Scheduling and Allocation in High-Level
Synthesis using Genetic Algorithm

by
Shahid Al

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

June, 1994

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor, MI 48106-1346 USA
313/761-4700 800:521-0600

Order Number 1360424

Scheduling and allocation in high-level synthesis using genetic
algorithm

Ali, Shahid, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

AL
o' B Y
> O
3 \\,\\°

SCHEDULING AND ALLOCATION IN
HIGH-LEVEL SYNTHESIS USING
GENETIC ALGORITHM

BY

eﬁes}ai&a%5@5@a?eiia%lak&L%&L%&l%&i&i%ﬁd&iﬂ%&i&l%

SHAHID ALI

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA E
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE :
%

In
COMPUTER SCIENCE

JUNE 1994

Sel el el el el ettt Jel el el el el el el el el el el el el Sl Sel el el

i

—e

ic

SR PR P P P PP P P P P P oSSR P %5’?

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

This thesis, written by

Shahid Ali

under the direction of his Thesis Advisor, and approved by his Thesis committee, has
been presented to and accepted by the Dean, College of Graduate Studies, in partial

Julfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Thesis Committee:

ma/Amm.AW/

Chairman (Dr. M. Shafique)
‘X acli'v j&t ' M

Co-chairman (Dr. SadiéM. Sait)

L4
-

.

—
Member (Dr. M. S. T. Benten)

‘fm’ Member (Dr. T. H. Maghrabi)

Dr. M. Al-Mulhem e
Department Chairman g .

CA AN, \

S
Dr. Ala H. Rabeh
Dean, College of Graduate Studies

29,5 A

Date:

Mk

Dedicated to

My Parents

and Brothers

Acknowledgments

All Praise is for Almighty Allah for having guided me at every stage of my life.

I would like to express my gratitude to my thesis committee chairman Dr. M.
Shafique for his assistance and support. I am also highly thankful to my co-chairman
Dr. Sadig M. Sait for his time, guidance and assistance. I am also grateful to my
committee members Dr. M. S. T. Benten and Dr. T. H. Maghrabi for their sincere
help and suggestions.

I also acknowledge the generous help and support for this research provided by
King Fahd University of Petroleum and Minerals. T am indebted to my depart-
ment chairman Dr. M. Al-Mulhem for his assistance and support. My thanks also
to all faculty members and my friends, both from within and outside the depart-
ment, who made my stay at the university a pleasant and memorable one. Spccial
thanks go to my fellow and friend late Emad Amin IKhan for his moral support and

encouragement.

Contents

Acknowledgements
List of Tables

List of Figures
Abstract (English)
Abstract (Arabic)

1 Introduction

1.1 Synthesis Process

...............................

1.2 Problem Ilustration

...........................

2 Literature Survey
2.1 Scheduling Techniques

..........................

2.2 Allocation Techniques

ii

vi

vii

xi

11

15

3 Genetic Algorithm and Tabu Search

3.1 Genetic Algorithm

............................

3.1.1 Population

.............................

3.1.2 Crossover

.............................

3.1.3 Mutation

3.1.4 Selection

..............................

32 TabuSearch
32,1 TabuRestrictions

3.2.2 AspirationCriteria

3.2.3 Algorithmic Description

4 Scheduling and Allocation using Genetic Algorithm

4.1 Cost Function

...............................

4.2 Chromosomal Representation

......................

4.3 Initial Population

.............................

44 ChoiceFunction.,
4.4.1 Fitness Calculation
44.2 SampleSpace e

4.9 Crossover i e e e

4.5.1 Alternating Crossover

4.5.2 Order Crossover. v o i i i e e e e e e

LT AW

iv

4.5.3 Functional Unit Violation 64
4.5.4 Normalization of Functional Unit Assignment 66
46 Mutation. e 67
4.6.1 Control Step Mutation 67
4.6.2 Functional Unit Assignment Mutation 69
4.6.3 Functional Unit Input Mutation 69
4.7 Selection e 70
Scheduling and Allocation using Tabu Search 72
5.1 Imitial, Current and Best Solution 73
5.2 Generationof Moves 73
53 Tabulists e 75
3.4 Aspiration Level Criteria oo o000 76
5.5 Alternate Implementation 7
Data Path Synthesis Using Genetic Algorithm 80
6.1 Architecture e 81
6.2 Genetic Algorithm for DPS: A brief overview 82
6.3 Imitial Population 82
6.3.1 Chromosome Part for Variable to Register Mapping 84
6.3.2 Chromosome Part for Data Transfer to Bus Mapping 86
6.3.3 Complete Chromosome 86

\f

6.4 Fitness Calculation 88
8.5 CIOSSOVEL . . v v o e e e e e e e e e e e e e e e e e e 90
66 FinalDataPath. 91
Experimental Results 95
Conclusions and Future Work 103
8.1 Conclusions e e e e e 103
8.2 Future Work e e e e 105
Bibliography 106

Vita 114

L4]

List of Tables

Differential Equation Results. 97
EWFResults. 98
DCTResults. 99
Data path synthesisresult. 102

vi

List of Figures

1.1

1.2

1.3

14

1.6

21

2.2

2.3

2.4

3.1

Place of HLS in design hicrarchy. 3
Relationship of HLS with logic and layout synthesis. 4
Stepsinvolved in HLS., 6
Example of synthesis process. L. 10
Inter-dependence between resource allocation and scheduling. 12

Effect of functional unit and register allocation on interconnection cost. 14

Example of ASAP scheduling. 17
Example of list scheduling. 17
Exampleof FDS. 20
Allocation: Graplh theoretic approach example. 23
New states are gencrated in SA by interchanging/displacing code op-

ETAtiONS. it e e 25
Illustration of one-point crossover. 30

vil

3.2

3.3

3.4

4.1

4.2

4.3

4.4

6.1

6.2

viii

Genetic algorithm: Encoding, evaluation function, crossover and mu-

tation. L 33
Genetic algorithm: Selection. 34
Pseudocodefor GA. 36
Tabu list can be visnalized as a window over accepted moves. 39
Tabu search illustration. 41
Algorithmic deseription of Tabu Search (TS). 43
Chromosome. i 51
Samplespace. 57

Alternating crossover example with no scheduling violations: (a) Par-
ents; (b) Offspring. 61
Alternating crossover example with scheduling violations: (a) Par-
ents; (b) Offspring. 62
Simpleorder crossover. 63

Example of order crossover tailored for scheduling: (a) Parents; (b) Off-

SPIIDNZ. © v v v e e e e e e e e e e e 65
Functional unit normalization. 68
Comparison of two implementations. 79
Architecture on which data path ismapped. 83

Grouping variables into registers. 85

9

6.3

6.4

6.8

-1
.
ooy

X

Structure of the bus chromosome. 87
Sample bus chromosome. 0 87
Complete chromosome. 89
Cycle crossoverexample. e e e e 92
An example of a bus chromosome. oL 92

(a) Bus chromosome suitable for cycle crossover, (b) Offsprings re-

sulting from cyclecrossover. oo oo 94

GSA: Graph of average cost versus generations for differential equation.100
TSA: Graph of move costs for cach iteration for differential equation. 101

Data path synthesis using GA: Interconnection cost versus generations.102

1£90

Abstract

Name: Shahid Ali

Title: Scheduling and Allocation in High-Level Synthesis
using Genetic Algorithm

Major Field: Computer Scicnce

Date of Degree: June 1994

High-level synthesis (HLS) is the process of automatically translating abstract behav-
ioral models of digital systems to implementable hardware. Operation scheduling end
hardware allocation are the two most important phases in the synthesis of circuits
from behavioral specification. Scheduling and allocation can be formulated as an op-
timization problem. In this work, a unique approach to scheduling and allocation
problem using the genetic paradigm is described. The main contributions include:
(1) a new chromosomal representation for scheduling and for two subproblems of
allocation, and (2) two novel crossover operators to generate legal schedules. In ad-
dition the application of tabu search to scheduling and allocation is also implemented
and studied. Both techniques have been tested on various benchmarks and results ob-
tained for data-oriented control-data flow graphs (CDFGs) are compared with other
implementations. A novel interconnect optimization technique using genetic algo-

rithm is also realized.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Junte 1994

1£9

Rk

PERCILE—

Il Bay 5 plbstaly (6 gradi=d e qonadl & a3 19 A 9301 101 gl
Sloghally CowlH pgle 1 o I auasedl

VARE Olpjm — V€Y ¢ Aondl 93 oyl 5 U

B sl ad I 23l JW Ll alee 6l 5 mdl Sl paadl CTny

.L;”...a.g\ l:jl;.d\ .k=..\>:- JJL...J o E_Jd..‘./ C_-jjﬂ_: ﬂ;.l:‘.—\ QL‘J i.f«L_....o C)’<'c-./' .(5}:.«..“

Al Slajlt plisiial o) s Aol 30y B 2) B> i s s
Pk ST ol e ol ey S
5 Bl o Ay D paonl] o s S it

Ao s A Slas e lee Y
P < - o -)./' -

adhi F LS g el ot ol B el ol e sl 2l y3 £l) DL
Clndl Db)" JU (8 byl i) VST e £ 0By Ll a3 aslisinad
Yoty - a..’] -! P T SR I LU e) ISl 5

Ao Bnyl g ettty 6 el RIGAN 402 s J& &b o 3l ¢ LS

pll @ e
Silo glally w1 0 gle
Oslally J g) Lgd SIULY dnalr
ig3 grandt Byt ALY — O ,ghall
149¢ Ol — V£V ¢ dndl 5

Xi

123

Chapter 1

Introduction

High-level synthesis (HLS) is the process of automatically translating abstract
behavioral models of digital systems to implementable hardware. The behavioral
specification is a high-level abstraction generally at the algorithmic level. It is usu-
ally written using a high-level programming language. It consists of circuit outputs
in terms of circuit inputs without reference to any structure. Thus, while the be-
havioral specification aims at describing only the functionality of a circuit (what a
circuit must do), the structure gives strong hints about the implementation (how
the circuit must be built).

The place of HLS in design hierarchy is illustrated in Figure 1.1 {[MPC90]. Hard-
ware can be described in three domains - behavioral, structural and physical. The
level of detail increases from left to right in Figure 1.1. Also, five levels of ab-

straction are shown in which synthesis can take place, namely, system, algorith-

<o

SV

mic, register-transfer, logic, and circuit levels. Going from algorithmic behavior to
register-transfer level structure is HLS as shown by an arrow in Figure 1.1.

Figurc 1.2 shows the relationship of HLS with the logic synthesis and layout
synthesis in design automation. Design automation refers to the automatic synthesis
of a physical design from some higher-level behavioral specification [SY45]. Logic
synthesis converts a structural design, in terms of an interconnected set of register-
transfer level components, into optimized combinational logic. and maps that logic
onto the library of available cells (in a particular technology). Layout synthesis
converts an interconnected set of cells, which describes the structure (topology) of
a design, into the exact physical geometry (layout) of the design. An integrated
synthesis system that offers all three synthesis levels is often referred to as a silicon
compiler [WC91]. Logic and layout synthesis tools have gained a stable foothold in
industry. HLS is the next step in the ladder of the design automation hierarchy.
HLS provides shorter design cycle. fewer errors, exploration of dif ferent trade-
offs between cost, speed, etc., and availability of IC technology to more people
[MPC88]. So far automated synthesis has produced chips which are bigger and
slower as compared to the chips designed by experienced (human) chip designers.
This is a big challenge for the ongoing research cfforts in this area.

The steps involved in HLS are illustrated in Figure 1.3. In order to extract the
structure, the algorithmic specifications are first converted to an intermediate form

(IF) such as Control/Data Flow Graphs (CDFGs), in which nodes correspond to

DOMAINS

LEVEL
[Behavior) Structure Physical
System {Communicating :Aroces_sors Cabinets
Processes emories Cables
Switches
Input- Memory, Ports Board
Algorithmicll Output Processors Floorplan
Register- || Register ALUs, REGs, | CS
Transfer §| Transfers Muxes, Buses | Macro Celis
Loaic Logic Gates Standard Cell
9 Equations Flip flops Layout
L Network Transistors, Transistor
Circuit Equations Connections Layout

Figure 1.1: Place of HLS in design hicrarchy.

1L90

[Design Automation)

. A high-level abstraction

Behavioral Specification | at the algorithmic level
" Example:

- . vli=v2+v3
High-Level v4 =v1 +V5
Synthesis

I Aninterconnected set of
gtruptural ' Register-Transfer Level
esign
| i components
Logic
Synthesis

Optimized | .
Combinational i '::t ?:i';losn;eg:d
Logic Mappedto libr
Library Cells ; torary

Y ‘

Layout
Synthesis

_ l b Placement of cells and
Physical Geometry ' their connection
(Layout) of Design g (Routing)

Figure 1.2: Relationship of HLS with logic and layout synthesis.

A >

[91]

operations (for example addition, multiplication, etc.) and edges correspond to data
values (for example variables and constants) and control flow dependencies. Some
compiler like high-level transformations (such as dead code climination, common
subexpression elimination, ctc.) are applied to optimize the behavior of the design
resulting in a more suitable IF. This IF is then used as input to the scheduling and
allocation phases.

Operation scheduling and hardware allocation arc the two most important phases
in the synthesis of circuits from behavioral descriptions. While scheduling distributes
the execution of operations throughout time steps, allocation assigns hardware to
operations and values. More specifically. the task of scheduling is to assign each
CDFG node to a control step in such a way that all data/control flow dependencies
are satisfied. On the other hand, the task of allocation is to assign hardware cells to
CDFG nodes and edges in such a way that the resulting circuit can implement the
specified behavior without resource conflicts. Allocation of hardware cells include
functional unit allocation. register allocation and bus allocation.

Scheduling and allocation are closcly interrelated, but are usually dealt with
separately because of the complexity involved. There has been disagreement as
to which should come first. Some techniques take scheduling first and depend on
estimates of the required hardware. The others take allocation first, subject to given
constraints, and then schedule, taking into account the already given hardware.

The objective of scheduling may be to minimize the total number of control steps

Lo

L vi=v24v3 (1)

Behavioral Specification VA= vi4vE - (2)
S
. .]
Compilation _Usually, a
e ; control/data flow
Ilntermediate Form (IF) l\graph (CDFG)
pmmmmmmme e ‘ {v3 v2 V5
+ Transformations |

More suitable IF

[SchedulingIAllocation}

vi

v4
Structural Design

Figure 1.3: Steps involved in HLS.

=1

or to minimize the area of hardware or a combination of both of these. The objective
of allocation is to minimize the amount of hardware cost which includes the cost of
functional units, registers, buses and interconnections.

Optimal scheduling and allocation are both NP-complete problems. Therefore,
heuristic algorithms are generally used to solve them. As mentioned earlier, schedul-
ing and allocation are highly inter-dependent. Optimizing them separately may give
suboptimal results because the possibility that the best designs (in terms of overall
cost) may require suboptimum schedules and/or allocations may not be considered.
Thus, one can also combine scheduling and allocation in an attempt to optimize a
cost function that includes both the number of control steps and the hardware. In
this case, allocation may mean minimization of munber of functional units, registers,
buses and interconnect costs rather than actual allocation which is done after the
optimization process. This is usually the case since computation for allocation is
costly during optimization. The objective function involved in optimization process
for scheduling and allocation is usually complex.

Several optimization techniques can be used for this purpose such as simulated
anncaling and integer programming. Genetic algorithm (GA) is another promising
global optimization technique [Gol89). It works by emulating the natural process
of evolution as a mean of progressing toward the optimum. The algorithm starts
with a population which consists of several solutions to the optimization problem.

A member of population is called an individual. A fitness value is associated with

Lo

each individual. Each solution in the population or an individual is encoded as a
string of symbols. These symbols are known as genes and the solution string is
called a chromosome. The values taken by genes arce called alleles. Several pair
of individuals (parents) in the population mate to produce offsprings by applying
the genetic operator crossover. Selection of parents is done by repeated use of
a choice function. A number of indivi duals and offsprings are passed to a new
generation such that the number of individuals in the new population is the same as
old population. A selection function determines which strings form the population
in the next generation. Each surviving string undergoes mutation with probability
called mutation rate and inversion with probability known as inversion rate.

In evolution, the problem each individual faces is one of scarching for beneficial
adaptations to a complicated and changing environment. The knowledge that each
individual has gained is embodied in the makeup of its chromosome. The operations
that alter this chromosomal makeup are applicd when parents reproduce. Random
mutation provides background variation and occasionally introduces beneficial ma-
terial into an individual's chromosome. Inversion alters the location of genes on
a chromosome, allowing genes that are coadapted to cluster on a chromosome, in-
creasing their probability of moving together during crossover. Crossover exchanges
corresponding genetic material from two parent chromosomes, allowing beneficial
genes on different parents to be combined in their offspring [Dav87].

The genetic algorithm differs from the other stochastic techniques by being able

P26]

to encode and exploit past information efficiently during a scarch. This learning
capability provides the genetic algorithm with a guiding capability for searching
efficiently through a complex multi-dimensional scarch space. The key steps in the
application of genetic algorithm include an appropriate string encoding or chromo-
somal representation, a way to creatc an initial population of solutions, and an

effective crossover operator.

1.1 Synthesis Process

A simplified example of synthesis process is illustrated in Figure 1.4 [PK89]. The
behavioral description is compiled into an IF which is then transformed into opti-
mized IF. The CDFG shown corresponds to this optimized IF. Note that common
subexpression A + B is computed ounly once. Scheduled CDFG shows one of the
possible schedules for given CDFG. The small circles corresponds to registers. It is
assumed that input values 4, B. C, D. and E should be available even after the
computation of output values F and G. Therefore, the corresponding registers can
not be used. Note that a temporary register X' is used to store A + B, whereas the
register for G is temporarily used to store C 4+ D. Lower part of the figure shows

the data path for this schedule after the allocation of functional units, registers and

buses is performed.

Behavi

ioral Specification

Scheduled CDFG

*(A+B) E A B C
Nanva

F=E
G=(A+B)*"(C+

(@
CDFG

E A

2)
omo

(b)

(d)

Figure 1.4: Example of synthesis process.

10

1&L&9

11

1.2 Problem Illustration

As the transformation of a hehavioral specification into a structural design, with lim-
ited resources, is an NP-hard problem, one tries to simplify the search for efficient
approximations by subdividing the gencral problem into subproblems of scheduling
and allocation. As stated earlier, this approach gives suboptimal results. This is be-
cause the two subproblems are highly inter-dependent. The strong inter-dependence
between the allocation of resources and the scheduling of operations into time steps
can be illustrated with the help of a simple example of Figure 1.5 [CW91]. The
CDFG is shown in Figure 1.5(a). Figure 1.5(b) gives the number of control steps,
the minimum number of registers needed and the minimum number of functional
units required for the different schedules of Figure 1.5(¢), (d), and (e). The example
makes it clear how the number of required control steps is mutually dependent on
the number of available registers and functional units. It also shows how e very
partial problem is inter-dependent within the allocation, namely, register allocation
and functional unit allocation.

The effect of functional unit allocation and register allocation on interconnection
cost is illustrated with the help of the example of Figure 1.6. Figure 1.6(a) shows a
simple CDFG with three additions and one multiplication for the behavioral speci-
fication given in Figure 1.6(b). There are seven variables involved. The number of

control steps for which the variable is active is called its lifetime. The lifetime anal-

12

FUs

REGs

4

CSs

Figure 1.5: Inter-dependence between resource allocation and scheduling,

13

ysis of variables used is shown in Figure 1.6(c). Variables with disjoint lifetimes can
be stored in the same register. Thus we can form groups of (r1,v6) or (v3,v6) and
(v4,v7) or (v5. 7). The register assignments are shown in Figure 1.6(d). Variables
vl and v6 are grouped into register R1 and v5 and v7 into R5. The data path using
this assignment is shown in Figure 1.6(e). It can be scen that operation a3 can be
assigned to adder 1 or 2. No more interconncctions are needed if it is assigned to
adder 2, as is don e in Figure 1.6(e). Had it been assigned to adder 1. an extra
interconnection from register R2 to adder 1 would have been necessary which will
also necessitate a multiplexer at one of the inputs of adder 1. It can also be scen
that if variable 6 were grouped with 3, an extra interconnection and a multiplexer
can not be avoided whether we assign operation a3 to adder 1 or 2. Grouping v7
with v5 does not require any extra interconnection as both are produced by adder 2.
This clearly illustrates the effect of functional unit allocation and register allocation

on the interconnection cost.

v4=v1 +v3
(b) v5=vi+v2
vB=v4*v5
vi=v2+Vv6

Begister Assignment

R1
R2

R4
RS

:vi, v6
1 v2
R3:

v3

:vd
1 vh, v7

(d)

14

Lifetimes
1 2 3
vi
v2
v3
v4
v5
v6 —
v7 —
(©)
R4(v4) R5(v5,v7)
A 3
a2 A Y
a1 +(1) +(2) | 23 *
3 A m1

o

R3(v3)||R1(v1,v6) ||R2(Vv2)

t

(e)

Figure 1.6: Effect of functional unit and register allocation on interconnection cost.

Al ad

Chapter 2

Literature Survey

2.1 Scheduling Techniques

Existing scheduling algorithms can be classified into two groups: the iterative/con-
structive group and the transformational group [NMPC90]. Iterative/constructive
sclieduling algorithms successively schedule operations until complete schedules are
constructed. On the other hand, transformational scheduling algorithms start with
default schedules which are typically maximally parallel or serial designs, and then
repeatedly apply semantic preserving transformations to improve the initial sched-
ules.

The first approach to scheduling in high-level synthesis was probably the exhaus-
tive search. Since then, many scheduling algorithms for high-level synthesis have

been proposed. Davidson et. al. [DLSM81] discuss exhaustive search using branch-

15

16

and-bound techniques, as-soon-as-possible (ASAP) scheduling, list scheduling, and
scheduling the critical path first.

In an ASAP schedule, all operations are assigned to the carliest possible control
step, corresponding to a topological sort of the graph in depth-first order. Examples
of systems that employ ASAP are Flamel [Tri87] and [HP78]. An example of CDFG
with its ASAP schedule under the constraint of one adder and one multiplier is
shown in Figure 2.1.

List scheduling schedules operations into control steps, one control step at a time.
For the current control step, a list of data ready operators is constructed, containing
those operators whose inputs are produced in earlicr control steps, and that do not
violate any resource constraints. This list is then sorted according to some priority
function, the highest-priority operator is placed into current control step, the list is
updated. and the process continues until no more operators can be placed into that
control step. This process is then repeated on the next control step, until the entire
design is scheduled [\WC91]. List scheduling is illustrated in Figure 2.2 [MPC90].
The priority function is the path length from the node to the end of block and
is given in parenthesis in Figure 2.2(a). and the list schedule is shown in Figure
2.2(b). Variations of list scheduling are used in many high-level synthesis systems,

for example, CMU’s System Architect's Workbench [TLW*90] and SLICER [PG87].

A more complex scheduling method is force-directed scheduling [PK89], which

/@o R

\ Scheduled CDFG /

Figure 2.1: Example of ASAP scheduling,.

(@) CoFG (b) Scheduled CDFG

Figure 2.2: Example of list scheduling,.

LE X]

18

uses a global criterion that indicates how crowded a control step is compared with
others to decide where to schedule an operation. The probabilities of operations
being in a given control step can be calculated by using mobility, which is the differ-
ence between the ASAP and as-late-as-possible (ALAP) schedules. For example, if
an operation can be scheduled in three possible steps. it has mobility of 3. Thus, the
probability of the operation to be scheduled in cach of these steps is 1/3. Adding
all the probabilities of any control step gives a measure of how crowded that control
step is. This measure is called the distribution hecause it tells how many operations
will probably be executed in a control step and hence. how much hardware will be
required. After determining the distribution for all control steps. the effect for each
possible assignment of an operation ¢ to a control step s can be calculated. Then the
operation/control-step pair can be scheduled to minimize the distribution differences
among control steps. The quantitative measure of scheduling ¢ in s is calculated on
the distribution using an equation that is analogous to the force in a spring (spring
constant times displacement. where the constant is the original distribution for a
control step and the displacement is the change in the distribution value). Thus, this
scheduling algorithm is called force-directed scheduling (FDS). FDS is illustrated in
Figure 2.3 {MPC90]. A CDFG with three add operations labeled as a1, a2, and
a3 is shown in Figure 2.3(a). Figure 2.3(b) shows timne frames for add operations,
that is, the probability of each operation being in a given control step. Distribution

is shown in Figure 2.3(c). Calculation of force involved in assigning a3 to control

Lo

19

step 2 is shown in Figure 2.3(d). As we can sce in Figure 2.3(c) that control step
2 is heavily loaded, and thus the positive force indicates that 3 should not go into
control step 2.

All of the above scheduling techniques, except exhaustive search and branch and
bound techniques, come under iterative/constructive group. Amnother approach to
scheduling by transformation is to use heuristics to guide the process. Starting with
an initial schedule, transformations are chosen that promise to move the design
closer to the given constraints or to optimize the objective. Examples are control-
step merging and control-step splitting [Cam90]. In the former, we first assign each
operation to a separate control step and then merge control steps iteratively without
violating any constraints. In the latter, we first assign all operation to a single control

step and then divide this control step until we have no constraint violations.

2.2 Allocation Techniques

The allocation techniques can also be classified into two types: iterative/cons-
tructive, and global NPC90]. Iterative/constructive techniques assign elements (op-
erations, values, or data transfers) one at a time, while global techniques find si-
multancous solutions to a number of assignments at a time. More specifically, it-
erative/constructive techniques select an operation, value or interconnection to be

assigned, make the assignment, and then iterate until all assignments are made.

20

CDFG Time Frames Distribution

1 12 1 1/2
al 1 ad 1
a2 a3 2| a2 2
a3

3 3L_|

(@) (b) (€)
Force involvad in assigning a3 to step 2:

32 x 1/2 + 1/2 x (-1/2) = 1/2

.

DGvalue Change in a3's Positive Force
forstep2 probability for indicates that a3
step 2 should not go

Similar values
for step 3

(d)

into step 2

Figure 2.3: Example of FDS.

21

These techniques generally look at restricted window in the scarch space, and there-
fore are more time efficient, but are less likely to find optimal solutions. Examples
of systems using iterative/constructive techniques are [HP78, HT83]. The STAR
allocation system of [TH92] uses an iterative improvement technique. It uses a rip-
up and reconstruct approach to the allocation problem. The data path is refined
globally by evaluating the binding quality of cach object, probabilistically sclecting
a cluster of heavily correlated objects (which may consist of variables, operations.
and data transfers). and rebinding them to form a better desigu or determine that
there can be no more cost improvement.

Global allocation techniques include graph theoretic formulation, branch-and-
bound algorithms, and mathematical programming techniques. Facet [TS86] uses a
graph theoretic approach in which the elements to be assigned to hardware, whether
they are operations. values or interconnections, are represented by nodes, and there
is an arc between two nodes if and only if the corresponding clements can share the
same hardware. The problem then becomes one of finding sets of nodes in the graph.
?.11 of whose members are connected to one another, since all of the elements in such
a set can share the same hardware without conflict. Graph theoretic approach is
illustrated in Figure 2.4. A schedule with four add operations is shown in Figure
2.4(a). Its compatibility graph is shown in Figure 2.4(b). The clique (completely
connected subgraph) indicates that the three operations can share a single adder. An

example of a system using branch-and-bound technique is SPLICER [Pan88]. For-

1<J

22

mulations of allocation as a mathematical programming problem involves creating
a variable for each possible assignment of an operation, variable, or interconnection
to a hardware element. The variable is 1 if the assignment is made and 0 if it is
not. Constraints must be formulated that guarantee that each operation must be
assigned to one and only one hardware element, and so on. The objective then is to
find a valid solution that minimizes some cost function. This is done by Hafer and
Parker on a small example [HP83].

Some approaches have formulated combined scheduling and allocation as an op-
timization problem to be solved by general optimization techniques. Among the
optimization techniques used for this purpose are simulated annealing [DN89] and
integer programming [BM89]. Simulated annealing (SA) approach is transforma-
tional. The scheduling and allocation is formulated as a two-dimensional placement
problem of microinstructions in space and time. New states are generated during
annealing process by interchanging/displacing code operations (Figure 2.5). This
formulation allows simultaneous cost-constrained allocation of registers, functional
units, and interconnect while trading off hardware cost against execution speed. The
integer programming approach uses a constructive technique. A set of operations
called candidate operations are prepared based on the data dependency and oper-
ators availability. These operations are bound to the available operators optimally,
that is, to minimize extra interconnections. The values generated by the scheduled

operations are bound to the available registers, again with a view to minimize in-

23

\ T
azgg by

a4

¥ Cllque
(a) (b)

Figure 2.4: Allocation: Graph theoretic approach example.

P46}

24

terconnections. This is followed by updating the structure based on the current
bindings. The updated structure is used in subsequent iterations.

Another optimization technique, simulated evolution, is used in [LM93]. Simu-
lated evolution based synthesis explores the design space by repeatedly ripping up
(like STAR system) parts of a design in a probabilistic manner, and then recon-
structing these parts using application specific heuristics. But this approach solves
scheduling and allocation tasks as separate problems. Cloutier and Thomas [CT90]
have extended FDS in an attempt to combine scheduling and allocation. Their
technique takes the same global view of the scheduling problem that is found in
force-directed scheduling. Costs of register allocation and multiplexer inputs are
not considered during scheduling and mapping is done only for functional units.

High-level synthesis is a formidable task. There are several issues involved to
obtain high quality designs. Despite these difficulties. high-level synthesis systems
are now emerging as important tools in digital design. Excellent surveys on high-

level synthesis systems appear in [MPC88, Cam90, MPC90. W91, CW91].

19

Figure 2.5:
ations.

| ALU | ALU2 | ALU3
! (_‘___, 1
csi vi=v2+v3 | vd=v2*Vv3
—_—
4--—-
Ccs2 vb=vl +v4 V6=V4/V1
—_— I
|
<= y
cs3 | v2=v4*v5 ‘
2 | —

New states are generated in SA by interchanging/displacing code oper-

L9

Chapter 3

Genetic Algorithm and Tabu

Search

This chapter provides an introduction to the two optimization techniques employed

in this research - namely, genetic algorithm and tabu search.

3.1 Genetic Algorithm

Genetic algorithm has its roots in the process of natural evolution. In the early 1970s,
John Holland incorporated the features of natural evolution to yield a technique for
solving difficult problems which he later named genetic algorithm. The algorithm
manipulates bit strings which he called chromosomes. A simulated evolution is

carried out on the population of such chromosomes to find better chromosomes.

26

27

Like in nature, the algorithm knows nothing about the type of problem it is solving.
There are two mechanisms which link the genetic algorithm with the problem. One
is the encoding of solutions to the problem with chromosomes and the other is the
evaluation function that measures the merit of any chromosome in the context of
the problem.

No single encoding works best for all problems. Devising a good encoding is an
important step in attacking a problem using genetic algorithm. Evaluation function
plays the same role in genetic algorithms that the environment plays in natural evo-
lution. The interaction of an individual with its environment provides a measure of
its fitness, and the interaction of a chromosome with an evaluation function provides
a measure of fitness that the genetic algorithm uses when carrying out reproduction
[Dav91). In the following paragraphs we provide a step by step treatment of the

functioning of the genetic algorithm.

3.1.1 Population

Unlike most of the optimization technicues, genetic algorithm works on a number
of encoded solutions (chromosomes) rather than on a single solution. An important
decision to be made in this respect is the size of the population. The most effective
population size is dependent on the problem being solved, the representation used,
and the operators manipulating the representation. The initial population consisting

of feasible solutions is generated randomly. Constructive techniques are also reported

1£9

28

for generating initial population.

3.1.2 Crossover

Parents are selected from the population at random for mmating. Each pair of parent
undergoes crossover in which offsprings inherit parent’s characteristics. Crossover
operator distinguishes genetic algorithms from all other optimization algorithms.
It acts as a critical accelerator of the search process and combines building blocks
of good solutions from diverse chromosomes. In case of a binary chromnosome, a
building block consists of 1, 0. and # (don’t care). We say that a chromosome
has a building block if it matches the 1's and 0's on the building block exactly.
These building blocks were named schema by Holland. He concluded that genetic
algorithms manipulate schemata when they run. If the reproduction scheme makes
reproduction chances proportional to chromosome fitness, then the relative increase
or decrease of a schema in the next generation can be predicted. Holland's schema
theorem says that a schema occurring in chromosomes with above-average fitness
evaluations wil | tend to occur more frequently in the next generation, and one
occurring in chromosomes with below-average fitness evaluations will tend to occur
less frequently.

Holland described this feature of GAs as intrinsic parallelism. Each schema
denotes a hyperplane. Intrinsic parallelism means that search effort is allocated

simultaneously in many hyperplanes (regions) of the search space. The crossover

o N

29

operator is effective as long as the population has diverse members and represen-
tative samples of different building blocks of good solutions. Thus crossover is a
high performance search operator that spreads good schemata present in different
members of the initial population.

The simplest type of crossover is one-point crossover. A random location is
gencrated over the length of the two parent chromosomes as a crossing point. The
left part of one parent is combined with right part of other parent to genecrate
offsprings as shown in Figure 3.1. Therc are various other types of crossovers -
namely, order crossover, cycle crossover, partially mapped crossover (PMX), etc.
How often crossover is applied depends on crossover rate and crossover probability.
Crossover rate determines number of times crossover operator shonld be attempted
on the population and crossover probability is the probability with which crossover

is applied.

3.1.3 Mutation

Mutation is a device for reintroducing diversity into the population. It plays a
secondary role in GA. For binary representations, it is the random alteration of a
single position. The order of schema is the number of non-# symbols it contains.
Its length is the distance from the first to the last non-# position. Thus, the length
of #1#041 is four, and its order is three. Schema theorem can now be stated as:

short, low-order, above-average schemata receive exponentially increasing trials in

Parent1:1111{1 11
Parent2:0000j000

\Cross-point

Child1:1111000
Child2: 0000111

Figure 3.1: Tllustration of one-point crossover.

30

A")

31

subsequent generations.

3.1.4 Selection

After the application of crossover, we have the old population and a number of
offsprings. For a fixed population size GA, we have to select individuals among
these for the next generation. This selection is usually based on fitness values, but
it may take different forms. The simplest is the biased roulctte wheel in which
each individual in the population has a roulette wheel slot sized in proportion to
its fitness. A simple spin of the roulette wheel yields an offspring. This scheme is a
variation of stochastic sampling.

Various other selection alternatives have appcared in the literature. Determinis-
tic sampling is a scheme where the probabilitics of selection pselect; are calculated
as pselect; = f;/ ¥ f. where f is fitness. Then the expected number of times each
string e; should be selected is calculated as ¢; = pselect;.n, where n is population
size. Each string is allocated samples according to the integer part of the e; values.
Strings are sorted according to their fractional part. The remainder of the strings
needed to fill the population are drawn from the top of the sorted list. Stochastic
remainder sampling methods are somewlat similar to deterministic sampling. Ex-
pected individual count values are calculated as before and each string is allocated
samples according to integer part. In one variation of stochastic remainder sampling

with replacement, the fractional parts of the expected number values are used to

Lo

32

calculate weights in a roulette wheel sclection procedure tha t is then used to fill
the remaining population slots. In another variation, the fractional parts of the ex-
pected number values are treated as probabilitics. One by one, weighted coin tosses
(Bernoulli trials) are performed using the fractional parts as success probabilities.
Stochastic tournament is a procedure where selection probabilities are calculated
normally and successive pairs of individuals are drawn using roulette wheel selec-
tion. After drawing a pair, the string with higher fitness is declared the winner,
inserted in the new population, and another pair is drawn. This process continues
until the population is full [Gol89)].

The overall picture of a GA is depicted in Figure 3.2. Encoding is devised for
a problem in hand. A population of encoded solutions is created. Fitness of each
solution is found using evaluation function. Two parents are selected for crossover
which results in two offsprings. Offsprings are then mutated with a very low proba-
bility. After the crossover is applied a specified number of times, we get a population
of offsprings along with the old population of size n as shown in Figure 3.3. A se-
lection function is used to select individuals from these two populations to get the
new population of size n. The above steps are then repeated for specified number
of generations. The best solution in the final population is the result of GA.

To further materialize the concepts, the pseudo code of a genetic algorithm is
given in Figure 3.4. The algorithm continues for a fixed number of generations.

Since the probability of crossover is 1, crossover rate specifies how many times the

33

(Problem) = (Encocing)
0

——| Encoded Solutiont | | aeees
EncodedSolution2 | = | ceee-

Evaluation |}
Function |

Encoded Solution n

Population

(size =n)

:>Offsp 1: 1111000

> Parent 1: 111|111y X ,
—>parent 2: 0000|000 — | (Crossover) | Offsp 2: 0000111

Crossover Point @

Mutate with Probability P,

Offspring1: 1011000
Offspring2: 0000111

Figure 3.2: Genetic algorithm: Encoding, evaluation function, crossover and muta-
tion.

Old Population

Offsprings

\

New Population

|
[> l Selection E l:>

)

Figure 3.3: Genetic algorithm: Selection.

34

35

crossover has to be applied. Selection procedure specifies the new population for
the next generation. Offsprings are mutated with probability P,,.

An excellent source on genetic algorithms is [Gol89]. Genetic algorithms have
been successfully applied to a number of problems. The long list includes VLSI cell
placement [CP87], circuit partitioning [JC92], floorplanning in VLSI [CHMRO1],
scheduling of task graphs [BS94b], multiprocessor scheduling [HHA90], job-shop
scheduling [BD90], Steincr trees [HMSS89], optimization of two-bit decoder PLAs
[BS94a], bin-packing [FD92] and travelling salesmen problem [WSF89]. This partial
list is a good indicator of the applicability of genetic algorithms to diverse problems.
Although it is simple to apply genetic algorithms to problems with unconstrained
objective functions, it can he seen from the above list that genetic algorithms have

also been successfully applied to constrained optimization problems.

3.2 Tabu Search

A general iterative technique, called tabu search (TS), was proposed by Glover
[Glo77, Glo89, Glo90b] for finding good solutions to combinatorial optimization
problems. This technique is conceptually simple and elegant. It is a higher level
heuristic which can be superimposed on any procedure which works by making

moves to go from one trial solution to another.

Like simulated annealing, TS does not resort to pure randomization to conquer

Create Initial population
Evaluate population
For number of generations Do
For Pop. size times crossover rate Do
Choose Parents
Perform Crossover
With probability P mutate offspring
Evaluate offspring
End 4
10. Selection
11. End 3.

©®E NGO~ WN =

Figure 3.4: Pseudo code for GA.

36

1£9

37

intractability nor does it take the conservative approach that a proper rate of descent
will lead us to a good local optimum which may be close to global one. TS uses a
flexible attribute-based memory structures to exploit historical scarch information
more thoroughly than by techniques using rigid memory structures (such as branch
and bound and A" search) or by memoryless systems (such as simulated annealing).
Using these memory structures, TS employs a mechanism of control which constrains
and frees the search process. Thesc corresponds to tebu restrictions and aspiration
criteria. TS takes the aggressive exploration approach which seeks to make the best

move possible subject to available choices, performance, and certain constraints.

3.2.1 Tabu Restrictions

TS goes from one trial solution to another by making moves. It makes several can-
didate moves and selects the move producing the best solution among all candidate
moves for current iteration. This best candidate solution may not improve the cur-
rent solution. With this strategy, it is possible to reach the local optimum, ascend,
and then come back to local optimum in case of a minimization problem. Thus
there is a possibility of cycling. Tabu restriction is a device to avoid such cycling by
making selected attributes of these moves tabu (forbidden) to avoid move reversals.
Tabu restrictions allow the search to go beyond the points of local optimality while
still making best possible move in each iteration. Sclecting the best move (which

may or may not improve the current solution) is based on the supposition that good

38

moves are more likely to reach the optimal or near-optimal solutions. The set of
admissible moves form a candidate list. TS selects the best move from the candidate
list. Candidat e list size is a trade-off between quality and performance.

Tabu restrictions are enforced by a tabu list which stores the move attributes
to avoid move reversals. Tabu list has an associated size. It can be visualized
as a window on accepted moves. The moves which tend to undo moves within
this window are forbidden (Figure 3.53). Good performance is achieved with tabu
list sizes from 5 to 12. Magic number 7 is also used in many applications. Some
experimentation is also reported which uncovered applications where preferred tabu
list sizes lie in intervals related to problem dimension rather than linked to the magic

number 7.

3.2.2 Aspiration Criteria

Aspiration level component of TS introduces diversification in the search. It tem-
porarily overrides the tabu status if the move is sufficiently good. If a move is made
tabu in iteration / and its reversal comes in iteration j, where i < j + ¢, then it is
possible that the reverse move may take the search into a new region because of the
effects of ¢ intermediate moves. Aspiration criterion must make sure that reversal
is leading to a solution which is better and is not the same as the previous one

otherwise cycling can occur.

The simplest aspiration criterion is to override the tabu status if the reversal

L%}

Accepted Moves
®e 666 666 66 6

~¢—————— Tabu List Size =

Figure 3.5: Tabu list can be visualized as a window over accepted moves.

39

40

produces the solution better than the best obtained thus far. Another approach is
to use the same attribute of the move which is used to identify the tabu status and
associate an aspiration level value with it. The reversal has to do better than this
historical aspiration level. It is found useful in some applications to give aspiration
level a tenure that parallels the tenure of the tabu list. This means that aspiration
level of the selected attribute is updated whenever that move is made tabu and

whenever aspiration level criterion is passed.

3.2.3 Algorithmic Description

A simplified description of TS is illustrated in Figure 3.6. Best solution is the
best one found so far. Initially the current solution is the best solution. Copies of
current solution are perturbed with moves to get a sct of new solutions. The best
among these is selected and if it is not tabu then it becomes the current solution,
otherwise its aspiration criterion is checked. If it passes the aspiration criterion then
it becomes the current solution, otherwise moves are regenerated to get another set
of new solutions. If the current solution is better than the best so far then the best
solution is updated.

An algorithmic description of a simple implementation of TS is shown in Fig-
ure 3.7. TS starts from an initial feasible solution s (current solution) in search
space X. A neighborhood N(s) is defined for each s. A sample of neighbor solu-

tions S(s) € N(s) is generated. Then the best s' € S(s) generated is chosen and

e

Tabu Search}
\,
=)
Solution New N
Movef' Solution 1 l
Current . ‘\
Move n - f
| New |
Solution n ,’

No Current
Solution

Yes

Aspiration
Criterion
Passed?

Yes Current
Solution

No

v

Regenerate
Moves

Figure 3.6: Tabu scarch illustration.

41

o

42

move from s to s’ made. The move to s’ is made even if s’ is worse than s, that is
o(s') > os), where c is the cost. Tabu list T consists of the sclected attributes of
last k moves for a given k, where & is the tabu list size. A move to s’ is then not
allowed if s’ is in T. \Whenever a move is made, it is introduced into T" and aspiration
level (AL) is updated. If the best admissible move is tabu then the aspiration level
check is performed. If ¢(s') < AL. then the move is accepted. otherwise a new set of
neighbor solutions is generated and above steps are repeated. Whenever a move is
accepted the iteration number is incremented. Since aspiration level is updated on
each acceptance of a move, a tabu move has to do better than the aspiration level
recorded when that move is made tabu. Another approach is to make a candidate
list of admissible neighborhood solutions and then accept the best among these.
Candidate solutions are either non-tabu or pass the aspiration criterion. Note that
TS in Figure 3.7 continues for a fixed number of iterations. Another approach is to
continue until no improvement on the best solution is obtained over a fixed number

of iterations.

TS has also proven itself to be very useful in providing good solutions for many
NP-hard problems in a reasonable amount of time. Examples include graph coloring
[HdW87], graph partitioning [LC91], VLSI placement [SV92], circuit partitioning

[AV93], maximum independent set problem [FHdW90], etc.

1£9

X :Set of feasible solutions.
s :Current solution.

s' :Best admissible solution.
c :Objective function.

N(s) :Neighborhood of s € X.

S(s) :Sample of neighborhood solutions.
T :Tabu List.

AL :Aspiration Level.

1 Start with an initial feasible solution s € X.

2 Initialize tabu lists and aspiration level.

3 FOR fixed number of iterations DO

4. Generate neighbor solutions S(s) € N(s).

5. Find best s' € S(s).

6 IF move s’ to s is not in T THEN

7 Accept move and update best solution.
8 Update tabu list and aspiration level.
9 Increment iteration number.

10. ELSE

11. IF ¢(s') < AL THEN

12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14, Increment iteration number.

15. ENDIF

16. ENDIF

17. ENDFOR

Figure 3.7: Algorithmic description of Tabu Search (TS).

43

- A

Chapter 4

Scheduling and Allocation using

Genetic Algorithm

Scheduling refers to the assignment of countrol steps to operations and allocation
is the assignment of hardware to operations, variables and data transfers. The
hardware consists of mainly functional units (adders, multiplicrs, etc.), registers,
buses, and interconnection between them. In order to clarify the approach adopted
for scheduling, we will first sce the possible variations. Generally one can provide

the following scheduling facilities:
o Scheduling supporting operation chaining.

o Scheduling supporting multicycle operations with or without pipelined func-

tional units.

44

45

Scheduling two operations in the same control step is referred to as chaining.
The clock cycle has to be large enough to allow chained multiple operations in the
same control step. Given a fixed step size one can schedule multiple operations in
the same control step. In the other facility, the clock cycle is equal to the fastest
available functional unit. In this case there may be operations that will take multiple
control steps. One can take advantage of pipelined functional units in this case. In
a two stage pipelined functional unit, for example, the first stage of next operation
can be started while the second stage of the previous one is being processed such
that there is an execution overlap between different stages of two operations. The
technique described in this chapter supports multicycle operations. It also provides
facility to schedule with non-pipelined as well as pipelined functional units.

This chapter describes a unique approach to scheduling and allocation problem
in high-level synthesis using genetic algorithm (GA). This approach is different from
a previous attempt using GA [WGH90] in many respects. The contributions include:
a new chromosomal representation for scheduling and two subproblems of allocation;

and two novel crossover operators to generate legal schedules.

4.1 Cost Function

In order to formulate scheduling and allocation as an optimization problem, a suit-

able cost function is required. The optimization technique will then attempt to

1£3

46

optimize the value of this function. Since we want to optimize scheduling and allo-
cation tasks jointly we need to incorporate both time related and hardware related
terms in our cost function. The cost function C that will be optimized by the genetic

algorithm is given and explained helow:
C =W * Neg + Wigg * Npgg + Wiy % Ny + Wry Ny + Wi+ N (4.1)
where,

W, weight assigned to each control step
Wieg weight assigned to each register

Whys weight assigned to each bus

Wy, weight assigned to each functional unit
Wie weight assigned to each interconnection
Nes number of control steps

N,e; number of registers

Niys number of buses

Ny, number of functional units

Nic number of interconnections.

During the optimization process the operations are assigned to control steps and
functional units. Each functional unit has two inputs labeled as 1 and 2. Besides
assignment of operations to control steps and functional units, variables are assigned

to functional unit inputs. Constants are always assigned to the same input as it helps

13

47
in optimizing the number of interconnections. The number of registers and buses
are optimized. Allocation of variables to registers and data transfers to buses is not
actually made. The number of registers and buses as given by the final solution
are optimal for the given schedule and these numbers can be used during data path
synthesis.

The algorithm starts with a specified upper bound on the number of control
steps. The number of control steps N, for any schedule is the largest control step
value taken by any operation. Similarly the number of functional units Ny, for a
given schedule is determined by the maximum number of functional units used in
any control step. If we think of variables’ lifetimes as segments spanning control
steps then the number of registers N,., is given by maximum density of these seg-
ments crossing any control step boundary. The number of buses V. are calculated
by finding the maximum number of parallel data transfers in any control step. This
is done by finding the number of distinct sources and number of sinks in each control
step. The maximum of these values corresponds to the maximum number of paral-
lel data transfers. Finding exact number of interconncections is not possible unless
variable to register and data transfer to bus mappings arc known. Good mappings
for both of these are computationally expensive to find during optimization pro-
cess. On the other hand, in order to have good cost function, one needs to find
computationally efficient and good estimation of interconnection cost. To satisfy

both these properties is difficult. The cstimation function for interconnection N,

149

48

used here is based on operation to functional unit mapping and variable (involved
in operation) to functional unit’s input mapping. This gives three scts of variables
for each functional unit. Two sets for cach of its inputs and onc set for the output
of the functional unit. Left-edge algorithm [HS71] is applicd on variables’ lifetimes
in each set to determine the number of multiplexer inputs required. This provides a
compromised estimation of the interconnection cost. The interconnection cost can
further be optimized during data path synthesis.

Various parameters in the cost function affect each other considerably. For exam-
ple, in order to reduce the number of buses. one may require to reduce the maximum
number of parallel data transfers in any control step. In order to do so, number of
control steps may need to be increased which may necessitate more registers to store
variables until they are used. On the other hand, all this may reducc the number
functional units. Thus, change in one of the factors affects other factors consider-
ably. This simple example has overlooked many factors just to illustrate the point.
For a fixed number of control steps there is a large search space to explore in order
to optimize the number of registers, buses, functional units and interconnections.

As the above discussion hints this search space is highly irregular,

Ml

49
4.2 Chromosomal Representation

Genetic algorithms work on the coding of the problem rather than on the actual
problem. This coding is known as chromosomal representation. Devising a good
coding is particularly necessary for better design space exploration by the genetic
algorithm. A given high-level specification of the description of the circuit is com-
piled using lex and yacc unix utilities [NIBL92]. A control data flow graph (CDFG)
is then obtained from the compiled version. Any schedule should satisfy the prece-
dence constraints implied by CDFG.

Since we want to combine scheduling and allocation into one optimization prob-
lem, the coding has to reflect this. This can be done only to a certain extent as
finding an encoding for all the parameters is nearly impossible as there are too many
constraints. More will be said about these constraints in the section on crossover
operators. The coding that is adopted is shown in Figure 4.1. Each gene has thrce
values - control step number, functional unit number. and the number of the func-
tional unit input to which the left variable of the operation is assigned. The first
row gives the operation number to which the above three values correspond. This
coding will be manipulated by the genetic operators. It is necessary to see why
this coding is good enough to optimize scheduling and allocation tasks. With this
representation the three subproblems are solved completely, namely, control step as-

signment, functional unit assignment, and functional unit input assignment. Given

1£9

50

this information, the exa ct number of registers and buses can be found, whereas
only a fair estimation of interconnection cost can be obtained. The chromosome in
[\WWGH90] has operation number in a specified order and allcles corresponding to mo-
bility values that are filled constructively. Special genes at the end of chromosome

give the number of each type of functional unit.

4.3 Initial Population

Good initial population is necessary for proper functioning of genetic algorithm
reported in this research. Genetic algorithms work by adopting good structures
from the population to generate better individuals. In scheduling, if an operation in
an optimal solution is supposed to be in a certain control step, and if it is not assigned
to that control step in any member of the initial population, then the genetic search
without mutation operator will not he able to produce the optimal solution. Thus
initial solution should be as diverse as possible. In this implementation the members

of the initial population are created by using following four scheduling schemes.
1. As Soon As Possible (ASAP) scheduling.
2. As Late As Possible (ALAP) scheduling.
3. Mobility-down variation of ASAP.

4. Mobility-up variation of ALAP.

Operation Number

Control Step

Function Unit

] =]] =
=] ol D N
DO} =] O] O

FU input

B NI No| 00

—| ol | o

Figure 4.1: Chromosomne.

51

52

ASAP scheduling assigns the operations in the carliest possible control steps,
whereas ALAP scheduling assigns the operations in the latest possible control steps.
For a given limit on control steps, mobility of each operation is calculated. The term
mobility-down scheduling as used here means that operations are scheduled in ASAP
manner within their mobility range taking care of the precedence constraints. For
example, assume operation op; precedes operation op ; in the CDFG. Further assume
that operation op; has mobility from control step 3 to 6 and operation op; has
mobility from control step 4 to 7. To schedule op; a random number r is generated
between 3 and 6 and op; is assigned to control step r. To schedule operation op; a
random number is generated between 7 + 1 and 7 and op; is assigned to that control
step. Note that in a CDFG, mobility is used from upper nodes to lower nodes and
hence the name mobility-down. If we reverse this sequence one will get mobility-up
s cheduling. In this case a random number s is generated first between 4 and 7
and op; is assigned to that control step. Then we generate another random number
between 3 and s — 1 and op; is assigned to that control step.

It is clear that mobility-down or up scheduling give a variety of schedules. But
why do we need both of them to produce solutions to be used in initial population?
The answer lies in the fact that as we perform mobility-down scheduling the oper-
ations that are to be scheduled earlier and are up on CDFG have more freedom in
selecting the control step. As we go down this freedom becomes less and less. The

net effect is the high possibility that later operations might never be able to utilize

33

their complete mobility range. To overcome this problem we incorporated mobility-
up scheduling where later operations have more freedom than earlier opcrations on
CDFG.

An improvement is made in the mobility-up scheduling to have a better initial
population. As mentioned earlier we specify a control step limit to calculate the
mobility. In mobility-up scheduling when the lowest operations are to be scheduled,
a random number is generated between its start of mobility and control step limit.
‘Thus we can perform mobility-up scheduling with different control step limits. This
provides better solutions to be used in initial population.

Control step assignment is only one part of the chromosome. Functional units
for each control step are assigned sequentially. For example the first add operation
to go in control step cs; is assigned to adder 1 and the second add operation to go
in cs; to adder 2 and so on. After the assignment is complete for all the opera-
tions, the functional unit assignments are randomly perturbed within the maximum
range of that type of functional unit. For example if functional units used by (say)
three operations in control step cs; are {1,2.3} and maximum number of functional
units in the given schedule are five then after perturbation the assignment may be
{3,5,1}. More will be said on advantage gained by doing this when we will discuss
the crossover operators.

The third part of the chromosome is the assignment of left variable to functional

unit input. This is done randomly. At this point it should be mentioned that

T

o4

changing the order of variables for a commutative operation is cquivalent to changing

the input of the functional unit to which onc of the variable goes.

4.4 Choice Function

The first step to get new generation is to sclect parents on which genetic operators
are to be applied. The selection of parents is an importaut step which affects the
population in the new generation. Selection of fittest parents leads to premature
convergence. Thus an appropriate choice function is required. This depends on how

the fitness of a member of the population is calculated.

4.4.1 Fitness Calculation

Genetic algorithm works naturally on the maximization problem whereas our cost
function has to minimized. Thus the cost minimization problem is converted to
a fitness maximization problem as follows. The maximum cost C,,q» in the entire
population is determined and each cost ¢; is subtracted from this value to get the

fitness f; of individual i as follows:
fi = Cnm.r] (42)

If the choice of parents is based on this raw fitness value, a premature convergence
will result. Fitness scaling is used to avoid this premature convergence. One method

is linear scaling [Gol89]. Given fitness f; of an individual as above the scaled fitness

1L

[@1]
[&]]

value f] is calculated as follows:

fl=ax fi+b (4.3)

where constants ¢ and b are calculated such that averages of raw fitness and scaled
fitness are equal.

Linear scaling runs into problems in later runs of the genetic algorithm when
most of the fitness values are close to cach other and some lethal members have
very low fitness values. This leads to negative fitness values. To avoid this situation
sigma (o) truncation was proposed [Gol89]. All the fituess values are preprocessed

to calculate modified fitness values f!' as follows:

f,{l = fi - (farg - Cmull X 0) (44)

where o is the standard deviation of the population and C,,. is the multiplying
constant between 1 and 3. The negative values (f” < 0) are arbitrarily set to zero.
After this truncation, linear scaling can proceed without the danger of negative

results as follows:

fi=ax fi+0 (4.5)

(1]

Fitness scaling attempts to maintain the variation in the population which is
necessary for further exploration of scarch space. Once the population consists of
same type of individuals the genetic algorithin looses its ability to explore the secarch

space until the population gains some variation by the slow process of mutation.

4.4.2 Sample Space

Based on the scaled fitness value a probability is calculated for cach individual. This

is multiplied by the size of the population n to get expected number of times an

individual should be selected (e;) as parent:

ei = (fi/D_fi) xn (4.6)
i=1

A sample space is defined based on e; values. It consists of an array of records
with two fields - a member identification number field and a probability field. For
example if e; = 2.6, then individual j will receive three slots (j.1.0), (5. 1.0), and
(J,0.6) in the sample space (Figure 4.2). Note that the first field in a slot is the
individual's identification and the second field is the probability with which this slot
should be accepted.

Assume that there are total of m slots in the sample space. To select a parent
a random number is generated between 1 and m and the individual corresponding
to that slot is selected as parent with the probability of that slot. This process is
repeated until a parent is selected. Since, the fitter individual will get more slots
in the sample space, they have high chance of being selected. The diversity in the
population is maintained because the sclection is random over the sample space.

The following types of choice functions were tested and the last one was found most

effective;

1. Random selection of parent without any regard to their fitness values.

L 4% 1

ej ej ei
i 1 10.6
ej =2.6

Figure 4.2: Sample space.

S

1£9

58

2. Random selection of parent corresponding to a certain slot in the sample space

without any regard to the probability of that slot.

3. Random selection of parent corresponding to a certain slot in the sample space

with regard to the probability of that slot.

4.5 Crossover

The nodes in CDFG have precedence constraints that should not be violated when
the crossover operator is applied. In [\WGH90] a simple two point crossover followed
by a modified ASAP scheduling was proposed. This technique can produce schedules
which are longer than the specified control step limit and is thus believed to take
longer to find good schedules. Note that scheduling is to be performed each time
the crossover is applied. We opted to have a crossover that will always give valid
schedule rather than a crossover where scheduling has to be done separately. Given
the coding as described in a previous section, it is a difficult proposition that is to be
resolved. If we fix the order of nodes in the chromosome a simple one or two point
crossover will result in an invalid offspring chromosome. The following schemes are

developed to generate valid offspring.

129

4.5.1 Alternating Crossover

The term alternating crossover as used here means that given the same order of genes
in both parents, we take genes from the two parents in the alternating sequence
such that whenever there is a violation of precedence constraint we take the gene
from the other parent but maintain the alternating sequence. If we traverse the
graph in the depth-first (DF) order we get a specified order of nodes in the graph.
Think of a chromosome where genes represent the nodes in this order. Consider a
crossover operator in which we take alternating genes from two parents such that
whenever there is a precedence constraint violation we take the gene from the other
parent but maintain the alternating sequence. This will result in an invalid offspring
chromosome.

The above example of an invalid crossover operator indicates that order of genes
is important. Thus this became the main theme in the search of a valid crossover
operator for the given chromosome. It is found that if we put the genes in the reverse
DF order such that successors arc always on the left hand side of their predecessors,
we can use the alternating crossover to generate valid offspring. It works because
whenever we take a node that is to be scheduled all of its successors are already
scheduled and thus we can check for any violations.

A working example of the alternating crossover is shown in Figure 4.3. Figure

4.3(a) shows the two sclected parents (p; and p,) for crossover and the Figure 4.3(D)

60

shows the resulting offspring (os) with genes labeled with the parent tag from which
it is taken. It can be seen that there are no scheduling violations in this example.
An example which results in such a violation is shown in Figure 4.4. Figure 4.4(a)
shows the two parents. As indicated in Figurc 1.4(b), during crossover we take
alternating genes from each parent. At one point we can not take gene from parent
1 so this gene is taken from parent 2 but the alternating sequence is maintained and

the next gene is also taken from parent 2.

4.5.2 Order Crossover

It is found that alternating crossover is not able to adopt good structures from the
parents. The main reason for this is that it works bottom up and things become
constriined for upper operations. Thus the chances of mixing the genes becomes
less. For this reason we started looking for a better crossover operator. Let us
remove the restriction on the order of the genes in the chromosome. A simple order
crossover works as follows: A cross point is randomly generated and genes on left
side of one parent are copied to offspring in those positions. The other parent is
scanned from left to right and leftover genes are stored in the remaining positions of
the offspring in that order (Figure 4.5). This ensures that no genes are duplicated
or missed.

Using this simple order crossover will of course give invalid schedules. The tech-

nique we adopted to avoid invalid schedules is as follows. The cross point is randomly

L 4%)

61

jol
CHEHD
=
10}
of

pi+ DB CEA pp D B CEA
3 2 2 41 4 2 3 21

(@)

\® oss D B C E A
3 2 2 2 1

3 Py P2 Py Po2 Py

N

(b)

Figure 4.3: Altcrnating crossover example with no scheduling violations: (a) Par-
ents; (b) Offspring.

L “X™ }

4 2 1 1
(a)
1
os:. C D A B

2 3 2 1 1

D1 P2 pz P2
3 Turn: p1 Po Py P2
4
(b)

62

Figure 4.4: Alternating crossover example with scheduling violations: (a) Parents;

{(b) Offspring.

Lo

Cross point
Parent 1: 5 4 1 t 2 6
Parent 2: 1 6 4 3 5
Offspring: 5 4 1 6 3

Figure 4.5: Simple order crossover.

63

L9

64

generated and left genes of one parent are copied to the offspring. This determines
the schedule for some operations. Given schedule for some operations in CDFG, the
ASAP schedule for the remaining operations can be determined. Those genes from
the other parent which do not violate the precedence constraints are copied to the
offspring and those which do violate are taken from the first parent. The ASAP
values are used to check any violations. An example of this is shown in Figure 4.6.
The cross point is between the third and fourth gene of parent p;. The left three
genes (A, C. F) are copied from parent p; to the offspring and the ASAP schedule
for the remaining genes as induced by genes (A, C, F) is determined. Since none of
the remaining genes from the other parent violate the precedence constraints they
are copie d without any trouble. This crossover is able to group together good

structures in an offspring which is passed from gencration to generation.

4.5.3 Functional Unit Violation

Functional unit and functional unit input assignments are also taken from the same
parent. One can easily notice that sometimes this will result in concurrent assign-
ment of the same functional unit to two or more operatious in the same control step.
One way to resolve this situation is to include a violation term in the cost function

of Equation 4.1. Thus the cost function will then become

C=W fcs X Arrs +“ch X Arrcg +‘Vbus X Nypus+ W u X N ut " /’ic X -'\‘.ic + H',viol X Nyiol (47)

PO 0w
/L
| B 0.Q /
O\ ']
SN IYCIRo

p1:ACFlBEGD P2DGACBFE

‘ (®)

@ ’ os:AC F|IDG B E
2@ /@ 124|451 2

3 4 1 2:ASAP
p1 p2
1\ /|
Joxoy
; ®
(b)

Figure 4.6: Example of order crossover tailored for scheduling: (a) Parents; (b) Off-
spring.

oo

1£9

66

where,

Weia weight assigned to each functional unit violation

Nyio number of violations.

The weight assigned to each violation should be high enough so that there are no
violations in the final result and low enough so that the individual is not completcly
neglected. It is easy to see that one violation of a functional unit means that we may
or may not need an extra functional unit. Thus the weight assigned to a violation
is approximately the same as the weight assigned to a functional unit.

The other way around is to reassign the functional units for violating operations
only. The advantage that onc can think of for the first scheme is that one would
cxpect the functional unit assignment to improve genectically. But if there are too
many violations then it will undermine any genctic improvement. This is indeed
the case as found by experiments. In such circumstances the second scheme looks
practical. It is important to note that reassignment of functional units is like mu-
tation of the functional unit assignment part of the chromosome with a somewhat

high probability.

4.5.4 Normalization of Functional Unit Assignment

Besides functional unit violation there is one more problem that is to be handled

when we apply the crossover operator. Suppose that the maximum number of

129

67
functional units in one or both parents arc 3. The crossover can produce an offspring
that uses only two functional units (Figure 4.7). Since we inherit the assignments
from the parents unless there is a violation. it may happen that some operations
are assigned to functional unit 3 whereas the maximum number of functional units
used in offspring are only 2. This means that one or both of the functional units are
free in the control steps corresponding to those operations. Thus the functional unit

assignments for these operations are performed again within the maximum range.

4.6 Mutation

Mutation operator occasionally introduces beneficial material into some members
of the population. It is applied on offsprings (after the crossover operation) with
a very low probability. It may also destroy good properties of the offsprings, but
since the fitness value reflects how good that member is, it is hoped that it will not
be passed to the next geueration if the effect of mutation is bad. Three types of

mutation operators are used in the present implementation.

4.6.1 Control Step Mutation

This is the most important type of mutation. An opceration is selected randomly. An
attempt is made to either move it up or down. The direction is generated randomly.

If it does not result in any violation, its control step value is changed. Otherwise,

123

3 Adders 3 Adders
Parent 1 Parent 2

al a2 a3 al a2 a3

2 Adders
Offspring
a2 a3

" | Normalization

2 Adders
Offspring

al a2

Figure 4.7: Functional unit normalization.

68

69

the mutation attempt is repeated on other operations a limited number of times. If
no valid control step mutation is found the mutation is abandoned. Control step
mutation has very far effects. It can produce better schedule and reduce the number

of functional units, buses and registers.

4.6.2 Functional Unit Assignment Mutation

An operation is selected randomly and a new functional unit number is generated.
If this one is not used by anuy other operation in that control step then the functional
unit assignment of the operation is changed to this one. If it is used by some other
operation another mutation attempt is made. This is repeated a limited number
of times after which the mutation is abandoned. This type of mutation helps in

reducing the number of interconnections.

4.6.3 Functional Unit Input Mutation

An operation is selected randomly and if it is a commutative operation then the
assighment of its left variable to the functional unit input is changed. This type of

mutation also helps in reducing the number of interconnections.

4.7 Selection

Crossover is applied on the population with a specified rate. After all the crossovers
are complete we get an increased population consisting of parents and offsprings.
We opted to have a fixed population size. Thus the next step is to transfer some of
the individuals among parents and offsprings to the next gencration. This is done
by a selection function based on fitness value. We create another sample space in
the same manner as discussed in Scction 4.4 for the increased population. Thus the
selection function is the same as the choice function. This is applied as many times
as population size to get the new population. It is found that good results can be

obtained if this scheme is combined with one or more of the following schemes:
1. Always selecting the best individual in the population.
2. Selecting a specified quantity of the best individuals.
3. Selecting some specified quantity randomly.

These schemes help in improving the scarch and maintaining the diversity in the
population, which is necessary for search space exploration, and avoids premature
convergence to the local optimum.

Replacement techuique is also tested. Replacement means that some fraction of
the population is replaced by the offsprings. The term generation gap is used in this

context. If the generation gap is 1.0 then the whole population is replaced. When

123

71

replacement is used the crossover rate should always be greater than or equal to the
generation gap. Thus if gencration gap and crossover rate is 0.25 then 25% of the

population is replaced. Replacement technique did not produce good results.

L9

Chapter 5

Scheduling and Allocation using

Tabu Search

This chapter will discuss the tabu search (TS) implementation for scheduling and
allocation. An introduction to TS is given in Scction 3.2. The main tasks in order

to formulate scheduling and allocation for TS are as follows:
o Starting with a proper initial solution.
¢ Defining a neighborhood for a given solution.
¢ Generation of moves.
¢ Formulation and maintenance of tabu list.

¢ Defining a proper aspiration level criterion.

=1
[OV]

Vol

¢ Finding a good tabu list size.
¢ An efficient way to accept moves.

We will discuss these one by one in the remaining sections of this chapter.

5.1 Initial, Current and Best Solution

Although in theory the initial solution can be any feasible solution, it is found that
TS may take longer if given a poor initial feasible solution. We may start with
ASAP or ALAP schedule with a specified limit on the number of control steps.
In both these schedules only a few operations can be disturbed or rescheduled in
the beginning. Thus, it is found better to use either mobility-up or mobility-down
scheduling (see Section 4.3). In the final implementation mobility-up scheduling is
used for the initial solution. As TS proceeds we keep two solutions - one is the
current solution and the other is the best solution found so far. The best solution

found in n iterations is the output of TS, where n is specified by the user.

5.2 Generation of Moves

Given a solution, the generation of moves in the neighborhood of this solution is
an important step in TS. The following three kinds of moves are defined for this

purpose:

1. Moves based on changing the control step of an operation.
2. Moves based on changing the functional unit assignment.
3. Moves based on changing the functional unit input assignment of variables.

The first move is intended toward optimizing the number of control steps, func-
tional units, registers and buses, whercas the last two moves are intended for the
optimization of interconnections. Probabilities are assigned for each of these moves
in accordance with the importance of cach move toward optimizing the cost. Thus
the move type is selected probabilistically and N.,, moves of that type are gener-
ated, where N, is the number of candidate moves. The solutions obtained by each
move is evaluated using Equation 4.1. The moves are generated such that the new
solutions are always feasible, but some or all of the moves may be tabu or may
not pass the aspiration criterion. In terms of first type of move, a feasible solution
means that the precedence constraints are never violated. An operation is moved
up or down where the direction is gencrated randomly. Functional unit changes
are only performed if there are free functional units for the control step in which
that operation is scheduled. Functional unit input changes are performed only for
commutative operations.

Another way of generating neighborhood solutions is by making more than one
of the moves. This approach has less chances of finding the global optimum as the

solution may be disturbed too much and, in fact, it might not be in the neighborhood

ek

=~1
ot

of the present solution. Thus this approach is not used.

5.3 Tabu Lists

Formulation of the tabu list is one of the main steps in mapping a problem for TS.
Since we have three types of moves, decision need to be made whether to use one
tabu list or three tabu lists. It has been suggested by Glover [Glo90a] that when the
solution depends on multiple parameters it is appropriate to use more than one tabu
list. Maintaining multiple tabu lists helps in generating search paths with different
characteristics.

In the present implementation we used three tabu lists - one for each type of
move. TS continues for the maximum number of specified iterations, n. Since
separate tabu lists are maintained, we need to count how many times the particular
type of move is performed. This number corresponds to the iteration number for
that type of move. When the sum of iterations for three types of moves becomes n,
TS stops. Attributes selcéted for the control step move are discussed next. A two-
dimensional array csTabuList is maintained for the tabu list. The first dimension
corresponds to the total number of operations and the second dimension corresponds
to the possible control steps to which an operation can be assigned. If an operation
op; is moved froin (say) control step ¢s; to a new control step csj, we store the current

iteration number corresponding to the control step moves in esTabuList{opi){cs;).

76

Note that the reverse move is stored as this makes it easier to check the tabu status
of future moves.

Similarly two one-dimensional arrays fuTabuList and fulnpTabulList are main-
tained for other types of moves. The dimension corresponds to the number of oper-
ations. If the effected operation in such moves is (say) op; then the iteration number
for that type of move is stored in fuTabuList[op;] or fulnpTabuList[op;]. All these

recordings of tabu status are found effective and good results are obtained.

5.4 Aspiration Level Criteria

After all the candidate moves of a particular type are generated for iteration itr,
the best of these is selected, which may not be better than the current solution. If
it is not tabu, it is accepted. Accepted move becomes the current solution for the
next iteration. The tabu list size (Tsi.c) is an important parameter in TS. In the
present implementation magic number 7 is used for T,;.. and is same for all three
lists. Since we store the iteration number in order to check the tabu status, a move
is tabu if the difference of it» and stored iteration number is less than or equal to
Tii-e. I it is tabu, its aspiration level is checked as described below.

A common aspiration level (AL) criterion is used for all the three moves. As-
piration levels are associated with each of the operations and are initialized to in-

finity. If a move m; affects an operation op; and m; is tabu (forbidden), AL(op;)

77

value is checked against c¢(m;), the cost of the solution achieved by move m;. If
c(m;) < AL(op;), the move is accepted and AL(op;) is set to ¢(m;) — 1. Otherwise
another set of same type of candidate moves are generated. A maximum limit on
regenerations are specified after which a new type is selected for candidate moves.
Note that aspiration level of an operation is updated only when it overrides the
tabu status of that operation. Thus aspiration level is not the best historical value.
It may allow to go to a previous solution reached by a tabu move, but this can
happen only once. Thus cycling is avoided. This aspiration level criterion gives
more freedom to explore the search space and is found effective for scheduling and

allocation.

5.5 Alternate Implementation

In an alternate implementation we tested with separate tabu list sizes for each
type of move. Two aspiration level criteria are used - one for the control step
moves and the second for other tvpes of moves. For control step moves there is
a separate aspiration level for each operation for each of its possible control steps.
Aspiration level corresponding to an operation for a particular control step is one
less than the cost of the solution obtained when that operation was last assigned
to that control step. It is updated each time a move is accepted and is thus not

a historical value. It serves to override tabu status to explore new search paths.

78

Aspiration level for an operation corresponding to other two moves is one less than
the interconnection cost obtained when one of tliese moves was last applied to that
operation. Interconnection cost is used because these two moves are intended toward
optimizing interconnection cost. In this implementation a candidate list is prepared
and consists of solutions reached through non-tabu moves or, if tabu, then they
passed the aspiration criterion. The best among these is selected. The candidate
list size is kept between 5 and 10.

Although both implementations were able to find good solutions, it should be
noted that aspiration criteria are more strict in the second implementation than the
first one. The first implementation is not strict in selecting moves and aspiration
criterion is easy to pass. Because of the use of candidate list strategy the second
implementation is able to find good solutions quicker than the first one. An instance
where implementation 2 has achieved better result than implementation 1 is shown
in Figure 5.1. The graph shows the plot of move costs for both implementations for
the case of 7 control step limit on discrete cosine transform CDFG with pipelined
multipliers option. Note that although implementation 1 achieved its lowest cost
solution earlier than implementation 2 it was not able to reach the lowest cost

solution of implementation 2 for the same number of iterations.

Plot of moves for two implementations

(Discrete cosine transform: 7 control steps, plpelined multipliers)

SEIIIES:

|
l
i
!
i
i

[V ER A
[=3 I =4
219
5|3
c-}¢c
[@D
E|E
20
a|Qa
22
HEH

SrhrrnnA ANy

-t - .!lq.l.l!hl.lntl&-.mﬂﬂgn##.mm| e

—_F .

e

.|.ﬂﬂlﬂ[¢#
S

1 ¥

8s00

907 1058 1209 1360

756

454
lteration

152

Figure 5.1: Comparison of two implementations.

Lol 21

Chapter 6

Data Path Synthesis Using

Genetic Algorithm

Interconnection of registers. buses, multiplexers and ALUs is called data path and
the process of forming such an interconnection is called data path synthesis (DPS).
Allocation using genetic algorithm as described in the previous chapters has only
done some part of actual allocation. Functional units are allocated to operations
and variables involved in the operation arc assigned to the functional unit inputs.
Number of registers, buses. and interconnections are optimized in an attempt to
solve scheduling and allocation as a combined problem. The minimum number of
registers and buses for the given schedule is known. Interconnection cost is only
optimized. We still do not know the exact data path. Mappings of variable to

register and data transfer to bus still need to be done. Both these mappings have

80

81

a profound effect on the interconnection cost. Different mappings will give different
interconnection costs and this can also be formulated as an optimization problem.
This is the subject of this chapter.

After we map the variables to registers and data transfers to buses, we have the
following information at our disposal about the high-level description from which

we started.

An operations is scheduled during which control step.

An operation is performed on which functional unit.

A variable goes to which input of the functional unit.

A variable is stored in which register during any specific control step.

A data transfer is performed on which bus.

Once we know all this information one can easily generate the data path for the

given high-level description.

6.1 Architecture

The architecture used for optimizing the number of interconnections is shown in
Figure 6.1. Outputs of functional units and registers are connected to buses. Mul-

tipiexers are provided at the inputs of functional units and registers if the input

82

comes from more than one bus. A direct interconnection is provided in case the
input comes from only one bus. The interconnection cost is estimated by number

of multiplexer inputs.

6.2 Genetic Algorithm for DPS: A brief overview

The main task lere is how to formulate this problem for the genetic algorithm. As
described earlier, two mappings are to be performed. A chromosome nced to be
devised that can incorporate both these mappings. The fituess of each individual is
based on finding the exact number of interconnections which involves calculating the
total number of multiplexer inputs. Suitable initial population has to be created.
Choice and selection functions are somewhat similar as discussed in Chapter 4. A
crossover operator which produces valid mappings is to be found. Suitable mutation
function is required. We will address all these problems in the remaining sections of

this chapter.

6.3 Initial Population

Since we have to perform two types of mappings, the chromosome has to incorporate
both these mappings. Thus the chromosome has two parts - one for the variable to

register mapping and the other for data transfer to bus mapping.

- W

83

y\ ? —0O- bus 1
ﬁ': (? 7y yy bus 2
O O bus 3
Y J Y L
WUX ¢ WUX)
\ L4 Y Y
Reg 1 Reg 2 FU

Figure 6.1: Architecture on which data path is mapped.

A =X W §

84

6.3.1 Chromosome Part for Variable to Register Mapping

Given the life time analysis of the variables, the left-edge algorithm [HS71] can be
used to map all variables to registers optimally for the given schedule. (It should be
mentioned here that if a variable is regenerated then multiple life times are kept for
each regeneration as it may help in optimizing the number of interconnections). One
problem with the left-edge algorithm is that it does not take the interconnection cost
into consideration while grouping variables. This is becaunse the left-edge algorithm
considers left edges in the sorted order. This problem is illustrated in Figure 6.2.
Lifetimes are shown in Figure 6.2(a). Assume that sorted order is (vy.va. 3. vy).
Left-edge algorithm will give the grouping of Figure 6.2(1). Another grouping is
given in Figure 6.2(c). It may happen that grouping of Figure 6.2(c) may result in
less interconnections than the grouping of Figure 6.2(b). Thus there is a possibility
of interconnection cost optimization by considering various optimal (in terms of
number of registers) groupings.

We can utilize this fact to create initial population for this part of the chromo-
some. Given the lifetime analysis we can perturb the order of segments that start
from the same control step. This will not affect the sorted order of the left edges.
Applying left-edge algorithm on this configuration one can get a different grouping.

In this way, the initial population for this part of chromosome is created.

1&g

vi

R1:v1,v3
R2:v2,v4 (D)

R1:v2, v3
v4 Ro:vi va (O

()

Figure 6.2: Grouping variables into registers.

Vdarnsd

86

6.3.2 Chromosome Part for Data Transfer to Bus Mapping

A list of data transfers for the scheduled CDFG can he made using depth first search.
All data transfers during control step (say) ¢ can take place on any available bus, but
only one data transfer can take place on any bus at one time. As mentioned earlier
different mappings will give different number of interconnections. An casy way to
make a chromosome out of this situation is to think of any bus as consisting of
segments for each of the control steps as shown in Figure 6.3. Data transfers can be
assigned to segments or slots. A list of data transfers is made and bus chromosonie
is filled with the particular index to the data transfer list. Some slots will remain
empty meaning that there is no data transfer on that bus during that particular
control step.

To create the initial population a sample chromosome is prepared. This can be
done by noticing that data transfers can be assigned to buses by using left-edge
algorithm. Data transfers in each column of sample chromosome (Figure 6.4) can

be interchanged randomly to generate initial population.

6.3.3 Complete Chromosome

Complete chromosome is shown in Figure 6.5. The left part is the bus chromosome
and the right part is the register chromosome. One can think of register chromosome

as hooked to the bus chromosome. Crossover is only applied to the bus chromosome

87

--- Bus 1

--- Bus 2

--- Bus 3
cs#1 cs#2 cs#H3 cs#n

Figure 6.3: Structure of the bus chromosome.

interchange
1 2 Sy . 7 10 gis 1
1211 4\ __. 6 8 pueo
9 14 15 o 5 13 Bus 3
cs#1 cs#2 cs#3 cs#n

index to data transfer list

Figure 6.4: Sample bus chromosome.

88

whereas mutation is applied on both bus and register chromosomes. One should

think of bus chromosome as if all buses are put next to each other one after another.

6.4 Fitness Calculation

The first step in calculating the fitness valuc for each individual is to calculate the
number of multiplexer/bus inputs. We keep the following information for each data

transfer:
1. Functional unit involved.
2. The functional unit input to which it goes.
3. The type of transfer (input or output).
4. The control step in which it takes place.
5. Register in which the variables involved are stored or to be stored.
6. Bus on which it will take place.

Given this information one can calculate the number of multiplexer/bus inputs
required. Since this is also a minimization problem, the number of multiplexer inputs
is subtracted by a specified maximum number of interconnections. The resulting

number for different individuals will not be much apart, so it is multiplied by a large

Bus chromosome

Register chromosome

Figure 6.5: Complete chromosome.

89

90

number to create some difference between them. Following this, sigma truncation
and linear scaling is applied as usual to get the final fitness value. The sample space
is created and choice and selection functions take the same form as discussed in

chapter 4.

6.5 Crossover

As mentioned earlier crossover is only applied to the bus part of the chromosome. A
necessary property for the crossover operation is that the data transfers should not
change their control step during crossover operation. With reference to Figure 6.4,
it means that they should remain in the same column. Another required property
for the crossover is that the data transfers should not be duplicated or missed.

Different crossovers were considered that failed to satisfy one or both of these
properties. Simple one or two point crossover will change the data transfer control
steps as well as duplicate them. Order crossover or PMX will not duplicate data
transfers but they will change the control steps.

It is noticed that cycle crossover has an interesting property that can be utilized
here. In cycle crossover offspring inherits genes from one parent or the other in
the same position as the corresponding parent. An example of a cycle crossover is
illustrated in Figure 6.6. There are two cycles: 3-1-6-3 in parent 1 and 4-2-5-4 in

parent 2. We randomly start with parent 1. During first cycle, offspring 1 get genes

91

3, 1, and 6, and offspring 2 gets genes 1, 6, and 3. For second cycle we start with
parent 2. During this cycle, offspring 1 gets genes 4, 2, and 5, and offspring 2 gets
genes 2, 5, and 4. Note that the net effect of the second cyele is to swap the genes
in the two parents as they are passed to offsprings.

Now, consider the two parent bus chromosomes shown in Figure 6.7. Assume
that there are four control steps and thus there are three buses. The non-negative
numbers are indices to the data transfer list and -1s indicate that there are no
data transfers in those countrol steps. One would notice that we can not apply
cycle crossover directly on this bus chromosome. The reason is that the gene's
value (alleles) are not distinct. In order to have a bus chromosome on which cycle
crossover can be applied, we fill the seginents having no data transfer (in the sample
chromosome) with the numbers greater than the total number of data transfers. In
Figure 6.7, there are eight data transfers. Thus -1s positions are filled with numbers
9, 10, 11, and 12 as shown in Figure 6.8(a). After cycle crossover is applied the

resulting offsprings are shown in Figure 6.8(Dh).

6.6 Final Data Path

As mentioned in section 6.4, we store enough information for cach data transfer that
can be used to find the number of multiplexer inputs. Using the same information

one can easily generate the final data path for the high-level description. This

Parent 1: 2 1 5
Parent 2: 1 4 2
Offspring 1: 3 4 1 2
Offspring 2: 1 2 5
Cycle 1: 3-
Cycle 2: 4 -

3
6

-1 8 6 -
11

g~

5
4

3 (in parent 1)
4 (in parent 2)

Figure 6.6: Cycle crossover example.

J

1 -1
2 -1

1 4
8 -1 3

v~

7 -

2

-1
104

Figure 6.7: An example of a bus chromosome.

Ak 4

w o,

w o

93

information is as follows:

¢ Functional unit number for each operation.

Functional unit input number for each input variable.

o Variable to register mapping for each control step.

Data transfer to bus mapping for cach data transfer.

Multiplexers are provided only if there are multiple inputs coming to the two
inputs of a functional unit or the input of a register. A direct interconnection is

implied if there is only one input to a bus.

94

Parents
39 8 6 12 41 5 7 11 2 10
6 7111 8 9 2 10 5 3 12 4
(a)
Offsprings

37 8 6129 1 10 5 11 2
6 911 1 8 42 5 7
(b)

Figure 6.8: (a) Bus chromosome suitable for cycle crossover, (b) Offsprings resulting
from cycle crossover.

Chapter 7

Experimental Results

Genetic scheduling and allocation (GSA) and tabu scheduling and allocation (TSA)
are tested on various benchmarks. Table 7.1 shows the results for differential equa-
tion benchmark. Table 7.2 shows the results for more complicated fifth order elliptic
wave filter (EWF) benchmark. STAR system uses parallel data transfers, so that
the bus comparison with this system is of little significance. The results shown for
17 v control steps are for Loop Unfolding. Table 7.3 shows the results obtained for
discrete cosine transform (DCT) benchmark. The results are compared with simu-
lated evolution (SE) [LM93], HAL system [PIK89], SALSA II [RN93}, STAR system
[TH92], EMUCS system [HT83], SAW [TLW*90] and CATREE system [GES7].
Comparisons are given for number of control steps (CS), adders (+), multipliers
(*), registers (Reg), and multiplexers or buses (Mx). The cost column indicates

the cost achieved by the respective technique. The costs of control steps, adders,

95

96

multipliers, registers, multiplexers, and interconnection are derived from [DN89].
The p in (*) column stands for pipelined multiplier. The (4) column in DCT table
actually corresponds to number of functional units capable of performing addition
and subtraction. It is assumed that addition takes one whereas multiplication takes
two control steps.

The performance of GSA for differential equation benchmark is shown in Figure
7.1. The graph shows the average cost versus generations. The moves taken by TSA
for differential equation benchmark is shown in Figure 7.2. The graph shows the
move costs for each iteration. The convergence trend is also shown.

Data path synthesis result using genetic algorithm for differential equation bench-
mark is shown in table 7.4. The result is comparable with the best known systems.
The performance of data path synthesis using genetic algorithm for differential equa-

tion benchmark is shown in Figure 7.3. The graph shows the interconnection cost

versus generations.

-

| System | CS | ALU | * | Reg | Mx | Cost |

GSA 8 1 Ip| 5 4 11710
TSA | 8| 1 |1Ip| 5 | 4 |1710
HAL) 1 Ip| 5 4 -
SE 8 1 Ip| 5 5 -

Table 7.1: Differential Equation Results.

{System | CS |+] * [Reg | Mx | Cost |
GSA 17 [313 | 11 | 10 | 4786
TSA 7 13]3 11 10 | 4804
SE IT 131311 |11 -
HAL 17 3] 3 - - -
SALSAII} 17 | 3| 3 - - -
GSA 17 |3 {2p| 11 | 10 | 3986
TSA 17 {3 {2p| 11 | 10 {1006
SE 17 13 2p| 11 | 12 -
HAL 17 | 3 | 2p] - - -
CATREE | 17 |3 | 2p| 12 - -
SALSA I} 17 |3 [2p) - - -
GSA 1712 1p) 10 | 8 |2638
TSA 17“_,' 2 11) 10 8 2638
STAR 17[.1.’ 2 11) 11 5* -
GSA 18 122} 11] 8 |3484
TSA 18 {2 2| 10 | 8 |3424
SE 18 {22104 9 -
SALSAII] 18 |3 2 - - -
GSA 19 {22110 7 |3370
TSA 19 {22 |10 7 |3340
SE 19 1 2] 2 10 | 11 -
HAL 19 2] 2| 12 - -
EMUCS 19 2] 2112] 12 -
SAW 19 (22|12 - -
GSA 19 {2 |1p| 11 | 8 | 2644
TSA 19 1 231p) 10 | 7 }2538
SE 19 {2 (1p| 11 9 -
HAL 19 | 21p| 12 | 6 -
STAR 19 {2 1pt 11 | 4* -
SALSATII| 19 (2 |1p| - - -

Table 7.2: EWF Results.

A

[System [CS{+] * [Reg]Mx [Cost |
GSA 71618 | 19 | 18 | 10894
TSA 71618 19 | 18 | 10904
SALSAII| 7 {6 [8 - - -
GSA T8 |4pf 21 | 21 | 8788
TSA T 16t5p| 19 | 17 | 8442
SALSAII| 7 |8 |4p | - - -
GSA 8 {53 G | 15 | 17 | 8712
TSA 8 {531 6 | 15 | 16 | 8660
SALSATII| 8 {536 | - - -
GSA 8 |5 |4p| 17 | 15 | 7030
TSA 8 |5 |4p| 16 | 16 | 7110
SALSAII| 8 |5 |4p | - -

GSA 9 1416 | 15 | 14 | 807
TSA 9 14|61 14 | 15 | 8158
SALSAII} 9 |46 | - -

GSA 9 |413p]| 13 | 14 | 5626
TSA 9 14 |3p]| 13 | 14 | 5660
SALSAII} 9 | 4|3p| - - -

Table 7.3: DCT Results,

99

100

GSA: Differential Equation

== !Average Cos!

Average Cost

Generations

Figure 7.1: GSA: Graph of average cost versus generations for differential equation.

o =

101

TSA: Differential Equation

= Move costs
Lo 1 ¢ B T TR LTTYYY PYNS-FOUIPUUIPR AR NP PSRN PRI SRR SR RN S
3500

7
i
-

1 102 203 304 405 506 607 708 809 910
fteration

Figure 7.2: TSA: Graph of move costs for each itcration for differential equation.

k4

{ System | Mux Inputs |

DPS 14
Splicer 16
HAL 13
SE 12

Table 7.4: Data path synthesis result.

Data Path Synthesis

~ Differential Equation Example

4500
=% iinterconnéction cost

4000 _S}-
B \
o
o
5
@
e =
c
o
S
g \
£

3000 D \ SO W JOVOTON

2500 i b |

1 5) 13 17 21 25 29 33
Generations
H

SR SN SR TN RTINS o i

Figure 7.3: Data path synthesis using GA: Interconnection cost versus generations.

R

Chapter 8

Conclusions and Future Work

This short chapter concludes this thesis and highlights some future work.

8.1 Conclusions

Genetic algorithm is a promising optimization technique. This thesis has presented
its application to scheduling and allocation in high-level synthesis. The work in-
volves finding an appropriate string encoding or chromosomal representation. The
initial population of solutions is constructed to get better results. Two scheduling
techniques, mobility-up and mobility-down, arc used for this purpose. Two new
crossover operators (alternate crossover and order crossover for scheduling) are pre-
sented which can find application in mauny other arcas. Genetic scheduling and

allocation (GSA) is tested on three benchmark cirenits namely differential equation,

103

104

fifth-order elliptic wave filter, and discrete cosine transform. Results obtained are
comparable with those obtained by other systems. GSA approach is different from a
previous attempt using GA [WGH90] in many respects. The contributions include:
a new chromosomal representation for scheduling and two subproblems of alloca-
tion; and two novel crossover operators to generate legal schedules. In [WGH90] a
simple two point crossover followed by a modified ASAP scheduling was proposed.
This technique can produce schedules which are longer than the specified control
step limit and is thus believed to take longer to find good schedules. In their tech-
nique scheduling has to be performed cach time the crossover is applied. GSA
uses crossovers that will always give valid schedule rather than a crossover where
scheduling has t» be done separately.

Tabu Search is another promising optimization technique. This thesis has pre-
sented its application to scheduling and allocation in high-level synthesis. Investiga-
tion is done in finding a good initial solution to start with, defining a neighborhood
for a given solution, generation of moves, formulation and maintenance of tabu
list(s), defining a proper aspiration level criteria, finding a good tabu list size and
an efficient way to accept moves. Two implementations are reported and comparced.
Tabu scheduling and allocation (TSA) is also tested on above mentioned bench-
marks. Results obtained are comparable to those obtained by other systems. The
results of both GSA and TSA are compared with simulated evolution (SE) [LM93],

HAL system [PK89], SALSA II [RN93], STAR system [TH92), EMUCS system

[HT83], SAW [TLW+90] and CATREE system [GES7).

A novel interconnect optimization approach using genetic algorithm is also re-
ported in this research. It can be used to optimize number of interconnections for a
given schedule and functional unit allocation. It tries to find genetically good map-

pings for variables to registers and data transfers to buses with the aim of optimizing

interconnection.

8.2 Future Work

Future work will focus on designing a complete data path synthesis system using GA.
Efforts will be directed to include facilities such as chaining and loop winding. The
data path synthesis system should be able to take high-level description and produce
register-transfer level description of the circuit. Research can also be directed to find
more effective implementation for TS and designing a complete data path synthesis

system using TS with above mentioned facilities.

Vo J

Bibliography

[AV93)

(BD9O]

[BM89]

[BS94a]

[BS94b]

Shawki Arcibi and Anthony Vannelli. Circuit Partitioning Using A Tabu
Scarch Approach. In 1993 IEEE International Symposium on Circuits

and Systems, pages 1643-16-16. 1993.

John E. Biegel and James J. Davern. Genetic algorithms and job shop

scheduling. Computers and Industrial Engineering, 19(1-4):81-91, 1990.

M. Balakrishnan and P. Marwedel. Integrated schieduling and binding:
A synthesis approach for design space exploration. In Proceedings of the

26th Design Automation Conference, pages 68-74, June 1989.

M.S.T. Benten and Sadiq M. Sait. GAP: A genetic algorithm approach
to optimize two-bit decoder PLAs. International Journal of Electronics,

76(1):99-106, 1994.

M.S.T. Benten and Sadiq M. Sait. Genetic scheduling of task graphs.

International Journal of Electronics, 1994.

106

[Cam90]

107

Raul Camposano. From behavior to structure: High-level synthesis.

IEEE Design and Test of Computers, 7(5):8-19, October 1990.

[CHMR91] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Distributed

[CP87]

[CT90]

[CWo1]

[Dav87]

[Dav91]

genetic algorithms for the floorplan design problem. JEEE Transactions

on Computer-Aided Design, 10(4):483-492, 1991.

James P. Cohoon and William D. Paris. Genetic placement. IEEE Trans-

actions on Computer-Aided Design, 6(6):956-964. November 1987.

Richard J. Cloutier and Donald E. Thomas. The combination of schedul-
ing, allocation, and mapping in a single algorithm. In Proceedings of the

27th Design Automnation Conference, pages 71-76. June 1990.

Raul Camposano and Wayne Wolf. High-Level VLSI Synthesis. Kluwer

Academic Publishers. 1991.

Lawerence Davis, editor. Genetic Algorithins and Simulated Annealing,

chapter 1, pages 1-11. Pitman, London, 1987,

Lawerence Davis. editor. Handbook of Genetic Algorithms. Van Nostrand

Reinhold, New York, 1991.

[DLSM81] S. Davidson, D. Landskov, B.D. Shriver, and P.W. Mallet. Some ex-

periments in local microcode compaction for horizontal machines. IEEE

Transactions on Computer-Aided Design, 30(7):460-477, 1981.

<9

[DN89)

[FD92]

108

Srinivas Devadas and A. Richard Newton. Algorithms for hardware al-
location in data path synthesis. IEEE Transactions on Computer-Aided

Design, 8(7):768-781, 1989.

E. Falkenauer and A. Delchambre. A genetic algorithm for bin pack-
ing and line balancing. In Proceedings of the 1992 IEEFE International

Conference on Robotics and Autornation. pages 1186-1192, May 1992.

[FHAW90] C. Friden, A. Hertz, and D. de Werra. TABARIS: An Exact Algorithm

[GES7)

[Glo77]

[Glo89]

[Glo90a}

based on Tabu Search for Finding a Maximum Independent Set in a

Graph. Computers and Operations Rescarch, 19(1-4):81-91, 1990.

C. H. Gebotys and M. I. Elmasry. A VLSI methodology with testa-
bility constraints. In Proceedings of the 1987 Canadian Conference on

VLSI(Winnipeg). October 1987.

Fred Glover. Heuristics for integer programming using surrogate con-

straints. Decision Sciences, 8:156-166, 1977.

Fred Glover. Tabu Search - Part I. ORSA Journal of Computing, 1:190-

206, 1989.

Fred Glover. Artificial intelligence, heuristic frameworks and tabu search.

Managerial and Decision Economics, 11:365-375, 1990.

o T

[Glo90D)

[Gol89]

[HAWS8T)

[HHA90)

[HMSS9)

(HP78]

[HP83]

109

Fred Glover. Tabu Search - Part II. ORSA Journal of Computing, 2:4-32,

1990.

David E. Goldberg. Genetic Algorithms in Scarch, Optimization and

Machine Learning. Addison-Wesley Publishing Company. Inc., 1989.

A. Hertz and D. de Werra. Using Tabu Search Techniques for Graph

Coloring. Computing, 29:345-351, 1987.

E.S.H. Hou, R. Hong, and N. Ansari. Efficient multiprocessor schedul-
ing based on genetic algorithms. In 16th Annual Conference of IEEE

Industrial Electronics Society - IECON '90. pages 1239-1243, November

1990.

J. Hesser, R. Manner, and O. Stucky. Optimization of Steiner trees using
genetic algorithns. In Proceedings of the Third International Conference

on Genetic Algorithms, pages 231-236, 1989.

L. J. Hafer and A. C. Parker. Register-transfer level digital design au-
tomation: The allocation process. In Proceedings of the 15th Design

Automation Conference, pages 213-219, June 1978.

L. J. Hafer and A. C. Parker. A formal metliod for the specification, anal-
ysis and design of register-transfer level digital logic. IEEE Transactions

on Computer-Aided Design, 2(1):4-18, January 1983.

Voo

[HS71]

[HT83]

[3C92]

[LCo1]

[LM93]

[MBL92)

110

A. Hashimoto and J. Stevens. Wire routing by optimizing channel assign-
ment within large apertures. In Proceedings of the 8th D. A. Workshop

(Las Vegas). pages 155-169, 1971.

C. Y. Hitchcock and D. E. Thomas. A method of automatic data path
synthesis. In Proceedings of the 20th Design Automation Conference,

pages 484-489, June 1983.

Lin-Ming Jin and Shu-Park Chan. Analogue placement by formulation

of macro-components and genetic partitioning. International Journal of

FElectronics. 73(1):157-173. 1992.

Andrew LIM and Yeow-Meng CHEE. Graph Partitioning Using Tabu
Search. In 1991 IEEE International Symposium on Circuits and Systems,

pages 1164-1167. 1991.

Tai A. Ly and Jack T. Mowchenko. Applying simulated evolution to
high level synthesis. IEEE Transactions on Computer-Aided Design,

12(3):389-409, March 1993.

Tony Mason, Doug Brown, and John Levine. lez & yacc. O'Reilly and

Associates, 2 edition, October 1992.

[MPCSS]

[MPC90]

{Pan88]

[PG87]

[PI89)]

[RN93]

111

Michael C. McFarland, A. C. Parker, and Raul Camposano. Tutorial
on high-level synthesis. In Proceedings of the 25th Design Automation

Conference, pages 330-336. June 1988.

Michacl C. McFarland, A. C. Parker, and Raul Camposano. The high-
level synthesis of digital systems. Proceedings of the IEEE, 78(2):301-318,

February 1990.

B. M. Pangrle. Splicer: A heuristic approach to counectivity binding. In
Proceedings of the 25th Design Automation Conference. pages 536-341,

June 1988.

B. M. Pangrle and D. D. Gajski. Design tools for intelligent silicon
compilation. IEEE Transactions on Computer-Aided Design, 6(6):1098-

1112, November 1987.

P.G. Paulin and J.P. Knight. Force-directed scheduling for the behavioral
synthesis of ASIC’s. IEEE Transactions on Computer-Aided Design,

8(6):661-679, June 1989.

Michael R. Rhinehart and John Nestor. SALSA II: A fast transforma-
tional scheduler for high-level synthesis. In 1993 IEEE International

Symposium on Circuits and Systems, pages 1678-1681, 1993.

[svoz]

[SY43]

[TH92]

[TLW+90]

[Tri87)

[TS86]

[weoi)

112

L. Song and A. Vannelli. VLSI Placement using Tabu Search. Micro-

electronics Journal, 17(5):437-443, 1992.

Sadiq M. Sait and Habib Youssef. VLSI Design Automation: Theory

and Practice (in press). Mc-Graw Hill Book Co., Europe, 1994/5.

Fur-Shing Tsai and Yu-Chin Hsu. STAR: An automatic data path allo-
cator. IEEE Transactions on Computer-Aided Design, 11(9):1053-1064.

September 1992.

D. E. Thomas. E. D. Lagnese, R. A. Walker. J. A. Nestor, J. V. Rajan,
and R. L. Blackburn. Algorithmic and Register- Transfer Level Synthesis:
The System Architects’s Workbench. Norwell, MA: Kluwer Academic

Publishers. 1990.

H. Trickey. Flamel: A high-level hardware compiler. JEEE Transactions

on Computer-Aided Design, 6(2):259-269, June 1987.

C. Tseng and D.P. Siewiorek. Automated synthesis of data paths in dig-
ital systems. IEEE Transactions on Computer-Aided Design, 5(3):379-

395, July 1986.

Robert A. Walker and Raul Camposano, editors. A Survey of High-Level

Synthesis Systems, pages 3-34. Kluwer Academic Publishers, 1991.

113

(WGH90] N. Wehn, M. Glesner, and M. Held. A novel scheduling/allocation ap-

[WSFS89]

proach for datapath synthesis based on genetic paradigms. In IFIP Work-

ing Conference on Logic and Architecture Synthesis, Paris, pages 47--36,

1990.

Darrell Whitely, Timothy Starkweather, and D’Ann Fuquay. Scheduling
problems and traveling salesmen: The genetic edge recombination oper-
ator. In Proceedings of the Third International Conference on Genetic

Algorithms, pages 133-140, 1989.

Vita
Shahid Al.

Born in Karachi, Pakistan.

Received Bachelor's degree in Computer Systems Engineering from N.E.D.

University of Engineering & Technology, Karachi, Pakistan, in 1991,
Worked as Software Development Engineer in Digital Communications Pvt,

Joined Information & Computer Science Department at KFUPM in December

1991.

Completed Master's degree requirements at King Fahd University of Petroleum

& Minerals, Dhaliran, Saudi Arabia in Spring 1994.

114

