INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

S e S e el e o b3 ke e 9 e 9 e e
LA
R

PARALLEL GENETIC SCHEDULING FOR
PARALLEL APPLICATIONS

BY

AHMED OMER SALEH BIN MAHFOOD

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

MAY 2001

]

A A P A A A A A A A A A R A A A s A T

)
o

E%%i*t#i#i*14@i#t#b&i&%ﬁ#wf!%%%%%%%45145&1%4@Hf-wfi*f#sfakia!ff#2451&%145145@3&4

viv, Vi,

UMI Number: 1409812

®

UMI

UMI Microform 1409812

Copyright 2002 by ProQuest Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Leaming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by AHMED OMER SALEH BIN MAHFOOD under the

direction of his thesis advisor and approved by his thesis committee, has been presented to

and accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements

for the degree of MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

< 7

Dr. Muhammad Al-Suwaiyel (Chairman)
.
77
Dr. Sadiq Sait (Co-Chairman)
’ﬂ! e

- Dr. Muhammad Sarfraz (Member)
3/11) 209)

Department Chairman

Dean of Graduate Studies

Leee 797\
Date '

Dedicated to

My Parents

and

My Grand Mother

Acknowledgments

All praises be to Allah for his limitless help and guidance that enable me to complete
this work. Peace and blessings of Allah be upon his prophet Muhammad.

I acknowledge the generous help and support provided by the King Fahd University
of Petroleum and Minerals, and its Information and Computer Science Department for
this research.

I would like to thank my thesis advisor, Dr. Muhammad Al-Suwaiyel, for his
guidance and support. I would also like to thank Dr. Sadiq Sait and Dr. Muhammad
Sarfraz for their consistent support and cooperation.

I also wish to express my profound gratitude and appreciation to Dr. Muslim
Bozyigit with whom [started this thesis. But due to extraordinary circumstances I could
not complete it with him. My interest in the field of Parallel Processing is because of the
course I took with him.

Finally, and most importantly thanks to my parents and other family members for

their love, support, and encouragement through the years.

iv

Contents

List of Tables viii
List of Figures X
Abstract (English) xi
Abstract (Arabic) xii
1 Introduction 1
1.1 Parallel Processing ArChiteCtures...............oueeueeeueeeeereeeeseeeeeereeeoeeeeeoeeeoeeeoesos 3
1.2 Genetic AIZOTIIMSooueereeeeeeeeieetetee e e 8
1.2.1 Genetic Algorithm Components.................cooveeereeeememereeeoeoreeseoonn 10

1.2.2 Parallel Genetic AIGOTthMScoucueeeeeeeeerereeeeeeeeeeeeeee, 13

1.3 TheSis OULHNEc.oceuemrerrrereeeeteeeteceeeeaeeee e 19

2 Problem Definition 21
2.1 Parallel Computation Models...............ououeeeeeeemeeeseeeeseeseeeeeeoeeoeeoeooeeeeseoeeemen 21
2.2 Parallel SYStemSc.eueevereeeeeieenineeeeee e et 22
2.3 The Scheduling Problem.................ououeueuieeemeeeeeeemeeeeeee oo 24

2.4 Scheduling TAXOMOMYcoeueereemmneereeeeeneeeeesseeseee oo 25

2.5 THESIS OBJECHIVEcoeeeveeececreeeeensseeeeeeeeeee e 28
Literature Review 30
3.1 Static Scheduling APProaches...............cveeeveeeneeeeeeeesoseroseoosooooooooooooo 30
3.2 Dynamic Scheduling Approacheseoceeeeeereevvommovoooosoooooooo 41
3.3 Parallel Scheduling Approaches...................ccoveevmmvemrresmoommoooooo 44
Sequential Genetic Scheduling Algorithm 48
4.1 Test Problems GENEration.............ovvuuvuecverceneemeeeeesessssseeeseeseeosoooeoeooeoesoeoeoe 48
4.2 Design of the LGAcumeeueeurereeeeeeeeceeeeeeeee oo 52
4.2.1 String REPresentation....................e.cueeeeeeeereeueseessesoseosoooeoeoooeossooseon. 52
422 Fitness FUNCUON.........covovueveeuernceeeeieeeeeeeeseeeseeeeeeseooeoee oo 53
4.2.3 Initial POPUIALIONcvvrunrereeeeeneeeeeeee oo 55
4.2.4 REPrOQUCLIONeevueeerrereececeeneeeeeee e s e 56
4.2.5 CIOSSOVET.......ooceeceenerteeeneecteeeeceeceeesesseses e s s oo seesee s 56
4.2.6 MULALION ...ttt 57
4.2.7 Control Parameters.............eueuueueereeeeeeeseeseresressesoesoe oo 57
4.3 ExXperimental RESUIS..........cveueuveeeereeceeeenceeeeeeeeeeee oo 59
Parallel Genetic Scheduling Algorithm 68
3.1 Design of the PLGAc..cocuoeuiuereeeeceeceeeceeeeeeeeeeeee e 68
5.2 Computational ENVIFONMENeeeeemeemseneeeeseeseoseeoeoeososoooeooooooooooe 74
521 PVMOVEIVIEW.......ecoueereneteeeteteceeeeeceee e ees e eeeoeeeeeeeeeeeeeeeen 76

5.2.2 Implementation ISSUES............cuoueeeueeueeeeeieeeeneeeeeeceeeeeee e e 77

5.3 Experimental RESUIS...........coommeemmeeeeieieeeieeeeeteeeeeeeeeeeeeeeeer e 78

6 Conclusion 87
References 90

List of Tables

4.1

4.2

43

44

4.5

4.6

5.1

52

Task graphs generated by Random Parallel Computation Generator

Comparison of HGA and LGA for task graphs generated by RPCG on

8-processor fully connected topology.............c...............

Comparison of HGA and LGA for task graphs generated by RPCG on

8-processor mesh topologycocooveiei

Relative comparison of HGA and LGA for task graphs generated by RPCG

on fully connected topology of different number of processors (Ap)...............

Comparison of HGA and LGA for task graphs generated by OPCG............. .

Comparison of LGA and PLGA for task graphs generated by RPCG on

8-processor fully connected topology (SP, = P,/ W)

Comparison of LGA and PLGA for task graphs generated by RPCG on

8-processor fully connected topology (SP, = P/W + 0.4Py)....ccooviie.

53

54

5.5

5.6

5.7

5.8

Comparison of migration frequencies (MF) for task graphs generated by

RPCG on 8-processor fully connected topology...........................

Ratios of schedule lengths generated by PLGA to those of LGA for task

graphs generated by RPCG on 8-processor fully connected topology

Ratios of schedule lengths generated by PLGA to those of LGA for task

graphs generated by RPCG on 8-processor mesh topology..........................

The speedup in the running times of PLGA over LGA for 8-processor

fully connected topologyccoooooo

The speedup in the running times of PLGA over LGA for 8-processor

mMesh tOPOIORYccooormiimiiiiiieeeeeeeeeeeeeo

Comparison of LGA and PLGA in terms of the quality of the schedules

for task graphs generated by OPCG ...

ix

List of Figures

1.1

1.2

1.3

2.1

2.2

4.1

42

4.3

44

5.1

5.2

AN aITAY PrOCESSOT SYSLEMI.....c.ovvrrrrrerereraeeeveseanesaereensasesesesesssenssseseeesses s 4
A MUIIPIOCESSOT SYSLEML............cuevetreecrrrerensreiscseeeeeeenessesssesesesesesssssssssessseenseeeses 6
A MUItICOMPULET SYSLEM.......ooueerieeneerereeeetceeeeeee e 7

Example of (a) A task graph with communication costs

(b) A parallel SYStEm...........c.ccoverreeeeerrercecececeeee e see oo e 23
Scheduling taXonomyccceuvemeeeueeeeerenceieeiiee e e 27
StriNG rEPrESENtAtioN...........c.eceteieeerererereretetieeeteceeeeee e eeeseseeeeseees e esse e 54
An example of CroSSOVET OPETAtioN.............c.oueereeeieeeereeereeeeeeeeeeeeseeeeoeeeeoos 58
Structure of the level-based genetic algorithm (LGA)..........ouoveeveeveeonnn 60

Example where the optimal schedule does not satisfy the height constraints 67

Structure of the parallel level-based genetic algorithm (PLGA)....................... 70

Implementation of the parallel algorithmooovvemevemeeeneeremeeeeeo 79

Thesis Abstract

Name: AHMED OMER SALEH BIN MAHFOOD

Title: PARALLEL GENETIC SCHEDULING FOR PARALLEL APPLICATIONS
Degree: MASTER OF SCIENCE

Major Field: COMPUTER SCIENCE

Date of Degree: MAY 2001

In this thesis, a parallel genetic algorithm Jor scheduling parallel tasks on a
multiprocessor system is proposed. We first designed a Jast and efficient sequential
genetic algorithm upon which the parallel genetic algorithm developed. The parallel
genetic algorithm is based on the island model of GA where a population is divided
into a number of independent subpopulations. Each subpopulation is evolved by an
independent GA and periodically fit strings migrate between the subpopulations. The
parallel genetic algorithm was implemented on a network of SUN workstations. It has
been observed through the experiments that generally the schedules generated by the
parallel genetic algorithm are better than the schedules generated by the sequential
genetic algorithm. Furthermore, the parallel genetic algorithm achieved some speedup
over the sequential genetic algorithm. The speedup increases as the number of

workstations in the parallel machine increases.

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
May 2001

Alu) yaidls

L yias (3 plla e 2aal : quithal) oo

L)) el Gliadaill 4) yie aiua Ujyaa : Ulad o gie
SV culall 4gle - Gauadall

pY e o) sila: gl fey s

P e 350 giall Sliaadadl) & gans oLl 4 30 g i e) gd araal a3 cillas i 034 o
Lede Ligis o3 Alad g Qo pous dayliie i Bgme) 5o aacaly Y gl Liad 28] ladlaad) 32aia
Slhaj) sdll Ga dge g o aaiad) giall Lisall Za)l pall 450 saal Lassadt)il
I3RiT Al gana JS Gile garatie M anidis Jplall do gana o Gua o dally L dudsall
Laolead daall Jlall Gile aaadl Jobiss HAY Gua Gy dleaiia Gaiia Do)l ph a5
Jotaadl O @l JNA G daa g il (SUNYS ;e 00 4503 e iy ja 230 gl Guisald
a5l oa 0 Leaiis ol Jghandl e ple IS omit D) giadt Zpiaad) Raa 30 ,al) Leaiis 3l
e g bl any BEa3 4 yiall Lisall Lo 30 gad o) IS e 5 gSe Amplitall saalt

A ghalt Aallaall aUas 63 3¢V 2ae 33050 2 e Ll o) Aasliiall Luisall La 3 50 4alt
J gt 95 e HXUERE LY 30

paladl 3 oualdl Ay o
QJLI.A.“J dJ)li.“.\‘.iM‘ ia...t.;;
Qo gl gy el ASLeL () el

PY-~\ ”L.

Chapter 1

Introduction

During the past years, dramatic increases in computing speed were achieved. Most of
these achievements in computing speed were due to the use of inherently faster
electronic components. However, the physical limitation imposed by fundamental
electrical properties makes it impossible to achieve further dramatic improvements in the
speed of such uniprocessor computers. Thus, the scientists started to examine a new
data-processing approach, which is generally known as paraliel processing. The idea
here is that if several operations that form a computation can be performed
simultaneously then the time taken by the computation can be significantly reduced. To
implement the parallel processing approach we should use the combined power of more
than one processor.

There are two reasons for the popularity and the attractiveness of parallel
processing. Firstly, the declining cost of computer hardware has made it possible to
assemble parallel machines with thousands of processors. Secondly, the availability of

applications which are beyond the capability of conventional computers. Ocean resource

1

2
exploration, numerical weather forecasting, airplanes and space vehicles modeling,
genetic engineering, interactive graphics, and managing large databases are few
examples of these applications. Without using parallel processing, many of these
applications to advance human civilization could hardly be realized.

The performance of parallel processing systems depends mainly on the operating
system. This is because the operating system performs, in addition to its usual issues, the
task of scheduling a given set of computation tasks on the set of available processors in
order to maximize the throughput of the parallel system. Thus, the efficiency of the
whole system largely depends on the efficiency of the scheduling policy used by the
operating system.

The problem of scheduling parallel tasks is one of the most challenging problems in
parallel processing systems whose optimal solution is known to be NP-complete.
Therefore, various methods have been proposed in the literature to find an acceptable
schedule. These methods can be classified as heuristic-based or search-based. The
heuristic-based methods are inexpensive in terms of their execution times, but they may
not provide good quality solutions. The Earliest Task First (ETF) and Dynamic Critical
Path (DCP) are two examples of such methods. The search-based methods produce good
quality solutions but they are computationally very expensive. Some such methods are
Genetic Algorithms, Simulated Annealing, and Tabu Search.

It is desirable to execute the scheduling policy as fast as possible. Therefore, the
execution time of the scheduling policy is a major overhead that should be minimized
especially when the scheduling policy belongs to the search-based methods. Thus, we set

the objective of this thesis to minimize this overhead by developing a practical parallel

algorithm for scheduling parallel applications.

The rest of this chapter is organized as follows. In Section 1.1, parallel processing
architectures are briefly discussed. The components of genetic algorithms as well as
different parallel models of these algorithms are described in Section 1.2. Finally, thesis

outline is given in Section 1.3.

1.1 Parallel Processing Architectures

Parallel computers can be divided into three architectural categories as discussed in 22].
The first category is called array processor system. Such architecture employs a central
control unit, multiple arithmetic logic units called processing elements (PE), and an
interconnection network among the PEs, as shown in Figure 1.1 [34]. The control unit
broadcasts array instructions to all processing elements and all active processing
elements execute the same instruction at the same time but on different data. These data
are fetched from local memories of the processing elements. This is why this
architecture is also called single-instruction multiple-data (SIMD) architecture. The
interconnection network facilitates data communication among processing elements.
Array processor systems are mainly developed to perform parallel computations on
vector or matrix types of data such as matrix multiplication, summation of vector
elements, and parallel sorting.

The second category is centered by so-called muitiprocessor system. This system
consists of two or more comparable processors that can execute independent instruction

streams using local data. Therefore, this system belongs to multiple-instruction multiple-

/0]

Data bus {
CP IN control
CM
T Control bus

PE, «— PE; «— PE, -
Ml Mz Mn
v v
Interconnection network (IN)

T

CP: Control Processor
CM: Control Memory M: Memory

Figure 1.1: An array processor system

PE: Processing Element

5
data (MIMD) class of computers. In this system, there is a shared memory that can be
accessed by all processors in the system. This shared memory is usually partitioned into
several modules each connected to the interconnection network, as shown in Figure 1.2
[34]. Processors communicate by read and write accesses to the shared memory.
Different interconnection networks have been used to connect the processors and
memories of these architectures. Crossbar switches and common buses are two examples
of such interconnection networks.

The third architecture is called multicomputer system, which also belongs to MIMD
class of computers. In a multicomputer system, each processor has its own memory
called local or private memory, which is accessible only to that processor. The
communication between processors is achieved via messages exchanged directly
between them through an interconnection network. Multicomputer systems typically use
interconnection networks with direct, point-to-point connections between processors.
These interconnection networks include ring, tree, mesh, and hypercube. A
multicomputer system is shown in Figure 1.3 [34]). The processors of a muitiprocessor
system access the memory modules that constitute the shared memory much more
frequently compared to the communication among processors of a multicomputer
system. Therefore, the terms tightly coupled and loosely coupled have keen associated
with multiprocessor and multicomputer systems, respectively.

With advances in networking and communication technologies, new line of the
multi-computer systems is emerging. These systems are based on a network of
workstations. Although each workstation is normally used as a separate computer, many

workstations interconnected by a local area network (LAN) can be viewed as a multicom-

ALU ALU ALU
LM LM soe LM
CU CU CU
Interconnection network
v I
M M Shared memory M

ALU: Arithmetic Logic Unit

CU: Control Unit

LM: Local Memory

Figure 1.2: A multiprocessor system

LM LM

Cu Cu

CU

LM

Interconnection network

ALU: Arithmetic Logic Unit
CU: Control Unit
LM: Local Memory

Figure 1.3: A multicomputer system

8
puter system. Systems of this type are often called distributed computer systems. The
great advantage of such systems is that they are usually available in most of today’s
commercial, educational, and government organizations. Thus, we will use them as our
experimentation test-bed.

Several software packages were developed to assist programmers in using
distributed computer systems for parallel processing. Among the most well known
packages are P4 developed at Argonne National Laboratory, Express from ParaSoft
Corporation, and PVM that is a collaborative venture between Oak Ridge National
Laboratory, the University of Tennessee, Emory University, and Carnegie Mellon
University [20]. We will use PVM for implementing parallel scheduling algorithm,

therefore, description of it will be found in Section 5.2.

1.2 Genetic Algorithms

In the early 1970s, John Holland invented a technique that mimics the process of natural
biological evolution for solving difficult optimization problems [25). Later, this
techrique was called genetic algorithm (GA). Since its invention, many variations of the
basic technique have been introduced. Therefore, we will refer to this set of techniques
as genelic algorithms (GAs).

Genetic algorithms are stochastic, robust, problem-independent search techniques.
Two mechanisms link GAs with the optimization problem being solved. One is the way
of coding the solutions of the problem. The coded form of a solution is called a string.

The other is the fitness function that measures the merit of a string in the context of the

9

problem. Genetic algorithms have proved to be robust because they always produce
high quality solutions. The ability of GAs to produce high quality solutions lies in the
fact that they combine the exploitation of past good solutions with the exploration of
new areas of the search space.

Genetic algorithms have been successfully applied to solve various optimization
problems. These problems include pattern matching [5], bin packing [17], traveling
salesman problem [30, 31], standard cell placement [33], graph partitioning [37], job
shop scheduling [43], and multiprocessor scheduling [14, 26, 48]. Detailed discussion of
the application of GAs to several problems from various fields of science and
engineering can be found in [15, 21].

The success of GAs to solve various optimization problems can be attributed to the
following characteristics:

1) GAs work with a coding of the parameter set rather than the parameters themselves.
2) GAs search from a population of search nodes.
3) GAs use probabilistic transition rules.

To design a genetic algorithm for solving any optimization problem, we have to
design its components. These components are as follows: (1) a string representation of a
solution, (2) a fitness function, (3) a method to create initial population, (4) genetic
operators (reproduction, crossover, mutation), and (5) values of the control parameters.
These parameters are population size, crossover probability, and mutation probability.

Typically, a genetic algorithm consists of the following steps:

1) Generation of the initial population of strings randomly.

2) Calculation of the fitness values of strings according to the fitness function.

10
3) Generation of a new population of strings by applying genetic operators to the old
population of strings.

4) Step (2) and (3) are repeated for a predefined number of generations or until the

population converges.

1.2.1 Genetic Algorithm Components

The construction of an efficient GA for any problem depends on how carefully its
components were designed. Therefore, the reminder of this section provides an overview

of the major components of GAs.

1.2.1.1 String Representation. The primary step in constructing GAs to
solve an optimization problem is to find an efficient string representation for the
solutions. Inefficiency in string representation may lead to high computational
requirements for calculating fitness values and applying genetic operators. The most
commonly used string representation in GAs is the binary alphabet {0,1} arranged in one
dimension. Other string representations found in the literature are binary, integer, or real-

valued alphabet arranged in one or two dimensions.

1.2.1.2 Fitness Function. Fimess function plays the same role in GAs that the
environment plays in natural evolution. The interaction of an individual with its
environment provides a measure of its fitness, and the interaction of a string with a

fitness function provides a measure of its fitness in the problem domain. The fitnesses of

11
the strings are used by GAs for carrying out reproduction [15].

In genetic algorithms, it is required that the fitness values must be nonnegative and
that the fitter a string, the larger its fitness value. Therefore, it is necessary to map the
objective function to a fitness function. When the objective function is a cost function,
the following transformation is used [21]:

S1x) = Cnax — g(x) when g(x) < Crax

=0 otherwise
where g(x) is the value of each individual solution. Cpax may be taken as the largest g
value in the current population, as the largest g value observed thus far, or as the largest
g value observed in the last k generations.

When the objective function is a profit or utility function, the following
transformation is used [21]:

Sx) = u(x) + Cnin when u(x) + Cpin > 0

=0 otherwise
where u(x) is the value of each individual solution. Cpi, may be the absolute value of the
worst u value in the current population or the absolute value of the worst u value

observed in the last k generations.

1.2.1.3 Initial Population. The way of constructing initial population
influences the quality of final solution. This is because GAs work by adopting good
characteristics from strings of the initial population to generate strings in subsequent
populations. Generally, the initial population is constructed randomly. It is also reported

that certain strings of the initial population may be solutions generated by some

12
constructive heuristics. The method of including solutions of other heuristics is called
seeding. Another factor that affects the quality of final solution is the population size. A
small population size, due to the lack of genetic diversity in the population, results in
insufficient investigation of the search space and hence only suboptimal solutions are
found. On the other hand, a large population size maintains genetic diversity in the
population and hence prevents premature convergence to suboptimal solutions, but it
may require unacceptable large computation time. There is no fixed rule to select the
population size. It is usually determined empirically. For most GA applications, typical

values of the population size range between 30 and 100.

1.2.1.4 Reproduction. Reproduction selects strings from a current population
to form an intermediate population. The intermediate population is the mating pool from
which offspring strings are generated by crossover and mutation. The selection of strings
must mimic the process of natural selection where the fittest strings have higher chance
to reproduce. Therefore, the selection is based on the fitness values in such a way that
strings with higher fitness values should have higher probability of contributing one or
more offspring strings in the next generation.

Various selection methods have been proposed in the literature. The simplest
method is called roulette wheel method. This method starts by determining a real value
(sum) as the summation of fitness values of all strings in a population. Strings are then
mapped into contiguous interval [0, sum). The size of the interval assigned to a string is
proportional to the fitness value of the string. A string is selected if the segment

corresponding to this string spans the randomly generated number in the interval [0, sum].

13

This process is repeated until a mating pool of desired size is constructed [10].

1.2.1.5 Crossover. Crossover is the main operator for producing new strings. It
operates on two parent strings to generate one or two offspring strings. Crossover
operator imitates its counterpart in nature such that a new string generated by it has some
characteristics of both parent strings. In the literature, several types of crossover operator
are proposed. Single-point crossover, Order crossover (0X), Partially Mapped Crossover
(PMX), and Cycle Crossover (CX) are few examples of these types. The simplest type of
the crossover operator is single-point crossover. It starts by choosing a random point
over the length of both parent strings. Then, right parts of the two parents are swapped to

generate two new strings.

1.2.1.6 Mutation. Mutation operator infrequently introduces new characteristics not
present in any string of a population, and thus it prevents premature convergence of the
population. The mutation operator guarantees that the probability of searching any string
will never be zero. In the simple mutation, a position in a string is chosen randomly and
its value is replaced again by randomly chosen one from a certain set of values.

Typically, mutation is applied with a very low probability.

1.2.2 Parallel Genetic Algorithms

There are three reasons for exploring parallel genetic algorithms. Firstly, to reduce the

execution time of GA by computing the calculations associated with it in parallel.

14

Secondly, to maintain diversity and reduce the probability of the premature
convergence. This can be done by employing a number of independent subpopulations
and by using local selection rules, which allow a string to mate with strings in its local
neighborhood. Thirdly, to mimic the natural evolution more closely. In nature, a
population is typically many independent subpopulations that occasionally interact.

There are several ways to parallelize GAs. A simple way is to parallelize the loop
(evaluation of fitness values, reproduction, crossover, and mutation) that creates the next
generation from the previous one. Calculating fitness values and performing crossover
and mutation can be trivially parallelized. In the reproduction step, to select parent
strings all strings in the population have to be accessed by all processors, this can be a
parallel bottleneck. Therefore, this way to parallelize GAs is only suitable for tightly
coupled machines. For loosely coupled machines, some data must be passed to all
processors. This data transferring may take an enormous amount of time, especially if
there is no direct connection between two arbitrary processors [24).

Parallel genetic algorithms found in the literature can be classified according to the
population structure and the method of selecting strings for breeding into three
categories: global, island, and cellular [10, 46). The following paragraphs describe these

categories one by one.

1.2.2.1 Global Genetic Algorithms. In a global GA, the entire population is treated
as a single breeding unit. This type of GA is realized as the master-slave model. In this
model, slaves execute the task which is significantly more computationally expensive

and the master runs the rest of the GA program.

15
In [18], a global GA is proposed to solve a real-time control problem on transputer

based parallel processing system. For this problem, calculating the fitness value of a
string takes a relatively long time compared with reproduction, crossover, and mutation.
Thus, the main GA program is run on a host transputer and strings are distributed for
evaluation of fitness functions over a number of transputers. The experiments used a
population size of 250 strings and a number of transputers ranged from 4 to 72. The
results showed an increase in speedup with more transputers in the parallel processing
system. However, the relative increase in speedup dropped as the number of transputers

grew. This means that the graph of speedup versus the number of transputers is not

linear.

1.2.2.2 Island Genetic Algorithms. In an island GA, also called migration GA, a
population is divided into a number of subpopulations, each of which is a separate
breeding unit evolved by an independent GA. From time to time, fit strings are migrated
between subpopulations.

The migration of strings between subpopulations is the most important feature of the
island GA for two reasons. Firstly, this feature maintains genetic diversity within each
subpopulation, since strings are migrated between subpopulations that have evolved
independently under the control of different GAs. Secondly, this feature increases the
selective pressure within each subpopulation for reproduction, since only fit strings are
migrated between subpopulations and hence only good genetic materials are exchanged
between subpopulations.

The performance of the island GA is based on several parameters. These parameters

16
are the number of generations between two consecutive migrations, the number of
strings migrated, the migration paths between subpopulations, and the strategy used to
select strings for migration. If a large number of strings migrate too frequently, then the
local differences between subpopulations will be driven out and hence the parallel
algorithm will be inefficient. Conversely, If migration is too infrequent, subpopulations
may be prematurely converged.

In [31], an island GA is proposed to solve travelling salesman problem (TSP). The
parallel algorithm is implemented on a network of workstations. The basic idea in the
parallel algorithm is based on the using of several cooperating copies of the sequential
GA, each of which is executed on a different workstation. Each copy of the sequential
GA uses different values for crossover probability and mutation probability. After each
generation, every workstation multicasts a string, which is selected using the roulette
wheel method, to all other workstations. When a string is received, it replaces the worst
string in the population. Experimental results showed that the parallel algorithm yields
high quality and consistent solutions.

The paper [33] described a parallel placement algorithm based on the island GA
model for standard cells. The parallel algorithm is organized as one master program and
several slave programs. Each slave program runs on a different workstation, therefore,
the number of slave programs depends on the number of workstations available in the
distributed system. The master program creates slave programs and determines the
communication paths between them. Each slave program is a sequential GA evolving its
own subpopulation. From time to time, copies of the selected fit strings are sent along

one communication path. Before termination, each slave program sends the best string

17
found in its subpopulation to the master program. Then, the master program identifies
the best overall solution. It was observed that the parallel algorithm produces solutions
of the same quality as the sequential algorithm while providing linear speedup. The
effect of running the parallel algorithm on a heterogeneous computing environment was
studied. The results found that the parallel algorithm is robust, since it maintains the
solution quality and the speedup.

In [44], an island GA is applied to solve a function maximization problem on a
hypercube multiprocessor system. Each processor runs GA on its own subpopulation,
periodically selects good strings from its subpopulation and sends copies of them to one
of its neighbor processors. It also receives copies of good strings from this neighbor.
Then, bad strings in the subpopulation are replaced with the received ones. The
migration paths varied over time, taking place over a different dimension of the
hypercube each time. Good strings are chosen probabilistically from strings whose
fitness values are greater than or equal to the average fitness of the subpopulation.
Similarly, bad strings are chosen probabilistically from strings whose fitness values are
less than or equal to the average fitness of the subpopulation. Near-linear speedup was
reported when the parallel algorithm is compared with the sequential GA such that the
sum of the subpopulations in the parallel algorithm is equal to the size of the population
in the sequential GA. The effect of varying crossover and mutation rates among
subpopulations was also investigated. The results found that the parallel algorithm
performs well even without knowing the best parameter settings.

The paper [30] proposed an island GA based on a client-server model to solve

travelling salesman problem (TSP). Each client executes the sequential GA on its own

18
subpopulation, and sends a copy of the best string in its subpopulation to the server
whenever the best string is updated. The server retains a copy of the best string of each
subpopulation and it sends copies of these strings to a client that cannot update its best
string for a specific number of generations. When the client receives these strings, it
replaces bad strings in its subpopulation with the received ones. The parallel algorithm is
implemented on a network of workstations. Experimental results showed that the parallel
algorithm yields solutions of the same quality as the sequential algorithm. The running
time of the parallel algorithm decreases as the number of workstations increases in the

parallel machine.

1.2.2.3 Cellular Genetic Algorithms. In a cellular GA, also known as diffusion or
neighborhood GA, each string is assigned a geographic location on the population
surface and allowed to breed with strings in its local neighborhood. The neighborhood of
a string is usually the immediate adjacent strings on the population surface. Typically,
only one string is assigned to each processor of the parallel computer. Therefore, the
neighborhood of the strings is determined by processor connection topology. However,
if the population size is greater than the number of processors, the population is divided
into a number of blocks equal to the number of processors and strings in one block are
assigned to the same processor. The parameters that affect the performance of the
cellular GA are neighborhood size, processor connection topology, and string selection
strategy for mating.

The paper [43] proposed a cellular GA to solve the jobshop-scheduling problem. In

the proposed algorithm, strings are arranged on a torus, and the neighborhood of a string

19
x is defined as the set of strings within the hamming distance 1 from x. The cellular GA
is executed on a single processor and compared with the sequential GA. The results
showed that the cellular GA is better than the sequential GA in terms of the quality of
solutions. It was also observed by implementing the cellular GA on transputer based
parallel processing system that the cellular GA is quite effective in reducing the

computational time.

1.3 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 formulates the scheduling problem addressed in this thesis. Section 2.1
and Section 2.2 define the models used to represent parallel computations and parallel
systems, respectively. In Section 2.3, the scheduling problem is overviewed. Then, the
classification of the scheduling algorithms is described in Section 2.4. Finally, Section
2.5 states the objective of this thesis.

Chapter 3 briefly describes various scheduling algorithms found in the literature.
Static scheduling algorithms and dynamic scheduling algorithms are reviewed in Section
3.1 and Section 3.2, respectively. Section 3.3 is devoted to parallel approaches to solve
the scheduling problem.

Chapter 4 presents the sequential genetic scheduling algorithm used as the basis for
the parallel genetic scheduling algorithm. Section 4.1 discusses workload generation
methods and presents test problems used in the thesis. The design of the sequential

genetic scheduling algorithm is presented in Section 4.2. Experimental results are shown

20
in Section 4.3.

Chapter 5 starts by presenting the proposed parallel genetic scheduling algorithm in
Section 5.1. In Section 5.2, the environment in which the experiments were performed is
described as well as implementation issues are discussed. Finally, the results of our
experiments are shown in Section 5.3.

Chapter 6 presents our conclusions and suggestions for future research.

Chapter 2

Problem Definition

In this chapter, the models that are used in the literature to represent parallel
computations and parallel systems are defined. Next, the formulation of the scheduling
problem and the scheduling taxonomy are presented. F inally, the objective addressed in

this thesis is stated.

2.1 Parallel Computation Models

A parallel computation is represented by a set of tasks (computational units), which are
interconnected into a graph or a digraph, called a task graph, depending on the nature of
their interrelationship. There are two models to represent parallel computations. The first
model assumes no data transfer between tasks of the task graph and thus no
communication between processors. This kind of a task graph is called a task graph with
no communication overhead between tasks. The scheduling of such task graphs has been

studied extensively and several solutions have been proposed [1, 29, 42]. However, this

21

22
model is no longer valid for loosely coupled systems, since inter-processor
communication overhead is an important aspect in such systems and is not negligible.
The second model, which is addressed in this thesis, considers inter-task communication
costs.

In this study, a parallel computation can be viewed as a finite set I’ = {T), T,
T;...Ta} of cooperating and communicating tasks. The behavior of this set of tasks is
modeled by a directed acyclic graph (DAG). Each node in the task graph represents a
task 7; € I' and each edge represents a precedence constraint between a task and its
immediate successor. The set of edges in the task graph is denoted by —. Edges are
associated with non-negative integers n (7, T;), which expresses the number of data
units to be sent from task 7; to its immediate successor T; upon the completion of T
Each node T; of the task graph is associated with a positive number u (7)), which
expresses the task computation time. Therefore, a general precedence constrained
computation with communication costs can be denoted by a quadruple G (T, -, 4 7).

Figure 2.1(a) shows an example of a task graph with communication costs.

2.2 Parallel Systems

A parallel system is denoted as S (P, R), where P is a set of m identical processors
(identical in both functional capability and speed) and R is a set of routing times between
them. The time to transfer a unit of data between two processors P, and P, is represented

by r (P, P.). Therefore, if tasks 7; and 7} are mapped to processors P, and P,, respectively,

€))

Pl PZ

(d)

Figure 2.1: Example of (a) A task graph with communication costs
(b) A parallel system

23

24
then the time to transfer 7 (7}, 7)) data units from P, to P, is given by r (P, P,) x n (T;,
Tj). Note that if tasks 7; and 7; are assigned to the same processor, then the time to
transfer data between them is zero. An example of a parallel system, where every
processor is connected to every other processor, is shown in Figure 2.1(b). However, in
reality different interconnection topologies are possible such as ring, mesh, hypercube,

irregular (arbitrary), etc.

2.3 The Scheduling Problem

The scheduling problem can be defined as mapping a given set of partially ordered
computational tasks that constitute an application to an available set of processors in
order to minimize the finishing time of the application. The scheduling problem in its
most general form is known to be NP-complete [13, 40]. The complexity of the
scheduling problem depends on the topology of the task graph, the uniformity of tasks’
execution times, task preemption, the topology of the parallel system, the number of
parallel processors, and the uniformity of processors. To tackle the problem, restrictions
are placed on the task graph and the parallel system models. Even restricted forms of the
problem are found to be NP-complete such as scheduling one-time-unit tasks on an
arbitrary number of processors, or scheduling one- or two-time-unit tasks on two
processors [13]. However, there are two cases where optimal schedules could be found
in polynomial time when inter-task communication is not considered. These cases are
scheduling tree-structured task graphs with equal execution times of the tasks on

arbitrary number of processors [27], and scheduling arbitrary-structured task graphs with

25

equal execution times of the tasks on two processors [40, 42]. If the inter-task
communication introduced in any one of the above cases then the problem becomes NP-

complete.

2.4 Scheduling Taxonomy

Different scheduling algorithms can be classified according to the following

characteristics:

a) Local Versus Global: Local scheduling deals with the assignment of tasks to the
time-slices of a single processor. Global scheduling deals with the assignment of tasks to

the processors in a parallel system.

b) Static Versus Dynamic: In static scheduling, all information regarding the task graph
must be entirely known before execution time. Therefore, each task has a static
assignment to a particular processor, and each time that task is submitted for execution,
it is assigned to that processor. The disadvantage of static scheduling is its inadequacy in
handling non-determinism in programs (loops and conditional branches). For example,
the direction of a conditional branch or the size of a loop could be unknown before a
program starts execution.

Under the static scheduling, we distinguish between optimal solutions and sub-
optimal solutions. A sub-optimal solution may be reached when an optimal solution is
computationally infeasible. There are two ways to obtain sub-optimal solutions, namely,

approximate and heuristic. In approximate, a sub-optimal solution can be reached by

26

using the same computational model representing the algorithm but instead of searching
the entire solution space for an optimal solution, we are satisfied when we find a good
one. In heuristic, we use our intuition to come up with a solution. For example,
clustering tasks that heavily communicate with each other on the same processor reduces
communication overhead between processors.

In dynamic scheduling, information regarding the task graph is not known before
the program is in execution due to conditional branches and loops. Therefore, the
scheduling decisions are made on the fly. The disadvantage of dynamic scheduling is its
inadequacy in finding global optimums and the time delay incurred by the on-line
scheduling.

In dynamic scheduling, if the work involved in making scheduling decisions is
distributed among different processors, then the scheduler is physically distributed.
Otherwise, if the scheduling decisions are assigned to only one processor, then the
scheduler is physically non-distributed. Under the physically distributed scheduling, we
may distinguish between cooperative and non-cooperative systems. In cooperative
systems, the local schedulers at each processor cooperate to come up with a global
schedule that is based on the status of the whole system. In non-cooperative systems,
individual processors work independently and arrive at scheduling decisions regarding
their own resources, which will affect local performance only. The cooperative dynamic
scheduling branch is further classified into optimal and suboptimal solution cases. Same
discussion as was presented for the static scheduling applies here as well. The structure

of this portion of the taxonomy is shown in Figure 2.2 [9].

27

Scheduling
Local Global
Static /Dy‘“‘-’“’\
/\ Physically Physically
Optimal Sub-optimal Distributed Non-distributed
Approximate Heuristic Cooperative Non-cooperative
Optimal Sub-optimal
Approximate Heuristic

Figure 2.2: Scheduling taxonomy

28

¢) Adaptive Versus Non-adaptive: An adaptive scheduler changes its scheduling
decisions in response to the previous behavior of the system. Adaptive schedulers are
usually dynamic because they may collect information about the system and make
scheduling decisions on the fly. A non-adaptive scheduler does not change its scheduling

decisions according to the previous behavior of the system.

d) Preemptive Versus Non-preemptive: Preemptive scheduling permits a task to be
interrupted and removed from the processor under the assumption that it will start later
from the point where it was interrupted. Non-preemptive scheduling permits a task to

run to completion without interruption once it has begun execution.

2.5 Thesis Objective

This thesis deals with genetic based static scheduling of parallel computations with
communications on multiprocessor systems. The parallel computation is represented by
a directed acyclic graph (DAG) in which nodes represent tasks and edges represent
precedence constraints between tasks. The multiprocessor system is composed of a
number of identical processors. Two interconnection topologies, namely, fully connected
and mesh are considered. Contention free communication network will be assumed.
Contention occurs when two or more parallel tasks running on different processors send
messages through one or more common channels. Contention delays the arrival of
messages to their destinations. In a contention free system, the communication channels

have enough capacity to accommodate all transmissions without any conflict. Thus,

29

there is no delay and the time required for sending a unit of data from one processor to
another is fixed. Under the above conditions, the objective is to minimize the finishing
time of a given parallel computation on a given multiprocessor system.

The objective of this thesis is to design a fast and efficient parallel genetic
scheduling algorithm. To achieve this objective, an efficient sequential genetic
scheduling algorithm will be designed. Then, various approaches to parallelize this
algorithm will be studied and the most suitable approach that can be realized easily on a
network of workstations will be selected. Network of workstations has been selected as a
parallel machine because it is readily available in most commercial, educational, and
government organizations. To implement the parallel genetic scheduling algorithm,
PVM (Parallel Virtual Machine) will be used. PVM is a software package that assists

programmers to use distributed systems for parallel processing.

Chapter 3

Literature Review

Various scheduling strategies found in the literature are presented in this chapter with
special attention given to scheduling techniques based on genetic algorithms. The
chapter is divided into three sections. The first section presents static scheduling
approaches. In the second section, some dynamic scheduling algorithms are reviewed. In

the last section, parallel approaches to solve the scheduling problem are discussed.

3.1 Static Scheduling Approaches

In [28], a heuristic called Earliest Task First (ETF) is proposed. ETF maintains a ready
set. This set contains tasks whose predecessors have been scheduled. At each scheduling
step, the earliest starting time of each task in the ready set is computed. This is done by
computing the starting times of each task on all processors. Then, the task with the
earliest starting time is scheduled on the processor where this time obtained. The time

complexity of ETF is O(nm?), where n and m are number of processors and number of

30

31

tasks, respectively.

The reference [32] presents a static scheduling algorithm for allocating task graphs
with arbitrary computation and communication costs to a multiprocessor system with
unlimited number of fully connected identical processors. The proposed algorithm is
called Dynamic Critical-Path (DCP) scheduling algorithm. The idea used in DCP is that
during the scheduling process the critical path (CP) of partially scheduled task graph is
not constant. This is because the communication cost between two tasks is considered
zero if the tasks are scheduled to the same processor. Therefore, DCP assigns dynamic
priorities to the tasks at each scheduling step and selects a task according to the modified
priorities. When scheduling a task on a processor, DCP does not simply minimize the
staring time of this task but also estimate the scheduling effect on the task’s successors
starting times. The complexity of the algorithm is O(+°), where v is the number of tasks

in a task graph.

In [39], a scheduling heuristic called Mapping Heuristic (MH) is described. MH is a
modified list scheduling technique. MH considers real-world constraints such as
interconnection topology of the target machine, processor speed, link transfer rate, and
contention delays. MH uses the level of each node in the task graph as its priority. It
breaks ties by selecting the task with the largest number of immediate successors. If this
does not break the tie, it selects one at random.

When a task is ready, a processor is selected to run that task in such a way that the
task cannot finish earlier on any other processor. The finishing time of a task is

determined by considering: 1) processor speed, 2) link transfer rate, 3) message passing

32

route, 4) number of hopes, and 5) delay due to contention. When a task finishes
execution, the number of conditions that prevent any of its immediate successors from
being run is decreased by one. When the number of conditions associated with a

particular successor becomes zero, then that successor is ready and can be scheduled.

The paper [7] deals with a scheduling problem known as the flow shop problem.
Flow shop is a system where all tasks are decomposed into chains of subtasks. The
subtasks are executed on different processors in turn in the same order. The flow shop
scheduling problem is NP-hard, except for a few special cases. This paper presents a
heuristic to schedule tasks with arbitrary parameters (release times, deadlines and
processing times). The complexity of this heuristic is O(n log(n) + nm), where n and m
are number of tasks and number of processors, respectively.

The heuristic determines the effective release times and effective deadlines of all
subtasks. The effective release time of a subtask is the earliest point in time at which the
subtask can be scheduled. The effective deadline is the point in time by which the
execution of a subtask must be completed to allow later subtasks to complete by their
deadlines.

The heuristic starts by determining the subtask with the largest processing time on
each processor. Then, on each processor inflate all the subtasks by making their
processing times equal to the processing time of the longest subtask. Determine the
bottleneck processor P. The bottleneck processor is the one on which subtasks have
longest processing time. Schedule the subtasks on P according to the earliest-effective-

deadline-first (EEDF) algorithm. If the resultant schedule is feasible, the subtasks meet

33

their deadlines, propagate the schedule onto the remaining processors.
Inflating processing times of the subtasks increases the workload that is to be
scheduled on the processors. This increases the number of release time and deadline

constraints that are not met. Therefore, a compaction step is added to the heuristic that

reduces the idle time.

In [35], a task clustering heuristic with duplication is proposed for the scheduling
problem. The algorithm takes into account inter-task communications and assumes that
there is no limit on the number of processors. The algorithm produces a schedule whose
makespan is at most twice the optimal. The algorithm runs in O(n (n log(n) + e)) time,
where n is the number of tasks and e is the number of edges.

The algorithm computes a lower bound e(v) on the earliest possible start time for
each task v. This is accomplished by finding a cluster, C(v), containing v that allows v to
be started as early as possible. All the nodes in the cluster, C(v), are executed on the
same processor and all other nodes are executed on other processors. Once the clusters
are determined, they are mapped to different processors. The nodes mapped to the same

processor are executed in non-decreasing order of their e values.

The reference [4] presents a scheduling algorithm called Optimal Assignment with
Sequential Search (OASS). OASS constructs the problem as a search tree. It then
searches the nodes of the tree starting from the root. Intermediate nodes represent partial
solutions while the complete solutions (goals) are represented by leaf nodes. Associated
with each node is a cost f. The value of ffor a node v is computed as f{v) = g(v) + A(v). In

the above equation, g(v) is the cost of the search path from the root to the node v, and

34
h(v) is a lower bound estimate of the path cost from the node v to the goal node. The
algorithm always selects a node with the best cost (node with the smallest M) for
expansion. Therefore, the algorithm guarantees an optimal solution. The order in which
tasks are considered for allocation is determined by a heuristic called minimax
sequencing. In this heuristic, we choose a task that would have a maximum bearing on f

as the first task to be assigned.

The reference [3] introduces an approach based on the problem-space genetic
algorithm (PSGA) for scheduling task graphs on multiprocessor systems in order to
reduce the task turnaround time and to increase the throughput of the system. The
proposed PSGA based approach combines the power of the genetic algorithm with a list
scheduling heuristic to search a large solution space efficiently and effectively.

The algorithm reads the task graph, population size N,, and number of generations
Ng. Then, it generates an initial population of strings. The string is an array of integer
numbers representing the priorities of the tasks. After that, the algorithm repeats the
following steps N, times.

1) Apply the list scheduling heuristic to generate a solution for each string in a current
population.

2) Calculate the fitness value of each string.

3) Select strings based on their fitness values from the current population.

4) Apply crossover and mutation to generate a new population.

5) Replace the current population with the new population.

Experimental results showed that PSGA has a fast convergence rate as compared to

35

the standard genetic algorithm. This is due to the heuristic guided search in PSGA

instead of a blind search in standard GA.

The paper [2] deals with a task assignment problem. The task assignment problem is
different from the scheduling problem. In the task assignment problem, precedence
constraints are not taken into consideration, while in the scheduling problem precedence
constraints are preserved in assigning tasks to processors. The task assignment problem
is NP-complete, except for a few special cases.

The paper proposes a problem-space genetic algorithm (PSGA) for the task
assignment problem to reduce the task turnaround time and to increase the throughput of
the system. The PSGA approach combines the genetic algorithm with a simple and fast
problem-specific heuristic. The proposed algorithm is extended for task assignment in

heterogeneous distributed computing systems.

In [6], a genetic algorithm to find a minimal schedule assignment of tasks to
processors in a multiprocessor system is proposed. The string representation is integer
alphabet arranged in one dimension. The ordinal value of an integer in the string
represents a task while its cardinal value represents a processor.

To construct a string for initial population, a random permutation of numbers from
one to n is generated, where n is the number of tasks in a task graph. Then equal number
of tasks is assigned to each processor. This is referred to in the literature as pre-
scheduling. A simple one-point crossover operator is used. It operates on two parent
strings and generates one child string. The mutation operator applied is the pair wise

swap of assignment of tasks to processors.

36

The reference [11] describes a simple randomized heuristic based on the principle of
genetic algorithms for the mapping problem. The mapping problem is the problem of
assigning parallel tasks onto multiprocessor architecture to minimize the overall
finishing time. An integer string representation has been chosen for this problem. The
ordinal value of an integer in the string represents a task while its cardinal value
represents a processor to which that task is mapped. The heuristic begins with an initial
generation of a uniformly random population of strings.

The heuristic applies two genetic operators on strings, namely, crossover and
mutation. The application of crossover operator involves a selection of strings. The
selection of strings is based on their fitness values. Two random crossover points are
chosen over the selected parent strings. The sub-strings demarcated by the crossover
points are exchanged between the parent strings to create two new strings.

The point wise mutation is applied after the crossover. The number of positions that
are to be changed in a string, are chosen from a uniform distribution of values between
zero and one third of the string length. The actual positions to be changed are then
chosen over the string. A new value for a chosen position in the string is selected from a
uniform distribution of values between one and the maximum number of processors.
Then, the heuristic replaces the worst string in the current generation with the new string

if the new string is better than the former.

In paper [12], the problem of mapping is decomposed into sub-problems of task
clustering and clusters allocation. Such decomposition reduces the size of the allocation

problem resulting in a relatively less expensive objective function evaluation.

37
The proposed hybrid genetic mapping algorithm is a combination of the recursive
clustering algorithm for clustering tasks and the genetic algorithm for allocating clusters
to processors. Inter-cluster communication is minimized during the clustering phase.
Inter-processor communication is minimized during the allocating phase.
The major advantage of this combination is that the clustering phase reduces the
number of allocable units to the number of processors. Thus, irrespective of the task
graph size, the total number of processors bound the size of the allocation problem in the

system.

The reference [14] proposes an approach where a genetic algorithm is improved
with the introduction of some knowledge about the scheduling problem. Using a list
heuristic in the crossover and mutation operations does the introducing of knowledge.

The string representation is based on several lists of tasks, where each list represents
the tasks scheduled to some specific processor. To verify the feasibility of a string, the
combined precedence relations implied by the task graph and by the tasks scheduled to
the same processor in the string are used.

The algorithm uses an iterative method to generate strings of an initial population.
This method guarantees uniform distribution of tasks among processors. At each step,
the set of tasks that can be scheduled is determined. A task can be scheduled if all its
predecessors are already scheduled. Then, a task from this set and a processor where this
task will be scheduled are chosen randomly. The disadvantage of this algorithm is its

running time, which is one order of magnitude larger than the pure genetic algorithm.

The paper [26] proposes an algorithm based on genetic algorithms to solve the problem

38
of multiprocessor scheduling. In this algorithm, the string representation is based on
several lists of tasks. Each list represents tasks executed on a processor and the
appearance of tasks in a list depends on their order of execution. The tasks in each list
are ordered in ascending order of their heights. The algorithm generates an initial
population of strings randomly. A legal string is one that satisfies the following: The
precedence constraints among the tasks are satisfied and every task appears only once in
the string.

In each generation, the algorithm computes fitness values of the strings in the
current population. Then, three genetic operators are applied on the population, namely,
reproduction, crossover, and mutation. The reproduction operator selects strings based
on their fitness values from the current population to form a mating pool. The crossover
operator picks any two strings from the mating pool and exchanges portions of them to
create new strings. The mutation operator randomly exchanges two tasks with the same
height in each string. The algorithm is applied repeatedly for a specific number of

generations.

In [38], a genetic algorithm for mapping tasks to processors in a reconfigurable
parallel architecture is proposed. A reconfigurable parallel architecture is a
multiprocessor architecture whose interconnection network topology can be modified
using programmable switches, e.g. transputer-based parallel processors. The problem of
mapping tasks to processors in a reconfigurable parallel architecture is consists of the
following sub-problems.

1) Assigning tasks to processors (mapping problem).

39

2) Configuring the processor graph (link allocation problem).
3) Ordering the execution of the tasks allocated to a processor (scheduling problem).

The string representation consists of the following components: mapping
information, link allocation information, and scheduling information. The algorithm uses
a composite fitness function, which measures the total execution time of the tasks under
a given mapping, a given configuration of processors, and a specified schedule. In
addition, it uses three different crossover operators, one for each component of the
string.

The paper presents an extension of the algorithm that can take into account
heterogeneous platforms, where each task can be executed on a particular class of

processors.

The paper [45] describes a genetic algorithm to schedule tasks on processors in
order to minimize the maximum task finishing time. In this algorithm, the string
representation is based on two-dimensional matrix called allocation matrix. The
allocation matrix, 4, is an n x n matrix, where » is the number of tasks in a task graph.
For a string, 4;, = 1 if task i precedes task J on the same processor, otherwise A;=0.

The crossover operator mates two selected strings to form two new strings. It selects
a column from one to (n-1) and cuts the allocation matrix vertically in two parts at the
selected column. Then, it exchanges the right parts of the two allocation matrices. The
mutation operator for this algorithm selects randomly a number of positions in an
allocation matrix and complements their values.

The disadvantage of this algorithm is that the crossover and the mutation operators

40

may generate invalid strings. Thus, a repair operation is applied after each crossover and

mutation.

The paper [48] presents a genetic algorithm to solve the problem of task scheduling
in distributed computing system. The string representation is based on several lists. Each
list is associated with a processor. To verify the feasibility of a string, tasks are arranged
in ascending order of their heights in each list.

The crossover operator selects a task randomly and assigns the selected task and all
its immediate successors to a set (E). Then, for each processor in both parent strings the
following steps are performed. First, extract tasks from the list of tasks associated with
this processor such that the extracted tasks are in the set (E). Then swap the extracted
tasks between the tow parent strings.

In mutation, a processor with the latest finishing time is selected. On this processor,
the longest idle period is determined. The task right after this idle period is extracted
from the list of tasks associated with this processor and inserted into a list of tasks
associated with a processor where data dominant parent (DDP) of this task is assigned.

Data dominant parent is a task that transmits the largest volume of data to this task.

In [47], a genetic algorithm is presented to solve the problem of multiprocessor
scheduling in heterogeneous environment. In heterogeneous environment, the
characteristics of tasks and the properties of processors should be considered. The string
representation is an array of integer numbers, where the ordinal value of an integer
represents a task while its cardinal value represents a processor.

The algorithm introduced a new crossover operator, called x-pocket crossover. When

41
string X and string ¥ exchanging their i genes to each other, both i genes are inserted
into a pocket. All processors with the most suitable types for the i task also inserted
into the pocket. Then, the crossover picks two processors from the pocket and assigns

one of them to the i gene of X and the other to that of Y.

The paper [49] presents a genetic algorithm to solve a scheduling problem known as
the hybrid flow shop. The hybrid flow shop is a generalization of the flow shop problem,
and characterized as the scheduling of jobs in a flow shop environment where there may
exist multiple machines in one or more stages. For stages with multiple machines, jobs
may be processed on any machine.

The proposed algorithm is based on the list scheduling principle. It develops job
sequences for the first stage, and then jobs are queued in a FIFO manner for the
remaining stages. Job sequence, denoted as integers, is used in the proposed algorithm as
string representation.

Two genetic operators, namely, crossover and mutation are applied on the strings.
Partially mapped crossover (PMX) is used. The crossover operator may generate invalid
strings; therefore, each crossover must be succeeded by a repair operation. In mutation,

two jobs are selected randomly and their positions are exchanged.

3.2 Dynamic Scheduling Approaches

The paper [23] describes a dynamic scheduling algorithm, called self-adjusting

scheduling algorithm (SASH), for a heterogeneous computing system interconnected

42

with an arbitrary communication network. A completely heterogeneous system is one in
which the degree of uniformity in both the processing elements and the communication
channels is low.

The algorithm uses a maximally overlapped scheduling and execution paradigm to
schedule a set of independent tasks. Overlapped scheduling and execution in SASH is
accomplished by dedicating a processor to execute the scheduling algorithm. SASH
performs repeated scheduling phases in which it generates partial schedules. At the end
of each scheduling phase, the scheduling processor places the tasks scheduled in that
phase onto the local queues of the working processors. The scheduling processor then
schedules the next subset of tasks while the working processors execute the previously
scheduled tasks. During a single scheduling phase, the algorithm schedules tasks until
the least-loaded working processor has completed executing all the tasks on its local
queue.

A unique aspect of the algorithm is that it easily adapted to different task
granularities, to dynamically varying processor and system loads, and to system with
varying degrees of heterogeneity. The experiments showed that the performance
resulting from SASH, compared to the performance resulting from existing scheduling
heuristics, could outweigh the loss in performance caused by dedicating a processor for

scheduling, even in systems with a small number of processors.

The paper [41] presents dynamic uniprocessor scheduling algorithm for hard real-
time tasks. The algorithm accepts or rejects a task by performing feasibility analysis, i.e.

decides whether a new task can be scheduled to meet its timing constraints.

43

When a new task T arrives, T is placed in order into earliest deadline first list (EL).

EL records all previously scheduled tasks. A subset of tasks in EL, whose scheduling

interval conflict with the scheduling interval of 7, is rescheduled. A task 7 is considered

schedulable if all of the tasks in the subset are schedulable. Otherwise, T is considered
unschedulable, and it is removed from EL.

The complexity of this algorithm is O(n log(n)) in the worst case, where » is number

of tasks in EL. The paper also presents a simple extension of the algorithm that can take

into account precedence constraints among tasks.

In [36]), a hard real-time genetic algorithm called MicroG4 is proposed. The
objective of MicroGA is to dynamically schedule as many tasks as possible such that
each task meets its execution deadline, while minimizing the total delay time of all tasks.

The algorithm represents a schedule of tasks in a string as a permutation of the tasks
known to the system at a time. Each gene represents a task and the corresponding order
of the tasks determines the schedule. Each task has an associated run-time and deadline.
Since the processing must be done in real-time, we use a small population size and run
MicroGA for a small fixed number of generations (N,). After each N; generations, the
first task in the best string is scheduled for execution. Then, in each string the scheduled

task is replaced by a new task. The new task is obtained from the external task queue.

The paper [19] presents four variations of a new scheduler called leas? genetic (LG)
to schedule dynamically evolving parallel programs in distributed multiprocessor
systems. The least-genetic scheduler is consists of two schedulers, namely, lest loaded

and genetic. The least loaded scheduler schedules a single task at a time by assigning it

44
to the least loaded processor. On the other hand, genetic scheduler schedules a set of
tasks in a single activation by the application of genetic algorithm. Tasks are
accumulated to fill the string before genetic scheduler is activated. This accumulation
will only be in operation when the host machine perceives that every machine in the
system has at least a minimum number of tasks in its ready queue. The proposed

scheduler considers both load balancing and communication minimization.

3.3 Parallel Scheduling Approaches

The reference [4] also describes a parallel version of OASS (refer to Section 3. 1) called
Optimal Assignment with Parallel Search (OAPS). OAPS generates optimal solution for
assigning an arbitrary task graph on an arbitrary network of homogeneous or
heterogeneous processors.

Initially the search space is divided according to the number of scheduling
processors P and the maximum number of successor S of the initial node. There are three
cases:

1) If P < §, each scheduling processor will get one node and get additional nodes in
Round Robin fashion.

2) If P =S, each scheduling processor will get one node.

3) If P> S, each scheduling processor will keep expanding nodes until the number of
nodes arc greater than or equal to the number of scheduling processors. Then, the
resulted nodes are sorted in increasing order of cost values of the nodes. First node

will go to the first scheduling processor, second node will go to the second

45
scheduling processor and so on. Extra nodes will be distributed in Round Robin
fashion.

Given an initial partition, every scheduling processor first sets up its neighborhood
to find out which scheduling processors are in its neighbor. Then, every scheduling
processor will run the Optimal Assignment with Sequential Search (OASS).

If there is no communication between scheduling processors after the initial
partitioning, some of the scheduling processors may work on good part of the search
space, while others may expand unnecessary nodes. Thus, scheduling processors need to
communicate to share the best part of the search space. In OAPS, scheduling processors
achieve this by periodically selecting a neighbor and then sending its best node to that
neighbor.

The paper [8] proposes a parallel scheduling algorithm (PSA) for scheduling a set of
n partially ordered tasks on m-processor parallel computing system. The proposed
algorithm is based on Earliest Task First (ETF) approach. Therefore, PSA schedules a
task 7" on a processor P if the earliest starting time of T on P is the smallest among all the
ready tasks and all the ready processors. A task is ready if all its predecessors are already
scheduled. All scheduling processors share the scheduling load. Thus, each scheduling
processor executes PSA algorithm for a different subset of tasks and processors. The
scheduling processors cooperate in terms of task ready time, processor free time, and
task completion time. Using O(mn) scheduling processors, where n is the number of
tasks and m is the number of application processors, the time complexity of the

algorithm is O(n (log(m) + log(n))).

46

The paper [16] presents parallel scheduling algorithm developed by using binary
trees. The algorithm considers tasks with release times and deadlines. The algorithm
consists of three main steps, namely, preprocessing, a bottom-up pass, and a top-down
pass.

The preprocessing step in the proposed algorithm sorts tasks by release times into
non-decreasing order. Tasks with the same release time are sorted into non-decreasing
order of deadlines. Then, a binary computation tree with k leaves is associated with the
problem, where £ is the number of distinct release times of the tasks. With each node in
the tree, a time interval (¢, 1,) is associated.

In the bottom-up pass, the used and the transferred sets of tasks for each node in the
computation tree are determined by using the available sets of tasks. The available set
consists of exactly of those tasks that have a release time greater than or equal to # and
less than . The used set consists of exactly of those available tasks that will be
scheduled between 1, and 1,. The remaining tasks make up the transferred set.

In the top-down pass, the used sets are updated so that the used set for a node
representing the interval (¢, ¢,) is precisely the subset of the tasks that is scheduled in this

interval for the entire task set.

The paper [36] also presents a parallel modei of MicroG4 algorithm (refer to
Section 3.2). The parallel MicroGA uses one host and several processors. The general
scheduler runs on the host and its only function is to maintain a queue of tasks and
distribute these tasks to the processors, as they become available. The processors take

the tasks from the host and process them in the same way as sequential MicroGA do.

47

The paper presents two models of parallel MicroGA, one allowing communications
between scheduling processors and the other not allowing communications. In the first
model also called migration model, certain number of the largest delay tasks appearing
in the best string of each processor is passed to one of the neighbor processors. This step
is done once every execution of MicroGA for a fixed number of generations. The paper

shows that the migration model of parallel MicroGA is better than no migration.

Chapter 4

Sequential Genetic Scheduling
Algorithm

In this chapter, a new sequential genetic scheduling algorithm called level-based Zenetic
algorithm (LGA) is designed. This algorithm will then be used as a building block upon
which to develop the parallel genetic scheduling algorithm.

In Section 4.1, test problems generation techniques are described. Then, detailed
discussion of the sequential genetic scheduling algorithm developed is presented in

Section 4.2. Finally, Section 4.3 presents the experimental results.

4.1 Test Problems Generation

To evaluate the performance of LGA, a random parallel computation generator (RPCG)
is implemented and used to generate task graphs of various sizes. The computation times
of the tasks as well as the communication costs between tasks are selected randomly

from the integer range of 1 to 20. The number of tasks at each height level is a random

48

49

number between 8 and 24. The height of a task is based on the number of predecessors
it has. If a task has no predecessor, its height is zero; otherwise, the task’s height is the
maximum of its predecessors’ heights plus one. The number of successors for a task is a
random number between 2 and 10. A task selects 70% of its successors from tasks at the
next height level and the remaining 30% from tasks at other height levels. RPCG also
generates system graphs with various sizes and topologies. Two system topologies are
considered, namely, fully connected and mesh. Task graphs generated by RPCG and
used in this thesis are given in Table 4.1. The columns in this table are the task graph
name, the number of tasks in the task graph, and the schedule length of the task graph in
time units on a single processor.

The sequential genetic scheduling algorithm is also tested on a number of task
graphs for which optimal schedules are known in advance. The technique used to
generate such task graphs is presented in [6]). We called it optimal parallel computation
generator (OPCG). OPCG generates a random Gantt chart such that each slice in the
Gantt chart corresponds to a task and its width represents the computation time of that
task on the given processor. Then, precedence relations between tasks are defined as
follows. Several pairs of tasks (7; and 7)) are chosen randomly such that the finishing
time of 7; is before the starting time of T;. If 7; and 7} are on different processors, the
communication cost is equal to or less than the separation between the finishing time of
T; and starting time of T}; otherwise, the communication cost is any arbitrary number.
Task graphs generated by OPCG and used in this thesis are presented in Table 4.2. The
columns in this table are the task graph name, number of tasks in the task graph, number

of processors in the system graph, the length of the optimal schedule, and the schedule

Task Graph ~ No. Tasks Scl(l)end:l;mL::sg;;on

ml00 100 991

ml50 150 1481
m200 200 1904
m250 250 2528
m300 300 3061
m350 350 3493
m400 400 4073
m450 450 4397
m500 500 4874

50

Table 4.1: Task graphs generated by Random Parallel Computation Generator (RPCG)

s1

Task Graph No. Tasks No. Processors Optiniaelnsgct::edule os:ge::l;rg::sgs? r
on140mS5 140 5 310 1550
onl65m7 165 7 287 2009
onl91mé6 191 6 375 2250
on219m4 219 4 602 2408
on293m7 293 7 503 3521
on329mS5 329 5 735 3675
on350m4 350 4 958 3832
on373m3 373 3 1333 3999

Table 4.2: Task graphs generated by Optimal Parallel Computation Generator (OPCG)

52

length of the task graph on a single processor. In our implementation, the computation

time of a task is selected randomly in the range 1-20, and the number of successors for
each task is a random number between 2 and 10. Fully connected parallel systems are
considered to generate such task graphs. Therefore, the lengths of the optimal schedules
given in Table 4.2 are only true if these task graphs are scheduled on fully connected

parallel systems with the number of processors specified in this table.

4.2 Design of the LGA

In this section, basic components of LGA are discussed one by one in detail. These
components are string representation of schedules, fitness function, method to create
initial population, genetic operators (reproduction, crossover, and mutation), and control

parameters.
4.2.1 String Representation

String representation used in LGA is based on several lists of computational tasks. Each
list corresponds to tasks scheduled on some specific processor, therefore, the number of
lists are equal to the number of processors in a parallel system. The order of the tasks in
a list indicates the order of execution. To ensure that this representation presents feasible
schedules, tasks are arranged in descending order of their levels in each list. A schedule
is called feasible if the precedence constraints between tasks are satisfied and every task

appears exactly once in the schedule.

53

The level of a task (7)) in a task graph is denoted by /(T;) and defined as follows:

0 if suce(T)) = 0

IT) = T) + @.1
Max {(T)+ T, T) : T, € succ(T;)} otherwise.

Where,

succ(T;) is the set of successors of T,

1AT)) is ihe execution time of T;.

7XT;, T)) is the communication cost between 7; and T;.

This ordering maintains the precedence constraints between tasks assigned to the
same processor and ignores the precedence constraints between tasks assigned to
different processors. This is because the precedence constraints between tasks assigned
to different processors do not come into play until the moment of calculating the
finishing time of the schedule. Figure 4.1 shows an example of a string representation

for the task graph and the system graph presented in F igure 2.1.

4.2.2 Fitness Function

A suitable objective function is required to formulate the scheduling problem as an
optimization problem. The objective function used in LGA is based on the finishing time
of the schedule. The finishing time (FT) of a schedule (S) is defined as follows:

FI(S)= Max {finishing time (P;)} 4.2)
1<ism

P2
P3

Figure 4.1: String representation

54

55
Where,
finishing time (P;) is the finishing time of the last task on processor P;.
m is the number of available processors.
Genetic algorithms work naturally on the maximization problem, while the
mentioned objective function (finishing time of a schedule) has to be minimized.
Therefore, it is necessary to convert the objective function into maximization form called

JSitness function. The fitness function can be defined as follows:

A8) = FTpa — FI(S) 4.3)
Where,
AS) is the fitness value of schedule S.

FTmay is the maximum finishing time observed in the current population.

4.2.3 Initial Population

In LGA, initial population is constructed randomly. The technique to generate initial
population is divided into two steps, namely, preprocessing and assigning. In the
preprocessing step, tasks are separated into sets according to their levels and the sets are
arranged in descending order of levels. The preprocessing step is done only once. In the
assigning step, a task is picked randomly from a set and assigned randomly to a
processor until all tasks of this set are assigned. This process is performed for all sets one
after the other as they are arranged. In this way, a string of the initial population is

constructed. The assigning step is repeated until all strings of the initial population are

56

generated. This technique guarantees that the distribution of tasks among processors is
uniform and tasks assigned to a processor are arranged in descending order of their

levels.

4.2.4 Reproduction

The level-based genetic algorithm (LGA) uses roulette wheel technique for reproduction.
Refer to Section 1.2 for detailed discussion of this technique. The size of the mating pool

generated by reproduction equals to the population size.

4.2.5 Crossover

Crossover is the main operator in LGA. It takes a pair of parent strings (schedules) and
swaps their substrings with each other to produce two new strings. In the scheduling
problem, the swapping of substrings changes the assignment of tasks to processors. The
crossover operator, adopted from [48], is described in the following paragraph.

First, a task 7; is selected randomly from the task graph. Then, immediate successors
of task T; are selected. The set containing task 7; and all its immediate successors is
called swapped _tasks. Let the first parent string denoted by .X and the second parent
string denoted by Y. Next for each processor, P;, in both strings X and Y do the following
steps. Extract the tasks in swapped_tasks from the list of tasks assigned to processor P;.
The set of extracted tasks from string .X and the set of extracted tasks from string Y are

called extracted X and extracted_Y, respectively. Then, insert the tasks in extracted Y

57

into the list of tasks assigned to processor P; in string X. Similarly, insert the tasks in

extracted_X into the list of tasks assigned to processor P; in string Y. The insertion is
done in such a way that the tasks arranged in descending order of their levels. Thus, the
crossover operator generates feasible strings. A working example of the crossover
operation is shown in Figure 4.2 for the task graph shown in Figure 2.1. The tasks in

swapped_tasks are T, T7, and T for this example.

4.2.6 Mutation

In LGA, mutation randomly selects a task 7; in a schedule S and removes it from the
processor P; to which it is assigned. Then, it selects another processor P; randomly and
inserts the selected task 7; into the list of tasks assigned to this processor. The insertion
is done in such a way that the descending order of the tasks according to their levels is

not violated.

4.2.7 Control Parameters

Crossover probability, mutation probability, and population size are control parameters
on which the performance of genetic algorithms depends. The setting of these
parameters is very difficult and requires extensive experimentation. We relayed on the
empirical results that exist in the literature to set these parameters for LGA. The control
parameters used in LGA are as follows:

e Crossover probability : 0.9

String X

String Y

String X

String Y

Before crossover

P,

P

P,

Py

After crossover

Py

P,

Py

1

Figure 4.2: An example of crossover operation

58

59

e Mutation probability :0.05
e Population size :50
Now, we can combine all the components discussed above to form the level-based

genetic scheduling algorithm (LGA). The structure of LGA is shown in F igure 4.3.

4.3 Experimental Results

The proposed level-based genetic scheduling algorithm (LGA) has been implemented as
a set of C procedures on a Sun Ultra Sparc 10 workstation and tested on task graphs
presented in Table 4.1 and Table 4.2. To evaluate the effectiveness of the level based
ordering technique used in LGA, we modified LGA such that the modified algorithm
uses the ordering technique presented in [26, 48]. We called it height-based genetic
algorithm and denoted it by HGA for short. HGA arranged tasks assigned to the same

processor in ascending order of their heights. The height of a task (T?) in a task graph is

defined as follows:
0 if pred(T) =0
height(T)) = 4.4)
1+ Max heigh(T) otherwise.
T, € pred(T)
Where,

pred(T)) is the set of predecessors of 7T}
In order to evaluate the impact of various parameters on the performance of the
algorithms, three experiments were conducted. These parameters are task graph size,

system graph size, and system topology. the schedule length is the performance measure

60

P, = Population size.

Ng = Number of generations.
P. = Crossover probability.
P = Mutation probability.

Create initial population Pypen Of size P,
Compute the fitness value of each string in Pcyrent.

Fori=1to Ngdo
Begin

End.

Perform reproduction to construct mating pool of size P,

Forj=11to P,do
Begin
Pick two strings from the mating pool.
Generate a random number p.
If p < P. then perform crossover and put the new strings in Ppew.
Otherwise, put the two strings picked in Ppew.
End.

Forj=1to P,do
Begin

Perform mutation with probability P, on strings of Ppew.
End.

Compute the fitness value of each string in Ppey.
Peurrent < Ppew.

Return string with highest fitness value in the last population.

Figure 4.3: Structure of the level-based genetic algorithm (LGA)

61

considered in the evaluation. Both algorithms are set to run for a fixed number of
generations, which is set to be 10 times the number of tasks in a task graph. Henceforth,
this linear relationship between the number of generations and the number of tasks in a
task graph was considered in our experimentation. For LGA as well as HGA, the
population size was fixed at 50 and the population was randomly seeded by using the
time function of C.

The first experiment measures the effect of changing the task graph size and the
system graph topology on the performance of the algorithms. In this experiment, the
schedules generated by HGA and LGA for task graphs shown in Table 4.1 are
compared. Two system topologies, namely, fully connected and mesh are considered,
and the number of processors is fixed to eight. The results are shown in Table 4.3 and
Table 4.4 for fully connected and mesh systems, respectively. In each table, the first
column gives the name of the task graph. The length of the schedule generated by HGA
and that generated by LGA are shown in the second and the third columns, respectively.
The last column shows the percentage of improvement obtained in schedule quality by
LGA over HGA. It is clear from the tables that the performance of LGA is consistently
better than the performance of HGA for all cases. The improvement gained in schedule
quality by LGA over the HGA is better for the mesh system compared to the fully
connected system such that the average improvement is 6.0% for the mesh system and
5.89% for the fully connected system.

The second experiment measures the impact of changing number of application
processors (Ap) on the performance of the algorithms. In this experiment, fully

connected systems of sizes 4,8,16 and 32 of similar processors are considered. The com-

Schedule Schedule .
Task Graph Lengthby Lengthby LmProvementin

HGA LGA Schedule Quality %
100 224 223 0.45
mi50 326 310 4.91
m200 441 412 6.57
m250 558 536 3.94
m300 704 660 6.25
m350 833 774 7.08
m400 886 826 6.77
m450 974 898 7.80
m500 1149 1042 9.31

Table 4.3: Comparison of HGA and LGA for task graphs generated by RPCG
on 8-processor fully connected topology

Schedule Schedule

Task Graph Lengthby Length by Improvement in

HGA LGA Schedule Quality %
mi00 313 290 7.35
ml50 438 408 6.85
m200 583 574 1.54
m250 778 745 4.24
m300 943 920 2.44
m350 1113 1049 5.75
m400 1208 1113 7.86
m450 1334 1198 10.19
m500 1538 1418 7.80

Table 4.4: Comparison of HGA and LGA for task graphs generated by RPCG
on 8-processor mesh topology

64

parison results are provided in Table 4.5. In this table, a ratio grater than 1.0 indicates a
case where LGA performed worse than HGA. As shown in the table, the schedules
generated by LGA are better than or equal to those generated by HGA except for one
case in which LGA performed worse than HGA.

The last experiment designed to measure how good are the schedules generated by
the algorithms. Therefore, task graphs shown in Table 4.2 are scheduled by both LGA
and HGA, and the results are shown in Table 4.6. The first column in the table gives the
name of the task graph. The length of the optimal schedule is shown in the second
column of the table. The length of the schedule generated by HGA and its quality
compared to the optimal schedule are shown in the third and the fourth column,
respectively. The two last columns in the table show the length of the schedule generated
by LGA and its quality compared to the optimal schedule. It is evident from the table
that there is no single case in which LGA technique performed worse than HGA
technique. For LGA, the schedule quality in all cases is within 80% of the optimal and
the average schedule quality is within 87% of the optimal, while for HGA the average
schedule quality is within 69% of the optimal.

As noticed from the above experiments, LGA outperformed HGA under a wide
range of parameters. This is because some feasible schedules cannot be generated by
HGA for some scheduling problems. In fact, the search space of HGA may not contain
any optimal schedule. A simple example of such problems is the scheduling of the task
graph shown in Figure 4.4 [14] on two processors. The length of the optimal schedule
for this problem is 13. LGA can generate the optimal schedule, while HGA can never

reach it due to the height ordering restriction.

Task Graph LGAHGA
Ap=4 Ap=8 Ap=16 A,=32
ml00 0.98 0.99 1.00 0.96
ml150 0.98 0.95 0.99 0.99
m200 0.94 0.93 0.98 1.00
m250 0.95 0.96 0.95 1.01
m300 0.92 0.94 0.97 0.99
m350 0.93 0.93 0.96 0.99
m400 0.92 0.93 0.98 0.99
m450 0.94 0.92 0.95 0.99
m500 0.90 0.91 0.97 0.97

65

Table 4.5: Relative comparison of HGA and LGA for task graphs generated by RPCG

on fully connected topology of different number of processors (Ap)

. HGA LGA
Task Graph sa,:iﬁ.‘;“{i’.,gm Schedule ¢ . o, Schedule .
Length SOh Quality % “Fooi€ Sol. Quaity %
on140ms5 310 416 74.52 362 85.63
on165m?7 287 403 71.21 358 80.17
on191mé 375 523 71.70 442 84.84
on219md 602 894 67.34 678 88.79
on293m7 503 742 67.79 579 86.87
on329ms 735 1097 67.00 844 87.08
on350m4 958 1451 66.02 1044 91.76
on373m3 1333 2059 64.74 1496 89.10

Table 4.6: Comparison of HGA and LGA for task graphs generated by OPCG

67

Figure 4.4: Example where the optimal schedule does not
satisfy the height constraints

Chapter 5

Parallel Genetic Scheduling
Algorithm

This chapter presents the parallel version of the level-based genetic scheduling
algorithm. In Section 5.1, detailed discussion of the parallel level-based genetic
algorithm (PLGA) is provided. The environment in which the experiments were
performed and the implementation issues are presented in Section 5.2. Finally, the

empirical results are shown in Section 5.3.

5.1 Design of the PLGA

The parallel level-based genetic algorithm (PLGA) for the scheduling problem is based
on the island model of GA. The island model of GA was selected for two reasons.
Firstly, the island GA can be implemented easily on a network of workstations.
Secondly, the island model of GA requires less communication overhead compared with

other models.
68

69

The basic idea of PLGA is to divide the population into several subpopulations;
each of these subpopulations is randomly initialized and placed on a different scheduling
processor (workstation). Each workstation runs the level-based genetic algorithm (LGA)
on its own subpopulation, periodically selects the best string from its subpopulation and
broadcasts copies of it to all other workstations. It will also receive copies of the best
strings broadcasted from every other workstation. When a workstation receives a string,
it replaces the string with the lowest fitness value in its subpopulation by the received
string if the fitness value of the first is lower than the fitness value of the second.

It is possible that after a certain number of migration operations, each subpopulation
contains a copy of the globally fittest string and only copies of this string migrate
between subpopulations. Inserting copies of this string into subpopulations may lead to
lose the diversity between subpopulations and thus drift the whole population to be
prematurely converged. Therefore, each workstation broadcasts the best string in its
subpopulation only if it is updated since last migration operation.

The structure of PLGA that runs on each workstation is shown in Figure 5.1. The
genetic operators (reproduction, crossover, and mutation) as well as the fitness function
and the method to construct initial population are the same as those used in the level-
based genetic algorithm (LGA).

Subpopulation size assigned to each workstation affects both the quality of the
schedule generated and the running time of PLGA. Therefore, to show the usefulness of
PLGA for the scheduling problem, it is important to compromise between the schedule
quality and PLGA running time by selecting a suitable subpopulation size.

In the first experiment, the affect of assigning a subpopulation of size (Ps/W) to each

SP, =

70

Subpopulation size.

Ng = Number of generations.

P. = Crossover probability.

P =Mutation probability.

W = Number of scheduling processors (workstations).

Create initial subpopulation Pcypen of size SP,.
Compute the fitness value of each string in Pcyrrent.
Fori=1to Ngdo

Begin

Best-string « string with highest fitness value in the current subpopulation Pyrren.
Perform reproduction to construct mating pool of size SP,.
Forj=1 to SP;do
Begin

Pick two strings from the mating pool.

Generate a random number p.

If p < P, then perform crossover and put the new strings in Pyey.

Otherwise, put the two strings picked in Ppey.

End.
Forj=11to SP,do
Begin
Perform mutation with probability P,, on strings of Ppey.
End.

Compute the fitness value of each string in Ppew.
Peurrent €<= Prew

If (migration generation)
Begin
If Best-string is updated, send copies of it to all workstations.
Forj=1to (W-1)do
Begin
Receive copy of a broadcasted string.
Replace string with lowest fitness value in Poygen by the received

string.

End.

End.
End.

Figure 5.1: Structure of the parallel level-based genetic algorithm (PLGA)

71

workstation is studied, where P, = 50 (population size used by LGA) and W is the
number of workstations in a parallel machine. The parallel machine used had four
workstations and the migration occurred after every generation (migration frequency =
1). PLGA selects subpopulation sizes in such a way that the sum of them equals the
population size in LGA. Therefore, for the case of four workstations, one of the
workstations has a subpopulation of size 14 and each of the remaining workstations has
a subpopulation of size 12. We compared PLGA with LGA in terms of the schedule
length and the running time. The comparison results are shown in Table 5.1. As shown
in the table, PLGA performed better than LGA except for one case in which the schedule
generated by PLGA is 2% poorer than the schedule generated by LGA. However, PLGA
required at most 50% of the time required by LGA.

To improve the schedule quality, we conducted several experiments and tried
different subpopulation sizes. In these experiments, a parallel machine consists of four
workstations was used and the migration frequency was set to one. We found that the
most suitable subpopulation size is (P/W + 0.4P,). By using this subpopulation size, the
total number of strings in the whole population increases as the number of workstations
increases in the parallel machine. We compared PLGA with LGA and the comparison
results are presented in Table 5.2. It is clear from the table that the schedules generated
by PLGA are better than the schedules generated by LGA. Furthermore, PLGA required
at maximum 85% of the time required by LGA. Note that the running time of PLGA also
depends on the migration frequency and can be reduced by using larger migration
frequency. Henceforth, the subpopulation size is set to (PJ/W + 0.4P,) in our

implementations.

72

LGA PLGA
ToskGraPh Sohedule R Time Schedule R Time
Length (seconds) Length (seconds)
m100 223 22 212 1
m150 310 49 316 20
m200 412 93 403 33
m250 536 138 517 48
m300 660 206 649 68
m350 774 280 745 93
m400 826 371 790 124
m450 898 462 862 149
m500 1042 589 1013 187

Table 5.1: Comparison of LGA and PLGA for task graphs generated by RPCG
on 8-processor fully connected topology (SP. = P/W)

LGA PLGA

Task Graph ¢\ odule R Time Schedule R Time
Length (seconds) Length (seconds)

ml00 223 22 207 19
mil50 310 49 306 39
m200 412 93 394 73
m250 536 138 514 106
m300 660 206 635 153
m350 774 280 741 209
m400 826 371 787 273
m450 898 462 862 339
m500 1042 589 1000 431

Table 5.2: Comparison of LGA and PLGA for task graphs generated by RPCG
on 8-processor fully connected topology (SP. = P/W + 0.4 Py

74

The performance of PLGA depends on the interval between two consecutive
migrations, called migration frequency (MF). The setting of this parameter effect the
running time of PLGA as well as the quality of the schedule obtained. Thus, we tested
four migration frequencies and no migration. The comparison results are given in Table
5.3. Different migration frequencies show better results for different task graphs. This is
normal given the random nature of subpopulations and generations. However, in all
cases, results were better than no migration case. Even without migration, PLGA
performed better than LGA for a number of task graphs. It is obvious from the table that
migrating after every five generations gives better schedules for more task graphs.
Therefore, we set the migration frequency to five in our experimentation.

Now we can summarize the interaction between scheduling processors
(workstations) as follows. After every five generations, each workstation broadcasts
copies of the best string in its subpopulation to all other workstations if the best string is
updated since the last migration operation. Thus, in each migration operation, every
workstation receives at most a total of (W — 1) strings (W is the number of workstations
in a parallel machine). When a string is received by a workstation, it replaces the worst
string in its subpopulation by the received one. This is done only if the fitness value of
the received string is higher than the fitness value of the worst string in the

subpopulation.

5.2 Computational Environment

The level-based genetic algorithm (LGA), presented in chapter 4, was implemented on

75

PLGA
Task Graph LGA

No Migration MF=1 MF=5 MF=10 MF=20

ml00 223 207 207 205 207 204
mlS0 310 320 306 302 300 310
m200 412 414 394 395 399 395
m250 536 527 514 504 520 514
m300 660 660 635 628 630 631
m350 774 753 741 729 747 748
m400 826 816 787 786 788 791
m450 898 886 862 861 856 848
m500 1042 1038 1000 1003 1009 1006

Table 5.3: Comparison of migration frequencies (A/F) for task graphs generated by
RPCG on 8-processor fully connected topology

76

SUN Ultra Sparc 10 workstation running Solaris operating system. Therefore, to show
the correctness of the parallel version of the level-based genetic algorithm (PLGA) and
to evaluate its performance relative to the performance of LGA, PLGA is implemented
on a network of SUN Ultra Sparc 10 workstations. In order to simplify the usage of the
network of SUN workstations as a parallel machine, a software package called Parallel
Virtual Machine (PVM) is used. The development of PVM started in1989 at Oak Ridge
National Laboratory and is now an ongoing research project. An overview of this

package is presented in the following subsection.

5.2.1 PVM Overview

The PVM is an integrated set of software tools and libraries that enables a network of
heterogeneous Unix computers to be used as a single high-performance parallel
machine. Therefore, large computational problems can be solved by using the aggregate
power of many computers. PVM transparently handles all data conversion that may be
required if two computers use different integer or floating point representation. It also
handles all message routing and task scheduling across the network of incompatible
computers.

The PVM computing model is based on the notion that an application program
consists of several cooperating tasks. Each task is responsible for a part of the
application’s computational workload. These tasks access PVM resources through a
library of standard interface routines. These routines allow the initiation and termination

of tasks as well as communication and synchronization between them.

77

PVM tasks may possess arbitrary control and dependency structures. Therefore, at
any point in the execution of a parallel application, any PVM task may start or stop other
tasks or add or delete computers from the parallel machine. In addition, any PVM task
may communicate or synchronize with any other task. Therefore, the general form of
MIMD parallel computation is possible.

The PVM system is composed of two parts. The first part is a daemon, called pvmd.
The pvmd resides on all the computers making up the parallel virtual machine. To run a
PVM application, pvmd must be executed on one of the computers that in turn starts up
pvmd on all other computers making up the user-defined parallel virtual machine. Then,
the PVM application can be started from a Unix prompt on any of these computers.

The library of PVM interface routines is the second part of the system. Users can
call these routines for messages passing, processes spawning, tasks coordinating, and
virtual machine modifying.

C, C++, and FORTRAN languages are currently supported by the PVM system.

This is due to the widespread usage of these languages for large applications.

5.2.2 Implementation Issues

PLGA is based on the master-slave model of programming. The master process provides
the user interface and manages all other processes called slave processes. The total
number of processes is equal to the number of workstations in a parallel machine and
each process is assigned to a different workstation. In this way, overloading the

workstations is avoided.

78

The master process obtains from the user information about the problem to be
solved. This information are the number of application processors, the number of
application tasks, the precedence relations between tasks, the communication costs
between tasks, the communication costs between application processors. It then starts
slave processes. Once this is done, the master process sends each slave process the
information obtained from the user about the problem. It also sends each slave process
some information about other processes. Broadcasting this information helps slave
processes to communicate with each other.

Each slave process sends the best schedule in its subpopulation to the master process
before termination. When all slave processes have terminated, the master process outputs
the best overall schedule. Master process also does the timing of the program. The

implementation of the parallel level-based genetic algorithm is shown in F igure 5.2.

5.3 Experimental Results

Our hypothesis was that PLGA would generate schedules of quality better than or equal
to the quality of schedules generated by LGA. Further, the running time of PLGA would
be less than the running time of LGA.

The parameters used in PLGA are same as those used in LGA. The crossover
probability and the mutation probability are set to 0.9 and 0.05, respectively. PLGA is
set to run for a fixed number of generations, which is set to be 10 times the number of
tasks in a task graph. In PLGA, each subpopulation is randomly seeded by using the time

function of C plus an integer number. Each process uses a different integer number from

W = Number of scheduling processors (workstations).

Get task graph and system graph.
Get list of workstations.

Forj=1to (W-1)do

Begin
Create a slave process.
End.

Forj=1to (W-1)do
Begin

Send task graph, system graph, and list of workstations.
End.

{Execute the parallel level-based genetic algorithm (PLGA). (Figure 5.1)}

Receive the fittest string of each slave process.
Return the overall fittest string.

(a) Master process

Receive task graph, system graph, and list of workstations from the master process.

{Execute the parallel level-based genetic algorithm (LPGA). (Figure 5.1)}

Send the fittest string in the last subpopulation to the master process.

(b) Slave process

Figure 5.2: Implementation of the parallel algorithm

79

80
from other processes that is a unique integer number.

In order to evaluate the correctness and the effectiveness of PLGA, two experiments
have been conducted and the performance of PLGA is compared with the performance
of LGA. Schedule length and running time are the performance measures considered in
the evaluation. In PLGA, the running time is measured from the start of the master
process to its finish. All the experiments were performed when there is no load on the
network.

In the first experiment, task graphs shown in Table 4.1 are scheduled on eight
processors connected in two system topologies, namely, fully connected and mesh. The
ratios of the lengths of schedules generated by PLGA using 2,4,8, and 16 workstations
(W) to the lengths of schedules generated by LGA are shown in Table 5.4 and Table 5.5
~ for fully connected and mesh systems, respectively. In these tables, a ratio greater than
1.0 indicates a case where the length of the schedule generated by PLGA is larger than
the length of the schedule generated by LGA. Out of the 72 comparisons shown in these
tables, there were only three cases in which the schedules generated by PLGA are worse
than or equal to those generated by LGA. However, the lengths of the schedules
generated in these cases by PLGA are within 1% of those generated by LGA.

The speedup in running times of PLGA using 2,4,8, and 16 workstations over LGA
are shown in Table 5.6 for the fully connected system and in Table 5.7 for the mesh
systems. It is observed that the speedup increases as the number of workstations
increases in the parallel machine.

The second experiment measures how good are the schedules generated by PLGA

when it is implemented on various number of workstations. Therefore, the task graphs

PLGA/LGA

Task Graph
W=2 W=4 W=8 W=16
ml00 0.91 0.92 0.91 0.91
ml50 1.01 0.97 0.95 0.96
m200 0.98 0.96 0.96 0.97
m250 1.00 0.94 0.93 0.95
m300 0.97 0.95 0.95 0.93
m350 0.97 0.94 0.96 0.94
m400 0.96 0.95 0.93 0.95
m450 0.98 0.96 0.93 0.90
mS00 0.97 0.96 0.95 0.94

Table 5.4: Ratios of schedule lengths generated by PLGA to those of LGA for task
graphs generated by RPCG on 8-processor fully connected topology

PLGA/LGA

Task Graph
W=2 W=4 W=8 W=16
ml00 0.98 0.97 0.90 0.91
ml50 1.00 0.94 0.96 0.95
m200 0.94 0.93 0.92 0.89
m250 0.92 0.89 0.90 0.87
m300 0.92 0.91 0.90 0.92
m350 0.96 0.93 0.90 0.87
m400 0.96 0.93 0.92 0.89
m450 0.97 0.91 0.94 0.90
m500 0.96 0.95 0.92 0.90

Table 5.5: Ratios of schedule lengths generated by PLGA to those of LGA for task
graphs generated by RPCG on 8-processor mesh topology

Task Graph LGA/PLGA
W=2 W=4 W=8 W=16
ml00 1.05 1.37 1.57 1.57
ml50 1.07 1.40 1.63 1.75
m200 1.07 1.41 1.66 1.79
m250 1.07 1.42 1.62 1.79
m300 1.08 1.44 1.70 1.79
m350 1.07 1.43 1.71 1.77
m400 1.08 1.40 1.72 1.88
m450 1.07 1.30 1.73 1.90
m500 1.07 1.43 1.72 1.91

83

Table 5.6: The speedup in the running times of PLGA over LGA for 8-processor fully
connected topology

Task Graph LGA/PLGA
W=2 W=4 W=8 W=16
m100 1.04 1.44 1.64 1.64
ml50 1.06 1.32 1.63 1.69
m200 1.07 1.45 1.68 1.74
m250 1.08 1.43 1.69 1.78
m300 1.07 1.44 1.70 1.79
m350 1.08 1.45 1.72 1.85
m400 1.08 1.44 1.72 1.87
md50 1.07 1.45 1.73 1.90
m500 1.07 1.44 1.72 1.90

84

Table 5.7: The speedup in the running times of PLGA over LGA for 8-processor mesh

topology

85

generated by OPCG and shown in Table 4.2 are scheduled by PLGA. The performance
of PLGA is compared to the performance of LGA, and the comparison results are shown
in Table 5.8. As shown in the table, there is only one case in which LGA performed
better than PLGA.

As noticed from the experiments, the performance of PLGA is unpredictable that is
increasing the number of workstations does not guarantee improving the quality of the
schedule generated. This is because PLGA is stochastic and its performance depends on
the seeds used by the subpopulations. However, the schedules generated by PLGA are
better than or equal to those generated by LGA. Even if the schedule generated by LGA
is better than the schedule generated by PLGA, the difference in the quality is
insignificant such that the difference will be less than 1%.

On the other hand, the speedup achieved by PLGA increases as the number of
workstation increases. This is due to the division of the computation over the
workstations. It also indicates that the communication overhead in PLGA is small
comparing to the computation. This is because of the following two reasons. Firstly,
only one string is broadcasted, this is the best string in a subpopulation. Secondly, the
best string is broadcasted only if it is updated since last migration operation.

At the end, we would like to offer the following caution about the results that we
have presented. Each result is stochastic; that is it depends on the particular seed used by
the population. We liked to be able to present the results as averages for each test
problem obtained over a large number of trails. However, at the time we did this work,

workstations’ time on the network were in demand.

86

PLGA
Task Graph LGA

W=2 W=4 W=8 W=16

onl40mS$ 85.63 86.11 92.54 88.32 91.71
onl65m7 80.17 84.66 86.97 88.31 88.04
onl91mé 84.84 86.40 88.03 89.07 88.65
on219m4 88.79 92.33 93.62 93.04 91.91
on293m7 86.87 89.50 88.71 92.29 91.79
on329ms 87.08 88.13 90.07 92.69 92.22
on350m4 91.76 92.20 92.92 94.94 95.32
on373m3 89.10 91.87 94 .88 95.62 96.73

Table 5.8: Comparison of LGA and PLGA in terms of the quality of the schedules for
task graphs generated by OPCG

Chapter 6

Conclusion

In this thesis, the primary objective has been to design a fast and efficient parallel genetic
algorithm for scheduling parallel tasks on multiprocessor systems. Inter-task and inter-
processor communication overhead is assumed part of the problem formulation. To
achieve this objective, an efficient sequential genetic scheduling algorithm was designed
upon which the parallel genetic scheduling algorithm was developed. The sequential
algorithm and the parallel algorithm were denoted by LGA and PLGA, respectively.

PLGA was designed for loosely coupled multiprocessor systems and implemented on
a network of SUN workstations. To simplify the usage of these workstations as a parallel
machine, a software package called Parallel Virtual Machine (PVM) was used. PVM is a
collaborative venture between Oak Ridge National Laboratory, the University of
Tennessee, Emory University, and Carnegie Mellon University and is now an ongoing

research project.

87

88

The main conclusions of this thesis are the following.

. Some feasible schedules cannot be generated for some scheduling problems if height
based ordering technique is used to maintain the precedence constraints between tasks
assigned to the same processor. In contrast, level based ordering technique does not
have this severe drawback. Thus, schedules generated by HGA are worse than those
generated by LGA.

. Generally, the schedules generated by PLGA are better than or equal to the schedules
generated by LGA. Even if the schedule generated by LGA is better than that
generated by PLGA, the difference in the quality will be insignificant.

. Although increasing number of workstations in a parallel machine increases the total
number of strings in the whole population, it does not guarantee improving the quality
of the schedule generated by PLGA. This is because the performance of PLGA
depends on the seeds used by the subpopulations.

- The speedup in the running time achieved by PLGA over LGA increases as the
number of workstations in a parallel machine increases. This is because the
computation is distributed over workstations. In addition, this is an indication that the

communication overhead in PLGA is small.

A number of interesting areas for future research are:

- The termination strategy used, stopping after a specified number of generations, is not
viable in practice. Thus, an effective termination strategy is needed. One approach
might be to stop when the best schedule has not changed for a specified number of

generations.

89

2. The proposed scheduling algorithm is a pure genetic algorithm. It may be improved by
adding some knowledge about the scheduling problem to it. This can be done in the
initialization or in the crossover or mutation operations.

3. Additional work to determine good choices for the parameters of PLGA is needed.
These parameters are the migration frequency, the migration paths between
subpopulations, the number of string migrated, and the strategy used to selec strings
for migration.

4. The current implementation of PLGA is synchronous; that is a workstation does not
continue executing GA until it receives migrated strings from other workstations. An
asynchronous implementation is also possible. In this case, a workstation periodically
checks its incoming messages queue for migrated strings that have been sent from
other workstations, and if any are found, the workstation can insert them into the

subpopulation.

References

[1]

(2]

(3]

[4]

[5]

[6]

T. L. Adam, K. Chandy, and J. Dickson, “A comparison of list schedules for
parallel processing systems,” Communications of the ACM, 17(12): 685-690, Dec.
1974,

. Ahmad and M. K. Dhodhi, “Task assignment using a problem-space genetic

algorithm,” Concurrency: Practice and Experience, 7(5): 411-428, August 1995.

I. Ahmad and M. K. Dhodhi, “Multiprocessor scheduling in a genetic paradigm,”

Parallel Computing, 22: 395-406, 1996.

. Ahmad and M. Kafil, “A parallel algorithm for optimal task assignment in
distributed systems,” Proceedings of Advances in Parallel and Distributed

Computing, pages 284-290, 1997.

N. Ansari, M.-H. Chen, and E. S. H. Hou, “Point pattern matching by genetic
algorithm,” 16th Annual Conference on IEEE Industrial Electronics, pages 1233-
1238, 1990.

M. S. T. Benten and S. M. Sait, “Genetic scheduling of task graphs,” International
Journal of Electronics, 77(4): 401-415, 1994.

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

91

R. Bettati and J. W.-S. Liu, “End-to-end scheduling to meet deadline in
distributed systems,” /2th International Conference on Distributed Computing

Systems, pages 452-459, 1992,

M. Bozyigit and A. A. Abdulghani, “Parallel scheduling algorithm for parallel

Applications,” Parallel Algorithms and Applications, 6: 303-3 16, 1995.

T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-purpose
distributed computing systems,” IEEE Transactions on Software Engineering,

14(2): 141-154, February 1988.

A. Chipperfield and P. Fleming, “Parallel genetic algorithms,” Parallel and
Distributed Computing Handbook, A. Y. Zamaya (Ed.), McGraw-Hill, pages
1118-1143, 1996.

T. Chockalingam and S. Arunkumar, “A randomized heuristics for the mapping

problem: the genetic approach,” Parallel Computing, 18: 1157-1165, 1992.

T. Chockalingam and S. Arunkumar, “Genetic algorithm based heuristics for the

mapping problem,” Computers and Operations Research, 22(1): 55-64, 1995.
E. G. Coffiman, Computer and Job-Shop Scheduling Theory, John Wiley, 1976.

R. C. Correa, A. Ferreira, and P. Rebreyend, “Scheduling multiprocessor tasks
with genetic algorithms,” /EEE Transactions on Parallel and Distributed Systems,
10(8): 825-837, August 1999,

[15]

[16]

7]

(18]

[19]

[20]

[21]

92

L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

E. Dekel and S. Sahni, “Binary trees and parallel scheduling algorithms,” /EEE

Transactions on Computers, C-32 (3): 307-315, March 1983.

E. Falkenauer and A. Deichambre, “A genetic algorithm for bin packing and line
balancing,” Proceedings of the IEEE International Conference on Robotics and

Automation, pages 1186-1192, 1992,

T. C. Fogarty and R. Huang, “Implementing the genetic algorithm on transputer
based parallel processing systems,” Parallel Problem Solving from Nature, H.-P.

Schwefel and R. Manner (Eds.), pages 145-149, 1991.

B.-P. Gan and S.-Y. Huang, “Scheduling dynamically evolving parallel programs
using the genetic approach”, Proceedings of the fourth International Conference/

Exhibition on High Performance Computing in the Asia-Pacific Region, pages
290-295, 2000.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,
PVM: Parallel Virtual Machine-A User’s Guide and Tutorial Jfor Networked

Parallel Computing, MIT Press, 1994.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison-Wesley, 1989.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

93

V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organization,
McGraw-Hill, 1996.

B. Hamidzadeh, D. J. Lilja, and Y. Atif, “Dynamic scheduling techniques for
heterogeneous computing systems,” Concurrency: Practice and Experience, 7(7):

633-652, October 1995.

R. Hauser, R. Manner, and M. Makhaniok, “NERV: a parallel processor for
standard genetic algorithms,” Proceedings of 9th International Parallel Processing

Symposium, pages 782-789, 1995.

J. H. Holland, Adaptation in Natural and Artificial Systems, University of

Michigan Press, 1975.

E. S. H. Hou, N. Ansari, and H. Ren, “A genetic algorithm for multiprocessor
scheduling,” IEEE Transactions on Parallel and Distributed Systems, 5(2): 113-
120, February 1994.

T. C. Hu, “Parallel sequencing and assembly line problems,” Operations Research,
9: 841-848, May 1961.

J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, "Scheduling precedence
graphs in systems with interprocessor communication times," SIAM Journal of

Computing, 18(2): 244-257, April 1989.

[29]

[30]

[31]

[32]

(33]

[34]

[35]

94

H. Kasahara and S. Narita, “Practical multiprocessor scheduling algorithms for
efficient parallel processing,” IEEE Transactions on Computers, C-33 (11): 1023-
1029, November 1984.

K. Kojima, W. Kawamata, H. Matsuo, and M. Ishigame, “Network based parallel
genetic algorithm using client-server model,” Proceedings of the 2000 Congress

on Evolutionary Computation, pages 244-250, 2000.

A. Kumar, A. Srivastava, A. Singru, and P. K. Ghosh, “Robust and distributed
genetic algorithm for ordering problems,” Proceedings of 5th IEEE International

Symposium on High Performance Distributed computing, pages 253-262, 1996.

Y.-K. Kwok and I. Ahmad, “Dynamic critical path scheduling: an effective
technique for allocating task graphs to multiprocessors,” IEEE Transactions on

Parallel and Distributed Systems, 1(5): 506-521, May 1996.

S. Mohan and P. Mazumder, “Wolverines: standard cell placement on a network of
workstations,” /EEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 12(9): 1312-1326, September 1993.

D. Moldovan, Parallel Processing: From Applications to Systems, Kaufmann,
1993.

M. A. Palis, J.-C. Liou, and D. S. L. Wei, “Task clustering and scheduling for
distributed memory parallel architectures,” IEEE Transactions on Parallel and

Distributed Systems, 7(1): 46-55, January 1996.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

95

C. A. G. Pico, “Dynamic scheduling of computer tasks using genetic algorithms,”
Proceedings of the first IEEE Conference on Evolutionary Computing, pages 829-
833, 1994.

H. Pirkul and E. Rolland, “‘New heuristic solution procedures for the uniform
graph partitioning problem: extensions and evaluation,” Computers and

Operations Research, 21(8): 895-907, 1994.

C. P. Ravikumar and A. K. Gupta, “Genetic algorithm for mapping tasks onto a

reconfigurable parallel processor,” [EE Proceedings-Computers and Digital
Technology, 142(2): 81-86, 1995.

H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of Parallel and Distributed Computing, 9: 138-153,
1990.

H. El-Rewini, T. G. Lewis, and H. H. Ali, Task Scheduling in Parallel and

Distributed Systems, Prentice Hall, 1994,

K. Schwan and H. Zhou, “Dynamic scheduling of hard real-time tasks and real-
time threads,” IEEE Transactions on Software Engineering, 18(8): 736-748,
August 1992,

R. Sethi, “Scheduling graphs on two processors,” SIAM Journal of Computing,
5(1): 73-82, March 1976.

[43]

[44]

[45]

[46]

[471

[48]

[49]

9%

H. Tamaki and Y. Nishikawa, “A parallel genetic algorithm based on a
neighborhood model and its application to the jobshop scheduling,” Parallel
Problem Solving from Nature, R. Manner and B. Manderick (Eds.), pages 573-
582, 1992.

R. Tanese, “Parallel genetic algorithm for a hypercube.” Proceedings of the second

International Conference on Genetic Algorithms, pages 177-183, 1987.

P.-C. Wang and W. Korfhage, “Process scheduling using genetic algorithms,”
Proceedings of seventh IEEE Symposium on Parallel and Distributed Processing,

pages 638-641, 1995.

D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, 4: 65-85,

1994,

S. H. Woo, H. S. Lee, S. B. Yang, T. D. Han, and S. D. Kim, “Multiprocessor
scheduling with genetic algorithms in heterogeneous environment,” PDPTA'97,

pages 928-931, 1997.

S.-H. Woo, S.-B. Yang, S.-D. Kim, and T.-D. Han, “Task scheduling in distributed

computing systems with a genetic algorithm,” HPC Asia’97, pages 301-305, 1997.

W. Xiao, P. Hao, S. Zhang, and X. Xu, “Hybrid flow shop scheduling using
genetic algorithms,” Proceedings of the 3rd World Congress on Intelligent Control

and Automation, pages 537-541, 2000.

