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In Gigabit networks, the arrival rate of incoming traffic is very high and 

supercedes the packet processing rate of network nodes such as router, servers, or 

clients.  In addition, the very high rate of incoming traffic causes a very high rate of 

interrupts which has negative impact on the operating system performance of these 

network nodes.  The negative impact is primarily due to interrupt overhead associated 

with each packet arrival.  This thesis presents models and analytical techniques for 

capturing the behavior and studying the performance of interrupt-driven kernels due to 

Gigabit networks traffic.  The Performance is expressed in terms of throughput, latency, 

CPU availability, and overall power system.  In addition, the thesis evaluates and 

compares the performance of four popular interrupt handling schemes for decreasing 

such interrupt overhead.  These schemes include Traditional scheme, Interrupt 

Coalescing, Polling, and Enabling and Disabling Interrupt.  The performance for all of 

these schemes is studied using both analysis and simulation.  Finally, the thesis discusses 

important selection, design, and implementation issues as well proposing the selection 

for the best interrupt handling scheme.  
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 خلاصة الرسالة

 خالد عبداالله البدوي: الإســـــــم 

  في شبكات الجيجابت) interrupts (تقييم أداء طرق معالجة المقاطعات: عنوان الرسالة 

 علوم الحاسب الآلي: التخصص 

 ٢٠٠٣أبريل : تاريخ التخرج 

 

 معدل معالجة الحـزم عنـد       عالية جداً وقد تفوق   تكون  م  وسير القد حركة  في شبكات الجيجابت ، إن معدل وصول        

قد يسبب هذا المعدل العـالي لحركـة         ذلك ،    علاوة على   .جهزة العملاء أ الشبكة مثل الخادمات و الراوتر و      طرفيات

هذا الأثر السـلبي    .   لى أداء نظام التشغيل لتلك الطرفيات     السير تولد مقاطعات بمعدل عالي جداً والتي لها أثر سلبي ع          

لمعرفـة سـلوك    يقدم هذا البحث نماذج وطرق تحليلية       .  المصاحبة مع كل حزمة قادمة    المقاطعة  ناتج أساساً من تكلفة     

ير حركـة سـير شـبكات    ث تحت تـأ (interrupt-driven kernels) بالمقاطعة ةنظمة المنقادالأدراسة أداء نواة و

 ، توفر وحدة المعالجة     (latency) ، التأخر    (throughput)الأداء بدلالة الإخراج    هذا  يمكن أن نعبر عن     .   الجيجابت

طـرق  هذا البحث يقيِّم ويقارن أداء أربـع  لى ذلك ، إإضافة .   و قوة النظام الكلي(CPU availability)المركزية 

 الطريقة التقليدية وطريقة جمع المقاطعات وطريقة الانتخـاب و          :تشمل هذه الطرق  .  معالجة المقاطعة لتخفيض تكلفتها   

وأخيراّ ، ينـاقش هـذا      .  تم دراسة أداء هذه الطرق باستخدام التحليل والمحاكاة       .  كين المقاطعات عدم تم -طريقة تمكين 

 لطـرق معالجـة     التطبيق كما يقترح اختيار الطريقة المثلـى      البحث عدة أمور منها أهمية اختيار الطريقة ، التصميم ، و          

 .المقاطعة
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  CHAPTER 1  

INTRODUCTION 

1.1 Gigabit Ethernet Technology 

These days we have a widespread deployment and development of high-

performance network services, which provide high bandwidth and low latency.  One of 

such network services is Gigabit Ethernet which was introduced in 1998.  Like Ethernet, 

Gigabit Ethernet is media access control (MAC) and physical-layer (PHY) technology. 

It offers one gigabit per second (1 Gbps) raw bandwidth.  To remain backward 

compatible with existing Ethernet technologies, Gigabit Ethernet, also known as IEEE 

Standard 802.3z, uses the same IEEE 802.3 Ethernet frame format. 

Like its predecessor, Gigabit Ethernet operates in either half-duplex or full-

duplex mode.  In full-duplex mode, frames travel in both directions simultaneously over 

two separate channels on the same connection for an aggregate bandwidth of twice that 

of half-duplex mode.  Full duplex networks are very efficient since data can be sent and 

received simultaneously. However, full-duplex transmission, which is commonly 

implemented, can be used for point-to-point connections only.  

Full-duplex transmission can be deployed between ports on two switches, a 

workstation and a switch port, or between two workstations.  Full-duplex connections 

1 
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cannot be used for share-port connections, such as a repeater or hup port that connects 

multiple workstations.  Gigabit Ethernet is most effective when running in the full-

duplex, point-to-point mode where full bandwidth is dedicated between the two end-

nodes.  Full-duplex operation is ideal for backbones and high-speed server or router 

links. 

For half-duplex operation, Gigabit Ethernet will use the enhanced CSMA/CD 

access method.  With CSMA/CD, the same channel can only transmit or receive at one 

time.  A collision results when a frame sent from one end of the network collides with 

another frame.  Timing becomes critical if and when a collision occurs.  If a collision 

occurs during the transmission of a frame, the MAC will stop transmitting and 

retransmit the frame when the transmission medium is clear. If the collision occurs after 

a packet has been sent, then the packet is lost since the MAC has already discarded the 

frame and started to prepare for the next frame for transmission.  In all cases, the rest of 

the network must wait for the collision to dissipate before any other devices can 

transmit. 

 

In half duplex mode, Gigabit Ethernet’s performance is degraded.  This is 

because Gigabit Ethernet uses CSMA/CD protocol which is sensitive to frame length.  

Ethernet has a minimum frame size of 64 bytes.  The reason for having a minimum size 

is to prevent a station from completing the transmission of a frame before the first bit 

has reached the far end of the cable, where it may collide with another frame.  Therefore, 

the minimum time to detect a collision is the time it takes for the signal to propagate 

from one end of the cable to the other.  This minimum time is called slot time.  The 

standard slot time for Ethernet frames is not long enough to run a 200-meter cable when 
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passing 64-byte frames at Gigabit speed.  In order to accommodate the timing problem 

experienced with CSMA/CD when scaling half-duplex Ethernet to Gigabit speed, slot 

time has been extended to guarantee at least a 512-byte slot time using a technique 

called carrier extension as shown in .  The frame size is not changed; only the 

timing is extended. 

Figure  1.1

Carrier Extension wastes bandwidth.  For example, a small packet of 64 bytes 

will have 448 padding bytes of carrier extension symbols.  This clearly results in low 

throughput and an increased collision rate which may increase the number of lost 

frames.  In fact, for a large number of small packets, the Gigabit Ethernet throughput is 

only marginally better than 100BaseT. 

 

Destination Source Type/

C

I

a
 

Figure  1.1: Gigabit Ethernet frame format with carrier extension 

Preamble SDF Address Address Length Data FCS Extension

64 bytes min

512 bytes min

Duration of carrier Event

SDF : Start of Frame Delimiter.
FCS: Frame Check Sequence. 

 

To gain back some of the performance lost due to carrier extension, Nbase 

ommunication (Chatsworth, California) proposed a solution known as packet bursting. 

t is essentially a modification to the carrier extension procedure.  The idea is to transmit 

 burst of frames every time the first frame has successfully passed the collision window 
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of 512 bytes.  Carrier extension is only applied to the first frame in a burst. This 

essentially averages the wasted time in the carrier extension symbols over the few 

frames that are transmitted.  Packet bursting substantially increases the throughput and 

does not change the dynamics of the CSMA/CD algorithm. It only slightly modified the 

existing MAC definition. 

Half-duplex operation is intended for shared multi-station LANs, where two or 

more end nodes share a single port. Most switches enable users to select half-duplex or 

full-duplex operation on a port-by-port basis, allowing users to migrate from shared 

links to point-to-point, full duplex links when they are ready. 

1.2 Interrupt-Driven Kernels 

Many applications such as video streaming and voice over IP impose heavy 

demands on the communication network.  Gigabit Ethernet technology can provide the 

required performance to meet these demands.  However, it has also shifted the 

communication bottleneck from network interconnections to host systems.    

There are two main problems seen in Gigabit networking that reduce the 

performance of host systems.  These two problems are unnecessary memory copies and 

interrupts [PIE01a].  The reasons for these two problems are as follows.  A host system 

receives or transmits data as a set of packets.  Excessive memory copying is a significant 

problem when the network speed approaches the speed of main memory.  Moreover, 

each received packet needs to be filtered and demultiplexed to the correct application.  

This requires the moving of received packets from network interface card (NIC) to 
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applications.  Therefore, avoiding memory copy is nearly impossible.  Interrupts, on the 

other hand, are typically generated for each packet received or transmitted.   For low-

speed networks such as 10Mbps Ethernet this is not a significant problem, since the 

amount of interrupts is still only a few thousands per second even with small packets 

[MOG97].  The cost of handling interrupts at that rate was low enough and any normal 

system would spend only a fraction of its CPU time handling interrupts.  On Gigabit 

Ethernet using the standard 1500 byte packets, an interrupt per packet would cause 

nearly 80000 interrupts per second [KIM01].  With smaller packets the problem is even 

worse. 

In the following sections, we give a brief description about network interface 

model seen in most host systems.   Then, we explain in detail the interrupt overhead and 

its related problems in interrupt-driven operating systems. 

1.2.1 An Overview of Network Interface Model 

The architecture of network interface system consists of several hardware and 

software interacting components in both the host computer and the NIC.   

depicts the major components seen in most Gigabit Ethernet network interface system. 

Figure  1.2

We consider a typical host system where all the network interface functionality is 

performed by the operating system processes running in the kernel address space, while 

the application processes run in the user address space.  We assume that the NIC is 

equipped with two DMA1 engines.  These engines are responsible for packets movement 

                                                 

 
1 Direct Memory Access. 
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between NIC and host system memory.   With Gigabit environment, the use of DMA 

becomes necessary in order to eliminate any CPU overhead involved in copying packets 

from (or to) NIC to (or from) host system memory.  In this section we focus on the 

receive-part, where the interrupt overhead is more important. 

Figure  1.2 shows the flow path of an incoming packet between the NIC, host 

memory, and applications.  When a packet arrives at the NIC it gets temporarily stored 

in a local queue.  Then, the NIC's device controller transfers the received packet to the 

host memory using Rx DMA engine1.  After the incoming packet is placed into the host 

memory, the NIC generates a hardware interrupt to notify the OS of the arrival of a new 

packet.  The OS invokes interrupt dispatcher to identify the nature of the interrupt and 

the corresponding device driver.  The interrupt service routine (ISR), which is part of the 

network interface device driver, posts a software interrupt.  Then, the software interrupt 

executes a filter function to enable posting the packet to the appropriate protocol 

processing routine (usually IP routine).  As the protocol processing moves up the layers, 

the packet remains in the same kernel memory buffer that it was moved into, with only 

pointer manipulations between the protocol layers.  Finally, the packet is moved from 

the kernel space to the user’s address space2, and then the recipient application is 

notified. 

                                                 
1  The locations within host system memory reserved for received packets are indicated to Rx-DMA using 
Buffer Descriptor.   

 
2 This moving is performed within the context of the software interrupt. 
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. . . Application Application User space 

Host system 
Memory 

Network Protocol  
Stack 

Kernel space 

Device Driver 

PCI Rx Circular Buffer 
Descriptor is loaded

Rx DMA Tx DMA 
Engine Engine 

NIC

Rx MAC Tx MAC 

Network traffic
 

Figure  1.2: Typical network interface model for Gigabit Ethernet subsystem 

1.2.2 Interrupt Handling Overhead 

Most of the general-purpose operating systems utilize similar scheme for 

handling hardware interrupts. Generally, in most UNIX-based operating systems, each 

hardware interrupt requires the following steps [RUB01]: 

1. Hardware and software context switching, preservation of CPU registers, and 

change of active processor stack. 

2. Accessing the registers of hardware interrupt controller, and determination of 

the appropriate device driver interrupt service routine (ISR). 
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3. Updating the interrupt counters. 

4. Processing the interrupt requests inside the designated ISR. 

5. Upon completion of the ISR, system state is restored. 

Execution time for steps 1, 2, 3, and 5 is mainly depending on CPU, memory, 

and system bus performance. In step 4, the execution time depends on the job of ISR.  In 

old network interface system (no DMA support), the processing duration for step 4 is 

variable and it depends on the size of received packet.  The main objective of ISR was 

moving the received packet from NIC buffer to the host memory.  However, in our 

network interface system (with DMA support), the primary job of ISR is to notify the 

kernel of the arrival of a new packet.  The notification only happens after the packet is 

successfully copied to the host system memory.  Therefore, the ISR time (time spent to 

process all five steps) for one interrupt request is relatively constant for specific system 

hardware, and mostly unrelated to the network traffic or current system load. 

As measured in [ARON00], a hardware interrupt with a null interrupt handler 

introduces an overhead of about 4 µs in a 500MHz Pentium III system running FreeBSD 

2.2.6.  On Gigabit Ethernet networking, the time between successive minimum sized 

packets (512-bytes) can be calculated as follows: 

s096.4
101

1
101
1

1
8512 69 µµ

=
×

×
×

×× − s
s

bits
s

byte
bitsbytes . 

This means the CPU must handle an interrupt in less than 4 µs in order to keep the 

system responsive.  However, the packet arrival rate can surpass the system packet 

processing rate which includes network protocol processing and interrupt handling.  

Therefore, interrupt overhead becomes an important overhead for interrupt-driven 
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systems that receive packets at gigabit speed from the NIC, and it is important to 

examine the possible schemes that can eliminate interrupt overhead. 

1.2.3  Receive Livelock  

In this section we describe briefly the phenomenon of receive livelock.  

Incoming network packets received at a host must either be forwarded to other hosts (as 

in the case of a router), or to application programs where they are consumed.  The 

delivered system throughput is a measure of the rate at which such packets are processed 

successfully.  , adopted by [RAM93], shows the delivered system throughput 

as a function of offered input load.  The figure illustrates that in the ideal case, no matter 

what the packet arrival rate, every incoming packet is processed.  However, all practical 

systems have finite processing capacity, and cannot receive and process packets beyond 

a maximum rate.  This rate is called the Maximum Loss-Free Receive Rate (MLFRR) 

[RAM93].  Such rate is an acceptable rate and is relatively flat after that.  Under network 

input overload, a host can be swamped with receiving packets to the extent that the 

effective system throughput falls to zero.  Such a situation, where a host has not crashed 

but is unable to perform useful work, such as delivering received packets to user 

processes or running other ready processes, is known as receive livelock. Similarly, 

under receive livelock, a router would be unable to forward packets to the outgoing 

interface, resulting in transmit starvation.  

Figure  1.3
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Figure  1.3: Possible behaviors of delivered throughput versus offered load 

The main reason for receive livelock is that hardware interrupts (interrupts 

generated by NIC) are handled at a very high priority level, higher than software 

interrupts, or input threads that process the packet further up the protocol stack, or 

application processes.  Generating interrupt upon packet arrival implies that the host 

must accept and process all incoming packets, regardless of whether the host system has 

sufficient processing capacity available to process them completely.  As a consequence, 

under heavy network traffic, the system spends all of its resources handling interrupts.  

Since hardware interrupts and software interrupts have higher priority than application 

processes, the application queues will eventually fill because the receiving application 

no longer gets enough CPU time to consume the packets.  At that point, packets are 

discarded when they reach application queue.  As a result, starvation will occur for 

application processes. 
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As the load increases further, the software interrupts will eventually no longer 

keep up with the protocol processing, causing the IP queue to fill.  The problem is that 

ISRs have strictly higher priority than software interrupts. Under overload, this will 

cause packets to be dropped from IP queue besides packet dropping in application 

queue.   

In summary, interrupt-driven systems perform very badly under overload.  High 

packet arrival rates can result in receive livelock, a situation where the host uses all of its 

capacity to receive incoming packets, and nothing else will be performed.  In receive 

livelock, system throughput drops to zero, application processes and threads start to 

starve, and network latency increases rapidly. 

1.3 Motivation 

With emerging of Gigabit networks, achieving high performance communication 

becomes a challenge.  Most modern operating systems depend on interrupts for event 

notifications.  As noted earlier, interrupt-driven systems tend to perform very badly 

under Gigabit network environment. 

Different solutions to eliminate interrupt overhead and resolve receive livelock 

problem have been proposed.  Such solutions include interrupt coalescing, enabling and 

disabling interrupts, polling, jumbo frames, etc.  The performance of these solutions has 

been studied experimentally.   None of these solutions modeled and studied analytically 

the performance and behavior of system performance under heavy network loads.   
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1.4 Main Contributions 

The main contributions of this thesis work are the followings: 

• Conducting an extensive literature survey. 

• Proposing analytical models to capture the impact of interrupt overhead on 

performance especially in systems with high arrival rates.  These models can 

be utilized to understand and predict the performance of interrupt-driven 

systems and can be served as a reference model for comparing the 

performance of these proposed solutions to resolve the receive livelock 

condition.  The models include Traditional scheme, Interrupt Coalescing 

scheme, and Enabling-Disabling Interrupt scheme. 

• Proposing a novel metric to measure the overall system power. 

• Simulation models for all interrupt handling schemes. 

• Evaluation performance of interrupt handling schemes.   

• Discussing some issues on design and implementation. 

1.5 Organization of Thesis 

This thesis is organized as follows.  Chapter 2 gives an extensive literature 

survey of interrupt handling schemes.  Chapter 3 presents analytical models to describe 

different optimization for interrupt handling. Chapter 4 presents simulation.  Chapter 5 

presents performance comparison between interrupt handling schemes and some 

implementation issues.  Chapter 6 gives the conclusion and future work. 

 



 

  CHAPTER 2  

LITERATURE REVIEW 

In this chapter, we will discuss performance metrics used to evaluate interrupt 

handling schemes.  Then, we will discuss different proposed solutions used to eliminate 

interrupt overhead and resolve receive livelock problem.  We will also show how these 

solutions are implemented in host systems.   

2.1 Performance Metrics 

Before we introduce various schemes used for handling packet reception, we first 

have to define the following metrics, as they apply to the receive operation from the 

network interface system.  

1. Throughput. We can define throughput as the rate at which packets 

successfully leave the network interface system (i.e. from the kernel buffer to 

the user space), or in other words, the rate at which the ultimate application 

can deliver packets from the network interface system.  Therefore, any design 

of network interface system tries to maximize system throughput as much as 

possible. 

2. Latency. Latency is the time duration between a packet arrival at the network 

interface system and its completion (i.e. its delivery to the ultimate 

13 
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application).  If the receive operation introduces more overhead, then the 

throughput of the system will decrease and the latency will increase.  The 

latency can be larger than the overhead if the received packets are queued in 

the kernel buffer before they are delivered to the ultimate application.   Thus, 

minimizing latency as much as possible is required. 

3. CPU Availability. CPU availability is the percentage of time a server (or 

CPU) is available for user processes during a given interval of time.  The 

design of the network interface influences the amount of CPU resources 

consumed for receiving data which we would like to minimize.  When a host 

system is overloaded with incoming packets, it must continue to process 

other tasks, so that to allow applications to make use of the arriving packets.  

The operating system must fairly allocate CPU resources among packet 

reception and transmission, protocol stack processing, and application 

processing. 

4. Overall System Power. The aforementioned goals; maximizing throughput, 

minimizing latency, and maximizing CPU availability are mutually 

contradictory in that all schemes to increase throughput result in decreased 

CPU availability with increased latency as well and vice versa.  The 

advantage of the overall system power is that it gives the correct operating 

point that maximizes throughput, minimizes latency, and maximize CPU 

availability. 
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5. Stability Condition:  Stability condition defines the maximum load after 

which the host system will not be stable due to buffer overflow, high traffic 

load, or due to interrupt overhead. 

6. Probability of loss: The loss of packets from the host system memory is often 

the primary source of loss in local area networks.  The probability of loss is 

impacted by the arrival rate of packets and the service rate.  The probability 

of loss can give an indication of buffer availability and system load level. 

It is worth noting that when we are going to design a system we have to specify 

the goal.  The goal specifies which performance metric is more important than the 

others.  For example, when we design a system to implement video streaming, then we 

focus on throughput more than other performance metrics. 

2.2 Proposed Solutions to Reduce Interrupt Overhead 

In this section, we present different proposed solutions for packet reception. 

2.2.1 Interrupt Coalescing Scheme 

Instead of generating an interrupt for each packet arrival, a group of packets will 

be notified to the operating system via a single interrupt request. This method is known 

as interrupt coalescing or mitigation. 

Many modern NICs and device drivers adopt the idea of interrupt coalescing.  

Modern NICs configure interrupt coalescing through its registers.  For example, TC9021 
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Ethernet NIC uses RxDMAIntCtrl register to configure interrupt coalescing.  The 

interrupt frequency can be set based on either the number of packets received or after a 

fixed amount of time following the receipt of a packet (via another register field).  Some 

NICs have intelligent hardware for packet reception.  The NIC dynamically regulates its 

interrupt frequency based on traffic load.  For example, when traffic is light, the NIC 

interrupts the host after receiving every packet to minimize packet delay.  In heavy 

traffic, the NIC is able to optimize host efficiency by dynamically adjusting the CPU 

interrupt rate and issuing a single interrupt only when buffer space is low or its timer has 

expired. 

Device drivers support interrupt coalescing through tuned parameters.  For 

example, the Gigabit Ethernet driver on Linux that was developed for ACEnic NIC 

(produced by Alteon) uses two parameters; one parameter for transmission coalescing 

and the other for reception coalescing, to affect the times of interrupts from the NIC on 

the transmitting and receiving [CERN].  When Jumbo frames are enabled, the driver 

uses other two parameters to define interrupt coalescing on transmission and reception.  

Windows 2000 supports interrupt coalescing by specifying manually the number of 

interrupts per second.  This can be found on the registry file under the following key: 

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip

\Parameters\Interfaces\<interface-name>\ MaxIRQperSec. 

Another implementation of interrupt coalescing was proposed by [KIM01].  The 

solution is based on timer to generate interrupts.  Therefore, the solution assumes that 

NIC has build-in timer chip.  The solution has been implemented as follows.  The device 

driver has been modified to operate in two modes: the interrupt mode and timer mode.  
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In interrupt mode, the module works in traditional manner as specified in GNU/Linux 

license.  In timer mode, receive interrupts are totally disabled and NIC is equipped with 

a timer that generates an interrupt after passing a fix period of time.  During time 

interval, the NIC may receive multiple packets after which they will be notified by a 

single interrupt.  The NIC1, on which this solution has been implemented, has timer-chip 

that clicks on a multiple of 81.92 µs. 

When the driver module is loaded into kernel, the users can direct the driver to 

operate in the timer mode or in the interrupt mode.  If the user selects the timer mode, he 

has the ability to configure the timer expiration period, i.e., the interval time between 

successive interrupts.  This time must be a multiple of 81.92 µs. When the device driver 

started in timer mode, it resets NIC to only generate timer interrupts, transmission 

interrupts, and interrupts related to error reporting.   

Indiresan et. al. [IND97] proposed another technique to implement dynamic 

interrupt coalescing called Intelligent Interface Backoff.  The host system provides some 

feedback to the NIC of its current load, and the NIC determines its interrupt frequency 

based on this information.  In light traffic, the host system behaves normally, i.e. it 

interrupts on every incoming packet.  In heavy traffic, the NIC modulates its interrupt 

frequency on the basis of host’s load.  When the host indicates to the NIC that its load is 

increasing (and there is a backlog in the processing of incoming packets or executing 

other application), the NIC reduces its interrupt frequency.  As the load on the host 

                                                 

 
1 SMC Etherpower 10/100, based on DEC 2114 Tulip Ethernet controller chip. 
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decreases, the NIC increases its interrupt frequency until it reverts to the normal 

interrupt mode. 

The host detects excess load or low load by using simple heuristic, which is 

buffer utilization.  Since incoming packets are typically allocated a buffer, which is not 

freed until the packet is completely processed, high buffer utilization could indicate that 

packets are not being processed to completion fast enough.  The host sends an overload 

indication when the buffer availability drops below 25%.  The host sends this indication 

through device driver.  Since the device driver typically issues commands to the NIC for 

every arriving packet, the NIC can adjust rapidly to overload situation.  In addition, 

adding one field to these commands will not require much modification or increase the 

host-NIC interface overhead. 

The solution has been implemented as follows.  On initialization, the host issues 

a command to enable backoff feature on the NIC.  This command has four parameters: 

minimum backoff period (Imin), maximum backoff period (Imax), backoff factor (b > 1), 

and restore factor (r < 1). 

The interrupt frequency is determined by backoff_period value.   

depicts a pseudo-code describing how backoff_period value is updated. 

Figure  2.1

 

Notice that when the backoff period falls below Imin, the NIC reverts to the 

normal interrupt mode and backoff period is bounded by Imin and Imax values.  As backoff 

period increases the interrupt frequency decrease to adapt the host load.  Imin represents 

the maximum interrupt frequency for the NIC, and sets an upper bound on the CPU 

capacity used for handling receive interrupts from that NIC.  Imax represents the 

minimum interrupt frequency, and hence, the worst case latency for the host to start 
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processing packets on the interface.  The backoff and restore factors bias an interface 

towards Imax and Imin, respectively.  A large b makes the interface shed excess load 

rapidly, and a small r makes the interface reduce latency quickly as the offered load 

reduces. 

 

set backoff_period to 0; 

procedure update_backoff_period (indication as parameter)  

begin 

if indication is overload then begin 

if backoff_period == 0 then 

backoff_period = Imin 

else  

if backoff_period + b < Imax then 

backoff_period += b; 

    end 

if indication is lower then begin 

if backoff_period <= Imin then 

enable normal interrupt mode 

return 

else 

backoff_period -= r 

     end 

  wait for backoff_period  before interrupting again 

end 

Figure  2.1:  Pseudo-code for Intelligence Backoff Interface 

The performances of the above solutions have been studied experimentally.  An 

experimental result from [HAS00] shows that small values of interrupt coalescing 

parameter give the best performance in terms of throughput. Interrupt coalescing 
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minimizes CPU utilization due to interrupt handling. However, interrupt coalescing 

increases the system response time.  

2.2.2 Enabling-Disabling Interrupt Scheme 

Another solution to eliminate interrupt overhead was proposed by Mogul and 

Ramakrishnan [MOG97].  The authors implemented a mechanism where interrupts are 

only used at low network load conditions, while in high loads the interrupts are disabled 

and a polling thread is scheduled for reading the network interface (or host system 

memory).  Every time a poll is executed, a certain packet quota is specified, i.e. the 

maximum number of packets that can be read in that poll.  The quota is used for fairness 

purposes when other tasks must also be permitted to make progress, so as to avoid 

livelock condition.  If at the end of the polling some packets remain at the NIC, the 

polling thread is executed again after a few milliseconds.  Otherwise, the system 

switches back to interrupts. 

2.2.3 Polling Scheme 

Rather than NIC controls receive operation, the host operating system 

periodically looks at NIC to see if it requires attention, and then invokes the handler 

accordingly.   This method is known as device status polling [RIZZ02]. 

With polling, the asynchronous event notification concept based on hardware 

interrupt is completely abandonment, and OS initiates a read operation of a control NIC 

register after a predefine time duration.  If one or more packets have arrived, then the 
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protocol stack routines are invoked to process the received packets.  Since several 

packets may be read in the same poll and since the code to perform a poll is much 

shorter than the ISR, the receive overhead is reduced [DOV01].  

One of the key advantages of polling is that it gives the OS a chance to control 

the amount of CPU spent in packet processing at protocol stack.  This is done by 

adapting the maximum number of packets to be processed in each poll.  The drawback 

of polling appears when the packet arrival rate is much lower than polling rate.  In that 

case, packets are not guaranteed to be presented at each poll; the polls in which no 

packet is found in the system memory buffer (unsuccessful polls) increase the overall 

overhead of the network interface.  Additionally, the latency of the receive operation 

increases because packets are queued in the system memory buffer until the polling 

event.  Because of these two drawbacks, polling is not commonly used in general 

purpose systems.  Polling is used however in systems that have a heavy network load, 

such as routers, bridges, firewalls, or file servers [DOV01].  

There are two approaches to implement polling.  One possible polling approach 

is to have a periodically scheduled kernel polling process [RIZZ02].  This approach, 

however, requires a context switch for each poll.  But the overhead of this context 

switching is smaller than the cost of an interrupt.  This solution can be implemented in 

multitasking operating systems. 

 

The second approach is based on operating system soft clock [ARON00].  This 

clock causes a periodic interrupt that is used for time-slicing and other bookkeeping 

activities.  Its period is the finest time slice and system clock granularity that the 

operating system allows.  The most OS clock period was commonly set to 10 
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milliseconds [VAH96]. Although the polling period can be constrained to be a multiple 

of this period, the time granularity of adjusting the polling period would be too coarse, 

and the maximum latency that polling could introduce would be excessive (several tens 

of milliseconds) for many applications.  More recently, some OS vendors have moved to 

a smaller clock interrupt period of 1 millisecond (e.g., Solaries 8).   

Another solution for polling scheme was proposed by [MAQ96], namely, Polling 

Watchdog.  Polling Watchdog is a hardware extension at the NIC that limits the 

generation of interrupts to the cases where explicit polling fails to handle the packets 

quickly.  The basic idea is that when a packet arrives at the NIC, a timer starts counting.  

If the packet is not removed from the NIC through polling within a given amount of time 

(the watchdog timeout period Twdog), the watchdog interrupts the CPU. Twdog is set to 

around 50 µs, in order to strictly limit the maximum latency.  In the EARTH-MANNA 

multiprocessor system on which this solution has been implemented, the cost of an 

interrupt is 4.5 µs, and the cost of a poll is 400 ns. 

2.2.4 Interrupt-Polling Scheme  

This scheme combines the advantages of interrupts and polling, i.e. it uses 

interrupts under low network load conditions and polling otherwise.  Therefore, this 

scheme is expected to perform better than interrupts in terms of receive overhead due to 

interrupt handling and better than polling in terms of receive latency due to unnecessary 

packet queuing. 
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One implementation for this scheme was performed for Windows NT platform 

[HAN97].  The implementation simply turns off interrupts and uses polling under high 

traffic load. When the traffic load decreases, it turns the interrupts back.  The traffic load 

is captured by user thread starvation.  The authors list 3 possibilities to detect user thread 

starvation: length of network data queue, interrupt rate, and amount of time spent 

processing interrupts.  The authors implement the interrupt processing time for 

indication of system load.  The measurement as obtained experimentally using some 

network tools. 

Another implementation that combines interrupts with polling, namely, Hybrid 

Interrupt-Polling (HIP).  The basic idea of HIP is to adaptively switch between the use 

of interrupts and polling based on the observed rate of packet arrivals.  Specifically, if 

the packet arrivals are frequent and predictable, the receive mechanism operates in 

polling mode and interrupts are disabled.  In this mode the polling period is set based on 

the predicted packet interarrival time.  However, to bound the receive latency, the 

polling period is not allowed to exceed a pre-determined limit.   On other hand, if the 

packet arrivals are infrequent, less predictable, or if the number of consecutive 

unsuccessful polls exceeds a threshold, the receive mechanism operates in the interrupt 

mode.  In this mode, the polling operating is stopped and the interrupts are enabled. 

2.2.5 Jumbo Frames 

Jumbo frames are frames that are longer than the standard Ethernet (IEEE 802.3) 

frame length of 1,518 bytes.  The frame size definition for jumbo frames is vendor-
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specific because Jumbo frames are not part of the IEEE standard.  The most commonly 

used Jumbo frame sizes are 9,018 bytes and higher. Jumbo frames are not a CSMA/CD 

modification; in fact, they only work in a full duplex environment.  

Jumbo frames maintain the same media access control (MAC), frame structure, 

and frame check sequencing mechanism used for traditional Ethernet frames.  Only the 

payload portion of the frame is extended. 

The choice of 9000 bytes for the Jumbo frames payload length is to provide a 

good compromise between frame efficiency, frame check sequence effectiveness, and 

host protocol stack efficiency.  Most IP protocol stacks can be configured to support 

maximum transmission units (MTUs) of up to 64 Kbytes. But Ethernet error detection 

techniques provide a practical upper limit on frame size.  Due to the nature of the  

CRC-32 algorithm, the probability of an undetected error is essentially unchanged until 

frames exceed approximately 12,000 bytes.  Thus, to maintain the same undetected bit 

error rate (BER) as standard Ethernet, Jumbo frame sizes should not exceed 12,000 

bytes.  On the other hand, the maximum size for a network file system (NFS) datagram 

is typically around 8 Kbytes.  To ensure that an entire NFS datagram can be transmitted 

in one frame, jumbo frames should be at least 8 Kbytes.  Moreover, host protocol stacks 

operate most efficiently when working with data that is an integer multiple of the page 

size of the operating system.  For most operating systems this is 4096 (4K) bytes.  Using 

a 9000-byte as frame size allows the carriage of 2 pages of user data (8192 bytes) plus 

the various transport, network and data link headers.  

 

 



 

  CHAPTER 3  

MODELING AND ANALYSIS 

In this chapter, we provide an analytical study of packet reception through 

network card (NIC) based on queuing theory.  An analytic model is one that can be 

expressed as a set of equations which can be solved in order to measure OS 

performance.  For many practical real-world problems, analytic models based on 

queuing theory provide a reasonable approximation to real system.  

The objective of our analysis is to study the impact of interrupt overhead on 

system performance in terms of system throughput, system latency, CPU availability, 

and overall system power.  We first model an ideal situation where the interrupt 

overhead is ignored to determine the optimal system performance. 

 Next, we model an interrupt-driven system in which the interrupt overhead is 

taken into account.   Receive livelock phenomenon can be analyzed and determined. 

Finally, we study analytically the system performance of the proposed solutions 

for resolving and eliminating the receive livelock problem.  These solutions are Interrupt 

Coalescing, Enabling-Disabling Interrupt, and Polling.  

25 
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3.1 Queuing Theory 

Queuing analysis is one of the most important tools for those involved with 

computer and network analysis.  Queuing theory provides the basic tools for modeling 

and analyzing the system.  By using queuing analysis, one can study and evaluate the 

system performance in terms of some parameters such as average number of packets in 

the system, system throughput, mean response time, and so on. 

Queue 

Arrivals DeparturesServer

 

Figure  3.1: Queuing model for the system 

Figure  3.1 illustrates a queuing model for the system.  Packets are randomly 

arriving to the system from the NIC.  The queue represents the host system memory in 

which all arrival packets stored in this queue.  The server represents the CPU that is 

responsible to process all received packets.  Packets are processed either in ISR or in 

protocol stack.  Packets are served by first-come-first-serve order. 

Formally, queuing systems are characterized by stochastic characteristics.  These 

characteristics are the arrival process, the service time of the server, the number of 

servers, the system capacity, as well as some special properties of the system.  These 

stochastic characteristics can be summarized by using Kendall notation: 

ksBA ///  
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where A refers to the distribution of the time between two successive arrivals, B refers to 

the distribution of service time, s refers to the number of servers, and k is an upper 

bound on the number of packets in the system. 

3.1.1 Notations and Assumptions 

Let us consider an arrival process{ , where N(t) denotes the number of 

packets in the system up to time t with

}0),( ≥ttN

0)0( =N , as stochastic process which varies in 

time.  We wish to predict its future behavior with the aid of a certain amount of 

probability.  This probability is governed by a random distribution or a set of random 

distributions.  For our system, there are three random distributions that determine the 

behavior of our stochastic process: the time between successive arrivals, packet length, 

service time for protocol processing and ISR time.   

Let λ be the average incoming packet arrival rate. Therefore, λ1  is the time 

between successive arrivals (interarrival time).  Similarly, let µ be the average protocol 

processing rate by the kernel.  Therefore, µ1  is the time it takes the system to process 

the incoming packet and deliver it to an application program.  This time includes 

primarily the network protocol stack processing by the kernel, excluding any interrupt 

handling.  However, the interrupt handling time will be denoted as TISR, which is 

basically the interrupt service routine time for handling incoming packet.  The average 

interrupt service routine rate is denoted as r.  We will also denote ρ as a measure of the 

traffic intensity or system load and is denoted as µλ / . 
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An important class of stochastic processes is Markov processes.  This class of 

processes has some special properties that make them manageable to treat 

mathematically.  A Markov process is a random processes where the value of the 

random variable N(t) at time tn depends only on its immediate past value at time tn-1.  

Markov processes assume that interarrival times and service times obey the exponential 

distribution or, equivalently, that the arrival rate and service rate follow a Poisson 

distribution [GRO98].   

In a Markov process, N(t) represents the state of the system at a given time t.  If 

the sample space, N(t), is discrete, then Markov process is called Markov chain.  Markov 

chains can be visualized by drawing rate-transition diagram that displays the rate flow 

between different states in the Markov chain.  Then, the Markov chain can be 

summarized in one matrix called intensity matrix and it is denoted by Q. 

Now, given 
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where , for ijq ji , is the intensity transition from state i  to ≠ j  and .  We 

wish to find the steady-state probabilities, , of the Markov chain where  is the 

probability that the system will be at state i . Let us represent the steady-state 

probabilities as a vector p,  then the equation: 

∑ ≠
=

ji iji qq

ipip

0 = pQ (  3-1 )
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constructs well-known equations which are called the stationary equations of the 

Markov chain.   Together with the boundary condition that ∑ =
i ip 1 , we can obtain  pi 

with some special mathematical transformation.   

Knowing these probabilities, we can obtain a lot of information about system 

behavior.  For example, p0 is the probability that the system at state zero, or equivalently, 

the probability that the system is idle.  Therefore, 1 0p−  represents the probability that 

the system is busy. 

In order to simplify the analysis, we will assume that all packets arrive to the 

NIC have fixed size length.  Moreover, we also assume that we have only one CPU 

(server) in the system.  When the system has a single-server with Poisson arrivals and 

exponential service times, then our system can be modeled as M/M/1. 

Our analytical models follow the architecture of network interface mentioned in 

section  1.2.1.   The Rx-DMA is responsible to move received packets from NIC buffer 

to the host system memory without the intervention of CPU. 

Finally, we assume that the kernel protocol processing for packets will continue 

as long as there are packets available in the host system memory.   This means packets 

could be processed in kernel by protocol stack routines without interrupt notification.  In 

this situation, we say that the system is running at full speed. 

 



30 

3.1.2 Performance Metrics 

1. Throughput. Throughput (γ ) can be calculated by using the following 

general equation [TRI98]: 

∑=
i

ii pµγ . (  3-2 )

If µi = µ for all i > 0, then  

)1( 0ppp
i

i
i

ii −=== ∑∑ µµµγ . (  3-3 )

2. Latency. Latency (R) is the mean response time of the system.  It can be 

calculated by using Little's theorem [KLIE71]: 

λ
)(nER = . (  3-4 )

where E(n) is the expected number of packets in the system where its value can be 

calculated by using the following general equation: 

∑=
n

npnnE )( . (  3-5 )

3. CPU availability. CPU availability (V) for user processes measures the 

fraction of time that CPU is available for other processes.  The probability that the 

system is in state 0 p0 represents a better metric for CPU availability. 

4. Overall system power. We propose a novel single performance system metric 

to measure and evaluate the overall system performance.  The overall system power (P) 
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is a single metric that integrates a number of performance metrics.  The integrated 

metrics include the above three parameters which are system throughput, system latency, 

and CPU availability.  This metric is similar to [GIES78], however, they consider only 

two parameters to determine the network power; throughput and latency, since these two 

parameters are quite enough to measure the network performance.  In our system, we 

have to consider a third parameter which is starvation of lower priority processes or 

CPU availability to process these processes as we have mentioned previously.  System 

throughput and CPU availability give more power to the design of network interface 

while system latency reduces overall power.   Therefore, our proposed metric will be 

expressed as 

c

ba

R
VP γ

= . (  3-6 )

where, a, b, and c are tunable parameters.  Notice that the overall power (P) will 

increase when the system throughput and CPU availability are increased, and system 

latency is decreased.  Normally, a, b, and c are equal to 1 which gives equal weight to all 

three parameters.  

A particular point of interest is finding the maximum power point.  This point is 

also the optimal operating point which gives maximum throughput, maximum CPU 

availability, and minimum system latency.  The maximum power point is defined as the 

"knee" point for overall system power [JAIN88].  The peak of the overall power curve 

occurs at the knee point.  Therefore, to obtain this point, we take the derivative of the 
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power function with respect to λ, and solving the derivative after making it equals to 

zero. 

5. Stability condition. Another particular point of interest is finding the stability 

condition of the system.  The stability condition is the situation where 1<ρ  or is 

defined as the "cliff" point for the system throughput [JAIN88].  It is where the 

throughput starts falling to zero as the system load increases.   

6. Loss probability. In any finite buffer system, the loss probability (PL) is a 

measure of the number of packets being lost, or in other words, it is the probability that 

the buffer is full at an arbitrary point in time.  This means that if the system memory is 

of size B, the loss probability is given by pB.  Loss probability is important because it can 

be used to determine the proper memory buffer size that must be allocated for a given 

system in order to reduce the packet loss. 

3.2 Ideal System Model 

This section presents analysis for the ideal situation in which the overhead 

involved in generating interrupts is totally ignored.  We can simply model such a system 

as an M/M/1/B queuing model with a Poisson packet arrival rate λ and an exponential 

protocol processing service time 1/µ.  Note that in this case the system packet processing 

time is equal to protocol stack processing time since TISR is equal to zero.  B is the 

maximum size the system memory buffer can hold.   M/M/1/B queuing model is chosen 

as opposed to M/M/1 since we can have arrival rate go beyond the service rate.  This 
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assumption is true in Gigabit environment where, under heavy load, λ can be very high 

compared to µ. 

In M/M/1/B model, the equation for pn is given by  

Bn

B

p
B

n

n ≤≤


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1
1
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ρ

ρ
ρ
ρρ

 (  3-7 )

(  3-7 )

Therefore, knowing these probabilities, we can now examine the system 

behavior for the ideal situation. 

3.2.1 Performance Metrics 

1. System throughput.  By using Equation , the Ideal system throughput 

can be expressed as 

(  3-2 )

)1( 0
1

pp
B

n
n −== ∑

=

µµγ . (  3-8 )

where p0 can be calculated by direct substitution to Equation .   

2. System latency.  To obtain the mean response time or Ideal system latency, we 

have to obtain the average number of packets in the system which is given by 

1
11

1
1

)( +
+−

+
−

−
= B

B

BnE ρ
ρρ

ρ
. (  3-9 )

Therefore, system latency is  
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where λeff is the effective arrival rate which is the average rate of packets actually 

entering the system, and pB is the probability of loss. 

3. CPU availability.  CPU availability can be expressed as 
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4. Overall system power.  The system is stable whenever 1<ρ .  Hence, it is 

suitable to model our system as M/M/1 in order to express the function of overall system 

power.  For this case, the throughput, CPU availability, and latency are expressed as 
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Taking the derivative of P(λ),  
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The above equation has three solutions. Two of them, which are 0=λ  and µλ = , are 

rejected because these points represent the least power values.  The third solution which 

is  ( ) ( ) 0=+−− λλµ cba  represents the maximum power point.  Thus, the optimal 

operating point for Ideal model occurs at  

µλ 







++
=

cba
a

. (  3-13 )

Notice that, if a, b, and c are equal to 1, then the optimal operating point occurs at 

31=ρ . 

5. Stability condition:  The system will be stable whenever µλ < . 

3.2.2 Numerical Results 

In this section, we give some numerical examples to study the behavior of the 

Ideal system.  The system performance is studied as a function of traffic intensity ρ.   

For all of these results, we fix µ to 1 and B to size a size of 100.  

Figure  3.2 depicts the graph of Ideal system throughput.  We see that the system 

throughput increases as the arrival rate increases up to a point after which the system 

throughput remains constant because the server is processing packets at its maximum 
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capacity.   depicts the graph of Ideal system latency.  At 1=ρ , the server 

becomes saturated, working 100% of its time and the latency becomes infinity. Notice 

that, as shown in the figure, latency increased rapidly near system saturation.   

depicts the CPU availability for lower priority processes.  Notice that, the CPU 

utilization due to packet processing increases as traffic intensity increases.   When ρ is 

greater than one, the server works at full speed and consumes all CPU time.  Hence, 

CPU availability for other processes will be diminished and lower priority processes 

start starving. 

Figure  3.3

Figure  3.4

Figure  3.5

Figure  3.5

 depicts the overall power of the Ideal system where all tunable 

parameters are equal to 1.  As shown, at the beginning the system power increases as 

system load increases.  Then, the overall power reaches its maximum value in which the 

system gives the optimal result.  After this point, the power of the system starts 

decreasing until it reaches zero.   shows that the maximum system power is 

when 33.0=ρ .  This point matches exactly the point derived by equation  for 

finding λ that gives the maximum power point if we substitute a, b, and c by 1. 

(  3-13 )
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Figure  3.2:  System throughput for Ideal system 
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Figure  3.3:  System latency for Ideal system 
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Figure  3.4:  CPU availability of user processes for Ideal system 
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Figure  3.5:  Overall system power for Ideal system 
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3.3 Interrupt-Driven System Models 

Modeling an interrupt-driven system is a challenging task especially when we 

consider the Gigabit networking environment with 1>ρ .  The most critical task in 

modeling an interrupt-driven system is determining the actual service time which we call 

it the effective service time.  The effective service time is the total time to process a 

packet up to completion, inclusive of ISR disruption. 

One can simply say that the effective service time is the time duration to process 

incoming packet in the kernel protocol stack and delivering it to the ultimate application 

plus the time duration to execute an ISR.  However, this is not always true.  We have 

two situations where the effective service time will be effected: 

- If a new packet arrives while servicing a packet in the kernel protocol stack, then 

the effective service time will be increased by TISR.  This is true, since ISR 

preempts any processes in the kernel. 

- With Gigabit environment, a packet or multiple packets may arrive during 

execution of an ISR.  In this case, we will have batched or masked-off interrupts 

and the packets will be queued into the system with effectively one TISR 

disrupting the service time. 

In order to determine the effective service time, we use for our analysis a 

deterministic model where interarrival time, service time for protocol processing, and 

ISR time are all fixed. 
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3.3.1 Deterministic Model 

First, we start by considering the case where ISRT>λ1 , i.e., each incoming 

packet will generate an interrupt as illustrated in . Figure  3.6

Figure  3.6:  Timeline for a deterministic model where 1/λ >TISR 

Figure  3.6

λ
1

(1) (2) (3) (4) 

 Arrived 
packet 

TISR CPU available time 
packet 
served 

(1) 
Effective service time 

 

One simply can calculate the effective service time for packet processing as 

ISRTn+µ/1 , where .  For example, the effective service time for the first 

packet in  is 1

L,2,1,0=n

T2/ ISR+µ .  However, this way can be more complicated to 

obtain the value of n especially when we have masked-off interrupts.  Rather we use the 

CPU availability exclusive of any ISR disruption.  This means the available CPU time to 

process a packet in protocol stack is the time duration between successive ISRs.     

Mathematically, expressing the available CPU time for packet processing is 

straightforward.  Notice that, for each λ/1  time unit, the available CPU time is 

ISRT−λ/1  time unit.  Therefore, for each 1 time unit, the available CPU time is 

ISR
ISR T

T
λ

λ
λ

−=
−

= 1
1

1
  Time  CPU  Available . (  3-14 )
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Equation  represents the percentage of CPU availability excluding any 

ISR disruption for a given arrival rate λ.  Now, this equation can be used to calculate the 

service time to process a single packet.  This time is what we call it the effective service 

time for packet processing and we will denote it by µ′/1 .   If the service time for 

protocol processing is µ/1 , then the effective service time for packet processing is 

(  3-14 )

ISRTλ
µµ

−
=′

1
/1/1 . (  3-15 )

Hence, the effective service rate for packet processing is 

)1( ISRTλµµ −=′ . (  3-16 )

Notice that the effective service rate for packet processing is the mean service 

rate for protocol processing multiplied by the percentage of CPU availability for 

protocol processing. 

Next, we consider the case where ISRT<λ1  and two packets arrive within the 

same interrupt as illustrated in  Figure  3.7

Figure  3.7:  Timeline for a deterministic model where 1/λ<TISR 
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Now, for each λ/2  time unit, the CPU available time is ISRT−λ/2  time unit.  

Therefore, for 1 time unit, the percentage of CPU availability for packet processing is 

ISR
ISR T

T
2

1
2

2
  Time Available CPU % λ

λ
λ

−=
−

= . (  3-17 )

Hence, the effective service rate for packet processing is 

)
2

1( ISRTλµµ −=′ . (  3-18 )

We give a detailed explanation about the relation between packet arrival rate and 

CPU availability.  This relation is illustrated in . Figure  3.8

Figure  3.8:  Timelines shows different amount of CPU available times 
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Figure  3.8

Figure  3.8

Figure  3.8

Figure  3.8

Figure  3.8

 shows four timelines with different interarrival times.  When the 

arrival rate is too low, as shown in  (A), the available time is big enough to 

allow processing a packet up to completion.  As the arrival rate increases,  (B), 

the CPU available time decreases and; consequently, effective service time is increased 

in order to complete processing a packet.  When a new packet arrives immediately after 

returning form interrupt handler, a new interrupt handler will be executed and the CPU 

available time becomes almost zero as shown in  (C).  Now, if the average 

arrival rate increases slightly such that the next coming packet arrives while the system 

execution is about to finish the current ISR (the ISR of the previous packet).  In that 

case, as shown in  (D), the second packet will be received without generating 

an interrupt.  This means we have batch interrupts and the system restarts having some 

available time until the arrival of a new packet.  Obviously, the average amount of 

available time will not exceed TISR. 

3.3.1.1 General Formula for Effective Service Rate 

Notice that, in Equation , the value of 2 represents the number of packets 

arrived within one ISR.  Generally, this number can be expressed as  ISRT λ  where    

denotes the ceiling number of ISRTλ .  Thus, a general formula for the percentage of CPU 

availability can be expressed as 

(  3-18 )

  ISR
ISR

T
Tλ
λ

−= 1  Time Available %CPU . (  3-19 )

And, the effective service rate for packet processing can be expressed as 
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 
)1( ISR

ISR

T
Tλ
λµµ −=′ . (  3-20 )

Figure  3.9

Figure  3.9:  CPU available time for  protocol processing  versus  

packet arrival rate for D/D/1 

 depicts the relation between packet arrival rate and the CPU available 

time.  The graph has been plotted where TISR = 0.3.  As clearly shown, as packet arrival 

rate increases the CPU available time decreases until the CPU available time becomes 

zero.  This is similar to  (C).  Obviously, this point is ISRT=λ/1 .  After this 

point, batch arrival of size two will occur and, consequently, the interrupt overhead will 

be reduced and the CPU available time jumps up and the system can perform a useful 

work to process the incoming packet.  As packet arrival rate keeps increasing, the CPU 

available time continues to decrease until it becomes zero again, in that case, when 

ISRT=λ/2 .  If packet arrival rate increases slightly, a batch arrival of size three will be 

notified with only one ISR and CPU available time jumps up and the previous scenario 

will be repeated. 

Figure  3.8
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The system throughput of the D/D/1 can be expressed as follows: 





′>′
′<

=
µλµ
µλλ

γ  (  3-21 )

If we consider TISR = 0.3 unit of time, then the throughput of the system is shown 

in .  System throughput starts increasing as traffic intensity increases because 

the effective available time is enough to process the incoming packet up to completion.  

The system throughput keeps increasing until the CPU available time becomes almost 

equal to the system service time after which the throughput starts decreasing.  The 

system throughput keeps decreasing since the amount of CPU available time keeps 

decreasing until no more available time to process incoming packets.  Therefore, the 

system throughput becomes zero (as shown in  (C)).  At this state, the system 

will receive livelock. 

Figure  3.10

Figure  3.8

If we extend packet arrival rate, we will see the following behavior as shown in 

.  We notice that the system throughput will not stay at zero as traffic 

intensity increases, instead, the system throughput will start oscillating above zero 

before it finally resets to zero as ρ grows larger and larger. 

Figure  3.11
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Figure  3.10:  System throughput in Deterministic model 
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Figure  3.11: Effect of large values of ρ on system throughput in Deterministic model 
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3.3.2 Markovian Modeling 

This section presents two different analytical techniques for studying system 

behavior of a traditional interrupt-driven kernel.  The first technique exploits the idea of 

determining effective service rate through the percentage of CPU availability for 

protocol processing.   The second technique uses pure Markovian process. 

One may think that such an interrupt-driven system can be simply modeled as 

priority queuing system with preemption in which there are two arrivals of different 

priorities.  The first arrival constitutes that for ISRs and has the higher priority.  The 

second arrival is the arrival for incoming packets, and has the lower priority.  However 

this is an invalid model because, as we mentioned before, ISR servicing is not counted 

for every packet arrival.  The ISR servicing is ignored if the system is servicing another 

interrupt of the same level.  In other words, if the system is currently executing another 

ISR, the new ISR which is of the same priority interrupt level will be masked off and 

there will be no service for it. 

3.3.2.1 First Technique: Effective Service Time 

In this section, we find the mean effective service time for processing packets in 

the kernel protocol stack.   We first find the formula for the mean effective service time. 

Knowing this formula, the system can be modeled as an M/G/1 queue with a Poisson 

packet arrival rate of λ and a mean effective service rate of µ′  that takes a general 

distribution. 

One can express the mean effective service rate as 
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( )processing protocolfor ty Availabili CPU %×=′ µµ . (  3-22 )

In order to determine the CPU availability percentage for protocol processing, 

we use a Markov chain to model the CPU usage for ISR handling, as illustrated in 

.  We assume that TISR is exponentially distributed with mean T rISR /1= .  

The process space has state  and states .  State (  represents the state 

where the CPU is available for protocol processing.  State  with  represents 

the state where the CPU is busy handling interrupts.  n denotes the number of packet 

arrivals that are being batched or masked off during T

)0,0( ),1( n )0,0

),n1( 0≥n

ISR.  Note that when process in state 

, this means there are no interrupts being masked off and the CPU is handling a 

single interrupt. 

)0,1(

Figure  3.12

Figure  3.12:  Rate-transition diagram to model CPU usage for Traditional scheme 
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The steady-state difference equations can be derived form Equation  where  

p  and Q is defined as follows: },,,,{ 2,11,10,10,0 Lpppp=

(  3-1 )
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02,11,10,10,0 =++++− Lprprprpλ . (  3-23 )

(  3-23 )Since we have 1
0 ,10,0 =+∑∞

=i ipp , then Equation  can be rewritten as 

follows: 

0)( 2,11,10,10,0 =++++− Lppprpλ , 

00)1( 0,00,00,00,0 =++−⇒=−+− rprpprp λλ . 

Solving for , we thus have 0,0p

,0 r
rp
+

=
λ

 (  3-24 )

and 

r
p

+
=−
λ
λ

01 . (  3-25 )

Therefore, CPU cost of ISR handling is )(/ r+λλ  where as CPU availability for 

other processes including protocol stack processes is )(/ rr +λ .  Notice that the 

percentage of CPU availability is decreased as packet arrival is increased.  The amount 
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of CPU time available to handle kernel and user processes diminishes as packet arrival 

rate becomes too large. 

Figure  3.13 shows the interrupt overhead for different TISR's.  Notice that, if TISR 

time increases the interrupt overhead increases.   illustrates the relation 

between the CPU availability and CPU utilization due to interrupt handling.  At lower 

arrival rate, the ISR overhead is not significant since the system has much time to 

process packets.  When the interarrival time is equal to TISR, i.e. ISRT=λ/1 , then the CPU 

availability and CPU utilization due to ISR handling are equal ( 50% ).  After this point, 

the CPU consumes most of its time to handle ISR than to process a task. 

Figure  3.14

Thus, by using Equations  and , the mean effective service rate 

can be expressed as 

(  3-22 ) (  3-24 )
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Figure  3.13:  %CPU utilization vs. packet arrival rate 
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3.3.2.1.1 Performance Metrics 

It is to be noted from Equation  that the mean effective service rate µ′  is 

exponential.  Therefore, we can model the system as M/M/1/B queue as in the case for 

the Ideal system.  However, the mean service rate µ  will be replaced by the mean 

effective service rate µ′ .  Hence, system throughput, latency, and CPU availability are 

expressed by Equations , , and  respectively. 

(  3-22 )

(  3-8 ) (  3-10 ) (  3-11 )

Therefore, the overall system power can be expressed as 

cb

cba

rr
rrP
)()(
))(()(

+
+−

=
+

λµ
λλµλλ . (  3-27 )

(  3-27 )

(  3-27 )

Finding the optimal operating point for Equation  is quit complicated, but 

we can obtain the optimal point when a, b, and c are equal to 1.  Thus, making all the 

tunable parameters equal to 1 and taking the derivative of Equation  with respect 

to λ, we get 
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Let 0/ =λddP , the resultant equation has two positive real solutions.  One of 

them represents the knee point of the power function (local maximum) and the other 

represents the cliff point where the power is zero (local minimum).   Thus, the optimal 

operating point is given by 

)713(
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1 3
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where 22423 9140432(3621635 rrrrr −+++= µµµσ . 
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The cliff point is given by  

( )rrr µλ 4
2
1 2 ++−= . (  3-29 )

(  3-29 )

The stability condition for the system can be expressed as 
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Solving for λ, we get 
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The roots of the quadratic equation  are 02 =−+ rr µλλ
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Since the term under the square root is always greater than one then the negative sign is 

neglected.  Therefore, the system will be stable whenever 
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−+< 141

2 r
r µλ . (  3-30 )

(  3-30 )

Clearly, this is the same equation as Equation . 

Special Case.  We consider a special case when interrupt handling is ignored 

(TISR = 0) in order to validate our mathematical equations.  In this situation, when TISR = 

0, ∞→r . We prove that Equations  and  yield the same equations of the 

ideal system model, i.e., M/M/1/B queueing system, as follows:   

(  3-26 )

(  3-26 )For finding mean effective service rate of Equation , 
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For finding λ for stability condition of Equation , (  3-30 )
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Applying L'Hopital Rule, we get 

µ
µ

µ
µ

µλ =










+
=









 −
+
−

=
∞→∞→ rrrr rr 21

lim2
41

2lim 22
. 

3.3.2.1.2 Numerical Results  

We now show some numerical results of our analytical model to study the 

behavior of the system and the impact of interrupts on system performance.  As we did 

before, we fix µ  to 1 and B to a size of 100. 

We first examine the system throughput as a function of traffic intensity, ρ.  We 

study this relation with four TISR time units 0.2, 0.3, and 0.5.   

Figure  3.15

Figure  3.15

 depicts the impact of high and low traffic intensity on system 

throughput.  The figure shows the system throughput for three cases of  TISR 0.2, 0.3, and 

0.5.   It is noted that as the interrupt overhead increases (increasing the value of TISR), the 

system throughput is worsen and the livelock phenomenon occurs earlier. 

 also shows the cliff points for the system throughput.  As previously 

defined, the cliff points are those points where system throughput starts falling to zero as 

the system load increases.  As shown, the cliff points in terms of traffic intensity ρ  for 
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TISR of 0.2, 0.3, and 0.5 are 0.85, 0.81, and 0.73, respectively.  Since we are fixing µ   to 

1, the cliff points are the same for the system throughput, traffic intensity, and packet 

arrival rate.  These points match exactly the points derived by Equation  for 

finding the stability condition. 

.0

(  3-30 )

Figure  3.16 illustrates the relation between packet latency and traffic intensity for 

the same system parameter values considered for system throughput.  It is shown that the 

latency for the Ideal system is the least and it is the worst when TISR takes the largest 

value of 0.5. 

Figure  3.17 illustrates the relation between CPU availability for user processes 

and traffic intensity for the same system parameter values.  It is shown that as interrupt 

overhead is increased, the CPU availability is worsened.  

The impact of low and high traffic intensity of overall system power is shown in 

.  In the Ideal system, the maximum overall power is when 33=ρ .  

However, the maximum overall system power decreases with different values of TISR, 

giving the least value for TISR = 0.5.   In addition, the figure shows that the maximum 

power point for the system for TISR of 0.2, 0.3, and 0.5 are for λ of 0.292, 0.277, and 

0.253, respectively.  These points match also exactly with the points we derived by 

Equation  for finding λ that gives the maximum power point. 

Figure  3.18

(  3-28 )
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Figure  3.15:  System throughput for Traditional scheme  

based on Effective Service Time technique 

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

Traffic Intensity ( ρ )

S
ys

te
m

 L
at

en
cy

Ideal System
Tisr = 0.2
Tisr = 0.3
Tisr = 0.5

Figure  3.16:  System latency for Traditional scheme  

based on Effective Service Time technique 
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Figure  3.17:  CPU availability for Traditional scheme  

based on Effective Service Time technique 
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Figure  3.18:  Overall system power for Traditional scheme  

based on Effective Service Time technique  
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3.3.2.2       Second Technique: Pure Markovian Chain 

As opposed to first technique, the model we consider is one in which the server 

has two mean rates: ISR and protocol processing. Service times for ISR and packet 

processing are exponentially distributed with mean 1  and r/ µ/1  respectively.  If the 

server is processing a packet and a new packet arrives, then the server switches to ISR. 

While the server is executing an ISR and a new packet arrives, the server will remain in 

ISR without affecting ISR service time. 

The described scenario can be modeled as a pure Markov chain with a state 

space }}1,0{,0),,({ ∈∞≤≤= mnmnS , where n denotes the number of packets in the 

buffer and m denotes the type of service. 0 indicates protocol processing and 1 indicates 

ISR handling.  The rate transition diagram is shown in . Figure  3.19

Figure  3.19:  Rate transition diagram for traditional interrupt-driven system 

λ λ λ 

. . . . 4,13,1λ 1,1 2,1

r λ r r r0,0 λ λ 

µ 4,0 . . . . 3,01,0 2,0

µ µ µ  

Let pn,m be the steady-state probability where n denotes the number of packets in 

the system and m denotes the type of current service.  A system of difference equations 

can be derived for the stationary probabilities as follows: 
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0,10,00 pp µλ +−= , 

0,01,1)(0 ppr λλ ++−= , 

1                   )(0 0,11,0, ≥+++−= + nprpp nnn µµλ , 

2                  )(0 1,10,11, ≥+++−= −− npppr nnn λλλ . 

(  3-31 )

The first two equations constitute the initial values. The last two equations 

constitute the system of difference equations.  In order to solve this system of equations, 

we need to re-arrange them as follows: 

1                  1,0,0,1 ≥−
+

=+ nprpp nnn µµ
µλ , 

1              1,0,1,1 ≥
+

+
+

=+ np
r

p
r

p nnn λ
λ

λ
λ . 

These equations can be written in the vector form as follows: 

)()1( npAnp =+ , 

where  


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Therefore, our equations have been nicely converted to a system of first order 

difference equation, in which we can apply Putzer algorithm to obtain the solution 

[ELAY96]. 

Before we proceed for solution, let us denote µλα /= , and )/( r+= λλβ . 

Then, matrix A can be rewritten as follows: 















 −−+
=

ββ

ββαα /)1(1
A . 

The eigenvalues of matrix A can be obtained by solving the characteristic 

equation  where z is the eigenvalue, and I  is the identity matrix.  Now 0)det( =− IzA

0))(1(
/)1(1

det)det( =−−−=
















−

−−−+
=− βα

ββ

ββαα
zz

z

z
zIA . 

Hence, the eigenvalues of matrix A are 11 =z  and βα +=2z . 

So, according to Putzer Algorithm, 



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Finally, we have 
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The solution of the difference equation is given by 
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The solution can be nicely simplified as 

1
0,00, )( −+= n

n pp βαα  

1
0,01, )( −+= n

n pp βαβ  

(  3-32 )n ≥ 1 

To get , we utilize the fact the probabilities must sum to 1 and it follows that 0,0p
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Now  is geometric series and converges if and only if 
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for the existence of a steady-state solution, )( βαρ +=  must be less that 1. Then, we 
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where )( βαρ += , or equivalently, )(// r++= λλµλρ . 

Thus the full steady-state solution for our system is the geometric probability 

functions 
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 (  3-33 )

where βαρ += , µλα /= , and )/( r+= λλβ . 

Notice that the server utilization ρ consists of two terms.  The first term α is the 

server utilization due to protocol processing and the second term β is the server 

utilization due to ISR handling.  Note that β was expressed in Equation  for 

determining the CPU usage by ISR handling. 

(  3-25 )

We consider a special case when interrupt overhead is ignored in order to 

validate our mathematical model. When ∞→r , then 0→β  and µλρ /→ . 

In order to study the system performance, we have to measure the impact of low 

and high traffic intensity on system performance, i.e. when 1>ρ .  To do this, we have 
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to model the system as a finite buffer of size B.  In this situation, we ends up with two 

possible network design solutions.  In the first solution, a new incoming packet will 

generate an interrupt, in spite of buffer availability.   In the second solution, packets will 

be dropped when the buffer becomes full without generating interrupts. 

Note that modeling the system as a finite buffer will yield the same equations  

described in Equations .   The only change is the boundary probabilities , 

, and .  We next find these probabilities by considering the two different 

solutions. 

0,0p

0,Bp 1,Bp

(  3-32 )

3.3.2.2.1 Pure Markovian Model: First Solution 

Figure  3.20

Figure  3.20:  Rate-transition diagram for modeling first solution 

 shows the rate-transition diagram for the first solution in which any 

packet will introduce an interrupt even if the buffer is full.    

 

The boundary probabilities at state (B, m) are 

0)( 1,0, =++− BB prpµλ , (  3-34 )

00,0,11,11, =+++− −− BBBB ppppr λλλ . (  3-35 )

rr

λ λ λ 

. . . . 
B,13,1λ B-1,1 1,1 2,1

r r λ λ 0,0 λ λ 

µ . . . . B,03,0 B-1,0 1,0 2,0

µ µ µ
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Substitute Equation  into  , we have (  3-35 ) (  3-34 )

(  3-34 )

0)( 0,0,11,10, =++++− −− BBBB pppp λλλµλ , 

)( 1,10,10, −− += BBB ppp λµ , 

)( 1,10,10, −− += BBB ppp
µ
λ . 

Use Equations  to obtain  and , and then substitute them into 

the above equation.   We get 

0,1−Bp 1,1−Bp(  3-32 )

1
0,00, )( −+= B

B pp βαα . (  3-36 )

(  3-36 )Now substitute Equation  into Equation , we have 

1
0,01, ))(1( −++= B

B p
r

p βααλ
. (  3-37 )

Since the summation of all probabilities is equal to 1, we get 
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Now, let βαρ +=  and )1/()1(/ βραλα −=+⋅+ r , then 
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1
1

1
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(  3-38 )

3.3.2.2.2 Pure Markovian Model: Second Solution 

Figure  3.21

Figure  3.21:  Rate-transition diagram for modeling second solution 

 shows the rate-transition diagram for the second solution in which 

packets will be dropped when the buffer is full without generating interrupts.    

 

The boundary probabilities at state (B, m) are 

01,0, =+− BB prpµ , (  3-39 )

00,11,11, =++− −− BBB pppr λλ . (  3-40 )

(  3-40 )(  3-39 )Substitute Equation  into Equation , we get 

00,11,10, =++− −− BBB ppp λλµ , 

)( 0,11,10, −− += BBB ppp λµ . 

Use Equations  to obtain  and , and then substitute them into 

above equation.  We get 

0,1−Bp 1,1−Bp(  3-32 )

r r
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1
0,00, )( −+= B

B pp βαα . (  3-41 )

(  3-41 )

Notice that, the  is similar for both cases. 0,Bp

Now substitute Equation  into Equation , we get (  3-39 )

1
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B p
r

p βααµ . (  3-42 )

Again, we apply the boundary condition that the summation of all probabilities is equal 

to 1, we get 
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(  3-43 )

3.3.2.2.3 Performance Metrics 

1. Throughput. Since the system throughput is rate at which packets are 

successfully leave the system, then throughput can be expressed as 
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2. Latency.  It is suitable to calculate the mean response time when B approaches 

to infinity.   Therefore, the expected number of packets in the system is: 
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Thus,  mean response time is expressed as Equation . (  3-4 )

3. CPU availability.  CPU availability is expressed as 

0,0pV = . (  3-45 )

4. Overall system power.  It is suitable to express system throughput, latency and 

CPU availability as infinite system states.  Thus 
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Thus, the overall power is expressed as 
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Hence, By making all the tunable parameters equal to 1 and taking the derivative of 

Equation  with respect to λ, we get (  3-46 )
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Solving for 0/ =λddP  is quit complicated.   Numerical methods are needed to 

obtain the maximum power point. 

5. Stability condition.  We have 

1r)/(/or       1 <++< λλµλρ . 

Solving for λ, we get 

1
r)(

r)(
<

+
++

λµ
µλλλ , 

r)(r)( +<++ λµµλλλ , 

0r)(r)( <+−++ λµµλλλ , 

02 <−+ rr µλλ . 

This is the same quadratic equation we have obtained in section  3.3.2.1.  

Therefore, the stability condition is expressed as Equation .  (  3-30 )

3.3.2.2.4 Numerical Results  

Now, we show some numerical results of our analytical models to examine the 

system behavior and the impact of interrupts on system performance.  As in section 

 3.2.2, we fix µ  to 1 and B to a size of 100. 

Figure  3.22

Figure  3.22

 depicts the system throughput for analytic model of the first solution.  

We see that  is quite similar to  of our first analytic model.  Figure  3.15
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However, F  which represents the second solution shows an improved behavior 

of system throughput.  This is because the dropped packet will not introduce an interrupt 

since they are dropped at early stage.  At high arrival rate, the probability of dropping 

packets is very high and therefore preventing the interrupt generation for those dropped 

packets will significantly improve the system throughput. 

igure  3.23

Figure  3.24 and Figure  3.25

Figure  3.26

However, both models (i.e. the first solution and the second solution) give same 

behavior in terms of system latency and CPU availability for user processes, as shown in 

. 

 depicts the overall system power of pure Markovian model.  The 

figure shows the same behavior as , in which the maximum overall system 

power decreases with different values of TISR.  In addition, the figure shows that the 

maximum power point for the system for TISR of 0.2, 0.3, and 0.5 are for λ of 0.283, 

0.266, and 0.241, respectively.   

Figure  3.18
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Figure  3.22:  System throughput for Traditional scheme  

based on pure Markovian model – First solution 

 

Figure  3.23:  System throughput for Traditional scheme  

based on pure Markovian model – Second solution 
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Figure  3.24:  System latency for Traditional scheme  

based on pure Markovian model 
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Figure  3.25:  CPU availability for Traditional scheme  

based on pure Markovian model 
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Figure  3.26:  Overall system power for Traditional scheme  

based on pure Markovian model 
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3.3.2.3    Comparison of Two Models 

This section compares between the first analytic model based on effective service 

time and the second analytic model based on pure Markovian model.  The comparison is 

shown in Figure  3.27, Figure  3.28, and Figure  3.29.  In all of these figures, we fix T

0.3. 

Figure  3.27

Figure  3.28

Figure  3.29

ISR to 

 illustrates the comparison between the two models in terms of 

system throughput.  We used the second solution of pure Markovian model for 

comparison. Notice that the figure shows only a single graph.  This means that the two 

models produce exact results for system throughput. 

 shows the difference between the two models in terms of system 

latency.  We notice that the two models are not quite different; as a matter of fact they 

are approximately the same. 

 compares between the two models in terms of CPU availability.  It is 

noted that the two models are not exact as in the case in system throughput.  But, the two 

models have the same behavior for modeling CPU availability in interrupt-driven 

system.  
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Figure  3.27:  System throughput for both first and second analytic models 
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Figure  3.28:  CPU availability for both first and second analytic models 
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Figure  3.29:  System latency for both first and second analytic models 
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3.4 Interrupt Coalescing Model 

We mentioned in Chapter 2 that the interrupt coalescing is a mechanism to 

mitigate interrupt overhead by generating one single interrupt for multiple interrupts.  As 

it was noted, there are two different schemes for interrupt coalescing.  The first scheme 

generates an interrupt only if it receives a predefined number of packets.  The second 

scheme generates an interrupt after a predefined time period.  The timer is only triggered 

when receiving a new packet.  When the time period is expired, the timer will be 

stopped and the NIC will issue a single interrupt indicating the reception of all packets 

received during the time period. 

Figure  3.30 illustrates two timelines where packets arrive exponentially with 

mean 1/λ times unit. Figure  3.30 (a) represents the first approach where the number of 

packets per interrupt is equal to two. Therefore, the interrupt rate is 2λ . Figure  3.30 (b) 

represents the second approach where T is the timer duration. If λ/1<

ber of

T

ore, the num

 then an 

interrupt will be generated before a new packet arrives. Theref  packets 

per T is one and the interrupt rate is λ. If λλ /2/1 << T

 is two and the interrupt rate will be 

, as shown in Figure  3.30 (b), 

then the number of packets per T 2λ . 

We want to show that the predefined time T can be expressed as the number of 

packets per interrupt.   
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Figure  3.30:  Timeline represents interrupt coalescing schemes 

Let τ be the defined number of packets per T, then τ can be expressed as 

 TT λ
λ

τ =







=

1
. (  3-47 ) 

Let x be defined as the time between the last packet received before an interrupt 

generation and time T, as shown in Figure  3.30, Let y be defined as the time between T 

and the next incoming packet.  Clearly, y can be expressed as x−λ/1 .  Thus, the time 

between two successive interrupts is 

λ
τ

λλ
τ

λλ
τ =+−+−=+⋅−+ xxxy 111)1( . 

And hence, the interrupt frequency is τλ / . 
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Therefore, τ specifies the number of packets per interrupt which is similar to the 

first scheme. In general, all interrupt coalescing schemes used in literature follow one 

scenario to generate interrupts and we can express the interrupt rate as 









=

λ
τ

λ
,1max

1
freqI . 

(  3-48 )

Equation (  3-48 ) says that if 1≤τ =freqI , otherwise τλ=freqI then λ . 

3.4.1 Modeling CPU Usage 

We implement the same idea of determining effective service time based on CPU 

availability for protocol processing as mentioned in section  3.3.2.1.   

We use a Markov chain to model the CPU usage, as illustrated in Figure  3.31.  

The state space has states  and states .  State  with ),0( k ),1( n ),0( k τ<≤ k0

 denotes the num

n

 represents 

k ber of 

packet arrivals that are being collected  with 

 represents the state where the CPU is busy handling interrupts.  

number of packet arrivals that are being batched or masked off during T

when process in state (1,0), this means there are no interrupts being masked off and the 

CPU is handling a single interrupt. 

the state where the CPU is available for protocol processing.  

before generating an interrupt.  State ),1( n

 denotes the 0≥n

ISR.  Note that 

When the system returns from ISR at state (1,0), this means the system will 

generate an interrupt after a batch of size τ.  If the system returns from ISR at state (1,1), 

this means the system has already one packet waiting.  Therefore, the system will 
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generate an interrupt after a batch of size τ-1.  The system should return to state (0,1).   

Generally, if the system returns from ISR at state (1, n), then the system should return to 

state (0, n mod τ). 

 

M

0,0 

λ 

0,1 

λ 

 
λ 

0,τ -1 

r r r r r r λ 

. . .  . . .  . . .  1,0 1,1 1,τ-1 1,τ 1,τ+1 1,2τ-1

Not ISR 
Handling 

λ λ λ λ λ 
ISR Handling 

Figure  3.31:  Modeling CPU usage for interrupt coalescing scheme 

Using Equation  we have the following system of difference equations: 

For states , we have 

 (  3-4 ),

),0( k

03,12,1,10,10,0 =+++++− Lτττλ prprprprp , 

013,112,11,11,10,01,0 =++++++− +++ Lτττλλ prprprprpp , 

023,122,12,12,11,02,0 =++++++− +++ Lτττλλ prprprprpp , 

M  

03,12,1,1,11,0,0 =++++++− +++− Lkkkkkk prprprprpp τττλλ , 

where 10 −≤≤ τk . 

(  3-49 )
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For states , we have ),1( n

0)( 1,00,1 =++− −τλλ ppr , 

0)( 0,11,1 =++− ppr λλ , 

0)( 1,12,1 =++− ppr λλ , 

M  

00)( 1,1,1 ≥=++− − nppr nn λλ . 

 

(  3-50 )

Let 

 

  3)/( r+= λλβ , then Equations ( -50 ) can be simplified as 

01,0
1

1,1,1 ≥=







+
= −

+
− npp

r
p n

nn τβ
λ
λ

. (  3-51 )

In order to solve Equations (  3-49 ), we need to express each equation in (  3-49 ) 

with respect to .   Then 

 can be expressed as 

1,0 −τp

0,0p

(=λ rp )

,
1 1,0

0
1,0

1

0
,1

3,12,1,10,10,0

−

∞

=
−

+
∞

=








−

=







=








=

++++

∑∑ τττ
τ

τ

τττ

β
ββ prprpr

pppp

n

n

n
n

L

 

1,01,01,00,0 1
1

1
1

1 −−− 







−
−

=







−

⋅






 −
=








−

= ττττττ β
β

β
β

β
β

β
β

λ
ppprp . 

 can be expressed as 1,0p
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Generally,  can be expressed as kp ,0

10
1

)1()1(
1,0

32

,0 −≤≤
−

++++−
= − τ

β
ββββ

ττ kpp
k

k
L . 

or 

1,0

1

,0 1
1

−

+

−
−

= ττβ
β pp

k

k . (  3-52 )

To find the value of 1 , we  utilizing the boundary condition that ,0 −τp

1
0

,1

1

0
,0 =+∑∑

∞

=

−

= n
n

k
k pp

τ

. 

This can be rewritten as 

1
0

,11,0

2

0
,0 =++ ∑∑

∞

=
−

−

= n
n

k
k ppp τ

τ

. 

Since 

1,0
0

1,0
1

0
,1 1 −

∞

=
−

+
∞

=








−

== ∑∑ ττ β
ββ ppp

n

n

n
n , 

then, we have 
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1
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1

1,0
k

k

p . (  3-53 )

Substituting Equation (  3-53 ) into Equations (  3-51 ) and (  3-52 ), we get 

1011
1

1 11

,0 −≤≤
−

=






 −
⋅







−
−

=
++

τ
τ
β

τ
β

β
β τ

τ np
nn

n . (  3-54 )

011
,1 ≥







 −
⋅= + np n

n τ
ββ

τ

. (  3-55 )

Since  represents the CPU availability for protocol stack processing 

then this term is expressed as 

∑ −

=

1

0 ,0
τ

k kp

τ
βββτ ττ )1(/)1(1

0
,0

−−−
=∑

−

=k
kp . (  3-56 )

Similarly,  represents the CPU utilization due to ISR handling which is 

expressed as 

∑∞

=0 ,1n np









−
−

=






 −
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∞

=

+
∞

= β
β

τ
β

τ
ββ

ττ

1
11

0

1

0
,1

n

n

n
np . (  3-57 )

Special case. Let us consider a special case when interrupt handling is generated 

for each packet, i.e. when 1=τ . We prove that equations (  3-56 ) and (  3-57 ) yield the 

same equations of and   (  3-24 )  (  3-25 ).
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Substituting 1=τ  in Equation ( , then CPU availability for protocol stack 

processing is 

  3-56 )

r
r

r +
=

+
−=−=

−−−
λλ

λββββ 11
1

)1(/)1(1 1

. 

As for Equation ( , CPU utilization due to ISR handling is   3-57 )

r+
==








−
−

λ
λβ

β
ββ

1
1

1

1

. 

We give some numerical examples of our analytical model to study the impact of 

interrupt coalescing on CPU usage.  For all of these examples, we fix TISR to 0.3. 

We first examine the CPU utilization due to ISR handling with different values 

of interrupt coalescing parameter τ.  In particular when 1=τ , 2=τ , 3=τ , and 5=τ .  

Notice that 1=τ  means that the system is running in traditional way.  Traditional 

scheme is the one that allows the generation of interrupt for each incoming packet.  This 

scheme was described in section  1.2.2. 

Figure  3.32

Figure  3.33

 depicts the impact of interrupt coalescing on CPU utilization.  It is 

noted that as τ increases, the interrupt overhead is decreased.   

 illustrates the relation between CPU availability to process packets in 

protocol stack and interrupt coalescing for the same system parameter values.   It is 

shown that as τ increase the system has more CPU time to process packets by the kernel 

protocol stack. 

Thus, we conclude that interrupt coalescing reduces interrupt overhead and gives 

more CPU time for other processes. 
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Figure  3.32:  CPU utilization due to ISR handling in Interrupt Coalescing scheme 
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Figure  3.33:  CPU availability for protocol processing in Interrupt Coalescing scheme 
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3.4.2 Modeling Interrupt Coalescing Scheme 

The mean effective service rate for interrupt coalescing system ( τµ ′ ) can be 

expressed as 








 −−−
⋅=′

τ
βββτµµ

τ

τ
)1(/)1(

. (  3-58 )

where )/( r+= λλβ . 

Since the mean effective service rate is still exponential since the term inside the 

parenthesis represent fraction of time the CPU is available to process packets in protocol 

stack layer.  Therefore, we can build a Markov chain to model interrupt coalescing 

scheme with a state space }0},1,0{),,{( ∞≤≤∈= mnmnS . n denotes the server status; 

either 0 or 1. 0 means that the server is idle waiting for more packets before introducing 

an interrupt whereas 1 means that the server is processing packets. m denotes the number 

of packets in the system buffer.  F  depicts the rate transition diagram for the 

Markov chain.  

igure  3.34

Figure  3.34:  States transition diagram for interrupt coalescing scheme 
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We solve this model by finding the balance equation for each state at a time.  At 

state (0,0), we have 

0,01,11,10,0 0 pppp
τ

τ µ
λµλ
′

=⇒=′+− . 

At state (0,1), we have 

0,01,00,01,0 0 pppp =⇒=+− λλ . 

Similarly with states (0,2), (0,3), …, and (0, τ-1). 

110,0,0 −≤≤= τkpp k . (  3-59 )

At state (1,1), we have 
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At state (1,3), we have 
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Thus, at state (1, n) where 1 1−≤≤ τn , we have 
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At state(1, τ), we have 

0)( 1,11,11,0,1 =′+++′+− +−− ττττττ µλλµλ pppp , 
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Now if we let 

0≥n

ττ µλρ ′= / , Equations (  3-60 ) and (  3-61 ) can be simplified as 
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To find , we use the boundary condition that the summation of all 

probabilities is equal to 1, i.e., 
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This can be nicely simplified as 

τ
ρτ−

=
1

0,0p . (  3-63 )

 Please notice that the system is idle whenever it is at state (0,0), (0,1), …, (0,τ-1). 

Thus the idleness of the system can be expressed as 
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p . (  3-64 )

Since we are interested in finding the system throughput for large values of 

traffic intensity, then we have to model the Markov chain as a finite state space of size 

B.  It is noted that the transition diagram at F  becomes purely M/M/1 after 

state (1,τ). This implies that the probability at state (1,B) will remain unchanged if we 

remove state (1,B+1).  Therefore, we can bound the geometric series at Equation (3-61) 

to a finite value B.  Hence,  

igure  3.34
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This can further simplified as 
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3.4.3 Performance Metrics 

1. System throughput.  System throughput is expressed as 
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2. System latency.  The average number of packets in the system can be 

expressed as 
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Thus, system latency is expressed as 

)1(
)(

Bp
nER
−

=
λ

. (  3-68 )

where  is the probability of a packet being dropped due to buffer being full. Bp

3. CPU availability.  The CPU availability is the summation of all probabilities 

when the system is in states (0, k) where 10 −≤≤ τk .  Therefore, CPU availability can 

be expressed as 
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4. Overall system power. In order to find overall system power, one has to model 

the system as infinite state Markov chain.  Thus 

λ
µ
λµτ

τ
ρ

µµµγ
τ

τ
τ

τ

τ

ττ =







′

′=





 ×

−
−′=








−′=′= ∑∑

−

=

∞

=

1
11

1

0
,0

1
,1

n
n

n
n pp , 

τ

τ
τ µ

λµρλ
′
−′

=′−=1)(V , 

∑∑∑
∞

=
+

−

=

×+++×==
0

,1

1

1
,1,0, )()()(

n
n

n
nn

n
ni pnppnpnnE τ

τ

τ , 

)1(2
1)3(

)(
τ

τ

ρ
ρττ

−
−−−

=nE , 

)(2
)3()(
λµλ

µλτµτλ
τ

ττ

−′
′−−−′

=R . 

And therefore 

))3(()(
)(2

)(
1

τττ

τ

µλτµτµ
λµλ

λ
′−−−′′

−′
=

++

b

cbac

P . (  3-70 )

5. Stability condition:  The stability condition is given as 
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This can be rewritten as 

0)()()( 1 <−+−++ +τττ λµλµτλτµλ rrrr . (  3-71 )

The left hand side of Equation (  3-71 ) is a polynomial of degree 1+τ .   Notice that if 

we consider 1=τ   the above inequality reduces to Equation

3.4.4 Numerical Results 

We study in this section the impact of interrupt coalescing on system 

performance.  We compare system performance against Ideal and Traditional schemes.  

Figure  3.35 depicts system throughput for different values of τ.  We observe that as the 

size of the interrupt coalescing τ increases, the system throughput increases.  The 

amount of increment of maximum system throughput from

 (  3-30 ).

 1=τ  to 2=τ  is much 

greater than the amount of increment from 2=τ  to 3=τ .  This means increasing τ 

more than two will not add a significant improvement to the maximum system 

throughput.  We also observe that interrupt coalescing will not prevent livelock but it 

will shift the livelock point. 

Figure  3.36 depicts different behaviors of system latency for different values of 

τ.  At very low arrival rate, the interrupt coalescing has bad behavior in terms of latency. 

This is because, at lower arrival rate, the time between two successive interrupts is too 

high.  Therefore, packets will remain in the buffer for long time period waiting for 
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servicing.   As packet arrival rate increases the system latency decreases until it reaches 

its minimum latency.  Then, as the arrival rate increases the system increases 

exponentially.  

Figure  3.37

Figure  3.38

 depicts CPU availability for user processes.  We notice that as 

interrupt coalescing size is increased the interrupt overhead is reduced and CPU has 

more time to process other tasks. 

 shows overall system performance.  We observe that as interrupt 

coalescing size increases the overall system power decreases.  In this case, performance 

degradation is due to high latency.  However, at high arrival rate ( )6.0>λ , interrupt 

coalescing gives more power than Traditional scheme. Hence, at this rate, it is better to 

employ interrupt coalescing than using Traditional scheme. 
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Figure  3.35:  System throughput for Interrupt Coalescing scheme 
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Figure  3.36:  System latency for Interrupt Coalescing scheme 
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Figure  3.37:  CPU availability for Interrupt Coalescing scheme 
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Figure  3.38: Overall system power for Interrupt Coalescing scheme 
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3.5 Enabling-Disabling Interrupt Model 

This section presents an analysis for another proposed solution to mitigate 

interrupt overhead.   The basic idea of this solution relies on disabling interrupts in ISR 

only and enabling interrupts when system buffer memory becomes empty.  Interrupts are 

disabled when the system memory buffer contains some packets.   

Figure  3.39 shows pseudo-code for ISR and packet processing routines for 

Enabling-Disabling interrupt model.  Initially, interrupt status is enabled.  When the 

system receives an incoming packet, the ISR gets executed.  ISR disables the interrupt 

and then it invokes packet processing thread.  Packet processing thread starts by 

processing all packets available in system memory.  When the thread finishes packet 

processing, it will re-enable interrupts again for future incoming packet. 

Figure  3.39:  Pseudo-code for Enabling-Disabling interrupt scheme 

 

 

 

ISR() { 
 disable_interrupt(); 
 invoke packet_processing_thread(); 
 return; 
} 
 
 
packet_processing_thread() { 
 while (memory buffer is not empty) 
  process_one_packet(); 
 enable_interrupt(); 
 return; 
} 



97 

3.5.1 Modeling Enabling-Disabling Interrupt scheme 

Let us assume that the time to enable and disable interrupt is T e now 

consider a model in which it has two mean rates:  The first rate applies for servicing only 

the last packet (i.e. no other packet in buffer), whereas the second rate applies for other 

packets.  The last packet will be served effectively with a time equal to 

INT.  W

INTISR TT ++µ/1 .  The other packets will be served with a time equal to µ/1 .   For the 

sake of simplicity, we assume that the service time of the first type is exponentially 

distributed with mean v.  Figure  3.40 illustrates the Markov chain for Enabling-

Disabling Interrupt model. 

Figure  3.40:  Rate-transition diagram for Enabling-Disabling Interrupt scheme 

The general solution of this Markov chain is explained in [GRO98], where 
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(  3-72 ) 

Let νλρ /1 =  and µλρ /2 = , then 
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For  obtaining , we use the boundary condition, 0p
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(  3-74 ). 

Note that,  is valid only when 0p 12 <ρ .  For the case of high traffic intensity 

when 12 >ρ , we have to model it as M/M/1/B.  Thus,  is modified as 0p
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(  3-75 ). 

3.5.2 Performance Metrics 

1. System throughput.  By applying Equation  system throughput can be 

expressed as 

(  3-2 ),
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2. System latency.  The average number of packets in the system can be obtain as 

follows: 
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Thus, the system latency is followed by using Equation . (  3-10 )

3. CPU availability.  CPU availability is expressed as 
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4. Overall system power.  We want to express system throughput, CPU 

availability, and system latency as infinite state space system.  Thus 
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Then, the overall system power is expressed as 
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 To obtain the maximum power point with all the tunable parameters are equal to 

1, we get 
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Thus, the optimal operation point occurs when 3/1=ρ .  This point is independent of 

interrupt overhead.  Also, this point is exactly the same operating point for Ideal system.  

5. Stability condition.  This system will stable whenever µλ < . 

3.5.3 Numerical Results 
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In this section, we show some numerical results of our analytical model to study 

the system performance of Enabling-Disabling Interrupt.  In all of these results, we fix 

T µ to 1, and B to 100. 

Figure  3.41

igure  3.41

Figure  3.42

INT to 0.05, 

 depicts the system throughput as a function of traffic intensity ρ.  We 

study this relation for three TISR time units 0.2, 0.3, and 0.5.  We note that the throughput 

is not affected by interrupt overhead.  The system throughput behaves exactly as the 

Ideal system.  Notice that F  shows only one graph for system throughput 

because other graphs are hidden behind this graph. 

 shows the CPU availability for Enabling-Disabling Interrupt scheme.  

As shown, the CPU availability diminished at 1=ρ , in spite of the interrupt overhead.  

But, we observe that CPU availability starts decreasing because, at low rate, packets are 

processed before a new packet comes to the system.    In this situation, the system will 

introduce an extra overhead due to enabling and disabling interrupts.  When packet 

arrival rate increases such that the buffer keeps nonempty, the ISR overhead, enabling 

interrupt overhead and disabling interrupt overhead are eliminated. 

Figure  3.43

Figure  3.44

 shows the relation between system latency and traffic intensity for 

the same system parameter values considered for system throughput.  It is shown that the 

latency for Enabling-Disabling interrupt system is very close to the Ideal system latency. 

 illustrates the relation between the overall system power and traffic 

intensity.  Note that the overall system power decreases as interrupt overhead increases.  

Note also that the maximum power point occurs at 3/1=ρ  despite of TISR value.   This 

point matches exactly the maximum power point we derive it mathematically. 
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Figure  3.41:  System throughputs for Enabling-Disabling Interrupt  scheme 
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Figure  3.42:  System latency for Enabling-Disabling Interrupt scheme 
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Figure  3.43: CPU availability for Enabling-Disabling Interrupt scheme 
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Figure  3.44:  Overall system power for Enabling-Disabling Interrupt scheme

 



 

  CHAPTER 4  

SIMULATION STUDY 

This chapter covers simulation. Topics include the simulation type, 

implementation language, selection of random number generators and seeds.  The 

simulation model's components, organization, and logic are presented.  Comparison of 

analytical models and simulation results are also presented.  The source code for the 

implementation of the simulation is found in Appendix B.

4.1 Introduction 

This section gives background information on a few necessary topics used for 

implementation of our simulation.  These topics include simulation type, simulation 

language, random number generators, random-number streams and seed selection. 

4.1.1 Simulation Type 

Our simulation is a discrete-event simulation, i.e., it uses a discrete-event 

simulation model.  This is opposite to a continuous-event simulation in which the state 

of the system takes continuous values.  Our simulation is a discrete-event simulation 

since the state of the system is described by variables that do not take continuous values.  

The state variables change instantaneously at separate points in time.  Some of these 
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variables include number of packets in a system, CPU state herein refer to as server state 

(idle or busy) and so on.  Details of these variables and their use will be described later 

in this chapter. 

4.1.2 Simulation Language 

A number of simulation languages were considered for implementation.  These 

languages include OPNET, SLAM II, MATLAB and C.  Simulation languages such as 

OPNET do not offer flexibility and require considerable time in learning the language.  

SLAM II did not offer flexibility either and was limited in options to perform all aspects 

of our simulation.  A general-purpose language such as MATLAB was a good candidate.  

It has a powerful, comprehensive and easy-to-use environment for performing technical 

computations.  It has plotting capabilities which are necessary features that would make 

simulation valid very easy.  For these reasons, MATLAB was used initially, however 

implementation and debugging got a bit tedious and cumbersome when it came to 

handling queues.  For this reason, the C language was chosen.  C provides the best 

flexibility in coding the simulation.  However, a considerable amount of effort had to be 

put into queue implementation, random number generation, and other features necessary 

for simulation validation. 

4.1.3 Random Number Generator 

 

The Inverse Transformation [JAI91] method was used to generate random 

number varieties for our probability distribution (i.e. exponential distribution).  The 



106 

Inverse Transformation method uses uniform deviates, U(0,1).  Uniform deviates are 

random numbers that are uniformly distributed between 0 and 1. The Inverse 

Transformation for Exponential distribution with ax /−  is expressed as: ex 1)(F CDF −=

)ln(Ua−  (  4-1 )

Hence, a reliable source of random uniform deviates is an essential building 

block for our simulation.  Although, the ANSI C library provides a random generation 

function, rand( ), which can be used for generating random deviates, it is quite flawed 

and totally botched, according to [PRE94].  The authors in [LAW91] recommended the 

use of PMMLCG (prime modulus multiplicative linear congruential generator).  The 

basic algorithm is described in [PAR88]: 

)12mod()7( 315 −= seedseed  (  4-2 )

The PMMLCG is a more efficient generator than the LCG.  The LCG is one of 

the most popular methods for generating random numbers, according to [LAW91].  Also 

MATLAB uses this generator.  Hence, PMMLCG is used for our simulation.  The C 

source code for implementing the PMMLCG is included in the lcg.c module in 

Appendix B . 

4.1.4 Seed Selection 

Proper seed selections have to be made in order to avoid wrong combinations of 

seeds and random number generators that may lead to erroneous results.  Care was taken 

in selecting seeds for multiple random-number streams.  A different stream is generated 

 



107 

for each simulation variable.  Here are briefly some of the guidelines that are followed in 

selecting seeds, see [JAI91]: 

• Arbitrary values for seeds were not used.  Also, the values of zero and even 

values were not used. 

• Every simulation variable has its own stream, and streams were not 

subdivided. 

• Overlapping of streams, to prevent correlation, was avoided by choosing 

seeds spaced 100,000 apart.  In our case, the seeds were spaced 800,000 

apart. 

• Each simulation iteration did not have to reinitialize seeds.  Leftover seeds 

from previous iterations were used. 

These guidelines were followed in implementing the simulation. 

4.2 Components and Organization 

In this section, we develop a discrete-event simulation model for interrupt-driven 

kernel.  Simulation models for Traditional, Interrupt Coalescing, and Enabling-Disabling 

Interrupt schemes are developed.  Figure  4.1 depicts the general flowchart of the 

simulation model that is applied for all interrupt handling schemes.  Before diving into 

the details of simulation logic, we would like to discuss the main components used in 

our discrete-event simulation model: 

 

1. System state:  Several variables used to describe the current state of the 

system. Two variables are used to describe the current status of the server; 
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isr_handling_status and protocol_processing_status.   The first state describes whether 

the server is handling ISR or not.  The second state describes whether the server is 

processing a packet in kernel protocol stack or not.  These two states are either set to 

busy or idle.  If the server is busy handling ISR, this means isr_handling_status is set to 

busy.  If the server is busy processing a packet, this means protocol_processing_status is 

set to busy.   Please note the two variables may be in busy.  This means the server is 

handling an ISR and the existing packet processing in kernel protocol stack has already 

been preempted by ISR. 

2. Events: Our simulation model has three types of events, shown in Figure  4.2.  

ARRIVAL event occurs when a new packet arrives to the system.  ISR event occurs 

when the server returns from ISR.  DEPARTURE event occurs when a packet is 

completely processed by the kernel protocol stack.  All these events are generated 

independently.  This means that each event has its own seed and random-number stream. 

3. Statistical variables:   Several statistical results of system performance are 

needed to be gathered from simulation model. These include server utilization due to 

protocol stack processing, server utilization due ISR handling, average number of 

packets in the system, total response time, and total number of packets departs the 

system. 

 



109 

 

Figure  4.1:  Flowchart of the Simulation Model 
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Figure  4.2:  C Declaration for event types 

4. Queues: The simulation has two types of queues: priority and FIFO.  A 

priority queue is used to process next events. The priority, which is based on a "time" 

value and system status, follows the following criteria.  If the system state is currently 

handling an ISR, then DEPARTURE event cannot be scheduled next.  Only ARRIVAL 

or ISR will be scheduled next based on the most imminent of these two events.   If the 

system status is not handling an ISR, then either ARRIVAL or DEPARTURE event will 

be scheduled based on the most imminent of these two events.  On the other hand, FIFO 

queue is used to store the times of arrival of packets currently in the systerm.  These 

times are used for statistic gathering. 

Next we will discuss the simulation logic in general that is valid for any 

interrupt-driven system to be modeled.  We use a next-event time advance for 

incrementing our simulation clock.  This means the simulation clock is initialed to zero 

and the times of occurrence of future events are determined.  The simulation clock is 

then advanced to next event according the criteria we mentioned in previous paragraph. 

The details of the simulation are given in Figure 4.1.  The simulation starts 

initializing all system components (step 0).  The next event is determined and the 

simulation clock is advanced to the time of the selected event.  Consequently, the 

statistical variables are updated (step 2).  Then, the type of the next event is checked and 

the appropriate event handler is invoked.  The handling of these events depends on the 

 

#define ARRIVAL   1  /* packet arrival event */
#define ISR    2  /* ISR handling has been finished */ 
#define DEPARTURE   3  /* packet departure event */ 
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employed scheme to be modeled.  Finally, the simulation process from step 1 up to step 

6 will be repeated 800,000 times. 

4.3 Traditional Scheme Simulation Model 

We first simulate the Traditional scheme. Figure  4.3 depicts the flowcharts of 

simulation model for Traditional scheme. 

The simulation logic for this model is as follows.  When ARRIVAL event is 

triggered, we first schedule the next ARRIVAL event. Then, the number of packet 

arrivals is incremented by one (step 8).  Next, the server state is checked in step 9.  If the 

server is busy handling ISR, i.e., the packet arrival occurs during ISR handling, then 

generating an interrupt is ignored for this packet. Otherwise, we set the ISR handling 

status to busy and we schedule the finishing time for this ISR (step 10).   Finally, if the 

FIFO queue is not full, we insert the arrival time of this packet in the FIFO queue.  The 

reason of this storing is to keep track the arrival time for each packet in order to compute 

packet delay.  The packet delay is determined by subtraction of arrival time from 

departure time. 

When ISR event is triggered, we first reset the ISR handling status to idle (step 

13), i.e., the server is finished handling the ISR.  Then, protocol processing status is 

checked in step 14.  The reason of this checking is to see if this ISR preempts packet 

processing in protocol stack or not.  If the status of the protocol processing is busy, i.e., 

 

the server was busy processing a packet in protocol stack before interrupt disruption, 

then the departure time of the preempted packet will be delayed by ISR time (step 16).  
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If the status of protocol processing is idle, i.e., no packet has been interrupted during its 

processing in protocol stack, then we schedule the DEPARTURE event for this packet 

and we change the protocol processing status to busy. 

Figure  4.3:  Flowcharts of event handlers in Traditional scheme 

The last event is DEPARTURE event.  When this event is scheduled next, we 

reduce the number of packets in the system by one and update some statistical 

information (step 17).  Then, we check if FIFO queue is empty or not (step 18).  If FIFO 

queue is not empty, we schedule the departure time of the next packet in the queue (step 

20).  The next packet is the packet that its arrival time is stored at the top of the queue.  
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If FIFO queue is empty, we set the server protocol stack status to idle and eliminate the 

departure event from priority queue (step 19). 

4.4 Interrupt Coalescing Simulation Model 

To simulate this model, two new components have been added to system states: 

coalescing size and coalescing counter.  Coalescing size represents how many packets to 

be received before generating an interrupt.  Coalescing counter counts the number of 

packets have been received so far.  Whenever coalescing counter reaches the value 

indicated in coalescing size, the system will generate an interrupt.  These two states are 

initialized at step 0 in the main flowchart, shown in Figure  4.1 in which the coalescing 

size is initialized to the predefined number of packets to be coalesced before generating 

an interrupt and coalescing counter is initialized to zero. 

Since Interrupt Coalescing scheme does not affect ISR and DEPARTURE event 

handlers, the only change we need to modify from Traditional scheme is the ARRIVAL 

event handler.  Figure  4.4 shows the modified version of ARRIVAL event handler for 

simulating Interrupt Coalescing model. 

The logical steps of Interrupt Coalescing are as follows.  First, we schedule the 

event of next packet arrival.  Then, we increment the number of packet arrivals and 

coalescing counter by one (step 8).  Next, we check the value of coalescing counter 

(step 9).  If coalescing counter equals to coalescing size, then we reset coalescing 

 

counter to zero (step 10).  Then, we generate an interrupt by apply the same steps 
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mentioned in section  4.3.  If coalescing counter is not equal to coalescing size, then we 

just insert the arrival of time of this packet into the FIFO queue. 

 

Figure  4.4:  Flowchart of ARRIVAL event for Interrupt Coalescing model 
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4.5 Enabling-Disabling Interrupt Scheme Simulation Model 

We now consider a simulation model for Enabling-Disabling Interrupt.  In this 

model, a new variable is needed to indicate interrupt status: enabled or disabled.  

Initially, the interrupt status is enabled.  This means an incoming packet will generate an 

interrupt.  The interrupt status is initialized in the main flowchart at step 0 as shown in 

Figure  4.1.  Figure  4.5 shows the flowcharts of Enabling-Disabling Interrupt scheme 

simulation model for ARRIVAL and DEPARTURE events.  The ISR flowchart is the 

same as in Figure  4.3.   

The logical steps of Enabling-Disabling Interrupt scheme are as follows.  

Whenever an arrival event is triggered, the system checks the interrupt status whether it 

is enabled or not (step 9).  If the interrupt status is disabled then the arrival time of 

packet is directly inserted in the FIFO queue (step 12).  If the interrupt status is enabled, 

then it will be changed to disabled and an interrupt will be generated (step 10). 

When DEPARTURE event is scheduled next, we reduce the number of packets 

in the system by one and update some statistical information (step 17). Then, we check if 

FIFO queue is empty or not (step 18).  If FIFO queue is not empty, we schedule the 

departure time of the next packet in the queue (step 20).  If FIFO queue is empty, we set 

the server protocol stack status to idle and we enable the interrupt again (step 19).  
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4.6 Comparison and Numerical Results 

We now compare numerical results obtained by both analysis and simulation for 

studying the performance of interrupt-driven kernel.  We ran a simulation for a long time 

period until it generated 800,000 events.  In all our results, we fixed T

100.  We plot the simulation results with the equivalent figure presented in Chapter 3. 
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Figure  4.6, Figure  4.7, and Figure  4.8 depict the comparison between analysis 

and simulation for the first scheme used to model Traditional scheme.  It is shown that 

the analysis and simulation are identical for system throughput.  For CPU availability 

and latency, simulation results are very close to analytical results. 

Figure  4.9, Figure  4.10, and Figure  4.11

Figure  4.12, Figure  4.13, and Figure  4.14

Figure  4.15, Figure  4.16, and Figure  4.17

 show the comparison between analysis 

and simulation for the second scheme used to model Traditional scheme.  It is noted that 

the results given by second analytical model match precisely the results given by 

simulation.  

 depict the comparison between 

analysis and simulation for Interrupt Coalescing scheme.  It is shown that the two 

models are quit similar especially for system throughput and system latency. 

 show the comparison between analysis 

and simulation for Enabling-Disabling Interrupt scheme.  It is noted that the results 

given by analytic model match the results given by simulation. 

We conclude that a perfect accordance has been verified between analysis and 

simulation.  The results given by simulation match precisely the same ones given by 

derived equations for system throughput and system latency. 
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Figure  4.6:  Comparison between analysis and simulation of the first Traditional system model  

for system throughput 
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Figure  4.7:  Comparison between analysis and simulation of the first Traditional system model 

for CPU availability 
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Figure  4.8:  Comparison between analysis and simulation of the first Traditional system model 

for system latency 
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Figure  4.9:  Comparison between analysis and simulation of the second Traditional system model 

(first solution) for system throughput 
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Figure  4.10:  Comparison between analysis and simulation of the second Traditional system model 

for CPU availability 
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Figure  4.11:  Comparison between analysis and simulation of the second Traditional system model 

for system latency 
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Figure  4.12:  Comparison between analysis and simulation of Interrupt Coalescing model  

for system throughput 
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Figure  4.13:  Comparison between analysis and simulation of Interrupt Coalescing model  

for CPU availability 
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Figure  4.14:  Comparison between analysis and simulation of Interrupt Coalescing model  

for system latency 
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Figure  4.15:  Comparison between analysis and simulation of Enabling-Disabling Interrupt model 

for system throughput 
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Figure  4.16:  Comparison between analysis and simulation of Enabling-Disabling Interrupt model 

for CPU availability 
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Figure  4.17:  Comparison between analysis and simulation of Enabling-Disabling Interrupt model 

for system latency

 



 

  CHAPTER 5  

PERFORMANCE COMPARISON,  

DESGIN AND IMPLEMENTATION ISSUES 

In this chapter, we present performance comparison of interrupt handling 

schemes using overall system power metric.  The comparison depends on the design 

goal of the system where as the design goal depends on the weight of the system 

performance metrics which include throughput, latency, and CPU availability.   

Some applications of computer networks, e.g. file transfer and video streaming, 

are throughput sensitive.  The latency is generally not so important.  Therefore, when we 

design a system for these applications, we give throughput more weight than latency and 

CPU availability.  Other applications, e.g. voice over IP and interactive media, latency is 

more important than throughput.  Therefore, latency is given more weight that 

throughput and CPU availability.  When system responsiveness is concern to avoid user 

applications starvation, then we give more weight for CPU availability than throughput 

and latency.  Equation represents the overall system equation.  The tunable 

parameters a, b, and c define the weights for throughput, CPU availability, and latency, 

respectively. 

We compare the system performance of interrupt handling schemes for different 

design goal.  The purpose is to find out which scheme is most suitable for this particular 

design goal.  We start our comparison when we give equal weights for all goals.  Then, 

(  3-6 ) 
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we evaluate the performance of interrupt handling schemes for different design goals.  In 

all our comparisons, we fix the following system parameters: 3.0=ISRT , 1=µ , 2=τ , 

. 

5.1 Performance Compared 

Design Example I.  The goal of this design is to give equal weight for all system 

performance metrics.  Figure  5.1 depicts the performance of interrupt handling schemes 

for this example where a, b, and c are equal to 1.  We notice that Enabling-Disabling 

Interrupt scheme gives better performance.  However, at low system load when 

and 05.0=INTT

1.0<ρ , 

the performance of Traditional scheme is almost equivalent to the performance of 

Enabling-Disabling Interrupt scheme.  We also notice that Traditional scheme gives 

better performance than Interrupt Coalescing scheme when traffic intensity is less than 

0.4.   In other words, Interrupt Coalescing gives more power than Traditional scheme at 

high arrival rate.   Moreover, the optimal operating points for all schemes occur at low 

traffic intensity. 
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Figure  5.1:  Performance of interrupt handling schemes  

where all design goals have equal weights 
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Figure  5.2:  Performance of interrupt handling schemes where  

system throughput has more weight than latency and CPU availability 
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Design Example II.  The goal of this design is to give system throughput more 

weight than latency and CPU availability.  Figure  5.2 illustrates the performance of 

interrupt handling schemes when 3=a , 1=b , and 1=c .  We notice that Enabling-

Disabling Interrupt scheme gives the best performance.  We also notice that Traditional 

scheme gives better performance than Interrupt Coalescing scheme when traffic 

intensity is less than 0.4.  However, the optimal operating points for all schemes occur at 

high traffic intensity. 

igure  5.3

Design Example III.  The goal of this design is to give system latency more 

weight than throughput and CPU availability.  F  shows the performance of 

interrupt handling schemes when  1=a , 1=b , and 5=c .  It is noted that Traditional 

scheme give better performance at lower traffic intensity (i.e. 1.0<ρ ).  After this point, 

Enabling-Disabling Interrupt scheme gives more power than other schemes.  We also 

notice that Interrupt Coalescing scheme is totally diminished.  Moreover, we observe 

remarkable power degradation of interrupt handler schemes if we compare them with 

Ideal system. 

Design Example IV.  The goal of this design is to give CPU availability more 

weight than throughput and latency. F  illustrates the performance of interrupt 

handling schemes when , 

igure  5.4

1=a 3=b , and 1=c .  We notice that Traditional scheme and 

Enabling-Disabling Interrupt scheme give approximately an equivalent power at lower 

traffic intensity.  After this point, Enabling-Disabling Interrupt scheme has the best 

overall system power.   It is noted that the power of Interrupt Coalescing scheme 

approaches the power of Enabling-Disabling scheme for higher traffic intensity. 
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Figure  5.3:  Performance of interrupt handling schemes where  

system latency has more weight than throughput and CPU availability 
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Figure  5.4:  Performance of interrupt handling schemes where  

CPU availability has more weight than throughput and latency 
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Design Example V.  The goal of this design is to give system throughput less 

weight than latency and CPU availability.  Both system latency and CPU availability 

have similar weights.  Figure  5.5 depicts the performance of interrupt handling schemes 

when , , and 5.0=a 1=b 1=c .  We notice that Traditional scheme and Enabling-

Disabling Interrupt scheme give approximately an equivalent power at lower traffic 

intensity.  After this point, Enabling-Disabling Interrupt scheme has the best overall 

system power.  Moreover, Interrupt Coalescing scheme outperforms Traditional scheme 

when traffic intensity is greater than 0.4. 

igure  5.6

Design Example VI.  The goal of this design is to give system latency less 

weight than throughput and CPU availability.  Both system throughput and CPU 

availability have similar weights.  F  depicts the performance of interrupt 

handling schemes when 1=a , 1=b , and 2.0=c .    We notice that all schemes give 

approximately an equivalent power at lower traffic intensity i.e., when 2.0<ρ .   After 

this point, Interrupt Coalescing scheme has the best overall system power up to point 

when traffic intensity is less than 0.6.  When traffic intensity is greater than 0.7, 

Enabling-Disabling Interrupt scheme gives better performance than other schemes. 
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Figure  5.5:  Performance of interrupt handling schemes where  

system throughput has less weight than latency and CPU availability 
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Figure  5.6:  Performance of interrupt handling schemes where  

system latency has less weight than throughput and CPU availability 

 



131 

5.2 Selecting the Best Scheme 

In this section, we will discuss the selection of proper scheme or schemes 

according to design goal.  We see that Enabling-Disabling Interrupt scheme is a suitable 

scheme when the system goal is maximizing throughput, maximizing CPU availability, 

and minimizing latency.   If the system does not support Enabling-Disabling Interrupt 

scheme, then we have to implement two schemes: Traditional and Interrupt Coalescing 

schemes (see Figure 5.1).   The transition of these two schemes depends on the value of 

traffic intensity.  If 4.0<ρ , then we switch to Traditional scheme.  Otherwise, we 

switch to Interrupt Coalescing scheme. 

If the system is sensitive to throughput then Enabling-Disabling Interrupt scheme 

outperforms Traditional and Interrupt Coalescing schemes (see Figure 5.2).  If system 

responsiveness is to be considered also besides system throughput then we need to 

implement all these schemes (see Figure 5.6).  The transition will depend on the system 

load.  If 2.0<ρ  then we switch to Traditional scheme.   If 65.02.0 << ρ  then we 

switch to Interrupt Coalescing scheme.  Otherwise, we switch to Enabling-Disabling 

Interrupt scheme. 

Finally, if the system is sensitive to latency then applying Interrupt Coalescing is 

not recommended.  Traditional scheme is used when 1.0<ρ .  Otherwise, Enabling-

Disabling Interrupt scheme is used. 
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5.3 Design and Implementation Issues 

We have seen that scheme's selection depends on system load.  The system load 

is measured as traffic intensity ρ, where µλρ /= . 

5.3.1 NIC-Side Solution   

One way to estimate traffic intensity is to estimate packet arrival rate and packet 

processing time in protocol stack.  We adopt the idea of [DOV01] to measure average 

packet arrival rate using exponential weighted average.  The average packet interarrival 

 is estimated after each packet arrival using the following formula: 

Â

Ŝ

Â

)10()1(ˆˆ ≤≤−+= ααα DAA , (  5-1)

where α is the average interarrival weight factor and D is the duration between last 

packet arrival and the one before that. α controls the importance that is given to the last 

interarrival relative to the past history of interarrivals, as that is accumulated in . 

The average processing time for a packet in protocol stack  can be estimated 

experimentally.  The experiment runs an application that implements loopback interface.  

The application generates traffic and gathers two specific times.  The first time is the 

time a packet has been sent to the interface.  The second time is the receiving time for 

that packet.   Then, the service time for this packet is half the difference between the two 

times.  Therefore, we can compute the average service time  .  

Ŝ
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The solution can be implemented in NIC provided that NIC can be programmed.  

Therefore, this solution will not produce any overhead inside the system kernel.  The 

drawbacks of this technique are as follows.  The accuracy of estimating interarrival time 

depends on α.  We have to measure µ  for each server we need to implement this 

technique. 

5.3.2 OS-Side Solution 

Another way to estimate traffic intensity is by estimating average number of 

packets in the host system memory  and probability of packet loss .  Then, we can 

apply M/M/1/B model to compute 

N̂ Bp̂

ρ̂  as follows: 

[ ]BpBN ˆ)1(1
ˆ1

ˆˆ +−
−

=
ρ

ρ , 

[ ]
[ ]B

B

pBN
pBN

ˆ)1(1ˆ1
ˆ)1(1ˆ

ˆ
+−+

+−
=ρ . (  5-2 )

where  and ( ntNN /)(ˆ ∑= )
)received packets ofnumber  Total(

)dropped packets ofNumber (ˆ =Bp .  n denotes the 

number of times we observe N(t). 

Initially,  and  are set to zero.  Then, we update their values periodically, 

i.e., after a time slice of size T.  The time T must be set in milliseconds (say 10 

millisecond) in order to prevent producing overhead due to calculating  and .  

N̂ Bp̂

N̂ Bp̂
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However, setting T with bigger values may produce inaccurate prediction for  and 

. 

N̂

Bp̂

This solution can be implemented inside the kernel.  The disadvantage is the 

difficulty to set a suitable value for T to compromise between overhead and accuracy. 

 

 



 

  CHAPTER 6  

CONCLUSION 

This chapter presents a summary of our major contributions in this thesis work to 

study the operating system performance for different interrupt handling schemes.  It also 

gives indications of future research directions. 

One of our major contributions in this thesis is proposing the overall system 

power metric.   This novel metric integrates three main metrics that measure the host 

system performance.  The three metrics are system throughput, system latency and CPU 

availability for user processes. 

We presented analytical models for interrupt handling schemes including 

Traditional scheme, Interrupt Coalescing scheme and Enabling-Disabling Interrupt 

scheme.  First, we presented an analysis for the ideal situation in which the overhead 

involved in generating interrupts is totally ignored.  Then, we presented two models for 

the Traditional scheme.  The first model is based on analysis of the effective service rate.  

The second model uses pure Markovian model.  The comparison results between the 

first and the second models are quit similar.  Next, we modeled the Interrupt Coalescing 

scheme using analysis of the effective service rate.  Finally, we modeled Enabling-

Disabling Interrupt scheme using pure Markovian model. 
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We developed a simulation model to verify our analysis. Simulation results show 

that our analytical models are correct and accurate.  We also verified our analysis by 

solving equations for special cases when the interrupt handling is ignored.  

Performance comparison between interrupt handling schemes has been 

presented.  We have shown that achieving the optimal system performance may require 

to implement different schemes for interrupt handling depending on the current system 

load.  We also discussed some implementations issues related to estimating the system 

load. 

The topics presented in this thesis open a new horizon for further research.  The 

followings are some future directions:  

• In our analysis, we assumed that all packets have fixed size length.  Further 

analysis is needed to consider general distribution for packet length.  

Simulation model is also needed to verify the analysis.  Such analysis and 

simulation can help studying system performance of Gigabit Ethernet jumpo 

frames. 

• In this thesis, we used a Poisson process to model traffic source.  In realistic 

settings, traffic sources are bursty.  This behavior can be modeled using 

Pareto distribution [LEL94].  Therefore, further work is needed to examine 

system performance using Pareto distribution. 

• Interrupt handling schemes described in this thesis run at full speed, i.e., 

protocol stack routine will keep processing as long as there is a packet in the 

 

kernel memory.  This will cause starvation problem at high load.  One 
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solution is to implement polling it 

the number of packets to be processed in each poll.  This will prevent 

protocol stack processing to consume all CPU resources.  Further work is 

needed to model, analyze, and simulate polling scheme. 

                                                

1.   In polling, packet quota is used to lim

• Prototype or experimental implementation is needed to validate analytical 

and simulation results for the different interrupt handling schemes. A typical 

prototype or experiment would involve two PCs equipped with GbE NICs 

running Linux OS.  Modifications to the OS kernel and device drivers would 

be required. 

  

 

 

 
1 Look at section  2.2.3 for more details. 



 

Appendix A 

M/M/1 Queue 

1. Traffic intensity: µλρ /= . 

2. Stability condition: Traffic intensity ρ must be less than 1. 

3. Probability of zero packets in the system: ρ−= 10p . 

4. Probability of n packet in the system: , n = 0, 1, …, ∞. nρ

)

np ρ)1( −=

5. Average number of packet in the system: 1/()( ρρ −=nE . 

6. Mean response time: )1/()/1( ρµ −=R . 

 

M/M/1/B Queue 

1. Traffic intensity: µλρ /= . 

2. The system is always stable: ∞<ρ . 

3. Probability of zero packets in the system:  
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4. Probability of n packet in the system:  
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5. Average number of packet in the system:  
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Simulation Code 
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 printf("-------------------------------------------------\n\n"); 
 printf(" lamda  P(B)     rho   CPU_PKT  CPU_ISR    Th   E(r)\n"); 
  

#include "rand.h" 
#include "mm1b.h" 
 
int main(int argc, char *argv[]) 
{ 
 event_type next_event; 
 double lower_rate, upper_rate, service_rate, arrival_rate; 
 uint num_of_events; 
 int model; 
  
 printf("1- Normal interrupt model (case 1)\n"); 
 printf("2- Normal interrupt model (case 2)\n"); 
 printf("3- Interrupt coalescing model\n"); 
 printf("4- Enabling/Disabling interrupt model\n"); 
 printf("select --> "); scanf("%d", &model); 
  
 /* collect data from user */ 
 printf("Enter arrival range [lower rate, upper rate] : "); 
 scanf("%lf %lf", &lower_rate, &upper_rate); 
 printf("Enter service rate: "); 
 scanf("%lf", &service_rate); 
 printf("Enter ISR time : "); 
 scanf("%lf", &mean_isr); 
 if (model == 3) { 
  printf("Enter coalescing size : "); 
  scanf("%d", &coal_size); 
 } 
 if (model == 4)  
  time_instructions = 0.05; 
 else 
  time_instructions = 0; 
 printf("Enter system buffer size [0 for infinity]: "); 
 scanf("%ld", &buf_size); 
 while (buf_size > MAX_BUFFER_SIZE) { 
  printf("Error: You buffer size exceed the maximum limit 
%lu\n", MAX_BUFFER_SIZE); 
  printf("Enter system buffer size [0 for infinity]: "); 
  scanf("%ld", &buf_size); 
 } 
 model_type = (buf_size == 0)? MM1,buf_size=MAX_BUFFER_SIZE:MM1B; 
 
 /* set system parameters */ 
 mean_service      = 1.0 / (service_rate);  /* 1 / rate */ 
 printf("\n<<<<<<<<<<<<  SYSTEM PARAMETERS >>>>>>>>>>>>>>\n"); 
 printf("Simulation model # .............  = %d\n", model); 
 printf("Mean service rate...............  = %6.4f\n", 
1.0/mean_service); 
 printf("Mean ISR .......................  = %6.4f\n", mean_isr); 
 if (model == 3)  
  printf("Coalescing size ..........  = %d\n", coal_size); 
 printf("Buffer size.....................  = %lu\n", buf_size); 
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 time_last_event  = 0.0; 
 interrupt_enabled   = TRUE; 
 rem_packets   = coal_size; 

 arrival_rate = lower_rate; 
 while ( arrival_rate <= upper_rate) { 
  mean_interarrival = 1.0 / (arrival_rate);    /* 1 / rate */ 
   
  /* Initialize the simulation model */ 
  num_of_events = 0; 
  initialize(); 
   
  while (num_of_events++ < 800000) {     
   /* determine the next event */ 
   next_event = timing(); 
    
   /* Update time-average statistical accumulators */ 
   update_time_avg_stats(); 
    
   /* invoke the appropriate event function */ 
   switch (next_event) { 
   case ARRIVAL:  
    switch (model) { 
    case 1: normal_arrive_1(); break; 
    case 2: normal_arrive_2(); break; 
    case 3: coal_arrive(); break; 
    case 4: ed_arrive(); break; 
    } 
    break; 
   case DEPARTURE: depart(); break; 
   case ISR: interupt(); break; 
   } 
  } 
  report(); 
  arrival_rate += 0.1; 
 } 
 return 0; 
}     
 
/*******************************************************************/ 
/*  
/*                initialize routine 
/* 
/*******************************************************************/ 
void initialize(void) 
{ 
 /* Initialize the simulation clock */ 
  
 time = 0.0; 
  
 /* Initialize the state variables */ 
  
 protocol_status    = IDLE; 
 isr_status   = IDLE; 
 num_in_sys       = 0L; 
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 { 
  if (time_next_event[ISR] <= min_time) { 
   min_time = time_next_event[ISR]; 

 
 /* Initialize the statistical counters */ 
  
 area_num_in_q       = 0.0; 
 area_num_in_sys     = 0.0; 
 area_server_status  = 0.0; 
 num_pack_depart     = 0; 
 total_response_time = 0.0; 
 num_arrival         = 0L; 
 num_pack_drop       = 0L; 
 area_cpu_protocol   = 0.0; 
 area_cpu_isr        = 0.0; 
  
 /* Initialize event list.  Since no packets are present, the 
 departure (service completion) event is eliminated from  
 consideration.   
 */ 
  
 time_next_event[ARRIVAL] = time + 
expon_arrival(mean_interarrival); 
 time_next_event[DEPARTURE] = INFINITY; 
 time_next_event[ISR] = INFINITY; 
  
 /* initialize buffer */ 
 head = tail = 0; 
} 
/*******************************************************************/ 
/*  
/*                timing routine 
/* 
/*******************************************************************/ 
event_type timing(void) 
{ 
 double min_time; 
 event_type event; 
  
 /* since we always schedule next arrival whenever packet arrives  
 we assume this event will happen next unless other events occur 
 before next packet arrival 
 */ 
 min_time = time_next_event[ARRIVAL]; /* since we always expect an 
arrival packet */ 
 event = ARRIVAL; 
  
 /* now check if other events occur before arrival event, with 
following consideration: 
 1- if server execute an ISR, departure event will not be 
scheduled next. 
 2- otherwise, select either arrival event or departure event. 
 */ 
 if (isr_status == TRUE) /* if the server executes an ISR */ 
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   exit(0); 
  } 
  else num_pack_drop++; 

   event = ISR; 
  } 
 } 
 else /* no isr */ 
 { 
  if (time_next_event[DEPARTURE] < min_time) { 
   min_time = time_next_event[DEPARTURE]; 
   event = DEPARTURE; 
  } 
 } 
  
 /* advance the simulation clock */ 
 time = min_time; 
  
 return event; 
}  
 
/*******************************************************************/ 
/*  
/*                Arrival event routines 
/* 
/*******************************************************************/ 
/******************************* 
* Normal interrupt model case 1 
********************************/ 
void normal_arrive_1(void) 
{ 
 /* schedule next arrival */ 
 time_next_event[ARRIVAL] = time + 
expon_arrival(mean_interarrival); 
  
 /* incement number of packet arrival */ 
 num_arrival++; 
  
 /* if packet arrived ouside an isr, then generate an interrupt */ 
 if (isr_status == IDLE) {  
  time_isr = expon_isr(mean_isr) + time_instructions; 
  time_next_event[ISR] = time + time_isr; /* time where isr 
finish its execution */ 
  isr_status = BUSY; 
 } 
  
 /* Check to see if there is place in the buffer */ 
 if (num_in_sys < buf_size) {  
  num_in_sys++; 
  queue[tail] = time; 
  tail  = ++tail % buf_size; 
 } 
 else /* drop the packet */ 
  if (model_type == MM1) { 
   printf("\nInsufficient memory ...."); 
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   time_isr = expon_isr(mean_isr); 
   time_next_event[ISR] = time + time_isr; /* time where 
isr finish its execution */ 

} 
 
/******************************* 
* Normal interrupt model case 2 
********************************/ 
void normal_arrive_2(void) 
{ 
 /* schedule next arrival */ 
 time_next_event[ARRIVAL] = time + 
expon_departure(mean_interarrival); 
  
 /* incement number of packet arrival */ 
 num_arrival++; 
  
 /* Check to see if there is place in the buffer */ 
 if (num_in_sys < buf_size) { 
  num_in_sys++; 
  queue[tail] = time; 
  tail  = ++tail % buf_size; 
  /* if packet arrived ouside an isr, then generate an 
interrupt */ 
  if (isr_status == IDLE) {  
   time_isr = expon_isr(mean_isr) + time_instructions; 
   time_next_event[ISR] = time + time_isr; /* time where 
isr finish its execution */ 
   isr_status = BUSY; 
  } 
 } 
 else /* drop the packet */ 
  num_pack_drop++; 
} 
 
/********************** 
* Interrupt coalescing model 
**********************/ 
void coal_arrive(void) 
{ 
 /* schedule next arrival */ 
 time_next_event[ARRIVAL] = time + 
expon_arrival(mean_interarrival); 
  
 /* incement number of packet arrival */ 
 num_arrival++; 
  
 /* check if we have to generate an interrupt or not */ 
 if (--rem_packets <= 0) { 
  /* remask interrupt coalescing */ 
  rem_packets = coal_size; 
  /* if packet arrived ouside an isr, then generate an 
interrupt */ 
  if (isr_status == IDLE) {  
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  else num_pack_drop++; 
} 
 

   isr_status = BUSY; 
  } 
 } 
 /* Check to see if there is place in the buffer */ 
 if (num_in_sys < buf_size) {  
  num_in_sys++; 
  queue[tail] = time; 
  tail  = ++tail % buf_size; 
 } 
 else /* drop the packet */ 
  if (model_type == MM1) { 
   printf("\nInsufficient memory ...."); 
   exit(0); 
  } 
  else num_pack_drop++; 
} 
 
/********************** 
* Enabling/Disabling interrupt model 
**********************/ 
void ed_arrive(void) 
{ 
 /* schedule next arrival */ 
 time_next_event[ARRIVAL] = time + 
expon_arrival(mean_interarrival); 
  
 /* incement number of packet arrival */ 
 num_arrival++; 
  
 /* check if interrupt is enabled or not */ 
 if (interrupt_enabled) { 
  interrupt_enabled = FALSE; 
  /* if packet arrived ouside an isr, then generate an 
interrupt */ 
  time_isr = expon_isr(mean_isr); 
  time_next_event[ISR] = time + time_isr; /* time where isr 
finish its execution */ 
  isr_status = BUSY; 
 } 
  
 /* Check to see if there is place in the buffer */ 
 if (num_in_sys < buf_size) {  
  num_in_sys++; 
  queue[tail] = time; 
  tail  = ++tail % buf_size; 
 } 
 else /* drop the packet */ 
  if (model_type == MM1) { 
   printf("\nInsufficient memory ...."); 
   exit(0); 
  } 
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 /* check if the server was busy or not */ 
 if (protocol_status == BUSY) 

/*******************************************************************/ 
/*  
/*                Departure event routine 
/* 
/*******************************************************************/ 
void depart(void) 
{ 
 double response_time; 
  
 num_in_sys--; 
  
 /* compute the response time of the depart's packet and update 
the 
 total response time */ 
  
 response_time = time - queue[head]; /* total time elapsed in the 
system */ 
 total_response_time += response_time; 
  
 /* remove the served packet */ 
 head = ++head % buf_size; 
  
 /* increment the number of packets departed */ 
 num_pack_depart++; 
  
 /* check wether the queue is empty */ 
 if (num_in_sys <= 0) { 
    /* no packet in the system. so make the server IDLE and eliminate 
the 
  departure event from consideration */ 
  protocol_status = IDLE; 
  interrupt_enabled = TRUE;     /* 
this is for enabling/disabling scheme */ 
  time_next_event[DEPARTURE] = INFINITY; 
 } 
 else 
  /* if queue is not empty, schedule the next packet */ 
  time_next_event[DEPARTURE] = time + 
expon_departure(mean_service); 
} 
 
/*******************************************************************/ 
/*  
/*                ISR event routine 
/* 
/*******************************************************************/ 
void interupt(void) 
{ 
 /* finishing ISR */ 
 isr_status = IDLE; 
 time_next_event[ISR] = INFINITY; 
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 /* Return an exponential random variate with mean "mean" */ 
 return (-mean * log(u)); 

  /* delay the current packet departure time */ 
  time_next_event[DEPARTURE] += time_isr; 
 else { 
     /* if server was IDLE, then schedule the departure time for 
incoming 
     packet and set the server to BUSY */ 
  time_next_event[DEPARTURE] = time + 
expon_departure(mean_service); 
  protocol_status = BUSY; 
 } 
}    
 
/*******************************************************************/ 
/*  
/*                Update area accumulators routine 
/* 
/*******************************************************************/ 
void update_time_avg_stats(void) 
{ 
 double time_since_last_event; 
  
 /* compute time since last event, and update last-event-time  
 marker */ 
 time_since_last_event = time - time_last_event; 
 time_last_event = time; 
  
 /* update all area */ 
 area_num_in_sys += num_in_sys * time_since_last_event; 
  
 /* update server utilization, since server could be busy with isr 
or 
 packet processing */ 
 area_server_status += (protocol_status | isr_status) * 
time_since_last_event; 
 area_cpu_protocol += (~isr_status & protocol_status) * 
time_since_last_event; 
 area_cpu_isr += isr_status * time_since_last_event; 
} 
 
/*******************************************************************/ 
/*  
/*                exponential variate generation routine 
/* 
/*******************************************************************/ 
double expon_departure (double mean) 
{ 
 double u; 
  
 /* Generate a U(0,1) random variate */ 
  
 u = lcg_rand(1); 
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} 
 
double expon_isr (double mean) 
{ 
 double u; 
  
 /* Generate a U(0,1) random variate */ 
  
 u = lcg_rand(50); 
  
 /* Return an exponential random variate with mean "mean" */ 
 return (-mean * log(u)); 
} 
double expon_arrival (double mean) 
{ 
 double u; 
  
 /* Generate a U(0,1) random variate */ 
  
 u = lcg_rand(99); 
  
 /* Return an exponential random variate with mean "mean" */ 
 return (-mean * log(u)); 
} 
 
/*******************************************************************/ 
/*  
/*               Report routine 
/* 
/*******************************************************************/ 
void report(void) 
{ 
 double average_num_in_sys; 
 double throughput; 
 double mean_response_time; 
 double server_util; 
  
 average_num_in_sys = area_num_in_sys / time; 
 mean_response_time = total_response_time / num_pack_depart; 
 throughput = num_pack_depart / time; 
 server_util = area_server_status / time; 
  
 printf("%6.4f\t%4.3f\t%4.3f\t%4.3f\t%4.3f\t%6.3f\t%12.3f\t%12.3f\
n", 1.0/mean_interarrival, 
  (double)num_pack_drop/num_arrival, server_util, 
area_cpu_protocol/time, area_cpu_isr/time, 
  throughput, mean_response_time, average_num_in_sys); 
} 
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/* Statistic variables */ 

#ifndef _MM1B_H_ 
#define _MM1B_H_ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
/* mnemonics for event types */ 
typedef enum {ARRIVAL=0, DEPARTURE, ISR, NUM_EVENTS} event_type; 
/* mnemonics for server's being idle or busy */ 
typedef enum {IDLE=0, BUSY} status; 
/* mnemonics for boolean values */ 
enum {FALSE=0, TRUE}; 
enum {MM1=0, MM1B}; 
 
typedef unsigned long uint; 
 
#define INFINITY   1E+20  /* infinity time */ 
 
/* System parameters */ 
double mean_interarrival;  /* mean interarrival time of 
packets */ 
double mean_service;   /* mean service time of packets */ 
double mean_isr;    /* mean interrupt service routine 
time */ 
uint   buf_size;    /* memory buffer size */ 
 
#define MAX_BUFFER_SIZE     1000000 /* Maximum buffer size */ 
 
/* System variables */ 
int  isr_status;    /* Is server processing ISR 
or not */ 
int  protocol_status;  /* Is server processing protocol 
stack or not */ 
uint num_in_sys;    /* number of packets in the system 
*/ 
double queue[MAX_BUFFER_SIZE]; /* system buffer , it holds only 
arrival time for each packet */ 
double time;     /* simulation clock time */ 
double time_last_event;  /* time of last event */ 
double time_isr;    /* time of isr handling */ 
double time_next_event[NUM_EVENTS];   /* next event list */ 
int  coal_size;    /* number of packets to be 
coalesced */ 
int  rem_packets;   /* number of packets remained 
to generate an isr */ 
int  model_type;    /* is M/M/1 or M/M/1/B */ 
int  interrupt_enabled;  /* interrupt is enabled or 
disabled */ 
double time_instructions;  /* time to execute two 
instructions for enabling/disabling interrupts */ 
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uint   num_pack_depart;       /* number of packets leave the system 
successfully */ 
double area_num_in_q; 
double area_num_in_sys; 
double area_server_status; 
double total_response_time; 
uint   num_pack_drop; 
uint   num_arrival; 
double area_cpu_protocol; 
double area_cpu_isr; 
 
/* buffer manipulation */ 
uint head; 
uint tail; 
 
/* function prototypes */ 
void initialize(void); 
event_type timing (void); 
void normal_arrive_1(void); 
void normal_arrive_2(void); 
void coal_arrive(void); 
void ed_arrive(void); 
void depart(void); 
void interupt(void); 
void update_time_avg_stats(void); 
double expon_departure(double); 
double expon_arrival(double); 
double expon_isr(double); 
void report(void); 
 
#endif 
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   68911991,2088367019, 748545416, 622401386,2122378830, 640690903, 
 1774806513,2132545692,2079249579,  78130110, 852776735,1187867272, 
 1351423507,1645973084,1997049139, 922510944,2045512870, 898585771,   

#include "rand.h" 
/* Prime modulus multiplicative Linear Congruential Generator (LCG) 
   Z[i] = (630360016 * Z[i-1]) (mod(pow(2,31) - 1)), based on Marse and 
   Roberts' portable FORTRAN random-number generator UNIRAN.  Multiple 
   (100) streams are supported, with seeds spaced 100,000 apart. 
   Throughout, input argument "stream" must be an int giving the  
   desired stram number.  The header file rand.h must be included 
   in the calling program before using these functions. 
 
   Usage: 
 
     1. To obtain the next U(0,1) random number from stram "stream"  
        execute: 
             u = lcg_rand(stram); 
        where lcg_rand is a float function.  The float variable u will  
        contain the next random number. 
 
    2.  To set the seed for stream "stream" to a desired value zset, 
        execute 
             randst(zset, stream); 
        where randst is a void function and zset mub be a long set to 
        desired seed, a number between 1 and 2147483646 (inclusive). 
        Default seeds for all 100 streams are given in the code. 
 
    3.  To get the current (most recently used) integer in the sequence 
        being generated for stram "stream" into the long variable zget,  
        execute 
             zget = randgt(stream); 
        where randgt is a long function 
 
*/ 
 
 
/* Define the constants. */ 
 
#define MODLUS 2147483647  
#define MULT1       24112 
#define MULT2       26143 
 
 
 
/* Set the default seeds for all 100 streams */ 
 
static long zrng[]= 
{         0, 
 1973272912, 281629770,  20006270,1280689831,2096730329,1933576050, 
  913566091, 246780520,1363774876, 604901985,1511192140,1259851944, 
  824064364, 150493248, 242708531,  75253171,1964472944,1202299975, 
  233217322,1911216000, 726370533, 403498145, 993232223,1103205531, 
  762430696,1922803170,1385516923,  76271663, 413682397, 726466604,  
  336157058,1432650381,1120463904, 595778810, 877722890,1046574445,  
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  243649545,1004818771, 773686062, 403188473, 372279877,1901633463, 
  498067494,2087759558, 493157915, 597104727,1530940798,1814496276, 
  536444882,1663153658, 855503735,  67784357,1432404475, 619691088, 
  119025595, 880802310, 176192644,1116780070, 277854671,1366580350, 
 1142483975,2026948561,1053920743, 786262391,1792203830,1494667770, 
 1923011392,1433700034,1244184613,1147297105, 539712780,1545929719, 
  190641742,1645390429, 264907697, 620389253,1502074852, 927711160, 
  364849192,2049576050, 638580085, 547070247  }; 
 
 
/* Generate the next random number. */ 
 
double lcg_rand(int stream) 
{ 
   long zi, lowprd, hi31; 
 
   zi     = zrng[stream]; 
   lowprd = (zi & 65535) * MULT1; 
   hi31   = (zi >> 16) * MULT1 + (lowprd >> 16); 
   zi     = ((lowprd & 65535) - MODLUS) + 
            ((hi31 & 32767)  << 16)  + (hi31 >> 15); 
   if (zi < 0) zi += MODLUS; 
   lowprd = (zi & 65535) * MULT2; 
   hi31   = (zi >> 16) * MULT2 + (lowprd >> 16); 
   zi     = ((lowprd & 65535) - MODLUS) + 
            ((hi31 & 32767)  << 16)  + (hi31 >> 15); 
   if (zi < 0) zi += MODLUS;  
   zrng[stream] = zi; 
   return ((zi >> 7 | 1) + 1)/ 16777216.0; 
} 
 
/* Set the current zrng for stream "stream" to zset. */ 
 
void randst (long zset, int stream) 
{ 
   zrng[stream] = zset; 
} 
 
/* Return the current zrng for stream "stream". */ 
 
long randgt (int stream) 
{ 
   return zrng[stream]; 
} 
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/* 
 The following declarations are for use of the random-number 
   generator rand and the associated functions randst and randgt for 
   seed management.  This file (named rand.h) should be included 
   in any program using these functions as follows: 
*/ 
 
#ifndef _RAND_H_ 
#define _RAND_H_ 
 
double lcg_rand(int stream); 
void randst(long zset, int stream); 
long randgt(int stream); 
 
#endif 
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