
PERFORMANCE EVALUATION OF INTERRUPT

HANDLING SCHEMES IN GIGABIT NETWORKS

by

Khalid Abdalla El-Badawi

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements

for the degree

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

KING FAHD UNIVERSITY

OF PETROLEUM & MINERALS

Dhahran, Saudi Arabia

April, 2003

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SUADI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis written by KHALID ABDALLA EL-BADAWI under the direction

of his thesis advisor and approved by his thesis committee, has been presented to and

accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements for

the degree of MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

Dr. Khalid Salah (Thesis Advisor)

Dr. Nasir Al-Darwish (Member)

Dr. Muhammed Alsuwaiyel (Member)

Department Chairman

Dean of Graduate Studies

Prof. Osama A. Jannadi

Dr. Kanaan Faisal

Date

ii

Dedication

This thesis is lovingly dedicated to my mother

Mrs. Fatima Mustafa

for all I am started in her arms.

iii

Acknowledgment

All thanks are due Allah first and foremost for his countless blessing.

Acknowledgment is due to King Fahd University of Petroleum & Minerals for

supporting this research.

My unrestrained appreciation goes to my advisor, Dr. Khalid Salah, for all the

assistance, advice, encouragement and invaluable support he has given me throughout

the course of this work and on several other occasions. I simply cannot begin to imagine

how things would have proceeded without his help and his patience. I also wish to thank

my thesis committee members, Dr. Nasir Darwish and Dr. Muhammed Alsuwaiyel, for

their help, support, and contributions. I would also like to thank Dr. Haydar Akca for

his valuable help.

I also acknowledge my many colleagues and friends as I had a pleasant,

enjoyable and fruitful company with them. Specially, I would like to thank my friend

Abdel-Rahman for his continuous encouragement and support.

Finally, I wish to express my gratitude to my family members for being patient

with me and offering words of encouragements to spur my spirit at moments of

depression.

iv

Table of Contents

Dedication .. iii

Acknowledgment ..iv

Table of Contents ...v

List of Figures .. viii

Thesis Abstract.. xii

خلاصة الرسالة .. xiii

1 INTRODUCTION...1

1.1 Gigabit Ethernet Technology ...1

1.2 Interrupt-Driven Kernels..4

1.2.1 An Overview of Network Interface Model ..5

1.2.2 Interrupt Handling Overhead ...7

1.2.3 Receive Livelock..9

1.3 Motivation..11

1.4 Main Contributions ..12

1.5 Organization of Thesis ...12

2 LITERATURE REVIEW ...13

2.1 Performance Metrics ..13

2.2 Proposed Solutions to Reduce Interrupt Overhead ..15

2.2.1 Interrupt Coalescing Scheme ...15

2.2.2 Enabling-Disabling Interrupt Scheme..20

2.2.3 Polling Scheme ..20

2.2.4 Interrupt-Polling Scheme ...22

2.2.5 Jumbo Frames ..23

3 MODELING AND ANALYSIS...25

3.1 Queuing Theory ...26

3.1.1 Notations and Assumptions ...27

v

3.1.2 Performance Metrics ..30

3.2 Ideal System Model ...32

3.2.1 Performance Metrics ..33

3.2.2 Numerical Results ..35

3.3 Interrupt-Driven System Models..39

3.3.1 Deterministic Model ..40

3.3.1.1 General Formula for Effective Service Rate..43

3.3.2 Markovian Modeling..47

3.3.2.1 First Technique: Effective Service Time ...47

3.3.2.2 Second Technique: Pure Markovian Chain..58

3.3.2.3 Comparison of Two Models ..73

3.4 Interrupt Coalescing Model..76

3.4.1 Modeling CPU Usage ..78

3.4.2 Modeling Interrupt Coalescing Scheme...85

3.4.3 Performance Metrics ..90

3.4.4 Numerical Results ..92

3.5 Enabling-Disabling Interrupt Model ..96

3.5.1 Modeling Enabling-Disabling Interrupt scheme......................................97

3.5.2 Performance Metrics ..98

3.5.3 Numerical Results ..100

4 SIMULATION STUDY ...104

4.1 Introduction..104

4.1.1 Simulation Type...104

4.1.2 Simulation Language ...105

4.1.3 Random Number Generator ...105

4.1.4 Seed Selection ..106

4.2 Components and Organization...107

4.3 Traditional Scheme Simulation Model ..111

4.4 Interrupt Coalescing Simulation Model ...113

4.5 Enabling-Disabling Interrupt Scheme Simulation Model..............................115

vi

4.6 Comparison and Numerical Results...116

5 PERFORMANCE COMPARISON, DESGIN AND IMPLEMENTATION ISSUES

..124

5.1 Performance Compared..125

5.2 Selecting the Best Scheme ...131

5.3 Design and Implementation Issues ..132

5.3.1 NIC-Side Solution..132

5.3.2 OS-Side Solution..133

6 CONCLUSION...135

Appendix A ..138

Appendix B ..140

Bibliography...155

Vita...159

vii

List of Figures

Figure 1.1: Gigabit Ethernet frame format with carrier extension.....................................3

Figure 1.2: Typical network interface model for Gigabit Ethernet subsystem..................7

Figure 1.3: Possible behaviors of delivered throughput versus offered load...................10

Figure 2.1: Pseudo-code for Intelligence Backoff Interface ...19

Figure 3.1: Queuing model for the system...26

Figure 3.2: System throughput for Ideal system ...37

Figure 3.3: System latency for Ideal system ...37

Figure 3.4: CPU availability of user processes for Ideal system38

Figure 3.5: Overall system power for Ideal system ..38

Figure 3.6: Timeline for a deterministic model where 1/λ >TISR40

Figure 3.7: Timeline for a deterministic model where 1/λ<TISR41

Figure 3.8: Timelines shows different amount of CPU available times42

Figure 3.9: CPU available time for protocol processing versus packet arrival rate for

D/D/1..44

Figure 3.10: System throughput in Deterministic model ..46

Figure 3.11: Effect of large values of ρ on system throughput in Deterministic model..46

Figure 3.12: Rate-transition diagram to model CPU usage for Traditional scheme.......48

Figure 3.13: %CPU utilization vs. packet arrival rate ..51

Figure 3.14: Relation between CPU availability and CPU utilization due to ISR

handling..51

Figure 3.15: System throughput for Traditional scheme based on Effective Service

Time technique...56

Figure 3.16: System latency for Traditional scheme based on Effective Service Time

technique ..56

Figure 3.17: CPU availability for Traditional scheme based on Effective Service Time

technique ..57

viii

Figure 3.18: Overall system power for Traditional scheme based on Effective Service

Time technique...57

Figure 3.19: Rate transition diagram for traditional interrupt-driven system58

Figure 3.20: Rate-transition diagram for modeling first solution63

Figure 3.21: Rate-transition diagram for modeling second solution...............................65

Figure 3.22: System throughput for Traditional scheme based on pure Markovian

model – First solution ..70

Figure 3.23: System throughput for Traditional scheme based on pure Markovian

model – Second solution ..70

Figure 3.24: System latency for Traditional scheme based on pure Markovian model.71

Figure 3.25: CPU availability for Traditional scheme based on pure Markovian model

..71

Figure 3.26: Overall system power for Traditional scheme based on pure Markovian

model..72

Figure 3.27: System throughput for both first and second analytic models....................74

Figure 3.28: CPU availability for both first and second analytic models74

Figure 3.29: System latency for both first and second analytic models..........................75

Figure 3.30: Timeline represents interrupt coalescing schemes77

Figure 3.31: Modeling CPU usage for interrupt coalescing scheme79

Figure 3.32: CPU utilization due to ISR handling in Interrupt Coalescing scheme84

Figure 3.33: CPU availability for protocol processing in Interrupt Coalescing scheme 84

Figure 3.34: States transition diagram for interrupt coalescing scheme85

Figure 3.35: System throughput for Interrupt Coalescing scheme94

Figure 3.36: System latency for Interrupt Coalescing scheme94

Figure 3.37: CPU availability for Interrupt Coalescing scheme.....................................95

Figure 3.38: Overall system power for Interrupt Coalescing scheme..............................95

Figure 3.39: Pseudo-code for Enabling-Disabling interrupt scheme96

Figure 3.40: Rate-transition diagram for Enabling-Disabling Interrupt scheme97

Figure 3.41: System throughputs for Enabling-Disabling Interrupt scheme102

Figure 3.42: System latency for Enabling-Disabling Interrupt scheme........................102

ix

Figure 3.43: CPU availability for Enabling-Disabling Interrupt scheme103

Figure 3.44: Overall system power for Enabling-Disabling Interrupt scheme103

Figure 4.1: Flowchart of the Simulation Model..109

Figure 4.2: C Declaration for event types ...110

Figure 4.3: Flowcharts of event handlers in Traditional scheme112

Figure 4.4: Flowchart of ARRIVAL event for Interrupt Coalescing model.................114

Figure 4.5: Flowcharts of ARRIVAL and DEPARTURE events for Enabling-Disabling

Interrupt model...116

Figure 4.6: Comparison between analysis and simulation of the first Traditional system

model for system throughput ..118

Figure 4.7: Comparison between analysis and simulation of the first Traditional system

model for CPU availability ..118

Figure 4.8: Comparison between analysis and simulation of the first Traditional system

model for system latency ...119

Figure 4.9: Comparison between analysis and simulation of the second Traditional

system model (first solution) for system throughput ...119

Figure 4.10: Comparison between analysis and simulation of the second Traditional

system model for CPU availability ..120

Figure 4.11: Comparison between analysis and simulation of the second Traditional

system model for system latency ...120

Figure 4.12: Comparison between analysis and simulation of Interrupt Coalescing

model for system throughput ..121

Figure 4.13: Comparison between analysis and simulation of Interrupt Coalescing

model for CPU availability ...121

Figure 4.14: Comparison between analysis and simulation of Interrupt Coalescing

model for system latency ..122

Figure 4.15: Comparison between analysis and simulation of Enabling-Disabling

Interrupt model for system throughput ..122

Figure 4.16: Comparison between analysis and simulation of Enabling-Disabling

Interrupt model for CPU availability ...123

x

Figure 4.17: Comparison between analysis and simulation of Enabling-Disabling

Interrupt model for system latency ..123

Figure 5.1: Performance of interrupt handling schemes where all design goals have

equal weights..126

Figure 5.2: Performance of interrupt handling schemes where system throughput has

more weight than latency and CPU availability...126

Figure 5.3: Performance of interrupt handling schemes where system latency has more

weight than throughput and CPU availability..128

Figure 5.4: Performance of interrupt handling schemes where CPU availability has

more weight than throughput and latency..128

Figure 5.5: Performance of interrupt handling schemes where system throughput has

less weight than latency and CPU availability...130

Figure 5.6: Performance of interrupt handling schemes where system latency has less

weight than throughput and CPU availability..130

xi

 Thesis Abstract

NAME: Khalid Abdalla El-Badawi

TITLE: Performance Evaluation of Interrupt Handling Schemes in Gigabit Networks.

MAJOR FIELD: Computer Science.

DATE OF DEGREE: April 2003.

In Gigabit networks, the arrival rate of incoming traffic is very high and

supercedes the packet processing rate of network nodes such as router, servers, or

clients. In addition, the very high rate of incoming traffic causes a very high rate of

interrupts which has negative impact on the operating system performance of these

network nodes. The negative impact is primarily due to interrupt overhead associated

with each packet arrival. This thesis presents models and analytical techniques for

capturing the behavior and studying the performance of interrupt-driven kernels due to

Gigabit networks traffic. The Performance is expressed in terms of throughput, latency,

CPU availability, and overall power system. In addition, the thesis evaluates and

compares the performance of four popular interrupt handling schemes for decreasing

such interrupt overhead. These schemes include Traditional scheme, Interrupt

Coalescing, Polling, and Enabling and Disabling Interrupt. The performance for all of

these schemes is studied using both analysis and simulation. Finally, the thesis discusses

important selection, design, and implementation issues as well proposing the selection

for the best interrupt handling scheme.

xii

 خلاصة الرسالة

 خالد عبداالله البدوي: الإســـــــم

 في شبكات الجيجابت) interrupts (تقييم أداء طرق معالجة المقاطعات: عنوان الرسالة

 علوم الحاسب الآلي: التخصص

 ٢٠٠٣أبريل : تاريخ التخرج

 معدل معالجة الحـزم عنـد عالية جداً وقد تفوق تكون م وسير القد حركة في شبكات الجيجابت ، إن معدل وصول

قد يسبب هذا المعدل العـالي لحركـة ذلك ، علاوة على .جهزة العملاء أ الشبكة مثل الخادمات و الراوتر و طرفيات

هذا الأثر السـلبي . لى أداء نظام التشغيل لتلك الطرفيات السير تولد مقاطعات بمعدل عالي جداً والتي لها أثر سلبي ع

لمعرفـة سـلوك يقدم هذا البحث نماذج وطرق تحليلية . المصاحبة مع كل حزمة قادمة المقاطعة ناتج أساساً من تكلفة

ير حركـة سـير شـبكات ث تحت تـأ (interrupt-driven kernels) بالمقاطعة ةنظمة المنقادالأدراسة أداء نواة و

 ، توفر وحدة المعالجة (latency) ، التأخر (throughput)الأداء بدلالة الإخراج هذا يمكن أن نعبر عن . الجيجابت

طـرق هذا البحث يقيِّم ويقارن أداء أربـع لى ذلك ، إإضافة . و قوة النظام الكلي(CPU availability)المركزية

 الطريقة التقليدية وطريقة جمع المقاطعات وطريقة الانتخـاب و :تشمل هذه الطرق . معالجة المقاطعة لتخفيض تكلفتها

وأخيراّ ، ينـاقش هـذا . تم دراسة أداء هذه الطرق باستخدام التحليل والمحاكاة . كين المقاطعات عدم تم -طريقة تمكين

 لطـرق معالجـة التطبيق كما يقترح اختيار الطريقة المثلـى البحث عدة أمور منها أهمية اختيار الطريقة ، التصميم ، و

 .المقاطعة

xiii

 CHAPTER 1

INTRODUCTION

1.1 Gigabit Ethernet Technology

These days we have a widespread deployment and development of high-

performance network services, which provide high bandwidth and low latency. One of

such network services is Gigabit Ethernet which was introduced in 1998. Like Ethernet,

Gigabit Ethernet is media access control (MAC) and physical-layer (PHY) technology.

It offers one gigabit per second (1 Gbps) raw bandwidth. To remain backward

compatible with existing Ethernet technologies, Gigabit Ethernet, also known as IEEE

Standard 802.3z, uses the same IEEE 802.3 Ethernet frame format.

Like its predecessor, Gigabit Ethernet operates in either half-duplex or full-

duplex mode. In full-duplex mode, frames travel in both directions simultaneously over

two separate channels on the same connection for an aggregate bandwidth of twice that

of half-duplex mode. Full duplex networks are very efficient since data can be sent and

received simultaneously. However, full-duplex transmission, which is commonly

implemented, can be used for point-to-point connections only.

Full-duplex transmission can be deployed between ports on two switches, a

workstation and a switch port, or between two workstations. Full-duplex connections

1

2

cannot be used for share-port connections, such as a repeater or hup port that connects

multiple workstations. Gigabit Ethernet is most effective when running in the full-

duplex, point-to-point mode where full bandwidth is dedicated between the two end-

nodes. Full-duplex operation is ideal for backbones and high-speed server or router

links.

For half-duplex operation, Gigabit Ethernet will use the enhanced CSMA/CD

access method. With CSMA/CD, the same channel can only transmit or receive at one

time. A collision results when a frame sent from one end of the network collides with

another frame. Timing becomes critical if and when a collision occurs. If a collision

occurs during the transmission of a frame, the MAC will stop transmitting and

retransmit the frame when the transmission medium is clear. If the collision occurs after

a packet has been sent, then the packet is lost since the MAC has already discarded the

frame and started to prepare for the next frame for transmission. In all cases, the rest of

the network must wait for the collision to dissipate before any other devices can

transmit.

In half duplex mode, Gigabit Ethernet’s performance is degraded. This is

because Gigabit Ethernet uses CSMA/CD protocol which is sensitive to frame length.

Ethernet has a minimum frame size of 64 bytes. The reason for having a minimum size

is to prevent a station from completing the transmission of a frame before the first bit

has reached the far end of the cable, where it may collide with another frame. Therefore,

the minimum time to detect a collision is the time it takes for the signal to propagate

from one end of the cable to the other. This minimum time is called slot time. The

standard slot time for Ethernet frames is not long enough to run a 200-meter cable when

3

passing 64-byte frames at Gigabit speed. In order to accommodate the timing problem

experienced with CSMA/CD when scaling half-duplex Ethernet to Gigabit speed, slot

time has been extended to guarantee at least a 512-byte slot time using a technique

called carrier extension as shown in . The frame size is not changed; only the

timing is extended.

Figure 1.1

Carrier Extension wastes bandwidth. For example, a small packet of 64 bytes

will have 448 padding bytes of carrier extension symbols. This clearly results in low

throughput and an increased collision rate which may increase the number of lost

frames. In fact, for a large number of small packets, the Gigabit Ethernet throughput is

only marginally better than 100BaseT.

Destination Source Type/

C

I

a

Figure 1.1: Gigabit Ethernet frame format with carrier extension

Preamble SDF Address Address Length Data FCS Extension

64 bytes min

512 bytes min

Duration of carrier Event

SDF : Start of Frame Delimiter.
FCS: Frame Check Sequence.

To gain back some of the performance lost due to carrier extension, Nbase

ommunication (Chatsworth, California) proposed a solution known as packet bursting.

t is essentially a modification to the carrier extension procedure. The idea is to transmit

 burst of frames every time the first frame has successfully passed the collision window

4

of 512 bytes. Carrier extension is only applied to the first frame in a burst. This

essentially averages the wasted time in the carrier extension symbols over the few

frames that are transmitted. Packet bursting substantially increases the throughput and

does not change the dynamics of the CSMA/CD algorithm. It only slightly modified the

existing MAC definition.

Half-duplex operation is intended for shared multi-station LANs, where two or

more end nodes share a single port. Most switches enable users to select half-duplex or

full-duplex operation on a port-by-port basis, allowing users to migrate from shared

links to point-to-point, full duplex links when they are ready.

1.2 Interrupt-Driven Kernels

Many applications such as video streaming and voice over IP impose heavy

demands on the communication network. Gigabit Ethernet technology can provide the

required performance to meet these demands. However, it has also shifted the

communication bottleneck from network interconnections to host systems.

There are two main problems seen in Gigabit networking that reduce the

performance of host systems. These two problems are unnecessary memory copies and

interrupts [PIE01a]. The reasons for these two problems are as follows. A host system

receives or transmits data as a set of packets. Excessive memory copying is a significant

problem when the network speed approaches the speed of main memory. Moreover,

each received packet needs to be filtered and demultiplexed to the correct application.

This requires the moving of received packets from network interface card (NIC) to

5

applications. Therefore, avoiding memory copy is nearly impossible. Interrupts, on the

other hand, are typically generated for each packet received or transmitted. For low-

speed networks such as 10Mbps Ethernet this is not a significant problem, since the

amount of interrupts is still only a few thousands per second even with small packets

[MOG97]. The cost of handling interrupts at that rate was low enough and any normal

system would spend only a fraction of its CPU time handling interrupts. On Gigabit

Ethernet using the standard 1500 byte packets, an interrupt per packet would cause

nearly 80000 interrupts per second [KIM01]. With smaller packets the problem is even

worse.

In the following sections, we give a brief description about network interface

model seen in most host systems. Then, we explain in detail the interrupt overhead and

its related problems in interrupt-driven operating systems.

1.2.1 An Overview of Network Interface Model

The architecture of network interface system consists of several hardware and

software interacting components in both the host computer and the NIC.

depicts the major components seen in most Gigabit Ethernet network interface system.

Figure 1.2

We consider a typical host system where all the network interface functionality is

performed by the operating system processes running in the kernel address space, while

the application processes run in the user address space. We assume that the NIC is

equipped with two DMA1 engines. These engines are responsible for packets movement

1 Direct Memory Access.

6

between NIC and host system memory. With Gigabit environment, the use of DMA

becomes necessary in order to eliminate any CPU overhead involved in copying packets

from (or to) NIC to (or from) host system memory. In this section we focus on the

receive-part, where the interrupt overhead is more important.

Figure 1.2 shows the flow path of an incoming packet between the NIC, host

memory, and applications. When a packet arrives at the NIC it gets temporarily stored

in a local queue. Then, the NIC's device controller transfers the received packet to the

host memory using Rx DMA engine1. After the incoming packet is placed into the host

memory, the NIC generates a hardware interrupt to notify the OS of the arrival of a new

packet. The OS invokes interrupt dispatcher to identify the nature of the interrupt and

the corresponding device driver. The interrupt service routine (ISR), which is part of the

network interface device driver, posts a software interrupt. Then, the software interrupt

executes a filter function to enable posting the packet to the appropriate protocol

processing routine (usually IP routine). As the protocol processing moves up the layers,

the packet remains in the same kernel memory buffer that it was moved into, with only

pointer manipulations between the protocol layers. Finally, the packet is moved from

the kernel space to the user’s address space2, and then the recipient application is

notified.

1 The locations within host system memory reserved for received packets are indicated to Rx-DMA using
Buffer Descriptor.

2 This moving is performed within the context of the software interrupt.

7

. . . Application Application User space

Host system
Memory

Network Protocol
Stack

Kernel space

Device Driver

PCI Rx Circular Buffer
Descriptor is loaded

Rx DMA Tx DMA
Engine Engine

NIC

Rx MAC Tx MAC

Network traffic

Figure 1.2: Typical network interface model for Gigabit Ethernet subsystem

1.2.2 Interrupt Handling Overhead

Most of the general-purpose operating systems utilize similar scheme for

handling hardware interrupts. Generally, in most UNIX-based operating systems, each

hardware interrupt requires the following steps [RUB01]:

1. Hardware and software context switching, preservation of CPU registers, and

change of active processor stack.

2. Accessing the registers of hardware interrupt controller, and determination of

the appropriate device driver interrupt service routine (ISR).

8

3. Updating the interrupt counters.

4. Processing the interrupt requests inside the designated ISR.

5. Upon completion of the ISR, system state is restored.

Execution time for steps 1, 2, 3, and 5 is mainly depending on CPU, memory,

and system bus performance. In step 4, the execution time depends on the job of ISR. In

old network interface system (no DMA support), the processing duration for step 4 is

variable and it depends on the size of received packet. The main objective of ISR was

moving the received packet from NIC buffer to the host memory. However, in our

network interface system (with DMA support), the primary job of ISR is to notify the

kernel of the arrival of a new packet. The notification only happens after the packet is

successfully copied to the host system memory. Therefore, the ISR time (time spent to

process all five steps) for one interrupt request is relatively constant for specific system

hardware, and mostly unrelated to the network traffic or current system load.

As measured in [ARON00], a hardware interrupt with a null interrupt handler

introduces an overhead of about 4 µs in a 500MHz Pentium III system running FreeBSD

2.2.6. On Gigabit Ethernet networking, the time between successive minimum sized

packets (512-bytes) can be calculated as follows:

s096.4
101

1
101
1

1
8512 69 µµ

=
×

×
×

×× − s
s

bits
s

byte
bitsbytes .

This means the CPU must handle an interrupt in less than 4 µs in order to keep the

system responsive. However, the packet arrival rate can surpass the system packet

processing rate which includes network protocol processing and interrupt handling.

Therefore, interrupt overhead becomes an important overhead for interrupt-driven

9

systems that receive packets at gigabit speed from the NIC, and it is important to

examine the possible schemes that can eliminate interrupt overhead.

1.2.3 Receive Livelock

In this section we describe briefly the phenomenon of receive livelock.

Incoming network packets received at a host must either be forwarded to other hosts (as

in the case of a router), or to application programs where they are consumed. The

delivered system throughput is a measure of the rate at which such packets are processed

successfully. , adopted by [RAM93], shows the delivered system throughput

as a function of offered input load. The figure illustrates that in the ideal case, no matter

what the packet arrival rate, every incoming packet is processed. However, all practical

systems have finite processing capacity, and cannot receive and process packets beyond

a maximum rate. This rate is called the Maximum Loss-Free Receive Rate (MLFRR)

[RAM93]. Such rate is an acceptable rate and is relatively flat after that. Under network

input overload, a host can be swamped with receiving packets to the extent that the

effective system throughput falls to zero. Such a situation, where a host has not crashed

but is unable to perform useful work, such as delivering received packets to user

processes or running other ready processes, is known as receive livelock. Similarly,

under receive livelock, a router would be unable to forward packets to the outgoing

interface, resulting in transmit starvation.

Figure 1.3

10

Th
ro

ug
hp

ut

MLFRR

ideal

Acceptable

livelock

Offered load

Figure 1.3: Possible behaviors of delivered throughput versus offered load

The main reason for receive livelock is that hardware interrupts (interrupts

generated by NIC) are handled at a very high priority level, higher than software

interrupts, or input threads that process the packet further up the protocol stack, or

application processes. Generating interrupt upon packet arrival implies that the host

must accept and process all incoming packets, regardless of whether the host system has

sufficient processing capacity available to process them completely. As a consequence,

under heavy network traffic, the system spends all of its resources handling interrupts.

Since hardware interrupts and software interrupts have higher priority than application

processes, the application queues will eventually fill because the receiving application

no longer gets enough CPU time to consume the packets. At that point, packets are

discarded when they reach application queue. As a result, starvation will occur for

application processes.

11

As the load increases further, the software interrupts will eventually no longer

keep up with the protocol processing, causing the IP queue to fill. The problem is that

ISRs have strictly higher priority than software interrupts. Under overload, this will

cause packets to be dropped from IP queue besides packet dropping in application

queue.

In summary, interrupt-driven systems perform very badly under overload. High

packet arrival rates can result in receive livelock, a situation where the host uses all of its

capacity to receive incoming packets, and nothing else will be performed. In receive

livelock, system throughput drops to zero, application processes and threads start to

starve, and network latency increases rapidly.

1.3 Motivation

With emerging of Gigabit networks, achieving high performance communication

becomes a challenge. Most modern operating systems depend on interrupts for event

notifications. As noted earlier, interrupt-driven systems tend to perform very badly

under Gigabit network environment.

Different solutions to eliminate interrupt overhead and resolve receive livelock

problem have been proposed. Such solutions include interrupt coalescing, enabling and

disabling interrupts, polling, jumbo frames, etc. The performance of these solutions has

been studied experimentally. None of these solutions modeled and studied analytically

the performance and behavior of system performance under heavy network loads.

12

1.4 Main Contributions

The main contributions of this thesis work are the followings:

• Conducting an extensive literature survey.

• Proposing analytical models to capture the impact of interrupt overhead on

performance especially in systems with high arrival rates. These models can

be utilized to understand and predict the performance of interrupt-driven

systems and can be served as a reference model for comparing the

performance of these proposed solutions to resolve the receive livelock

condition. The models include Traditional scheme, Interrupt Coalescing

scheme, and Enabling-Disabling Interrupt scheme.

• Proposing a novel metric to measure the overall system power.

• Simulation models for all interrupt handling schemes.

• Evaluation performance of interrupt handling schemes.

• Discussing some issues on design and implementation.

1.5 Organization of Thesis

This thesis is organized as follows. Chapter 2 gives an extensive literature

survey of interrupt handling schemes. Chapter 3 presents analytical models to describe

different optimization for interrupt handling. Chapter 4 presents simulation. Chapter 5

presents performance comparison between interrupt handling schemes and some

implementation issues. Chapter 6 gives the conclusion and future work.

 CHAPTER 2

LITERATURE REVIEW

In this chapter, we will discuss performance metrics used to evaluate interrupt

handling schemes. Then, we will discuss different proposed solutions used to eliminate

interrupt overhead and resolve receive livelock problem. We will also show how these

solutions are implemented in host systems.

2.1 Performance Metrics

Before we introduce various schemes used for handling packet reception, we first

have to define the following metrics, as they apply to the receive operation from the

network interface system.

1. Throughput. We can define throughput as the rate at which packets

successfully leave the network interface system (i.e. from the kernel buffer to

the user space), or in other words, the rate at which the ultimate application

can deliver packets from the network interface system. Therefore, any design

of network interface system tries to maximize system throughput as much as

possible.

2. Latency. Latency is the time duration between a packet arrival at the network

interface system and its completion (i.e. its delivery to the ultimate

13

14

application). If the receive operation introduces more overhead, then the

throughput of the system will decrease and the latency will increase. The

latency can be larger than the overhead if the received packets are queued in

the kernel buffer before they are delivered to the ultimate application. Thus,

minimizing latency as much as possible is required.

3. CPU Availability. CPU availability is the percentage of time a server (or

CPU) is available for user processes during a given interval of time. The

design of the network interface influences the amount of CPU resources

consumed for receiving data which we would like to minimize. When a host

system is overloaded with incoming packets, it must continue to process

other tasks, so that to allow applications to make use of the arriving packets.

The operating system must fairly allocate CPU resources among packet

reception and transmission, protocol stack processing, and application

processing.

4. Overall System Power. The aforementioned goals; maximizing throughput,

minimizing latency, and maximizing CPU availability are mutually

contradictory in that all schemes to increase throughput result in decreased

CPU availability with increased latency as well and vice versa. The

advantage of the overall system power is that it gives the correct operating

point that maximizes throughput, minimizes latency, and maximize CPU

availability.

15

5. Stability Condition: Stability condition defines the maximum load after

which the host system will not be stable due to buffer overflow, high traffic

load, or due to interrupt overhead.

6. Probability of loss: The loss of packets from the host system memory is often

the primary source of loss in local area networks. The probability of loss is

impacted by the arrival rate of packets and the service rate. The probability

of loss can give an indication of buffer availability and system load level.

It is worth noting that when we are going to design a system we have to specify

the goal. The goal specifies which performance metric is more important than the

others. For example, when we design a system to implement video streaming, then we

focus on throughput more than other performance metrics.

2.2 Proposed Solutions to Reduce Interrupt Overhead

In this section, we present different proposed solutions for packet reception.

2.2.1 Interrupt Coalescing Scheme

Instead of generating an interrupt for each packet arrival, a group of packets will

be notified to the operating system via a single interrupt request. This method is known

as interrupt coalescing or mitigation.

Many modern NICs and device drivers adopt the idea of interrupt coalescing.

Modern NICs configure interrupt coalescing through its registers. For example, TC9021

16

Ethernet NIC uses RxDMAIntCtrl register to configure interrupt coalescing. The

interrupt frequency can be set based on either the number of packets received or after a

fixed amount of time following the receipt of a packet (via another register field). Some

NICs have intelligent hardware for packet reception. The NIC dynamically regulates its

interrupt frequency based on traffic load. For example, when traffic is light, the NIC

interrupts the host after receiving every packet to minimize packet delay. In heavy

traffic, the NIC is able to optimize host efficiency by dynamically adjusting the CPU

interrupt rate and issuing a single interrupt only when buffer space is low or its timer has

expired.

Device drivers support interrupt coalescing through tuned parameters. For

example, the Gigabit Ethernet driver on Linux that was developed for ACEnic NIC

(produced by Alteon) uses two parameters; one parameter for transmission coalescing

and the other for reception coalescing, to affect the times of interrupts from the NIC on

the transmitting and receiving [CERN]. When Jumbo frames are enabled, the driver

uses other two parameters to define interrupt coalescing on transmission and reception.

Windows 2000 supports interrupt coalescing by specifying manually the number of

interrupts per second. This can be found on the registry file under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip

\Parameters\Interfaces\<interface-name>\ MaxIRQperSec.

Another implementation of interrupt coalescing was proposed by [KIM01]. The

solution is based on timer to generate interrupts. Therefore, the solution assumes that

NIC has build-in timer chip. The solution has been implemented as follows. The device

driver has been modified to operate in two modes: the interrupt mode and timer mode.

17

In interrupt mode, the module works in traditional manner as specified in GNU/Linux

license. In timer mode, receive interrupts are totally disabled and NIC is equipped with

a timer that generates an interrupt after passing a fix period of time. During time

interval, the NIC may receive multiple packets after which they will be notified by a

single interrupt. The NIC1, on which this solution has been implemented, has timer-chip

that clicks on a multiple of 81.92 µs.

When the driver module is loaded into kernel, the users can direct the driver to

operate in the timer mode or in the interrupt mode. If the user selects the timer mode, he

has the ability to configure the timer expiration period, i.e., the interval time between

successive interrupts. This time must be a multiple of 81.92 µs. When the device driver

started in timer mode, it resets NIC to only generate timer interrupts, transmission

interrupts, and interrupts related to error reporting.

Indiresan et. al. [IND97] proposed another technique to implement dynamic

interrupt coalescing called Intelligent Interface Backoff. The host system provides some

feedback to the NIC of its current load, and the NIC determines its interrupt frequency

based on this information. In light traffic, the host system behaves normally, i.e. it

interrupts on every incoming packet. In heavy traffic, the NIC modulates its interrupt

frequency on the basis of host’s load. When the host indicates to the NIC that its load is

increasing (and there is a backlog in the processing of incoming packets or executing

other application), the NIC reduces its interrupt frequency. As the load on the host

1 SMC Etherpower 10/100, based on DEC 2114 Tulip Ethernet controller chip.

18

decreases, the NIC increases its interrupt frequency until it reverts to the normal

interrupt mode.

The host detects excess load or low load by using simple heuristic, which is

buffer utilization. Since incoming packets are typically allocated a buffer, which is not

freed until the packet is completely processed, high buffer utilization could indicate that

packets are not being processed to completion fast enough. The host sends an overload

indication when the buffer availability drops below 25%. The host sends this indication

through device driver. Since the device driver typically issues commands to the NIC for

every arriving packet, the NIC can adjust rapidly to overload situation. In addition,

adding one field to these commands will not require much modification or increase the

host-NIC interface overhead.

The solution has been implemented as follows. On initialization, the host issues

a command to enable backoff feature on the NIC. This command has four parameters:

minimum backoff period (Imin), maximum backoff period (Imax), backoff factor (b > 1),

and restore factor (r < 1).

The interrupt frequency is determined by backoff_period value.

depicts a pseudo-code describing how backoff_period value is updated.

Figure 2.1

Notice that when the backoff period falls below Imin, the NIC reverts to the

normal interrupt mode and backoff period is bounded by Imin and Imax values. As backoff

period increases the interrupt frequency decrease to adapt the host load. Imin represents

the maximum interrupt frequency for the NIC, and sets an upper bound on the CPU

capacity used for handling receive interrupts from that NIC. Imax represents the

minimum interrupt frequency, and hence, the worst case latency for the host to start

19

processing packets on the interface. The backoff and restore factors bias an interface

towards Imax and Imin, respectively. A large b makes the interface shed excess load

rapidly, and a small r makes the interface reduce latency quickly as the offered load

reduces.

set backoff_period to 0;

procedure update_backoff_period (indication as parameter)

begin

if indication is overload then begin

if backoff_period == 0 then

backoff_period = Imin

else

if backoff_period + b < Imax then

backoff_period += b;

 end

if indication is lower then begin

if backoff_period <= Imin then

enable normal interrupt mode

return

else

backoff_period -= r

 end

 wait for backoff_period before interrupting again

end

Figure 2.1: Pseudo-code for Intelligence Backoff Interface

The performances of the above solutions have been studied experimentally. An

experimental result from [HAS00] shows that small values of interrupt coalescing

parameter give the best performance in terms of throughput. Interrupt coalescing

20

minimizes CPU utilization due to interrupt handling. However, interrupt coalescing

increases the system response time.

2.2.2 Enabling-Disabling Interrupt Scheme

Another solution to eliminate interrupt overhead was proposed by Mogul and

Ramakrishnan [MOG97]. The authors implemented a mechanism where interrupts are

only used at low network load conditions, while in high loads the interrupts are disabled

and a polling thread is scheduled for reading the network interface (or host system

memory). Every time a poll is executed, a certain packet quota is specified, i.e. the

maximum number of packets that can be read in that poll. The quota is used for fairness

purposes when other tasks must also be permitted to make progress, so as to avoid

livelock condition. If at the end of the polling some packets remain at the NIC, the

polling thread is executed again after a few milliseconds. Otherwise, the system

switches back to interrupts.

2.2.3 Polling Scheme

Rather than NIC controls receive operation, the host operating system

periodically looks at NIC to see if it requires attention, and then invokes the handler

accordingly. This method is known as device status polling [RIZZ02].

With polling, the asynchronous event notification concept based on hardware

interrupt is completely abandonment, and OS initiates a read operation of a control NIC

register after a predefine time duration. If one or more packets have arrived, then the

21

protocol stack routines are invoked to process the received packets. Since several

packets may be read in the same poll and since the code to perform a poll is much

shorter than the ISR, the receive overhead is reduced [DOV01].

One of the key advantages of polling is that it gives the OS a chance to control

the amount of CPU spent in packet processing at protocol stack. This is done by

adapting the maximum number of packets to be processed in each poll. The drawback

of polling appears when the packet arrival rate is much lower than polling rate. In that

case, packets are not guaranteed to be presented at each poll; the polls in which no

packet is found in the system memory buffer (unsuccessful polls) increase the overall

overhead of the network interface. Additionally, the latency of the receive operation

increases because packets are queued in the system memory buffer until the polling

event. Because of these two drawbacks, polling is not commonly used in general

purpose systems. Polling is used however in systems that have a heavy network load,

such as routers, bridges, firewalls, or file servers [DOV01].

There are two approaches to implement polling. One possible polling approach

is to have a periodically scheduled kernel polling process [RIZZ02]. This approach,

however, requires a context switch for each poll. But the overhead of this context

switching is smaller than the cost of an interrupt. This solution can be implemented in

multitasking operating systems.

The second approach is based on operating system soft clock [ARON00]. This

clock causes a periodic interrupt that is used for time-slicing and other bookkeeping

activities. Its period is the finest time slice and system clock granularity that the

operating system allows. The most OS clock period was commonly set to 10

22

milliseconds [VAH96]. Although the polling period can be constrained to be a multiple

of this period, the time granularity of adjusting the polling period would be too coarse,

and the maximum latency that polling could introduce would be excessive (several tens

of milliseconds) for many applications. More recently, some OS vendors have moved to

a smaller clock interrupt period of 1 millisecond (e.g., Solaries 8).

Another solution for polling scheme was proposed by [MAQ96], namely, Polling

Watchdog. Polling Watchdog is a hardware extension at the NIC that limits the

generation of interrupts to the cases where explicit polling fails to handle the packets

quickly. The basic idea is that when a packet arrives at the NIC, a timer starts counting.

If the packet is not removed from the NIC through polling within a given amount of time

(the watchdog timeout period Twdog), the watchdog interrupts the CPU. Twdog is set to

around 50 µs, in order to strictly limit the maximum latency. In the EARTH-MANNA

multiprocessor system on which this solution has been implemented, the cost of an

interrupt is 4.5 µs, and the cost of a poll is 400 ns.

2.2.4 Interrupt-Polling Scheme

This scheme combines the advantages of interrupts and polling, i.e. it uses

interrupts under low network load conditions and polling otherwise. Therefore, this

scheme is expected to perform better than interrupts in terms of receive overhead due to

interrupt handling and better than polling in terms of receive latency due to unnecessary

packet queuing.

23

One implementation for this scheme was performed for Windows NT platform

[HAN97]. The implementation simply turns off interrupts and uses polling under high

traffic load. When the traffic load decreases, it turns the interrupts back. The traffic load

is captured by user thread starvation. The authors list 3 possibilities to detect user thread

starvation: length of network data queue, interrupt rate, and amount of time spent

processing interrupts. The authors implement the interrupt processing time for

indication of system load. The measurement as obtained experimentally using some

network tools.

Another implementation that combines interrupts with polling, namely, Hybrid

Interrupt-Polling (HIP). The basic idea of HIP is to adaptively switch between the use

of interrupts and polling based on the observed rate of packet arrivals. Specifically, if

the packet arrivals are frequent and predictable, the receive mechanism operates in

polling mode and interrupts are disabled. In this mode the polling period is set based on

the predicted packet interarrival time. However, to bound the receive latency, the

polling period is not allowed to exceed a pre-determined limit. On other hand, if the

packet arrivals are infrequent, less predictable, or if the number of consecutive

unsuccessful polls exceeds a threshold, the receive mechanism operates in the interrupt

mode. In this mode, the polling operating is stopped and the interrupts are enabled.

2.2.5 Jumbo Frames

Jumbo frames are frames that are longer than the standard Ethernet (IEEE 802.3)

frame length of 1,518 bytes. The frame size definition for jumbo frames is vendor-

24

specific because Jumbo frames are not part of the IEEE standard. The most commonly

used Jumbo frame sizes are 9,018 bytes and higher. Jumbo frames are not a CSMA/CD

modification; in fact, they only work in a full duplex environment.

Jumbo frames maintain the same media access control (MAC), frame structure,

and frame check sequencing mechanism used for traditional Ethernet frames. Only the

payload portion of the frame is extended.

The choice of 9000 bytes for the Jumbo frames payload length is to provide a

good compromise between frame efficiency, frame check sequence effectiveness, and

host protocol stack efficiency. Most IP protocol stacks can be configured to support

maximum transmission units (MTUs) of up to 64 Kbytes. But Ethernet error detection

techniques provide a practical upper limit on frame size. Due to the nature of the

CRC-32 algorithm, the probability of an undetected error is essentially unchanged until

frames exceed approximately 12,000 bytes. Thus, to maintain the same undetected bit

error rate (BER) as standard Ethernet, Jumbo frame sizes should not exceed 12,000

bytes. On the other hand, the maximum size for a network file system (NFS) datagram

is typically around 8 Kbytes. To ensure that an entire NFS datagram can be transmitted

in one frame, jumbo frames should be at least 8 Kbytes. Moreover, host protocol stacks

operate most efficiently when working with data that is an integer multiple of the page

size of the operating system. For most operating systems this is 4096 (4K) bytes. Using

a 9000-byte as frame size allows the carriage of 2 pages of user data (8192 bytes) plus

the various transport, network and data link headers.

 CHAPTER 3

MODELING AND ANALYSIS

In this chapter, we provide an analytical study of packet reception through

network card (NIC) based on queuing theory. An analytic model is one that can be

expressed as a set of equations which can be solved in order to measure OS

performance. For many practical real-world problems, analytic models based on

queuing theory provide a reasonable approximation to real system.

The objective of our analysis is to study the impact of interrupt overhead on

system performance in terms of system throughput, system latency, CPU availability,

and overall system power. We first model an ideal situation where the interrupt

overhead is ignored to determine the optimal system performance.

 Next, we model an interrupt-driven system in which the interrupt overhead is

taken into account. Receive livelock phenomenon can be analyzed and determined.

Finally, we study analytically the system performance of the proposed solutions

for resolving and eliminating the receive livelock problem. These solutions are Interrupt

Coalescing, Enabling-Disabling Interrupt, and Polling.

25

26

3.1 Queuing Theory

Queuing analysis is one of the most important tools for those involved with

computer and network analysis. Queuing theory provides the basic tools for modeling

and analyzing the system. By using queuing analysis, one can study and evaluate the

system performance in terms of some parameters such as average number of packets in

the system, system throughput, mean response time, and so on.

Queue

Arrivals DeparturesServer

Figure 3.1: Queuing model for the system

Figure 3.1 illustrates a queuing model for the system. Packets are randomly

arriving to the system from the NIC. The queue represents the host system memory in

which all arrival packets stored in this queue. The server represents the CPU that is

responsible to process all received packets. Packets are processed either in ISR or in

protocol stack. Packets are served by first-come-first-serve order.

Formally, queuing systems are characterized by stochastic characteristics. These

characteristics are the arrival process, the service time of the server, the number of

servers, the system capacity, as well as some special properties of the system. These

stochastic characteristics can be summarized by using Kendall notation:

ksBA ///

27

where A refers to the distribution of the time between two successive arrivals, B refers to

the distribution of service time, s refers to the number of servers, and k is an upper

bound on the number of packets in the system.

3.1.1 Notations and Assumptions

Let us consider an arrival process{ , where N(t) denotes the number of

packets in the system up to time t with

}0),(≥ttN

0)0(=N , as stochastic process which varies in

time. We wish to predict its future behavior with the aid of a certain amount of

probability. This probability is governed by a random distribution or a set of random

distributions. For our system, there are three random distributions that determine the

behavior of our stochastic process: the time between successive arrivals, packet length,

service time for protocol processing and ISR time.

Let λ be the average incoming packet arrival rate. Therefore, λ1 is the time

between successive arrivals (interarrival time). Similarly, let µ be the average protocol

processing rate by the kernel. Therefore, µ1 is the time it takes the system to process

the incoming packet and deliver it to an application program. This time includes

primarily the network protocol stack processing by the kernel, excluding any interrupt

handling. However, the interrupt handling time will be denoted as TISR, which is

basically the interrupt service routine time for handling incoming packet. The average

interrupt service routine rate is denoted as r. We will also denote ρ as a measure of the

traffic intensity or system load and is denoted as µλ / .

28

An important class of stochastic processes is Markov processes. This class of

processes has some special properties that make them manageable to treat

mathematically. A Markov process is a random processes where the value of the

random variable N(t) at time tn depends only on its immediate past value at time tn-1.

Markov processes assume that interarrival times and service times obey the exponential

distribution or, equivalently, that the arrival rate and service rate follow a Poisson

distribution [GRO98].

In a Markov process, N(t) represents the state of the system at a given time t. If

the sample space, N(t), is discrete, then Markov process is called Markov chain. Markov

chains can be visualized by drawing rate-transition diagram that displays the rate flow

between different states in the Markov chain. Then, the Markov chain can be

summarized in one matrix called intensity matrix and it is denoted by Q.

Now, given



















−
−

−

=

OMMM

L

L

L

22120

12110

02010

qqq
qqq
qqq

Q

where , for ijq ji , is the intensity transition from state i to ≠ j and . We

wish to find the steady-state probabilities, , of the Markov chain where is the

probability that the system will be at state i . Let us represent the steady-state

probabilities as a vector p, then the equation:

∑ ≠
=

ji iji qq

ipip

0 = pQ (3-1)

29

constructs well-known equations which are called the stationary equations of the

Markov chain. Together with the boundary condition that ∑ =
i ip 1 , we can obtain pi

with some special mathematical transformation.

Knowing these probabilities, we can obtain a lot of information about system

behavior. For example, p0 is the probability that the system at state zero, or equivalently,

the probability that the system is idle. Therefore, 1 0p− represents the probability that

the system is busy.

In order to simplify the analysis, we will assume that all packets arrive to the

NIC have fixed size length. Moreover, we also assume that we have only one CPU

(server) in the system. When the system has a single-server with Poisson arrivals and

exponential service times, then our system can be modeled as M/M/1.

Our analytical models follow the architecture of network interface mentioned in

section 1.2.1. The Rx-DMA is responsible to move received packets from NIC buffer

to the host system memory without the intervention of CPU.

Finally, we assume that the kernel protocol processing for packets will continue

as long as there are packets available in the host system memory. This means packets

could be processed in kernel by protocol stack routines without interrupt notification. In

this situation, we say that the system is running at full speed.

30

3.1.2 Performance Metrics

1. Throughput. Throughput (γ) can be calculated by using the following

general equation [TRI98]:

∑=
i

ii pµγ . (3-2)

If µi = µ for all i > 0, then

)1(0ppp
i

i
i

ii −=== ∑∑ µµµγ . (3-3)

2. Latency. Latency (R) is the mean response time of the system. It can be

calculated by using Little's theorem [KLIE71]:

λ
)(nER = . (3-4)

where E(n) is the expected number of packets in the system where its value can be

calculated by using the following general equation:

∑=
n

npnnE)(. (3-5)

3. CPU availability. CPU availability (V) for user processes measures the

fraction of time that CPU is available for other processes. The probability that the

system is in state 0 p0 represents a better metric for CPU availability.

4. Overall system power. We propose a novel single performance system metric

to measure and evaluate the overall system performance. The overall system power (P)

31

is a single metric that integrates a number of performance metrics. The integrated

metrics include the above three parameters which are system throughput, system latency,

and CPU availability. This metric is similar to [GIES78], however, they consider only

two parameters to determine the network power; throughput and latency, since these two

parameters are quite enough to measure the network performance. In our system, we

have to consider a third parameter which is starvation of lower priority processes or

CPU availability to process these processes as we have mentioned previously. System

throughput and CPU availability give more power to the design of network interface

while system latency reduces overall power. Therefore, our proposed metric will be

expressed as

c

ba

R
VP γ

= . (3-6)

where, a, b, and c are tunable parameters. Notice that the overall power (P) will

increase when the system throughput and CPU availability are increased, and system

latency is decreased. Normally, a, b, and c are equal to 1 which gives equal weight to all

three parameters.

A particular point of interest is finding the maximum power point. This point is

also the optimal operating point which gives maximum throughput, maximum CPU

availability, and minimum system latency. The maximum power point is defined as the

"knee" point for overall system power [JAIN88]. The peak of the overall power curve

occurs at the knee point. Therefore, to obtain this point, we take the derivative of the

32

power function with respect to λ, and solving the derivative after making it equals to

zero.

5. Stability condition. Another particular point of interest is finding the stability

condition of the system. The stability condition is the situation where 1<ρ or is

defined as the "cliff" point for the system throughput [JAIN88]. It is where the

throughput starts falling to zero as the system load increases.

6. Loss probability. In any finite buffer system, the loss probability (PL) is a

measure of the number of packets being lost, or in other words, it is the probability that

the buffer is full at an arbitrary point in time. This means that if the system memory is

of size B, the loss probability is given by pB. Loss probability is important because it can

be used to determine the proper memory buffer size that must be allocated for a given

system in order to reduce the packet loss.

3.2 Ideal System Model

This section presents analysis for the ideal situation in which the overhead

involved in generating interrupts is totally ignored. We can simply model such a system

as an M/M/1/B queuing model with a Poisson packet arrival rate λ and an exponential

protocol processing service time 1/µ. Note that in this case the system packet processing

time is equal to protocol stack processing time since TISR is equal to zero. B is the

maximum size the system memory buffer can hold. M/M/1/B queuing model is chosen

as opposed to M/M/1 since we can have arrival rate go beyond the service rate. This

33

assumption is true in Gigabit environment where, under heavy load, λ can be very high

compared to µ.

In M/M/1/B model, the equation for pn is given by

Bn

B

p
B

n

n ≤≤










=
+

≠
−
−

=
+

0
)1(.

1
1

)1(,
1

)1(
1

ρ

ρ
ρ
ρρ

 (3-7)

(3-7)

Therefore, knowing these probabilities, we can now examine the system

behavior for the ideal situation.

3.2.1 Performance Metrics

1. System throughput. By using Equation , the Ideal system throughput

can be expressed as

(3-2)

)1(0
1

pp
B

n
n −== ∑

=

µµγ . (3-8)

where p0 can be calculated by direct substitution to Equation .

2. System latency. To obtain the mean response time or Ideal system latency, we

have to obtain the average number of packets in the system which is given by

1
11

1
1

)(+
+−

+
−

−
= B

B

BnE ρ
ρρ

ρ
. (3-9)

Therefore, system latency is

34

)1(
)()(

Beff p
nEnER
−

==
λλ

, (3-10)

where λeff is the effective arrival rate which is the average rate of packets actually

entering the system, and pB is the probability of loss.

3. CPU availability. CPU availability can be expressed as










=
+

≠
−
−

=
+

)1(
1

1

),1(
1

1
1

ρ

ρ
ρ
ρ

B

V
B

. (3-11)

4. Overall system power. The system is stable whenever 1<ρ . Hence, it is

suitable to model our system as M/M/1 in order to express the function of overall system

power. For this case, the throughput, CPU availability, and latency are expressed as

λ
µ
λµ

µ
λµµλγ =








=
















−−=−= 11)1()(0p ,

µ
λµρλ −

=−= 1)(V ,

and

λµλ
λµ

λ

λ
λ

−
=

−
==

1)()(nER .

Therefore,

cb
b

a

c

ba

R
VP +−==)(
)(

)()()(λµ
µ
λ

λ
λλγλ . (3-12)

Taking the derivative of P(λ),

35

1
1

)()()()(−++
−

−+−−= cb
b

a
cb

b

a

cba
d

dP λµ
µ
λλµ

µ
λ

λ
λ .

Putting 0=λddP , we have

() ()[] 0)(1
1

=+−−− −+
−

λλµλµ
µ
λ cbacb

b

a

.

The above equation has three solutions. Two of them, which are 0=λ and µλ = , are

rejected because these points represent the least power values. The third solution which

is () () 0=+−− λλµ cba represents the maximum power point. Thus, the optimal

operating point for Ideal model occurs at

µλ 







++
=

cba
a

. (3-13)

Notice that, if a, b, and c are equal to 1, then the optimal operating point occurs at

31=ρ .

5. Stability condition: The system will be stable whenever µλ < .

3.2.2 Numerical Results

In this section, we give some numerical examples to study the behavior of the

Ideal system. The system performance is studied as a function of traffic intensity ρ.

For all of these results, we fix µ to 1 and B to size a size of 100.

Figure 3.2 depicts the graph of Ideal system throughput. We see that the system

throughput increases as the arrival rate increases up to a point after which the system

throughput remains constant because the server is processing packets at its maximum

36

capacity. depicts the graph of Ideal system latency. At 1=ρ , the server

becomes saturated, working 100% of its time and the latency becomes infinity. Notice

that, as shown in the figure, latency increased rapidly near system saturation.

depicts the CPU availability for lower priority processes. Notice that, the CPU

utilization due to packet processing increases as traffic intensity increases. When ρ is

greater than one, the server works at full speed and consumes all CPU time. Hence,

CPU availability for other processes will be diminished and lower priority processes

start starving.

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.5

 depicts the overall power of the Ideal system where all tunable

parameters are equal to 1. As shown, at the beginning the system power increases as

system load increases. Then, the overall power reaches its maximum value in which the

system gives the optimal result. After this point, the power of the system starts

decreasing until it reaches zero. shows that the maximum system power is

when 33.0=ρ . This point matches exactly the point derived by equation for

finding λ that gives the maximum power point if we substitute a, b, and c by 1.

(3-13)

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Figure 3.2: System throughput for Ideal system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

30

35

40

45

50

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Figure 3.3: System latency for Ideal system

38

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Figure 3.4: CPU availability of user processes for Ideal system

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Figure 3.5: Overall system power for Ideal system

39

3.3 Interrupt-Driven System Models

Modeling an interrupt-driven system is a challenging task especially when we

consider the Gigabit networking environment with 1>ρ . The most critical task in

modeling an interrupt-driven system is determining the actual service time which we call

it the effective service time. The effective service time is the total time to process a

packet up to completion, inclusive of ISR disruption.

One can simply say that the effective service time is the time duration to process

incoming packet in the kernel protocol stack and delivering it to the ultimate application

plus the time duration to execute an ISR. However, this is not always true. We have

two situations where the effective service time will be effected:

- If a new packet arrives while servicing a packet in the kernel protocol stack, then

the effective service time will be increased by TISR. This is true, since ISR

preempts any processes in the kernel.

- With Gigabit environment, a packet or multiple packets may arrive during

execution of an ISR. In this case, we will have batched or masked-off interrupts

and the packets will be queued into the system with effectively one TISR

disrupting the service time.

In order to determine the effective service time, we use for our analysis a

deterministic model where interarrival time, service time for protocol processing, and

ISR time are all fixed.

40

3.3.1 Deterministic Model

First, we start by considering the case where ISRT>λ1 , i.e., each incoming

packet will generate an interrupt as illustrated in . Figure 3.6

Figure 3.6: Timeline for a deterministic model where 1/λ >TISR

Figure 3.6

λ
1

(1) (2) (3) (4)

 Arrived
packet

TISR CPU available time
packet
served

(1)
Effective service time

One simply can calculate the effective service time for packet processing as

ISRTn+µ/1 , where . For example, the effective service time for the first

packet in is 1

L,2,1,0=n

T2/ ISR+µ . However, this way can be more complicated to

obtain the value of n especially when we have masked-off interrupts. Rather we use the

CPU availability exclusive of any ISR disruption. This means the available CPU time to

process a packet in protocol stack is the time duration between successive ISRs.

Mathematically, expressing the available CPU time for packet processing is

straightforward. Notice that, for each λ/1 time unit, the available CPU time is

ISRT−λ/1 time unit. Therefore, for each 1 time unit, the available CPU time is

ISR
ISR T

T
λ

λ
λ

−=
−

= 1
1

1
 Time CPU Available . (3-14)

41

Equation represents the percentage of CPU availability excluding any

ISR disruption for a given arrival rate λ. Now, this equation can be used to calculate the

service time to process a single packet. This time is what we call it the effective service

time for packet processing and we will denote it by µ′/1 . If the service time for

protocol processing is µ/1 , then the effective service time for packet processing is

(3-14)

ISRTλ
µµ

−
=′

1
/1/1 . (3-15)

Hence, the effective service rate for packet processing is

)1(ISRTλµµ −=′ . (3-16)

Notice that the effective service rate for packet processing is the mean service

rate for protocol processing multiplied by the percentage of CPU availability for

protocol processing.

Next, we consider the case where ISRT<λ1 and two packets arrive within the

same interrupt as illustrated in Figure 3.7

Figure 3.7: Timeline for a deterministic model where 1/λ<TISR

λ
1

(1) (2) (3) (4) (5) (6) (7) (8)

CPU available time TISR

Arrived
packet

packet
served (1) Effective service time

42

Now, for each λ/2 time unit, the CPU available time is ISRT−λ/2 time unit.

Therefore, for 1 time unit, the percentage of CPU availability for packet processing is

ISR
ISR T

T
2

1
2

2
 Time Available CPU % λ

λ
λ

−=
−

= . (3-17)

Hence, the effective service rate for packet processing is

)
2

1(ISRTλµµ −=′ . (3-18)

We give a detailed explanation about the relation between packet arrival rate and

CPU availability. This relation is illustrated in . Figure 3.8

Figure 3.8: Timelines shows different amount of CPU available times

λ
1

λ
1

λ
1

λ
1

ISRT>
λ
1

ISRT>
λ
1

ISRT=
λ
1

ISRT<
λ
1

(A)

CPU available time

(B)

CPU available time

(C)

(D)

CPU available time

43

Figure 3.8

Figure 3.8

Figure 3.8

Figure 3.8

Figure 3.8

 shows four timelines with different interarrival times. When the

arrival rate is too low, as shown in (A), the available time is big enough to

allow processing a packet up to completion. As the arrival rate increases, (B),

the CPU available time decreases and; consequently, effective service time is increased

in order to complete processing a packet. When a new packet arrives immediately after

returning form interrupt handler, a new interrupt handler will be executed and the CPU

available time becomes almost zero as shown in (C). Now, if the average

arrival rate increases slightly such that the next coming packet arrives while the system

execution is about to finish the current ISR (the ISR of the previous packet). In that

case, as shown in (D), the second packet will be received without generating

an interrupt. This means we have batch interrupts and the system restarts having some

available time until the arrival of a new packet. Obviously, the average amount of

available time will not exceed TISR.

3.3.1.1 General Formula for Effective Service Rate

Notice that, in Equation , the value of 2 represents the number of packets

arrived within one ISR. Generally, this number can be expressed as  ISRT λ where  

denotes the ceiling number of ISRTλ . Thus, a general formula for the percentage of CPU

availability can be expressed as

(3-18)

  ISR
ISR

T
Tλ
λ

−= 1 Time Available %CPU . (3-19)

And, the effective service rate for packet processing can be expressed as

44

 
)1(ISR

ISR

T
Tλ
λµµ −=′ . (3-20)

Figure 3.9

Figure 3.9: CPU available time for protocol processing versus

packet arrival rate for D/D/1

 depicts the relation between packet arrival rate and the CPU available

time. The graph has been plotted where TISR = 0.3. As clearly shown, as packet arrival

rate increases the CPU available time decreases until the CPU available time becomes

zero. This is similar to (C). Obviously, this point is ISRT=λ/1 . After this

point, batch arrival of size two will occur and, consequently, the interrupt overhead will

be reduced and the CPU available time jumps up and the system can perform a useful

work to process the incoming packet. As packet arrival rate keeps increasing, the CPU

available time continues to decrease until it becomes zero again, in that case, when

ISRT=λ/2 . If packet arrival rate increases slightly, a batch arrival of size three will be

notified with only one ISR and CPU available time jumps up and the previous scenario

will be repeated.

Figure 3.8

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Arrival Rate (λ)

C
P

U
 A

va
ila

bl
e

T
im

e
fo

r
P

ro
to

co
l P

ro
ce

ss
in

g

45

The system throughput of the D/D/1 can be expressed as follows:





′>′
′<

=
µλµ
µλλ

γ (3-21)

If we consider TISR = 0.3 unit of time, then the throughput of the system is shown

in . System throughput starts increasing as traffic intensity increases because

the effective available time is enough to process the incoming packet up to completion.

The system throughput keeps increasing until the CPU available time becomes almost

equal to the system service time after which the throughput starts decreasing. The

system throughput keeps decreasing since the amount of CPU available time keeps

decreasing until no more available time to process incoming packets. Therefore, the

system throughput becomes zero (as shown in (C)). At this state, the system

will receive livelock.

Figure 3.10

Figure 3.8

If we extend packet arrival rate, we will see the following behavior as shown in

. We notice that the system throughput will not stay at zero as traffic

intensity increases, instead, the system throughput will start oscillating above zero

before it finally resets to zero as ρ grows larger and larger.

Figure 3.11

46

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Figure 3.10: System throughput in Deterministic model

0 1 2 3 4 5 6 7 8 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 th
ro

ug
hp

ut

Figure 3.11: Effect of large values of ρ on system throughput in Deterministic model

47

3.3.2 Markovian Modeling

This section presents two different analytical techniques for studying system

behavior of a traditional interrupt-driven kernel. The first technique exploits the idea of

determining effective service rate through the percentage of CPU availability for

protocol processing. The second technique uses pure Markovian process.

One may think that such an interrupt-driven system can be simply modeled as

priority queuing system with preemption in which there are two arrivals of different

priorities. The first arrival constitutes that for ISRs and has the higher priority. The

second arrival is the arrival for incoming packets, and has the lower priority. However

this is an invalid model because, as we mentioned before, ISR servicing is not counted

for every packet arrival. The ISR servicing is ignored if the system is servicing another

interrupt of the same level. In other words, if the system is currently executing another

ISR, the new ISR which is of the same priority interrupt level will be masked off and

there will be no service for it.

3.3.2.1 First Technique: Effective Service Time

In this section, we find the mean effective service time for processing packets in

the kernel protocol stack. We first find the formula for the mean effective service time.

Knowing this formula, the system can be modeled as an M/G/1 queue with a Poisson

packet arrival rate of λ and a mean effective service rate of µ′ that takes a general

distribution.

One can express the mean effective service rate as

48

()processing protocolfor ty Availabili CPU %×=′ µµ . (3-22)

In order to determine the CPU availability percentage for protocol processing,

we use a Markov chain to model the CPU usage for ISR handling, as illustrated in

. We assume that TISR is exponentially distributed with mean T rISR /1= .

The process space has state and states . State (represents the state

where the CPU is available for protocol processing. State with represents

the state where the CPU is busy handling interrupts. n denotes the number of packet

arrivals that are being batched or masked off during T

)0,0(),1(n)0,0

),n1(0≥n

ISR. Note that when process in state

, this means there are no interrupts being masked off and the CPU is handling a

single interrupt.

)0,1(

Figure 3.12

Figure 3.12: Rate-transition diagram to model CPU usage for Traditional scheme

λ λ λ λ

. . . 0,0 1,0 1,1 1,2 1,3
r

r r r

Not ISR
Handling ISR Handling

The steady-state difference equations can be derived form Equation where

p and Q is defined as follows: },,,,{ 2,11,10,10,0 Lpppp=

(3-1)

49

Q



























+−
+−

+−
+−

−

=

MMMMM

L

L

L

L

L

)(000
)(00

0)(0
00)(
000

rr
rr

rr
rr

λ
λλ

λλ
λλ

λλ

This will yield to

02,11,10,10,0 =++++− Lprprprpλ . (3-23)

(3-23)Since we have 1
0 ,10,0 =+∑∞

=i ipp , then Equation can be rewritten as

follows:

0)(2,11,10,10,0 =++++− Lppprpλ ,

00)1(0,00,00,00,0 =++−⇒=−+− rprpprp λλ .

Solving for , we thus have 0,0p

,0 r
rp
+

=
λ

 (3-24)

and

r
p

+
=−
λ
λ

01 . (3-25)

Therefore, CPU cost of ISR handling is)(/ r+λλ where as CPU availability for

other processes including protocol stack processes is)(/ rr +λ . Notice that the

percentage of CPU availability is decreased as packet arrival is increased. The amount

50

of CPU time available to handle kernel and user processes diminishes as packet arrival

rate becomes too large.

Figure 3.13 shows the interrupt overhead for different TISR's. Notice that, if TISR

time increases the interrupt overhead increases. illustrates the relation

between the CPU availability and CPU utilization due to interrupt handling. At lower

arrival rate, the ISR overhead is not significant since the system has much time to

process packets. When the interarrival time is equal to TISR, i.e. ISRT=λ/1 , then the CPU

availability and CPU utilization due to ISR handling are equal (50%). After this point,

the CPU consumes most of its time to handle ISR than to process a task.

Figure 3.14

Thus, by using Equations and , the mean effective service rate

can be expressed as

(3-22) (3-24)









+
=′

r
r

λ
µµ . (3-26)

51

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (λ)

C
P

U
 U

til
iz

at
io

n
du

e
to

 IS
R

 H
an

dl
in

g
(%

)

Tisr = 0.5
Tisr = 0.3
Tisr = 0.2

Figure 3.13: %CPU utilization vs. packet arrival rate

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (λ)

C
P

U
 U

til
iz

at
io

n
(%

)

CPU utilization due to ISR Handling
CPU Availability for Kernel and User Processes

Figure 3.14: Relation between CPU availability and

CPU utilization due to ISR handling

52

3.3.2.1.1 Performance Metrics

It is to be noted from Equation that the mean effective service rate µ′ is

exponential. Therefore, we can model the system as M/M/1/B queue as in the case for

the Ideal system. However, the mean service rate µ will be replaced by the mean

effective service rate µ′ . Hence, system throughput, latency, and CPU availability are

expressed by Equations , , and respectively.

(3-22)

(3-8) (3-10) (3-11)

Therefore, the overall system power can be expressed as

cb

cba

rr
rrP
)()(
))(()(

+
+−

=
+

λµ
λλµλλ . (3-27)

(3-27)

(3-27)

Finding the optimal operating point for Equation is quit complicated, but

we can obtain the optimal point when a, b, and c are equal to 1. Thus, making all the

tunable parameters equal to 1 and taking the derivative of Equation with respect

to λ, we get

2

22

)(
)34(4

r
r

r
r

d
dP

+
+

+
+−=

λ
µ

µ
λλλ

λ
.

Let 0/ =λddP , the resultant equation has two positive real solutions. One of

them represents the knee point of the power function (local maximum) and the other

represents the cliff point where the power is zero (local minimum). Thus, the optimal

operating point is given by

)713(
12

1 3
1

23
2

σσ
σ

λ rr ++= , (3-28)

where 22423 9140432(3621635 rrrrr −+++= µµµσ .

53

The cliff point is given by

()rrr µλ 4
2
1 2 ++−= . (3-29)

(3-29)

The stability condition for the system can be expressed as









+
<<

r
r

λ
µλρ or 1 .

Solving for λ, we get

0)(2 <−+⇒<+ rrrr µλλµλλ .

The roots of the quadratic equation are 02 =−+ rr µλλ

2

41

2
42

r
rrrrr

µ
µ

λ
+±−

=
+±−

= .

Since the term under the square root is always greater than one then the negative sign is

neglected. Therefore, the system will be stable whenever









−+< 141

2 r
r µλ . (3-30)

(3-30)

Clearly, this is the same equation as Equation .

Special Case. We consider a special case when interrupt handling is ignored

(TISR = 0) in order to validate our mathematical equations. In this situation, when TISR =

0, ∞→r . We prove that Equations and yield the same equations of the

ideal system model, i.e., M/M/1/B queueing system, as follows:

(3-26)

(3-26)For finding mean effective service rate of Equation ,

54

µ
λ
µ

λ
µµ =








+

=







+
=′

∞→∞→ 1
limlim

rr
r

rr
.

For finding λ for stability condition of Equation , (3-30)


















−+

=







−+=

∞→∞→

r

rr
r

r
rr 2

141
lim

2
41

2
lim

µ
µλ .

Applying L'Hopital Rule, we get

µ
µ

µ
µ

µλ =










+
=









 −
+
−

=
∞→∞→ rrrr rr 21

lim2
41

2lim 22
.

3.3.2.1.2 Numerical Results

We now show some numerical results of our analytical model to study the

behavior of the system and the impact of interrupts on system performance. As we did

before, we fix µ to 1 and B to a size of 100.

We first examine the system throughput as a function of traffic intensity, ρ. We

study this relation with four TISR time units 0.2, 0.3, and 0.5.

Figure 3.15

Figure 3.15

 depicts the impact of high and low traffic intensity on system

throughput. The figure shows the system throughput for three cases of TISR 0.2, 0.3, and

0.5. It is noted that as the interrupt overhead increases (increasing the value of TISR), the

system throughput is worsen and the livelock phenomenon occurs earlier.

 also shows the cliff points for the system throughput. As previously

defined, the cliff points are those points where system throughput starts falling to zero as

the system load increases. As shown, the cliff points in terms of traffic intensity ρ for

55

TISR of 0.2, 0.3, and 0.5 are 0.85, 0.81, and 0.73, respectively. Since we are fixing µ to

1, the cliff points are the same for the system throughput, traffic intensity, and packet

arrival rate. These points match exactly the points derived by Equation for

finding the stability condition.

.0

(3-30)

Figure 3.16 illustrates the relation between packet latency and traffic intensity for

the same system parameter values considered for system throughput. It is shown that the

latency for the Ideal system is the least and it is the worst when TISR takes the largest

value of 0.5.

Figure 3.17 illustrates the relation between CPU availability for user processes

and traffic intensity for the same system parameter values. It is shown that as interrupt

overhead is increased, the CPU availability is worsened.

The impact of low and high traffic intensity of overall system power is shown in

. In the Ideal system, the maximum overall power is when 33=ρ .

However, the maximum overall system power decreases with different values of TISR,

giving the least value for TISR = 0.5. In addition, the figure shows that the maximum

power point for the system for TISR of 0.2, 0.3, and 0.5 are for λ of 0.292, 0.277, and

0.253, respectively. These points match also exactly with the points we derived by

Equation for finding λ that gives the maximum power point.

Figure 3.18

(3-28)

56

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.15: System throughput for Traditional scheme

based on Effective Service Time technique

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.16: System latency for Traditional scheme

based on Effective Service Time technique

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.17: CPU availability for Traditional scheme

based on Effective Service Time technique

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.18: Overall system power for Traditional scheme

based on Effective Service Time technique

58

3.3.2.2 Second Technique: Pure Markovian Chain

As opposed to first technique, the model we consider is one in which the server

has two mean rates: ISR and protocol processing. Service times for ISR and packet

processing are exponentially distributed with mean 1 and r/ µ/1 respectively. If the

server is processing a packet and a new packet arrives, then the server switches to ISR.

While the server is executing an ISR and a new packet arrives, the server will remain in

ISR without affecting ISR service time.

The described scenario can be modeled as a pure Markov chain with a state

space }}1,0{,0),,({ ∈∞≤≤= mnmnS , where n denotes the number of packets in the

buffer and m denotes the type of service. 0 indicates protocol processing and 1 indicates

ISR handling. The rate transition diagram is shown in . Figure 3.19

Figure 3.19: Rate transition diagram for traditional interrupt-driven system

λ λ λ

. . . . 4,13,1λ 1,1 2,1

r λ r r r0,0 λ λ

µ 4,0 3,01,0 2,0

µ µ µ

Let pn,m be the steady-state probability where n denotes the number of packets in

the system and m denotes the type of current service. A system of difference equations

can be derived for the stationary probabilities as follows:

59

0,10,00 pp µλ +−= ,

0,01,1)(0 ppr λλ ++−= ,

1)(0 0,11,0, ≥+++−= + nprpp nnn µµλ ,

2)(0 1,10,11, ≥+++−= −− npppr nnn λλλ .

(3-31)

The first two equations constitute the initial values. The last two equations

constitute the system of difference equations. In order to solve this system of equations,

we need to re-arrange them as follows:

1 1,0,0,1 ≥−
+

=+ nprpp nnn µµ
µλ ,

1 1,0,1,1 ≥
+

+
+

=+ np
r

p
r

p nnn λ
λ

λ
λ .

These equations can be written in the vector form as follows:

)()1(npAnp =+ ,

where





















++

−
+

=

rr

r

A

λ
λ

λ
λ

µµ
µλ

,
















=

1,

0,

)(

n

n

p

p
np , and .
















=+

+

+

1,1

0,1

)1(

n

n

p

p
np

60

Therefore, our equations have been nicely converted to a system of first order

difference equation, in which we can apply Putzer algorithm to obtain the solution

[ELAY96].

Before we proceed for solution, let us denote µλα /= , and)/(r+= λλβ .

Then, matrix A can be rewritten as follows:















 −−+
=

ββ

ββαα /)1(1
A .

The eigenvalues of matrix A can be obtained by solving the characteristic

equation where z is the eigenvalue, and I is the identity matrix. Now 0)det(=− IzA

0))(1(
/)1(1

det)det(=−−−=
















−

−−−+
=− βα

ββ

ββαα
zz

z

z
zIA .

Hence, the eigenvalues of matrix A are 11 =z and βα +=2z .

So, according to Putzer Algorithm,

















−

−−
=−==

1

/)1(
)1(and,)0(1

ββ

ββαα
IzAMIM .

Then,

11)(1 == nnu ,

and

∑ −

=
−−

+−
+−

=+=
1

0
1

2)(1
)(1)1()()(n

i

n
iinnu

βα
βαβα .

Finally, we have

61





















+−
+−+−

+−
+−

+−
+−−

+−
+−−

=

×+×=

)(1
))(1(

)(1
))(1(

))(1(
))(1)(1(

)(1
)(1

)1()()0()(21

βα
βαβα

βα
βαβ

βαβ
βαβα

βα
βααβ

nn

nn

n MnuMnuA

.

The solution of the difference equation is given by





















×
+−

+−+−
+×

+−
+−

×
+−
+−−

+×
+−
+−−

=





















×





















+−
+−+−

+−
+−

+−
+−−

+−
+−−

==+

0,00,0

0,00,0

0,0

0,0

)(1
))(1(

)(1
))(1(

))(1(
))(1)(1(

)(1
)(1

)(1
))(1(

)(1
))(1(

))(1(
))(1)(1(

)(1
)(1

)1()1(

pp

pp

p

p
pAnp

nn

nn

nn

nn

n

β
βα

βαβαα
βα
βαβ

β
βαβ
βαβαα

βα
βααβ

β

α

βα
βαβα

βα
βαβ

βαβ
βαβα

βα
βααβ

The solution can be nicely simplified as

1
0,00,)(−+= n

n pp βαα

1
0,01,)(−+= n

n pp βαβ

(3-32)n ≥ 1

To get , we utilize the fact the probabilities must sum to 1 and it follows that 0,0p

10,0
1

1,
1

0, =++∑∑
∞

=

∞

=

ppp
n

n
n

n ,

1)()(0,0
1

1
0,0

1

1
0,0 =++++ ∑∑

∞

=

−
∞

=

− ppp
n

n

n

n βαββαα .

Therefore

62

[] 1

1
1

0,0)()(1
−∞

=
−∑ +++=

n
np βαβα .

Now is geometric series and converges if and only if
1

1
)(

−∞

=∑ +
n

n
βα 1)(<+ βα . Thus

for the existence of a steady-state solution,)(βαρ += must be less that 1. Then, we

have

ρβα
βα

βα
−=+−=








+−

+
+=

−

1)(1
)(1

1
1

0,0p .

where)(βαρ += , or equivalently,)(// r++= λλµλρ .

Thus the full steady-state solution for our system is the geometric probability

functions

1
)1(
)1(

1

1
1,

1
0,

0,0

≥




−=
−=

−=

−

−

n
p
p

p

n
n

n
n

ρρβ
ρρα

ρ

 (3-33)

where βαρ += , µλα /= , and)/(r+= λλβ .

Notice that the server utilization ρ consists of two terms. The first term α is the

server utilization due to protocol processing and the second term β is the server

utilization due to ISR handling. Note that β was expressed in Equation for

determining the CPU usage by ISR handling.

(3-25)

We consider a special case when interrupt overhead is ignored in order to

validate our mathematical model. When ∞→r , then 0→β and µλρ /→ .

In order to study the system performance, we have to measure the impact of low

and high traffic intensity on system performance, i.e. when 1>ρ . To do this, we have

63

to model the system as a finite buffer of size B. In this situation, we ends up with two

possible network design solutions. In the first solution, a new incoming packet will

generate an interrupt, in spite of buffer availability. In the second solution, packets will

be dropped when the buffer becomes full without generating interrupts.

Note that modeling the system as a finite buffer will yield the same equations

described in Equations . The only change is the boundary probabilities ,

, and . We next find these probabilities by considering the two different

solutions.

0,0p

0,Bp 1,Bp

(3-32)

3.3.2.2.1 Pure Markovian Model: First Solution

Figure 3.20

Figure 3.20: Rate-transition diagram for modeling first solution

 shows the rate-transition diagram for the first solution in which any

packet will introduce an interrupt even if the buffer is full.

The boundary probabilities at state (B, m) are

0)(1,0, =++− BB prpµλ , (3-34)

00,0,11,11, =+++− −− BBBB ppppr λλλ . (3-35)

rr

λ λ λ

. . . .
B,13,1λ B-1,1 1,1 2,1

r r λ λ 0,0 λ λ

µ B,03,0 B-1,0 1,0 2,0

µ µ µ

64

Substitute Equation into , we have (3-35) (3-34)

(3-34)

0)(0,0,11,10, =++++− −− BBBB pppp λλλµλ ,

)(1,10,10, −− += BBB ppp λµ ,

)(1,10,10, −− += BBB ppp
µ
λ .

Use Equations to obtain and , and then substitute them into

the above equation. We get

0,1−Bp 1,1−Bp(3-32)

1
0,00,)(−+= B

B pp βαα . (3-36)

(3-36)Now substitute Equation into Equation , we have

1
0,01,))(1(−++= B

B p
r

p βααλ
. (3-37)

Since the summation of all probabilities is equal to 1, we get

1)(1,0,

1

1
1,0,0,0 =++++∑

−

=
BB

B

n
nn ppppp ,

1)))(1(()(1
0,0

1

1
0,00,0 =++++++ −

−

=
∑ B
B

n

n

r
ppp βααλαβα .

Therefore,

1
1

0,0)))(1((
)(1

)()(1
−

−








++++

+−
+−+

+= B
B

r
p βααλα

βα
βαβα .

Now, let βαρ += and)1/()1(/ βραλα −=+⋅+ r , then

65

B
p

ρ
β

α
ρ

−
−

−
=

1
1

1
0,0 .

(3-38)

3.3.2.2.2 Pure Markovian Model: Second Solution

Figure 3.21

Figure 3.21: Rate-transition diagram for modeling second solution

 shows the rate-transition diagram for the second solution in which

packets will be dropped when the buffer is full without generating interrupts.

The boundary probabilities at state (B, m) are

01,0, =+− BB prpµ , (3-39)

00,11,11, =++− −− BBB pppr λλ . (3-40)

(3-40)(3-39)Substitute Equation into Equation , we get

00,11,10, =++− −− BBB ppp λλµ ,

)(0,11,10, −− += BBB ppp λµ .

Use Equations to obtain and , and then substitute them into

above equation. We get

0,1−Bp 1,1−Bp(3-32)

r r

λ λ λ

. . . .
B,13,1λ B-1,1 1,1 2,1

r r λ 0,0 λ λ

µ B,03,0 B-1,0 1,0 2,0

µ µ µ

66

1
0,00,)(−+= B

B pp βαα . (3-41)

(3-41)

Notice that, the is similar for both cases. 0,Bp

Now substitute Equation into Equation , we get (3-39)

1
0,01,)(−+= B

B p
r

p βααµ . (3-42)

Again, we apply the boundary condition that the summation of all probabilities is equal

to 1, we get

1)(1,0,

1

1
1,0,0,0 =++++∑

−

=
BB

B

n
nn ppppp ,

1))(1()(1
0,0

1

1
0,00,0 =+++++ −

−

=
∑ B
B

n

n

r
ppp βαµαβα .

Therefore,

1
1

0,0))(1(
)(1

)()(1
−

−








+++

+−
+−+

+= B
B

r
p βαµα

βα
βαβα .

Now, let)1/()/1(ββαµα −+=+ r , then

B

p
ρ

βρ
βα

ρ









−

+−

−
=

)1(
11

1
0,0 .

(3-43)

3.3.2.2.3 Performance Metrics

1. Throughput. Since the system throughput is rate at which packets are

successfully leave the system, then throughput can be expressed as

67

ρ
ραµραµµγ
−
−

×=== ∑∑
=

−

= 1
1

0,0
1

1
0,0

1
0,

BB

n

n
B

n
n ppp . (3-44)

2. Latency. It is suitable to calculate the mean response time when B approaches

to infinity. Therefore, the expected number of packets in the system is:

[]

⋅
−

=







−

−=−+=

−+−×=+=

∑

∑∑
∞

=

−

∞

=

−−
∞

=

ρ
ρ

ρ
ρρρρβα

ρρβρρα

11
1)1()1)((

)1()1()()(

2

1

1

1

11

1
1,0,

n

n

n

nn

n
nn nppnnE

Thus, mean response time is expressed as Equation . (3-4)

3. CPU availability. CPU availability is expressed as

0,0pV = . (3-45)

4. Overall system power. It is suitable to express system throughput, latency and

CPU availability as infinite system states. Thus

λαµρραµµγ ==−== ∑∑
∞

=

−
∞

= 1

1

1
0,)1(

n

n

n
np ,

)()1(
)(

rr
rR
+−

++
=

−
=

λλµ
µλ

ρλ
ρλ ,

and

)(
)(1)(

r
rrV

+
+−

=−=
λµ
λλµρλ .

Thus, the overall power is expressed as

()
cbb

cba

rr
rrP

)()(
)()(
+++

+−
=

+

µλλµ
λλµλλ . (3-46)

68

Hence, By making all the tunable parameters equal to 1 and taking the derivative of

Equation with respect to λ, we get (3-46)









++

+
⋅+−








++

+
++

+
=

r
rr

r
r

r
r

d
dP

µλ
λλ

µλ
λλ

µ
λ

λλ
)3(3

)(

22

2

3

.

Solving for 0/ =λddP is quit complicated. Numerical methods are needed to

obtain the maximum power point.

5. Stability condition. We have

1r)/(/or 1 <++< λλµλρ .

Solving for λ, we get

1
r)(

r)(
<

+
++

λµ
µλλλ ,

r)(r)(+<++ λµµλλλ ,

0r)(r)(<+−++ λµµλλλ ,

02 <−+ rr µλλ .

This is the same quadratic equation we have obtained in section 3.3.2.1.

Therefore, the stability condition is expressed as Equation . (3-30)

3.3.2.2.4 Numerical Results

Now, we show some numerical results of our analytical models to examine the

system behavior and the impact of interrupts on system performance. As in section

 3.2.2, we fix µ to 1 and B to a size of 100.

Figure 3.22

Figure 3.22

 depicts the system throughput for analytic model of the first solution.

We see that is quite similar to of our first analytic model. Figure 3.15

69

However, F which represents the second solution shows an improved behavior

of system throughput. This is because the dropped packet will not introduce an interrupt

since they are dropped at early stage. At high arrival rate, the probability of dropping

packets is very high and therefore preventing the interrupt generation for those dropped

packets will significantly improve the system throughput.

igure 3.23

Figure 3.24 and Figure 3.25

Figure 3.26

However, both models (i.e. the first solution and the second solution) give same

behavior in terms of system latency and CPU availability for user processes, as shown in

.

 depicts the overall system power of pure Markovian model. The

figure shows the same behavior as , in which the maximum overall system

power decreases with different values of TISR. In addition, the figure shows that the

maximum power point for the system for TISR of 0.2, 0.3, and 0.5 are for λ of 0.283,

0.266, and 0.241, respectively.

Figure 3.18

70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.22: System throughput for Traditional scheme

based on pure Markovian model – First solution

Figure 3.23: System throughput for Traditional scheme

based on pure Markovian model – Second solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.24: System latency for Traditional scheme

based on pure Markovian model

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.25: CPU availability for Traditional scheme

based on pure Markovian model

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.26: Overall system power for Traditional scheme

based on pure Markovian model

73

3.3.2.3 Comparison of Two Models

This section compares between the first analytic model based on effective service

time and the second analytic model based on pure Markovian model. The comparison is

shown in Figure 3.27, Figure 3.28, and Figure 3.29. In all of these figures, we fix T

0.3.

Figure 3.27

Figure 3.28

Figure 3.29

ISR to

 illustrates the comparison between the two models in terms of

system throughput. We used the second solution of pure Markovian model for

comparison. Notice that the figure shows only a single graph. This means that the two

models produce exact results for system throughput.

 shows the difference between the two models in terms of system

latency. We notice that the two models are not quite different; as a matter of fact they

are approximately the same.

 compares between the two models in terms of CPU availability. It is

noted that the two models are not exact as in the case in system throughput. But, the two

models have the same behavior for modeling CPU availability in interrupt-driven

system.

74

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

First Solution, Second Solution

Figure 3.27: System throughput for both first and second analytic models

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

First Solution
Second Solution

Figure 3.28: CPU availability for both first and second analytic models

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

First Solution
Second Solution

Figure 3.29: System latency for both first and second analytic models

76

3.4 Interrupt Coalescing Model

We mentioned in Chapter 2 that the interrupt coalescing is a mechanism to

mitigate interrupt overhead by generating one single interrupt for multiple interrupts. As

it was noted, there are two different schemes for interrupt coalescing. The first scheme

generates an interrupt only if it receives a predefined number of packets. The second

scheme generates an interrupt after a predefined time period. The timer is only triggered

when receiving a new packet. When the time period is expired, the timer will be

stopped and the NIC will issue a single interrupt indicating the reception of all packets

received during the time period.

Figure 3.30 illustrates two timelines where packets arrive exponentially with

mean 1/λ times unit. Figure 3.30 (a) represents the first approach where the number of

packets per interrupt is equal to two. Therefore, the interrupt rate is 2λ . Figure 3.30 (b)

represents the second approach where T is the timer duration. If λ/1<

ber of

T

ore, the num

 then an

interrupt will be generated before a new packet arrives. Theref packets

per T is one and the interrupt rate is λ. If λλ /2/1 << T

 is two and the interrupt rate will be

, as shown in Figure 3.30 (b),

then the number of packets per T 2λ .

We want to show that the predefined time T can be expressed as the number of

packets per interrupt.

77

λ
1

λ
2

λ
2

λ
1Arrived

packet

(a)

TISR

x y

(b)

T T

Figure 3.30: Timeline represents interrupt coalescing schemes

Let τ be the defined number of packets per T, then τ can be expressed as

 TT λ
λ

τ =







=

1
. (3-47)

Let x be defined as the time between the last packet received before an interrupt

generation and time T, as shown in Figure 3.30, Let y be defined as the time between T

and the next incoming packet. Clearly, y can be expressed as x−λ/1 . Thus, the time

between two successive interrupts is

λ
τ

λλ
τ

λλ
τ =+−+−=+⋅−+ xxxy 111)1(.

And hence, the interrupt frequency is τλ / .

78

Therefore, τ specifies the number of packets per interrupt which is similar to the

first scheme. In general, all interrupt coalescing schemes used in literature follow one

scenario to generate interrupts and we can express the interrupt rate as









=

λ
τ

λ
,1max

1
freqI .

(3-48)

Equation (3-48) says that if 1≤τ =freqI , otherwise τλ=freqI then λ .

3.4.1 Modeling CPU Usage

We implement the same idea of determining effective service time based on CPU

availability for protocol processing as mentioned in section 3.3.2.1.

We use a Markov chain to model the CPU usage, as illustrated in Figure 3.31.

The state space has states and states . State with),0(k),1(n),0(k τ<≤ k0

 denotes the num

n

 represents

k ber of

packet arrivals that are being collected with

 represents the state where the CPU is busy handling interrupts.

number of packet arrivals that are being batched or masked off during T

when process in state (1,0), this means there are no interrupts being masked off and the

CPU is handling a single interrupt.

the state where the CPU is available for protocol processing.

before generating an interrupt. State),1(n

 denotes the 0≥n

ISR. Note that

When the system returns from ISR at state (1,0), this means the system will

generate an interrupt after a batch of size τ. If the system returns from ISR at state (1,1),

this means the system has already one packet waiting. Therefore, the system will

79

generate an interrupt after a batch of size τ-1. The system should return to state (0,1).

Generally, if the system returns from ISR at state (1, n), then the system should return to

state (0, n mod τ).

M

0,0

λ

0,1

λ

λ

0,τ -1

r r r r r r λ

. 1,0 1,1 1,τ-1 1,τ 1,τ+1 1,2τ-1

Not ISR
Handling

λ λ λ λ λ
ISR Handling

Figure 3.31: Modeling CPU usage for interrupt coalescing scheme

Using Equation we have the following system of difference equations:

For states , we have

 (3-4),

),0(k

03,12,1,10,10,0 =+++++− Lτττλ prprprprp ,

013,112,11,11,10,01,0 =++++++− +++ Lτττλλ prprprprpp ,

023,122,12,12,11,02,0 =++++++− +++ Lτττλλ prprprprpp ,

M

03,12,1,1,11,0,0 =++++++− +++− Lkkkkkk prprprprpp τττλλ ,

where 10 −≤≤ τk .

(3-49)

80

For states , we have),1(n

0)(1,00,1 =++− −τλλ ppr ,

0)(0,11,1 =++− ppr λλ ,

0)(1,12,1 =++− ppr λλ ,

M

00)(1,1,1 ≥=++− − nppr nn λλ .

(3-50)

Let

 3)/(r+= λλβ , then Equations (-50) can be simplified as

01,0
1

1,1,1 ≥=







+
= −

+
− npp

r
p n

nn τβ
λ
λ

. (3-51)

In order to solve Equations (3-49), we need to express each equation in (3-49)

with respect to . Then

 can be expressed as

1,0 −τp

0,0p

(=λ rp)

,
1 1,0

0
1,0

1

0
,1

3,12,1,10,10,0

−

∞

=
−

+
∞

=








−

=







=








=

++++

∑∑ τττ
τ

τ

τττ

β
ββ prprpr

pppp

n

n

n
n

L

1,01,01,00,0 1
1

1
1

1 −−− 







−
−

=







−

⋅






 −
=








−

= ττττττ β
β

β
β

β
β

β
β

λ
ppprp .

 can be expressed as 1,0p

81

()

,
1 1,0

2

0,0

0
1,0

2
0,0

0
1,10,0

13,112,11,11,10,01,0

−

∞

=
−

+
∞

=
+

+++









−

+=









+=








+=

+++++=

∑∑

ττ

τ
τ

τ

τττ

β
βλ

βλλ

λλ

prp

prpprp

pppprpp

n

n

n
n

L

.
1

)1()1(
1

)1()1(

1
1

1
1

1,01,0

1,0

2

1,01,0

−−

−−

−
+−

=







−

−+−
=









−

⋅






 −
+








−
−

=

ττττ

ττττ

β
ββ

β
βββ

β
β

β
β

β
β

pp

ppp

Generally, can be expressed as kp ,0

10
1

)1()1(
1,0

32

,0 −≤≤
−

++++−
= − τ

β
ββββ

ττ kpp
k

k
L .

or

1,0

1

,0 1
1

−

+

−
−

= ττβ
β pp

k

k . (3-52)

To find the value of 1 , we utilizing the boundary condition that ,0 −τp

1
0

,1

1

0
,0 =+∑∑

∞

=

−

= n
n

k
k pp

τ

.

This can be rewritten as

1
0

,11,0

2

0
,0 =++ ∑∑

∞

=
−

−

= n
n

k
k ppp τ

τ

.

Since

1,0
0

1,0
1

0
,1 1 −

∞

=
−

+
∞

=








−

== ∑∑ ττ β
ββ ppp

n

n

n
n ,

then, we have

82

1
1

1
1

12

0

1

1,0 =








−
++








−
−∑

−

=

+

− β
β

β
βτ

ττ
k

k

p ,

or

τ
β

β
β

β
β ττ

ττ
−

=








−
++








−
−

=
−

−

=

+

− ∑ 1
1

1
1

1
1

2

0

1

1,0
k

k

p . (3-53)

Substituting Equation (3-53) into Equations (3-51) and (3-52), we get

1011
1

1 11

,0 −≤≤
−

=






 −
⋅







−
−

=
++

τ
τ
β

τ
β

β
β τ

τ np
nn

n . (3-54)

011
,1 ≥







 −
⋅= + np n

n τ
ββ

τ

. (3-55)

Since represents the CPU availability for protocol stack processing

then this term is expressed as

∑ −

=

1

0 ,0
τ

k kp

τ
βββτ ττ)1(/)1(1

0
,0

−−−
=∑

−

=k
kp . (3-56)

Similarly, represents the CPU utilization due to ISR handling which is

expressed as

∑∞

=0 ,1n np









−
−

=






 −
= ∑∑

∞

=

+
∞

= β
β

τ
β

τ
ββ

ττ

1
11

0

1

0
,1

n

n

n
np . (3-57)

Special case. Let us consider a special case when interrupt handling is generated

for each packet, i.e. when 1=τ . We prove that equations (3-56) and (3-57) yield the

same equations of and (3-24) (3-25).

83

Substituting 1=τ in Equation (, then CPU availability for protocol stack

processing is

 3-56)

r
r

r +
=

+
−=−=

−−−
λλ

λββββ 11
1

)1(/)1(1 1

.

As for Equation (, CPU utilization due to ISR handling is 3-57)

r+
==








−
−

λ
λβ

β
ββ

1
1

1

1

.

We give some numerical examples of our analytical model to study the impact of

interrupt coalescing on CPU usage. For all of these examples, we fix TISR to 0.3.

We first examine the CPU utilization due to ISR handling with different values

of interrupt coalescing parameter τ. In particular when 1=τ , 2=τ , 3=τ , and 5=τ .

Notice that 1=τ means that the system is running in traditional way. Traditional

scheme is the one that allows the generation of interrupt for each incoming packet. This

scheme was described in section 1.2.2.

Figure 3.32

Figure 3.33

 depicts the impact of interrupt coalescing on CPU utilization. It is

noted that as τ increases, the interrupt overhead is decreased.

 illustrates the relation between CPU availability to process packets in

protocol stack and interrupt coalescing for the same system parameter values. It is

shown that as τ increase the system has more CPU time to process packets by the kernel

protocol stack.

Thus, we conclude that interrupt coalescing reduces interrupt overhead and gives

more CPU time for other processes.

84

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (λ)

C
P

U
 U

til
iz

at
io

n
du

e
to

 IS
R

 h
an

dl
in

g
(%

)

τ = 1
τ = 2
τ = 3
τ = 5

Figure 3.32: CPU utilization due to ISR handling in Interrupt Coalescing scheme

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (λ)

C
P

U
 A

va
ila

bi
lit

y
fo

r
P

ro
to

co
l P

ro
ce

ss
in

g
(%

)

τ = 1
τ = 2
τ = 3
τ = 5

Figure 3.33: CPU availability for protocol processing in Interrupt Coalescing scheme

85

3.4.2 Modeling Interrupt Coalescing Scheme

The mean effective service rate for interrupt coalescing system (τµ ′) can be

expressed as








 −−−
⋅=′

τ
βββτµµ

τ

τ
)1(/)1(

. (3-58)

where)/(r+= λλβ .

Since the mean effective service rate is still exponential since the term inside the

parenthesis represent fraction of time the CPU is available to process packets in protocol

stack layer. Therefore, we can build a Markov chain to model interrupt coalescing

scheme with a state space }0},1,0{),,{(∞≤≤∈= mnmnS . n denotes the server status;

either 0 or 1. 0 means that the server is idle waiting for more packets before introducing

an interrupt whereas 1 means that the server is processing packets. m denotes the number

of packets in the system buffer. F depicts the rate transition diagram for the

Markov chain.

igure 3.34

Figure 3.34: States transition diagram for interrupt coalescing scheme

τµ ′ τµ ′ τµ ′ τµ ′τµ ′

λ

λ λ

λ
λ λ λ λ λ

… 0,1 0,2 0,τ-1

… … 0,0 1,1 1,2 1,τ-1 1,τ 1,τ+1 1,τ+2

86

We solve this model by finding the balance equation for each state at a time. At

state (0,0), we have

0,01,11,10,0 0 pppp
τ

τ µ
λµλ
′

=⇒=′+− .

At state (0,1), we have

0,01,00,01,0 0 pppp =⇒=+− λλ .

Similarly with states (0,2), (0,3), …, and (0, τ-1).

110,0,0 −≤≤= τkpp k . (3-59)

At state (1,1), we have

0,00,0

2

2,12,11,1 0)(ppppp λ
µ
λµµµλ
τ

τττ +
′

=′⇒=′+′+− ,

0,00,0

2

2,1 ppp
ττ µ
λ

µ
λ

′
+








′

= .

At state (1,2), we have

0)(3,11,12,1 =′++′+− ppp ττ µλµλ ,

() 0,00,0

2

0,02

3

0,0

2

0,00,0

2

3,1)(

ppp

pppp

λ
µ
λ

µ
λ

µ
λ

µ
λ

µ
λµλµ

ττ

τττ
ττ

+
′

+
′

=

′
−













′
+








′

′+=′

,

0,00,0

2

0,0

3

3,1 pppp
τττ µ
λ

µ
λ

µ
λ

′
+








′

+







′

= .

At state (1,3), we have

87

0)(4,12,13,1 =′++′+− ppp ττ µλµλ ,

() () ()

() 0,0

2

0,02

3

0,00,0

2

0,02

3

0,0

2

0,02

3

0,03

4

0,00,0

2

0,00,0

2

0,0

3

4,1)(

pp

pppppp

pppppp

ττ

τττττ

τττττ
ττ

µ
λ

µ
λ

λ
µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λλ

µ
λ

µ
λ

µ
λµλµ

′
−

′
−

+
′

+
′

+
′

+
′

+
′

=













′
+








′

−












′
+








′

+







′

′+=′

,

0,00,0

2

0,0

3

0,0

4

4,1 ppppp
ττττ µ
λ

µ
λ

µ
λ

µ
λ

′
+








′

+







′

+







′

= .

Thus, at state (1, n) where 1 1−≤≤ τn , we have

0)(1,11,1,1 =′++′+− +− nnn ppp ττ µλµλ ,

() ()

() ()

() () 0,0

2

0,02

1

0,01

0,00,0

2

0,02

1

0,01

0,0

2

0,010,0

1

0,00,0

2

0,0

1

0,00,0

1

0,01,1)(

ppp

pppp

ppp

ppp

pppp

n

n

n

n

n

n

n

n

n

n

n

n

nn

nn

n

τττ

τττ

τττ

τττ

τττ
ττ

µ
λ

µ
λ

µ
λ

λ
µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λλ

µ
λ

µ
λ

µ
λµλµ

′
−−

′
−

′
−

+
′

++
′

+
′

+

′
++

′
+

′
=













′
++








′

+







′

−













′
++








′

+







′

′+=′

−

−

−

−

−

−

−

+

−−

−

+

L

L

L

L

L

,

0,00,00,0

1

1,1 pppp
nn

n
τττ µ
λ

µ
λ

µ
λ

′
++








′

+







′

=
+

+ L . (3-60)

At state(1, τ), we have

0)(1,11,11,0,1 =′+++′+− +−− ττττττ µλλµλ pppp ,

88

() ()

() ()

() () 0,00,0

2

0,02

1

0,01

0,00,0

2

0,02

1

0,01

0,0

2

0,010,0

1

0,00,00,0

2

0,0

1

0,00,0

1

0,01,1)(

pppp

pppp

ppp

pppp

pppp

λ
µ
λ

µ
λ

µ
λ

λ
µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

λ
µ
λ

µ
λ

µ
λλ

µ
λ

µ
λ

µ
λµλµ

τ
τ

τ

τ

τ
τ

τ

τ
τ

τ

τ

τ
τ

τ

τ
τ

τ

τ

τ
τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ
τττ

−
′

−−
′

−
′

−

+
′

++
′

+
′

+

′
++

′
+

′
=

−












′
++








′

+







′

−













′
++








′

+







′

′+=′

−

−

−

−

−

−

−

+

−−

−

+

L

L

L

L

L

,

0,0

2

0,00,0

1

1,1 pppp 







′

++







′

+







′

=
+

+
τ

τ

τ

τ

τ
τ µ

λ
µ
λ

µ
λ

L .

Thus

0,0

1

0,0

1

0,0,1 pppp
nnn

n

+−++

+ 







′

++







′

+







′

=
τ

τ

τ

τ

τ
τ µ

λ
µ
λ

µ
λ

L where . (3-61)

Now if we let

0≥n

ττ µλρ ′= / , Equations (3-60) and (3-61) can be simplified as

∑
=

=
n

i

i
n pp

1
0,0,1 τρ where 1 1−≤≤ τn .

∑∑
==

+
+ ==

τ

ττ

τ

ττ ρρρ
1

0,0
1

0,0,1
i

in

i

in
n ppp where . 0≥n

To find , we use the boundary condition that the summation of all

probabilities is equal to 1, i.e.,

0,0p

13,12,11,11,01,00,0 =+++++++ − LL pppppp τ ,

or

89

11
1 0

0,0

1

1 1
0.0

1

0
0,0 =++ ∑ ∑∑∑∑

=

∞

=

−

= =

−

=

τ

ττ

τ

τ

τ

ρρρ
k n

nk

n

n

i

i

n
ppp .

Solving for , we get 0,0p

1

1 0

1

1 1
0,0

−

=

∞

=

−

= =








++= ∑ ∑∑∑

τ

ττ

τ

τ ρρρτ
k n

nk

n

n

i

ip . (3-62)

This can be nicely simplified as

τ
ρτ−

=
1

0,0p . (3-63)

 Please notice that the system is idle whenever it is at state (0,0), (0,1), …, (0,τ-1).

Thus the idleness of the system can be expressed as

τ

τ
τ ρ

τ
ρ

−=
−

= ∑
−

=

1
11

0
0

n
p . (3-64)

Since we are interested in finding the system throughput for large values of

traffic intensity, then we have to model the Markov chain as a finite state space of size

B. It is noted that the transition diagram at F becomes purely M/M/1 after

state (1,τ). This implies that the probability at state (1,B) will remain unchanged if we

remove state (1,B+1). Therefore, we can bound the geometric series at Equation (3-61)

to a finite value B. Hence,

igure 3.34

1

1 0

1

1 1
0,0

−

= =

−

= =








++= ∑ ∑∑∑

τ

ττ

τ

τ ρρρτ
k

B

n

nk

n

n

i

ip .

This can further simplified as

90

)(
)1(

12

2

0,0 +++ +−+
−

= BBp
ττ

τ
τ

τ

ρτρρτ
ρ

. (3-65)

3.4.3 Performance Metrics

1. System throughput. System throughput is expressed as

. 







−′=′= ∑∑

−

==

1

0
,0

1
,1 1

τ

ττ µµγ
n

n

B

n
n pp (3-66)

2. System latency. The average number of packets in the system can be

expressed as

∑∑∑
=

+

−

=

×+++×==
B

n
n

n
nn

n
ni pnppnpnnE

0
,1

1

1
,1,0,)()()(τ

τ

τ

)((2
)1)3(()(12 +++ +−+

−−−
= BBnE

ρτρρτ
τρττ

τ . (3-67)

Thus, system latency is expressed as

)1(
)(

Bp
nER
−

=
λ

. (3-68)

where is the probability of a packet being dropped due to buffer being full. Bp

3. CPU availability. The CPU availability is the summation of all probabilities

when the system is in states (0, k) where 10 −≤≤ τk . Therefore, CPU availability can

be expressed as

91

)(
)1(

12

2

+++ +−+
−

= BBV
ττ

τ
τ

τ

ρτρρτ
ρτ

. (3-69)

4. Overall system power. In order to find overall system power, one has to model

the system as infinite state Markov chain. Thus

λ
µ
λµτ

τ
ρ

µµµγ
τ

τ
τ

τ

τ

ττ =







′

′=





 ×

−
−′=








−′=′= ∑∑

−

=

∞

=

1
11

1

0
,0

1
,1

n
n

n
n pp ,

τ

τ
τ µ

λµρλ
′
−′

=′−=1)(V ,

∑∑∑
∞

=
+

−

=

×+++×==
0

,1

1

1
,1,0,)()()(

n
n

n
nn

n
ni pnppnpnnE τ

τ

τ ,

)1(2
1)3(

)(
τ

τ

ρ
ρττ

−
−−−

=nE ,

)(2
)3()(
λµλ

µλτµτλ
τ

ττ

−′
′−−−′

=R .

And therefore

))3(()(
)(2

)(
1

τττ

τ

µλτµτµ
λµλ

λ
′−−−′′

−′
=

++

b

cbac

P . (3-70)

5. Stability condition: The stability condition is given as
















 −








−

−⋅=′<
τ
β

β
βµµλ

τ

τ
1

1
1 ,






























+
−−⋅<

τ

λ
λ

τ
λµλ

rr
11 ,

92

011 <





























+
−−⋅−

τ

λ
λ

τ
λµλ

rr
.

This can be rewritten as

0)()()(1 <−+−++ +τττ λµλµτλτµλ rrrr . (3-71)

The left hand side of Equation (3-71) is a polynomial of degree 1+τ . Notice that if

we consider 1=τ the above inequality reduces to Equation

3.4.4 Numerical Results

We study in this section the impact of interrupt coalescing on system

performance. We compare system performance against Ideal and Traditional schemes.

Figure 3.35 depicts system throughput for different values of τ. We observe that as the

size of the interrupt coalescing τ increases, the system throughput increases. The

amount of increment of maximum system throughput from

 (3-30).

 1=τ to 2=τ is much

greater than the amount of increment from 2=τ to 3=τ . This means increasing τ

more than two will not add a significant improvement to the maximum system

throughput. We also observe that interrupt coalescing will not prevent livelock but it

will shift the livelock point.

Figure 3.36 depicts different behaviors of system latency for different values of

τ. At very low arrival rate, the interrupt coalescing has bad behavior in terms of latency.

This is because, at lower arrival rate, the time between two successive interrupts is too

high. Therefore, packets will remain in the buffer for long time period waiting for

93

servicing. As packet arrival rate increases the system latency decreases until it reaches

its minimum latency. Then, as the arrival rate increases the system increases

exponentially.

Figure 3.37

Figure 3.38

 depicts CPU availability for user processes. We notice that as

interrupt coalescing size is increased the interrupt overhead is reduced and CPU has

more time to process other tasks.

 shows overall system performance. We observe that as interrupt

coalescing size increases the overall system power decreases. In this case, performance

degradation is due to high latency. However, at high arrival rate ()6.0>λ , interrupt

coalescing gives more power than Traditional scheme. Hence, at this rate, it is better to

employ interrupt coalescing than using Traditional scheme.

94

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
τ = 5
τ = 3
τ = 2
τ = 1

Figure 3.35: System throughput for Interrupt Coalescing scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
τ = 1
τ = 2
τ = 3
τ = 5

Figure 3.36: System latency for Interrupt Coalescing scheme

95

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
τ = 5
τ = 3
τ = 2
τ = 1

Figure 3.37: CPU availability for Interrupt Coalescing scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal System
τ = 1
τ = 2
τ = 3
τ = 5

Figure 3.38: Overall system power for Interrupt Coalescing scheme

96

3.5 Enabling-Disabling Interrupt Model

This section presents an analysis for another proposed solution to mitigate

interrupt overhead. The basic idea of this solution relies on disabling interrupts in ISR

only and enabling interrupts when system buffer memory becomes empty. Interrupts are

disabled when the system memory buffer contains some packets.

Figure 3.39 shows pseudo-code for ISR and packet processing routines for

Enabling-Disabling interrupt model. Initially, interrupt status is enabled. When the

system receives an incoming packet, the ISR gets executed. ISR disables the interrupt

and then it invokes packet processing thread. Packet processing thread starts by

processing all packets available in system memory. When the thread finishes packet

processing, it will re-enable interrupts again for future incoming packet.

Figure 3.39: Pseudo-code for Enabling-Disabling interrupt scheme

ISR() {
 disable_interrupt();
 invoke packet_processing_thread();
 return;
}

packet_processing_thread() {
 while (memory buffer is not empty)
 process_one_packet();
 enable_interrupt();
 return;
}

97

3.5.1 Modeling Enabling-Disabling Interrupt scheme

Let us assume that the time to enable and disable interrupt is T e now

consider a model in which it has two mean rates: The first rate applies for servicing only

the last packet (i.e. no other packet in buffer), whereas the second rate applies for other

packets. The last packet will be served effectively with a time equal to

INT. W

INTISR TT ++µ/1 . The other packets will be served with a time equal to µ/1 . For the

sake of simplicity, we assume that the service time of the first type is exponentially

distributed with mean v. Figure 3.40 illustrates the Markov chain for Enabling-

Disabling Interrupt model.

Figure 3.40: Rate-transition diagram for Enabling-Disabling Interrupt scheme

The general solution of this Markov chain is explained in [GRO98], where

ν

λ λ λ

µ µ

… 3 2 0 1

0
321

321 pp
n

n
n µµµµ

λλλλ
L

L
= .

Since λλ =i for all i , 0> νµ =1 and µµ =i for all i . Then 2≥

0

1

01 ppp
n

n

n

n

−

− 













==

µ
λ

ν
λ

µν
λ

(3-72)

Let νλρ /1 = and µλρ /2 = , then

98

0
1

21 pp n
n

−= ρρ (3-73)

For obtaining , we use the boundary condition, 0p

1
1

0
1

210 =+∑
∞

=

−

n

n pp ρρ .

Solving for , we have 0p

1

2

1
1

1

1
210 1

11
−−∞

=

−








−

+=







+= ∑ ρ

ρ
ρρ

n

np .

Thus,

21

2
0 1

1
ρρ

ρ
−+

−
=p

(3-74).

Note that, is valid only when 0p 12 <ρ . For the case of high traffic intensity

when 12 >ρ , we have to model it as M/M/1/B. Thus, is modified as 0p

1

2

21
1

1

1
210 1

)1(11
−−

=

−








−
−

+=







+= ∑ ρ

ρρ
ρρ

BB

n

np ,

hence

Bp
2121

2
0 1

1
ρρρρ

ρ
−−+

−
=

(3-75).

3.5.2 Performance Metrics

1. System throughput. By applying Equation system throughput can be

expressed as

(3-2),

99









−

−+−
⋅=+=

−

=

−∑
2

1
22

01
2

1
20101 1

)1()1(
ρ

ρλρ
ρρρµργ

BB

n

n vpppv ,

which can be simplified to









−−+
−−+

⋅=
−

B

B

2121

1
2121

1
1

ρρρρ
ρρρρλγ . (3-76)

2. System latency. The average number of packets in the system can be obtain as

follows:

)1()1(
)1()(

21212

1
21211

1

1
201

1
B

BBB

n

n
n

B

n

BBnppnnE
ρρρρρ
ρρρρρ

ρρ
−−+−

++−
===

+

=

−

=
∑∑ .

Thus, the system latency is followed by using Equation . (3-10)

3. CPU availability. CPU availability is expressed as

BV
2121

2

1
1

ρρρρ
ρ
−−+

−
= . (3-77)

4. Overall system power. We want to express system throughput, CPU

availability, and system latency as infinite state space system. Thus

,
1

1

)(

21

12

2

22
01

2

1
20101

λ
ρρ
ρλλρλ

ρ
ρµρ

ρ

ρρµρλγ

=
−+
+−

=









−
+−

⋅=

+= ∑
∞

=

−

vvp

ppv
n

n

21

2

1
1

)(
ρρ

ρ
λ

−+
−

=V ,

and

100

()() λρρρ
ρ

λ
⋅−+−

=
212

1

11
)(R .

Then, the overall system power is expressed as

c

bccbca

P
1

212)1()1()(
ρ

ρρρλ
λ

−++ −+−
= . (3-78)

 To obtain the maximum power point with all the tunable parameters are equal to

1, we get

2

1

2
2

2

1)1()(







−⋅=

−⋅
=

µ
λλ

ρ
ρλ

λ vP .

Taking derivative of)(λP ,









−−








−=

µ
λ

µ
λ

µ
λ

λ
121

2

vv
d
dP .

Putting 0/ =λddP , we have

0311 =







−⋅








−

µ
λ

µ
λv

Thus, the optimal operation point occurs when 3/1=ρ . This point is independent of

interrupt overhead. Also, this point is exactly the same operating point for Ideal system.

5. Stability condition. This system will stable whenever µλ < .

3.5.3 Numerical Results

101

In this section, we show some numerical results of our analytical model to study

the system performance of Enabling-Disabling Interrupt. In all of these results, we fix

T µ to 1, and B to 100.

Figure 3.41

igure 3.41

Figure 3.42

INT to 0.05,

 depicts the system throughput as a function of traffic intensity ρ. We

study this relation for three TISR time units 0.2, 0.3, and 0.5. We note that the throughput

is not affected by interrupt overhead. The system throughput behaves exactly as the

Ideal system. Notice that F shows only one graph for system throughput

because other graphs are hidden behind this graph.

 shows the CPU availability for Enabling-Disabling Interrupt scheme.

As shown, the CPU availability diminished at 1=ρ , in spite of the interrupt overhead.

But, we observe that CPU availability starts decreasing because, at low rate, packets are

processed before a new packet comes to the system. In this situation, the system will

introduce an extra overhead due to enabling and disabling interrupts. When packet

arrival rate increases such that the buffer keeps nonempty, the ISR overhead, enabling

interrupt overhead and disabling interrupt overhead are eliminated.

Figure 3.43

Figure 3.44

 shows the relation between system latency and traffic intensity for

the same system parameter values considered for system throughput. It is shown that the

latency for Enabling-Disabling interrupt system is very close to the Ideal system latency.

 illustrates the relation between the overall system power and traffic

intensity. Note that the overall system power decreases as interrupt overhead increases.

Note also that the maximum power point occurs at 3/1=ρ despite of TISR value. This

point matches exactly the maximum power point we derive it mathematically.

102

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System, Tisr=0.2, 0.3, and 0.5

Figure 3.41: System throughputs for Enabling-Disabling Interrupt scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.42: System latency for Enabling-Disabling Interrupt scheme

103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.43: CPU availability for Enabling-Disabling Interrupt scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 3.44: Overall system power for Enabling-Disabling Interrupt scheme

 CHAPTER 4

SIMULATION STUDY

This chapter covers simulation. Topics include the simulation type,

implementation language, selection of random number generators and seeds. The

simulation model's components, organization, and logic are presented. Comparison of

analytical models and simulation results are also presented. The source code for the

implementation of the simulation is found in Appendix B.

4.1 Introduction

This section gives background information on a few necessary topics used for

implementation of our simulation. These topics include simulation type, simulation

language, random number generators, random-number streams and seed selection.

4.1.1 Simulation Type

Our simulation is a discrete-event simulation, i.e., it uses a discrete-event

simulation model. This is opposite to a continuous-event simulation in which the state

of the system takes continuous values. Our simulation is a discrete-event simulation

since the state of the system is described by variables that do not take continuous values.

The state variables change instantaneously at separate points in time. Some of these

104

105

variables include number of packets in a system, CPU state herein refer to as server state

(idle or busy) and so on. Details of these variables and their use will be described later

in this chapter.

4.1.2 Simulation Language

A number of simulation languages were considered for implementation. These

languages include OPNET, SLAM II, MATLAB and C. Simulation languages such as

OPNET do not offer flexibility and require considerable time in learning the language.

SLAM II did not offer flexibility either and was limited in options to perform all aspects

of our simulation. A general-purpose language such as MATLAB was a good candidate.

It has a powerful, comprehensive and easy-to-use environment for performing technical

computations. It has plotting capabilities which are necessary features that would make

simulation valid very easy. For these reasons, MATLAB was used initially, however

implementation and debugging got a bit tedious and cumbersome when it came to

handling queues. For this reason, the C language was chosen. C provides the best

flexibility in coding the simulation. However, a considerable amount of effort had to be

put into queue implementation, random number generation, and other features necessary

for simulation validation.

4.1.3 Random Number Generator

The Inverse Transformation [JAI91] method was used to generate random

number varieties for our probability distribution (i.e. exponential distribution). The

106

Inverse Transformation method uses uniform deviates, U(0,1). Uniform deviates are

random numbers that are uniformly distributed between 0 and 1. The Inverse

Transformation for Exponential distribution with ax /− is expressed as: ex 1)(F CDF −=

)ln(Ua− (4-1)

Hence, a reliable source of random uniform deviates is an essential building

block for our simulation. Although, the ANSI C library provides a random generation

function, rand(), which can be used for generating random deviates, it is quite flawed

and totally botched, according to [PRE94]. The authors in [LAW91] recommended the

use of PMMLCG (prime modulus multiplicative linear congruential generator). The

basic algorithm is described in [PAR88]:

)12mod()7(315 −= seedseed (4-2)

The PMMLCG is a more efficient generator than the LCG. The LCG is one of

the most popular methods for generating random numbers, according to [LAW91]. Also

MATLAB uses this generator. Hence, PMMLCG is used for our simulation. The C

source code for implementing the PMMLCG is included in the lcg.c module in

Appendix B .

4.1.4 Seed Selection

Proper seed selections have to be made in order to avoid wrong combinations of

seeds and random number generators that may lead to erroneous results. Care was taken

in selecting seeds for multiple random-number streams. A different stream is generated

107

for each simulation variable. Here are briefly some of the guidelines that are followed in

selecting seeds, see [JAI91]:

• Arbitrary values for seeds were not used. Also, the values of zero and even

values were not used.

• Every simulation variable has its own stream, and streams were not

subdivided.

• Overlapping of streams, to prevent correlation, was avoided by choosing

seeds spaced 100,000 apart. In our case, the seeds were spaced 800,000

apart.

• Each simulation iteration did not have to reinitialize seeds. Leftover seeds

from previous iterations were used.

These guidelines were followed in implementing the simulation.

4.2 Components and Organization

In this section, we develop a discrete-event simulation model for interrupt-driven

kernel. Simulation models for Traditional, Interrupt Coalescing, and Enabling-Disabling

Interrupt schemes are developed. Figure 4.1 depicts the general flowchart of the

simulation model that is applied for all interrupt handling schemes. Before diving into

the details of simulation logic, we would like to discuss the main components used in

our discrete-event simulation model:

1. System state: Several variables used to describe the current state of the

system. Two variables are used to describe the current status of the server;

108

isr_handling_status and protocol_processing_status. The first state describes whether

the server is handling ISR or not. The second state describes whether the server is

processing a packet in kernel protocol stack or not. These two states are either set to

busy or idle. If the server is busy handling ISR, this means isr_handling_status is set to

busy. If the server is busy processing a packet, this means protocol_processing_status is

set to busy. Please note the two variables may be in busy. This means the server is

handling an ISR and the existing packet processing in kernel protocol stack has already

been preempted by ISR.

2. Events: Our simulation model has three types of events, shown in Figure 4.2.

ARRIVAL event occurs when a new packet arrives to the system. ISR event occurs

when the server returns from ISR. DEPARTURE event occurs when a packet is

completely processed by the kernel protocol stack. All these events are generated

independently. This means that each event has its own seed and random-number stream.

3. Statistical variables: Several statistical results of system performance are

needed to be gathered from simulation model. These include server utilization due to

protocol stack processing, server utilization due ISR handling, average number of

packets in the system, total response time, and total number of packets departs the

system.

109

Figure 4.1: Flowchart of the Simulation Model

Start

(0)
Initialize system state
Initialize statistical variables
Initialize event list.

(1)
Determine the next event type

(2)
Update system state and

statistical variables

(3)

Check
Event type

D
EPA

R
TU

R
E

A
R

R
IV

A
L

ISR

(6) (5) (4)

Invoke Invoke Invoke
Departure routine ISR routine Arrival routine

(7)
Is simulation

over?
No

Yes

End

110

Figure 4.2: C Declaration for event types

4. Queues: The simulation has two types of queues: priority and FIFO. A

priority queue is used to process next events. The priority, which is based on a "time"

value and system status, follows the following criteria. If the system state is currently

handling an ISR, then DEPARTURE event cannot be scheduled next. Only ARRIVAL

or ISR will be scheduled next based on the most imminent of these two events. If the

system status is not handling an ISR, then either ARRIVAL or DEPARTURE event will

be scheduled based on the most imminent of these two events. On the other hand, FIFO

queue is used to store the times of arrival of packets currently in the systerm. These

times are used for statistic gathering.

Next we will discuss the simulation logic in general that is valid for any

interrupt-driven system to be modeled. We use a next-event time advance for

incrementing our simulation clock. This means the simulation clock is initialed to zero

and the times of occurrence of future events are determined. The simulation clock is

then advanced to next event according the criteria we mentioned in previous paragraph.

The details of the simulation are given in Figure 4.1. The simulation starts

initializing all system components (step 0). The next event is determined and the

simulation clock is advanced to the time of the selected event. Consequently, the

statistical variables are updated (step 2). Then, the type of the next event is checked and

the appropriate event handler is invoked. The handling of these events depends on the

#define ARRIVAL 1 /* packet arrival event */
#define ISR 2 /* ISR handling has been finished */
#define DEPARTURE 3 /* packet departure event */

111

employed scheme to be modeled. Finally, the simulation process from step 1 up to step

6 will be repeated 800,000 times.

4.3 Traditional Scheme Simulation Model

We first simulate the Traditional scheme. Figure 4.3 depicts the flowcharts of

simulation model for Traditional scheme.

The simulation logic for this model is as follows. When ARRIVAL event is

triggered, we first schedule the next ARRIVAL event. Then, the number of packet

arrivals is incremented by one (step 8). Next, the server state is checked in step 9. If the

server is busy handling ISR, i.e., the packet arrival occurs during ISR handling, then

generating an interrupt is ignored for this packet. Otherwise, we set the ISR handling

status to busy and we schedule the finishing time for this ISR (step 10). Finally, if the

FIFO queue is not full, we insert the arrival time of this packet in the FIFO queue. The

reason of this storing is to keep track the arrival time for each packet in order to compute

packet delay. The packet delay is determined by subtraction of arrival time from

departure time.

When ISR event is triggered, we first reset the ISR handling status to idle (step

13), i.e., the server is finished handling the ISR. Then, protocol processing status is

checked in step 14. The reason of this checking is to see if this ISR preempts packet

processing in protocol stack or not. If the status of the protocol processing is busy, i.e.,

the server was busy processing a packet in protocol stack before interrupt disruption,

then the departure time of the preempted packet will be delayed by ISR time (step 16).

112

If the status of protocol processing is idle, i.e., no packet has been interrupted during its

processing in protocol stack, then we schedule the DEPARTURE event for this packet

and we change the protocol processing status to busy.

Figure 4.3: Flowcharts of event handlers in Traditional scheme

The last event is DEPARTURE event. When this event is scheduled next, we

reduce the number of packets in the system by one and update some statistical

information (step 17). Then, we check if FIFO queue is empty or not (step 18). If FIFO

queue is not empty, we schedule the departure time of the next packet in the queue (step

20). The next packet is the packet that its arrival time is stored at the top of the queue.

Departure
event ISR event Arrival event

(13)
(17) (8) Set isr_handling_state to idle

Subtract 1 from no. of pkts in the
system,

Schedule the next arrival event,
Add 1 to the no. of arrivals.

Set protocol processing state to busy,
Schedule a departure event for this
packet.

Is FIFO
queue full?

Set the CPU busy handling ISR,
Schedule the next ISR event.

Yes

No

Add 1 to the no. of pkts in the system.
Store arrival time of this packet.

No

Yes

Return

 protocol processing
Is (14) Compute response time of packet

entering services and gather statistics
Yes

state busy?

No (18) (9) (15) Is
Is FIFO

queue empty?
Yes No the CPU busy

handling ISR?

(10) (16) (19)
Delay departure time for
the packet in CPU by TISR

Set protocol processing state
to idle,

(20) (11)
Schedule a departure
event for next packet. Return

Return (12)

113

If FIFO queue is empty, we set the server protocol stack status to idle and eliminate the

departure event from priority queue (step 19).

4.4 Interrupt Coalescing Simulation Model

To simulate this model, two new components have been added to system states:

coalescing size and coalescing counter. Coalescing size represents how many packets to

be received before generating an interrupt. Coalescing counter counts the number of

packets have been received so far. Whenever coalescing counter reaches the value

indicated in coalescing size, the system will generate an interrupt. These two states are

initialized at step 0 in the main flowchart, shown in Figure 4.1 in which the coalescing

size is initialized to the predefined number of packets to be coalesced before generating

an interrupt and coalescing counter is initialized to zero.

Since Interrupt Coalescing scheme does not affect ISR and DEPARTURE event

handlers, the only change we need to modify from Traditional scheme is the ARRIVAL

event handler. Figure 4.4 shows the modified version of ARRIVAL event handler for

simulating Interrupt Coalescing model.

The logical steps of Interrupt Coalescing are as follows. First, we schedule the

event of next packet arrival. Then, we increment the number of packet arrivals and

coalescing counter by one (step 8). Next, we check the value of coalescing counter

(step 9). If coalescing counter equals to coalescing size, then we reset coalescing

counter to zero (step 10). Then, we generate an interrupt by apply the same steps

114

mentioned in section 4.3. If coalescing counter is not equal to coalescing size, then we

just insert the arrival of time of this packet into the FIFO queue.

Figure 4.4: Flowchart of ARRIVAL event for Interrupt Coalescing model

Arrival event

(8)
Schedule the next arrival event,
Add 1 to the no. of arrival,
Add 1 to coalescing counter.

 Coalescing size = coalescing
counter

(9) Is No

Yes (10)
Reset coalescing counter to zero

(11) Is
 No CPU busy
handling ISR?

(12)
Set the CPU busy handling ISR, Yes
Schedule the next ISR event.

(13)
Is FIFO Yes

queue full?

No (14)
Add 1 to the no. of pkts in the system.
Store time of arrival of this packet

Return

115

4.5 Enabling-Disabling Interrupt Scheme Simulation Model

We now consider a simulation model for Enabling-Disabling Interrupt. In this

model, a new variable is needed to indicate interrupt status: enabled or disabled.

Initially, the interrupt status is enabled. This means an incoming packet will generate an

interrupt. The interrupt status is initialized in the main flowchart at step 0 as shown in

Figure 4.1. Figure 4.5 shows the flowcharts of Enabling-Disabling Interrupt scheme

simulation model for ARRIVAL and DEPARTURE events. The ISR flowchart is the

same as in Figure 4.3.

The logical steps of Enabling-Disabling Interrupt scheme are as follows.

Whenever an arrival event is triggered, the system checks the interrupt status whether it

is enabled or not (step 9). If the interrupt status is disabled then the arrival time of

packet is directly inserted in the FIFO queue (step 12). If the interrupt status is enabled,

then it will be changed to disabled and an interrupt will be generated (step 10).

When DEPARTURE event is scheduled next, we reduce the number of packets

in the system by one and update some statistical information (step 17). Then, we check if

FIFO queue is empty or not (step 18). If FIFO queue is not empty, we schedule the

departure time of the next packet in the queue (step 20). If FIFO queue is empty, we set

the server protocol stack status to idle and we enable the interrupt again (step 19).

116

Departure
event Arrival event

(17) (8)
Schedule the next arrival event, Subtract 1 from no. of pkts in the system,
Add 1 to the no. of arrivals. Compute response time of packet

entering services and gather statistics

(9) (18)

Figure 4.5: Flowcharts of ARRIVAL and DEPARTURE events for

Enabling-Disabling Interrupt model

4.6 Comparison and Numerical Results

We now compare numerical results obtained by both analysis and simulation for

studying the performance of interrupt-driven kernel. We ran a simulation for a long time

period until it generated 800,000 events. In all our results, we fixed T

100. We plot the simulation results with the equivalent figure presented in Chapter 3.

ISR to 0.3 and B =

status enabled?
Is interrupt No

Is queue
empty?

Yes No

Yes
(10)

Set interrupt status to disable, (19)
Schedule the next ISR event Set protocol processing state to idle,

Enable interrupt.

(20) (11)
Schedule a departure event for next packet. Is the Yes

queue full?

No
Return (12)

Add 1 to the no. of pkts in the system.
Store time of arrival of this packet

Return

117

Figure 4.6, Figure 4.7, and Figure 4.8 depict the comparison between analysis

and simulation for the first scheme used to model Traditional scheme. It is shown that

the analysis and simulation are identical for system throughput. For CPU availability

and latency, simulation results are very close to analytical results.

Figure 4.9, Figure 4.10, and Figure 4.11

Figure 4.12, Figure 4.13, and Figure 4.14

Figure 4.15, Figure 4.16, and Figure 4.17

 show the comparison between analysis

and simulation for the second scheme used to model Traditional scheme. It is noted that

the results given by second analytical model match precisely the results given by

simulation.

 depict the comparison between

analysis and simulation for Interrupt Coalescing scheme. It is shown that the two

models are quit similar especially for system throughput and system latency.

 show the comparison between analysis

and simulation for Enabling-Disabling Interrupt scheme. It is noted that the results

given by analytic model match the results given by simulation.

We conclude that a perfect accordance has been verified between analysis and

simulation. The results given by simulation match precisely the same ones given by

derived equations for system throughput and system latency.

118

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.6: Comparison between analysis and simulation of the first Traditional system model

for system throughput

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.7: Comparison between analysis and simulation of the first Traditional system model

for CPU availability

119

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.8: Comparison between analysis and simulation of the first Traditional system model

for system latency

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.9: Comparison between analysis and simulation of the second Traditional system model

(first solution) for system throughput

120

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.10: Comparison between analysis and simulation of the second Traditional system model

for CPU availability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.11: Comparison between analysis and simulation of the second Traditional system model

for system latency

121

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System
τ = 5
τ = 3
τ = 2
τ = 1
Simulation

Figure 4.12: Comparison between analysis and simulation of Interrupt Coalescing model

for system throughput

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
τ = 5
τ = 3
τ = 2
τ = 1
Simulation

Figure 4.13: Comparison between analysis and simulation of Interrupt Coalescing model

for CPU availability

122

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
τ = 1
τ = 2
τ = 3
τ = 5
Simulation

Figure 4.14: Comparison between analysis and simulation of Interrupt Coalescing model

for system latency

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

S
ys

te
m

 T
hr

ou
gh

pu
t

Ideal System, Tisr=0.2, 0.3, and 0.5
Simulation

Figure 4.15: Comparison between analysis and simulation of Enabling-Disabling Interrupt model

for system throughput

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic Intensity (ρ)

C
P

U
 A

va
ila

bi
lit

y

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure 4.16: Comparison between analysis and simulation of Enabling-Disabling Interrupt model

for CPU availability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Traffic Intensity (ρ)

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5
Simulation

Figure 4.17: Comparison between analysis and simulation of Enabling-Disabling Interrupt model

for system latency

 CHAPTER 5

PERFORMANCE COMPARISON,

DESGIN AND IMPLEMENTATION ISSUES

In this chapter, we present performance comparison of interrupt handling

schemes using overall system power metric. The comparison depends on the design

goal of the system where as the design goal depends on the weight of the system

performance metrics which include throughput, latency, and CPU availability.

Some applications of computer networks, e.g. file transfer and video streaming,

are throughput sensitive. The latency is generally not so important. Therefore, when we

design a system for these applications, we give throughput more weight than latency and

CPU availability. Other applications, e.g. voice over IP and interactive media, latency is

more important than throughput. Therefore, latency is given more weight that

throughput and CPU availability. When system responsiveness is concern to avoid user

applications starvation, then we give more weight for CPU availability than throughput

and latency. Equation represents the overall system equation. The tunable

parameters a, b, and c define the weights for throughput, CPU availability, and latency,

respectively.

We compare the system performance of interrupt handling schemes for different

design goal. The purpose is to find out which scheme is most suitable for this particular

design goal. We start our comparison when we give equal weights for all goals. Then,

(3-6)

124

125

we evaluate the performance of interrupt handling schemes for different design goals. In

all our comparisons, we fix the following system parameters: 3.0=ISRT , 1=µ , 2=τ ,

.

5.1 Performance Compared

Design Example I. The goal of this design is to give equal weight for all system

performance metrics. Figure 5.1 depicts the performance of interrupt handling schemes

for this example where a, b, and c are equal to 1. We notice that Enabling-Disabling

Interrupt scheme gives better performance. However, at low system load when

and 05.0=INTT

1.0<ρ ,

the performance of Traditional scheme is almost equivalent to the performance of

Enabling-Disabling Interrupt scheme. We also notice that Traditional scheme gives

better performance than Interrupt Coalescing scheme when traffic intensity is less than

0.4. In other words, Interrupt Coalescing gives more power than Traditional scheme at

high arrival rate. Moreover, the optimal operating points for all schemes occur at low

traffic intensity.

126

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er
Ideal Sheme
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.1: Performance of interrupt handling schemes

where all design goals have equal weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal Scheme
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.2: Performance of interrupt handling schemes where

system throughput has more weight than latency and CPU availability

127

Design Example II. The goal of this design is to give system throughput more

weight than latency and CPU availability. Figure 5.2 illustrates the performance of

interrupt handling schemes when 3=a , 1=b , and 1=c . We notice that Enabling-

Disabling Interrupt scheme gives the best performance. We also notice that Traditional

scheme gives better performance than Interrupt Coalescing scheme when traffic

intensity is less than 0.4. However, the optimal operating points for all schemes occur at

high traffic intensity.

igure 5.3

Design Example III. The goal of this design is to give system latency more

weight than throughput and CPU availability. F shows the performance of

interrupt handling schemes when 1=a , 1=b , and 5=c . It is noted that Traditional

scheme give better performance at lower traffic intensity (i.e. 1.0<ρ). After this point,

Enabling-Disabling Interrupt scheme gives more power than other schemes. We also

notice that Interrupt Coalescing scheme is totally diminished. Moreover, we observe

remarkable power degradation of interrupt handler schemes if we compare them with

Ideal system.

Design Example IV. The goal of this design is to give CPU availability more

weight than throughput and latency. F illustrates the performance of interrupt

handling schemes when ,

igure 5.4

1=a 3=b , and 1=c . We notice that Traditional scheme and

Enabling-Disabling Interrupt scheme give approximately an equivalent power at lower

traffic intensity. After this point, Enabling-Disabling Interrupt scheme has the best

overall system power. It is noted that the power of Interrupt Coalescing scheme

approaches the power of Enabling-Disabling scheme for higher traffic intensity.

128

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er
Ideal Sheme
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.3: Performance of interrupt handling schemes where

system latency has more weight than throughput and CPU availability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal Sheme
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.4: Performance of interrupt handling schemes where

CPU availability has more weight than throughput and latency

129

Design Example V. The goal of this design is to give system throughput less

weight than latency and CPU availability. Both system latency and CPU availability

have similar weights. Figure 5.5 depicts the performance of interrupt handling schemes

when , , and 5.0=a 1=b 1=c . We notice that Traditional scheme and Enabling-

Disabling Interrupt scheme give approximately an equivalent power at lower traffic

intensity. After this point, Enabling-Disabling Interrupt scheme has the best overall

system power. Moreover, Interrupt Coalescing scheme outperforms Traditional scheme

when traffic intensity is greater than 0.4.

igure 5.6

Design Example VI. The goal of this design is to give system latency less

weight than throughput and CPU availability. Both system throughput and CPU

availability have similar weights. F depicts the performance of interrupt

handling schemes when 1=a , 1=b , and 2.0=c . We notice that all schemes give

approximately an equivalent power at lower traffic intensity i.e., when 2.0<ρ . After

this point, Interrupt Coalescing scheme has the best overall system power up to point

when traffic intensity is less than 0.6. When traffic intensity is greater than 0.7,

Enabling-Disabling Interrupt scheme gives better performance than other schemes.

130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er
Ideal Sheme
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.5: Performance of interrupt handling schemes where

system throughput has less weight than latency and CPU availability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Traffic Intensity (ρ)

O
ve

ra
ll

S
ys

te
m

 P
ow

er

Ideal System
Traditional Scheme
Int. Coalescing Scheme
E/D interrupt Scheme

Figure 5.6: Performance of interrupt handling schemes where

system latency has less weight than throughput and CPU availability

131

5.2 Selecting the Best Scheme

In this section, we will discuss the selection of proper scheme or schemes

according to design goal. We see that Enabling-Disabling Interrupt scheme is a suitable

scheme when the system goal is maximizing throughput, maximizing CPU availability,

and minimizing latency. If the system does not support Enabling-Disabling Interrupt

scheme, then we have to implement two schemes: Traditional and Interrupt Coalescing

schemes (see Figure 5.1). The transition of these two schemes depends on the value of

traffic intensity. If 4.0<ρ , then we switch to Traditional scheme. Otherwise, we

switch to Interrupt Coalescing scheme.

If the system is sensitive to throughput then Enabling-Disabling Interrupt scheme

outperforms Traditional and Interrupt Coalescing schemes (see Figure 5.2). If system

responsiveness is to be considered also besides system throughput then we need to

implement all these schemes (see Figure 5.6). The transition will depend on the system

load. If 2.0<ρ then we switch to Traditional scheme. If 65.02.0 << ρ then we

switch to Interrupt Coalescing scheme. Otherwise, we switch to Enabling-Disabling

Interrupt scheme.

Finally, if the system is sensitive to latency then applying Interrupt Coalescing is

not recommended. Traditional scheme is used when 1.0<ρ . Otherwise, Enabling-

Disabling Interrupt scheme is used.

132

5.3 Design and Implementation Issues

We have seen that scheme's selection depends on system load. The system load

is measured as traffic intensity ρ, where µλρ /= .

5.3.1 NIC-Side Solution

One way to estimate traffic intensity is to estimate packet arrival rate and packet

processing time in protocol stack. We adopt the idea of [DOV01] to measure average

packet arrival rate using exponential weighted average. The average packet interarrival

 is estimated after each packet arrival using the following formula:

Â

Ŝ

Â

)10()1(ˆˆ ≤≤−+= ααα DAA , (5-1)

where α is the average interarrival weight factor and D is the duration between last

packet arrival and the one before that. α controls the importance that is given to the last

interarrival relative to the past history of interarrivals, as that is accumulated in .

The average processing time for a packet in protocol stack can be estimated

experimentally. The experiment runs an application that implements loopback interface.

The application generates traffic and gathers two specific times. The first time is the

time a packet has been sent to the interface. The second time is the receiving time for

that packet. Then, the service time for this packet is half the difference between the two

times. Therefore, we can compute the average service time .

Ŝ

133

The solution can be implemented in NIC provided that NIC can be programmed.

Therefore, this solution will not produce any overhead inside the system kernel. The

drawbacks of this technique are as follows. The accuracy of estimating interarrival time

depends on α. We have to measure µ for each server we need to implement this

technique.

5.3.2 OS-Side Solution

Another way to estimate traffic intensity is by estimating average number of

packets in the host system memory and probability of packet loss . Then, we can

apply M/M/1/B model to compute

N̂ Bp̂

ρ̂ as follows:

[]BpBN ˆ)1(1
ˆ1

ˆˆ +−
−

=
ρ

ρ ,

[]
[]B

B

pBN
pBN

ˆ)1(1ˆ1
ˆ)1(1ˆ

ˆ
+−+

+−
=ρ . (5-2)

where and (ntNN /)(ˆ ∑=)
)received packets ofnumber Total(

)dropped packets ofNumber (ˆ =Bp . n denotes the

number of times we observe N(t).

Initially, and are set to zero. Then, we update their values periodically,

i.e., after a time slice of size T. The time T must be set in milliseconds (say 10

millisecond) in order to prevent producing overhead due to calculating and .

N̂ Bp̂

N̂ Bp̂

134

However, setting T with bigger values may produce inaccurate prediction for and

.

N̂

Bp̂

This solution can be implemented inside the kernel. The disadvantage is the

difficulty to set a suitable value for T to compromise between overhead and accuracy.

 CHAPTER 6

CONCLUSION

This chapter presents a summary of our major contributions in this thesis work to

study the operating system performance for different interrupt handling schemes. It also

gives indications of future research directions.

One of our major contributions in this thesis is proposing the overall system

power metric. This novel metric integrates three main metrics that measure the host

system performance. The three metrics are system throughput, system latency and CPU

availability for user processes.

We presented analytical models for interrupt handling schemes including

Traditional scheme, Interrupt Coalescing scheme and Enabling-Disabling Interrupt

scheme. First, we presented an analysis for the ideal situation in which the overhead

involved in generating interrupts is totally ignored. Then, we presented two models for

the Traditional scheme. The first model is based on analysis of the effective service rate.

The second model uses pure Markovian model. The comparison results between the

first and the second models are quit similar. Next, we modeled the Interrupt Coalescing

scheme using analysis of the effective service rate. Finally, we modeled Enabling-

Disabling Interrupt scheme using pure Markovian model.

135

136

We developed a simulation model to verify our analysis. Simulation results show

that our analytical models are correct and accurate. We also verified our analysis by

solving equations for special cases when the interrupt handling is ignored.

Performance comparison between interrupt handling schemes has been

presented. We have shown that achieving the optimal system performance may require

to implement different schemes for interrupt handling depending on the current system

load. We also discussed some implementations issues related to estimating the system

load.

The topics presented in this thesis open a new horizon for further research. The

followings are some future directions:

• In our analysis, we assumed that all packets have fixed size length. Further

analysis is needed to consider general distribution for packet length.

Simulation model is also needed to verify the analysis. Such analysis and

simulation can help studying system performance of Gigabit Ethernet jumpo

frames.

• In this thesis, we used a Poisson process to model traffic source. In realistic

settings, traffic sources are bursty. This behavior can be modeled using

Pareto distribution [LEL94]. Therefore, further work is needed to examine

system performance using Pareto distribution.

• Interrupt handling schemes described in this thesis run at full speed, i.e.,

protocol stack routine will keep processing as long as there is a packet in the

kernel memory. This will cause starvation problem at high load. One

137

solution is to implement polling it

the number of packets to be processed in each poll. This will prevent

protocol stack processing to consume all CPU resources. Further work is

needed to model, analyze, and simulate polling scheme.

1. In polling, packet quota is used to lim

• Prototype or experimental implementation is needed to validate analytical

and simulation results for the different interrupt handling schemes. A typical

prototype or experiment would involve two PCs equipped with GbE NICs

running Linux OS. Modifications to the OS kernel and device drivers would

be required.

1 Look at section 2.2.3 for more details.

Appendix A

M/M/1 Queue

1. Traffic intensity: µλρ /= .

2. Stability condition: Traffic intensity ρ must be less than 1.

3. Probability of zero packets in the system: ρ−= 10p .

4. Probability of n packet in the system: , n = 0, 1, …, ∞. nρ

)

np ρ)1(−=

5. Average number of packet in the system: 1/()(ρρ −=nE .

6. Mean response time:)1/()/1(ρµ −=R .

M/M/1/B Queue

1. Traffic intensity: µλρ /= .

2. The system is always stable: ∞<ρ .

3. Probability of zero packets in the system:










=
+

≠
−
−

=
+

1
1

1

1
1

1
1

0

ρ

ρ
ρ
ρ

B

p
B

.

4. Probability of n packet in the system:

138

139
















>

=
+

≤≤

≠
−
−

=

+

Bn

B

Bn
p

n
B

n

0

1
1

1
0

1
1

1
1

ρ

ρρ
ρ
ρ

.

5. Average number of packet in the system:

1

1

1
)1(

1
)(

+

+

−
+

−
−

= B

BBnE
ρ
ρ

ρ
ρ .

6. Mean response time:

)1(
)(

Bp
nER
−

=
λ

.

Appendix B

Simulation Code

140

141

 printf("---\n\n");
 printf(" lamda P(B) rho CPU_PKT CPU_ISR Th E(r)\n");

#include "rand.h"
#include "mm1b.h"

int main(int argc, char *argv[])
{
 event_type next_event;
 double lower_rate, upper_rate, service_rate, arrival_rate;
 uint num_of_events;
 int model;

 printf("1- Normal interrupt model (case 1)\n");
 printf("2- Normal interrupt model (case 2)\n");
 printf("3- Interrupt coalescing model\n");
 printf("4- Enabling/Disabling interrupt model\n");
 printf("select --> "); scanf("%d", &model);

 /* collect data from user */
 printf("Enter arrival range [lower rate, upper rate] : ");
 scanf("%lf %lf", &lower_rate, &upper_rate);
 printf("Enter service rate: ");
 scanf("%lf", &service_rate);
 printf("Enter ISR time : ");
 scanf("%lf", &mean_isr);
 if (model == 3) {
 printf("Enter coalescing size : ");
 scanf("%d", &coal_size);
 }
 if (model == 4)
 time_instructions = 0.05;
 else
 time_instructions = 0;
 printf("Enter system buffer size [0 for infinity]: ");
 scanf("%ld", &buf_size);
 while (buf_size > MAX_BUFFER_SIZE) {
 printf("Error: You buffer size exceed the maximum limit
%lu\n", MAX_BUFFER_SIZE);
 printf("Enter system buffer size [0 for infinity]: ");
 scanf("%ld", &buf_size);
 }
 model_type = (buf_size == 0)? MM1,buf_size=MAX_BUFFER_SIZE:MM1B;

 /* set system parameters */
 mean_service = 1.0 / (service_rate); /* 1 / rate */
 printf("\n<<<<<<<<<<<< SYSTEM PARAMETERS >>>>>>>>>>>>>>\n");
 printf("Simulation model # = %d\n", model);
 printf("Mean service rate............... = %6.4f\n",
1.0/mean_service);
 printf("Mean ISR = %6.4f\n", mean_isr);
 if (model == 3)
 printf("Coalescing size = %d\n", coal_size);
 printf("Buffer size..................... = %lu\n", buf_size);

142

 time_last_event = 0.0;
 interrupt_enabled = TRUE;
 rem_packets = coal_size;

 arrival_rate = lower_rate;
 while (arrival_rate <= upper_rate) {
 mean_interarrival = 1.0 / (arrival_rate); /* 1 / rate */

 /* Initialize the simulation model */
 num_of_events = 0;
 initialize();

 while (num_of_events++ < 800000) {
 /* determine the next event */
 next_event = timing();

 /* Update time-average statistical accumulators */
 update_time_avg_stats();

 /* invoke the appropriate event function */
 switch (next_event) {
 case ARRIVAL:
 switch (model) {
 case 1: normal_arrive_1(); break;
 case 2: normal_arrive_2(); break;
 case 3: coal_arrive(); break;
 case 4: ed_arrive(); break;
 }
 break;
 case DEPARTURE: depart(); break;
 case ISR: interupt(); break;
 }
 }
 report();
 arrival_rate += 0.1;
 }
 return 0;
}

/***/
/*
/* initialize routine
/*
/***/
void initialize(void)
{
 /* Initialize the simulation clock */

 time = 0.0;

 /* Initialize the state variables */

 protocol_status = IDLE;
 isr_status = IDLE;
 num_in_sys = 0L;

143

 {
 if (time_next_event[ISR] <= min_time) {
 min_time = time_next_event[ISR];

 /* Initialize the statistical counters */

 area_num_in_q = 0.0;
 area_num_in_sys = 0.0;
 area_server_status = 0.0;
 num_pack_depart = 0;
 total_response_time = 0.0;
 num_arrival = 0L;
 num_pack_drop = 0L;
 area_cpu_protocol = 0.0;
 area_cpu_isr = 0.0;

 /* Initialize event list. Since no packets are present, the
 departure (service completion) event is eliminated from
 consideration.
 */

 time_next_event[ARRIVAL] = time +
expon_arrival(mean_interarrival);
 time_next_event[DEPARTURE] = INFINITY;
 time_next_event[ISR] = INFINITY;

 /* initialize buffer */
 head = tail = 0;
}
/***/
/*
/* timing routine
/*
/***/
event_type timing(void)
{
 double min_time;
 event_type event;

 /* since we always schedule next arrival whenever packet arrives
 we assume this event will happen next unless other events occur
 before next packet arrival
 */
 min_time = time_next_event[ARRIVAL]; /* since we always expect an
arrival packet */
 event = ARRIVAL;

 /* now check if other events occur before arrival event, with
following consideration:
 1- if server execute an ISR, departure event will not be
scheduled next.
 2- otherwise, select either arrival event or departure event.
 */
 if (isr_status == TRUE) /* if the server executes an ISR */

144

 exit(0);
 }
 else num_pack_drop++;

 event = ISR;
 }
 }
 else /* no isr */
 {
 if (time_next_event[DEPARTURE] < min_time) {
 min_time = time_next_event[DEPARTURE];
 event = DEPARTURE;
 }
 }

 /* advance the simulation clock */
 time = min_time;

 return event;
}

/***/
/*
/* Arrival event routines
/*
/***/
/*******************************
* Normal interrupt model case 1
********************************/
void normal_arrive_1(void)
{
 /* schedule next arrival */
 time_next_event[ARRIVAL] = time +
expon_arrival(mean_interarrival);

 /* incement number of packet arrival */
 num_arrival++;

 /* if packet arrived ouside an isr, then generate an interrupt */
 if (isr_status == IDLE) {
 time_isr = expon_isr(mean_isr) + time_instructions;
 time_next_event[ISR] = time + time_isr; /* time where isr
finish its execution */
 isr_status = BUSY;
 }

 /* Check to see if there is place in the buffer */
 if (num_in_sys < buf_size) {
 num_in_sys++;
 queue[tail] = time;
 tail = ++tail % buf_size;
 }
 else /* drop the packet */
 if (model_type == MM1) {
 printf("\nInsufficient memory");

145

 time_isr = expon_isr(mean_isr);
 time_next_event[ISR] = time + time_isr; /* time where
isr finish its execution */

}

/*******************************
* Normal interrupt model case 2
********************************/
void normal_arrive_2(void)
{
 /* schedule next arrival */
 time_next_event[ARRIVAL] = time +
expon_departure(mean_interarrival);

 /* incement number of packet arrival */
 num_arrival++;

 /* Check to see if there is place in the buffer */
 if (num_in_sys < buf_size) {
 num_in_sys++;
 queue[tail] = time;
 tail = ++tail % buf_size;
 /* if packet arrived ouside an isr, then generate an
interrupt */
 if (isr_status == IDLE) {
 time_isr = expon_isr(mean_isr) + time_instructions;
 time_next_event[ISR] = time + time_isr; /* time where
isr finish its execution */
 isr_status = BUSY;
 }
 }
 else /* drop the packet */
 num_pack_drop++;
}

/**********************
* Interrupt coalescing model
**********************/
void coal_arrive(void)
{
 /* schedule next arrival */
 time_next_event[ARRIVAL] = time +
expon_arrival(mean_interarrival);

 /* incement number of packet arrival */
 num_arrival++;

 /* check if we have to generate an interrupt or not */
 if (--rem_packets <= 0) {
 /* remask interrupt coalescing */
 rem_packets = coal_size;
 /* if packet arrived ouside an isr, then generate an
interrupt */
 if (isr_status == IDLE) {

146

 else num_pack_drop++;
}

 isr_status = BUSY;
 }
 }
 /* Check to see if there is place in the buffer */
 if (num_in_sys < buf_size) {
 num_in_sys++;
 queue[tail] = time;
 tail = ++tail % buf_size;
 }
 else /* drop the packet */
 if (model_type == MM1) {
 printf("\nInsufficient memory");
 exit(0);
 }
 else num_pack_drop++;
}

/**********************
* Enabling/Disabling interrupt model
**********************/
void ed_arrive(void)
{
 /* schedule next arrival */
 time_next_event[ARRIVAL] = time +
expon_arrival(mean_interarrival);

 /* incement number of packet arrival */
 num_arrival++;

 /* check if interrupt is enabled or not */
 if (interrupt_enabled) {
 interrupt_enabled = FALSE;
 /* if packet arrived ouside an isr, then generate an
interrupt */
 time_isr = expon_isr(mean_isr);
 time_next_event[ISR] = time + time_isr; /* time where isr
finish its execution */
 isr_status = BUSY;
 }

 /* Check to see if there is place in the buffer */
 if (num_in_sys < buf_size) {
 num_in_sys++;
 queue[tail] = time;
 tail = ++tail % buf_size;
 }
 else /* drop the packet */
 if (model_type == MM1) {
 printf("\nInsufficient memory");
 exit(0);
 }

147

 /* check if the server was busy or not */
 if (protocol_status == BUSY)

/***/
/*
/* Departure event routine
/*
/***/
void depart(void)
{
 double response_time;

 num_in_sys--;

 /* compute the response time of the depart's packet and update
the
 total response time */

 response_time = time - queue[head]; /* total time elapsed in the
system */
 total_response_time += response_time;

 /* remove the served packet */
 head = ++head % buf_size;

 /* increment the number of packets departed */
 num_pack_depart++;

 /* check wether the queue is empty */
 if (num_in_sys <= 0) {
 /* no packet in the system. so make the server IDLE and eliminate
the
 departure event from consideration */
 protocol_status = IDLE;
 interrupt_enabled = TRUE; /*
this is for enabling/disabling scheme */
 time_next_event[DEPARTURE] = INFINITY;
 }
 else
 /* if queue is not empty, schedule the next packet */
 time_next_event[DEPARTURE] = time +
expon_departure(mean_service);
}

/***/
/*
/* ISR event routine
/*
/***/
void interupt(void)
{
 /* finishing ISR */
 isr_status = IDLE;
 time_next_event[ISR] = INFINITY;

148

 /* Return an exponential random variate with mean "mean" */
 return (-mean * log(u));

 /* delay the current packet departure time */
 time_next_event[DEPARTURE] += time_isr;
 else {
 /* if server was IDLE, then schedule the departure time for
incoming
 packet and set the server to BUSY */
 time_next_event[DEPARTURE] = time +
expon_departure(mean_service);
 protocol_status = BUSY;
 }
}

/***/
/*
/* Update area accumulators routine
/*
/***/
void update_time_avg_stats(void)
{
 double time_since_last_event;

 /* compute time since last event, and update last-event-time
 marker */
 time_since_last_event = time - time_last_event;
 time_last_event = time;

 /* update all area */
 area_num_in_sys += num_in_sys * time_since_last_event;

 /* update server utilization, since server could be busy with isr
or
 packet processing */
 area_server_status += (protocol_status | isr_status) *
time_since_last_event;
 area_cpu_protocol += (~isr_status & protocol_status) *
time_since_last_event;
 area_cpu_isr += isr_status * time_since_last_event;
}

/***/
/*
/* exponential variate generation routine
/*
/***/
double expon_departure (double mean)
{
 double u;

 /* Generate a U(0,1) random variate */

 u = lcg_rand(1);

149

}

double expon_isr (double mean)
{
 double u;

 /* Generate a U(0,1) random variate */

 u = lcg_rand(50);

 /* Return an exponential random variate with mean "mean" */
 return (-mean * log(u));
}
double expon_arrival (double mean)
{
 double u;

 /* Generate a U(0,1) random variate */

 u = lcg_rand(99);

 /* Return an exponential random variate with mean "mean" */
 return (-mean * log(u));
}

/***/
/*
/* Report routine
/*
/***/
void report(void)
{
 double average_num_in_sys;
 double throughput;
 double mean_response_time;
 double server_util;

 average_num_in_sys = area_num_in_sys / time;
 mean_response_time = total_response_time / num_pack_depart;
 throughput = num_pack_depart / time;
 server_util = area_server_status / time;

 printf("%6.4f\t%4.3f\t%4.3f\t%4.3f\t%4.3f\t%6.3f\t%12.3f\t%12.3f\
n", 1.0/mean_interarrival,
 (double)num_pack_drop/num_arrival, server_util,
area_cpu_protocol/time, area_cpu_isr/time,
 throughput, mean_response_time, average_num_in_sys);
}

150

/* Statistic variables */

#ifndef _MM1B_H_
#define _MM1B_H_

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* mnemonics for event types */
typedef enum {ARRIVAL=0, DEPARTURE, ISR, NUM_EVENTS} event_type;
/* mnemonics for server's being idle or busy */
typedef enum {IDLE=0, BUSY} status;
/* mnemonics for boolean values */
enum {FALSE=0, TRUE};
enum {MM1=0, MM1B};

typedef unsigned long uint;

#define INFINITY 1E+20 /* infinity time */

/* System parameters */
double mean_interarrival; /* mean interarrival time of
packets */
double mean_service; /* mean service time of packets */
double mean_isr; /* mean interrupt service routine
time */
uint buf_size; /* memory buffer size */

#define MAX_BUFFER_SIZE 1000000 /* Maximum buffer size */

/* System variables */
int isr_status; /* Is server processing ISR
or not */
int protocol_status; /* Is server processing protocol
stack or not */
uint num_in_sys; /* number of packets in the system
*/
double queue[MAX_BUFFER_SIZE]; /* system buffer , it holds only
arrival time for each packet */
double time; /* simulation clock time */
double time_last_event; /* time of last event */
double time_isr; /* time of isr handling */
double time_next_event[NUM_EVENTS]; /* next event list */
int coal_size; /* number of packets to be
coalesced */
int rem_packets; /* number of packets remained
to generate an isr */
int model_type; /* is M/M/1 or M/M/1/B */
int interrupt_enabled; /* interrupt is enabled or
disabled */
double time_instructions; /* time to execute two
instructions for enabling/disabling interrupts */

151

uint num_pack_depart; /* number of packets leave the system
successfully */
double area_num_in_q;
double area_num_in_sys;
double area_server_status;
double total_response_time;
uint num_pack_drop;
uint num_arrival;
double area_cpu_protocol;
double area_cpu_isr;

/* buffer manipulation */
uint head;
uint tail;

/* function prototypes */
void initialize(void);
event_type timing (void);
void normal_arrive_1(void);
void normal_arrive_2(void);
void coal_arrive(void);
void ed_arrive(void);
void depart(void);
void interupt(void);
void update_time_avg_stats(void);
double expon_departure(double);
double expon_arrival(double);
double expon_isr(double);
void report(void);

#endif

152

 68911991,2088367019, 748545416, 622401386,2122378830, 640690903,
 1774806513,2132545692,2079249579, 78130110, 852776735,1187867272,
 1351423507,1645973084,1997049139, 922510944,2045512870, 898585771,

#include "rand.h"
/* Prime modulus multiplicative Linear Congruential Generator (LCG)
 Z[i] = (630360016 * Z[i-1]) (mod(pow(2,31) - 1)), based on Marse and
 Roberts' portable FORTRAN random-number generator UNIRAN. Multiple
 (100) streams are supported, with seeds spaced 100,000 apart.
 Throughout, input argument "stream" must be an int giving the
 desired stram number. The header file rand.h must be included
 in the calling program before using these functions.

 Usage:

 1. To obtain the next U(0,1) random number from stram "stream"
 execute:
 u = lcg_rand(stram);
 where lcg_rand is a float function. The float variable u will
 contain the next random number.

 2. To set the seed for stream "stream" to a desired value zset,
 execute
 randst(zset, stream);
 where randst is a void function and zset mub be a long set to
 desired seed, a number between 1 and 2147483646 (inclusive).
 Default seeds for all 100 streams are given in the code.

 3. To get the current (most recently used) integer in the sequence
 being generated for stram "stream" into the long variable zget,
 execute
 zget = randgt(stream);
 where randgt is a long function

*/

/* Define the constants. */

#define MODLUS 2147483647
#define MULT1 24112
#define MULT2 26143

/* Set the default seeds for all 100 streams */

static long zrng[]=
{ 0,
 1973272912, 281629770, 20006270,1280689831,2096730329,1933576050,
 913566091, 246780520,1363774876, 604901985,1511192140,1259851944,
 824064364, 150493248, 242708531, 75253171,1964472944,1202299975,
 233217322,1911216000, 726370533, 403498145, 993232223,1103205531,
 762430696,1922803170,1385516923, 76271663, 413682397, 726466604,
 336157058,1432650381,1120463904, 595778810, 877722890,1046574445,

153

 243649545,1004818771, 773686062, 403188473, 372279877,1901633463,
 498067494,2087759558, 493157915, 597104727,1530940798,1814496276,
 536444882,1663153658, 855503735, 67784357,1432404475, 619691088,
 119025595, 880802310, 176192644,1116780070, 277854671,1366580350,
 1142483975,2026948561,1053920743, 786262391,1792203830,1494667770,
 1923011392,1433700034,1244184613,1147297105, 539712780,1545929719,
 190641742,1645390429, 264907697, 620389253,1502074852, 927711160,
 364849192,2049576050, 638580085, 547070247 };

/* Generate the next random number. */

double lcg_rand(int stream)
{
 long zi, lowprd, hi31;

 zi = zrng[stream];
 lowprd = (zi & 65535) * MULT1;
 hi31 = (zi >> 16) * MULT1 + (lowprd >> 16);
 zi = ((lowprd & 65535) - MODLUS) +
 ((hi31 & 32767) << 16) + (hi31 >> 15);
 if (zi < 0) zi += MODLUS;
 lowprd = (zi & 65535) * MULT2;
 hi31 = (zi >> 16) * MULT2 + (lowprd >> 16);
 zi = ((lowprd & 65535) - MODLUS) +
 ((hi31 & 32767) << 16) + (hi31 >> 15);
 if (zi < 0) zi += MODLUS;
 zrng[stream] = zi;
 return ((zi >> 7 | 1) + 1)/ 16777216.0;
}

/* Set the current zrng for stream "stream" to zset. */

void randst (long zset, int stream)
{
 zrng[stream] = zset;
}

/* Return the current zrng for stream "stream". */

long randgt (int stream)
{
 return zrng[stream];
}

154

/*
 The following declarations are for use of the random-number
 generator rand and the associated functions randst and randgt for
 seed management. This file (named rand.h) should be included
 in any program using these functions as follows:
*/

#ifndef _RAND_H_
#define _RAND_H_

double lcg_rand(int stream);
void randst(long zset, int stream);
long randgt(int stream);

#endif

Bibliography

[ALTE] Alteon WebSystems Inc, Jumbo Frames, www.alteon-websystems.com
/products/white_papers/jumbo.

[ARON99] Aron, M. and Drushel, P., Soft Timers: Efficient Microsecond Software
Timer Support for Network Processing, In Proceeding of the 17th Symp.
on Operating systems Principles, pages 232-246, Kiawah Island Resort,
SC, December 1999.

[ARON00] Aron, M. and Drushel, P., Soft Timers: Efficient Microsecond Software
Timer Support for Network Processing, ACM Transactions on Computer
Systems, vol. 18, pp. 197-228, Aug. 2000.

[BHO00] Bhoedjang, R., Verstoep, K., Ruhl, T., Bal, H., and Hofman, R.,
Evaluating Design Alternatives For Reliable Communication On High-
Speed Networks. In Proceedings of ASPLOS-9, November 2000.

[BOD95] Boden, N., Cohen, D., and Felderman, R., Myrinet: A Gigabit Per Second
Local-Area Network, IEEE Micro, 15(1):29, February 1995.

[CERN] CERN AceNIC Linux Driver, http://jes.home.cern.ch/jes/gige/acenic.html

[DAY83] Day, J. D., and Zimmerman, H., The OSI Reference Model. Proceedings
of the IEEE, vol. 71, pp. 1334-1340, 1983.

[DEC] 21143 PCI Lan Controller Hardware Reference Manual.
http://www.intel.com/design/network/manuals/278074.htm.

[DOV01] Dovrolis, C., Thayer, A., and Ramanathan, P., HIP: Hybrid Interrupt-
Pollling for the Network Interface, ACM OS Reviews, vol 35, pp. 50-60,
Oct. 2001.

[ELAY96] Elaydi, S. N., An Introduction to Difference Equations, Springer-Verlag
1996, pg 113.

[EICK95] Eicken, T., A. Basu, V. Buch, and W. Vogels, U-Net: A User-Level
Network Interface For Parallel And Distributed Computing. In
Proceedings of the 15th ACM Symposium on Operating Systems
Principles, December 1995.

[FAR00] Farrel, P. and Ong, H., Communication Performance over a Gigabit
Ethernet Network, IEEE Proc. of 19th IPCCC, 2000.

156

[GIES78] Giessler, A., Haanle, J., Konig, A., and Pade, E., Free Buffer Allocation –
An Investigation by Simulation, Computer Networks, vol. 1, no. 3, pp.
191-204, July 1978.

[GRO98] Gross, D. and Harris, C. M., Fundamentals of Queueing Theory. John
Wiley & Sons. 3rd Edition, 1998.

[HAN97] Hansen, J. S. and Jul, E., A Scheduling Scheme for Network Saturated NT
Multiprocessor, In Proceeding of USENIX Window NT Workshop, Seattle,
Washington, August 1997.

[HAS00] Hasegawa, Y., Nagasaka, Y., and Yasu, Y., DAQ/EF-1 Event Builder
system on Linux/Gigabit Ethernet, http://rd13doc.cern.ch/Atlas/Notes/
147/ Note147-1.html.

[IND98] Indiresan, A., Mehra, A., and Shin, K. G., Receive Livelock Elimination
via Intelligent Interface Backoff, TCL Technical Report, University of
Michigan, 1998.

[KIM01] Kim, I., Moon, J., and Yeom, H. Y., Timer-Based Interrupt Mitigation for
High Performance Packet Processing, 5th International Conference on
High-Performance Computing in the Asia-Pacific Region, September,
2001, Gold Coast, Australia.

[KLEI93] Kleinroch, L., On the Modeling and Analysis of Computer Networks,
Proc. of IEEE, vol. 81, no. 8, pp. 1179-1191, August 1993.

[JAIN88] Jain, R., Ramakrishnan, K. K., Congestion Avoidance in Computer
Networks with a Connectionless Network Layer: Concepts, Goals and
Methodology, Proceedings of Computer Networking Symposium, pp 134-
143, 1988.

[JAIN90] Jain, R., Congestion control in Computer Networks: Issues and Trends,
IEEE Network Magazine, May 1990.

[LAI96] Lai, K. and Baker M., A Performance Comparison Of Unix Operating
Systems On The Pentium, In The Proceedings of the Winter 1996
USENIX Technical Conference, Jan. 1996

[LAW91] Law, A. M. and Kelton, W. D., Simulation Modeling and Analysis,
McGraw-Hill. 2nd Edition, 1991.

[LEL94] Leland, W., Taqqu, M., Willinger, W., Wilson, D., On the Self-Similar
Nature of Ethernet Traffic, IEEE/ACM Trans. On Networking, vol. 2, pp.
1-15, 1994.

157

[MAQ96] Maquelin, O., Gao, G. R., Hum, H. H., Theobald, K. B., and Tian, X.,
Polling Watchdog: Combining Polling and Interrupts for Efficient
Message Handling, In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 179-190, New York, May
1996. ACM Press.

[MOG97] Mogul, J., and Ramakrishnan, K. K., Eliminating Receive Livelock In An
Interrupt-Driven Kernel, ACM Trans. Computer Systems, vol. 15, no. 3,
pp. 217-252, August 1997.

[PAK95] Pakin, S., Lauria, M., and Chien, A., High Performance Messaging On
Workstations: Illinois Fast Messages (FM) For Myrinet, 1995.

[PIE01a] Pietikainen, P., Scheduled Transfer Protocol on Linux. 2001.

[PIE01b] Pietikainen, P., Hardware-Assisted Networking Using Scheduled Transfer
Protocol on Linux. Ph.D thesis, 2001.

[RAM93] Ramakrishnan, K. K., Performance Considerations in Designing Network
Interfaces, IEEE Journal on Selected Areas in Communications 11(2):
203-219.1993

[RIL00] Riley, S., Breyer, R., Switched, Fast, and Gigabit Ethernet, Mtp Network
Engineering Series. 2000

[RIZZ02]

[RUB01] Rubini, A. and Corbet, J., Linux Device Drivers. 2nd Edition.

O’Reilly,2001

[PAR02] Parker, M., A Case for User-Level Interrupts. 2002

[PAT03] Patterson, D. A., and Hennessy, J. L., Computer Architecture, A
Quatitative Approach. 3rd Edition. Morgan Kaufmann, 2003
.

[SHIV01] Shivan, P., Wyckoff, P., and Panda, D., EMP: Zero-copy OS-bypass NIC-
driven Gigabit Ethernet Message Passing, In Proceedings of SC2001,
Denver, Colorado, USA, November 2001.

[SMI93] J. M. Smith and C. B. S. Traw., Giving applications access to Gb/s
networking, IEEE Network, 7(4):44-52, July 1993.

[STE94] Steenkiste, P. A., A Systematic Approach to Host Interface Design for
High-Speed Networks, IEEE Computer, 27(3):47-57, March 1994.

Rizzo, L., Device Polling support for FreeBSD, http://info.iet.unipi.it/
~luigi/polling/, online document, Feb. 2002.

158

[SUM98] Sumimoto, S., Tezuka, H., Hori, A., Harada, H., Takahashi, T., and

Ishikawa, Y., High Performance Communication Using A Gigabit
Ethernet. Technical Report TR-98003, Real World Computing
Partnership, 1998.

[TRI98] Trivedi, B., Queueing Networks and Markov Chains, John Wiley & Sons.
1998.

[VAH96] Vahalia, U., UNIX Internals, the new fronties, Prentice Hall, 1996.

[XU98] Xu, C., Han, X., Liu, C., and Mann, J., Active Messages Using Selective
Interrupts Without Polling, In Proceedings of the 10th IASTED
International Conference on Parallel and Distributed Computing and
Systems, Oct. 1998, Las Vagas, NV.

Vita

• Khalid Abdalla El-Badawi.

• Born in Kuwait on November 11, 1970.

• Completed Bachelor of Science (B.Sc.) in Joint Subject of Mathematical and

Computer Science from University of Khartoum, Sudan, in December 1994.

• Completed MS in Computer Science from King Fahd University of Petroleum

and Minerals, Dhahran, Saudi Arabia, in April 2003.

• Email: badawikhalid@hotmail.com.

	Gigabit Ethernet Technology
	Interrupt-Driven Kernels
	An Overview of Network Interface Model
	Interrupt Handling Overhead
	Receive Livelock

	Motivation
	Main Contributions
	Organization of Thesis
	Performance Metrics
	Proposed Solutions to Reduce Interrupt Overhead
	Interrupt Coalescing Scheme
	Enabling-Disabling Interrupt Scheme
	Polling Scheme
	Interrupt-Polling Scheme
	Jumbo Frames

	Queuing Theory
	Notations and Assumptions
	Performance Metrics

	Ideal System Model
	Performance Metrics
	Numerical Results

	Interrupt-Driven System Models
	Deterministic Model
	General Formula for Effective Service Rate

	Markovian Modeling
	First Technique: Effective Service Time
	Performance Metrics
	Numerical Results

	Second Technique: Pure Markovian Chain
	Pure Markovian Model: First Solution
	Pure Markovian Model: Second Solution
	Performance Metrics
	Numerical Results

	Comparison of Two Models

	Interrupt Coalescing Model
	Modeling CPU Usage
	Modeling Interrupt Coalescing Scheme
	Performance Metrics
	Numerical Results

	Enabling-Disabling Interrupt Model
	Modeling Enabling-Disabling Interrupt scheme
	Performance Metrics
	Numerical Results

	Introduction
	Simulation Type
	Simulation Language
	Random Number Generator
	Seed Selection

	Components and Organization
	Traditional Scheme Simulation Model
	Interrupt Coalescing Simulation Model
	Enabling-Disabling Interrupt Scheme Simulation Model
	Comparison and Numerical Results
	Performance Compared
	Selecting the Best Scheme
	Design and Implementation Issues
	NIC-Side Solution
	OS-Side Solution

