns 4.36 and
4.40 is detectable because, any unobservable modes of the system defined
by Eqns 4.31 and 4.35 are roots of det[P*(z)@"(z)] which are stable by
(assumption A 3). This completes the proof.

The whole point of proving the detectability is to allow us to obtain a

linear boundedness condition of z(k) in terms of &(k + v).

Lemma 4.4 With the same hypolhesis as lemma 4.3, and the definition

of Eqn 4.40 of &(k), there ezists K, and K, posilive conslanls such that

llem()H < K: max {[em(i)]] + K, (4.49)
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where z,(7) = maxker; 2(k) and En(j) = maxyes, &(k + v)

Proof: Assume that the system defined by Eqns 4.36 and 4.40 have #
pole-zero cancellations (7 unobserved modes), then there exists a lincar
transformation z(k) = QZ(k), which translorms the system Eqns 4.36 and
4.40 into the following state space form:
z*(k+1) Ay | Az z*(k) By
-— - -— | — ——= |+ —= | (4.50)
z°(k + 1) 0 | A z°(k) B,
_ _ z*(k) ) , &
&k+v) = (0 ) ( 2(k) ) + E(2)v(k) (4.51)

]

where Z* and Z° denotes the unobservable and the observable state vectors
respectively. Similar to the SISO case, we will proceed to the proof by
induction.

It is not difficult to show that Eqn 4.49 is true for J,. We will assume
next that this is true for 7;_, and show that it is also true for I;.

The idea of observability is that one can determine the state over any fi-
nite time interval of suilable length from complete knowledge of the system

input and output over the same interval. Hence, there exists two constants

K3 and K, such that
7 (DI < Kallem (@] + Ky max [|o(k)]] (4.52)
The reference vector signal v(k) being bounded, Eqn 4.52 becomes then:

NzmUN < Ksllem(] + K4y Ks >0 (4.53)
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Similar to the SISO case, solving for the unobservable state z*(k) using
Eqn 4.50, one guarantees the existence of positive constant Ks and K such

that

Z (I < Ks max |[em(@)] + Ko (4.54)
In the above, the fact that A;; is asymptotically stable has been used. Now
using Eqns 4.53 and 4.54, and recalling that z*(k) and z°(k) are subvectors

of Z(k). One then obtains

12 ()l < Ky max [|ém(2)]] + K (4.55)
RN

Finally, the fact that z(k) is related to Z(k) by linear transformation is
used to establish the result Eqn 4.49
Our real interest is in e(k) rather than &(k). The following lemma shows

how the result of lemma 4.4 carries over to e(k).

Lemma 4.5 With the same hypothesis as lemme 4.3, and the definition

LEgn 4.33 of the error e(k), there ezists consianis C, and C, such thal
len(i)l < Gy max llen(ll + C; (4.56)
LY
zm(j) = maxwes; z(k) and €,(j) = maxger; €(k + v)

Proof: by lemmas 2.1 or 2.2, ||f(k) — 6(k;)|| — 0, when k € I; and
J — oo. Hence given any arbitrary 6§ > 0, there exists a k; such that for
ki > k; and k € I},

l16(k) — (kI < 6 (4.57)

82

E Ror A



Since the roots of det[.ﬁ(k,z)é’(kj,z) — Q(k, z)H (k;, 2)] are continuous
functions of their polynomial matrix coeflicients, and by (assumption A3)
det[P*(2)Q@*(z)] has roots inside the unit circle, therefore there exists a
region in the parameter space centered on é(/cj) and having radius § > 0

sufficiently small such that if
10(k) — 6(k;)]| < 8 (4.58)

it implies that the roots of the det[P(k, z)C(k;, z) — Q(k, 2)H (k;, z)] are
inside the unit circle during the whole interval I;. Thus by choosing § = §,
one guarantees that for k > k;, the state vector z(k) remains detectable
from the equation error. Since e(k; +v) = &(k; +v) and the error can only

change by a finite amount during any finite interval of time; the inequality

Eqn 4.49 still holds when e(k + v) replaces &(k + v).

Lemma 4.6 Assume the same hypothesis as lemma 4.9 and the definition
Eqn 4.33 of e(k+v). Recalling also the definition Eqn 4.18 of $(k+v—1),
then the resull of lemma 4.5 will still be valid when z(k) in Eqn 4.56 is
replaced by ¢(k + v —1).

Proof: From Eqns 4.29 and 4.30, we note that y(k) and u(k) are linear
functional of w(k), w(k +1),---w(k + 2 — 1). Thus the vector ¢(k + v —
1) is linearly related to w(k),w(k+1),---w(k+p+v—1) plus a term

functional of v(k). Thus the vector ¢(k + v — 1) can be obtained from
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the state vector z(k) by a linear transformation plus terms involving only
v(k). For a detailed expression of the regression vector in terms of the
state vector one may consult appendix A.5.

Finally by use of the result of lemma 4.5 the proof is completed.

Corollary 4.1 Assume the same hypothesis as lemma 4.9 logether wilh
the resull of lemma 4.6, we conclude that e(k) — 0 when k — oo, and

{lig(E)||} remains bounded.

Proof: Use lemmas 3.1 and 4.6 to conclude that e(k) — 0 as k — oo, and
{ll6(k)||} remains bounded.

The global stability of the indirect adaptive algorithm for MIMO sys-
tems is now established. This result is derived with minimum number of
assumptions.

The next lemma makes use of the persistency of excitation property of
v(k) assumption A4, together with the condition on N assumption A5 to

complete the proof of theorem 4.1.

Lemma 4.7 Given the assumptions A1-AS, logether wilh the resull of

corollary 4.1 and the algorithm statement mentioned earlier. Then Q(k, z) —

Q(2) and P(k,2) — P(z) exponentially fast. Also the closed-loop P(2)[@*(2)-

K (kj, 2)] — Q(z) I (kj, 2z) = P*(2)Q"(z) ezponentially fast.

Proof: The proof of this lemma follows the procedure described in lemma

3.7.
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For the case of covariance reset, define the following lyapunov function
[29]
V(k) = ||6(k)P(k — 1)7'4(k)I| (4.59)
where ||.|| is defined as ||M|] = trace(MT M).
Assume that at the reset instances k' (for simplicity assume &' as subset

of the set of instance k; ), the scalar function V'(k) becomes
V(K') = oll6 (k)| (4.60)

Applying the mairix inversion lemma to the covariance matrix formula

[29], we can write
V(k;) = 8(k;)T[P(k;-1)™" + f} d(kj—r + Dd(k;—y + DT)0(k;)  (4.61)
I=1

Assuming that k;_; < k' < k; then, using Eqn 4.19, which is satisfied
if N > 5n — 3 (assumption A5) and the persistency requirement of the

refcrence signal (assumption A4), the definition of V(k), we have
V(k;) 2 (o + 8)16(k;)|? (1.62)

Now using the monotonicity of V(k), and observing that k;_; < k' < k;

we have
V(k;) < V(K') < o]|8(k;-1)|] (4.63)
Combining Eqns 4.62 and 4.63 yields

2
0'+61

18k)IIP < 16 (k;-OI (4.64)
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Since 6, > 0, we can conclude that the subsequence {||6(k;)||,5 =0, 1,.. -}
is exponentially convergent to zero. Moreover, since V(k) is nonincreas-
ing, it is possible to show that {}|6(k;+ )| < (k)2 fori =1,2,... N}.
Thus we have that the sequence {||f(k)]|, k= 0,1,...} converges exponen-
tially fast to zero. ‘

For the case of least squares with exponential data weighting or the
least squares with covariance modification we have

P~Y(k) > oI for any arbitrary time k.

Ilence the proof follows in a manner similar to the least squares with
covariance reset. This completes the proof of the lemma.

The complete proof of theorem 4.1 follows by invoking lemma. 4.7 and

corollary 4.1.
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CHAPTER FIVE

SIMULATION RESULTS

5.1 Introduction

The purpose of this chapter is to investigate the performance of the glob-
ally stable adaptive pole assignment algorithms devcloped in the previ-
ous chapters using digital computer simulations. It has becn proved that
the convergence of the system parameters to the true values is exponen-
tially fast when using the projection algorithm or least-squares algorithms
that are known to have fast convergence rate, namely least-squares with
covariance reset or least-squares with exponential data weighting. Also,
the equation error was proved to converge exponentially fast to zero. In
view of these theoretical results gained from the global stability analysis of
the indirect adaptive algorithms, the simulation studies prove valuable in
providing a better insight into the nature of indirect adaptive controller.

Extensive simulations studies are of selected test cases were carried out for
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further assertion of the analysis as well as to get a better understanding of
the performance of the algorithms. The present simulation studies use the
least-squares with covariance resetting in the estimation of the parameters
of the system because it is relatively simple, in the scnse that it requires
less space and computations. These properties make it more preferable
over other algorithms for real time applications.

The simulations of the adaptive systém on the digital computer indicate
that the adaptive control procedure outlined in the previous chapters does
result in a robust controller with parameters converging to the true value
at rates which are practical.

The simulations carried out were for:

(i) adaptive pole assignment algorithm of SISO systems based

on the (r.m.r.).

(ii) adaptive pole assignment algorithm of SISO and MIMO sys-

tems based on the (l.m.r.).

The evolution of the output error e(k), together with the parameters and
feedback controllers are given for all systems simulated, including unsta-
ble nonminimum phase system, in order to show the performance of the

adaptive algorithm. For the sake of completeness, the input and output

signals are also shown.
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Figure 5.1: Configuration of a feedback controller based on (l.m.r.)

5.2 Simulation examples of indirect adap-
tive algorithms for SISO systems

In this section, we present some simulation studies of the indirect adap-
tive algorithms for SISO systems. The adaptive control based on the two
control strategies described in chapter 3 are simulated. The results given,
include all typical model signals of the system together with the parameters
trajectories. The system parameters are updated using the least-squares
estimation scheme.

The idea of block processing is introduced as described in chapter 3
to confirm the results of the analysis. The simulations consist of three
selected test cases, including These simulations consider unstable nonmin-
imum phase systems. To start, we consider the case of SISO system based
on (L.m.r.). The configuration used in the adaptive control simulation for

the (I.m.r.) is shown in Fig. 5.1.
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5.2.1 Simulation 1 for SISO

The first simulation considers the casc of a second order system. The

system to be controlled has the following transfer function.

0.4z 4+ 0.61

= 1

) = s v 02 (5.1)

Thus the system zero is at (z = —1.52) and the system poles are at
(2 = —2.0,-0.1). The desired closed-loop polynomial is chosen to be

p(2) = 22— 0.7. It is thus required that the new pole location be at
(z = +0.84, ~0.84). The polynomial ¢*(z) is assumed to have a root at the
origin. The initial conditions on the plant parameters and the controller
were all set to zero. The reference input v(k) is taken to be a square wave
with an amplitude of 0.5 units and a period of 40 time samples. A least-
squares estimator is used with an initial covariance matrix P(-1) = 10'°71,
Typical system signals are given in Fig. 5.2-5.8. As shown in Fig. 5.7 and
9.8, the plant parameters converge to the true valuc in a period of five
time samples. In practice, after the identifier has reached the steady state,
one can stop the identification process as long as there are no changes in
the plant parameters. The desired feedback controller is obtained in the
same period of time as Fig. 5.5 and 5.6 indicato. Also the plant input and
output signals do not exercise large transients before the adaptation occurs
as it is shown from Fig. 5.2 and 5.3. For completeness, the equation error

is also given in Fig. 5.4.
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5.2.2 Simulation 2 for SISO
In this simulation a third order system is considered. The system has the

following transfer function

0.222 +0.272 + 0.04
294+ 21224 0.2z

T(z) = (5.2)

The system zeros arc at (z = —0.34,-2.36) and the system poles are
at (z = 0,—0.1,—2). The desired closed-loop poles arc sclected at (z =
0,0,0,0.85,0.75). The initial conditions on the plant paramecters and con-
trollers were all set to zero. The reference input v(k) is given as a square
wave of period 40 samples. All simulation results are shown on Fig. 5.9~
9.15. The plant parameters converge to the true values in approximately
18 time samples. As it is clear from Fig. 5.9, the system output signal does

not undergo large transients.
5.2.3 Simulation 3 for SISO

This simulation considers a fifth order system with the following transfer

function

22 4+1.5z2—1
25+ 0.13423 — 0.1442

T(z) = (5.3)

The system zeros are at (z = 0.5, —2.0). The desired closed-loop poles are
selected at (z = %0.9,0.5 &+ j0.4,0.1). The polynomial ¢*(2) has all four

roots at the origin. The initial conditions on the plant parameters and the
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controller were all set to zero. The reference input (k) is taken to be a,
sum of 100 distinct frequency components. The adaptive control algorithm
based on the (L. m.r.) is used with a block length N = 25. The trajectories

of all signals are shown in Fig. 5.16-5.22.
5.2.4 Simulation 4 for SISO

This simulation considers a fifth order system with the following transfer

function

224+152—1
25+ 0.62° — 0.552

T(z) = (5.4)

The system zeros are at (z = 0.5, —2.0) and system poles are at (z =
0,+£51.05,+0.707). The desired closed-loop poles are selected at (z =
£0.9,0.5+50.4,0.1). The polynomial ¢*(z) has roots at (z = £0.1, +30.2).
The initial conditions on the plant parameters and the controller were all
set to zero. The reference input v(k) is taken to be a sum of 100 dis-
tinct frequency components. The adaptive control algorithm bascd on the
(lm.r.) is used with a block length N = 25. The trajectories of all signals
are shown in Fig. 5.23-5.29.

Similar to the (l.m.r.) the adaptive pole assignment based on the (r.m.r.)
has been simulated for the first two mentioned systems [or comparison with

(l.m.r.). The configuration used in the adaptive control simulation is shown
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Figure 5.30: Configuration of a feedback controller based on (r.m.r.)

in Fig. 5.30.

The simulation results are given in Fig. 5.31-5.37 for the SISO sccond

order system. The third order system has also been simulated and result

are shown in Fig. 5.38-5.44.

5.3 Simulation examples of indirect algorithms
for MIMO systems

In this section, we present some simulation studics of the indirect adap-

tive pole assignment based on the left fraction decomposition discussed in

chapter 4. The least-squares estimation scheme is used in estimating the

system parameters. The idea of block processing is used to update the
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controller parameters. The results of the simulations show that the con-
vergence of the system parameters to their true values js within a peactical

finite number of samples.
5.3.1 Simulation 1 for MIMO

This simulation considers a fourth order system. The system to be con-

trolled has the following matrix transfer function:

T(z) = P7'(2)Q(2)

224+16z+0.15 0 \! 0.61  0.6z+0.76
0 2242 0.6z4+05 02z40.1

(5.5)

with the system zeros at (z = —0.881 + 70.333). The system poles are
at (z = —1.5,-0.1, —1.0,0.0). The observability indices of the system are
vy = vy = 2. For this example the desired closed-loop polynomial matrices

are characterized by:

wn_ [ 2+032+04 0.0
Fz) = ( 0.0 22~08 )
and Q*(z) = Diag (2)
The external input signal was taken as follows

v(k) = ;a;sin(i/IOOk)

(k) = iﬁ;sin(k/lOO)
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where o; and f; are coefficients different from zcro. The initial conditions
on the plant parameters and the feedback controller were all set to zero.
Finally the simulation was performed using the least-squares sequential
estimator with initial covariance matrix P = 10'°7. All system signals are
shown in Fig. 5.45-5.54.

After 20 time samples, the estimated polynomial matrices converge to

the true values as shown in Fig. 5.48-5.51. At k = 20 we have

P(z) = 2 +1.60012 + 0.1502  —0.00012 — 0.0002
- 0.0 22 + 1.0004z + 0.0001

Q(z) = 0.6097 0.6z + 0.7609
- 0.6z +0.5003 0.2z + 0.0997

From Fig. 5.52-5.54, the estimated feedback controller obtained at k£ = 30

is as follows:

H(z) = [ ~292-0.021 0.3522; - 0.052
30422 +0.123  1.865z -+ 0.262

~052 —1.118
K(z) = (1.157 0.416 )

The trajectories of the input vector u(k) and output vector y(k) are shown

in Fig. 5.45-5.46. For completeness the identification error vector is given

in Fig. 5.47.
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5.3.2 Simulation 2 for MIMO

This simulation considers a 3x 2 MIMO system of order 6 with the following

transfer function:

T(z) = P(z)7'Q(z)

2211z 0.1 0.2z + 0.01 -t
= 0 22 — 0.8z — 0.48 0
0 0 - 22 — 1.8z + 0.82

0.1 0.03
0.3  01z-03 | (5.6)
0.4z+0.1 0.3

The system zeros are at (z = —~2,1,5) and the system poles are at
(z = 0.0,1.1,-0.4,1.2,0.9 + j0.1). The desired pole locations are at

(2=0.0,0.99, —0.1£50.95, +0.9) with the following closed-loop polynomial

madlrices:
22 —0.99z 0.0 0.0
P(z) = 0 22 - 0.2z 4+ 0.91 0
0 0 z2 - 0.81
22 0 0
and Q*(2) = 0 2? 0
0 0 22-0.12

The external exciting signals applied to the system arc the sum of 100
sinusoids of distinct frequencies. Again the simulation assumes zero initial
conditions for the system and the controller parameters. Block processing
is used with block length N = 30. The simulation resulls are shown in

Fig. 5.55-5.66.
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Figure 5.57: Error trajectories of the (3 x 2) MIMO sixth order system
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Figure 5.58: System paramcters trajectorics of the (3 x 2) MIMO sixth
order system
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5.4 Effect of the block length N on the rate
of convergence

In this section we shall investigate the convergence properties of the indi-
rect adaptive control algorithm of linear discrete time shift invariant sys-
tems. From the global stability proof given in chapters 3 and 4, if certain
assumptions are satisfied, one ensures for all initial states, and arbitrary ini-
tial parameter estimates, the input-output system model remain bounded
for all time, and the closed-loop poles are effectively assigned, as time
tends to infinity. An attractive feature of these results, is that asymptotic
exponential convergence is obtained when the adaptive control algorithm
make use of least-squares estimation schemes with forgetting factors. The
above mentioned convergence implies various robustness properties. By
simulating some test cases, the effect of N on the rate of convergence is
investigated.

For the purpose of comparison, the theoretical resulis obtained on the
bounds of the rate of convergence arc summarized below:

Standard least-squares: The upper and lower bounds on the rate
of convergence of the system parameters to their true values are [N/(o +
B2k)]1/? and [N/(o + B.k)]'/? respectively, where 3, and 8, arc as given in
previous chapters.

Least-squares with forgetting factors: The upper and lower bounds
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The no. of samples | The no. of sam-
The length of N taken for the system | ples taken for the con-
parameters to con- | troller parameters to
(no. of samples). verge to their truc val- | converge to their de-
ues. sired values.
5 13 16
10 13 16
15 14 16
20 14 21
25 14 26
30 14 ' 31
35 14 36
40 14 41
45 14 46
90 14 51

Table 5.1: Effect of NV on the rate of convergence when tested on a SISO
system

on the rate of convergence are [o/(c + 82)]*/?N and [o/(a + 6;)]*/2" respec-
tively.

Note that these expressions are valid under the condition that N is
greater than some minimum value. The‘ effect of N is investigated by
experimental simulation for two test cases.

Case 1: In this case, the system of Eqn 5.4 is considered. The block

length NV is varied in the range of 5 to 50. The results are shown in Table

5.1.
Case 2: This simulation considers the system given by Eqn 5.6. Similar
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The no. of samples | The no. of sam-
The length of N taken for the system | ples taken for the con-
parameters to con- | troller parameters to
(no. of samples). verge to their true val- | converge to their de-
ues. sired values.
) 11 11
10 11 11
15 14 16
20 14 21
25 14 26
30 14 ' 31
35 14 36
40 14 41
45 14 46
50 14 51

Table 5.2: Eftect of IV on the rate of convergence when tested on an MIMO
system

to the previous case, the block length N is varied over the range 5 to 50.

Table 5.2 shows the results of the simulations.

The simulation results show that for all values of NV, the convergence is
very fast for both cases. Hence, it is not possible to draw any conclusion
about the effect of N on the rate of convergence. However, it is believed

that the effect of NV could be observed if the system is non-deterministic.
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CHAPTER SIX

ADAPTIVE POLE ASSIGNMENT
OF A DC MOTOR

6.1 Introduction

The purpose of this chapter is to apply the globally stable adaptive pole
assignment technique described in chapter 3 to a practical system. The
design of the controller is based on lincarized model of the plant dynamics.
The design employs only input-output model mecasurements to estimate
and control the system. The adaptive control algorithm consists of an
estimation scheme for the purpose of identification and a pole assignment
controller. The system parameters are estimated using the least-squares
algorithm. Based on the output of the estimator, the controllers are then
estimated by solving a diophantine type equation online to relocate the

closed-loop poles at appropriate locations. The optimal controllers are
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computer

—» »D/A > G(s)

calculation

v

A/D

Figure 6.1: Basic digital feedback conirol

designed online using the idea of block processing. The general block

diagram of the adaptive control system is shown in Fig. 6.1.

The adaptive algorithm has been used to control the speed of a labora-

tory model first order DC motor. The performance of the adaptive control

algorithm obtained is satisfactory.

6.2 Computer hardware and software

An IBM PC (XT) has been used to identify the system parameter and
to synthesize the forced inputs. The IBM PC includes a floating point
processor (8087), a 64 KB of RAM, one floppy disc drive, a lab mas-

ter, and a hard disc. The IBM lab master combines all the functions
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necessary for most data manipulations on one multifunction board. The
board contains 2 D/A channels, 16 A/D channels, timer counters, and a
zero-order hold. The software consists of the FORTRAN machine code,
and assembler-language subroutines. The FORTRAN program consists
of the least-squares estimation scheme and the control synthesizer. The
assembler-language routines are divided as follows:

(i) A/D conversion |

(if) D/A conversion

(ii1) Initialization

The real time assembler-language A/D conversion subroutine forms an

interrupt service which is entered each time the line clock sends a conver-

sion pulse to the A/D unit.

6.3 System modeling and control

The adaptive control algorithm is used to control the speed of the DC
servomotor. The system consists of the Servo-Amplifier Unit SA150D plus
a DC motor MT150F. The complete system can be represented by a first
order system for most practical purposes if the input is assumed to be
greater than 3.0 volts. The system hence can be represented in continuous-

time as

K

G(s) = T+l for u > 3 volts (6.1)
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Its discrete-time transfer function is

Gp(2) = - ip (6.2)

where q and p are the unknown parameters. The first part of the adaptive
algorithm consists then of the system parameter estimation which in this
case are q and p. For this purpose the standard sequential least-squares
estimation scheme is used. Then, based on this estimate the controller is
designed by solving a discrete time diophantine type equation. We can
think of this design as mapping the continuous-time dcsired pole location
into discrete-time domain and then do a discrete-time pole assignment.
This design is equivalent on performing the design entirely in the contin-
uous time and then make an approximate discrete time implementation
when the sampling rate is relatively fast. The sampling rate was chosen
as 33H z which is suitable for the system considered. The time constant
of the DC motor is about (1 to 2 sec). The discrete time control law

required to relocate the placement of the poles is given by:

c(2)u(k) = h(2)[yres(k) — y(k)] (6.3)

with ¢(z) = ¢*(z) — k(z). In the first case the order of the system is one,
and hence h(z) is of zero order. The closed-loop thus obtained is of second
order. the purpose is not only to achieve the desired transient performance,

but also to satisfy the steady state condition. To climinate the steady state
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Yres (k) 4 h(z)/el2) __(.) Plant J( )

Figure 6.2: Feedback controller based on (I.m.r.)

error for constant desired output, one can simply introduce a pole into the

control at z = 1. The complete control configuration is given in Fig. 6.2.

The closed-loop characteristic polynomial becomes

k(2)p(z) + (=h(2))g(2) = " (2)[p(z) - p"(2)] (6-4)

where ¢*(2)p*(z) is the desired third order polynomial. The degree of
the polynomials k(z) and k(z) has now increased by one. Resolving the
pole assignment equation for A(z) and k(z) using the cstimated parameter
generated from the estimator one obtain the adaptive control law. In the
first case, the desired discrete closed-loop poles were chosen at 0.90, 0.95
and 0. The corresponding continuous time desired closed-loop poles of the
system are approximately at —1.55 and —3.19.

The system was run and at the end of the test the data held in memory
is transfercd to floppy disc and hard copics of plots is obtained. The

continuous time response is shown in Fig. 6.3-6.6.
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In the second case, the desired closed-loop poles are selected at 0.95, 0

and 0. The corresponding pole location in continuous time is at —1.5. The

140

-3€21



ouUTPUT
3
l

! L) 1 ] I 1 1 b Ll 1
c.00 - 1.49 2.90 4 .48 s8.98 7.47

TIME SEC

Figure 6.3: DC motor speed trajectory for the case of desired closed-loop
poles 0.9, 0.95, and 0
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Figure 6.5: Error identification of the speed adaptive control system for
the case of desired closed-loop poles 0.9, 0.95, and 0

-
(-] 1 ¥ I 1 ] 1 ] 1 I 1}
5'0" 00 1.49 2.09 4 .48 85.98 7 .47
! TIME SEC
v -
[+ 4
) =
-
IJJQ_
= 1
L4
[» 4
< |
O w
iy
o
1

SYETEM
-0.78
| I

DA A A PN a O A A Na__ a PN

Figure 6.6: System parameter trajectories of speed control system for the
case of desired closed-loop poles 0.9, 0.95, and 0
142

Jeat



result of continuous time system is shown in Fig. 6.7-6.10. In both cases,
we have assumed zero initial conditions for both the system and control
parameters. Block processing was used with a block length N = 10. The
initial covariance matrix was selected as P = 1000J. The system output
and input were constrained to remain between -10 volts, and 10 volts.

The reference input is selected as:

7.0 for0<i<t
-yref(t) ={ oS sh (65)

4.0 fort > 1,

The output is shown to follow the desired reference signal in the two cases.
Moreover, during transients, the system response is governed by the as-
signed closed-loop poles as shown in Fig. 6.3 and 6.7. In the first case, the
speed of the DC motor was desired to follow a system with dominant poles
at —1.5 and —3.9. In the second case, it was desired that the speed of
the DC motor behaves as system with dominant pole at —1.5. The results
shown in Fig. 6.3 and 6.7 prove that the adaptive control can achieved
good performance. The adaptive pole assignment algorithm gives what
appears to be excellent performances. The time histories of the system
signals indicate the performances of the adaptive control algorithm. The

transient responses obtained also indicate that the adaptive controller is

quite stable.
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CHAPTER SEVEN

CONCLUSION

The global stability of indirect adaptive pole assignment has been estab-
lished for both SISO and MIMO nonminimum phase systems under rel-
atively weak assumpiions. It has been shown that the adaptive control
algorithm is globally stable unconditional on the convergence of the sys-
tem parameters to their true values. This new result is important because
it reduces the required assumptions to a minimum. In fact, this result re-
quires only the prior knowledge of the systemn order n, and that the desired
closed-loop poles are strictly located inside the unit circle.

The global stability analysis is given for the indirect. adaptive pole as-
signment of SISO system with a control strategy bascd on (I.m.r.) and
(r.m.r.). The key ideca to prove the global convergence was to show first
that any possible unbounded signal is obscrvable from the equalion error.
This property was then converted into a lincar boundedness of the partial

state in terms of the equation error. Therealter the linear boundedness was
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used to establish uniform boundedness of the input-output system signals.
This result is unconditional on the convergence of the parameters of the
system to their true values.

The global stability with asymptotic convergence of the system param-
eters to their true values requires the a priori knowledge of the system
order n and the persistency of the reference signal. Bounds on the rate
of convergence of the system and cont.rollcr paramecters to their desired
values is also given for a number of estimation schemes. The discussion
included in pafticular, the standard least-squares and its variants namely
least-squares with covariance resetting and least-squares with exponential
data weighting. This result also applies to the projection algorithm and
its modified versions.

It is particularly important to find algorithms that yield fast exponen-
tial convergence rate. The reason is that it is preferable to usc adaptive
algorithms in practical application that have fast convergence rate such as
asymptotic exponential convergence. It is interesting to note that these
fast exponential convergence schemes give some robustness properties to
the adaptive control system. In fact, it was shown that least-squares with
forgetting factors do have this property.

The fast exponential convergence is obtained under the conditions that

the adaptive algorithm make use of block processing logether with the
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condition that the reference input signal is persistently exciting. It has
been shown that the block length N has to be grealer than some finite
values for the result to be valid.

Global stability of MIMO systems has also been established for indi-
rect adaptive pole assignment with a control strategy based on (L.m.r.), if
prior knowledge of the observability indices and the controllability index
are assumed. This result requires the system to be minimal. Bounds on
the rates of convergence of the system parameters to their true values, is
guaranteed provided the reference signal is persistently exciting and that
the block length NV is greater than the required minimum value. In partic-
ular, exponential convergence is also obtained when the algorithm makes
use of the estimation schemes with forgetting factors. This new generalized
result is important because it applies to both minimum and nonminimum
phase systems.

Finally, extensive simulations of the adaptive control algorithm were
performed on the digital computer which confirmed the theoretical analy-
sis given in chapter 3 and 4. The simulation results show that the adaptive
control algorithm do results in a robust controller with the equation error
tending to zero at rates which are practical. Tt was also noted that the sys-
tem and controller parameters converged in a finite number of samples. For

further assessment of the results and its application, the adaptive controller
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was applicd to a physical system. The results indicate that the algorithm
can be of considerable importance for some practical applications.

From the investigation of robustness it has been seen that the adaptive
pole assignment algorithms are robust. This was shown analytically as well
as by means of simulations for a number of estimation schemes.

The following suggestions are give for future work:

(1) The stability analysis of ada.ptive- algorithms when the order of the
system is not exactly known (i.e. smaller or greater than the order of
the system) and the effect on the performance of the control algorithms.
This is important in practical application because in general the controlled
system always contains unmodeled dynamics.

(2) A new direction is the global stability analysis of these adaptive

algorithms in the presence of noise.
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APPENDIX

A.1 Proof of lemma 2.1

(i) Subtracting 6, from both sides of Eqn 2.10 and using Eqn 2.9, we have

6 (k) =8 (k—1)— c+¢(k¢_('°1)‘;;(k_ 3 k=076 -1) (A1)

Hence, using Eqn 2.13,

7 (L2114 2 _ $(k—1) To(k — 1) e(k)"e(k)
(A.2)

where || M| = trace[M]

Now since ¢ > 0, we have

¢k —1) To(k — 1)
~2 ; <0 A3
[ +c+¢(k—1)7¢(k—l)] (A-3)
and then Eqn 2.14 follows from Eqn A.2

ii) We observe that ||§ (k)||? is bounded nonincreasin function, and
g

by summing Eqn A.2, we have

. 1) Tg(j — 1 e(j)Te(j
16 (E)I* = 116 (0)]] +J§__:l —2+c$(¢;(j _)JA)QST(;(J' —)1) ¢+ ¢ £])1) ’(fﬁ)(j—l)
(A.4)

Since |6 (k)| is nonnegative, and since Eqn A.3 holds, we can conclude

Eqn 2.15.

150

Jeel



(2) Eqn 2.16 follows immediately from Eqn 2.15

(b) It is clear that

116(k) —6(k—)||> = ||6(k) —f(k — 1) +6(k — 1) —6(k—2)... O(k—1+1)—6(k—1)|]?

(A.5)

Then, using the schwartz inequality,
180k) — 0k = DI < I(116(k) —8(k ~ 1) P+ .+[16(k—1+1) — 6k~ 1)|?)
(A.6)

Hence using this result together with Eqn 2.10 and 2.16 the final result

follows.

A.2 Proof of lemma 2.2

(i) Subtracting 6, from both sides of of Eqn 2.18 and using Fqn 2.9, we

obtain

Pk —2)¢(k ~1) ¢(k—1) T§ (k — 1)

0 (k)=0(k—1)+ 1+ gk — 1) TP(k —2)g(k — 1) (A.T)
Then, using Eqn 2.20 the matrix inversion lemmna, we have
6 (k) = P(k—1)P(k—2)"14 (k1) (A.8)

Hlence introducing V' (k) = § (k)" P(k — 1)='6 (k), we have

V(E)=V(k—1) = [0 (k)= (k- 1)]"P(k—2)""F (k- 1)

6 (k—1)T¢(k —1) p(k—1) Th (k—1)
1+ ¢(k—1) TPk —2)plk - 1)

(A.9)
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Thus V (k) is a nonncgative, nonincreasing function and hence
0 (k)" P(k—1)"'4 (k) < § (0)" P(-1)~14 (0)
Now from the matrix inversion lemma,
P(k)™ = P(k~1)" + (k) ¢(k) 7
It follows that

’\min [P(k)—ll

v

Amin[P(k — 1)7Y]

v

’\ml'n[P(_l)—l]
Eqn A.12 implies

Amin[P(E) 116 (k)2

IA

Amin[ P(k — 1)71]]16 (k)| |2

IA

18 (k)P (k — 1)=14 (k)|

IA

116 (0)P(=1)=4 (o))

IA

Amaz[ P(=1)71]118 (0)]2

This establishes part (i).
(ii) Returning to Eqn A.9 and summing from | to j gives
k

V{k)=v(0) -3

=1

,5 G-1)%G —1) ¢(j —1) T4 (j - 1)“
1+6(G - 1) TP - 2)-14(j - 1)

Since V'(k) is nonnegative, we immedialely have Eqn 2.22.
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(a) Eqn 2.23 follows immediately from Eqn 2.22 and A.12, which implies
that

Amaz[P(k)7'] < Amaz[P(k = 1)™"] < Apaal P(=1)7] (A.16)

(b) Noting that

e(k)Te(k) _ 14+ ¢(k—1)TP(k—2)¢(k —1) e(k)Te(k)
1+ ¢(k—1) TP(k—2)p(k—-1) [L+¢(k—1) TP(k~2)¢(k —1) ]2
(A.17)

The result then follows by use of the Schwartz inequality, as in the above

proof of part (b) of lemma 2.1.

A.3 Proof of lemma 3.1

If {s(k)} is a bounded sequence, then by Eqn 3.27 {lle(#)|l} is a bounded

sequence. Then by Eqn 3.28 and 3.27 it follows that
klim s(k)=0 (A.18)

Now assume that {s(k)} is unbounded. It follows that there exists a

subsequence {k;} such that

kll_r}] s(k) = oo (A.19)

and

lls(e)| < NlsCkil for k < k; (A.20)
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Now along the subsequence {k;} and recalling Eqn 3.28

s(k;) S s (k)|
[a(k:) + b(k:)o (ki) To(k:)]V2)| = [K + Kllo(k:)]|2] /2
|Is(k:)Il
— KW+ KV2||a (k)|
S s (k)
= KUY K\2[C) + Colls(k)||]
(A.21)
using Eqn 3.29 and A.20. Iience
! s(k,-) 1
(&) + bk (k)T o (R || 2 Fifee, (A2

But this contradicts Eqn 3.27 and hence the assumption that {s(k)} is
unbounded is false and the result follows immediately. The upper bound

is trivial. Suppose the lower bound fails. Then there exists a vector

(7T 6T) = ( Tn—1 Yn-2 --- Yo 6."_] . .. (50 ) (A.23)

of unit length such that
(47 8T)p(k) =10 (A.24)

fork=jtoj+L~1+2n—1. Sety(z) = T7) wz"™, 6(z) = Tk §;27F

H

then Eqn A.24 is equivalent to
Y(2)ylk—n+1)+6(z)u(k —n+1)=10 {A.25)

for k= jtoj+ L —1+2n—~1. Now the plant and control equalions
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together imply that

u(k) = p(z)c(z) v(k) (A.26)

p(Z)C(Z() )—(q()Z)h(Z)
_ q(z)c(z ’ .
W) = e - e (A.27)

where ¢(2) = ¢*(z) — k(2)

The degree of the closed-loop denominator denoted by dy(z) is 2n — 1. If
both sides of Eqn A.25 are multiplied by the closed-loop polynomial then
we have

du(2)[Y(2)y(k —n + 1) + 8(z)ulk — n+ 1)] = 0 (A.28)

Using Eqn A.26 and A.27, it can be simplified further to

[v(2)a(z) + 8(2)p(2)]e(z)v(k = n + 1) = 0 (A.29)

fork=jtoj+L—1.

Now observe that ¢(z) = 7(2)q(z) + 6(z)p(z) must be nonzero. Other-
wise, g(2)/p(z) = —6(z)/(z) with 7(2) of lower degree than p(z), contra-
dicting the coprimeness of p(z) and q(z). Let ||¢]]? denote the sum of the
squares of the coeflicients of ¢(2).

Note that infy, 24 62=1 ||€]]? is nonzero; otherwise we conld construct a

bounded sequence of v;(z), §;(z) with H12+]1811% = 1 such that lim;_ llel|? =

0. There would be a convergent subsequence of the ¥i(z), 6:;(z) converging

to say 3(2), 8(z), with (z)q(z) + 8(z)p(z) = &(z) = 0, a contradiction.
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Noting that €(z) has dcgree 2n — 1, we sce that Fqn A.29 implies a

contradiction to Eqn 2.22.

A.4

Defining ¢(k)T = ( ¢,(k) &.(k) ) where ¢,(k) and ¢,(k) denotes sub-

vectors containing the outputs and inputs respectively. From Eqn 3.64 we

have
én—l én—2
0 én—l
¢y (k) = :
0 0

Using Eqn 3.42 we have

én—l én—?
0 én—l
¢y(k) = .
0 0

Cn-1

Cn—2

V(z)w(k —n+1)

(A.30)

{Tp'=(k)+q(2)v(k—n+1)}

(A.31)

Similar expression can be obtained for ¢, (k). Therefore, from Eqgn 3.65

we have
by I:In—z
$u(k) = 0 it
0 0
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Using Eqn 3.42 we have

Bt ]}n_2 . Zlo ‘0 ee 0
0 hoy -+ A ho -
dulh) = | 0T {T5'2(k) + gl2)o(k —n+ 1)}
0 0 iln—l i’ln-—2 h'O
v(k)
vk —1)
vk—n+1)

A.5

Defining ¢(k)T = ( éy(k) ¢u(k) ) where ¢,(k) and 4,(k) denotes subvec-
tors containing the outputs and inputs respectively. Define also C’(kj, z) =
{cij(2)}, with ¢;(z) = T8 6;'2#~-! then, using Eqn 1.30 the entries of

#4(k) can be written as:

(wl(lc+/1—-1)\

- TR e R RSP w‘(kt”'m
y(k) = c?l c%l cgl cgz cgf;' wl‘(k)
é?;u é:;u éﬁ}{l 69;2 Cﬁz—n: wz(k+:ﬂ - 1)
\  wm(k)
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X . L . wi(k+p+v-—3)
C(l)l cil REE Y i c(l)2 T C‘fm: .
0 al ap—1 =0 Ap— :
éy Gy - & €39 -+ Ch
yk+rv—-1) = 2 2: 22 2 wi(k+v-—1)
.. .,.._1 ‘w2(k+[l+l/'—2)
Cm1 "t G :

\  wn(k+v—1)
where w;(k) denotes the i th element of the partial state vector w(k).

Therefore the vector ¢,(k+ v — 1) can be rewritten as
éy(k +v — 1) = C¥(z)w(k) (A.33)

where the entries of the matrix C consists of éi-j elements. Hence, we can
now write

¢y(k+v—1)=CTy'z(k) — CT  g(2)u(k) (A.34)

Similar expression can be obtained for ¢,(k). Defining H(kj,z) =

{h:-j(z)}, with h}j(z) = Zf:ol h}jlz”""l then, using Eqn 1.29, the entries of

#.(k) can be written as:

h h j ; i k+p—2
hS, hY, oo BTV ORY, oo R wi ( -I )
O T TR R :
uk) = | R OR T a0
- M . - A4 . L3 . - - N . u)z k + Il _ 1
hoy bl BESY RO, ... hp :
\  wa(k)
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(wl(k+u+u—2)\

. . A L wi(k+p+v—3)
’}(1)1 ’}h h’fl : {1(1)2 Tt ’}frn: .
A0 hi hE- ho R Y .
wk+v-1) = | " 7% a0 o wy(k+v—1)
e R B wa(k + p+ v —2)
hoy by ! bz -+ bl i :
\ Wik +v —1) )
+u(k+v—1)
Thus we can write
v(k+v—1)
vik+v-—2)
$u(k+v—1) = H¥(2)w(k)+ )
v(k)
v(k+v-—1)
(ke +v—2
= HT'a(k) = HT ' tq(z)o(k) + | "F TV~ 2)
v(k)

where the entries of the matrix H consists of hf-j elements.
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GLOSSARY

(L.m.r.): Left model representation

(r.m.r.): Right model representation

SISO: Single-input single-output

MIMO: Multi-input multi-output

u(k): System inpﬁt

y(k): System output

v(k): Reference input signal

w(k): Partial state vector

z(k): System state vector

e(k): Equation error

n: Order of the system

N: Length of the block processing

¢(k): Regreséion vector

f,: Vector or matrix containing true values of the process
parameters

H(k) Vector or matrix containing the estimate of the system
parameters

é(k) Vector or matrix containing the difference between the

true and the estimated system paramcters
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P(k):

pe(z), q(2):

ijL(k: 2)) qA(ki z):

Pr(z), 7(2):

Pr(k, z), #(k, 2):
PL(2)7 Q(Z):
f)L(ka Z)’ Q(k1 Z)Z

Pp(2), R(z):
p*(z), ¢*(2):
P(z2), Q*(2):
k(z), h(z):

k(k, z), h(k, z):
H(z), K(2):
K(k,z), fi(k, z2):

tp(2):

Covariance matrix of the least-squarcs estimation schemes
Forward shift operator

SISO system polynomials of the (Lm.r.) of order n and

n — 1 respectively

Estimates of the SISO system polynomials of the (Lm.r.)
SISO system polynomials of the (r.m.r.) of order n and

n — 1 respectively

Estimates of the SISO system polynomials of the (r.m.r.)
MIMO system matrix polynomials of the (L.m.r.)
Estimates of the MIMO system matrix polynormials of

the (L. m.r.)

MIMO system matrix polynomials of the (r.m.r.)

Desired closed-loop polynomials

Desired closed-loop matrix polynomials

Scalar polynomials controller

Estimates of the SISO polynomials controller

Matrix polynomials controller

Estimates of the MIMO matrix polynomials controller
Vector (matrix) polynomial of chirnhaussen scalar (matrix)

polynomials
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