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Chapter 1

Introduction

Various problems in physics and engineering lead to an ordinary differential equa-
tion with the coefficient of the highest derivative vanishing at certain points. Such
an equation, in general, is called degenerate or singular and the zero of the leading
coefficient is called the singular point. According to Naimark [29] if the reciprocal
of this coefficient is not integrable in the whole domain then the equation is said
to be singular. In section 1.1 we give a description of a class of second order

boundary value problems with singularity at one end point.

There is a growing literature on the existence, uniqueness and the numerical ap-
proximation of the solution of such problems. A brief review to the literature is
given in section 1.2. The objective of this dissertation is to apply the Galerkin
method to approximate the solution of a general class of singular equations and

obtain error estimation in various norms. To achieve this goal it is necessary




to address carefully the problems of existence, uniqueness, regularity, variational
formulation, weak solutions and strong solutions for our chosen class of singu-
lar equations. As we will see shortly, the class of problems we treated in this

dissertation extends class of singular problems treated so far in many directions.

1.1 Second order boundary value problems with
one singular end-point and their classifica-
tion

Consider the differential equation:

(p(e)'(2)) = f(z,u(@)w(z), O<z<l

u(l) = 0

where p(z), w(z) > 0, fy w(z)dz < oo and f(z,u) is continuous in u (linear
or nonlinear) such that for any real number u, [ f(z,u)w(z)dz < oo. This

equation is formally written as

1
—:D-(pu')' + f(z,u) = 0, 0<z<l

I
o

lim pu’
=0t P

u(l) = 0

o




and is said to be regular (at both end points z =0 and z = 1) if p~! € L}(0,1). It
is singular at z = 0 ( but regular at z = 1) if p~! € L}.(0,1] but p~* ¢ L'(0,1).

We will consider this kind of singularity throughout this dissertation. A particular

example is:
1 a, I\
—m—n(z )Y + f(z,u) = 0, 0<z<l
: - 3 —
,11.%11- *u'(z) = 0
u(l) = 0

where > 1 and 8 > —-1.

Such kind of singular boundary value problems appear in many areas of applied
mathematics. They occur, for example, in transport processes [2], the study
of electrohydrodynamics [23], in the theory of thermal explosions [4], Gaussian

processes [12], separation of variables in PDE’s [32], etc.

According to Weyl’s classification {37,27] the singular point z = 0 must fall into

one of the following two mutually exclusive categories:
Limit Clircle case: All solutions of
1 AY
— —(pu) = Au (1.1)
w

are in L2 (0,1) for all ), real or nonreal. In particular when A = 0, the two linearly
independent solutions, u(z) =1 and u(z) = fI ! are in L2(0,1). Clearly by the

zp

3




assumptions on w(z), 1 € L2(0,1). Therefore, the singular point is of limit circle

case iff [} 5 € L3,(0,1).

Limit Point case: For all nonreal ) there is exactly one solution of (1.1) in
L%(0,1). For any real A atmost one solution isin L2(0,1). So for A = 0 atmost one
ofu=1loru=[; Lisin L2(0,1). Already 1 € L%(0,1), therefore f; 1 ¢ LZ(0,1).
Hence z = 0 is of limit point case iff [; 2 ¢ L3(0,1).

The term limit circle and limit point arise from the use of a certain sequence of
nested circles that Weyl made in his proof, the sequence converging in the limit

to either a circle or a point.

1.2 Literature survey

In this literature survey we mention two different aspects seperately in two sub-
sections. One is the literature regarding the existence and uniqueness of the
solution of these types of problems from a numerical analyst’s point of view. The
second one is the numerical approximations to the solution. In most of the liter-
ature concerning the numerical treatment of such problems the existence of the
solution is assumed. In many of them smoothness of the solution is also assumed

for the purpose of error estimation.




1.2.1 About the existence and uniqueness

Russel and Shampine [36] considered the problem:

- Lew@) = foule), 0<s<b (12)
ul) = B (1.4)

with @ = 1 or 2. They first considered the linear case
1 ! [
——(z"(2)) + Ku(z) = f(z)

with the same boundary conditions and proved that, for « = I and K > —j2
(where jo = 2.40483 is the first positive zero of the Bessel’s function of order
zero), the problem (1.2) has a unique solution. They also proved that, for o = 2
and K > —x?, this linear equation also has a unique solution. The proof is
based on the explicit constuction of the Green’s function associated with the
linear operator. For the nonlinear case they constructed a sequence of linear
problems and proved that under suitable assumptions on f(z,u) and the starter

ug, the sequence of solutions to these problems converges to the solution of the

real problem.

Similar iterative techniques were also used by Chawla et. al. [7] and Fink [16]

in their proof of the existence and uniqueness of the solution. Chawla et. al.




extended the work of Russel and Shampine to any o > 1. They assumed their

data f(z,u) to be continuous and having a continuous partial derivative w.r.t. u.

Fink et. al. [16] considered the same problem with & = n — 1. They introduced a
singularity in f(z,u) at u = 0. They assumed f(z,u) positive and continuous on
[0,1) x(0, 00) and strictly decreasing in u. They regularized f by replacing f(z, u)
by f(z,u + €). Under some more assumption on f they proved the existence of
a positive solution u as a uniform limit of the solutions u, as € — 0. They also
proved the uniqueness of the solution. Numerical illustrations were given in their

paper for f(z,u) =u"?, p=3, 1, with different values of €.

Remark 1.1 It is observed that in all these works the special case p(z) = w(z) =
z% a 2> 1 was only considered. Continuity of f(z,u) in both z and u was
assumed. In some cases even continuity of %& was also required. Proofs were based
on the iterative procedure using a succession of linear boundary value problems.

In this regard we want to mention here that the problems of this dissertation

are more general and the proofs are based on the results of linear and nonlinear

functional analysis.




1.2.2 About the numerical approximations

Eriksson and Thomee [15] used the Galerkin method with piecewise polynomials

(as a basis) for the linear problem:
1 a, I !
—;;(:c u(z))+qu = f, 0<z<l1
v'(0)=u(l) = 0

where o > 0 and ¢ is a bounded nonnegative function. They assumed that
these problems admit a unique and sufficiently smooth solution. For a > 1 they

obtained the error estimation
u€ — uljze < CA |l

where u(”) denotes the r-th derivative of u. This work is an improvement of the
work of Jesperson [21] who derived earlier the following error estimate for the

model problem with ¢ = 0:
G 1\" . )
le” = ullz= < C {In ) A7[u™ ||

where ¥ =1 if r =2 and ¥ = 0 if r > 2. He demonstrated with an example that
the logarithmic term cannot be removed for » = 2. Both the error estimations
of Jesperson and Eriksson & Thomee are dependent on the assumption that the
solution is smooth. We notice also that the Galerkin method used by Eriksson

and Thomee is not symmetric.



Chawla et. al. [5] used a finite difference method for the problem
1
—x—a(x°u’(:z:))'+f(z,u) =0, 0<z<l
w(0)=u(l) = 0

where a > 1. They assumed f and %ﬁ to be continuous in [0,1] x (—o0, c0) and
%ﬁ > 0. They derived an O(h?) error under the assumptions that |f’| < C; and
z|f"] < Cy for 0 < z < 1 (where f' denotes the derivative of f(¢,u(t)) ). Using
a similar approach Chawla et. al. in [6] obtained a fourth order method under

more smoothness assumptions on f, namely, |f*| < C; and z|f¥)] < C,.
Recenty Abu-Zaid [1] considered the linear problem:
1 AU
—;(pu) +qu = f, 0<z<l1
. /! — _
zlir(r)1+ pu' =u(l) = 0.

He assumed g, f € C[0,1] and ¢ > 0. In addition to the singularity condition on
p he also assumed that p’ is bounded, p is increasing in a neighborhood of 0 and

s ;1; € L*(0,1). Under these conditions he proved that a generalization of the

finite difference scheme of Chawla is to be of order A2.

Remark 1.2 It is observed that in all these works either the particular case
p(z) = w(z) = z*, o > 1 was treated or ¢ more general one: p(x) = w(z)
with assumptions on p was considered. In the linear case f and q were consid-

ered to be at least continuous with ¢ > 0. Similar assumptions were made for the

8




nonlinear case also. In addition to the generalization p = w (with aforementioned
conditions on p) Abu-Zaid also removed the smoothness condition on f (upto con-
tinuity) and still obtained O(h?) convergence through the finite difference method.
All others assumed directly or indirectly smoothness of f. It is also noted that
Jor the model case ¢ = 0 the matriz obtained by Abu-Zaid in terms of p (in his
finte difference discretization) is the same matriz obtained by Ciarlet et. al. [8§]
when Galerkin method was used with the patch basis in terms of p. Ciarlet et.
al. took the case [} :j < oo which is no more singular according to our definition.
In this dissertation the patch basis in terms of p (like Ciarlet et. al.) to an ezx-
tended class of singular problems (which generalizes all the above cases in many
ways) has been used and different order of covergences (in terms p and w and the
partition) are obtained for different cases. For ezample, a covergence of O(h?)
(in the uniform norm is obtained) for the case p = w , p monotone increasing,
and f,q € L(0,1) with ¢ > 0 (for a similar condition for the nonlinear case see
chapter 6). We like to mention that this result in this special case is also a new

one.

1.3 Objective of this dissertation

As mentioned earlier our goal is to treat a wider class of problems in terms of

the functions w,p and ¢, f (f(z,u) for the nonlinear case). This study therefore




includes the linear case:
1 n?
—-E(pu) +qu = f, O0<z<1
- ’ —
Jim p(z)u(z) = 0

u(l) = 0

(1.5)

(1.6)

(1.7)

with any general p and w (satisfying the following LC or LP1 condition). The

relaxed condition w > 0 (allowing w to vanish on any subset of [0,1]) is not

excluded. f is taken to be any function in L2(0,1). The function ¢ is in L2(0,1)

with certain conditions depending on the limit circle or limit point cases. The

limit circle (LC) case:
11
/ =~ L0,1)
is completely studied while the limit point case (LP):
[ = ¢n0
z D
is considered in the case:

[ :eno
z D wim e

We call this case as limit point one (LP1).
The study is then extended to the nonlinear case:

1
-;;(zm')' + flz,u) = 0, 0<z<l

10

(1.8)

(1.9)

(1.10)

(1.11)




lim p(z)u'(z) = 0 (1.12)

wl) = 0 (1.13)

with same general p,w covering both LP and LC1 cases. Here f(z,u) is a non-
linear forcing term which is continuous in u and is in L2(0,1) for any fixed real
u (No smoothness condition in terms of both the variables is assumed, even the
continuity w.rt. z is not assumed). Conditions (with an eye on keeping the
relaxed conditions) on f(z,u) are imposed for the existence and uniqeness of the
solution to this equation. The Galerkin method with patch basis (in terms of p)

is applied to both the linear and nonlinear cases.

This dissertation is written into 7 chapters. The first chapter is an introductory

one. The literature review is done in this chapter.

In chapter 2 we give the preliminary material to be used in the subsequent chap-
ters. Specially some materials on the Galerkin method and the maximal mono-

tone operators are prepared for the use in chapter 5 and chapter 6.

In chapter 3 we begin our study with the model problem with ¢ = 0. The
regularity of the solution to this model problem is studied in detail. Both limit
circle and limit point (one) cases are studied seperately. The behavior of the
solution along with its derivative is studied in both cases. Other related results
about the operator invoked are also studied for the use in the subsequent chapters.

A class of examples is studied as a particular case. The limit circle case with

11




g € LL(0,1) is also studied in this chapter.

In chapter 4 a Hilbert space V is defined which contains the solution space of
the model problem of chapter 3 and is contained in the original space L2(0,1).
Considering q # 0, a variational boundary value problem is defined. The existence
and uniqueness of the solution of this problem in this space V is studied. The
equivalence of this problem with the original boundary value problem is then
studied. The properties of the related operators are also studied. The study

covers both the LC and LP1 cases with relaxing w as mentioned above.

In chapter 5 we apply the Galerkin method with the patch basis (depending on
p) for the solution of the variational boundary value problem defined in chapter
4. Interpolation error for the solution in the space V with respect to this ba-
sis is estimated (both in V-norm and uniform norm). The error of the Galerkin
approximation is then studied with respect to these norms. Optimal order of con-
vegence (with respect to both norms) is studied for several cases with particular
emphasis on finding higher order accuracy for special classes (which are impor-
tant in applications). The existence of the solution of the variational boundary
value problem is also reflected through the analyses of this chapter (giving an

alternate proof for the existence theorem).

In chapter 6 all the studies of chapter 4 and chapter 5 are extended to the non-
linear case. The results are applied to a rather large class of nonlinear problems.

Comparative studies are also done with the problems available in the literature.

12




New examples are developed. The existence and uniqueness of the solution of
the finite dimensional nonlinear system arising from the Galerkin method is also

studied.

In chapter 7 the validation of the analyses is demonstrated through numerical
examples. Comparative studies for the approximations are done. Numerical

explorations for further extensions are made.

13




Chapter 2

Preliminaries

In this chapter we include the preliminaries which will be used in the subsequent
chapters. The main definitions and theorems are stated. The proofs of the
theorems are omitted, but the references are included. We have tailored the
results towards our application and written them as remarks and corollaries with
proofs. Due to the same reason we have written them in the Hilbert space settings
although in some references they are given in a more general setting. Also we have
omitted the standard definitions which can be found in any standard introductory
book of functional analysis or linear operator theory. The preliminary is arranged
into five sections. The material in section 2.1 will be used in chapters 3, 4 and
6 while that in sections 2.2, 2.3, and 2.4 will be used in chapters 4, 5, and 6
respectively. The first part of section 2.5 will be used in chapter 5 and the rest

of it will be used in chpater 7.

14




2.1 Compact and self-adjoint operators

Suppose H is a real seperable Hilbert space and T is a linear operator defined
in it. By the notation D(T') and R(T') we mean the domain and range of the

operator T. All the Hilbert spaces we consider in this dissertation are real and

seperable.

Theorem 2.1 IfT; is compact and T, is bounded on H then T\T; is compact on
H. On the other hand, if T, is compact on H and Ty is bounded on R(T,) then

N\T; is also compact on H.

Theorem 2.2 The spectrum o(T') of a bounded self-adjoint operator T consists
of only point and continvous spectrum (i.e., the residual spectrum o.(T) is empty)

and is contained in the closed interval [m, M| where
(T, )

L (Tuu) B
™ e M=

Moreover, m and M are also spectral values of T.

( The proof is given in Kreyszig [24], pp 459-469 )

Theorem 2.3 If T is a self-adjoint compact operator then the set of all eigen-
functions of T (including those corresponding to the zero eigenvalue) forms a basis
for H. The set of normalized eigenfunctions corresponding to nonzero eigenvalues

forms a basis for H if and only if X = 0 is not an eigenvalue of T.

15



( For a proof see Stakgold [37], pp 372-374 )

Definition 2.1 Let T : D(T) — H be a (possibly unbounded) densely defined
linear operator. Then the Hilbert-adjoint operator T* : D(T") — H of T is
defined as follows. The domain D(T™) consists of all v € H such that there is a
v* € H satisfying

(Tu,v) = (u,v")

for all u € D(T). For each such v € D(T*) the Hilbert-adjoint operator T* is

then defined in terms of v* by

In other words,

D(T")={ve H : uw~ (Tu,v) is continuous on D(T)}.

Definition 2.2 Let T : D(T) — H be a (possibly unbounded) densely defined

linear operator. Then T is called a symmetric linear operator if for all u,v € D(T)

(Tu,v) = (u, Tv).

Lemma 2.1 A densely defined linear operator in H is symmetric if and only if

TCcT".

16



Definition 2.3 Let T : D(T) — H be a (possibly unbounded) densely defined

linear operator. Then T is called a self-adjoint linear operator if
T=T".
Remark 2.1 It is therefore clear that a symmetric linear operator defined on the

whole space H is self-adjoint. In other words if D(T) = H then the concepts of

symmetry and self-adjointness are identical.

Theorem 2.4 (Hellinger-Toeplitz theorem) A symmetric linear operator de-

fined on the whole space H is bounded. In other words, a self-adjoint operator
defined on the whole space is bounded.

Theorem 2.5 If ¢ self-adjoint operator T : D(T) — H is injective then (a)
R(T) = H and (b) T! is self-adjoint.

( see Kreyszig [24], page 535 )
2.2 The Lax-Milgram theorem

Let V be a real seperable Hilbert space. Let B(u,v) be a bilinear formin V x V.

The bilinear form is called continuous if there is a constant C s.t.

1B(u,v)| < Cllullllv]l

17.




for all u,v € V, and it is called V-elliptic if there is a constant o > 0 s.t.
B(u,u) > af|u|l?
forallue V.

Let u € V. Then
B(u,.) : V — R

is a continuous linear functional in V. By the Riesz-representation theorem there

exists a unique element @ € V such that
B(u,v) = (&,v) for every v € V.
This gives a correspondence A : V — V by

Au) = u.

Remark 2.2 A is symmetric if the bilinear form is symmetric, since

(Au,v) = B(u,v) = B(v,u) = (Av,u)

Theorem 2.6 (Lax-Milgram) Let B(u,v) be a bilinear form continuous in V

such that B(u,v) is V-elliptic. Then A : V — V is bijective.

( For a proof see Huet [19], page 22 )

18




2.3 Galerkin method for the variational prob-
lem B(u,v) =I(v)

In this section we describe the Galerkin method for solving the problem
B(u,v) = (v) YveV (2.1)

where V is a real seperable Hilbert space, B(u,v) is a symmetric, continuous
and V-elliptic bilinear form in V x V and [(v) is a bounded linear functional
on V. The existence and uniqeness of the solution is thus assured by the Lax-
Milgram theorem. We will discuss the Galerkin approximation to this solution.

The material in this section is an adaption of results known in the literature. We

refer Reddy [34] and Zeidler [40].

Let V,, be a subspace of V spaned by n linearly independent elements of V. These
elements form a basis for the Galerkin method. This basis is to be choosen in

such a way that

nlLHolo dist(u,V,) =0 VueV

where

dist(u,Y) := 32)1; flu —vlv.
This is the main theme of the Galerkin method.

Since B(u,v) is symmetric and coercive we can define an inner product

(u,v)p := B(u,v) (2.2)
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in V. The corresponding norm is called the energy norm. We now describe the

Galerkin method in operator form with the help of this inner product.

Definition 2.4 The Galerkin method for (2.1) is an orthogonal projection oper-
ator P, of V onto V;,, with respect to the inner product (2.2), and the Galerkin

approzimation of the solution u of (2.1) is v€ = P,u.
For the sake of simplicity of notation we denote P, by P only.

Theorem 2.7 The error of the Galerkin approzimation u€ denoted as e = u—u®
satisfies

B(e,va) =0, V w,eV, (2.3)

and the Galerkin approzimation uC satisfies

B(u€,v,) =1(z,), V v, €V, (2.4)

o]

Proof: By the above definition, for any v, € V,,
B(e,v,) = B(u —,v,) = (u — Pu, Pv,)p = 0. (2.5)
Since equation (2.1) is satisfied for all v € V it is also satisfied for all v, € V, :
B(u,v,) = I(v,). (2.6)
Subtracting (2.5) from (2.6) we obtain
B(u®,v,) = I(vy,).
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This completes the proof.

Corollary 2.1 Let {r;},i = 1,...,n be a basis for V,,. Then (2.3) and (2.4) are

satisfied forv, =1, i =1,...,n. Thus
B(e,r;) =0, i=1,...... ,\n (2.7)
and the Galerkin approzimation u® satisfies

BC,r)=1(ry), i=1,....,n. (2.8)

Since u® € V, and {r;} is a basis for V,, the Galerkin approximation u€ can be

written as

n
G _ .
uf =3 a;r;
=1

and substituting this into (2.8) we obtain

iB(rj,r,-)aj = 1(7‘,'), 1= 1, ceeneng N (29)

i=1
i.e.,

Aa=b (2.10)

where A = (a) is given by a;; = B(r;,r;), 4,5 =1,.nand b; = I(r;), i =

1,.,n.

Remark 2.3 The matriz A is symmetric and positive definite.
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Proof: A is symmetric because
a5 = B(Tg, T‘J-) = B(r_,-,r;) = aj,'.
To prove the positive definiteness, let y be any nonzero element in R*. Then

YTA}’ = Zyizaijyj
i=1 1=1

= Zn: Yi i B(r;,75)y;

=1 =1

= > uB(r,>_y;r;)

=1 i=1
= B(Z YiTi, z YiT;)
i=1 i=1
= B(tn,vs)

= |zl > 0.

where
n
Un = Eyi"'i-
=1

This completes the proof.
Remark 2.4 The solution of (2.10) determines u® uniquely.

Theorem 2.8

C
lelly = lfu = wCllv < =flu = vallv (2.11)
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for any v, € V,.
Proof:
aflelly = aflu —u®; < B(u—uSu—v, -1 +0,)
= B(e,u—v,) — B(e, u® — Un)
= Bl(e,u—v,) [using (2.3)]

< Cllellvlie = vallv

which completes the proof.

2.4 Maximal monotone operators

Let V be a real seperable Hilbert space and A : D(A) c V — V be an operator
( possibly nonlinear ). Let {.,.) be the inner product in V.
Definition 2.5 The operator A is said to be monotone if

(Au— Av,u—v) 20 VYV u,v e D(A). (2.12)

A is strictly monotone if strict inequality holds in (2.12) whenever u # v and

uniformly monotone or strongly monotone if there is an o > 0 so that
(Au— Av,u —v) > oflu—v||* V u,v e D(A). (2.13)
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Remark 2.5 If A is uniformly monotone then it is an injection.

Proof: Suppose Au = Av and u # v for some u,v € D(A). Then
0= (Au—Av,u—v) > afu—v||?>0

a contradiction. This completes the proof.

Definition 2.6 The opeartor A is called maximal monotone if it is monotone and
the set {(u, Au) : u € D(A)} is not properly contained in the set {(u, Bu) : u € D(B)}

for any other monotone operator B in V.

Remark 2.6 For any a > 0 the operator ol is a mazimal and uniformly mono-

tone operator.

Proof: The proof is trivial.

Definition 2.7 The operator A is called coercive if for all u, € D(A),

. . (A
il = oo i )
Un|

Remark 2.7 If A is uniformly monotone then it is also coercive.
Proof: Let u, € D(A) such that lim,_,e ||un|| = co. Then putting « = u, and
v = 0 in (2.13) we obtain,

(Aum un) 2 a"un”2
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(Aup, u,)

T 2 el
l[uall i

~ 00 as |Juy]| = oo.

Definition 2.8 A is said to be hemicontinuous on V if
Einé(A(u +ta) — Au,v) =0
Vu,4,v e V.
Remark 2.8 IfV is finite dimensional and B is monotone and hemicontinuous
then B is continuous on V.

( For a proof see Barbu [3], lemma 1.1, page 35 )

We now restate (in Hilbert space setting) the main theorem of this section from

Barbu [3]. The proof can be found therein (pp 33-48).

Theorem 2.9 Let V be a real Hilbert space and B be monotone, everywhere
defined and hemicontinuous from V to V. Let A be @ maximal monotone operator

in V. Then A+ B is mazimal monotone. Moreover, if A+ B is coercive then

R(A+B)=V.

The following corollary will be used in chapter 6.
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Corollary 2.2 Suppose & > 0 and B is monotone and hemicontinuous on V.

Then ol + B is mazimal monotone on V. It is also uniformly monotone. More-

over,

al+B :'V — V

is bijective.

Proof: Since ol is maximal monotone, then by the above theorem af + B is

maximal monotone. It is also uniformly monotone because,
(el + B)u — (ol + B)v,u — v)

= (a(u ~v)+ (Bu — Bv),u —v)

= afju—v||®+ (Bu— Bv,u —v)

> ollu—vl?.

So it is an injection. Also it is coercive. Therefore by the above theorem it is a

surjection. This completes the proof.

2.5 Finite dimensional operators

In this section we study the nature of the finite dimensional operators (linear

and nonlinear) which are obtained when the Galerkin method is applied to our
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problems. These operators will be needed for the error estimation and for the
numerical computations. We refer Stoer & Bulirsch [38] and Ortega [31] for the

origin of the material of this section.

2.5.1 Linear operators

We consider the matrix operator A on R™.

Definition 2.9 The (directed) graph of a mairiz A denoted as G(A) consists
of n vertices Py, ......, P, and there is an (oriented) arc from P; to P; in G(A)

precisely if a;; # 0.

Definition 2.10 A is irreducible if and only if the graph G(A) is connected in
the sense that for each pair of vertices (P;, P;) in G(A) there is an oriented path
from P; to P;.

Definition 2.11 A matriz A is called diagonally dominant if

J=1j#i
Definition 2.12 We write

A<B :ifandonlyif a; <b; Vi,j=1,...n.
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Definition 2.13 A is called an M-matrix ifa;; <0 forall 4,5 =1,....,n, 1 # j

and A is invertible with A~! > 0.

Theorem 2.10 Let A be irreducible and diagonally dominant such that a;; >

0, :=1,..,nenda; <0, i#j. Then A is an M-matriz.

Theorem 2.11 A symmetric M -matriz is positive definite.

Theorem 2.12 Let A be an M-matriz with offdiagonal part A;. Let Q be a
nonnegative matriz with offdiagonal part Q1. If @1 < —A; then A + Q is an
M-matriz and (A+ Q)™ < A~'. Furthermore, if A and Q are symmetric then

A + @Q is positve definite.

( For a proof see Ortega [31], pp 54-55 )

Consider now the equation
(A+Qx=b

such that (A + Q) is a symmetric M-matrix. Then by theorem 2.11 it is positive
definite and so any direct method for solving this system will be stable. We will

deal with one such a system in chapter 7.

2.5.2 Nonlinear operators

Consider the nonlinear operator F': R* — R™.
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Definition 2.14 F is ¢ homeomorphism of R™ onto R if F is one-to-one and

F and F~! are continuous.

Theorem 2.13 (Uniform monotonicity theorem) If F is continuous and uni-

Jormly monotone, then F is ¢ homeomorphism of R® onto R™.

( For a proof see Ortega [31], pp 165-167 )

It is therefore clear that, under these assumptions on F, the equation
Fx=0

has a unique solution. For the numerical computation of this solution we use
a suitable iteration method. The literature on the iteration methods for such
a problem is extensive. The appropriate method which assures the convergence
is completely dependent on the type of the problem. We therefore confine our-
selves to discussing two methods for our problems in chapter 7. One is globally
convergent (usually slow) and the other one is locally convergent but faster (usu-
ally quadratic or superlinear). In our case F = A + G, where A is a symmetric

M-matrix and G is nonlinear. The corresponding equation becomes:

Ax+Gx=0.

The Picards iteration:

(A+yDxF =4x* - Gx*, k=0,1,..,
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where 4 > 0 depends on G, converges to the solution x starting with any x° € R™.

For the proof of this global convergence result we refer to Ortega [31], pp 387-388.
The secant method:
X = x* — (A 4 Jp) TN (AX® + GxF)

where J; is a matrix dependent on G which is updated at each step k, is convergent
to the solution x if x® is sufficiently close to it (i.e. locally convergent). For the

rate of convergence we again refer to Ortega [31], pp 355-365.

The constant 4 and the matrix Ji will be given explicitly in chapter 7. We will

also see that the matrix (A + Ji) will be positive definitie at each iteration.
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Chapter 3

The Regularity of the Solution

In this chapter we first investigate the nature of the solution and its derivatives
for both the limit circle (LC) and limit point (LP1) cases. We also study the
operator invoked therein. We begin with the particular linear case when ¢(z) = 0.
In section 3.1 the limit circle case is studied. In section 3.2 the limit point LP1
case is considered. In section 3.3 a class of examples is given to illustrate the
above two cases. We then consider the case LC for ¢ € L=(0,1) in section 3.4 .
We will consider both limit circle and limit point cases for a more general ¢ in

chapter 4.
Consider the problem (1.5)-(1.7) with ¢ = 0 i.e.,

Lu= _w—(l:zj (p(z)') = f(z), 0<z<1 (3.1)
Jim plep(e) = 0 (32)
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u(l) = 0 (3.3)

with w,p > 0,2 2 € Li,e(0, 1],% ¢ L'(0,1) and [ w < oo.

3.1 The linear limit circle case with q=0

We cosider the limit circle condition

[ ([ ) wierts < o o

We also assume that

feLi(,1) (3.5)
3.1.1 The behavior of the solution

The following lemmas will be helpful.

Lemma 3.1 Forz >0
[ ( L5 dt) Fho(e)ds < [° ( T)dt) 75 uls)ds

Proof: Since for z > 0, [} p(t) ——=dt exists and, since p(t) is nonnegative, it follows

thatfor0<s< =z
11 11
—dt < | ——dt
/z p(t) ~ /s p(t)
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The result, therefore, follows because |f(s)|w(s) is nonnegative.

Let 2

K = I fllzz o0 ( A ( [ it)dt)zw(x)dx) <.

Lemma 3.2 There ezists a monotone increasing function M(z) defined on [0, 1]

with M(0) =0 and M(1) = K such that for 0 <z <1

l / F(s)w ds dt}<M(z)
Proof:
ICEE

[ 1565 he(s)es / 1 p—(li)-dt

- [ ( [ m‘)"t) 17 ha(s)ds

< [ ( | ' p—(lt—)dt) 1£()lw(s)ds (3.6)

[ by lemma 3.1

z 12 ( = ([ p1 2 12
(/0 fz(s)w(s)ds)/ (/o (/3 Mdt) w(s)ds)

[ by using Cauchy — Schwarz inequality |

IN

IA
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= M(z)

where

1/2

M(z) = (/ FA(s)w(s) ds)l/2 (/Oz (/: ;(lt—)dt)zw(s)ds)

Clearly this function is nonnegative, monotone, increasing and M(0) = 0, M(1) =

K.

Corollary 3.1

lim ( I #syuts) ds) ( / —dt)

Lemma 3.3 There ezists a monotone decreasing function N(z) defined on the

interval [0,1] with N(0) = K and N(1) = 0 such that for all z € [0,1]

/xl (/,l %dt) f(s)w(s)ds

< N(z).

Proof:

[ ( T)‘”) fls)w(s)ds

< [(/ ) (s (3.7)

(/: fz(,<,-)u;(.s)d.s)1/2 (/: (/’1 ;(lt—)dt)z w(s)ds)
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[ using the Cauchy — Schwarz inequality ]

= N(z)

where

= (/: f2(3)w(s)ds)]I2 (/l ( ' %dt)zw(s)ds) "

Clearly this function is nonnegative, monotone, decreasing and N(0) = K,

N(1)=0.

Lemma 3.4 The solution u{z) of (3.1)-(3.3) satisfies:
lu(z)| < K

for any z € [0,1].

Proof: From equation (3.1)-(3.3) we obtain

u(z) = /p(t (/ f(s)w(s)ds) (3.8)

Integrating by parts we obtain

[(/otf (s)u(s)ds (‘ )] + / f(s)yw(s) (t)dtds
(f rtsyots)as) (/ ) +f ( [ (t)dt) F(s)w(s)ds.

(3.9)

u(z)
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Taking absolute values of both sides and using (3.6) and (3.7) we obtain,

wel < [ (t)dtlf(s w(s)ds + [ / ——dtlf(s)lw(s)ds

- / / (t)dt]f(s |w(s)ds

(./ol f2(.<;)w(.<s)ds)1/2 (/01 (./31 I%t)dt)z w(s)ds)

= K.

1/2

IN

This completes the proof.

Corollary 3.2

u(0) = / ( / —dt) F(s)w(s)ds

and if f is positive then

0<u(z) Lu(0) <K Vzel0,1]
Corollary 3.3 The function v = L™ f is an indefinite integral.

Corollary 3.4 For any z € [0,1]

/ () / | £(s)|w(s)dsdt < K.

Proof: Replacing f by |f] in the proof of lemma 3.4 we get the desired result.
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Theorem 3.1 L™'f € C[0,1] for any f € L2(0,1).

Proof: Let u = L~!f. Take z < 2. Then by (3.8)

u(z) — u(z) _/: p(l—t)/(: f(s)w(s)dsdt — /: ;(IT)/; F(s)w(s)dsdt

[ p_(ltj i  (s)w(s)dsdt. (3.10)

T

Taking absolute values of both sides we obtain

u(e) - w2 < [ p(l—t) / * LF(s)lw(s)dsdt. (3.11)

By corollary 3.4 this integral exists and therefore, u = L~!f is continuous on

[0,1]. This completes the proof.

Theorem 3.2 For any f € L(0,1) the function u = L™ f is absolutely contin-

uous on [0,1].

Proof: Let {(z:,z})} be a finite collection of nonoverlapping intervals in [0, 1].

Then by (3.11)

é'u(z‘:) —u(z;)] < Z:/:: ;%5[: [f(s)|w(s)dsdt

1 rt
- lom /0 |F(s)lw(s)dsdt,
where

A= O(z;, ;).

i=1
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Therefore, given any € > 0, there is a § > 0 such that for such collection of

intervals with

n
mA=) |zi -z < §
i=1

we have

/Ap(l—t)/; |f(s)|w(s)dsdt < e,

n

ie. Y |u(zl) —u(z;)| < e

=1

This completes the proof.

We have, in fact, proved an important and well known result of real analysis:

every indefinite integral is absolutely continuous.

Corollary 3.5 For any f € L1(0,1) the function u = L~'f has the following

properties:

1. u is of bounded variation on [0,1].

2. u/(z) ezists for almost all z in [0,1].

3.1.2 Compactness of the inverse operator

Theorem 3.3 L~':12(0,1) — C[0,1] is compact.
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Proof: Let B be a bounded set in L2(0,1) with a bound M. We want to show
that LB is relatively compact and to do this it is enough to show that the set

of functions L' B is equicontinuous and equibounded (Arzela-Ascoli theorem).

Equicontinuity:

Let f € B and y = L~!'f. Then from (3.10), for z < z

u(z) —u(z) = /: %/{: f(s)w(s)dsdt

By lemma 3.4 this integral exists. Therefore, by Fubini’s theorem, changing the

order of integration we get

u(z) —u(z) = /: f(s)w(s)ds /: p—(t—)-dt + j; f(s)w(s) /;z ;(%jdtds (3.12)

Case 1z =0:

Using corollary 3.1 in (3.12) and taking absolute values of both sides we obtain

‘/oz f(s)w(s) /: %dtds
< (/oz f2(,<_,-)w(.<s)d.<s)1/2 ([: (/: p(l—t)dt)2 w(s)ds)
I fllzz, 0 (/oz (/’z ;(lzsdt)z w(s)ds) "

1/2

M ( /o : ( / ’ p(l—t)dt)zw(s)ds) . (3.13)
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Case 22> 0:

Taking absolute values of both sides of (3.12) we obtain

/ p(t
oo

+ (./: fz(s)tll(-‘i)ds)ll2 (/: (/: %dt)zw(s)ds) 1/2
(/ f(s w(s)ds)1 2 (/ w(s)ds)m (/: it)dt>
+ ( /0’ f2(s)w(s)d8) 1/2 ( / ( : '—(Zidt)zw(s)ds)

M(( 27)&) (/0 s)ds)l/2+(/ (/ ——dt) w(s)d )1/2).

(3.14)

lu(z) - u(2)| < s)ds

+ /: f(s)w(s) /: ;Z%dtds

IN

1/2

IA

If 0 < z < z we interchange z & 2.

It is now clear from (3.13) and (3.14) that L1 B is equicontinuous.
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Equiboundedness:

By lemma 3.4

lu(z)] £ K

122 (0.0) (/01 (/’1 z%dt)z w(s)ds)
M ( [ ( [ I%dt)z w(s)ds) "

Thus L™!B is also equibounded. This completes the proof.

1/2

IN

Corollary 3.6 L~!:C[0,1] — CJ[0,1] is compact.
Corollary 3.7 L=1: L2(0,1) — L2(0,1) is also compact.

Proof: Let B be a bounded set in L2 (0,1). Then by theorem 3.3 L~! B is relatively
compact in C[0,1]. But any set which is relatively compact in C|0,1] is also

relatively compact in L?(0,1). This completes the proof.

An Alternate Approach to show that L' : L?(0,1) — L2(0,1) is com-
pact:
Here we like to add that the compactness of L™ from LZ2(0,1) to Lw2 can be

proved alternately through Hilbert-Schimdt kernel. From (3.9) u(z) can be writ-

ten as

u(z) = /01 k(z,s)f(s)w(s)ds (3.15)
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where k(z,s) is a kernel given by:

fxl p(lt)dt, s<z
k(z,s) = .

I} p(lt)dt, s>z

Lemma 3.5 The kernel k(z,s) is a Hilbert-Schimdt kernel.

Proof:

/ol /01 |k(z, 5)*w(z)w(s)dzds

(3.16)

L[ (/ o dt) w(e)u(s)dzds + [ [ (/ o) )zw(z)w(s)dzds

- /01 ( /l ﬂdt) w(s) ( / w(z) dz) ds + / / ( / p(—tdt) w(s)w(z)dzds

IN

[ ([ ) e ([ wee) oo [
( [ 1 ( / 1 %dt) w(s)ds) (/ l w(z)ds )

< o0.

We have thus proved

Tt)dt

)2 w(s) (/sl w(:c)dz) ds

Theorem 3.4 The integral operator L~ : L2(0,1) — L2(0,1) defined by

u(e) = LS = | " k(z, 5)f(s)w(s)ds

is a Hilbert-Schimdt operator and, therefore, is compact.
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3.1.3 The derivative of the solution

Theorem 3.5 If f € L2(0,1) then pu' is absolutely continuous in [0,1] where
= L™1f.

Proof: From (3.1) & (3.2) we have

pew(@) = [ F(su(s)
Using Cauchy-Scharz inequality it can be easily shown that the integral exists for

any z € [0,1]. Hence pu’ being an indefinite integral is absolutely continuous.
Theorem 3.6 If f € L3(0,1) then v’ € L3(0,1) where u = L~'f.

Proof: We use the integration by parts in the second step in the following.

/01 p(z)lu’(z)Pd:c — /: (p(:t:)u’(-'t)) u'(x)d:c

= PW(@uEh - [ (E() s

- [ 6 @) utz)ds

/01 f(z)w(z)u(z)dz

< fllzz myllulizz 0
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This completes the proof.

Remark 3.1 Suppose p(z) is continuous in a neighborhood of 0. Then in this
neighborhood

Suppose f € L2(0,1). Then

’ < 1 z d )1/2
@) < 1oy ([ wis)as)
So if im,_o+ ;(l:—)( JE w(s)ds)'/? ezists and is bounded then lim, o+ u'(z) erists
and is bounded. Iflim, .o+ 5{127 (JZ w(s)ds)/? = 0, then lim,_o+ w/(z) = 0. More-
over, if f € L*(0,1), then

() < Wflligon s [ w(s)s

Therefore, if im,_qo+ ﬁ Jo w(s)ds exists and is bounded then lim,_o+ u'(z) ezists
and is bounded. In particular, if lim,_ o+ =2 ne] Jo w(s)ds =0, then lim,_o+ ¥'(z) =
0. We also note that if p(z) = w(z) and p(z) monotone increasing in a neighbor-

hood of 0 then for any z in this neighborhood we have

W) < Ifllosongs [ a(e)ds

IA

1 z
||J’|IL$(0,1)17951)(35)/0 ds

x
Iz on [ ds

and therefore we also have lim,_ o+ u/(z) =
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3.1.4 The self-adjointness of the operator L

Let us define the domain of L as the following:
D(L) = {u € H:u,pu’ € ACi,c(0,1], Lu € L%(0,1),u(1) =0, lir(l)q+ pu' = 0} .

We mean D(L) to be this throughout this dissertation.
Theorem 3.7 D(L) is dense in L%(0,1) and L is self-adjoint.

Proof:
L7': L%(0,1) - D(L) C L%(0,1)
is a symmetric operator defined on the whole space. Therefore it is self-adjoint.

It is also injective, since L is injective. Therefore by theorem 2.5, D(L) = R(L™!)

is dense in L2(0,1) and L is self-adjoint. This completes the proof.

Corollary 3.8 The spectrum of L is purely discrete, positive and can be arranged

in e sequence

0<A1<A2<A3<---<An<...

with X\, — oo. Furthermore, the normalized eigenvalues {u,} form a basis in

2(0,1).

Proof: The proof follows from the fact that L™! is a selfadjoint compact operator

(theorem 2.3).
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3.2 The linear limit point case LP1 ( ¢=0)

We recall the limit point LP1 condition

/01 (/: %t)dt)2 w(z)dz = oo (3.17)

and

/l (/l Ldt) w(z)dr < oo. (3.18)
o \J= p(t)

We will show that if the data f € L3(0,1) then the solution u(z) is absolutely
continuous on [0,1]. We will also show that if f € L2(0,1) then the solution
is absolutely continuous in (0,1]. This means that the solution u(z) may be

unbounded at z = 0.

Theorem 3.8 Let f € LP(0,1). Then the solution u = L™'f is absolutely

continuous on [0,1). Furthermore, the operator
L7': L®(0,1) — C[o, 1]

is compact.

Proof: The proof is similar to the limit circle case. In this case we redefine K by

1 1]
K=||f||L3,°(o,1)/0 (_/; ;)w < o0

and in the proofs instead of using Cauchy-Schuartz inequality we use Holder’s

inequality.
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Remark 3.2 As a conscquence of the results of chapter 5 (see section 5.4) we

see that, also in the LP1 case the operator L=' : L2(0,1) — L2(0,1) is compact.

Theorem 3.9 If f € L2(0,1) then the solution w = L™'f € L2(0,1) and is

absolutely continuous in (0,1].

Proof: Let f € L3(0,1). Then from (3.9) it is clear that u = L™!f is absolutely
continuous in (0,1]. To show that u is in L2(0,1) we show that both the terms
of (3.9) are in LZ(0,1).

Stepl: To show that the first term of (3.9) isin L2(0, 1) i.e., 5 fw [} 1 € L2(0,1):
Ly (L3)
< Witzon [ ([[w) (['2)
g [ ([0 [ 2) ([3)w
Wttgen ([w [ 3) [ (/1)

< .

IA
—

IN

Step2: To show that the second term of (3.9) is in L2(0,1) i.e., [} ( N %) fwe
L%(0,1) :




< flBzon [, ( () w)
< Wlzon [ ([ (['3)w) [ Lo
< Wlon | ([ 3)w ) (['2)

< oo.

This completes the proof.

Remark 3.3 If f € L2(0,1) and not in L2(0,1) then the solution u = L7} f

may be unbounded at z = 0.

Proof: Consider the example:

and
fe) ==
Then
u(z) = (L)) =

which is clearly unbounded at z = 0.

Sl

Theorem 3.10 For any f € L2(0,1) the derivative of the solution u' € L2(0,1).
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Proof: The proof is exactly same as the limit circle case.

3.2.1 The self-adjointness of the operator L

We note that also in the limit point case the operator L is self-adjoint.
Theorem 3.11 D(L) is dense in L2(0,1) and L is self-adjoint.
Proof: The proof is exactly same as the proof of theorem 3.7 .

Remark 3.4 For the proof of the self-adjointness of the operator L in the limit
point case, the boundary condition lim,_o+ p(z)u'(z) = 0 is not needed, but it

naturally holds (see El-Gebeily et. al. [17], page 350, equation (3.15)).
Corollary 3.9 L~! is bounded on L2(0,1).

Proof: This follows from theorem 2.4.

We will also see a direct proof of this in corollary 4.2 in chapter 4.

Remark 3.5 We define the solution u(z) to be oscillatory at the singular point
z =0 #fu(z) has a zero in every interval (0,),0 < a < 1 and lim,_o+ u(z) does
not ezist. Otherwise it is nonoscillatory. We see that in the LC and in the LPI

cases the solution is nonoscillatory.
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Remark 3.6 It is possible by changing w to trade a limit point case for a limit

circle one. However, this trade off will have to be balanced by a more restricted

class of data functions.

3.3 Examples
In this section we illustrate the results of section 3.1 and section 3.2 with a class
of examples. We take the problem (3.1)-(3.3) with

p(z)=2z% a>1,

w(z) =2, B> -1.

It is in the limit circle case if
B—-2a+3 > 0.
It is in the limit point case with [} % € L1(0,1) if
B—-2a+3 <0

and

B—a+2 > 0.

It is also checked that if f € L2(0,1) and

B—-2a—-1 >0
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then u'(0) = 0. Similarly if f € L(0,1) and

B—a+l >0

then u'(0) =0.

To show that there are examples where u’(0) may not be equal to zero even in the
limit circle case, consider & = 1 and B = 0 (which is a particular example of the
limit circle case). Let f(z) = Inz which is in L2(0,1). The solution in this case
is given by u(z) = —2—zinz +2z. Therefore, u(0) = —2 and lim,_g+ ©'(z) = .

But if we take f(z) = 2cos(rz) then lim o+ v'(z) = ~2.

The eigenvalues of L are the positive zeros of the Bessel’s function

2V
JB:%:-?' (ﬂ__Z-E) == 0 (3.19)

with the corresponding eigenfunctions ( upto a multiplication by a constant)

A)=3 (-1)* 2 )2k (B-a+2)k
u(z"\)—,g,l‘(k+l)l‘(r+k+1)(ﬁ—a—i—? z

where r = (a — 1)/(8 — & +2). Using the bound (4.4) of chapter 4 it is verified
that the first eigenvalue, (e, 8) is bounded below by:

0<(B+1)(B-a+2) < M(e,B). (3.20)

For a = f equation (3.19) becomes

Jez (V) =0
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and (3.20) becomes
0<2a+1) € Aa). (3.21)
In this special case Chawla et. el. [7] showed that the first positive zero A,(a) is

an increasing function of a. We copy the list for A (a) for different values of «

from this paper:

a 1.0 1.5 2.0 25 3.0 5.0 10.0
A(a) 5781 7.730 9.865 12.179 14.670 26.338 66.721

The bounds (3.20),(3.21) is sufficient for application in many examples.

3.4 The linear limit circle case LC with g €
L3(0,1)

In this section we study a more general linear case i.e., when ¢(z) is not necessarily
equal to zero. We assume that ¢ € L2°(0,1). We extend the results of section 3.1

to this case. We recall the equation:

Ly=Lu+gq(z)u = f(z), 0<z2<1 (3.22)
lim p(e)u(z) = 0 (3.23)
w(l) = 0 (3.24)

with the same conditions on p, w and f for the limit circle LC.

It is observed that the domain of L, is same as the domain of L.
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Lemma 3.6 ¢L~': L2(0,1) — L2(0,1) is compact.

Proof: Since ¢ € LY(0,1) , the multiplication operator
q: D(L) - L},(0,1)

is bounded. But L~! is compact. Hence qL~! is compact.

Corollary 3.10 The operator
I'+qL7": L7(0,1) — L5(0,1)

is bounded. The spectrum is discrete with 1 as the point of accumulation.

Assumption: In addition to ¢ € L2(0,1) we also assume that

0¢o(l+qL™") (3.25)
Theorem 3.12 The solution u = (L + q)~'f ezists and is in D(L) for any
f € L(0,1) and the operator

(L+q)7":L2(0,1) - L2(0,1)

s compact.
Proof: By the assumption (3.25) 0 is in the resolvent set of the operator I +¢L™!
and so it’s inverse is bounded. Since L~! is compact, then

(L+q) ' =LYI+qL ™M)
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exists and is compact.

Corollary 3.11 The spectrum of L+q is purely discrete and the assumption (8.25)

is equivalent to the assumption

0¢o(L+q) (3.26)
Corollary 3.12 L + q is self-adjoint.

Remark 3.7 We mention here some of the sufficient conditions on q which will

gurantee the above assumption (3.26). We define

essinf ¢ =sup {M : p{z : ¢(z) < M} =0}
and
ess sup ¢ = inf {M : p{z : ¢(z) > M} =0}
where p is the w-measure: p(E) = fpw. Since q € LF(0,1) then both ess sup ¢

and ess inf q are finite.

1. If Ay + essinf ¢ > 0 where \; is the smallest eigenvalue of L then (3.26) is

satisfied. In particular, if g(x) > 0, this condition is automatically satisfied.
Proof: For anyu € D(L) with u # 0 we have
(L+quu)y = (Lu,u)y + (qu,u),

2 (Lu,u), + ess inf ¢ (u,u),
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This gives

((L + q)u', u)w (Lu, u)w
(ua u)w Z (u, u)w

+ ess inf ¢

> inf E'—u—zﬁ+ess inf ¢
weD(L) (u,U)w

= A +essinf g (3.

> 0.

Thus all the eigenvalues of L + q are positive.

2. If q satisfies
Ai < essinf (—q) < esssup (—¢q) < Aip

for some i where \;’s are the eigenvalues of L then (3.26) is satisfied.

To see this let k = =2 where ¢ = ess inf (—q) and d = ess sup (—q). Suppose

(L+qu=0
Then
Lu=—qu
and so
(L —k)u=(—q~k)u.
Clearly (L — k)™ ezists and therefore
u=(L~k) Y (—q—ku.
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Taking norm of both sides we obtain

lullzzeny < WL = &)z oenll(—2 — k)ullzz o0

< (L = EY Mizz o) (ess sup (—g — k))l|ullzz 01)

_ d—c
(L — &) |z2 02y ( 5 ) llellza o)

= allullzz

where

d—c
a=|(L - k)0 ( 3 ) :
But
1L =8 e = max{(k—X)"" (his = k)7'}

1
mln{k - /\,', A,’+1 - k}

12
S @-9r " d=¢

So a <1 and hence u = 0. Thus 0 is not an eigenvalue of L + q.

Lemma 3.7 L + q is bounded below by

Mtessinf g2 M — |lgllze(0)

where A, is the smallest and positive eigenvalue of L.
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Proof: From (3.27) we have,

(L + qJu, u)w

> ) > — o .
e M+essinf g2 A —|lgllzeon

This completes the proof.

Theorem 3.13 The spectrun of (L + q) i.e. of (3.22)-(3.24) is purely discrete

and can be listed as the sequence

Br<pa <pz<-or < fpy <o
with liMp oo ftn = +00 (thus there are atmost finitely many negative eigenvaluse).
The corresponding normalized eigenfuntions {u,} form an orthonormal basis in
L%(0,1).
Proof: Follows from theorem 2.3.

Theorem 3.14 ' € L2(0,1)

Proof: Since u € D(L), and R(L) = L%(0,1) the proof is same as the proof of

theorem 3.6.




Chapter 4

The Linear Variational
Boundary Value Problem

Consider the linear boundary value problem (1.5)-(1.7) rewritten as:
(L+qu=Lu+qu=f. (4.1)

with both limit circle and limit point one ( i.e. LP with [} ;7 € L1(0,1) ) cases.
Also consider f to be in LZ(0,1). The assumptions on g will be made systemat-

ically in proper places.

In section 4.1 a new Hibert space V is introduced which contains the domain of

L. We show that D(L) is also dense in this space V.

In section 4.2 a linear variational boundary value problem (VBVP) is defined.
This variational problem contains the function ¢q. A sufficient but as relaxed as

possible assumption on q is made so that this VBVP has a unique solution. A
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detailed discussion on this assumption is also given seperately in a subsection.

In section 4.3, under a regularity assumption on ¢ (i.e., ¢ € L(0,1) for the limit
circle case and g € L2(0, 1) for the limit point case), it is shown that the solution

of the VBVP is indeed the classical solution of the linear boundary value problem.

Finally, in section 4.4, with the same assumptions on ¢ it is shown that the
operator L+q is self-adjoint and in the limit circle case the inverse of this operator
is compact and the solution of the BVP is in AC[0,1]. Also it is shown that in

the limit point one case, for f,q € L2(0,1), the solution lies in AC[0, 1].

4.1 The Hilbert space V

Let us denote the Hilbert space :
H=1L,(0,1)

with the usual inner product:

1

(u,v) g = (u,v)y =/ uvw.

o]

Let V be the space defined by:

V = {u cu' € L3(0,1) and u(l) = 0}

= {u cu(z) = /1 v(s)ds where v € Lﬁ(O, 1)}

z
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Clearly V C AC(0,1] where by AC(0,1] we mean the set of functions which
are absolutely continuous in (0,1] and may or may not be continuous at z = 0.
It is also clear from chapter 3 that D(L) C V. Also V C H which is a direct

consequence of the following theorem. We define the following inner product in

V:
1
_ 1
(woly = [ pu

Clearly V is a real Hilbert space.
Theorem 4.1 V is continuvously embedded in H.

Proof: Let u € V. Then u = [; v for some v € L2(0, 1). Now
1 1/ 1 \2
2 _ 2, _
iy = [wtw = [([ o) w
(L5
= —pv| w
0 s \/5 P
1/ 11 1,
INVBIESE
1/ 11 gt
< 2 —_
< "‘U”Lg,(o.l)/o (/s p(t)) w(s)ds

It ([ 55 ) wlshds =l

INA

This completes the proof.
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Corollary 4.1 Let

2
A := inf lully (4.2)
veV [lullf

Then A > % where C = f§ ( ! —”“-) w(s)ds.

s p(t)

Since D(L) C V C H and D(L) is dense in H, then V is also dense in H.
Corollary 4.2 L' : H — D(L) C H is bounded.

Proof: Let u € D(L). Then by the previous theorem and by the proof of theorem
3.6

lull < Clluliy
= C(LU,U)H

< CllLullalfulla

Thus |jul|g £ C||Lu|lg. This completes the proof.

Lemma 4.1 Ifu € D(L) and v € V then

pu'v [3= 0.

Proof: For u € D(L) there exists f € H s.t. pu’ = — [§ fw and we have

’ _ z 1 1
lpu'v| = fw v
0 z
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AN

[ it [

[ il [ wids

[ 1fh ( [ 11;) v ()"
lolly [ 15l (/j %)’
(1) (1)

—Qasz—0.

IN

IN

IA

IN

Since p(1)w/(1) = — Jy fw which clearly exists and v(1) = 0 so p(1)u/(1)v(1) = 0.

This completes the proof.

A suficient condition for D(L) to be dense in V is given in the following theorem.

Theorem 4.2 If the measure generated by p is absolutely continuous with respect
to the measure generated by w i.e., [zp = 0 whenever [uw = 0, then D(L) is

densein V.
Proof: Let v € V be such that
(u,v)y =0
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for all v € D(L). Thus

[ by lemma 4.1 |
1
= - A (pu)Yv=0

= (Lu,v)g =0

= (f)v)H =0

for all f € H. This implies that v = 0 a.e. with respect to the measure generated

by w. Then by the assumption of the theorem v = 0 a.e. with respect to the

measure generated by p. Hence D(L) is dense in V. This completes the proof.

Let
(Lu, U)H
m iz
weD(L) ||ufi}

A =
Then we have the inequality:

1

0<
Is (3 ) wls)ds

<A< N

Remark 4.1 If D(L) is dense in V then A = ).
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2
Proof: v — H%{—:g is a continuous and bounded functional on V satisfying:

where

Therefore, if D(L) is dense in V

vl|? v||?
N Y
veD(L) lelly  vev vl

1 1
T M T g BT
uED(L)m mn uevm
N 1 1
M A

This completes the proof.

4.2 The Variational Boundary Value Problem

Assumptions on q:

Let us assume that q satisfies the following two conditions:

/ el () ( | ' p(l—s)ds) dt:=C, < oo (4.5)

and

o Jo qu*w
weV  |luli}

=y> -1 (4.6)
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We want to mention here that under various conditions on p, w, and ¢ these
assumptions are satisfied. We give more details on this ( for the clarification as

well as the implementation ) at the end of this section.

We first establish the following lemma.

Lemma 4.2 Under the assumption (4.5) we have
1
[ aww < ulvlioly [ latohet:) / —dsdt

= GColiullvlivllvy

Proof:

[ ayo(uiote)as

= /: q(t)w(t) (./tl u'(s)ds) (/;1 v'(s)ds) dt
= /0 ' d(O)w(t) ( /t ' \/—I’%_T/;Eu'(s)ds) ( /t 1 \/ﬁmv'(s)ds)
< [ ([ o) ([ o) ([ )" ([ o)

< alvlioly [ el ( [ )

= Cyllullvllvllv [ by assumption (4.5) ]
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This completes the proof.

Corollary 4.3 Ifg=1 then

(b = Gwohe < Rl | ([ 555w = Clulvlolly

1
p(s
Corollary 4.4 Theorem 4.1 also directly follows from the corollary 4.3.

We now define the bilinear form in V x V as follows:

B(u,v) := (u,v)v + /01 quow (4.7)

It is clear that B(u,v) is symmetric. We define the variational boundary value

problem (VBVP) in the following way.
Given f € H find u € V such that for all v € V the following holds:
B(u,v) = (f,v)n (4.8)

The solution of (4.8), if any, is called the generalized solution or the weak solution
of (4.1). We will show that under the above assumptions on ¢ this problem has

a unique solution.

Lemma 4.3 The bilinear form B(u,v) defined by (4.7) is continuous in V.
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Proof:

IB(H, v)l =

(o) + [ quow

< lelivlivlly + ulvlivly [ la@tu® | —=dsdt
[ by lemma 4.2 ]

= (14 [ oty [ st ol

= 1+ Clullvivly

This completes the proof.

Lemma 4.4 Under the assumption (4.6) B(u,v) is V-elliptic.

Proof:
1
B — 2 2
(ww) = ful}+ | o'w
2 oy,
by assumption (4.6), where @ = 1+ v > 0. Thus the bilinear form is V-elliptic.

We are now ready to show that under the assumptions (4.5) and (4.6) on ¢ the

VBVP (4.8) has a unique solution in V. This is proved in the following theorem.
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Theorem 4.3 For any f € H the variational boundary value problem
B(u,v) =(f,v)y YveV
has a unique solution in V.

Proof: Define the functional l(v) = (f,v)y on V. Clearly it is linear. We show
that it is bounded:

1)l = KF, o)ul < Iflulivlla < VI fllallvllv

by theorem (4.1) or by corollary (4.3) where C = [ ( h ;%:—)) w(s)ds. By lemma

(4.3) and lemma (4.4) the bilinear form B(u,v) is continuous and V-elliptic.
Hence by the Lax-Milgram theorem there exists a unique solution u € V. This

completes the proof.
4.2.1 Remarks on the assumptions on q

Remark 4.2 If ¢ € LY(0,1) then assumption (4.5) holds.

Remark 4.3 If q is Lebesgue integrable in [0,1] and

w) | 1 %ds € L°(0,1) (4.9)

then assumption (4.5) is also satisfied.
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Example 4.1 Let p(z) = z°, and w(z) = 2° ,8 > a — 1. Then (4.9} of remark
4.3 is satisfied.

Remark 4.4 If ¢ € L2(0,1) and p ,w satisfy the limit circle condition then
assumption (4{.5) is also satisfied.

Proof:

[ atoate ([ )
[ lao/e@ ( [ —ds) w(t)dt

(/0 1 Iq(t)lzw(t)dt)l/2 ( /0 1 ( /t ‘ mds>2 w(t)dt)

< o

1/2

IA

Remark 4.5 If C, := [y |g(t)|lw(?t) [} L dsdt < 1, then assumption (4.6) holds

»(s)
automatically.

Proof: Let u € V, then

— /01 qulw = /: —q(2) (/tl u'(s)ds)2 w(t)dt
)| [ A= ya(s)u(s)ds 2 w(t)dt
0 t \/p(_s)
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< [ ([ Ssas) wioartul

= Cq”v”%

Thus

1 .2
Botw, oo )
flult}

This completes the proof.

Remark 4.6 If [] qu*w > 0 assumption (4.6) is satisfied. In particular if ¢ > 0

then this is clearly satisfied.

Remark 4.7 Let D(L) be dense in V. Then since the functional ( not linear )

Jo qv*w
lvli3

is continuous on V — {0} ( readily checked by using lemma 4.2) assumption ({.6)

V=

is equivalent to :

19
g Bw._ o (4.10)
«bo) [ull}
Remark 4.8 Suppose
1 2
M+ inf 2TEV g

weD(L) ||ull}y

where Ay is given by (4.3) then assumption (4.10) is satisfied.

Proof: Let

1 2
Pi= jpf 0IEY

1 . 4.11
weD(L) ||u|l} ( )
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Then I' > —),; and we have

hotvw _ fogdw |lulh
el lull? lully
lully
kel

2
> min(o, y 12l

Taking infimum of both sides we obtain

1.2 2
¢ Jo L > inf [nﬁn(o,r).""”f]
D) ||ullZ weD(L) el

. llull}
= min(0,T'). sup
O.5). o Tl

) 1
= mm(O, I‘)—'—l'l;”—z
lnfuep([,) ”T“%;

) 1
= Imn(O,I‘).:\—l—
> -1

This completes the proof.

Example 4.2 If A\; + ess inf q > 0 then assumption (4.10) is satisfied.

Proof:

1 2
M+ inf Jo qu'w
weD(L) (u,u)y
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Jo quw

= A
1t weD(L) Jo w?w

v

A tessinfq

4.3 The relation between the classical solution
and the generalized solution

We terin the solution of the boundary value problem (4.1) as the classical solution
and the solution of the variational boundary value problem (4.8) as the generalized
or the weak or the variational solution. We want to show that under a little more

restriction on ¢ these two solutions are identical.

Additional assumption on ¢:

In addition to the assumptions (4.5) and (4.6) let us also assume that g satisfies:

vueV=>queH (4.12)

Remark 4.9 In the limit circle case if ¢ € L(0,1) then both (4.5) and (4.12)
hold.

Proof: The first part is clear. For the second part we see that

1 1
/ (qu)’w = / uuw
0 0
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[e([2)whul
Oq s D ) v

[ by lemma (4.2) ]

1/2
el YY) lulf
allLs,(0.1) o \Js p w Jlullv

< o0.

IA

Remark 4.10 In the limit point case with f:}; € L1(0,1) if g € L(0,1) then
both (4.5) and (4.12) hold.

Proof: The first part is direct. For the second one we follow

[

[ 2)wi
-] w.
0 1 s p v

[ by lemma (4.2) |

2 1 11 2
< ol [ ([ 5 )l

IN

Definition 4.1 Let S be an operator defined from V to H by
D(S):={ u €V s.t. v = B(u,v) is continuous in the topology of H },
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B(u,v) = (Su,v)y Yv € V.

Remark 4.11 V is dense in H. So for each u € D(S) the correspondence
v — B(u,v), which is a continuous linear functional on V in the topology of H,
can be eztended to a continuous linear functional G(v) on H. Therefore, there

ezists an element (unique) f € H such that Su = f and
G(v) = B(u,v) = (Su,v)yg = {f,v)g Yo € V.

It is clear that S is symmetric since B(u,v) is symmetric.

Lemma 4.5 Under the assumption (4.12),
D(L) c D(S)

and Su = (L + q)u for allu € D(L).

Proof: Let us fix u € D(L). Then for any v € V we have,
B(u,v) = /1 pu'v' + /1 quow
’ 0 0
= (pu)vfp — /l(pu’)'v + /1 quvw
® Jo ()
= (Lu,v)y + (qu,v)y

[ by lemma 4.1]
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where f :=(L +q)u € H.

Therefore,
|B(u, v)| < || fllaljvlle
and for each u € D(L) the mapping v — B(u,v) is continuous in V in the
topology of H. Hence D(L) C D(S). Also for any u € D(L)
(Su,v)g = B(u,v) = (L + q)u,v)y Yv eV,

and since V is dense in H, so Su = (L + ¢q)u. This completes the proof.
Theorem 4.4 Under the assumption (4.12), D(S)C D(L) and S =L +gq.

Proof: Let u € D(S). Then v — (gv,u)y = (qu,v)xy is continuous on D(L) (in
the topology of H), since qu € H. Clearly v — B(v,u) is also continuous on
D(L). Therefore,

v (‘U,'U.)V = B(‘U, u) - (qv7u>H

is continuous on D(L). But since v € D(L) and u € D(S) C V, then by lemma
(4.1) we see that

(vsu>V = (vau)H-
Thus v + {Lv,u)y is continuous on D(L). This implies that u € D(L*) ( see

definition (2.1). But L = L*. Hence u € D(L). This completes the proof.
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The following theorem shows the equivalence of the BVP and VBVP.

Theorem 4.5 Let f € H. Then the following statements are equivalent:

(1) u€ D(L+q) and (L +q)u = f.
(ii) u € V and B(u,v) = (f,v)g forallve V.
Proof: The proof of (i) = (ii) is direct.
(i) = (i):
Let u € V such that
B(u,v) = (f,v)g Ywe V.

Then v +— B(u,v) is continuous in V in the topology of H. Thus by the definition
of S and by the previous two lemmas u € D(S) = D(L + ¢q) = D(L) and

((L + ‘I)u,v)H = (SU,U)H = B(u,v) = (f, 1))1{ Vv e V.
But since V is dense in H, then,

(L+qu=f.

This completes the proof.
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4.4 Properties of the operator L+ q and its in-
verse

In this section we also assume that g satisfies (4.5), (4.6) and (4.12). We have

the following results.

Theorem 4.6 The operator

L+q:D(L+qCH-—H

is bijective and (L + q)~! is bounded on H.

Proof:

1. L+ q is injective and (L + q)™! is continuous:

lul3 < Cillull®} [by lemma 4.2 ]

= :qo”u]ﬁ,, wherea=1+17

IN

\B(u, )|

= 2L+ gl

IN

C
— L+ Qulullula

7




2. L + q s surjective:
Let f € H. Then by theorem (4.5) it is sufficient to prove that there exists
an u € V such that

B(u,v) = (f,v)y Vv € H.
But this follows from theorem (4.3). This completes the proof.

Theorem 4.7

(i) (L+q)! is self-adjoint.

(ii) L + q is self-adjoint.

Proof: (i) It is enough to show that (L+¢)~! is symmetric. Forany f,g € H
let (L+q)'f =uand (L+q¢)"'g =v. Then u,v € D(L) and

(L+a) ' figln = (w,9)n
= <u1 (L + q)v)H

= (L +9q)u,v)n

(f1 (L + q)_lg)H'

ii) Since (L + ¢)~! is self-adjoint and injective, the result follows from
)

theorem (2.5).
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Theorem 4.8 For the limit circle case

(L+q)' : H — D(L)CH
ts compact.
Proof:

(L+q)™ = L™ (I+qL7Y)™N

Clearly ¢L™! is compact. So I + qL™! has discrete spectrum with 1 as the
only point of accumulation. We need to show that 0 is not an eigenvalue of

I+ qL™". Suppose it is. Then there exists f # 0 in H s.t.

(I+qL™Mf=0
= f+ql7'f=0
= Lu+t+qu=0 where L !f=u
= u=0 [since L+q:D(L)— H is bijective |

= [f=0,
a contradiction. Therefore, (I + ¢L~1)~! is bounded. Hence (L + ¢)~! is

compact.

We now give a similar theorem for the limit pont (one) case. In this case
we take ¢ in L2(0,1) and we work in the space L®(0,1). The following
theorem also tells about the solution u when ¢, f € L2(0,1).
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Theorem 4.9 For the limit point (one) case, for any f and q in L2(0,1),
the solution of Lu + qu = f is in AC[0,1]. Futhermore,

(L+4q)' : LZ(0,1) — Cl0,1]

is compact.

Proof: The argument of the proof is same as that of the above theorem.

Define
I+qL™':L%(0,1) — C[0,1].

By theorem 3.8, gL' : L2(0,1) — L(0,1) is compact. So 1 is the only
point of accumulation. We show that 0 is not an eigenvalue. Suppose it
is. Then thereis f € L3(0,1) so that f # 0 and (I + ¢L™')f = 0. But
L~'f =v € AC[0,1] and Lv + qv = 0. Since L + q¢ is injective, v = 0 and

so f =0, a contradiction. This proves that / + gL~! is injective and
(I + L) s L2(0,1) - L2(0, 1)
is bounded. Hence for any f € L2(0,1), the solution
u=(L+q)7'f =L +qL™ ") f € AC[0,1]

and (L +¢)~': L2(0,1) — C[0,1] is compact. This completes the proof.
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Chapter 5

Approximation by Galerkin
method

In this chapter we approximate the solution of the variational boundary
value problem (VBVP) defined by (4.8). Both the LC and LP1 cases are
considered with the same assumptions on ¢ as was made in chapter 4 (for
the existence and uniqueness of the solution of VBVP as well as the coinci-
dence of this solution to the solution of the original boundary value problem
BVP). An approximation subspace V, of the space V is defined in section
5.1. In section 5.2 we start the study of the convergence of the Galerkin
approximation in this subspace. To do this we first find a relation between
the Galerkin error and the interpolation error in terms of the V-norm. In
section 5.3 we give the estimate of the interpolation error for various cases
in terms of V-norm and the uniform norm. Error estimation of the Galerkin

approximation in terms of the V-norm is shown in section 5.4. In this sec-
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tion we also deduce a uniform norm estimation. The L2(0, 1)-norm estimate
is immediate from V-norm estimate because V is continuously embedded
in L2(0,1) (theorem 4.1). In case when p is monotone increasing it can be
shown that V is also continuously embedded in L2(0,1) and thus in this
case the L2(0,1)-norm of the Galerkin error also follows from the V-norm
estimate. In section 5.5 both for LC and LP1 cases higher order accuracies

in terms of the uniform norm are obtained for special data.

Since the bilinear form B(u,v) is symmetric, continuous in V and is V-
elliptic, it induces an inner product {u,v)g = B(u,v) in the space V and
the corresponding norm (B-norm) is equivalent to the V-norm. We recall
that the Galerkin approximation u€ in a approximation subspace V,, is the
orthogonal projection of the solution u to this subspace w.r.t. the inner
product {.,.)s. We will see that the interpolation u of the solution u in
the subspce V, of section 5.1 is an orthogonal projection of u w.r.t. the

inner product {.,.)v .

5.1 Approximation subspaces

Let P, denote an arbitrary partition of [0,1]:

O0=20< 21 <2< - < 2Ty < Tpy1 = 1.
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For ¢ = 1,2,-- - n define the patch functions

( ri (z) if 2oy Lz <L g,

ri(z) if i <z < zip,y

ri(z) = <
where

ri(z) =

ri(z) =
and

i (e) =

1 1
_ f; + mds

| 0 otherwise,

1,

z 1
Tic1 ﬁds

Zi 1 )
Ti-1 P(’)ds

Tigr g0
Ti p(’)ds

It is observed that ry(z) € V and

ri(z;) = bij-

i=23,---,n

i=1,2,---,n.

(5.1)

(5.2)

(5.3)

(5.4)

Therefore, {r;}._, is a linearly independent subset of V. Let V; be the

subspace of V generated by

the subset {r;}i_;.

As we have seen in section 2.3 that the Galerkin approximation u® = Pu €

V. can be written as

n
¢ =3 ajr
u- = (IJTJ
i=1

where a;’s are determined uniquely by the system

Aa=b.
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The entries of A are given by
@ = B(rj,m)
= B(T,',Tj)
= (ro,r5)v + (qri,75)H

= a;; + qij.
Therefore, (5.6) becomes
(A+Q)a=b (5.7)

where A = (a;;) = ((ri,rj)v) and Q = (g;;) = ({gr:,7;)5) are symmetric

and tridiagonal matrices given by

1
a = T (5.8)
2t ds’
1 1
ai; = - + , 1=2,---.n, (5.9)
oy ﬁds I ag %s)ds
a L i=1 n—1 (5.10)
il = — e, t=1,-,n— .
fz,-+1 Ts)ds
and
2
z 2 0(s) ([T =dt) w(s)ds
m = /1q(s)w(s)ds+ = 4 )(° 2(t) )2 (s) (5.11)
- (2 25)
71 p(s)

2L 000) (Fos hgdt) wl)ds [ o) (17 )’ wls)ds
. 2 . 2 ?
(=2 stods) (27 i)
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i=2-,m, (5.12)

o g(s) (2, 5hydt) (S22 Shdt) w(s)ds
(e )’

Qi1 i=1,--,n—1(5.13)

The vector b = (b;) = (I(r;)) = (fol f(s)r,—(s)w(s)ds) is given by

2 22 f(s f’;let w(s)ds
= [ somtaen LU 0

z1 p(s)

b 5P ([, ssdt) wis)ds  [5# f(s) (f7 sdt) w(s)ds
(7, 549 (= 54)

The matrix A is irreducible and diagonally dominant with ¢; > 0, : =

)

1,---,n and a;; < 0, ¢ # j. Therefore by theorem 2.10 A is an M-matrix.
A is also positive definite.

For the error analysis of the Galerkin approximation of the solution u of
VBVP (4.8) we define the V,-interpolate of the solution u (uniquely) by
ul =3 wiri(z) (5.14)
1=1
where u; = u(z;) i = 1,---,n. Clearly u! € V,. We show that u! is the
orthogonal projection of u on V, w.r.t. the original inner product of V.

This is seen from the following lemma.
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Lemma 5.1 Let u! be the V,-interpolate of the solution u of the VBVP.
Then for any v, € V,

(u—ul v )y =0.

Proof: Let v,(z) = =%, ciri(z). Then

1
(u-— u[,vn)v = /0 p(u— ul)'v:1

n 1
= Y[ prifu—aly

=1
n

=Zcz'/

i=1 Ti-1

I'+1
" pri(u — wly’

= Yl -y [ per ]

i=1

D) | 5 [f::_l (u—ul)y  [rni(u— uf)f‘

,' - TR
f-‘:lz :-J =2 f-""il—x ;1_; f-’:‘“ ;

5.2 Relation between the Galerkin error and
the interpolation error in the V-norm

From (2.11) we have

llu — u®fly <

L4 Copy—lly
(04
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where C, and « are the constants of lemma 4.3 and lemma 1.4. This relation
is independent of the choice of the basis. We show that for our basis we
have a better relation (in the case o is very small compared to 1). For
deriving such a relation we need to prove two lemmas. These lemmas will

also be useful in the subsequent sections.
Lemma 5.2 For any v, € V,
B(u€ —u!,v,) = (g(u — u’),va) .
Proof:
B(u® —ulv) = B(u—ul,v,) — Blu—uC.v,)
= Bu-ul,u) [y (23)
= (u~u',valv + (g(u ~u'). ua)n

= (q(u—u"),u,)py. [by lemma 5.1

Lemma 5.3 For anyv, €V,

I

(uG —u ’vn>V = (q(u - uG)7vﬂ)H-
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Proof: By lemma 5.2
(uG - ulavn)v + (Q(uc - ul)a vn)H = (q(u - ul)v vn)H

= (U = v, va)v = (g(u — u), va)n.
This completes the proof.

Now we have the following relation between the two errors (the Galerkin
error and the interpolation error) with respect to our basis. We write this

as a theorem.

Theorem 5.1 Let u® be the Galerkin approzimation and u! be the V,-

interpolate of the solution u of the VBVP. Then
Ju =ty < (14 55 Ju— v (5.15)
where C, and a are given by lemma /.3 and lemma 4.4.
Proof: In lemma 5.2 put v, = u€ — u/, then
B(u® —uf,uf — ) = (g(u — u!),u® — u!)y
= allu® -}y < Gyllu — W'y [u® - u v
(by lemma 4.4 and lemma 4.2)
> 14 = ullly < Zeffu— o).
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Therefore,

le—ully < flu—uffly + |luf - €|

vV

IN

C
(1+22) e = v
(23

We notice that for ¢ = 0, the inner product (.,.)p coincides with the in-

ner product {.,.)v and the Galerkin approximation u coincides with the

interpolate ul.

5.3 Interpolation error estimation in the V-
norm and the uniform norm

Our purpose in this section is to find estimates for the error of the V,-
interpolation of the solution u and then use them for finding the estimates
of the error for the Galerkin approximation. We estimate the interpolation
error in both the V-norm and the uniform norm. We first consider the ideal

case ¢ = 0 then we derive the results for ¢ # 0.

Lemma 5.4 Let u be the solution of the VBVP (4.8) for ¢ =0. Then for

any T € [zhzi-i-l]’ t= I,-- N,

z rs dt
we)-ulle) = rte) [ [ s Sshuls)ds

+r5(2) / e / e ;‘3—) f(s)w(s)ds.  (5.16)
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Proof: For any z € [z;,2;44], t = 1,---,n
W(2) = urt () + aarial)
Since r}(z) + r;,(z) = 1 we have
W)= u(e) = (e fule) — ()} - (o) fuloinn) - u(o)}
T 1 S
= rf(z) | — w s
= @) [ 5 o SOtz

Ti41 1 /s
—r4.(z — t)w(t)dtds.
@) [ o [ )
Integrating by parts and then simplifying we get the desired result.

Now we give the estimates of the interpolation error in V-norm.
Theorem 5.2 Let g = 0 and u be the solution of the VBVP. Then
Tit1 Titr  dt 1/2 o
fle — u'llv < 2)1fllzz00) 8 (/z (/s m) w(s)ds) . (3.17)

Proof: Differentiating both sides of (5.16) and then simplifying we obtain

P (12 (152) fo— g2 (7 1) fu), =€ fmezadliz L,
(ul) ~w@) =4 ™ el ) '

—P(l—r) Ig f(s)w(s)ds, z € [0.14].
(5.18)

Now
=l = [1 (u(a) - (@)’ Pole)de
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= é/:m l ("(z) - u’(:z:))' 1*p(z)dz

- oml ;(13_) (/0’ f(S)w(s)ds)2 +

B3 LS UL (L) e [ (55 ]

= 0’1 ;,(1;5 (/or f2(s)w(3)d3) (/o: w(s)ds) dz +
gz(/zi* pl:::) 2/:‘, @) (/ A p(t) F(s)w(s) ds) dz +
22 (/z ; pt)) /,,- p(z) (/ / " dt (s)w(s) ds)2dz,

But the term under the first summation equals

2

(L50) L 5 L (L35 )
< (L) (L) L st (L o)
AR
< [ ([ o) ([ were)
< ([ reowtes) [ o ([ wis)ds) da

9



= fi“fz(s)w(s)ds .r-‘+1 s w(z)dz
(/z' )/: (-/r p(s)

[by integration by parts),

and the term under the second summation equals

([ 8 s L (1 ) o

e - |2 < /0 F2(s)w(s)ds /0 o ( / - %) w(z)dz +

42 ( [ j‘“ fz(s)w(s)ds> [ f‘“ ( [ p—“(lz—)) w(z)dz

i=0 Y%



This completes the proof.

Theorem 5.3 If g satisfies (4.5),(4.6) and (4.12) (both for LC and LP1)
then

i1 zitr  dt 1/2
=l < 20~ (g [ ([ 55 wlodis) . (519

Proof: The solution u is fixed and qu € L2(0,1) (by assumption (4.12)).
So f —qu is fixed in L2(0, 1). Therefore, replacing f by f —quin (5.17) we

obtain the desired result.

From the above theorem we notice that the order of the interpolation error

in the V-norm is

g ([ ([ 3 o)

We now give the interpolation error in uniform norm.
Lemma 5.5 For g =0 and for any z € [z;,2;44), 1 =0,1,---,n

u(z) - u!( </ 17 (s)| (/"“ ‘f:)) s)ds. (5.20)

Proof: For i =0 i.e., for z € [0, z;] we have

u(z) —ul(z) = u(z)—u(z,)

=Lm/mwt
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= /:lp(s)/ f(s)w(s) ds+/ f(s)w(s) /jl%ds

[ soate) [ sds k[Pt [ s

INA

- /0 £ ()] / - %w(s)ds.

For:=1,---,n, by lemma 5.4 we have

u(z) —ul(z) = f:: Pz::// dt f(s)w(s)ds

zi p(S) s /z“ ﬁ.f(

Ty
f' - p(S)

zit1 ds i+1 dt

< [ e+ [ [ Sl

L 1r@hs) [ (t) s+ [0 [ c(iz)]f(s)|w(s)ds

= [ [ s

IN

This completes the proof.

Corollary 5.1 For ¢ =0 if f € L2(0,1) then for any z € [z, Ti1], i =

0,---,n

) 2 1/2
u(z) — ul(z) < | fllzz, 0 (/ i (/::-4»1 %) w(s)ds) .
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Corollary 5.2 For ¢q =0 if f € L2(0,1) then for any z € [z;,2i44], ¢ =

0,---,n

Tit1  fTid1  dt
u(z) — ul(:z:) < fllzeeony /x; /s p(—t)-w(s)ds.

The uniform norm estmations of the interpolation error for the solution in

the general case now follow.

Theorem 5.4 For LC cese with assumptions (4.5),(4.6) and (4.12) we

have

1/2

. . 2
lu—u"lloo < || —qullz2 0y max ( [ (/, " "t) w(s)ds) . (3.21)

0<i<n m

Theorem 5.5 For ¢ € L(0,1) such that (4.6) holds and f € LZ(0,1)
(for both LC and LP1) we have the estimate

Ti41 Ziv1 it
[|u - uIHOO S "f - qUIlLﬁ(o'l) max / (/s ) u:(s)ds. (5.22)

0<i<n Jz, p(t)
Remark 5.1 f—qu can be replaced by (1 + qL“l)_1 f throughout this chap-

ter.

5.4 Galerkin error estimation in the V-norm
and the uniform norm

We combine the results of the previous two sections to get the error in terms

of the V-norm.
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Theorem 5.6 If f € L3(0,1) and q satisfies (4.5),(4.6) and (4.12) (LC
or LPI) then

. . /2
G Tit1 Ti+1  dt 1
flu —u®|lv < Corgiag)s‘ (/x (/’ ;T(_t-)-) w(s)ds)

C .
¢ =2(1+2) 1 - qullz 00y (5.23)

where

Proof: The result follows by combining (5.15) and (5.19).

Corollary 5.3 Also in the LPI case
L7':H—-H
is compact.

Proof: Suppose ¢ =0 and f € L(0,1). Then by theorem 5.6 and theorem
4.1

llu ~ wCllar < eall fllar-
Define
(Thu, v}y = B(u,v) VYu,v € V,.

Then

(Tnuc,v)y = (f,v)H Yo eV,
= Tl —P,f=0

= W =T7'P,f
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where P, is the orthogonal projection operator w.r.t. the H-norm. There-

fore,
IL7f = T Pufller < eall flle

IL7 ~ T Pufls _
e =

= ||IL7' - TP < en.

Hence L™ is compact.

Remark 5.2 With the assumptions of theorem 5.6, both for the LC and
LPI cases the operator (L + q)~' : H — H is also compact. (For the LC

case we have already seen it before.)

Now we proceed to find estimates in the uniform norm. Unlike the regular
case, the difficulty arises due to the fact that in the singular case the space
V' N C[0,1] is not continuously embedded in (V, ||.]lv). Therefore, to get an
uniform estimate we work directly with the system of equations obtained

from the Galerkin method.
Lemma 5.6 Let u; = u(z;) and o; be given by (5.5),i=1,---,n, then
1 1 dt
R — 4@ —_— ; .
max e —wl <2 [ lg(s)(u(s) — u(s) [ e (520)
Proof: In lemma 5.3, taking v, = r; for ¢ = 1,---,n, we obtain

(u® — !, )y = (q(u — «C), )
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= E(OzJ riridv = di.

j=1

This gives a system of equations
Ae=d

where A the tridaigonal matrix given by (5.8)-(5.10), e = (e:) = (oy — w;)
and d = (d;) is given by

- 122 g(shu(s) 72 Ads
dy = /x o g(s)w(s)ds + = e 20

1 p(t)
and
g L 9O L hds [ gsuls) [+ s
§ = f:. dl f.t,+1 A
Ti-t p(t) i ()

where g(s) stands for g(s)(u(s) — u®(s)). The inverse of the matrix A

denoted as B = (b;;) can be explicitely written as

1 ds if:
f,j 26) ifi1 <y

b = . (5.25)
Ly i

Therefore,
ledd < D bisld;]
=

1

= Z/ oLk +/ -l

2o ds
< X[ gl (5.26)

j=1 z5
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We see that

1 1 ds ds f:f lg(s )lw(s)f:’ p(z)
Lol < [ oo [ aatsds+ [ 2 o

2 ds s)w(s) [*2 d:ds
_ /p(s/ lg(slw(sds+/x! d f lg(s)lw(s) S5 55

z2 d
fn? p(:)

/1 ds [z lg(s)lw(s) [ p%:)ds
=2 p(s) f:;z P‘::)

< [ 5 e + [l [ s+
A

%:) / lg(s)lw(s)ds

—"(— L toeute)ds + [ lotoluts) [ s

A
< / lg(s)|w(s) / Tals+ / lg(s)lw(s) /1-@

0

Also for j = 2,---,n, by a similar approach, we have

Lot < Lo wetes+

/'1 ds L |9(3)|1{)(3)f: T p%:)ds
z; p(s) | et ;%:‘j

< [0 s [ ! (t)ds+ / lg(s)lw(s) / m(Jls



Substituting these two inequalities in (5.26) we obtain

6l < Tl [ s+ [T ateluts) [ ds
< 2 [ la(oluts) [ s
1 dt

2 [ la(s)u(s) = (eDlu(e) [ s

This completes the proof.
Remark 5.3 When u € AC[0, 1] we have

malo—ul < 2=l [ la(oluts) [ s

= 2C,||lu - uG"oo.

We now deduce an inequality which gives a relation with the V-norm of the

Galerkin error.
Lemma 5.7

max o — ] < { [ ([ ) w(s)ds} ju— . (520
Proof: Let « — u® = v. Then by the lemma 5.6

max |a; —u;| < 2/ Iq(s)l

1<i<n

v (t)dt'/ (t)w(s)d.s
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2 [won ([w)” ([ ) [ o
< 2ol [ iotots) ([ 2) " o

= o=l " la(o) ( [ p“(’—j)) " ws)ds.

Remark 5.4 For the general case (where q is not necessarily nonnegative).

for the uniform norm estimation we will need

o= [uen ([ 55) " w(e)ds < o (5:

We remark that for LC if g € L1(0,1) is sufficient to satisfy this. For LP1I

(S}
[}
(o]

withq € L=(0,1)), [} L € L3/2(0,1) is a sufficient condition to satisfy this.
w s P w

Lemma 5.8

G_, I -
|lu —u||°°$2lrg?s>st|a, u;l.

Proof: For z € [zo, z4],

G—-u1|= loy — usl.

&
For z € [z;,zit1], =1, -+ ,n — 1, we have
G I - + -
lu -u l = Ia,-rff + Qip1Tiy — Wiy — Ui+17”,‘+1‘
+ —
< l(ai —u)r|+ l(ai+1 — w11 |

101



< e =il + |eigr — i

< 2max{|o; — ug, [@ipr — uipal} -

For z € [zn, Znt1),

G +

b — o] = [

—unr,fl < |y — ug|-
Therefore,

1<

Ju€ — ul]e <2 m,aé)st lo; — ugl.

We now state and prove the uniform convergence of the Galerkin approxi-

mation in the following theorem:

Theorem 5.7 Let g satisfy (4.5),(4.6),(4-12) and (5.28) then for both LC
and LP1 (for LP1 with f,q € L2(0,1)) the Galerkin approzimation u®

converges uniformly to the solution u. If f,q € L(0,1) then the order of

convergence is given by

Dax ( /., fm ( / o %) w(S)ds)m,

otherwise, (i.e.,for LC only) it is given by

Tit1 Tiga 1/2 - _ 2 1/2
m{m (L (0 ) o) e (L ([ ) w0 }

Proof:

flu — uG||°° < u- uI"oo + "uG - ulnoo
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< Jlu—uflo+2 max |oa; — ug| [by lemma 5.8]
< flu—u'lle +4C"Ju = uC|lv [by lemma 5.7]
= s gt 1/2
< — I ! / +1 / +1 -
< flu—-u'flo +4CC Orgg( 3 - w(s)ds

[by theorem 5.6],

where C and C' are given by (5.23) and (5.28) respectively. Therefore, the

results follow from theorems 5.4, 5.5.

5.5 Higher order of convergence in the uni-
form norm for special data

In this section we show that if C; < 1 or ¢ > 0 then for both LC and LP1
(with g, f € L2(0,1)) we have uniform convergence. In this case we do not
need the restriction (5.28). Also we show that in particular cases we have

higher order of convergence.

Lemma 5.9 Suppose C, < } where f € L2(0,1), g satisfies (4.12) for LC
or f,q € LY(0,1) for LP1. Then

llw — u%leo <

I §

Proof:
o=l < lhu = oo +2 ppae s — e
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< = oo + 4Collu — vl

by remark 5.3. The result thus follows.

Lemma 5.10 Suppose ¢ > 0. Suppose the solution u € ACI0,1] (i.e. ¢
satisfies conditions (4.5); for LC q satisfies (4.12) and f € L2(0,1); for
LP1 f,q € LL(0,1)). Then

lle — vl < (1 +4C)l|u ~ v'||co- (5.29)
Proof: By lemma 5.2 we have for i = 1,---,n

B(uG - ulvri) = (‘I(u - uI),"'i)H

= 321[(7'_1'1 T'i)V + (qr,-, T;)H] (aj - uj) — (q(u _ uI)’ ri)H-

This gives the system
(A+Qle=d

where A and @ are given by (5.8)-(5.10) and (5.11)-(5.13) respectively and
d = (d;) = ({g(u — u’), ;) ). Therefore,

e=(A+Q)'d.
Now q:; > 0 and

i g(s) (12, 5454t) ( ff"“f(lt—)dt) w(s)ds
(2 ds)

qiit1
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ey (s)( Fitl (lt)dt) w(s)ds

;‘m p(l-*) ds

<

1

< -
-_— Ty, 1
fz. H p(s) 2598

for sufficiently small interval [z;, z;;,]- Therefore, by theorem 2.12 A +Q is

an M-matrix and
(A+Q) <A™

Thus
le|] < (A+@)7'(d|

< A7Yd]

Here |e] = (le;]) and |b| = (|d;|). By a similar approach to the proof of

lemma 5.6 it can be shown that forany i =1,.--,n,

e <2 [ la(e)(u(s) ~u'(s))] |
So,

max |o; — ;| < 20, jlu — u!||co-
1<i<n

Therefore,
e -l < llu—u'llo+lu® - vl

1 v
lu — u'||eo +2 max lui — a;|[ by lemma 5.8]
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< Jlu~- “I"w + 4C,|ju — uI”w

(1 +4C)|u — uI”oo'
This completes the proof.

Now we state and prove the main theorems of this section.

Theorem 5.8 For LC let f € L2(0,1) and q satisfy (4.12). If either C, <
X or ¢ > 0 (satisfying (4.5)) then

lu — 45 < Mgg%’f‘ (/:m (/’:m %)2w(s)ds)

M = (1 +4C)H| f — qullzz,0,)-

1/2

where

Proof: The proof follows from theorem 5.4 and (5.29) of the above lemma.

Theorem 5.9 If f,q € L(0,1) (for both LC and LP1) such that either
Cy<3}orq>0then

zi Tiv1 dt
~u%l. < M i et
lu vl < M %1%)51/;“ /s o) w(s)ds

where
M’ = (L+4C)|If - qullzgoa)-
Proof: The proof follows from (5.29) of the above lemma and theorem 5.5.

We can apply this theorem to get higher order convergence for special cases.

For example
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Corollary 5.4 Suppose in addition to the assumptions of the above theorem
w = p and p is monotone increasing function. Then O(h?) convergence is

obtained.

Proof:

g [ ([ ) wloas

Tigl  fTit1
max / / dtds
0<i<n Jg; s

(Tipr — 2:)?
0<i<n 2

IN

h2

2

where maxocicn(Zit1 — z:) = k.
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Chapter 6

The Nonlinear Problem

Consider the nonlinear BVP, (1.11)-(1.13) written formally as:
Lu+ f(z,u)=0 (6.1)
with both LC and LP1 cases. Here f(z,u) is nonlinear, continuous in u

such that for any real u, f(.,u) € H = L2(0,1).

In section 6.1 sufficient conditions on f(z,u) are made so that a variational
boundary value problem (VBVP) on V can be defined. It is then shown

that under these assumptions on f(z,u) the VBVP has a unique solution

in V.

In section 6.2 a regularity condition on f(z,u) is made which insures that

the weak solution is indeed the classical solution.

In section 6.3 some stronger assumptions on f(z,u) are given which are

useful for many problems in practice.
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In section 6.4 a class of examples is treated. The reults are then applied to

examples available in the literature.

Finally in section 6.5 the Galerkin method with the same basis of chapter 5 is

applied for the approximation of the solution of the VBVP. The convergence

results are found to be same as those of chapter 5.

6.1 The nonlinear variational boundary value
problem

Let V be the Hilbert space defined in section 4.1. Parallel to the assump-
tions on ¢ in section 4.2 we make the following assumptions on f(z.u). We

define for z € (0,1] and w,v € V, u # ¢

f(z,u()) — f(z,v(x)) et
e)—o(e) - UE)Fv@)i(=0 if u(z) = u(z)).

g(u.v,z) =

Assumptions on f(x,u):

Let f(z,u) satisfy the following three assumptions:

(A) f(z,uo(z)) € H for some ug € V.
(B) fol lg(u,v, z)| f:l p'f—:)w(l‘)dl' < C<oo V u,v € V.

! o(uv,2)82 (2)w(z)dz A »
© foq(..”i‘”é”)d >y>-1 Yuv,aeV, a0

Lemma 6.1 Under the assumption (A) and (B), for any u,v € V the
integral [y f(z,u)v(z)w(z)dz ezists and for any fized u € V the mapping

v [y f(z,u)v(z)w(z)dz is continuous.
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Proof:

IN

IN

IN

/01 f(z,u)v(z)w(z)dz

/01 f(z,u(z)) — f(-’ll, uo(z)) (u(:z:) - uo(:z:))v(:t)w(:!:)dx +

u(z) — uo(2)

/0 Y (2, uo(z))o(z)w(z)dz

1 1 ds
()t [ Esuta)ie) sl
+||f(z,uo)llallv|lz  (by lemma 4.2 and assumption (A))

Cllu = wllllvllv + VC||f(z, wo)llallvllv

(by assumption (B) and theorem 4.1).

This completes the proof.

Now we define the variational boundary value problem (VBVP) in the fol-

lowing way:

Given f satisfying (A) and (B) find u € V such that

a(u,0) = (w,0)y + ' f(=, u())v(z)w(z)dz = 0 (6.2)

forallveV.

We have the following existence and uniqueness theorem:
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Theorem 6.1 Suppose f(z,u) satisfies assumptions (A) — (C). Then the
VBVP (6.2) has a unique solution in V.

Proof: By lemma 6.1, for any fixed u € V the linear functional
1
v / f(:z:,u)vw - ’7(‘U-,‘U)V
0
is continuous (in the topology of V). Therefore, we can define an operator
B: V-V

by
(Bu,v)y = /01 flz,u)vw — y{u,v)y VveV.

Let a =1 + . Then
al+B:V -V

is given by
1
((al + B)u,v)y = (u,v)y +/(; flz,u)vw =a(u,v) VveV
and the VBVP (6.2) is equivalent to the equation
(el + B)u=0. (6.3)

Therefore it is enough to show that (6.3) has a unique solution in V. Clearly
D(B)=V.

B is monotone:
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For any u,v € V, u # v (for u = v it is trivial)

2

(Bu — Bv,u — v)y
[ @) = £ (= o) = 1l =l

1
) et 2) = v = = ol

0 (by assumption (C)).

B is hemicontinuous:

Let u.2,v € V. Then

because

lirré(B(u + tit) — Bu,v)y

lim
t—0 Jg

1 (f(z,u+t@) - f(z,u)) vw — lim y(t2, v)v

1

lim [ q(u + td, u, z)ta(z)v(z)w(z)dz

t—0 Jg

1

limt A q(u + ti, u, z)i(z)v(z)w(z)dz

t—0

Vol q(u + ta, v, z)i(z)v(z)w(z)dz

< ([ ottt [ Lsutalde) flvloly
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< Clalviivliv.

Hence by corollary 2.2 the operator
al+B: V-V
is bijective and therefore, (6.3) has a unique solution. This completes the

proof.

6.2 Regularity of the classical solution

In this section we derive sufficient conditions on f(z,u) so that the BVP
(6.1) has a unique solution. We show this by proving that, under a stronger
assumption than (A), the solution of the VBVP is also a solution of the
BVP. In other words, the weak solution is same as the strong solution of

the BVP. We replace (A) by a stronger one:
(A) uweVs= f(z,u) € H.

The results of this section are parallel to those of section 4.3.

Let
X:={u€V : v afy,v) is continuous on V in the topology of H }.

Since V is dense in H, for each u € X the linear correspondense v + a(u,v)

can be extended to a continuous linear functional G(v) on H. Therefore,
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there exists a unique element, say, Su in H such that
G(v) = a(u,v) = (Su,v)y VveV.
This gives rise to an operator (nonlinear)
S:VCcCH—-H
such that D(S) =
Lemma 6.2 Let (A) is satisfied. Then
D(L) c D(S)

and for any u € D(L)
Lu+ f(zu) =

Proof: Fix u € D(L). Then for any v € V we have

o(wv) = [ (e @+ [ fou@)(@h()is

PN (2@~ [ (pla'(z))ola)dz +

/01 flz,u(z))v(z)w(z)dz

= —-/ () v(:c)d:z:-i—/ f(z,u(z))v(z)w(z)dz
(by lemma 4.1)

114




(Lu+ f(z,u),v)n

= (g’v)H

where Lu + f(z,u) =g € H.

Therefore,
la(u.v)l < |lgllalivlin

and the mapping v + a(u,v) is continuous in the topology of H. Thus
D(L) C D(S).
Also for any u € D(L)

(Su,v)pg = a(u,v) = (Lu + f(z,u),v)y Yvel.
Since V is dense in H, then
Su=Lu+ f(z,u).
This completes the proof.
Lemma 6.3 With the same assumption (A) on f(z,u) we have

D(S) C D(L).

Proof: Let u € D(S). Then v — a(u,v) is a linear continuous functional on

V in the toplology of H. Also v — (f(z,u),v)y is a continuous linear func-
tional on V' in the topology of H. Therefore, v + a(u,v) — (f(z,u),v)y =

(u,v)v is a continuous linear functional on V in the topology of H. In
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particular it is a linear continuous functional on D(L) in the topology of

H.
But for v € D(L),
(u,v)v = (u, Lv)y = (Lv,u)pn.

Thus v + (Lv,u)y is continuous on D(L). This implies that u € D(L")
(see definition 2.1). Since L* = L, we have u € D(L). This completes the

proof.

Corollary 6.1 Under the assumption (A), for allu € D(S) = D(L)

Su = Lu+ f(z,u).

Theorem 6.2 The following two statements are equivalent:

(?) u € D(L) and Lu + f(z,u) = 0.

(1) uveV anda{u,v)=0 YveV.

Proof: (i) = (ii) is clear.

(z2) = (2):

Let u € V such that a(u,v) = 0. Then clearly v ~ a(u,v) = 0 is continuous

in the topology of H. Hence v € D(S) = D(L). Thus
0 = a(u,v) = (Su,v)y = (Lu + f(z,u),v)y Yve V.

This implies that Lu + f(z,u) = 0 (since V is dense in H). This completes

the proof.
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Corollary 6.2 Suppose f(z,u) satisfies (A), (B) and (C). Then the BVP
(6.1) has a unique solution. Furthermore, this solution is also the unique

solution of the VBVP (6.2).

6.3 About the assumptions on f(z,u)

In this section we give some assumption on f(z,u) which are stronger than
(B) and (C). These assumptions are sufficient for many problems in prac-

tice. Let

(B) |f!x,u!—j!:.u!

u—-v

< §(z)
for —oo < u,v < 0, u # v, where §(z) (independent of u,v) satisfies
s d(z) 2 :T:)-w(x)d:c :=C < .

We notice that if f(z,u) is Lipchitz continuous in u then (B) is clearly

satisfied. Also if f(z,u) is differentiable w.r.t. u then I%(xu)l < ¢(z) for

any u € R implies (B).

Remark 6.1
(B) = (B).

Proof: For any u,v €V, u#v

l lg(u, v, z)| ' —(—{f—-w(a:)d:c
0 = p(s)

=/0‘

f(.’L‘, u(z)) - f(:z:,v(a:))
u(z) — v(z)
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This completes the proof.

Let us recall the number A given by (4.2) as:

and ), given by (4.3) as:

(Lu’ u)H
mn b}
veD(L) ||ullf

and the relation (4.4):

1
0< <A< AL
Ja (7 25) w(s)ds

Let

A ! u,v,z)i?(z)w(z - - ; Y
©) Ld'@@)(wz27>—A Vuv,i €V, u#v, i #0.

'y

Remark 6.2 (C) = (C).

Proof: The proof is similar to the proof of remark 4.8.

fo alu, v, 2)@*(z)w(z)dz

2%

-l
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:OJ

|l

el

min(0, ¥). sup I .”
wev [|2]

~
-

v

min(0, ).

[~43
:N

v

<N

1

: 1213,
m V nEie
V&Y Tl

= min(0,7%).

) N
= mln(O,'y).X =

> min(0, —-A).l\

= -1

This completes the proof.

Let

(C) el >8> _Afor—co<uv<oo, utv.

Remark 6.3 ((}) = (C).

Proof:

o a(u, v, 2)d?(z)w(z)dz
ll2l%

1 K - K] -
0 —(—-(—lu—(—nfz"ufr)_i(:) “Di(z)w(z)dz

2l
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Jo ¥ (z)w(z)dz
- llall%

= > -A.

This completes the proof.

Remark 6.4 If D(L) is dense in V then A = );. Therefore, in such a case
A of (C) and (&) can be replaced by ;.

Remark 6.5 Suppose u is a solution of the VBVP (6.2). Also suppose that

f(z,u) satisfies (é') Then u is the unique minimizer of the functional
1 1 ru(z)
Jw) = 5{u,uy + /0 /0 f(z, s)dsw(z)dz.

(Such kind of functionals for nonlinear boundary value problems have been
considered by Levinson (25], Mikhlin [28] and Ciarlet [9].)
Proof: Suppose u is a solution of the VBVP. Then for any v € V

1

J(w) - Ju) = i(v,v)v - %(u,u)v + /01 /u::) f(z,8)dsw(z)dz

1 1 puz)
= E(v —u,v—u)y + (v—u,u)y + /o /u(r) flz,s)dsw(z)dx

= ghu=oly +{wo—u + [ 1z u@) o) — u@)u(z)ds)

L 1 v(z)
+/0 . f(z,S)dsw(z‘)dz—/o f(:c,u(z))/u(z) dsw(z)dz
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1 , [t @
= el + [ [ 1(8) ~ (e ule)ldsule)da

(since u is a solution of VBVP)

v

1 2 L v(z)
5"“ -y + 'y/o /u(r) (s — u(z))dsw(z)dx
(by ()

= %[[u —offy + g-/ol(v(:c) — u(z))*w(z)dz

v

1 .

5 [l = vl + Al = vll3]
. 2

= S+ M-l

> 0 unless u=nv.

This completes the proof.

6.4 A class of examples

Theorem 6.3 Suppose

f(z,u) = q(2)h(u) + g(z)
where g € L2(0,1) and q € L1(0,1) for the LC case, ¢ € LX(0,1) for the
LP1 case, h(u) satisfies:

Os.h(u)__h(v_)sj\/[,

—o < u,v< 00, uFv, (64)
u—v
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and

A
nf _A 5
ess inf g(z) > i (6.3)

then the BVP (6.1) has a unique solution in D(L).

Proof: To show that (fi) is satisfied, let u € V, then substituting u(z) for

u and 0 for v in (6.4) we obtain

[h(u())] < |R(u(z) — R(0)] + [R(0)]

IN

Mlu(z)| + |h(0)].
Therefore,

[f(z,u)l < lg(@ (Mu(z)| + R(O)]) + lg(z)| € H

by remark 4.4 and remark 4.10.

To show that (E) is satisfied, note that for any u,v € R u # v,

f(z,v) — f(z,v) g(z)(h(u) — h(v))

u—v u-—v

< Mlqg(z)l,

where ¢(z) clearly (for both LC and LP1) satisfies:

/01 lq(z)| /: p‘Z—z)w(z)dm < o0.
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a
-

To show that (C) is satisfied, let u, v (u # v) be any real numbers. We have

f(:c,uz - tf)(m,v) _ q(”)'w
> ess inf q(z)_w
> min(0,es inf g(a)) 2L A)
> min(0,ess inf g(z)).M
2 min(o,—i\.),M

M
= —A.
Hence the BVP has a unique solution in V. But f(z,u) € H,sou € D(L).

This completes the proof.

Example 6.1 Let ¢ € L2(0,1), g € L2(0,1) so that both LC and LP1
cases can be applied. Let h(u) be given by

e* fu<0
h(u,) = { . (66)

1 fu>0
Clearly (6.4) is satisfied with M = 1. Therefore, if q satisfies

ess inf ¢ > —A

then there ezists a unique solution in D(L).
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(a) In particular if we take p(z) = w(z) = z (LC), ¢(z) = 1, and g(z) =0
then the BVP (6.1) becomes

—%(zu')’ +h(u) = 0, 0<z<l,
im zu'(z) = 0,
u(l) = 0

where h(u) is given by (6.6). The solution u exists and is unique and
u € D(L). In this case case ( since p = w = z ) the first boundary

condition can be replaced by

lim v'(z) =0 z.e., v'(0)=0

z—+0t

In this example it is seen that
Lu=—h(u) <0

and so u(z) < 0 for all z € [0,1). Thus in any iteration process h(u)
is given by the first part i.e., €* only. So it is immaterial if the second
part is replaced by any other continuous function e.g., by e* itself. The

problem then becomes:

0, O0<z<l1

1
_;(zul)l + et

v'(0)=u(1) = 0.
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This problem was numerically solved by Russel and Shampine [36] and

Chawla et al. [6]. The exact solution is known:

3 1+ 8
u(r) = 2In (1 +,3-’1?2)

where 8 = —5 + 2v/6.

(b) Let p(z) = w(z) = z (LC). But consider ¢(z) = 3cos(wz) and g(z) any

continuous function. Then
infg=-3>-A=-); =-5.781

(A1 = 5.781, see section 3.3;. Therefore, there exists a unique solution

u € AC[0,1]. The BVP becomes

_.:]j(zu')’ = 3cos(zz)h(u) —g(z), 0<z<1

u'(0)=u(l) = 0.

The analytic solution is not known.

Example 6.2 Consider the problem

u(z) + %u'(z) ~u(@) =0, 0<z<l,

©'(0)=0, u(1)= —{—3

This problem was numerically treated by Russel and Shampine [36], and
Chawla et. al, [6]). The solution is known:
ulz) =~ .
1+22/3

We want to justify our theorem with this ezample.
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If we trasform this problem to our setting it becomes:

—i(zzu')' - (u + —\g—g)s

I
o

w'(0)=u(l) = 0

with the analytical solution given by

u(z) = _ ?

1+z%/3 (6.1
Here ¢{z) = —1 and h(u) = (u + v/3/2)%. Therefore, conditions (6.4) and
(6.5) are not satisfied and the existence and uniqueness of the solution is
not garunteed. In this case \; = 9.865 (see section 3.3). So if we replace

h(u) = (u + v3/2)° by
[ (a+3/2)° if u<a,

h(u) =14 (u++3/2)° ifa<u<b, (6.8)

| (b+V3/2)° ifu>b,
where a and b are such that (6.4) and (6.5) are satisfied i.e..

—1>—9—'-8L6—§ = M < 9.865
M

and

Ru) < M, a<u<b.
Choose M = 9.8, say and solve :
5(u+3/2)*< 9.8
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which gives:
—2.049 < u < 317

Choose a = -2 and b = .3; then by theorem (6.3) this equation has a

unique solution. It is observed that the analytical solution (6.7) satisfies:

V3

0§u(z)$1—7<.134, z € [0,1].

But
[0,.134] C [a,d] = [-2,.3].

So it is also the unique solution of our problem with h(u) given by (6.8).

Example 6.3 Consider the ezample

ull+n

v +q(z)u™® = 0

u(0)=wu(l) = 0

where a > 0. This ezample was treated by Fink et. al. [16] where he proved
the ezistence and uniqueness of the positive solution for ¢ : [0,1] — [0, 00),

continuous and g(z) > 0, z € [0,1). They first considered the problem

ull+n

]
o

u' +g(z)(u+€)7® (6.9)

u(0)=u(l) = 0 (6.10)

and proved the ezistence and unigeness of the positive solution of this prob-

lem. The ezistence and uniqueness of the positive solution of the original
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problem was shown as the uniform limit of the solutions u, of this problem

ase—0t.

We want to use our results to prove the existence and uniqueness of the

regularized problem (6.9). In our setting this problem becomes

Lu+q(z)h(u) = 0

where h(u) is given by

—m if u Z 0,
he(u) = (6.11)
1

_— otherwise.
()=

Here, since ¢(z) > 0, condition (6.5) is clearly satisfied. Also for any real

u, v

u—v T extl
i.e., condition (6.4) is also satisfied. Hence by theorem (6.3) there exists a
unique solution. Since the solution is nonngative the second part of h,(u)
in (6.4) is immaterial (if the initial guess of the solution in the iteration

process is taken to be nonnegative).

6.5 Galerkin approximation

Consider the VBVP (6.2)
a(u,v) =0, VveV (6.12)
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with f(z,u) satisfying conditions (A), (B) and (C). Let u be the unique
solution of (6.12). We consider the same approximation subspace V, of
chapter 5. Since V,, C V all the assumptions are also savisfied in V, and

the finite dimensional problem (Galerkin):
a(u,.2y) =0 VYo, €V, (6.13)

has also a unique solution u, = u® € V. This unique solution u® is the

Galerkin approximation of the solution u in the subspace V.

Since V,, C V equation (6.12) is also satisfied for all v, € V. Thus we have
a(u,v;) =0 Vo, eV,
and we also have from (6.13)
a(uC,v) =0 Yo, €V,. (6.14)
Subtracting these two equations we obtain, for all v, € V,

a(u —u%v,) =0

= (u-~ uc,vn)v + /01 f(z, uz : ﬁg‘v’ uG) (u— uG)vnw = 0. (6.13)

Let §(z) be the unique function (because u and u€ are unique) defined by:

T,ulr}) — :l:uG.'z:
(o) o [21(2)) = @u%(a)

u(z) —u(z)
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(and §(z) := 0 when u(z) = u®(z)).
Then
(u0)s = (woly + [ d(e)u(e)(e)elz)ds

defines an inner product in V' and by virtue of (6.15) the Galerkin approx-

G

imation u“ can be thought of as the orthogonal projection of u on V,, with

respect to this inner product.

Using
uG = Z Q;Ty
J=1
and v, =7;, t=1,---,nin (6.14) we obtain the system
n 1 n
Sailrurdv + [ (5,3 asri(e)n(e)utz)ds.
j=1 i=1
This gives

Aa+Ga =0 (6.16)

where the matrix A is given by (5.8)-(5.10) and Ga is a nonlinear system

given by
gi(a) = /: flz,arry)riw + /::2 flz,airf + aary )rfw, (6.17)
gi(e) = z: flzyoiarhy + cir] )riw +
:.-“ fl@,oarf + oipariy)riw, i=2,---,n-1, (6.18)
gn(a) = /::1 flz,anart_, + apr])riw + :HH f(z, anrH)rt (6.19)
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Since (6.14) has a unique solution u® (determined uniquely by a;’s ), then,
(6.16) has also a unique solution @ € R". This can also be shown inde-
pendently by showing that A + G is monotone and hemicontinuous on R™.
Then by remark 2.8 and by uniform monotonicity theorem 2.13 it follows

that equation (6.16) has a unique solution in R™.

Convergence:

All the convergence results of chapter 5 hold true for this nonlinear case
also. In the proofs we only need to replace ¢ by §, C, by C, B(u.v) by
(u.%); and qu — f by f(z,u).

Remark 6.6 Note that the class of nonlinear problems and the nonlinear
analysis methods chosen in this chapter directly extends our work on the

linear case. More general classes of nonlinear singular problems is open for

investigation.
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Chapter 7

Numerical Examples

In this chapter we give numerical examples for both linear and nonlinear
cases. The programs were written in FORTRAN 77. For solving the non-

linear system (6.14) Picard’s iteration
(A+~Da*t! = yaf — GoF
and the secant method
ot = ok — (A + J) M Ak + GaF)

were used where v = C/2 (C is the constant of assumption (B) of chapter
6) and J; is given by the following. Let 6§ = .00001 . Define

HzuF)—f(zud ) .o & k
FaF i |uf —uf | 26,

frilz) = (7.1)

k)— k_ .
At ()] g(:'" D if |uf —uk || < 6.
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(If fk‘; = 0.0 then it is replaced by 7.) Then the entries of the symmetric
tridiagonal matrix Ji are given by

e = [ @ Po+ [ ()

Ti-1

Ti4l . +
Vikiva = /x Srina(z)r T’ W
13

The results are compared with the analytical solution and the error is shown
in the uniform norm. We note that in the following examples, the data f(z)
was not always continuous or even bounded. Also the condition u'(0) = 0
was not always satisfied. Such cases were not considered in the literature.
Some of the examples are limit point and other are limit circle cases as
can be checked. Example 5 below considers a case where w(z) = 0 on an

interval of positive measure.
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Example 1

p(z) = 1—¢77

w(z) = 1.0

gz) = =

flz)y = —r3 x4+ 22T -2+ 2
u(z) = 1-2°

lleloo = 91671 x 107 when h =1
llelle = .91863 x 10™* when h = .01

Graph of the solution (exact and zpproximate with h = .1):

100

0.80+
0.60+
0.40-

0.204

0.00 ;
00 .0 20 36 .40 50 .60 .70 .BO .90 1.00
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Graph of the solution (exact and approximate with & = .01):

1,081

0.80+

0.60-

0.40+

0.204

0.00
.00

1.00
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Example 2

p(z) = 2’
w(z) = z
o(z) = -z
f(z) = 322 +4z° - 19z +8

u(z) = 322 -4z +1
llele = .37051 when h=.1

liellco .039708 when h=.01

Graph of the solution (exact and approximate with & = .1):

00 .10 20 30 .40 50 60 70 .80 .80 1.00
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Graph of the solution (exact and approximate with 2 = .01):

1.06%)

0.80
0.604 -
0.40

0.20-

0.60

—-0.20

~0.40 :
00 .10 20 .30 40 50 .60 .70 .80 .80 1.00
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Example 3

p(z) = .z
w(:z:)' =1
9(z) = =

f(z) = zflnz—Inz -2
u(z) = zlnz

llelloe = -23006 when A=.1
llellee = .04605 when A= .01

Graph of the solution (exact and approximate with A = .1):

£O0 .10 .20 30 .40 S50 .60 70 .80 .80 1.00
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a4

raph of the solution (exact and approximate with h = .01):
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Example 4

pz) = zil+2(l-2)]
w(z) = z{i-2)7
g(z) = -1

= cos! Ty
f(z) = cos {Za)

u(z) = unknown

Grept: of the solution (approximate with h = .02):

u(x)

0.200+
0.1504
0.100+

0.050+

0.000 :
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Example 5

p(z) =z, ¢(z) =00, f(z)=10.0
[ 1 f0<z<y,

w(z) 10 ifl<z<i,

— , 2 2 .
u(z) =4 ~Rinz + 2+ ?ln (3) if

lielle = 3333 when h=.0333

Graph of the solution (exact and approximate with b = 0333%

#4
7
64

54
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Example 6
Lo,
——(zu') +e* = 0, O<z<]l

v'(0) =u(l) = 0.

1+8
1+ Bz?

lielee = .188845 x 1072 when h=.1

~

llello = 189 x 107* when h = .01

u(z) = 2n ( ) , B=-5+2V5

Graph of the solution (exact and approximate with A = .1):

0.004°%)

—0.050+
—0.100
—0.150+

—0.2004

~0.250 . :
00 10 20 30 40 50 .60 .70 .80 .90 1.00
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Graph of the solution (exact and approximate with h = .01):

0.c08)

—0.C50+

~ -
&
w
o
ol
o
~
e}
@ -
S
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Example 7

_é(x'-‘ul)l_ (u_*___z}‘) =0
v(0)=2u(1) = 0

3

) = e = L,

ltefloc = -25109 x 107?  when .‘h =.1
llehee = 254 x 107 when h = .01

Graph of the solution (exact and approximate with A = .1}):

0.0804
0.060
0.040

0.0204

0.000 ,
00 .10 .20 30 .40 S50 .60 .70 .80 .90 1.00
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Graph of the solution (exact and approximate with h = .01):

0.146%)

0.1204
0.100

0.080

£.020-

0.C00
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Example 8

The analytical solution is not known. Fink et. al. numericaliy solved it for

€ =107% and € = 10~*. We also solved with these ¢, The approximate so-

lution u%(z) is shown in the following tables where u(z) denotes the Fink’s

result.

Table of the solution when A = .02:

€=10-3
X 0.1 0.2 6.3 0.4 0.5 0.6 0.7 |c.2 0.9 1.0
u(x) |0.38200.37160.3543 ] 0.3298 | 0.2972|0.2581 [ 0.270C | C.3ZZ5 | 0.0840 | 0.0600
uG(x)|c.3820{0.3717 | 0.3543 | 0.3298 | 0.2979¢ | 0.2582 | 0.27C0 | £.7225 | 0.0840 | 0.0000
£=10—%
X 0.1 0.2 0.3 .4 0.5 .6 0.7 0.8 0.9 1.0
u({x) |0.3823|0.3720|0.3547 | 0.3302 | 0.2982 | 0.2584 | 0.2102 | G.1227 | 0.0842 | 0.0000
uG(x)|0.3824 | 0.3720 | 0.3547 | 0.3302 | 0.2982 | 0.2585 | 0.2103 | €.1527 | 0.0842 | 0.0000
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APPENDIX

Computer Codes




Sample programe for linear problem (Example 1)

(W]
0

6C

IMPLICIT REAL*B(A-H,Q-Z)

DIMENSION A(100),B(100),D(100)
EXTERNAL F1,F2,F3,F4,FF1l,FF2,FF0

NZERO=0

NONE=1

NTWO=2

N=9

MM=20

NP1=N+1

NP=NP1*MM+1

cl=1.

H=C1/NP1

M=10

X0=0.0

X1=H

X2=2%H

CALL DSIM(F4,X0,X1,M,Y1)
CALL DSIM(F3,X1,X2,M,Y2)
¥Y3=XP(X2) -XP(X1)

D(1)=1/¥3 + Y1 + Y2/(Y3)*=2

DO 10 I=2,N

XI=1*H

XII=XI-H

XIJ=XI+H

CALL DSIM(F2,XYI,XI,M,Y1)
CALL DSIM(F3,XI,XIJ,M,Y2)
Y1=Y1/(XP(XI)=XP(XII))**2
Y2=Y2/ (XP(XIT) ~XP(XI))*+2

D(I)=1/(XP(XI)-XP(XI-H)} +

DO 20 I=1,N-1

XA=I=H

XB=XA+H

ChALL DSIM(F1,¥A,XB,M,Y

A(I)= - 1/(XP(XB)-XP(XA))+

X0=0.0

CALL DSIM(FFO0,X0,H,M,Y1)
X1=H

X2=X1+H

CALL DSIM(FF2,X1,X2,M,Y2)

B(1)=Y¥1l + Y2/(XP(X2)-XP(X1))

DO 30 I=2,H

X2=T*H

X1=X2-H

X3=X2+H

CALL DSIM(FF1l,X1,¥2,M,Y1)
CALL DSIM(FF2,X2,X3,M,Y2)

B(I)= Y1/(XP(X2)-XP(X1)) + Y2/ (¥2(X3)~-XP(%2))

CALL DTRI(N,A,D,A,B)
ERR0=0.0
X0=0.0
UO=B(1)
B(N+1)=0.0
HH=H/MM
Y1=UG0
WRITE(7, *)NZERO,NP,NTWO
DO 60 I=1,MM
X1=X0+ (I~1) *HH
Y=SOL(X1)
ERR=DABS (Y-Y1)
IF (ERR.GE.ERRO) ERRO=ERR
WRITE(8,2)X1,Y,Y1,ERR
WRITE(7,1)X1,¥, Y1
DO 15 I=1,N
Al=I*H
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U1=8(I)
U2=B({I+1)
Bl=Al+H
HH=(B1-Al) /MM
DO 5 J=1,MM
X1=A1+EH* (T-1)
IF(I.EQ.N)THEN
Y1=(XP(B1)-XP(X1) )/ (XP(B1)-XP(Al)) *UL
ELSE :
¥1=(XP(B1)-XP(X1))/ (XP(B1) -XP(A1l))*U1 +
+ (X2(X1) -XP(Al} )/ (XP(B1) -XP(Al) ) *U2
ENDIF
¥=SOL(X1)
ERR=DABS (¥-Y¥1)
IF (ERR.GE.ERRO) ERRO=ERR
WRITE(8,2)X1,Y,Y1,ERR
5 WRITE(7,1)X1,Y ,Y1
15 CONTINUZ
WRITE (8, 4)ERRO
Xi=1.
U1=0.
WRITE(7,2)X1,U1,01
FORMAT(2F15.8)
FORMAT(4G15.5)
DO 50 I=1,N
X=I*H
Y=SOL (%)}

N o=

1))

,B(I),ERR

,3G18.10)

FORMAT(///’ ZRRCR = ’,G15.5////)

END

LLLL'\-LLLLLLL~\-\.uLsL§_LLLL(—LL\-\-LLL(—LLLLL‘-LLLLL(—\-C

INTEGRATICK BY SIMPSON'S RULE c

F : SUPPLIED FUNCTION c

LOWZR LIMIT c

UPPER LIMIT ¢

HALF OF THE NUMBER OF DIVISIONS <
c
c

-»

<X W

APPROXIMATE VALUE OF INTEGRATION
CCCCCCCCCCCTICCCCCCCCLCCLTCCCCCCCCCCCCCCeeeee
SUBROUTINE DSIM(F,A,B,M,Y)
IMPLICIT REAL*B(A-H,Q-Z)
EXTERNAL T
H=(B-2)/2/M
%I0=F({x,5,A)+F(2,B,B)}
¥XIl=0.0
X12=0.0
DO 10 I=1,2*M-1
X=j+Ixd
N=1/2
N=I-2+N
IT{N.ZQ.0)THEN
XI2=XI2+F(A,B,X)
ELSZ
XI1=XI1+F(A,B,X)
ENDIF
10 CONTINUE
Y=H* (XI0+2%XI2+4*XI1)/3

c
c
c
o
c
c
C

RETURN

END
C

SUBROUTINE DTRI(N,A,D,C,B)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCcceeeeececceeececcee
C C




INPUT :

1 D(1) <) T ]
} A(1)  D(2) c(2) ° ©os2) §
% TA(2) D(3)  <(3) : 3(3) %
2 [¢] A(3) D(4) ¢34 i

OUTPUT:
RETURNS THE SOLUTION IN THE VECTOR B
METHOD:

NAIVE GAUSSIAN ELIMINATION (WITHOUT PIVOTING)

NOOONONOONNNNONDONONONNONODN
1

¢

IMPLICIT REAL*S(A-H,Q-2)

DIMENSION A(N),D(N),C(N),B(N)

Do 2 I=2,N
XMULT=A(I-1)/D(I-1)
D(I)=D(I)-XMULT*C(I~-1)

2 S(I)=B(I)-YMULT+*B(I~1)
B(N}=B(N)/D(N)
D0 3 I=1,N-1

3 B(N-I}=(3(N-I)-C(N-I)*B(N-I+1))/D(k-I;
ZTURN

=KD

FUNCTION F1(A,B,X)

IMPLICTIT REAL*S(A-~H,Q-2)

F1=0W(X) * (XP(B) =XP (X)) * (XP(X) ~XP(A})
TTURN

zuD

FUNCTION F2(A,B,X)
IMNPLICIT REAL*3(A-H,Q-2)
F2=QW(X) * (XP (X} ~XB(A)) *42
RETURN

=N
iy

TUNCTION F3(A,B,X)
IMPLICIT REAL*8 (A-H,Q-2Z)
F3=QW (X) * (XP(B) ~XP (X)) **2
RETURN

XD

FUNCTION F4(A,B,X)
IMPLICIT REAL*S({A-H,Q-2)
F3=QW (X)

RETURN

ENE

[of - - ———

FUNCTION FF1(,B,X)
IMPLICIT REAL*SB{A-H,Q-2)
FF1=FFW (X) * (XP(X) ~XP(A) )
RETURN

END
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C

FUNCTION FF2(A,B,X)
IMPLICIT REAL*8 (A-H,Q-2}
FF2=FFW(X) * (XP(B) ~XP(X))
RETURN

END

FUNCTION FFO(A,B,X)
IMPLICIT REAL*8(A-H,Q-2)
FFO=FFW(X)

RETURN

END

CtItt*ﬁi!t*tt**ti*itiitiiiittt'li!tﬁt*i*ﬁti*i***i**tik

c

FUNCTION XP(X)
IMPLICIT REAL*8(A-H,Q-2)
XP=DLOG (DEXP{X) -1)
RETURN

END

FUNCTION W(X)

IMPLICIT REAL*8(A-H,Q-C)

IF ( X .LT. 1.D-10)THEN
X=0.

ENDIF

w=1.0

RETURN

IND

TURCTION QW(X)

IMPLICIT REAL*B(A-H,Q-2}
QW=X*W (X)

TURN

FUNCTION FEW(X)

IMPLICIT REAL*8 (A-H,Q-2)
IF(DABS(X).LT. 1.D-20) THEIN

¥=0.

NOIF

FH=-X*X*X +X+2*X*DEAP (-X) -24DEXP(~X)+2
=FEW*W (X)

RETURN

END

FUKRCTION SOL(X)

IMPLICIT REAL*8 (A-H,Q-2)

IF(DABS(X)-LT. 1.D-20) THE
X=0.

ENDIF

SOL=1-X*X

RETURN

ND

z




Sample programe for nonlinear problem (Example 6)

IMPLICIT REAL*B(A-E,Q-2)
DIMENSION U(100)
N=99
M=4
NM1=(N+1) *M+1
N1=30
N2=50
CALL GAMA (GAMMA)
CALL PICARD(N,N1,GAMMA,100,U,NSIG)
IF (NSIG .EQ. 1) STOP
CALL SECANT(N,N2,100,U,ERROR)
PRINT*, ERROR
C1=1.
H=C1/ (N+1)
WRITE(7,%) /07, kM1, 2"
ERR0=0.0
X0=0.0
00=U (1)
U(N+1)=0.0
HH=H/M °
Y1=00
DO 60 I=1,M
¥1=X0+ ( I-1) *HH
¥=SOL(X1)
ERR=DABS (¥Y-Y1)
IF(ERR.GE.ERRO) ERRC=ERR
WRITE(7,1)X0,¥Y2,¥
WRITE(8,2)X1,Y¥1,Y,ERR
60 CONTINUE
Do 10 I=1,N
A=I*H
C1=U(I)
U2=0(X+1)
B=A+H
HH=(B-~A) /M
po 5 J=1,M
X1=A+HH* (J-1)
IF(I.EQ.N)THEN
Y1=(XP(B) -XP(X1}}/{XP(B}-XP(A))*UL

ELSZ
Y1=(XP(B) -XP(%1)}/(XP(B)-XP(A))*Ul +
+ (XP(X1)=XP(2))/(XP(B)-XP(A))*U2
ENDIF
Y=SOL(X1)

ERR=DABS (¥-Y1)
IF (ERR.GE.ERRO) ER?0=ZRR

. WRITE(8,2)X1,¥L,¥, IR

5 WRITE(7,1)X1,¥1,Y

10 CONTINUE

PRINT*, ERRO

X=1.

Y=0.

WRITE(7,1)X,Y,Y

FORMAT (3F10.5)

FORMAT (4G15.5)

DO 40 I=1,N

X=I*H

=SOL(X)

ERR=DABS (Y-U(I))

40 WRITE(9,2)X,0(I),Y,ERR
END

N e

_ SUBROUTINE PICARD(X,NI, GAMMA,M,U, NSIG)'
IMPLICIT REAL*B(A-H,Q~2)

155




10

DIMENSION A(100),B(100),D(100),U(100),A1{100),D1{1C3)
EXTERNAL FFO,FF1,FF2

H=1./(N+1)

M=4

X0=0.0

X1=H

X2=2+H

D(1)=1/(XP(X2}-XP(X1))

DO 10 I=2,N

XI=I*H

D(I)=1/(XP(XI}-XP(XI-H)) + 1/(XP(XI+H)<-XP(XI))
DO 20 I=1,N-1

XA=I*H

XB=XA+H

A(I)= - 1/(XP(XB)-XP(XA))

C INITIAL GUESS FOR U(I)

41

3o

DO 25 I=1,N
U(I)=0.0
DO 45 J=1,NI
DO 41 I=1,%
AL(I)=A{I)
D1(I)=D(I)
X0=0.0
Uo=0 (1)
X1=H
UL=U (1) .
CALL DSIM(FFO,%0,X1,4,Y¥1,U0,U)
X2=X1+H .
U2=U(2)

CALL DSIM(FF2,X1,X2,M,Y2,U1,U2)

B{1)=Y1l + ¥2/[¥D(X2)-XP(X1)) + GAMMA*U(1)
D1(1)=D1(1)+Ga¥MA

DO 30 I=2,K

X2=I*H

U2=U(I)

X1=X2-K

Ui=U(I-1)

X3=X2+H

U3=U(I+1)

CALL DSIM(FF1,¥1,X2,M,¥1,U1,U2)

CALL DSIM(FF2,%2,X3,M,Y2,G2,U3)

B(I)= Y1/ (XP(X2)-XP(X1)) + ¥Y2/(XP(X3)~XP(X2)) + GAla=U(I)
D1(I)=D1(I)+GaMA

CALL DTRI(X,Al,Di,Al,B)

C ESTIMATE THE NORM OF THE DIFFERENCE

35

40

ERR=0.0

DO 35 I=1,N

DIFF=DABS (U({I)-5(1))

IF( DIFF .GT. SRR} ERR=DIFF

CONTINUE

IF (ERR .GT. 1.DS) THEN
PRINT#, ' PICARD ITERATINS DIVERGES’
NSIG=1
RETURN

ENDIF

IF (ERR .LT. 1.D-5) THEN
PRINT*, ' PICARD ITERATINS CONVERGES’
NSIG=0
RETURN

ENDIF

DO 40 I=1,N

U(I)=B(I)
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45 CONTINUE
PRINT*,ERR
NSIG=0
RETURN
ER

SUSROUTINE SECANT(N,NI,M,U, ERROR)

IMPLICIT REAL*8(A-H,Q-2)

DIMENSION A(100},B(100),0(100),U{100),51(100),D1(100)
EXTERNAL F1,F2,F3,FFO,FF1,FF2,FFN

Cl=1.

E=Cl/(N+1)

M=10

X1=H
X2=X1+H .
D(1)=1/(XP(X2)~XP(X1))
Lo 70 I=2,N
XIt=H*I
XI0=XIl-H
XI2=XIl+H
D{I)=1/(XP(XI1)~-XP(XI0)) + 1/(XP(XI2)-XP(XI1))
70 A(I-1)= - 1/(XP(XI1)-XP(XIO0))
Commw -——etw —-—
DO 45 J=1,NI
%0=0.0
¥isH
%2=24H
Gi=U(1)
v2=u(2)
CALL DSIM(F3,X1,X2,M,Y¥2,U1,U2)
D1(i)= Y2/(XP(X2)-XP(X1))*+*2

CALL DSIM(FFO,X0,X1,M,Y1,U0,uUl)
CARLL DSIM(FF2,X},X2,M,Y2,U1,U2)
3{l)=Yl + Y2/ (XP(X2)-XP(X1l))

D0 10 I=2,N-1
X2=IsY
T2=U(1)
x1=¥2-d

CALL DSIM(FF1,bX1,X2,M,Y1,U1,U2)
C~LL DSIM(FF2,X2,X3,M,Y2,U2,U3)
B(I)= Y1/(XP(X2)-XP(X1l)) + Y2/(XP(%2)-¥P(X2))
CxLlL DSIM(F2,X1,X2,M,Y1,U1,U2)
CALL DSIM(F3,X2,X3,M,Y2,U2,U2)
Y1=71/(XP(X2)-XP(X1))**2
¥2=Y2/ (XP(X3) -XP(X2))*+2
10 Dl{I)= ¥l + Y2

Yi=(N-1)*H

X2=X1+H

X3=X2+H

Ul=U(N-1)

U2=U(N)

U3=0.0

CKLL DSIM(FF1,X1,X2,M,Y1,U1,U2)
CALL DSIM(FFN,X2,X3,M,Y2,U2,U3)
B(N)= Y1/(XP(X2)~XP(X1)) + Y2/(XP(X3}-XP(X2))
CALL DSIM(F2,X1,X2,M,Y1,U1,U2)
ChLL DSIM(F3,X2,X3,M,¥2,U2,U3)
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Y1=Y1/(XP(X2)-XP{X1))+#*2
¥2=Y2/(XP{X3)-XP(X2) ) *x*2
D1(N)= Y1 + Y2

DO 20 I=1,N-1

XA=I*H

UA=U(T)

XB=XA+H

UB=U(I+1) .

CALL DSIM(F1,XA,XB,M,Y,UA,US
20 Al(I)= Y/(XP(XB)-XP(XA))**2

DO 41 I=1,N
AL(I)=A(I)~-A1(I)
41 D1(I)=D(I)-D1(I)

B(1) =D(1)*U(1) + A(1)*U(2) - B(1)
DO 30 I=2,N-1

30 B(I)= A(I~1)*U(I-1) + D(I)*U(I) + A(I)*U(I+1) - B(I)
B(N)= A(N-1)*U(N-1) + D(N)*U(N) -B(N)

c

CALL DTRI(N,Al,D1,Aal,B)
C UPDATE

ERR=0.0

DO 35 I=1,N

DIFF=DABS(B(I))
IF( DIFF .GT. ERR) ERR=DIFF
35 CONTINUEZ
IF( ERR .GT. 1:D5) THEN
PRINT*, * SECANT DIVERGES’
RETURN
ERDIF
IF( ERR .LT. 1.D-15) THEIN
PRINT*,’ SECANT CONVERGES WITH NO. OF ITERATIONS:', J
ERROR=ERR
RETURN
ENDIF
Uo=U(1)
DO 40 I=1,N
<0 U(I) =U(I1)-B(I)
45 CONTINUE
RETURN
END
C-~ - et e e e e e e
C INTEGRATION BY SIMPSON'S RULZT C
SUBROUTINE DSIM(F,A,B,%,Y,Us,UB)
IMPLICIT REAL*8(A~H,Q-2)
DIMENSION U(100)
EXTERNAL F
H=(B-A)/2/M
X10=F(A,B,A,UA,UB)+F(A,5,B,UA,UB)
XIl=0.0
XI2=0.0
DO 10 I=1,2%M-1
X=A+I*H
N=I/2
N=I-2*N :
IF(N.EQ.0) THEN
XIZ=XIZ+F(A,B,X,UA,UB)
ELSE
XI1=XI1+F(A,B,X,UA,UB)
ENDIF
10 CONTINUE
=H* (XI0+2%XX2+4%XX1)/3
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RETURN
END

SUBROUTINE DTRI(N,A,D,C,B)

IMPLICIT REAL*8(A-H,Q-2)

DIMENSION A(N),D(N),C(K},B(¥}

DO 2 I=2,N
XMULT=A(I~1)/D(I-1)}
D(I)=D(I)~-XMULT*C(I-1)
B({I)=B(I)-XMULT*B(I-1)

B(N)=B(N) /D(N)

DO 3 I=1,N-1

B(N~I)=(B(N-I}~C(N~I)#*B(N-I+1})/D(N-I)

RETURN

END

FUNCTION FFO(A,B,X,UA,UB)
IMPLICIT REAL*8(A~-H,Q-2)
FFO=FFWO(A,B,X,UA,UB)
RETURN

END

FUNCTION FF1(A,B,X,UA,UB)
IMPLICIT REAL*8(A-H,Q-Z)
FF1=FFW(A,B,X,UA,UB) * (XP(X)-XP(A))
RETURN

END

FUNCTION FF2(A,B,X,UA,UB)
IMPLICIT REAL*B(A-H,Q-2)
FF2=FFR(A,B,X,UA,UB) * (XP(B) -XP (X))
RETURN

END

FUNCTICN FFN(A,B,X,UA,U3)

IMPLICIT REAL*8(A-H,Q-Z)
FFN=FFWN(A,B,X,UA,UB) *(XP(3)~XP(X))
RETURN

END

FUNCTION F1(A,B,X,UA,UB)

IMPLICIT REAL*8(A-H,Q-2)

F1=DFW(A, B, X,UR,UB) * (XP(B) X5 (¥)) * (XP(X) ~XP(A))
RETURN

END

FUNCTION F2(A,B,X,UA,UB)

IMPLICIT REAL*8(A-H,Q-2Z)
F2=DFW(A,B,X,UA,UB) * (XP(X)=-XP(A))*=*2
RETURN

END

FUNCTION F3(A,B,X,UA,UB)

IMPLICIT REAL*8(A-H,Q-2)

F3=DFW (A, B,X,UA,UB) * (XP(B) -xP (X)) **2
RETURN

END

FUNCTION FFWO(A,B,X,UA,US)
IMPLICIT REAL*S(A-H,Q-2)
FFWO= FW(X,UB)

RETURN

END
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FUNCTION FFW(A,B,X,UA,UB)
IMPLICIT REAL*8(A-H,Q-2)
C=XP(B) -XP(A)
Ul=UA* (XP(B) -XP(X))
U2=UB* (XP(X) ~XP(A) )
B=(UL+U2)/C
FFW = FW(X,U)
RETURN
END

FUNCTION FFWi(A,B,X,UA,UB)
IMPLICIT REAL*8(A-H,Q-2)
C=XP{B) -XP(A)
U1=UA* (XP(B) -XP(X))
U2=0.0
U=(U1+3J2) /C
FFWN= FW(X,C)
RETURN
END

FURCTION Fw({X,U)
IMPLICIT REAL=8(A~H,Q-2)
Fw= DEXP(U)

FW=—FW*W{X)

RETURN

END

SUBROUTINE GAMA(GAMMA)
IMPLICIT REAL*Z({A-H,Q-C)
GAMMA= 0.5 ‘
RETURN

END

_________ pm—————————
FUNCTION DFW(A,3,%X,UA,UB)

IMPLICIT REAL*S(aA-H,Q-2) B
IF(DABS(UB) ..T. 1.D-3 .AND. DABS(UA) .LT. 1.D-2

DEW=~GAMS

RETURN

ENDIF

DELTA = .GOQ1

H=UB-UA

IF(DABS(E)} .LT. DEILTA) THEN
H=H3-DZLTA

ENDIF

CALL GAMA(GAMMA)
DFW = (FW(X,U3)}-FW(X,UA))/H
IF(DA3S(DFW) .GT.1000.) THEN
PRINT*,{DFW| IS5 GREATER THAN 1000’
DFW=-GAIDA
ENDIF
IF(DABS(DFW).LT. 1.D~5) THEN
DFW==GAMMA
ENDIF
RETURN
END

FUNCTION XP(X)

REAL*8 XP,X

IF ( X .LT.1.D-10)THEN
PRINT*,  KRGUMENT OF XP=’,X
XP=DLOG (DABS (X) +.0001)

ELSE

XP=DLOG ()

ENDIF
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RETURN
END

FUNCTICN W(X)

REAL*8 W,X

IF ( X .ZT7. 1.D-10)THEN
=0.0

ELSE

W=X

ENDIF

RETURN

END

FUNCTION SOL(X)
IMPLICIT REAL*8(A-H,Q-Z)
IF ( X .LT. 1.D-10)THEN
X=0.0
ENDXIF
C6=6.
BETA=-5.+2*DSQRT (C6)
SOL= 2+*DLOG( (1+BETA)/(1+BETA*X*X))
RETURN
END

THE END
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