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Chapter 1

Introduction

Various problems in physics and engineering lead to an ordinary differential equa-
tion with the coefficient of the highest derivative vanishing at certain points. Such
an equation, in general, is called degenerate or singular and the zero of the leading
coefficient is called the singular point. According to Naimark [29] if the reciprocal
of this coefficient is not integrable in the whole domain then the equation is said
to be singular. In section 1.1 we give a description of a class of second order

boundary value problems with singularity at one end point.

There is a growing literature on the existence, uniqueness and the numerical ap-
proximation of the solution of such problems. A brief review to the literature is
given in section 1.2. The objective of this dissertation is to apply the Galerkin
method to approximate the solution of a general class of singular equations and

obtain error estimation in various norms. To achieve this goal it is necessary




to address carefully the problems of existence, uniqueness, regularity, variational
formulation, weak solutions and strong solutions for our chosen class of singu-
lar equations. As we will see shortly, the class of problems we treated in this

dissertation extends class of singular problems treated so far in many directions.

1.1 Second order boundary value problems with
one singular end-point and their classifica-
tion

Consider the differential equation:

(p(e)'(2)) = f(z,u(@)w(z), O<z<l

u(l) = 0

where p(z), w(z) > 0, fy w(z)dz < oo and f(z,u) is continuous in u (linear
or nonlinear) such that for any real number u, [ f(z,u)w(z)dz < oo. This

equation is formally written as

1
—:D-(pu')' + f(z,u) = 0, 0<z<l

I
o

lim pu’
=0t P

u(l) = 0

o




and is said to be regular (at both end points z =0 and z = 1) if p~! € L}(0,1). It
is singular at z = 0 ( but regular at z = 1) if p~! € L}.(0,1] but p~* ¢ L'(0,1).

We will consider this kind of singularity throughout this dissertation. A particular

example is:
1 a, I\
—m—n(z )Y + f(z,u) = 0, 0<z<l
: - 3 —
,11.%11- *u'(z) = 0
u(l) = 0

where > 1 and 8 > —-1.

Such kind of singular boundary value problems appear in many areas of applied
mathematics. They occur, for example, in transport processes [2], the study
of electrohydrodynamics [23], in the theory of thermal explosions [4], Gaussian

processes [12], separation of variables in PDE’s [32], etc.

According to Weyl’s classification {37,27] the singular point z = 0 must fall into

one of the following two mutually exclusive categories:
Limit Clircle case: All solutions of
1 AY
— —(pu) = Au (1.1)
w

are in L2 (0,1) for all ), real or nonreal. In particular when A = 0, the two linearly
independent solutions, u(z) =1 and u(z) = fI ! are in L2(0,1). Clearly by the

zp

3




assumptions on w(z), 1 € L2(0,1). Therefore, the singular point is of limit circle

case iff [} 5 € L3,(0,1).

Limit Point case: For all nonreal ) there is exactly one solution of (1.1) in
L%(0,1). For any real A atmost one solution isin L2(0,1). So for A = 0 atmost one
ofu=1loru=[; Lisin L2(0,1). Already 1 € L%(0,1), therefore f; 1 ¢ LZ(0,1).
Hence z = 0 is of limit point case iff [; 2 ¢ L3(0,1).

The term limit circle and limit point arise from the use of a certain sequence of
nested circles that Weyl made in his proof, the sequence converging in the limit

to either a circle or a point.

1.2 Literature survey

In this literature survey we mention two different aspects seperately in two sub-
sections. One is the literature regarding the existence and uniqueness of the
solution of these types of problems from a numerical analyst’s point of view. The
second one is the numerical approximations to the solution. In most of the liter-
ature concerning the numerical treatment of such problems the existence of the
solution is assumed. In many of them smoothness of the solution is also assumed

for the purpose of error estimation.




1.2.1 About the existence and uniqueness

Russel and Shampine [36] considered the problem:

- Lew@) = foule), 0<s<b (12)
ul) = B (1.4)

with @ = 1 or 2. They first considered the linear case
1 ! [
——(z"(2)) + Ku(z) = f(z)

with the same boundary conditions and proved that, for « = I and K > —j2
(where jo = 2.40483 is the first positive zero of the Bessel’s function of order
zero), the problem (1.2) has a unique solution. They also proved that, for o = 2
and K > —x?, this linear equation also has a unique solution. The proof is
based on the explicit constuction of the Green’s function associated with the
linear operator. For the nonlinear case they constructed a sequence of linear
problems and proved that under suitable assumptions on f(z,u) and the starter

ug, the sequence of solutions to these problems converges to the solution of the

real problem.

Similar iterative techniques were also used by Chawla et. al. [7] and Fink [16]

in their proof of the existence and uniqueness of the solution. Chawla et. al.




extended the work of Russel and Shampine to any o > 1. They assumed their

data f(z,u) to be continuous and having a continuous partial derivative w.r.t. u.

Fink et. al. [16] considered the same problem with & = n — 1. They introduced a
singularity in f(z,u) at u = 0. They assumed f(z,u) positive and continuous on
[0,1) x(0, 00) and strictly decreasing in u. They regularized f by replacing f(z, u)
by f(z,u + €). Under some more assumption on f they proved the existence of
a positive solution u as a uniform limit of the solutions u, as € — 0. They also
proved the uniqueness of the solution. Numerical illustrations were given in their

paper for f(z,u) =u"?, p=3, 1, with different values of €.

Remark 1.1 It is observed that in all these works the special case p(z) = w(z) =
z% a 2> 1 was only considered. Continuity of f(z,u) in both z and u was
assumed. In some cases even continuity of %& was also required. Proofs were based
on the iterative procedure using a succession of linear boundary value problems.

In this regard we want to mention here that the problems of this dissertation

are more general and the proofs are based on the results of linear and nonlinear

functional analysis.




1.2.2 About the numerical approximations

Eriksson and Thomee [15] used the Galerkin method with piecewise polynomials

(as a basis) for the linear problem:
1 a, I !
—;;(:c u(z))+qu = f, 0<z<l1
v'(0)=u(l) = 0

where o > 0 and ¢ is a bounded nonnegative function. They assumed that
these problems admit a unique and sufficiently smooth solution. For a > 1 they

obtained the error estimation
u€ — uljze < CA |l

where u(”) denotes the r-th derivative of u. This work is an improvement of the
work of Jesperson [21] who derived earlier the following error estimate for the

model problem with ¢ = 0:
G 1\" . )
le” = ullz= < C {In ) A7[u™ ||

where ¥ =1 if r =2 and ¥ = 0 if r > 2. He demonstrated with an example that
the logarithmic term cannot be removed for » = 2. Both the error estimations
of Jesperson and Eriksson & Thomee are dependent on the assumption that the
solution is smooth. We notice also that the Galerkin method used by Eriksson

and Thomee is not symmetric.



Chawla et. al. [5] used a finite difference method for the problem
1
—x—a(x°u’(:z:))'+f(z,u) =0, 0<z<l
w(0)=u(l) = 0

where a > 1. They assumed f and %ﬁ to be continuous in [0,1] x (—o0, c0) and
%ﬁ > 0. They derived an O(h?) error under the assumptions that |f’| < C; and
z|f"] < Cy for 0 < z < 1 (where f' denotes the derivative of f(¢,u(t)) ). Using
a similar approach Chawla et. al. in [6] obtained a fourth order method under

more smoothness assumptions on f, namely, |f*| < C; and z|f¥)] < C,.
Recenty Abu-Zaid [1] considered the linear problem:
1 AU
—;(pu) +qu = f, 0<z<l1
. /! — _
zlir(r)1+ pu' =u(l) = 0.

He assumed g, f € C[0,1] and ¢ > 0. In addition to the singularity condition on
p he also assumed that p’ is bounded, p is increasing in a neighborhood of 0 and

s ;1; € L*(0,1). Under these conditions he proved that a generalization of the

finite difference scheme of Chawla is to be of order A2.

Remark 1.2 It is observed that in all these works either the particular case
p(z) = w(z) = z*, o > 1 was treated or ¢ more general one: p(x) = w(z)
with assumptions on p was considered. In the linear case f and q were consid-

ered to be at least continuous with ¢ > 0. Similar assumptions were made for the

8




nonlinear case also. In addition to the generalization p = w (with aforementioned
conditions on p) Abu-Zaid also removed the smoothness condition on f (upto con-
tinuity) and still obtained O(h?) convergence through the finite difference method.
All others assumed directly or indirectly smoothness of f. It is also noted that
Jor the model case ¢ = 0 the matriz obtained by Abu-Zaid in terms of p (in his
finte difference discretization) is the same matriz obtained by Ciarlet et. al. [8§]
when Galerkin method was used with the patch basis in terms of p. Ciarlet et.
al. took the case [} :j < oo which is no more singular according to our definition.
In this dissertation the patch basis in terms of p (like Ciarlet et. al.) to an ezx-
tended class of singular problems (which generalizes all the above cases in many
ways) has been used and different order of covergences (in terms p and w and the
partition) are obtained for different cases. For ezample, a covergence of O(h?)
(in the uniform norm is obtained) for the case p = w , p monotone increasing,
and f,q € L(0,1) with ¢ > 0 (for a similar condition for the nonlinear case see
chapter 6). We like to mention that this result in this special case is also a new

one.

1.3 Objective of this dissertation

As mentioned earlier our goal is to treat a wider class of problems in terms of

the functions w,p and ¢, f (f(z,u) for the nonlinear case). This study therefore




includes the linear case:
1 n?
—-E(pu) +qu = f, O0<z<1
- ’ —
Jim p(z)u(z) = 0

u(l) = 0

(1.5)

(1.6)

(1.7)

with any general p and w (satisfying the following LC or LP1 condition). The

relaxed condition w > 0 (allowing w to vanish on any subset of [0,1]) is not

excluded. f is taken to be any function in L2(0,1). The function ¢ is in L2(0,1)

with certain conditions depending on the limit circle or limit point cases. The

limit circle (LC) case:
11
/ =~ L0,1)
is completely studied while the limit point case (LP):
[ = ¢n0
z D
is considered in the case:

[ :eno
z D wim e

We call this case as limit point one (LP1).
The study is then extended to the nonlinear case:

1
-;;(zm')' + flz,u) = 0, 0<z<l

10

(1.8)

(1.9)

(1.10)

(1.11)




lim p(z)u'(z) = 0 (1.12)

wl) = 0 (1.13)

with same general p,w covering both LP and LC1 cases. Here f(z,u) is a non-
linear forcing term which is continuous in u and is in L2(0,1) for any fixed real
u (No smoothness condition in terms of both the variables is assumed, even the
continuity w.rt. z is not assumed). Conditions (with an eye on keeping the
relaxed conditions) on f(z,u) are imposed for the existence and uniqeness of the
solution to this equation. The Galerkin method with patch basis (in terms of p)

is applied to both the linear and nonlinear cases.

This dissertation is written into 7 chapters. The first chapter is an introductory

one. The literature review is done in this chapter.

In chapter 2 we give the preliminary material to be used in the subsequent chap-
ters. Specially some materials on the Galerkin method and the maximal mono-

tone operators are prepared for the use in chapter 5 and chapter 6.

In chapter 3 we begin our study with the model problem with ¢ = 0. The
regularity of the solution to this model problem is studied in detail. Both limit
circle and limit point (one) cases are studied seperately. The behavior of the
solution along with its derivative is studied in both cases. Other related results
about the operator invoked are also studied for the use in the subsequent chapters.

A class of examples is studied as a particular case. The limit circle case with

11




g € LL(0,1) is also studied in this chapter.

In chapter 4 a Hilbert space V is defined which contains the solution space of
the model problem of chapter 3 and is contained in the original space L2(0,1).
Considering q # 0, a variational boundary value problem is defined. The existence
and uniqueness of the solution of this problem in this space V is studied. The
equivalence of this problem with the original boundary value problem is then
studied. The properties of the related operators are also studied. The study

covers both the LC and LP1 cases with relaxing w as mentioned above.

In chapter 5 we apply the Galerkin method with the patch basis (depending on
p) for the solution of the variational boundary value problem defined in chapter
4. Interpolation error for the solution in the space V with respect to this ba-
sis is estimated (both in V-norm and uniform norm). The error of the Galerkin
approximation is then studied with respect to these norms. Optimal order of con-
vegence (with respect to both norms) is studied for several cases with particular
emphasis on finding higher order accuracy for special classes (which are impor-
tant in applications). The existence of the solution of the variational boundary
value problem is also reflected through the analyses of this chapter (giving an

alternate proof for the existence theorem).

In chapter 6 all the studies of chapter 4 and chapter 5 are extended to the non-
linear case. The results are applied to a rather large class of nonlinear problems.

Comparative studies are also done with the problems available in the literature.

12




New examples are developed. The existence and uniqueness of the solution of
the finite dimensional nonlinear system arising from the Galerkin method is also

studied.

In chapter 7 the validation of the analyses is demonstrated through numerical
examples. Comparative studies for the approximations are done. Numerical

explorations for further extensions are made.

13




Chapter 2

Preliminaries

In this chapter we include the preliminaries which will be used in the subsequent
chapters. The main definitions and theorems are stated. The proofs of the
theorems are omitted, but the references are included. We have tailored the
results towards our application and written them as remarks and corollaries with
proofs. Due to the same reason we have written them in the Hilbert space settings
although in some references they are given in a more general setting. Also we have
omitted the standard definitions which can be found in any standard introductory
book of functional analysis or linear operator theory. The preliminary is arranged
into five sections. The material in section 2.1 will be used in chapters 3, 4 and
6 while that in sections 2.2, 2.3, and 2.4 will be used in chapters 4, 5, and 6
respectively. The first part of section 2.5 will be used in chapter 5 and the rest

of it will be used in chpater 7.

14




2.1 Compact and self-adjoint operators

Suppose H is a real seperable Hilbert space and T is a linear operator defined
in it. By the notation D(T') and R(T') we mean the domain and range of the

operator T. All the Hilbert spaces we consider in this dissertation are real and

seperable.

Theorem 2.1 IfT; is compact and T, is bounded on H then T\T; is compact on
H. On the other hand, if T, is compact on H and Ty is bounded on R(T,) then

N\T; is also compact on H.

Theorem 2.2 The spectrum o(T') of a bounded self-adjoint operator T consists
of only point and continvous spectrum (i.e., the residual spectrum o.(T) is empty)

and is contained in the closed interval [m, M| where
(T, )

L (Tuu) B
™ e M=

Moreover, m and M are also spectral values of T.

( The proof is given in Kreyszig [24], pp 459-469 )

Theorem 2.3 If T is a self-adjoint compact operator then the set of all eigen-
functions of T (including those corresponding to the zero eigenvalue) forms a basis
for H. The set of normalized eigenfunctions corresponding to nonzero eigenvalues

forms a basis for H if and only if X = 0 is not an eigenvalue of T.

15



( For a proof see Stakgold [37], pp 372-374 )

Definition 2.1 Let T : D(T) — H be a (possibly unbounded) densely defined
linear operator. Then the Hilbert-adjoint operator T* : D(T") — H of T is
defined as follows. The domain D(T™) consists of all v € H such that there is a
v* € H satisfying

(Tu,v) = (u,v")

for all u € D(T). For each such v € D(T*) the Hilbert-adjoint operator T* is

then defined in terms of v* by

In other words,

D(T")={ve H : uw~ (Tu,v) is continuous on D(T)}.

Definition 2.2 Let T : D(T) — H be a (possibly unbounded) densely defined

linear operator. Then T is called a symmetric linear operator if for all u,v € D(T)

(Tu,v) = (u, Tv).

Lemma 2.1 A densely defined linear operator in H is symmetric if and only if

TCcT".

16



Definition 2.3 Let T : D(T) — H be a (possibly unbounded) densely defined

linear operator. Then T is called a self-adjoint linear operator if
T=T".
Remark 2.1 It is therefore clear that a symmetric linear operator defined on the

whole space H is self-adjoint. In other words if D(T) = H then the concepts of

symmetry and self-adjointness are identical.

Theorem 2.4 (Hellinger-Toeplitz theorem) A symmetric linear operator de-

fined on the whole space H is bounded. In other words, a self-adjoint operator
defined on the whole space is bounded.

Theorem 2.5 If ¢ self-adjoint operator T : D(T) — H is injective then (a)
R(T) = H and (b) T! is self-adjoint.

( see Kreyszig [24], page 535 )
2.2 The Lax-Milgram theorem

Let V be a real seperable Hilbert space. Let B(u,v) be a bilinear formin V x V.

The bilinear form is called continuous if there is a constant C s.t.

1B(u,v)| < Cllullllv]l

17.




for all u,v € V, and it is called V-elliptic if there is a constant o > 0 s.t.
B(u,u) > af|u|l?
forallue V.

Let u € V. Then
B(u,.) : V — R

is a continuous linear functional in V. By the Riesz-representation theorem there

exists a unique element @ € V such that
B(u,v) = (&,v) for every v € V.
This gives a correspondence A : V — V by

Au) = u.

Remark 2.2 A is symmetric if the bilinear form is symmetric, since

(Au,v) = B(u,v) = B(v,u) = (Av,u)

Theorem 2.6 (Lax-Milgram) Let B(u,v) be a bilinear form continuous in V

such that B(u,v) is V-elliptic. Then A : V — V is bijective.

( For a proof see Huet [19], page 22 )

18




2.3 Galerkin method for the variational prob-
lem B(u,v) =I(v)

In this section we describe the Galerkin method for solving the problem
B(u,v) = (v) YveV (2.1)

where V is a real seperable Hilbert space, B(u,v) is a symmetric, continuous
and V-elliptic bilinear form in V x V and [(v) is a bounded linear functional
on V. The existence and uniqeness of the solution is thus assured by the Lax-
Milgram theorem. We will discuss the Galerkin approximation to this solution.

The material in this section is an adaption of results known in the literature. We

refer Reddy [34] and Zeidler [40].

Let V,, be a subspace of V spaned by n linearly independent elements of V. These
elements form a basis for the Galerkin method. This basis is to be choosen in

such a way that

nlLHolo dist(u,V,) =0 VueV

where

dist(u,Y) := 32)1; flu —vlv.
This is the main theme of the Galerkin method.

Since B(u,v) is symmetric and coercive we can define an inner product

(u,v)p := B(u,v) (2.2)
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in V. The corresponding norm is called the energy norm. We now describe the

Galerkin method in operator form with the help of this inner product.

Definition 2.4 The Galerkin method for (2.1) is an orthogonal projection oper-
ator P, of V onto V;,, with respect to the inner product (2.2), and the Galerkin

approzimation of the solution u of (2.1) is v€ = P,u.
For the sake of simplicity of notation we denote P, by P only.

Theorem 2.7 The error of the Galerkin approzimation u€ denoted as e = u—u®
satisfies

B(e,va) =0, V w,eV, (2.3)

and the Galerkin approzimation uC satisfies

B(u€,v,) =1(z,), V v, €V, (2.4)

o]

Proof: By the above definition, for any v, € V,,
B(e,v,) = B(u —,v,) = (u — Pu, Pv,)p = 0. (2.5)
Since equation (2.1) is satisfied for all v € V it is also satisfied for all v, € V, :
B(u,v,) = I(v,). (2.6)
Subtracting (2.5) from (2.6) we obtain
B(u®,v,) = I(vy,).
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This completes the proof.

Corollary 2.1 Let {r;},i = 1,...,n be a basis for V,,. Then (2.3) and (2.4) are

satisfied forv, =1, i =1,...,n. Thus
B(e,r;) =0, i=1,...... ,\n (2.7)
and the Galerkin approzimation u® satisfies

BC,r)=1(ry), i=1,....,n. (2.8)

Since u® € V, and {r;} is a basis for V,, the Galerkin approximation u€ can be

written as

n
G _ .
uf =3 a;r;
=1

and substituting this into (2.8) we obtain

iB(rj,r,-)aj = 1(7‘,'), 1= 1, ceeneng N (29)

i=1
i.e.,

Aa=b (2.10)

where A = (a) is given by a;; = B(r;,r;), 4,5 =1,.nand b; = I(r;), i =

1,.,n.

Remark 2.3 The matriz A is symmetric and positive definite.
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Proof: A is symmetric because
a5 = B(Tg, T‘J-) = B(r_,-,r;) = aj,'.
To prove the positive definiteness, let y be any nonzero element in R*. Then

YTA}’ = Zyizaijyj
i=1 1=1

= Zn: Yi i B(r;,75)y;

=1 =1

= > uB(r,>_y;r;)

=1 i=1
= B(Z YiTi, z YiT;)
i=1 i=1
= B(tn,vs)

= |zl > 0.

where
n
Un = Eyi"'i-
=1

This completes the proof.
Remark 2.4 The solution of (2.10) determines u® uniquely.

Theorem 2.8

C
lelly = lfu = wCllv < =flu = vallv (2.11)
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for any v, € V,.
Proof:
aflelly = aflu —u®; < B(u—uSu—v, -1 +0,)
= B(e,u—v,) — B(e, u® — Un)
= Bl(e,u—v,) [using (2.3)]

< Cllellvlie = vallv

which completes the proof.

2.4 Maximal monotone operators

Let V be a real seperable Hilbert space and A : D(A) c V — V be an operator
( possibly nonlinear ). Let {.,.) be the inner product in V.
Definition 2.5 The operator A is said to be monotone if

(Au— Av,u—v) 20 VYV u,v e D(A). (2.12)

A is strictly monotone if strict inequality holds in (2.12) whenever u # v and

uniformly monotone or strongly monotone if there is an o > 0 so that
(Au— Av,u —v) > oflu—v||* V u,v e D(A). (2.13)
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Remark 2.5 If A is uniformly monotone then it is an injection.

Proof: Suppose Au = Av and u # v for some u,v € D(A). Then
0= (Au—Av,u—v) > afu—v||?>0

a contradiction. This completes the proof.

Definition 2.6 The opeartor A is called maximal monotone if it is monotone and
the set {(u, Au) : u € D(A)} is not properly contained in the set {(u, Bu) : u € D(B)}

for any other monotone operator B in V.

Remark 2.6 For any a > 0 the operator ol is a mazimal and uniformly mono-

tone operator.

Proof: The proof is trivial.

Definition 2.7 The operator A is called coercive if for all u, € D(A),

. . (A
il = oo i )
Un|

Remark 2.7 If A is uniformly monotone then it is also coercive.
Proof: Let u, € D(A) such that lim,_,e ||un|| = co. Then putting « = u, and
v = 0 in (2.13) we obtain,

(Aum un) 2 a"un”2
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(Aup, u,)

T 2 el
l[uall i

~ 00 as |Juy]| = oo.

Definition 2.8 A is said to be hemicontinuous on V if
Einé(A(u +ta) — Au,v) =0
Vu,4,v e V.
Remark 2.8 IfV is finite dimensional and B is monotone and hemicontinuous
then B is continuous on V.

( For a proof see Barbu [3], lemma 1.1, page 35 )

We now restate (in Hilbert space setting) the main theorem of this section from

Barbu [3]. The proof can be found therein (pp 33-48).

Theorem 2.9 Let V be a real Hilbert space and B be monotone, everywhere
defined and hemicontinuous from V to V. Let A be @ maximal monotone operator

in V. Then A+ B is mazimal monotone. Moreover, if A+ B is coercive then

R(A+B)=V.

The following corollary will be used in chapter 6.
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Corollary 2.2 Suppose & > 0 and B is monotone and hemicontinuous on V.

Then ol + B is mazimal monotone on V. It is also uniformly monotone. More-

over,

al+B :'V — V

is bijective.

Proof: Since ol is maximal monotone, then by the above theorem af + B is

maximal monotone. It is also uniformly monotone because,
(el + B)u — (ol + B)v,u — v)

= (a(u ~v)+ (Bu — Bv),u —v)

= afju—v||®+ (Bu— Bv,u —v)

> ollu—vl?.

So it is an injection. Also it is coercive. Therefore by the above theorem it is a

surjection. This completes the proof.

2.5 Finite dimensional operators

In this section we study the nature of the finite dimensional operators (linear

and nonlinear) which are obtained when the Galerkin method is applied to our
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problems. These operators will be needed for the error estimation and for the
numerical computations. We refer Stoer & Bulirsch [38] and Ortega [31] for the

origin of the material of this section.

2.5.1 Linear operators

We consider the matrix operator A on R™.

Definition 2.9 The (directed) graph of a mairiz A denoted as G(A) consists
of n vertices Py, ......, P, and there is an (oriented) arc from P; to P; in G(A)

precisely if a;; # 0.

Definition 2.10 A is irreducible if and only if the graph G(A) is connected in
the sense that for each pair of vertices (P;, P;) in G(A) there is an oriented path
from P; to P;.

Definition 2.11 A matriz A is called diagonally dominant if

J=1j#i
Definition 2.12 We write

A<B :ifandonlyif a; <b; Vi,j=1,...n.
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Definition 2.13 A is called an M-matrix ifa;; <0 forall 4,5 =1,....,n, 1 # j

and A is invertible with A~! > 0.

Theorem 2.10 Let A be irreducible and diagonally dominant such that a;; >

0, :=1,..,nenda; <0, i#j. Then A is an M-matriz.

Theorem 2.11 A symmetric M -matriz is positive definite.

Theorem 2.12 Let A be an M-matriz with offdiagonal part A;. Let Q be a
nonnegative matriz with offdiagonal part Q1. If @1 < —A; then A + Q is an
M-matriz and (A+ Q)™ < A~'. Furthermore, if A and Q are symmetric then

A + @Q is positve definite.

( For a proof see Ortega [31], pp 54-55 )

Consider now the equation
(A+Qx=b

such that (A + Q) is a symmetric M-matrix. Then by theorem 2.11 it is positive
definite and so any direct method for solving this system will be stable. We will

deal with one such a system in chapter 7.

2.5.2 Nonlinear operators

Consider the nonlinear operator F': R* — R™.
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Definition 2.14 F is ¢ homeomorphism of R™ onto R if F is one-to-one and

F and F~! are continuous.

Theorem 2.13 (Uniform monotonicity theorem) If F is continuous and uni-

Jormly monotone, then F is ¢ homeomorphism of R® onto R™.

( For a proof see Ortega [31], pp 165-167 )

It is therefore clear that, under these assumptions on F, the equation
Fx=0

has a unique solution. For the numerical computation of this solution we use
a suitable iteration method. The literature on the iteration methods for such
a problem is extensive. The appropriate method which assures the convergence
is completely dependent on the type of the problem. We therefore confine our-
selves to discussing two methods for our problems in chapter 7. One is globally
convergent (usually slow) and the other one is locally convergent but faster (usu-
ally quadratic or superlinear). In our case F = A + G, where A is a symmetric

M-matrix and G is nonlinear. The corresponding equation becomes:

Ax+Gx=0.

The Picards iteration:

(A+yDxF =4x* - Gx*, k=0,1,..,
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where 4 > 0 depends on G, converges to the solution x starting with any x° € R™.

For the proof of this global convergence result we refer to Ortega [31], pp 387-388.
The secant method:
X = x* — (A 4 Jp) TN (AX® + GxF)

where J; is a matrix dependent on G which is updated at each step k, is convergent
to the solution x if x® is sufficiently close to it (i.e. locally convergent). For the

rate of convergence we again refer to Ortega [31], pp 355-365.

The constant 4 and the matrix Ji will be given explicitly in chapter 7. We will

also see that the matrix (A + Ji) will be positive definitie at each iteration.
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Chapter 3

The Regularity of the Solution

In this chapter we first investigate the nature of the solution and its derivatives
for both the limit circle (LC) and limit point (LP1) cases. We also study the
operator invoked therein. We begin with the particular linear case when ¢(z) = 0.
In section 3.1 the limit circle case is studied. In section 3.2 the limit point LP1
case is considered. In section 3.3 a class of examples is given to illustrate the
above two cases. We then consider the case LC for ¢ € L=(0,1) in section 3.4 .
We will consider both limit circle and limit point cases for a more general ¢ in

chapter 4.
Consider the problem (1.5)-(1.7) with ¢ = 0 i.e.,

Lu= _w—(l:zj (p(z)') = f(z), 0<z<1 (3.1)
Jim plep(e) = 0 (32)
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u(l) = 0 (3.3)

with w,p > 0,2 2 € Li,e(0, 1],% ¢ L'(0,1) and [ w < oo.

3.1 The linear limit circle case with q=0

We cosider the limit circle condition

[ ([ ) wierts < o o

We also assume that

feLi(,1) (3.5)
3.1.1 The behavior of the solution

The following lemmas will be helpful.

Lemma 3.1 Forz >0
[ ( L5 dt) Fho(e)ds < [° ( T)dt) 75 uls)ds

Proof: Since for z > 0, [} p(t) ——=dt exists and, since p(t) is nonnegative, it follows

thatfor0<s< =z
11 11
—dt < | ——dt
/z p(t) ~ /s p(t)
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The result, therefore, follows because |f(s)|w(s) is nonnegative.

Let 2

K = I fllzz o0 ( A ( [ it)dt)zw(x)dx) <.

Lemma 3.2 There ezists a monotone increasing function M(z) defined on [0, 1]

with M(0) =0 and M(1) = K such that for 0 <z <1

l / F(s)w ds dt}<M(z)
Proof:
ICEE

[ 1565 he(s)es / 1 p—(li)-dt

- [ ( [ m‘)"t) 17 ha(s)ds

< [ ( | ' p—(lt—)dt) 1£()lw(s)ds (3.6)

[ by lemma 3.1

z 12 ( = ([ p1 2 12
(/0 fz(s)w(s)ds)/ (/o (/3 Mdt) w(s)ds)

[ by using Cauchy — Schwarz inequality |

IN

IA
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= M(z)

where

1/2

M(z) = (/ FA(s)w(s) ds)l/2 (/Oz (/: ;(lt—)dt)zw(s)ds)

Clearly this function is nonnegative, monotone, increasing and M(0) = 0, M(1) =

K.

Corollary 3.1

lim ( I #syuts) ds) ( / —dt)

Lemma 3.3 There ezists a monotone decreasing function N(z) defined on the

interval [0,1] with N(0) = K and N(1) = 0 such that for all z € [0,1]

/xl (/,l %dt) f(s)w(s)ds

< N(z).

Proof:

[ ( T)‘”) fls)w(s)ds

< [(/ ) (s (3.7)

(/: fz(,<,-)u;(.s)d.s)1/2 (/: (/’1 ;(lt—)dt)z w(s)ds)
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[ using the Cauchy — Schwarz inequality ]

= N(z)

where

= (/: f2(3)w(s)ds)]I2 (/l ( ' %dt)zw(s)ds) "

Clearly this function is nonnegative, monotone, decreasing and N(0) = K,

N(1)=0.

Lemma 3.4 The solution u{z) of (3.1)-(3.3) satisfies:
lu(z)| < K

for any z € [0,1].

Proof: From equation (3.1)-(3.3) we obtain

u(z) = /p(t (/ f(s)w(s)ds) (3.8)

Integrating by parts we obtain

[(/otf (s)u(s)ds (‘ )] + / f(s)yw(s) (t)dtds
(f rtsyots)as) (/ ) +f ( [ (t)dt) F(s)w(s)ds.

(3.9)

u(z)
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Taking absolute values of both sides and using (3.6) and (3.7) we obtain,

wel < [ (t)dtlf(s w(s)ds + [ / ——dtlf(s)lw(s)ds

- / / (t)dt]f(s |w(s)ds

(./ol f2(.<;)w(.<s)ds)1/2 (/01 (./31 I%t)dt)z w(s)ds)

= K.

1/2

IN

This completes the proof.

Corollary 3.2

u(0) = / ( / —dt) F(s)w(s)ds

and if f is positive then

0<u(z) Lu(0) <K Vzel0,1]
Corollary 3.3 The function v = L™ f is an indefinite integral.

Corollary 3.4 For any z € [0,1]

/ () / | £(s)|w(s)dsdt < K.

Proof: Replacing f by |f] in the proof of lemma 3.4 we get the desired result.
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Theorem 3.1 L™'f € C[0,1] for any f € L2(0,1).

Proof: Let u = L~!f. Take z < 2. Then by (3.8)

u(z) — u(z) _/: p(l—t)/(: f(s)w(s)dsdt — /: ;(IT)/; F(s)w(s)dsdt

[ p_(ltj i  (s)w(s)dsdt. (3.10)

T

Taking absolute values of both sides we obtain

u(e) - w2 < [ p(l—t) / * LF(s)lw(s)dsdt. (3.11)

By corollary 3.4 this integral exists and therefore, u = L~!f is continuous on

[0,1]. This completes the proof.

Theorem 3.2 For any f € L(0,1) the function u = L™ f is absolutely contin-

uous on [0,1].

Proof: Let {(z:,z})} be a finite collection of nonoverlapping intervals in [0, 1].

Then by (3.11)

é'u(z‘:) —u(z;)] < Z:/:: ;%5[: [f(s)|w(s)dsdt

1 rt
- lom /0 |F(s)lw(s)dsdt,
where

A= O(z;, ;).

i=1
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Therefore, given any € > 0, there is a § > 0 such that for such collection of

intervals with

n
mA=) |zi -z < §
i=1

we have

/Ap(l—t)/; |f(s)|w(s)dsdt < e,

n

ie. Y |u(zl) —u(z;)| < e

=1

This completes the proof.

We have, in fact, proved an important and well known result of real analysis:

every indefinite integral is absolutely continuous.

Corollary 3.5 For any f € L1(0,1) the function u = L~'f has the following

properties:

1. u is of bounded variation on [0,1].

2. u/(z) ezists for almost all z in [0,1].

3.1.2 Compactness of the inverse operator

Theorem 3.3 L~':12(0,1) — C[0,1] is compact.
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Proof: Let B be a bounded set in L2(0,1) with a bound M. We want to show
that LB is relatively compact and to do this it is enough to show that the set

of functions L' B is equicontinuous and equibounded (Arzela-Ascoli theorem).

Equicontinuity:

Let f € B and y = L~!'f. Then from (3.10), for z < z

u(z) —u(z) = /: %/{: f(s)w(s)dsdt

By lemma 3.4 this integral exists. Therefore, by Fubini’s theorem, changing the

order of integration we get

u(z) —u(z) = /: f(s)w(s)ds /: p—(t—)-dt + j; f(s)w(s) /;z ;(%jdtds (3.12)

Case 1z =0:

Using corollary 3.1 in (3.12) and taking absolute values of both sides we obtain

‘/oz f(s)w(s) /: %dtds
< (/oz f2(,<_,-)w(.<s)d.<s)1/2 ([: (/: p(l—t)dt)2 w(s)ds)
I fllzz, 0 (/oz (/’z ;(lzsdt)z w(s)ds) "

1/2

M ( /o : ( / ’ p(l—t)dt)zw(s)ds) . (3.13)
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Case 22> 0:

Taking absolute values of both sides of (3.12) we obtain

/ p(t
oo

+ (./: fz(s)tll(-‘i)ds)ll2 (/: (/: %dt)zw(s)ds) 1/2
(/ f(s w(s)ds)1 2 (/ w(s)ds)m (/: it)dt>
+ ( /0’ f2(s)w(s)d8) 1/2 ( / ( : '—(Zidt)zw(s)ds)

M(( 27)&) (/0 s)ds)l/2+(/ (/ ——dt) w(s)d )1/2).

(3.14)

lu(z) - u(2)| < s)ds

+ /: f(s)w(s) /: ;Z%dtds

IN

1/2

IA

If 0 < z < z we interchange z & 2.

It is now clear from (3.13) and (3.14) that L1 B is equicontinuous.
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Equiboundedness:

By lemma 3.4

lu(z)] £ K

122 (0.0) (/01 (/’1 z%dt)z w(s)ds)
M ( [ ( [ I%dt)z w(s)ds) "

Thus L™!B is also equibounded. This completes the proof.

1/2

IN

Corollary 3.6 L~!:C[0,1] — CJ[0,1] is compact.
Corollary 3.7 L=1: L2(0,1) — L2(0,1) is also compact.

Proof: Let B be a bounded set in L2 (0,1). Then by theorem 3.3 L~! B is relatively
compact in C[0,1]. But any set which is relatively compact in C|0,1] is also

relatively compact in L?(0,1). This completes the proof.

An Alternate Approach to show that L' : L?(0,1) — L2(0,1) is com-
pact:
Here we like to add that the compactness of L™ from LZ2(0,1) to Lw2 can be

proved alternately through Hilbert-Schimdt kernel. From (3.9) u(z) can be writ-

ten as

u(z) = /01 k(z,s)f(s)w(s)ds (3.15)
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where k(z,s) is a kernel given by:

fxl p(lt)dt, s<z
k(z,s) = .

I} p(lt)dt, s>z

Lemma 3.5 The kernel k(z,s) is a Hilbert-Schimdt kernel.

Proof:

/ol /01 |k(z, 5)*w(z)w(s)dzds

(3.16)

L[ (/ o dt) w(e)u(s)dzds + [ [ (/ o) )zw(z)w(s)dzds

- /01 ( /l ﬂdt) w(s) ( / w(z) dz) ds + / / ( / p(—tdt) w(s)w(z)dzds

IN

[ ([ ) e ([ wee) oo [
( [ 1 ( / 1 %dt) w(s)ds) (/ l w(z)ds )

< o0.

We have thus proved

Tt)dt

)2 w(s) (/sl w(:c)dz) ds

Theorem 3.4 The integral operator L~ : L2(0,1) — L2(0,1) defined by

u(e) = LS = | " k(z, 5)f(s)w(s)ds

is a Hilbert-Schimdt operator and, therefore, is compact.
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3.1.3 The derivative of the solution

Theorem 3.5 If f € L2(0,1) then pu' is absolutely continuous in [0,1] where
= L™1f.

Proof: From (3.1) & (3.2) we have

pew(@) = [ F(su(s)
Using Cauchy-Scharz inequality it can be easily shown that the integral exists for

any z € [0,1]. Hence pu’ being an indefinite integral is absolutely continuous.
Theorem 3.6 If f € L3(0,1) then v’ € L3(0,1) where u = L~'f.

Proof: We use the integration by parts in the second step in the following.

/01 p(z)lu’(z)Pd:c — /: (p(:t:)u’(-'t)) u'(x)d:c

= PW(@uEh - [ (E() s

- [ 6 @) utz)ds

/01 f(z)w(z)u(z)dz

< fllzz myllulizz 0
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This completes the proof.

Remark 3.1 Suppose p(z) is continuous in a neighborhood of 0. Then in this
neighborhood

Suppose f € L2(0,1). Then

’ < 1 z d )1/2
@) < 1oy ([ wis)as)
So if im,_o+ ;(l:—)( JE w(s)ds)'/? ezists and is bounded then lim, o+ u'(z) erists
and is bounded. Iflim, .o+ 5{127 (JZ w(s)ds)/? = 0, then lim,_o+ w/(z) = 0. More-
over, if f € L*(0,1), then

() < Wflligon s [ w(s)s

Therefore, if im,_qo+ ﬁ Jo w(s)ds exists and is bounded then lim,_o+ u'(z) ezists
and is bounded. In particular, if lim,_ o+ =2 ne] Jo w(s)ds =0, then lim,_o+ ¥'(z) =
0. We also note that if p(z) = w(z) and p(z) monotone increasing in a neighbor-

hood of 0 then for any z in this neighborhood we have

W) < Ifllosongs [ a(e)ds

IA

1 z
||J’|IL$(0,1)17951)(35)/0 ds

x
Iz on [ ds

and therefore we also have lim,_ o+ u/(z) =
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3.1.4 The self-adjointness of the operator L

Let us define the domain of L as the following:
D(L) = {u € H:u,pu’ € ACi,c(0,1], Lu € L%(0,1),u(1) =0, lir(l)q+ pu' = 0} .

We mean D(L) to be this throughout this dissertation.
Theorem 3.7 D(L) is dense in L%(0,1) and L is self-adjoint.

Proof:
L7': L%(0,1) - D(L) C L%(0,1)
is a symmetric operator defined on the whole space. Therefore it is self-adjoint.

It is also injective, since L is injective. Therefore by theorem 2.5, D(L) = R(L™!)

is dense in L2(0,1) and L is self-adjoint. This completes the proof.

Corollary 3.8 The spectrum of L is purely discrete, positive and can be arranged

in e sequence

0<A1<A2<A3<---<An<...

with X\, — oo. Furthermore, the normalized eigenvalues {u,} form a basis in

2(0,1).

Proof: The proof follows from the fact that L™! is a selfadjoint compact operator

(theorem 2.3).
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3.2 The linear limit point case LP1 ( ¢=0)

We recall the limit point LP1 condition

/01 (/: %t)dt)2 w(z)dz = oo (3.17)

and

/l (/l Ldt) w(z)dr < oo. (3.18)
o \J= p(t)

We will show that if the data f € L3(0,1) then the solution u(z) is absolutely
continuous on [0,1]. We will also show that if f € L2(0,1) then the solution
is absolutely continuous in (0,1]. This means that the solution u(z) may be

unbounded at z = 0.

Theorem 3.8 Let f € LP(0,1). Then the solution u = L™'f is absolutely

continuous on [0,1). Furthermore, the operator
L7': L®(0,1) — C[o, 1]

is compact.

Proof: The proof is similar to the limit circle case. In this case we redefine K by

1 1]
K=||f||L3,°(o,1)/0 (_/; ;)w < o0

and in the proofs instead of using Cauchy-Schuartz inequality we use Holder’s

inequality.

46







