INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600






A
74

ANALYSIS OF FLUID FLOW AND HEAT TRANSFER

AROUND AND INSIDE A LIQUID SPHERE

BY
MOHAMED ABDELKARIM MOHAMED ANTAR

A Dissertation Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfilment of the
Requirements for the Degree of

!
¢
)

(el Sl el Jel e el e el e e e e e e e

\i9@@%1’@%793@?%%’%ﬂﬁaﬁ%iﬁfﬁﬁ?ﬁﬁﬁﬁgﬁ’ﬁaﬁBﬁiﬁgﬁﬁfﬁﬂqﬁngﬁﬁWﬁNﬁ

* DOCTOR OF PHILOSOPHY

% In

g MECHANICAL ENGINEERING

k4 JANUARY, 1996
AP A A A s



UMI Number: 9619328

UMI Microform 9619328
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103



KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This dissertation, written by Mohamed Abdelkarim Mohamed Antar under the
direction of his Dissertation advisors and approved by his Dissertation committee, has
been presented to and accepted by the Dean of the College of Graduate Studies, in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
IN MECHANICAL ENGINEERING

Dissertation Committee %&\

Dissertation Advisor (Dr. Abduighani. A. Al-Farayedhi)

Mo YN
/\SSW Maged A—EfShaarawi)

Member (Dr. Saad A. Ahmed)

Db 7 L
D — Member (Dr. Dulaihan Al-Harbi)
L//’ ,--Q"' *
Dr. Muhammad O. Budair
Department Chairman

w T ‘;Q\‘\
// L

Dr. Ala Al-Rabeh ~ F

Dean, College of Graduate Studies A

/-1 g¢

Date



This work is dedicated to

My Parents
May ALLAH reward them in the best way

for all what they have done to me



ACKNOWLEDGMENT

In the name of Allah, Most Gracious, Most Merciful “ Of knowledge it is only a little

that is communicated to you, (O men!)” S. 17 A.85, The Holy Quran

My deepest appreciation goes to my thesis advisor, Dr. Abdulghani Al-Farayedhi
for his continuous help, encouragement, suggestions and constructive criticism
throughout this work . 1 am also greatly indebted to my Dissertation co-advisor, Dr.

Maged El-Shaarawi for his continuous and endless help, valuable guidance, patience and

advice .

Thanks are also due to my thesis committee members, Dr. Saad Ahmed and Dr.
Dulaihan Al-Harbi for their interest, encouragement, cooperation, advice and
constructive criticism . Indeed working in this dissertation has been so much beneficial,

interesting and effective in enrichment of my background .

Appreciation also goes to King Fahd University of Petroleum and Minerals for

supporting this work and providing all literature and computer facilities .

I would also like to acknowledge my family for their patience, encouragement

and understanding while carrying out this work .



CONTENTS

Page
ACKNOWLEDGMENT i
LIST OF FIGURES viii
ABSTRACT (English) XIX
ABSTRACT (Arabic) XX
NOMENCLATURE xxi
CHAPTER I: INTRODUCTION 1
1.1 General 1
1.2 Scope of the present work 2
CHAPTER 1 : LITERATURE SURVEY 4
2.1 Introduction 4
2.2 Flow Over a Solid Sphere 4
1.2.1.1 Forced Flow 4
1.2.1.2 Induced Flow 8
2.3 Motion of a Gas Bubbie in Liquid 8
2.4 Flow Over a Liquid Sphere 9
2.4.1 The Case Without Heat or Mass Transfer 9

2.4.2 The Case With Heat and Mass Transfer to a Single Liquid Droplet 13

i1



2.4.2.1 Spherically Symmetric Models
2.4.2.2 Axially Symmetric Models
2.4.2.2.a. Non-Boundary-Layer Models

2.4.2.2.b. Boundary-Layer Models

CHAPTER III : GOVERNING EQUATIONS

3.1 Introduction

3.2 Gas Phase Governing Equations
3.2.1 Governing Equations in Dimensionless Form
3.2.2 Governing Boundary Layer Equations
3.2.3 Boundary Conditions

3.3 Liquid Phase Governing Equations

3.3.1 Governing Equations in Dimensionless Form
3.3.2 Governing Boundary-Layer Equations

3.3.3 Boundary Conditions

CHAPTER IV : NUMERICAL REPRESENTATION OF THE
GOVERNING EQUATIONS
4.1 Introduction
4.2 Gas Phase Equations
4.2.1 Numerical Grid
4.2.2 Linearizing Technique

4.2.3 Finite Difference Representation of the derivatives

iit

14

18

18

27

34

44

44

45

46

49

49

50

50

51



4.2.4 Finite Difference Representation of the Meridional
Momentum Equation
4.2.5 Finite Difference Representation of the Continuity Equation
4.2.6 Finite Difference Representation of the Energy Equation
4.3 Liquid Phase Equations
4.3.1 Numerical Grid and Linearizing Technique
4.3.2 Finite Difference Representation of the meridional
Momentum Equation
4.3.3 Finite Difference Representation of the Continuity Equation

4.3.4 Finite Difference Representation of the Energy Equation

CHAPTER V : SOLUTION METHODOLOGY

5.1 Introduction

5.2 Numerical Grid

5.3 Criteria For Convergence

5.4 Flow Separation

5.5 Matching Conditions at The Surface

5.6 Calculating Engineering Parameters
5.6.1 Calculating the Shear Stress at the Surface
5.6.2 Calculating the Vorticity at the Surface

5.6.3 Calculating the Coefficient of Drag

56

59

60

63

66

68

69

74

75

76

77

79

79

79

80



5.6.4 Calculating Nusselt Number
5.6.5 Calculating the Coefficient of Friction
5.7 Solution Procedure
5.7.1 Gas Phase Solution
5.7.2 Liquid Phase Solution
CHAPTER VI : HYDRODYNAMIC RESULTS AND DISCUSSION
6.1 Introduction
6.2 Results of Velocity Profiles Around the Sphere
6.2.1 Meridional Velocity Profiles
6.2.2 Radial Velocity Profiles
6.2.3 Results of Engineering Parameters
6.3 Results of Velocity Profiles Inside the Sphere
6.3.1 Meridional Velocity Profiles
6-3-2 Radial Velocity Profiles
CHAPTER VII : HEAT TRANSFER RESULTS AND DISCUSSION
7.1 Introduction
7.2 Results of Temperature Profiles Around the Sphere
7.2.1 Case 1 : Steady State Temperature Distribution Around the Sphere
7.2.1.1 Temperature Profiles
7.2.1.2 Nusselt Number

7.2.2 Case 2 : Transient Temperature Distribution Around the Sphere

7.2.2.1 Case (2-a) : Step Change in Temperature at the Sphere’s Surface

80

80

80

81

82

84

84

85

85

99

101

112

112



7.2.2.1 Case (2-a) : Step Change in Temperature at the Sphere’s Surface 135

7.2.2.1.1 Temperature Profiles 136
7.2.2.1.2 Nusselt Number 155
7.2.2.2 Case (2-b) : Linear Initial Temperature Profiles 160
7.2.2.2.1 Temperature Profiles 160
7.2.2.2.2 Nusselt Number 172

7.2.2.3 Case (2-c) A Step Change in Temperature at the Boundary Layer Edge 172

7.2.2.3.1 Temperature Profiles 174
7.2.2.3.2 Nusselt Number 204

7.3 Temperature Profiles Inside the Sphere 218
7-4 Computer Run Time 224
CHAPTER VIII : CONCLUSIONS AND RECOMMENDATIONS 226
8.1 Conclusions 226
8.2 Recommendations 228
REFERENCES 229
APPENDIX A : GAS PHASE GOVERNING EQUATIONS 240
A.1 Introduction 240
A.2 Continuity and Momentum Equations 240
A.2.1 Equations in the Spherical Polar Coordinates 241
A.2.2 Orthogonal Curvilinear Axisymmetric Coordinate System 242
A.2.3 Dimensionless Form of the Equations 243

A.3 Order of Magnitude Analysis of the Governing Equations 244

vi



A 3.1 Order of Magnitude Analysis for the Continuity Equation 244

A.3.2 Order of Magnitude Analysis for the Meridional Momentum Equation 245

A.3.3 Order of Magnitude Analysis for the Radial Momentum Equation 246
A.4 Formulation of the Energy Equation Around the Liquid Sphere 247
APPENDIX B : LIQUID PHASE GOVERNING EQUATIONS 251
B.1 Equations in Spherical Coordinates 251
B.2 Order of Magnitude Analysis for the Governing Equations 253

B.2.1 Order of Magnitude Analysis for the Continuity Equation 253

B.2.2 Order of Magnitude Analysis for the Meridional Momentum Equation 254
B.3 Formulation of the Energy Equation Inside the Liquid Sphere 255

APPENDIX C: FLOW CHARTS OF THE COMPUTER PROGRAMS 259

C.1 Flow Chart of the Gas-Phase Program 259
C.2 Flow Chart of the Liquid-Phase Program 261
C.3 List of Gas-phase Program 263

C.4 List of Liquid-Phase Program 268

vii



Fig.

Fig
Fig
Fig

Fig

LIST OF FIGURES

3-1 : Schematic of the flow patterns inside and outside the droplet

. 3-2 :Coordinate system
. 4-1 : Numerical grid
. 4-2 : Gas phase finite-difference domain

. 4-3 : Liquid phase finite-difference domain

Fig. 6-1 : Meridional velocity profiles versus radial distance at different

Fig.

viscosity ratios for different meridional locations
6-2 : Effect of changing Reynolds number on meridional

velocity profiles

Fig. 6-3a : Meridional velocity distribution for different viscosity ratios

, Re=1000

Fig. 6-3b : Meridional velocity distribution for different viscosity ratios

compared to solid sphere case of reference [10]

Fig. 6-4a: Effect of Reynolds number on the surface velocity

Fig

[
o

versus the angle , p.' =2

. 6-4b: Effect of Reynolds number on the surface velocity
versus the angle , p' =5

. 6-5a : Effect of viscosity ratio on surface velocity versus angle,

(1 =1.05,1.1)

viil

Page
36

36

52

54

65

86

88

90

90

92



Fig. 6-5b : Effect of viscosity ratio on surface velocity versus angle,
(" =1.5,2,5,100)
Fig. 6-6a : Effect of viscosity ratio on surface velocity versus angle
for Re =1000, 1" = 1.05 and 1.1
Fig. 6-6b : Effect of viscosity ratio on surface velocity versus angle for
Re=1000, p" =1.5,2, 5 and 100
Fig. 6-7 : Maximum surface velocity versus Reynolds number for different
values of viscosity ratio
Fig. 6-8 : Variation of maximum éurface velocity with viscosity ratio
at different values of Reynolds number
Fig. 6-9 : Effect of viscosity ratio on the variation of the angle of separation
with Reynolds number
Fig. 6-10 : Radial velocity distribution at different meridional locations
Fig. 6-11a : Effect of Reynolds number on radial velocity profiles, 6 = 90°
Fig. 6-11b : Effect of Reynolds number on radial velocity profiles, 8 = 60°
Fig. 6-12a : Effect of Reynolds number on the interface shear stress
Fig. 6-12b : Effect of Reynolds number on the interface shear stress
at a given Viscosity ratio
Fig. 6-13 : Effect of viscosity ratio on the wall shear stress at a fixed

Reynolds number

ix

93

94

94

96

97

105



Fig. 6-14 : Surface vorticity distribution versus angle for different values
of Reynolds number

Fig. 6-15 : Surface vorticity compared with boundary layer solution of [1]
Fig. 6-16 : Effect of Reynolds number on the coefficient of friction
Fig. 6-17 : Effect of viscosity ratio on the coefficient of friction
Fig. 6-18 : Effect of viscosity ratio on the meridional velocity inside the sphere
Fig. 6-19a: Effect of Reynolds number on the meridional velocity

distribution inside the sphere, (Re = 200,300 and 500)
Fig. 6-19b: Effect of Reynolds number on the meridional velocity

distribution inside the sphere, (Re = 1000,5000 and 10000)
Fig. 6-20 : Effect of kinematic viscosity ratio on the meridional velocity

inside the sphere
Fig. 6-21 : Meridional velocity distribution inside the sphere at different angles
Fig. 6-22 : Meridional velocity distribution inside the sphere at different angles
Fig. 6-23 : Effect of viscosity ratio on the radial velocity inside the sphere
Fig. 6-24 : Effect of kinematic viscosity ratio on the radial velocity

inside the sphere
Fig. 7-1 : Effect of Reynolds number on the temperature profiles for 8 = 60°,

case (1)

Fig. 7-2 : Effect of viscosity ratio on the temperature profile profiles for 8 = 60°,

case (1)

Fig. 7-3 : Temperature profiles at different angles, case (1)

106

108

110

111

113

114

114

116

119

120

121

123

127

128



Fig. 7-4 :

Fig. 7-5:

Fig. 7-6

Fig. 7-7a

Fig. 7-7b :

Fig. 7-7c:

Fig. 7-7d :

Fig. 7-7e :

Fig. 7-7f

Fig. 7-8a:

Temperature and meridional velocity profiles at various values

of Prandtl number, case (1)

Effect of Reynolds number on the local Nusselt number

distribution, case (1)

: Effect of viscosity ratio on the local Nusselt number distribution,

case (1)

: Transient temperature distribution at different radial distances for
8 = 30° and Re = 500, case (2-a)

Transient temperature distribution at different radial distances for
0 = 45° and Re = 500, case (2-a)

Transient temperature distribution at different radial distances for
6 = 60° and Re = 500, case (2-2)

Transient temperature distribution at different radial distancesfor

0 = 75° and Re = 500, case (2-a)

Transient temperature distribution at different radial distances for
0 =90° and Re = 500, case (2-a)

: Transient temperature distribution at different radial distances for
0 = 105° and Re = 500, case (2-a)

Transient temperature distribution at different radial distances for

0 = 30° and Re = 1000, case (2-a)

Fig. 7-8b : Transient temperature distribution at different radial distances for

8 = 45° and Re = 1000, case (2-a)

xi

134

138

139

139



Fig. 7-8c:

Fig. 7-8d:

Fig. 7-8e :

Fig. 7-8f

Fig. 7-9a:

Fig. 7-9b :

Fig. 7-10

Fig. 7-11

Fig 7-12

Fig. 7-13

Fig. 7-14 :

Transient temperature distribution at different radial distances for
8 = 60° and Re = 1000, case (2-a)
Transient temperature distribution at different radial distances for
6 = 75° and Re = 1000, case (2-a)
Transient temperature distribution at different radial distances for

0 = 90° and Re = 1000, case (2-a)

: Transient temperature distribution at different radial distances for

0 =105° and Re = 1000, case (2-a)
Transient temperature profiles at 6 = 60°, Re = 500, case(2-a)

Transient temperature profiles at 6 = 60°, Re = 1000, case(2-a)

: Temperature distribution at different angles at t = 0.0005, case (2-a)

: Effect of Reynolds number on the transient temperature profiles at

a selected radial location (Z = 0.02), case (2-a)

: Effect of Reynolds number on the time required to reach uniform

surface temperature, (case 2-a)

: Effect of viscosity ratio on the temperature profiles, t = 0.0005,

case (2-a)
Effect of viscosity ratio on the transient temperature distribution

at Z = 0.02, case (2-a)

Fig. 7-15a: Transient surface temperature distribution around the sphere,

Re =500, case (2-a)

xii

140

140

141

141

143

143

145

146

147

149

150



Fig. 7-15b: Transient surface temperature distribution around the sphere,

Fig. 7-16

Fig. 7-17

Fig. 7-18

Fig. 7-19

Fig. 7-20

Fig. 7-21

Fig. 7-22

Fig. 7-23

Fig. 7-24

Fig. 7-25a: Transient surface temperature profiles at different times for Re = 500,

Re = 1000, case (2-a)

: Effect of Reynolds number on the transient surface temperature

ditribution, case (2-a)

: Effect of viscosity ratio on the transient surface temperature ,

case (2-a)

: Effect of Prandtl number on the transient surface temperature

distribution, case (2-a)

: Rate of change of surface temperature versus time at different

central angles, case (2-a)

: Transient local Nusselt number profiles along the surface of the

sphere, case (2-a)

: Transient temperature profiles around the sphere, case (2-b)
: Temperature distribution at different angles, t = 0.003, case (2-b)

: Effect of Reynolds number on the transient temperature profiles

at a fixed radial distance (Z = 0.02), case (2-b)

: Effect of Reynolds number on the time required to reach uniform

surface temperature, case (2-b)

case (2-b)

Xiii

152

153

154

156

158

159

161

162

164

165

166



Fig. 7-25b: Transient surface temperature profiles at different times for Re = 1000,

Fig. 7-26

Fig. 7-27

Fig. 7-28

Fig. 7-29

Fig. 7-30

case (2-b)

166

: Effect of Reynolds number on the transient surface temperature profiles,

case (2-b)

: Effect of viscosity ratio on the transient surface temperature profiles,
case (2-b)

: Effect of Prandt] number on the transient surface temperature profiles,
case (2-b)

: Rate of change of surface temperature versus time at different central
angles, case (2-b)

: Transient profile of local Nusselt number along the surface of the

sphere, case (2-b)

Fig. 7-31a: Transient temperature distribution at different radial distances for

8 = 30° and Re = 200, case (2-c)

Fig. 7-31b: Transient temperature distribution at different radial distances for

0 = 45° and Re =200, case (2-c)

Fig. 7-31c: Transient temperature distribution at different radial distances for

o 1.
aQ

0 = 60° and Re = 200, case (2-c)

. 7-31d: Transient temperature distribution at different radial distances for

8 = 75° and Re = 200, case (2-c)

Fig. 7-31e: Transient temperature distribution at different radial distances for

0 =90° and Re = 200, case (2-¢)

xiv

168

169

170

171

173

175

175

176

176

177



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

7-31f:

7-32a:

7-32b :

7-32c:

7-32d :

7-32e:

7-32f

7-33a

7-33¢c :

Transient temperature distribution at different radial distancesfor
6 = 105° and Re =200, case (2-c)

Transient temperature distribution at different radial distances for
6 = 30° and Re = 1000, case (2-c)

Transient temperature distribution at different radial distances for
0 = 45° and Re = 1000, case (2-c)

Transient temperature distribution at different radial distances for
8 = 60° and Re = 1000, case (2-c)

Transient temperature distribution at different radial distances for
0 = 75° and Re = 1000, case (2-c)

Transient temperature distribution at different radial distances for

0 =90° and Re = 1000, case (2-c)

: Transient temperature distribution at different radial distances for

6 = 105° and Re = 1000, case (2-c)

: Transient temperature distribution at different radial distances for

6 = 30° and Re = 10000, case (2-c)

: Transient temperature distribution at different radial distances for

8 = 45° and Re = 10000, case (2-c)
Transient temperature distribution at different radial distances and

6 = 60° and Re = 10000, case (2-c)

: Transient temperature distribution at different radial distances for

6 = 75° and Re = 10000, case (2-c)

XV

177

178

178

179

179

180

180

181

181

182

182



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

7-33e : Transient temperature distribution at different radial distances for
8 = 90° and Re = 10000, case (2-c)
7-33f: Transient temperature distribution at different radial distances for

8 = 105° and Re = 10000, case (2-c)

. 7-34 : Transient temperature profiles for 8 = 60°, case (2-c)
. 7-35 : Temperature distribution at different angles, (t = 0.005), case (2-c)

. 7-36 : Effect of Reynolds number on the temperature distribution

at a fixed radial distance (Z = 0.02) , case (2-c)
7-37 : Effect of Reynolds number on the time required to reach uniform
surface temperature , case (2-c)
7-38 : Effect of Prandtl number on the transient temperature profile
for = 60° and t = 0.005, case (2-c)
7-39 : Effect of viscosity ratio on the transient temperature profile
for 6 = 60° and t = 0.003, case (2-c)
7-40a: Temperature profiles around the sphere at different angles,
Re =500, t = 0.002, case (2-c)
7-40b: Temperature profiles around the sphere at different angles,
Re =500, t=0.01, case (2-c)
7-41a: Temperature profiles around the sphere at different angles,
Re =1000, t = 0.001, case (2-c)
7-41b: Temperature profiles around the sphere at different angles,

Re = 1000, t = 0.005, case (2-c)

Xvi

183

187

189

190

191

194

194



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

. 7-51

7-42 :

7-43

7-44a :

7-44b :

7-45

7-46

7-47

7-48

7-49

7-50

Temperature distribution at different angles at a fixed radial distance

(Z=0.02), case (2-c)

: Transient temperature distribution at different radial distances,

case (2-¢)

Surface temperature profiles around the sphere at different times,
Re =500, case (2-¢)

Surface temperature profiles around the sphere at different times,

Re = 1000, case (2-c)

: Surface temperature profiles at different central angles, case (2-c)

: Effect of viscosity ratio on the surface temperature distribution ,

case (2-c)

: Effect of Reynolds number on the surface temperature distribution,

case (2-c)

: Effect of Prandtl number on the surface temperature distribution,

case (2-¢)

: Rate of change of surface temperature versus time at a different -

central angles, case (2-c)

: Effect of Reynolds number on the local Nusselt number along

the surface of the sphere, case (2-c)

: Effect of viscosity ratio on the local Nusselt number profile,

case (2-c)

xvii

195

196

198

198

200

201

202

205

206



Fig-7-52

Fig. 7-53

Fig. 7-54

Fig. 7-55

Fig. 7-56

Fig. 7-57

Fig. 7-58

Fig. 7-59

Fig. 7-60

Fig. 7-61

: Nusselt number profiles at different times around the sphere,

case (2-c)

: Comparison of the local Nusselt number distribution of case (2-c)

with the analysis of Renksizbulut and Yuen [48 ]

: Comparison of the local Nusselt number distribution of case (2-c)

with the analysis of Chiang et. al. [58]

: Effect of Reynolds number on the time average Nusselt number

: Effect of Reynolds number on the time required to reach uniform

surface temperature for the three cases

: Transient temperature profiles inside the liquid sphere

: Effect of Reynolds number on the temperature distribution inside

the liquid sphere, (t = 0.009)

: Temperature profiles inside the liquid sphere at different angles,

(t=0.009)

: Effect of viscosity ratio on the temperature distribution inside

the sphere, (t = 0.009)

: Transient temperature distribution both outside and inside the

liquid sphere

xviii

209

211

212

216

217

219

221

222



DISSERTATION ABSTRACT

Name : Mohamed Abdelkarim Mohamed Antar

Title : ANALYSIS OF FLUID FLOW AND HEAT TRANSFER AROUND AND
INSIDE A LIQUID SPHERE

Major Field : Mechanical Engineering
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The problem of fluid flow and transient heat transfer around and inside a liquid sphere

is investigated using an implicit finite difference scheme .

The investigation is based on the boundary layer theory . The governing equations are
uncoupled at the interface between the gas-phase and the liquid-phase by specifying the
boundary conditions . Hence, two computer codes were developed to solve the flow-field as
well as temperature profiles in both phases . Results obtained from the gas-phase solution such
as the surface velocity and the transient surface temperature are used as input data to the second

program to solve the flow-field and temperature distribution inside the sphere .

Results are presented for the velocity components and transient temperature profiles in
the gas-phase boundary-layer outside the liquid sphere and in the liquid-phase up to the center
of the sphere . Engineering parameters such as the wall shear stress, vorticity, drag coefficient,
friction coefficient and Nusselt number are calculated and presented . Comparisons with results

found in the literature are carried out to validate of the present analysis.
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Nu

Pr

Re

NOMENCLATURE

sphere radius

vortex strength inside the droplet, 3U,/(22) for inviscid fluids, or 3 C U,/(2a%)
for viscous fluids

a factor less than unity which equals the ratio between the vortex strength inside

the droplet for viscous and inviscid fluids

dimensionless drag coefficient , D/ —;— 7tpU‘,°2a2

. . . T
local coefficient of friction, 2

— o U?
29.»

specific heat at constant pressure
Xs

frictional drag, j 2nrt dX
]

thermal conductivity
interior-to-exterior thermal conductivity ratio
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CHAPTER I

INTRODUCTION

1.1 General

The process of evaporation and burning of a fuel droplet has gained enormous
attention in recent years . Studies on this subject are of primary importance for
predicting and improving fuel spray injection systems . Practical applications of such
studies exist in gas turbines, rocket combustors, diesel engines, fire suppression, spray
drying, etc., where the processes of gasification, oxidation, and dynamics of the fuel
droplet are essential . Moreover, they might also be useful in the fields of air pollution,

and cloud and precipitation physics .

In spray combustion computations, it is usually assumed that the overall spray
behavior can be obtained by summing behavior of individual isolated droplets
surrounded by a gas phase . Even when the assumption that droplets behave as if they
were isolated from each other is not satisfactory to represent the real situation , the
behavior of a single droplet in an oxidizing environment will provide a fundamental

input to the overall spray analysis .

In the present study, laminar axisymmetric flow around a fluid sphere at
moderate to high Reynolds numbers (Re) is numerically investigated by a finite

difference technique . Flow field as well as heat transfer around and inside the sphere



are analyzed for a wide range of Re and Prandt]l numbers (Pr) . The governing boundary
layer equations for both gas and liquid phases are developed, non-dimensionalized and
solved . These equations are coupled at the sphere surface where the shear stress
exerted on the sphere surface by the external flow induces an internal circulation
represented by Hills spherical vortex in the sphere’s core . Conditions at the interface
are obtained by equalizing both the tangential velocity and shear stress for both gas-
phase and liquid-phase . Then, heat transfer to the cold sphere injected in a hot

surrounding air is analyzed .

1.2 Scope of the Present Work

In the present work, a finite-difference method has been used to analyze the flow
field and heat transfer around and inside a cold liquid sphere present in a hot
surrounding flow . The method needs less computer time and storage in comparison
with numerical methods discussed in the literature and it handles much wider range of
Reynolds number as well as Prandtl number . The model is based on boundary layer
theory and the following assumptions :

1. Laminar, axisymmetric, steady flow, and unsteady heat transfer .

2. Viscous dissipation, thermal radiation, buoyancy effects are neglected .

3. Both fluids are Newtonian .

4. Reynolds number is large enough to allow the use of boundary-layer theory .

5. Fluid sphere remains spherical in shape (small Weber number) .



6. The shear stress on the fluid-sphere surface induces internal motion inside the sphere

The flow field is classified into four main regions :
1. Outer flow represented by an inviscid flow over a sphere .
2. Gaseous boundary layer near the outer surface of the sphere .
3. Liquid phase boundary layer adjacent to the surface .

4. Potential flow inside the sphere core represented by the known Hill’s spherical vortex.

This chapter included an introduction and the scope of the present study .
Chapter II presents the literature survey . Chapter III will be devoted to the problem
formulation, nondimensional form of the governing equations as well as the boundary-
layer simplification . In Chapter IV, the grid system and finite-difference forms of the
governing equations are presented . The overall solution methodology and the method
employed for calculating the engineering parameters are discussed in Chapter V. The
results are presented and discussed in Chapters VI for the hydrodynamic results and in
Chapter VII for the heat transfer results . Finally the conclusions and recommendations
are included in Chapter VIII followed by the references and the appendices . Appendix
A presents the detailed derivation of the governing equations for the gas phase while the
detailed derivation for liquid-phase equations is presented in Appendix B . Appendix C

contains the flow charts and the program codes .



CHAPTER 11

LITERATURE SURVEY

2.1 Introduction

The literature survey for the flow around spheres can be classified into three main
categories . First, flow over a solid sphere which can be subdivided into forced flow
around a sphere and induced flow due to the rotation of a solid sphere in a stagnant
medium. Second, the motion of a gas bubble in a liquid . Then the third category
represents the flow of a gas over a liquid sphere.  This latter category can be subdivided
into the case without heat or mass transfer and the case with heat and/or mass transfer .
The present survey refers to the aforesaid three categories with a special attention to the

third category .

2.2 Flow Over a Solid Sphere
2.2.1 Forced Flow

The laminar incompressible axisymmetric flow over a solid sphere with or without
mass efflux was investigated by Hamielec et al. [1] for Reynolds numbers up to 500 .
Finite-difference method was used and their results presented the drag coefficient (C, ),

frontal stagnation pressure, and wake geometry . They found that nonuniform mass efflux



can significantly reduce the drag on a submerged surface , and that the most successful

approximate solution can be obtained by boundary-layer assumptions .

Pruppacher [2] investigated numerically the steady incompressible flow around a
sphere . He solved Navier-Stokes equations for 20 < Re < 40 in terms of the standing
eddy length behind the sphere and the separation angle . He found that the drag coefficient
agrees well with experiments and that both eddy length and separation angle increase with

increasing Reynolds number .

Transient axisymmetric flow was studied numerically by Rimon and Cheng [3]
for the uniform incompressible, homogeneous fluid flow around a sphere . Complete
Navier Stokes equations were solved for 1 < Re < 1000 where a recirculatory wake
appears . Time dependent stream function-vorticity equation in a finite difference
representation on an expanding polar grid system by Dufort-Frankel approximation for
time and space was applied . They presented the detailed vorticity distribution on the
sphere and values of drag coefficient which agree with standard drag curve over the
investigated range of Reynolds number . They recommended curvilinear co-ordinates with
variable mesh size as being highly desirable to obtain quantitative results and that

downstream outflow boundary condition is of great importance .

Experimental investigation of the forced laminar flow around a solid sphere was a

point of interest to many investigators. Achenbach [4] found that laminar flow around a



sphere can still be obtained with Reynolds number values up to 1 x 10°. Seeley et al. [5]
conducted a series of experiments for the flow over a fixed hollow pyrex sphere and
obtained the normal and tangential velocities in the boundary layer using a non-disturbing
flow visualization technique . Their results show that increasing Reynolds number resulted
in decreasing the separation angle . Esmail et al. [6] measured radial and tangential
velocities using electronic scanning devices for a Reynolds number range of 300 to 3000 .
Comparing their results with numerical solutions they suggested that using maximum
tangential velocity as an outer boundary condition for boundary-layer models is a definite
improvement over the use of potential flow values . El-Shaarawi et al. [7] investigated
the forced flow around a rotating solid sphere for a Reynolds number of 10000 and for
values of the spinning parameter of 0,1 and 5 . Karyagin et al. [8] experimentally
investigated steady flow over a solid sphere for Reynolds number ranging from 3x10* to
3x10” and Mach numbers from 0.3 to 3 and presented pressure distribution and separation
angle . Their results show that increasing the free stream velocity leads to the
displacement of separation angle upstream while increasing the Mach number displaces it

downstream .

Axisymmetric laminar boundary-layer flow around a rotating solid sphere was
investigated numerically by El-Bedeawi [9] and El-Shaarawi et al. [10] for a value of
Reynolds number of 10000 and for various values of the spinning parameter . In their
numerical solution, a non-iterative, low computer storage program utilizing finite-

difference scheme was used to solve the governing boundary-layer equations and results



were presented for the velocity profiles, shear stress components and the angle of

separation.

Forced convection mass transfer around solid and fluid spheres for Reynolds
number up to 100 was investigated by Baird and Hamielec [11] . They studied this case
where the diffusion equation was solved analytically for a thin concentration boundary
layer and approximate local and overall Sherwood numbers had been predicted

theoretically .

In 1987, LePalec and Daguenet [12] applied a power series of several variables
to study the laminar mixed convection about an isothermal rotating sphere in a stream of
arbitrary direction with respect to the axis of rotation, so that the velocity profile is
essentially three-dimensional . Boundary layer equations were numerically solved and the
results for different values of rotation parameter and buoyancy parameter were obtained

and well agreement with previously published work were observed .

Mixed convection over rotating bodies with blowing and suction was investigated
by Wang and Kleinstreuer [13] . LePalec and Daguenet [14] developed solutions for
heat and mass transfer from a rotating sphere placed coaxially in an upward flowing
stream. The theoretical results developed by boundary layer analysis were verified by

experiments utilizing an electrochemical reaction at the surface of an electrically charged



sphere . The governing equations were , by means of series, transferred into ordinary

differential equations that were solved by Runge Kutta-Gill method [15] .

2.2.2 Induced Flow

The induced flow due to a rotating solid sphere in a quiescent fluid was studied
theoretically by Dennis et al. [16] . Yefimova et al. [17] investigated the same case
using expansion coefficients as vector spherical functions and his results are valid for a
Reynolds number up to a value of 10. The low Reynolds number range was explored by
Yosilevskii [18] who used an analytical solution for the creeping flow engendered by

steady axisymmetric rotation of a sphere in an isotropic Newtonian fluid .

Raman [19] solved this case numerically by integrating the boundary-layer
equations over a control volume and solving iteratively . EI-Shaarawi et al. [20] used a
simple, low computer storage, less computer time, non-iterative finite-difference scheme to

solve boundary layer equations governing this case and their results detected no separation

point .

2.3 Motion of a Gas Bubble in Liquid

The case of a gas bubble rising steadily in a quiescent liquid has been studied by

Moore [21] for an irrotational flow past a bubble at a Reynolds number of 100 and he



obtained the drag coefficient C; = 32/Re . However, he did not consider the tangential
stresses in his calculations of the coefficient of drag . Chao [22] investigated the same
case. He used boundary layer equations and calculated the drag for the case with negligible
separation assuming complete internal circulation . He found that increasing Re has the
effect of thinning the boundary layer. However, he reported that his solution is not

applicable near the front stagnation point .

2.4 Flow Over a Liquid Sphere

2.4.1 The Case Without Heat or Mass Transfer

Hadamard [23] was the first to analyze fluid flow around fluid spheres , he
extended Stokes calculation of the resistance opposing the motion of a solid sphere
through a viscous medium of infinite extent to the case when the sphere is composed of
fluid immiscible with the medium . He considered that tangential velocity component ,
normal and tangential shear stresses at both sides of the interface are equal and that motion

can occur within the sphere due to the action of the forces of viscous origin across its

surface .

The circulatory motion inside the droplet was first analyzed in 1894 by Hills [24]
for the case of an inviscid fluid inside a sphere due to external irrotational flow and he

gave an expression for the stream function .
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In the experimental work done by Spells [25] , the technique used to reveal the
circulation patterns depended on the striae which appear in glycerin and glycerin-water
mixtures when sheared . Instantaneous flash photographs were taken of circulation
patterns in drops of glycerin falling slowly (1 cm/sec) in caster oil where the drops were
spherical and the circulation pattern agreed with the theoretical prediction of Hadamard
[23]; and in drops of various glycerin-water mixtures falling at 10 cm/sec in heavy white
oil (viscosity 0.37 poise at 15 C) where the drops were no longer spherical and the center

of circulation was displaced below the equatorial plane .

Hamielec and Johnson [26] investigated fluid spheres moving in viscous media
under the influence of gravity using a numerical method of solution . They reported that a
good agreement with experiments up to Re = 90 was achieved . Circulatory motion inside
the droplets was observed by suspending fine aluminum particles in the sphere interior.
Drag coefficient lies on or above the experimental value for a solid sphere as long as
Re<45 . Navier Stokes equations in stream function form for steady, viscous,
axisymmetric flow in polar co-ordinates were solved taking continuity of tangential
velocity and shear stress at the interface as boundary conditions (no droplet distortion) .
However, they reported that the solution was not accurate at low Re . Also, they reported
that separation starts to occur at Re = 39 . They found that lowering viscosity ratio
decreases the asymmetry of the flow while as Reynolds number increases, the vortex ring
(interior flow) moves toward the front stagnation point . When exterior flow separates,

surface velocity changes direction and a second vortex is formed in the rear portion of the
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sphere . The second (rear ) vortex has never been observed because velocities in the
neighborhood of rear stagnation point are relatively small since surface active materials

tend to accumulate near point of separation preventing the transmission of the tangential

stress to the interior fluid .

In 1967, Hamielec et al. [27] investigated viscous flow around circulating fluid
spheres of low viscosity at intermediate Reynolds numbers . Steady Navier-Stokes
equations in stream function and vorticity form were solved for Re = 0.1, 1, 50, 100, and
200 by a finite difference method . Computed values of C; compared favorably with
experiments and no separation was found for Re < 200 . The accuracy of boundary layer

theory was confirmed .

Rivikind and Ryskin [28] studied uniform and rectilinear motion of a drop under
the action of a uniform steady mass-force field in viscous liquid at rest at infinity . They
investigated the Reynolds number range of 1 < Re < 200 where integration of full Navier-
Stokes equations was applied for Re = 200 and for arbitrary values of viscosity ratio .
Both fluids are incompressible with constant properties, droplet also remains spherical
(very small Weber number) . They concluded that if the viscosity of the dispersed phase
does not exceed that of the continuous phase, the flow around the sphere does not separate
and there is no return flow region behind the drop (results were confirmed by
experiments). At Re = 100, there is separation in the immediate vicinity of the rear critical

point and a return flow appears . However, increasing Re expands this region and the
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return flow region. This return flow is induced if a fair amount of vorticity accumulates
behind the droplet as a result of convective large Re . They also reported that the internal
flow resembles Hill’s vortex . For high viscosity, the picture is close to the flow around a
solid sphere (small internal flow velocity) . For high Re (both outside and inside sphere),
circulatory flow inside the drop breaks up into two vortices . C; was found to be
decreasing with increasing Re up to 100 (its value for a gas bubble was greater than that
for a liquid drop and the lowest value was for a solid sphere) . They indicated that when
the liquid phase density is much larger than gas phase density, the assumption of a single

vortex is reasonable .

In 1985, Oliver and Chung [29] studied flow over a fluid sphere by hybrid series
truncation and finite-difference technique for steady , axisymmetric, laminar flow. They
found that density ratio has no effect on C, at low Re, while shear stress and C, increase
with increasing viscosity ratio and decrease with increasing Re . For intermediate Re, flow
pattern is insensitive to interior Reynolds number . They reported that internal circulation
strength increases with Re . Then, in 1987 Oliver and Chung [30] studied the case of
steady motion of a fluid sphere translating in a quiescent medium using semi-analytical
series truncation method in conjunction with a cubic finite element scheme . The range for
Reynolds number is 0.5 to 50 and for viscosity ratio is from 0 (representing a gas bubble)

to 1x 10’ (representing the flow around a solid sphere) .
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In a study by Mechailidis [31], he gave analytical solutions to the particle equation

of motion for several expressions of the drag coefficient and he pointed out the differences

between them .

Harper and Moore [32] studied the steady motion of a liquid drop in another
fluid of comparable density and viscosity with the assumption that the drop remains
spherical and that Reynolds number is sufficiently high to apply boundary layer analysis .
Internal circulations (represented by Hill’s vortex) are obtained and they reported that the

obtained C, values agreed quite well with experiments .

Slow flow of rarefied gas about a spherical liquid drop was studied by Tomoeda
[33] . He neglected inertial effect but internal circulation was included and kinetic theory
analysis was considered for the external flow field . It was found that the significant
internal circulation would occur when the viscosity of the external gas and that of the
internal liquid are comparable to each other in magnitude . This results in a reduction of

the sphere drag from the conventional Stokes drag .

2.4.2 The Case of Heat and Mass Transfer to a Single Liquid Droplet

The existing literature on a single droplet vaporization can still be classified into
two major categories, spherically symmetric model and axisymmetric model where the

former was first introduced in 1954 by Godsave [34] and Spalding [35] for the
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vaporization and combustion of a fuel droplet in stagnant surroundings leading to the

known d’ -law . The axisymmetric model accounts for convection terms in the flow field

aswell .

2.4.2.1 Spherically Symmetric Models

In the spherically symmetric models, the surrounding air is assumed to be stagnant
simplifying the governing energy equation to be one-dimensional . In the models of
Godsave [34] and that of Spalding [35], the temperature was assumed to be spatially
uniform and temporally constant and that gas phase heat and mass transfer rates were
much faster than droplet regression rate ignoring initial transient heating of the droplet
where regression rate increases till it reaches a quasi-steady value . Models also neglected
liquid phase heat and mass transfer, considered the droplet to be motionless with constant
properties for both the pure liquid and gas phases as well as assuming Lewis number to
equal unity . Another inadequacy of the model was that the temperature predicted was too

high to neglect dissociation .

Kotake and Okazaki [36] solved numerically the unsteady gas and liquid heat and
mass transfer conservation equations. They showed significant unsteadiness through entire
droplet life time with temporary decreasing surface regression rate . Quasi-steadiness can
never be reached , so, d>law is largely unrealistic . Their accuracy was suspected by
Hubbard et al. [37] who repeated this work and obtained different results indicating that

regression rate is monotonically increasing with time and gas phase is quasisteady .
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Moreover, Hubbard et al. [37] investigated the problem by numerical integration for the
governing equations with variable properties assuming stagnant gas surrounding the
droplet (spherically symmetric model), quasi-steady evaporation process and that a
reference property scheme for temperature is 7, =7, +(7T,~T,)/ 3 and a similar one for
mass transfer (referred to as 1/3 rule where T, is the reference temperature, T, is the
external flow temperature and T is the surface temperature of the droplet) . Effects of
temporal storage of mass species, energy and radial pressure variations in gas phase were
negligible and the early transient behavior is solely due to sensible heating within the
droplet . Proportionality constant in R* expression (where R is the droplet radius) was
éecreasing with time rather than constant which is considered as a modification of the d*-
law and flame temperature predicted was much lower than measured values . They proved
that transient evaporation into stagnant gas is independent of initial size for a quasi-steady
evaporative process, that the effect of blowing in reducing the normalized temperature and

species gradient in the vapor at droplet surface is enhanced, and that the 1/3 rule is the

most appropriate for calculating reference temperature and species mass fraction .

Justification for the 1/3 rule is originated from the film theory by Faeth [38] who
assumed that the resistance to heat and mass exchange between surface and gas flow is
concentrated within some frictional gas film of constant thickness . The temperature and
species composition along the surface as well as the external boundary of the film , are
uniform. The thickness of the film is determined from the requirement that the rates of a

purely molecular transport by thermal conduction or diffusion through the film must equal
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the actual intensity of convective heat and mass transfer between surfiace and external

flow.

Yuen and Chen {39] obtained the drag data of evaporating droplets of water,
methanol, heptane and benzene . This data covered Reynolds number range from 1 to
2000 and mass transfer numbers B,, from 0 to 3 (B, = C(T;-T/L, where C,, is the
specific heat of surroundings calculated at the arithmetic mean of droplet vapor at droplet
temperature Ty and air at free stream temperature T, and L is the latent heat of
vaporization of droplet at Ty) . This study showed that the drag coefficient correlates well
with the standard drag curve provided that the characteristic density is the free stream
density and the characteristic viscosity coefficient is a function of temperature . The
presented correlation was insensitive to mass transfer numbers leading to the result that

mass efflux has little effect on drag of evaporating droplets .

Kadota and Hiroyasu [40] conducted theoretical studies on ignition delay of a
single droplet in high pressure gaseous environments. Calculations were made for the
unsteady case of droplet evaporation considering the effect of natural convection . The
effects of non-ideal mixtures, fuel vapor concentration at the surface and the non-ideality
of the enthalpy of evaporation were considered where all of these effects were important .
Non-linear simultaneous ordinary differential equations were utilized for n-heptane droplet
in nitrogen using Runge-Kutta-Gill method .  Their resuits presented the size and

temperature history of a droplet and its lifetime .
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A spherically symmetric model in stagnant surroundings with constant properties
and unity Lewis number was used by Law [41] who reported that droplet heating is the
source of unsteady combustion . He assumed quasi-steady gas phase processes and that
droplet temperature is spatially uniform but temporally varying considering conduction
and internal circulation . Ignoring internal circulation leads to gross underestimation of
heat transfer rate within the droplet . Vigorous internal circulation was observed in the
experiments . It was reported that if droplet heating is a significant source of the observed
unsteady combustion, then the rapid approach of the rate of change of droplet surface area
to a constant value implies that internal heat transfer mode is much faster then can be
provided by conduction alone . However, Law and Sirignano [42] used the same
assumptions to consider quasi steady gas phase, spherically symmetric, thin flame
combustion of a pure component, where conduction is the only heat transfer mechanism
within the droplet and it was found that droplet heating was dominant for the initial 10-
20% of droplet lifetime (rapid changes in combustion characteristics occur) then droplet

surface decreased almost linearly .

The importance of liquid phase heating was pointed out by Law [41] who stated
that droplet heating should be included in any attempt to analyze the flame behavior for

unsteady droplet burning with an initially cold droplet .

Law and Law [43] accounted for the temperature dependency of specific heat at

constant pressure (C,), thermal conductivity (K), the binary diffusion coefficient (D) and



18

concentration dependency of C, and K and recommended a simplified model to obtain

estimates of the various vaporization characteristics .

2.4.2.2 Axially Symmetric Models

Axially Symmetric models take into account the convective term in the energy
equation . Therefore, continuity and momentum equations are to be considered in
describing the flow field around the droplet . This leads to a two-dimensional
representation of the governing equations which is more representative of the real case
than the spherically symmetric model that simply ignores the flow around and inside the

liquid sphere .

2.4.2.2.a. Non-Boundary Layer Models

Sayegh and Gauvin [44] carried out a theoretical study to investigate the effects of
large temperature differences on the rate of pure heat transfer from a very hot gas to
stationary spheres . They solved numerically the simultaneous momentum and energy
equations for variable property flow past a sphere, using finite difference techniques .
Results were obtained for Reynolds numbers up to 50 . The flow behavior, C;, and
Nusselt number were presented . Effect of variable properties was to drastically increase
flow vorticity and temperature and vorticity gradients at the surface . A generalized heat
transfer correlation was derived that included large variations in physical properties of the

fluid as a result of temperature difference .
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The analysis carried out by Law [45] in 1982 concluded that conductive and
convective heat transfer within the droplet are efficient to maintain temperature spatially
uniform but temporally varying and that liquid phase heat conduction rate is of the order of
droplet surface regression rate, thus, spatially uniform temperature can not be achieved
without internal circulation . He reported that the difficulties in the experimental work
inctude the influence of gravity, that has an undesirable varying buoyancy effect as droplet

size diminishes, and the forced convective effects due to droplet motion .

In the study carried out by Dwyers et al. [46] for an evaporating droplet, they
found that C; decreases significantly as droplet vaporizes and gas/droplet relative velocity
decreases . In his review paper, Sirignano [47] in 1983 reported that because transient
heating of droplet surface continues throughout the droplet lifetime without the surface

reaching the boiling point temperature, quasi-steady assumption has no justification .

Renksizbulut and Yuen [48, 49] considered quasi steady evaporation, but liquid
motion and heating were ignored, variable thermophysical properties were considered
resulting in correlations for droplet drag coefficient and Nusselt number which are less
than that for the case of solid sphere due to the blowing effect of evaporation . All
thermophysical properties were evaluated at arithmetic mean (film condition) except the

density in Reynolds number which was evaluated at free stream values .
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Aggarwal et al. [50] , Aggarwal [51], and Aggarwal and Sirignano [52]
examined different liquid phase heat transfer models (Infinite conductivity, Conduction
limit, Vortex model) for a stagnant or slightly convective environment on ignition
characteristics of a pure fuel droplet . They reported that ignition delay times predicted by
different models are significantly different over a wide range of pressure, droplet size, and
fuel volatility . In the regions where droplets are formed, slow vaporization without any
active chemical reactions is expected to prevail initially . As the droplets move into the
hotter regions, vaporization becomes significant, and eventually a flame may get
established around (or in the wake of) an individual or a group of droplets . In regions

where an envelope flame gets established , the burning process is diffusional .

Patnaik et al. [53] analyzed the dynamics of an evaporating droplet including the
effect of transient convection, Stefan flow (surface blowing due to vaporization) , internal
circulation, and liquid heating for the incompressible liquid phase . Continuity and
momentum equations were expressed in streamline and vorticity representation .
Numerical solution was carried on iteratively by ADI method and special cells composed
partly of liquid and gas were used to represent the conditions at the interface . Clausius-
Clapeyron equation was used for mass fraction at the interface while the equation of state

was used for calculating the density .

In 1988, Renksizbulut and Haywood [54] analyzed an n-heptane droplet

evaporating in its vapor at a temperature of 800 K and at two values of the pressure (1 and
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10 bar) . Transient droplet evaporation, variable properties, internal circulation, Reynolds
number range between 100 and 250, a finite volume numerical scheme for laminar,
axisymmetric flow condition and using effective thermal conductivity expression for liquid
phase heating were used . They found that liquid phase heating plays an important role in
overall droplet behavior . They reported that quasisteady gas phase can be made since gas
phase heat and momentum diffusion rates at atmospheric pressure are 2 to 3 order of
magnitude larger than droplet surface regression rate and that transient effect of liquid
heating can still be handled in a quasisteady manner using effective latent heat . They
noticed that at higher pressures, droplet lifetime is much shorter since density increases
about 10 times . Also at high pressures, increasing gas density and reduced viscosity (due
to high temperature) both intensify liquid phase motion . The secondary recirculating zone
dies out very quickly and has negligible effect on heat transfer, Nusselt number decreases
with time while C; increases and heating time increases at high pressure . They
introduced a simplified semi-analytical model which proved to be valid for low pressure
cases . But Abramzon and Sirignano [55, 56] reported that it is unclear whether their
results are applicable to the practical case of a non-vapor environment where diffusion may
be one of the controlling factor in vaporization process . They calculated the transient
droplet temperature using both the rapid mixing model (infinite conductivity model) and
the Conduction limit model ( both represented the two extremes bounding the possible
range of real conditions ) . The standard assumption that (Prandtl number = Lewis
number = Schmidt number = 1) which is widely used is invalid for heavy fuels such as n-

decane (Le = 1-4) and incorrect evaluation of physical properties leads to considerable
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errors in the prediction of vaporization rate . Thermophysical properties were evaluated at
a reference temperature using 1/3 rule and an implicit iterative method of second order
accuracy with time was used . Internal droplet temperature for the conduction limit model

was calculated using Crank-Nicolson scheme with uniform finite difference grid .

In 1989, Haywood et al. [57] developed a model to analyze evaporation of an n-
heptane droplet in air at atmospheric pressure considering variable thermophysical
properties, liquid phase motion and heating, and transient variation in droplet size and
velocity . Quasi-steady correlations were shown to predict the transient histories of C4, Nu
and Sherwood number (Sh) . They reported that the nature liquid phase heating (Nu)
remained constant through droplet lifetime and they observed that C, increases in the
course of droplet motion and vaporization and that the standard drag curve for a solid
sphere may be used here provided that thermophysical properties in gas film are evaluated
at an average temperature and the appropriate correction is made to account for the

blowing effect.

Numerical work of Renksizbulut and Haywooed [54] showed that instantaneous
Cy, Nu for n-heptane droplet in their own vapor at 1 and 10 atm could be predicted using
the correlation of Renksizbulut and Yuen (1983) with a suitable correction for the effects
of liquid phase heating. Complete droplet life histories could be predicted by a simple
analytical model using correlations in a quasi-steady manner together with effective

thermal conductivity model for liquid heating and proved to be good for low ambient
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pressures . They proved that unsteady gas phase effects resulting from perturbations to
velocity and temperature fields due to higher surface regression rates at higher pressure
were responsible for the departure from quasi-steady behavior . Physical reality does not
approve rapid mixing (infinite conductivity) nor conduction limit models for droplet
heating . Renksizbulut and Haywood showed that rapid mixing occurring initially
followed be gradual heating and that transient drag coefficient, Nusselt and Sherwood
numbers computed by a complete numerical method could be predicted by the quasi steady
correlations previously obtained . Therefore, gas phase transient effects , recession of gas-
liquid interface, and second order drag effects are unimportant at pressures < 10 atm. The
justification for liquid unsteady behavior comes from the decrease in Re that resuits in a
slow transient decline in liquid phase motion despite it adjusts quickly with shear stress .
Also, liquid phase heating was shown to be unsteady and transient heating persists most of
the droplet lifetime . They explained that vaporization acts to reduce drag by thickening
boundary layer and reducing shear at the surface, and reducing mixture viscosity in gas

phase boundary layer by increasing concentration of cold fuel vapor drag correlation .

Chiang et al [58] reported that although net effects of variable properties and
surface blowing decrease drag, the increase in pressure drag is remarkable and wondered
whether that correlation developed by Renksizbulut and Haywood is applicable for high
transfer numbers with noticeable mass transfer at the interface . In 1992, they investigated
the case of a cold droplet injected in a hot gas stream taking into consideration the variable

thermophysical properties (since they reported that constant property calculations
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overestimate the drag coefficient), transient heating, liquid internal circulation, flow
deceleration due to drag of the droplet, boundary layer blowing, moving interface. The
parameters changed in their model were initial droplet temperature, ambient temperature,
initial Reynolds number, fuel type, and droplet heating model . The purpose of their
investigation was to solve numerically the equations governing the exchange of
momentum, mass and energy between a vaporizing droplet and the convective gas stream
with high transfer numbers, to analyze local as well as overall behavior of the droplet, to
study the important effects due to variable properties and to Reynolds number, transfer

numbers, and finally to find appropriate correlations for the transfer coefficients.

They considered laminar axisymmetric flow, initially uniform ambient conditions,
a thin boundary layer near the interface, recirculating zone after separation point, that shear
stress at interface causes internal circulation (represented by Hill’s spherical vortex), that
drag retards the droplet (although small thrust drag due to nonsymmetrical blowing
accelerates it) decreasing Reynolds number and surface shear . They also considered that
liquid temperature is initially uniform, part of heat transferred from the gas goes to droplet
evaporation while the rest is for heating the droplet interior , mass transfer is characterized
by flow convection and rate of vaporization (fuel vapor diffuses away to gas stream).
Molecular weight of mixture surrounding the droplet is altered due to the presence of fuel
vapor . Density, as well as pressure distributions are totally different from the case of
liquid sphere without vaporization . They found that for higher transfer numbers, there

are larger vaporization rate, reduced drag coefficient and for lower transfer rate, weak
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effect of boundary layer blowing, C,; is dominated by Reynolds number . Vaporization

results in decreased droplet radius and an expansion of wake region

Lately in 1993, Chiang and Kleinstreueur [59] investigated the case of laminar
axisymmetric thermal flow of a spherical vaporizing droplet neglecting thermal radiation,
buoyancy, thermo-diffusion effects . Reference fluid properties are evaluated at free
stream conditions while gas phase properties are evaluates at a reference state (arithmetic
mean point). All gradients at stagnation line are set equal to zero because of symmetry .
The solution of governing equations was by using cylindrical coordinates for gas phase
and spherical coordinates in liquid phase and finite-element technique . Droplet
investigated was an n-hexane or n-octane droplet of initial Reynolds number = 100,

droplet temperature = 399 K, ambient temperature = 800 K and pressure = 10 atm .

In the numerical study of Chen et al [60], the problem was simplified by
neglecting internal liquid circulation and transient heating . They showed that heat and
mass transfer rates are enhanced by the narrow thermal boundary layer in the leading
region and wake flow which is excited at high Reynolds numbers . They also showed that
the steepest temperature gradient occur at the front center point . They reported that their
results are in good agreement with empirical results with the following assumptions; quasi-
steady, incompressible flow, constant properties, Lewis number equals unity, constant

droplet temperature, no heat transfer to heat the droplet, no chemical reactions, and that
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droplet internal circulation is ignored (zero tangential velocity at the droplet surface) .

However, these assumptions seem to be oversimplifying the real situation .

Megaridis [61] used the data produced in an experimental investigation for
vaporization rates and internal temperature distribution of large, hydrocarbon, suspended
droplets vaporizing at atmospheric pressure, and which involves Reynolds number up to
100 to validate the methods employed in a detailed numerical model that simulated liquid-
fuel droplet vaporization in a high-temperature , laminar, convective environment . A
series of comparisons was performed between model predictions and experimentally
measured relevant quantities . He reported that the agreement in the droplet interior was
favorable . The model predicted higher vaporization rates, as indicated by lower values of
droplet diameter at corresponding instances in droplet lifetime . The predicted temperature
distribution in the interior were in good agreement with measured values . Both
experiments and modeling agree on the establishment of internal circulation in liquid
droplet exposed to laminar high temperature gaseous flows and relative insensitivity of the
droplet temperature distribution when a considerable increase of free stream momentum
occur . Although the model predictions showed that substantially increased liquid
viscosity slows down the establishment of the liquid phase motion, the experimental
observations conclude that substantially higher liquid viscosity eliminates liquid phase

motion entirely .
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Also in 1993, Takie et al [62] examined experimentally the ignition time of
suspended fuel drop with high ambient temperature . A stationary fuel droplet suspended
by a fine silica fiber was taken into a furnace moving on rail and is quickly exposed to high
ambient temperature . The effect of fuel mixture ratio , initial diameter and ambient
temperature were observed . An interesting result was drawn from this experimental work
that is; for pure hexadecane, ignition time increases with increasing initial diameter, but
decreases for pure heptane especially at lower temperatures . For mixtures, results show
that an initial droplet diameter exists at which ignition time has a maximum value and that

this diameter increases with a decrease of heptane concentration or ambient temp.

2.4.2.2.b. Boundary Layer Models

In the analysis of Prakash and Sirignano [63], axisymmetric quasi steady liquid
motion with a spherical core vortex surrounded by a viscous boundary layer and internal
wake was assumed with the vortex strength being a function of shear stress along droplet
surface . Moreover, they assumed droplet heating to be unsteady during its lifetime .
Internal circulation was shown to one-dimensionalize heat conduction in the liquid core .
Quasi-steady thermal boundary layer near the surface was analyzed and droplet
temperature field was determined thus providing a gas liquid interface constraint . The
results of their work showed that droplet fuel vapor concentration at the interface depends

exponentially on the surface temperature .
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Prakash and Sirignano [64] conducted a gas-phase , viscous, thermal and species
boundary-layer analysis by an integral approach . They modified their previous analysis of
the liquid droplet to account for changing droplet size due to vaporization and hence the
droplet vaporization was found to be unsteady . However, the temperature distribution
within the droplet is nonuniform for a significant part of droplet lifetime . The range of
Reynolds number investigated was about 100 where it is assumed that shear stress at
liquid-gas interface is large enough to induce internal liquid circulation thus modifying the
vaporization rate . Although the coupling between gas phase and liquid phase equations
occurred at interface, liquid phase problem was uncoupled from gas phase problem by
specifying the interface conditions . Unsteady gas phase flow is expected, however, since
the characteristic time for changes is much less than the droplet lifetime, quasi-steady gas-

phase assumption can be employed even at high pressure .

It should be pointed out here that an error is expected due to applying boundary
layer equations for values of Reynolds number as low as 100 . However, Prakash and
Sirignano reported that this error in boundary layer thickness is of the order of square root
of Reynolds number . Moreover, for the case of flow over a liquid droplet, liquid motion
will shift the point of zero shear stress toward the rear stagnation point reducing both the
size of the wake and its contribution . Although the conditions in their combustor are
turbulent; however, having droplet size much less than larger eddy size, a locaily laminar
boundary layer exists over spherical droplet surface . In their analysis, they considered

Prandtl and Lewis numbers equal to unity . They used a fourth order polynomial for the
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integral equations used for predicting the vaporization rate since boundary layer details are
assumed to be of minor importance . Droplet core heating was assumed to be unsteady

and normal to closed streamlines

Tong and Sirignano [65] examined the case of a non vaporizing droplet with
Hill’s vortex in the droplet core, viscous and thermal boundary-layers near droplet surface,
inviscid wake near axis of symmetry . They assumed that the droplet core heating is
unsteady, normal to streamlines because of a very short residence and circulating time

along the streamline compared to droplet life time .

A discussion on the validity of the quasi-steady model can also be found in the
work of Tong and Sirignano [66, 67] . They reported that unless the thermal boundary
layer is very thin, thermal inertia term is important and hence quasi-steady assumption is
invalid . Elimination of thermal boundary layer and assuming that the core is valid up to
the droplet surface may give accepted accuracy . Boundary layer in the liquid is a region
of adjustment between one-dimensional core behavior and two-dimensional gas phase
behavior . They added that although Peclet number (defined as the product of Reynolds
number and Prandtl number) is high , energy equation for the thermal layer does not take
the limiting form with primary balance of a convective term with diffusion term and that
time derivative term is an important as other terms . Finally, neglecting convective term is
not a bad approximation and it allows for reducing the problem from two to one

dimensional . They also analyzed the problem of convective diffusion in a liquid droplet



with intemal circulation considering both vaporizing and non vaporizing droplets . An
approach which simplifies the governing equations was taken and series solutions for both

temperature and temperature gradient boundary condition cases were obtained .

Fernandez-Pello [68] in 1982 carried out a theoretical study for combustion of a
spherical fuel particle in a forced convective oxidizing gas flow . He used boundary layer
equations and flame sheet approximation to describe the reacting flow . The boundary
layer equations were solved by expanding the velocity , temperature, and species
distributions into a series of the azimuthal angle . Profiles for variables at several angular
positions along particle surface and local mass burning rates were presented and an explicit
expression for particle regression rate was developed in terms of Reynolds number and

mass transfer numbers.

Again in 1982 Fernandez-Pello and Law [69] extended the previous model to
account for highly buoyant combustion on a condensed spherical particle where self
similar solutions with the same Grashof scaling law (solutions are scaled by 1/4 power of
Grashof number) were obtained for the bottom stagnation and the lateral regions . These
solutions were used to generate the leading two terms of a series expansion solution for the
flow . They provided an explicit expression of the mass burning rate along droplet
periphery up to separation point . They reported that burning rates were found to be larger
than those predicted by spherical symmetry models . The upper spherical segment of the

particle where wake flame combustion occurs was only treated qualitatively by



31
comparison with pool burning liquids . The streamlines in boundary layer and induced
inviscid flow are obtained and superimposed to provide an overall description of the gas

flow field . In the same year Wu et al. [70] established an extinction criterion for

buoyancy generated stagnation point boundary layer flow of a burning particle using large

activation energy asymptotics .

Then Fernandez-Pello [71] in 1983 developed an analysis for the mixed
convective combustion of a spherical fuel particle . A mixed convection parameter was
introduced in the non-dimensionalization of the governing boundary layer equation which
provides solutions as a function of Froude number and it is valid from one convective limit
to the other . Explicit expressions for local mass burning rate and overall regression rate
were obtained . He reported that the predicted dependencies on Reynolds number, Grashof

number, and mass transfer numbers agreed qualitatively with existing experimental data .

Rangel and Fernandez-Pello [72] studied the single component fuel droplet
evaporation and combustion (when transient heating was completed) leading to steady
state case of simpler solution . The flow field was classified into four main regions, first is
the inviscid flow surrounding the droplet that can be treated as a potential flow around a
sphere, followed by a gaseous boundary layer (second region) , the third region is a liquid
phase boundary layer in the liquid side of the droplet interface followed by a fourth region
of an inviscid spherical vortex . So, liquid and gaseous boundary layers near droplet

surface were bounded by a liquid and gaseous inviscid flow . Analysis was applied to



most of droplet lifetime . Their analysis is applicable for low boiling peint fuel and low
ambient pressure .  Liquid heating flux was neglected because of its low value compared
to the heat required for evaporation . The boundary layer equations (Reynolds number was
assumed to be high enough for boundary layer analysis to be applied) for both gas and
liquid phases were expressed in terms of power series that transformed them to ordinary
differential equations . The parameters investigated were mixed convection parameter,
ratio of (viscosity x density) in gas and liquid phases (representing internal circulation) .
They assumed that in the boundary layer lies a diffusion flame that establishes a uniform
and approximately constant elevated droplet temperature obtained by balancing the heat
transfer from the flame and the endothermic evaporation of the droplet where the fuel
vapor is transported by convection and diffusion . Heat generated by chemical reaction is
transferred both outward to the ambient and inward to droplet . The real addition to their
previous effort was to consider the internal circulation of the droplet induced by the shear
stress exerted by the outer flow on the droplet surface and which can be represented by
Hill’s vortex . However, the strength of this vortex is predicted to be less than that for
inviscid case as a result of the boundary layer in the liquid phase, so it is represented by a
fraction that is obtained from the solution by “ equating the vorticities of the liquid
boundary-layer as the radial coordinate in the liquid region (Z,) goes to infinity and of the
Hill’s vortex at sphere surface (r =a)” . The assumptions used include that boundary layer
thicknesses in both phases are small compared to droplet radius, high surface tension to
keep droplet in spherical shape, and axisymmetric flow . The analysis is not applicable

upon separation because of applying boundary layer equations . However, they reported
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that this does not atfect Hill’s vortex and the chemical reaction is repre:cnted be a quasi-

steady one-step chemical reaction neglecting radiation .

Further details of early models can be found in the review papers of Williams [72]
in 1973, Faeth [38] in 1977, Law [64] in 1982, and Sirignane [47] in 1983 . Despite
many years of research, further understanding of isolated droplet flow characteristics, heat
transfer and evaporation in the intermediate Reynolds number regime is still required . In
particular, the literature demonstrates a lack of consensus as to the transport processes that
may be considered quasi-steady and still are there conflicts whether to consider the gas-
phase as a quasi-steady process or a transient one . Also, the exact nature of liquid phase
momentum and heat transfer processes for a realistic droplet are not well characterized .
Moreover, there is a partially conflicting conclusions in the results regarding Cy = C4(Re)
between the results of Dwyers et al. and those of Haywood and Renksizbulut [74] .
Therefore, this seems to be a point that requires further effort to examine the factors upon

which the coefficient of drag is dependent .

A careful review of the literature reveals the need of detailed information of the
flow field and heat transfer around and inside a liquid sphere at moderately high values of
Reynolds number and at a wide range of interior-to-exterior viscosity ratio on the flow
characteristics and transient heat transferred to the sphere . The present study is aimed at
covering this gap by introducing the effect of the former parameters on the flow field as

well as the heat transfer profiles both around and inside the sphere .



CHAPTER 111

GOVERNING EQUATIONS

3.1 Introduction

In this chapter, the governing equations that describe both fluid flow and
transient heat transfer development around and inside the liquid sphere are presented .
The detailed derivation of these equations starting from the Navier-Stokes equations as
well as the Energy equation for spherical polar coordinates , transformation of the
governing equations to the orthogonal curvilinear coordinates, nondimensionalizing, and
order of magnitude analysis that is carried on to simplify the equations are presented in
Appendix A for the gas phase governing equations and in Appendix B for the liquid

phase governing equations .

The major assumptions employed in the derivation of the governing equations in
both gas and liquid phases are :
1. Steady incompressible flow around and inside the liquid sphere .
2. Fluid is Newtonian with constant properties .
3. The liquid sphere is initially cold and suddenly introduced to a hot gas stream .
4. Body forces are negligible .

5. Flow is axisymmteric .



o

Non-evaporating liquid sphere and no chemical reactions .
7. No viscous dissipation .

8. Surface active impurities and turbulence are absent .

o

Reynolds number is large enough to apply boundary-layer theory but not to induce

turbulence .
10. Small Weber number so that the sphere remains spherical in shape .
11. The flow outside the external boundary layer is the potential flow around a sphere .
12. The flow outside the internal boundary layer can be represented by the classical
Hill's vortex, although its strength is smaller than that for the case of potential flow
and it is to be determined from the solution .
A schematic of the flow patterns outside and inside the sphere is shown in
Figure 3-1 where the sphere is experiencing an internal motion engendered by the

external flow.

3.2 Gas Phase Governing Equations

In this work, the orthogonal curvilinear coordinates shown in Figure 3-2 are used
where the x-axis is measured along the surface of the sphere starting from the front
stagnation point and extends in the meridional direction till the rear stagnation point .
The z-axis passes through the origin of the sphere where its zero value is at the sphere
surface . The reader can refer to Appendix A for the detailed transformation of the gas

phase governing equations to its orthogonal curvilinear coordinates .
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3.2.1 Governing Equations in Dimensionless Form

The following non-dimensionalizing parameters are used for obtaining the

dimensionless form of the governing equations :

Us— , =2 , z=Z , X=—— , Re= =4
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Using the above dimensionless parameters (refer to the detailed procedure in

Appendix A), the transformed form of the governing equations can be written as

follows:
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where S is the the dimensionless source term defined as , S=
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3.2.2 Governing Boundary Layer Equations

An order of magnitude analysis is applied for the above equations taking into
account that the value of Reynolds number is very large compared to unity and that the
dimensionless boundary-layer thickness is very small compared to unity . Thus, a
simplification to the above governing equations can be done by dropping the terms of
order & and higher orders of & (as shown in Appendix A) . The simplified governing

equations are the following boundary-layer equations :

Continuity equation
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Meridional momentum equation

2
y2Y RepoU ;0 U700 @3-9)
06X 2 0z ~ 08X oZ




Energy equation
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It is clear from the previous order of magnitude analysis of the governing
equations that the radial momentum equation could be dropped out completely because all
its terms were of a low order of magnitude . It should be noted; however, that although the
third term in the continuity equation has a lower order of magnitude than the other three
terms, it was retained in the simplified equations to take curvature effects into

consideration (El-Shaarawi [78]) .

3.2.3 Boundary Conditions

Examining the boundary-layer equations presented in the last section leads to the
determination of the required number of boundary and initial conditions needed to make
the problem investigated well-posed and amenable to numerical solution . The second
derivative with respect to X is absent from the momentum equation and only the first
derivative of U is present . Therefore, only the boundary condition at one end is
required in the meridional direction , namely, at the front stagnation point . The
derivatives with respect to Z are of second order; i.e., two boundary conditions should
be used along the radial coordinate . These two boundary conditions can be determined
at two locations : at the surface of the sphere where the condition comes from the
continuity of the shear stress and meridional velocity of the surface of the liquid sphere

and the second location is at the edge of the gas phase boundary layer (X >0,Z = 5)
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where only U is specified and may be taken equal the value for the potential flow

around a sphere.

Only the first derivative of W is present with respect to Z and therefore only a
boundary condition at one location is enough and can be determined from the
assumption of a non-evaporating sphere . This leads to the fact that no radial velocity
component crosses the surface of the sphere (interface between both gas and liquid
phases) and hence the value of W at the surface of the sphere (Z = 0) is essentially zero.
Similarly, by investigating the energy equation (3.9), it is clear that the first derivative of
temperature with respect to X is present and hence only one boundary condition in the
meridional direction is required . This boundary condition can be estimated at the front
stagnation point where the boundary-layer thickness is essentially zero and hence the
temperature is assumed to equal the free stream temperature . The derivative of the
temperature in the Z direction is of the second order revealing that two boundary
conditions are required along the radial direction . The first is at the surface of the
sphere and is determined from the continuity of temperature and heat flux between both
gas and liquid phases and is treated in a similar manner to the continuity of shear stress .
The second boundary condition is estimated at the edge of the boundary layer where the
temperature would equal to its free stream value . Three case were considered for the
initial condition of temperature T'. In the first case, a step change in the temperature
from zero to unity is assumed at the surface of the sphere . In the second case, a linear

temperature profile is assumed and the initial dimensionless temperature equals zero at
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the surface and increases linearly till the edge of the boundary-layer where its value is
unity . In the third case, a step change from zero to unity occurs at the edge of the
boundary-layer and hence the initial temperature throughout the boundary-layer is set
equal to zero while it is equal to unity at the boundary-layer edge . Therefore, all
boundary conditions required for the governing equations can be summarized in the

following dimensional forms :

at z =0 (surface of the sphere) u=uy, (3.10-a)
T=T, (3.10-b)
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at ¢' =0 (initial condition)
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caseb:atZ=0,X>0 T=T, (3.10-m)
atZ=456,X>0 =T, (3.10-n)
casec:atZ20,X >0 T=T, (3.10-0)

where T'i is the initial temperature of the liquid sphere .

Meridional as well as radial potential velocity components which are applied at
the edge of the boundary layer can be obtained from the theoretical potential flow
around a stationary sphere [75] . Considering the sphere radius as "a", stream function

as "y" and the potential function as "¢" we have
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meridional and radial velocity components (u and w respectively) are related to the

previous two equations by the following relations :
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Using the nondimensional parameters defined previously in equation (3.1) we get the

following dimensionless form of the potential flow velocity components :
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Similarly, the final form of the non-dimensional boundary conditions can be written as :

at Z=0,X>0 U=, , T=T, (3.17-a)
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Where u", K are the internal-to-external fluids viscosity ratio and thermal conductivity

ratio, respectively .

atZ=0,X>0 U=U'= (1+ 1 3)sine (3.18-a)
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U=W=0 (3.18-¢)
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at t = 0 (initial condition) T=T;=0 (3.18-g)
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Now, having the governing equations in the final dimensionless forms as well as

the dimensionless boundary conditions make the problem well posed and amenable to

numerical solution .

3.3 Liquid Phase Governing Equations

In this section , the orthogonal curvilinear coordinates shown in Fig. 3-2 are also

used with the same notation of both meridional and radial directions . However, a

slight change in the definition of the transformed radial direction will be noticed as will

be explained later in the following subsections . The reader can refer to Appendix B for

the detailed transformation of the liquid phase governing equations to their orthogonal

curvilinear coordinates .

3.3.1 Governing Equations in Dimensionless Form

The following non-dimensional parameters are used for obtaining

dimensionless forms of the governing equations :
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Using the above definitions (refer to the detailed procedure in Appendix B), the

governing equations can be written in the following non-dimensional forms :
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Continuity equation
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3.3.2 Governing Boundary-Layer Equations

Similarly as has been done for the gas-phase equations, by applying an order of
magnitude analysis for the above equations, a further simplification to these governing
equations can be done . By dropping the terms of order & and higher orders of § (as

explained in Appendix B) , the governing equations can be simplified to the following

forms :

Continuity equation
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Meridional Momentum equation
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The simplification of the energy equation will not follow exactly the order of
magnitude analysis as has been done for the continuity and the momentum equations
since the solution of the energy equation extends from the surface of the liquid sphere to
its center . Inspecting the dimensionless form of this equation shows that the second
term on the right hand side is divided by Re® and this is the only term that will be
dropped because of the high Reynolds-number range in this study . Hence, the energy

equation for the sphere can be written as :

. . . 2
v'arT, [WRe 2v Jalj 0T, v' a’T, @3.25)

———— —— 4 = ——
Pr 9t ‘2 Pr(1-2))0z, ‘0x, Proz:

3.3.3 Boundary Conditions

Examining the final form of the governing equations developed in Appendix B
and presented in the last section leads to the determination of the required number of
boundary conditions as well as the initial condition in a similar manner to what was
done for the gas phase equations. From the momentum equation , equation (3.19), it can
be noted that two boundary conditions are required for the meridional velocity
component (U) , one at the surface of the sphere which is assumed to be known from the
gas phase solution and which represents the surface velocity of the liquid sphere and the

second is assumed to be at the edge of the liquid phase boundary layer and which can be
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obtained by matching the meridional velocity at the boundary layer edge with that of
the Hill's vortex . However, it should be noted that the Hill's vortex strength is expected
to be lower than its value for the potential flow because of the presence of the two
boundary layers adjacent to the surface of the sphere [72] and it is calculated during the
solution as will be explained later . Only one boundary condition for the radial velocity
component (W,) will be sufficient and it is determined, as has been done previously in
the gas phase solution, from the assumption of the non-evaporating liquid sphere and
therefore the value of W, at the surface of the sphere (Z, = 0) is zero . Inspecting the
derivatives in the meridional (X) direction will reveal the need of only one boundary
condition for the meridional velocity component; it can be assumed equal zero at the
front stagnation point (X = 0) . Similarly, the boundary conditions for the energy
equation can be determined at any time by considering the continuity of heat flux at the
surface and the condition in the radial direction that at the center of the sphere the
temperature gradient is set to zero due to the axisymmetric nature of the problem . The
initial condition is easily determined from the assumption of an initially cold sphere
subjected to a hot stream . This means that the initial temperature of the sphere is
homogenous and set to a determined value (T'i) . Summing up the boundary conditions

for the liquid phase can be written in the following forms :

atz,=0 u=y, , w=0 (3.26-a)
T=T, (3-26-b)

T =T (3.26-¢)



atz,=3d U = uy

. oT"
atz,=a (i.e., center of the sphere) P =0
att =0 T =T,

Therefore, the non-dimensional boundary conditions can be written as :

atZ,=0 U,= U, (dimensionless surface velocity)
W=0
T=T,

atZ,=3 U, = Uy

atZ,=1 (—;3—2—7:: 0

att=0 T=T;=0
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3. 26-d)

(3.26-¢)

(3.26-f)

(3.27-a)
(3.27-b)

(3.27-¢)

(3.27-d)

(3.27-¢)

(3.27-9)

It is worth mentioning that the ratio of the actual strength of the internal vortex

compared to that for potential flow (Hill’s vortex) [75] is calculated in the liquid-phase

solution by dividing the actual surface velocity obtained from the gas phase solution by

the meridional component of the potential vortex calculated at the surface of the sphere .

This ratio could be obtained along the meridional direction up to the point of the

external flow separation . Now;, the liquid phase governing equations along with their

boundary conditions are complete and the liquid phase problem can be considered well

posed . However, uncoupling the gas and liquid phase solutions will be explained in

details in chapter V while explaining the method of solution and overall numerical

algorithm .



CHAPTER 1V

NUMERICAL REPRESENTATION OF THE

GOVERNING EQUATIONS

4.1 Introduction

The governing equations developed in the previous chapter are nonlinear second
order equations . No analytical solution is possible for this type of equations, therefore,
approximate meﬁods of solution are used to solve them . The method used in this work
is the finite difference approximation where the governing equations are first
transformed to difference equations by dividing the domain of solution to a grid of
points in the form of a mesh and the derivatives are expressed along each mesh point
referred to as a node . Therefore, the differential governing equations can be written for
a set of nodes of the grid in the shape of algebraic equations that are linearized to a
system of linear algebraic equations and then solved by an appropriate technique for
matrix inversion . In this chapter, the finite difference representation of the governing
equations and their accompanied boundary as well as initial conditions are presented for

both the gas phase in Section 4.2 and for the liquid phase in Section 4.3 .
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The numerical grid is shown for each phase where in the gas phase the grid starts

at the surface of the sphere (Z = 0) and then progresses outward to match with the
inviscid flow around the sphere determining the edge of the gas phase boundary layer.
For the liquid phase the grid starts at the surface of the sphere (Z, = 0) and progresses

inward toward the center of the sphere to meet the internal vortex (Hill's vortex) thus

defining the internal boundary layer thickness .

4.2 Gas Phase Equations

4.2.1 Numerical Grid

The grid shown in Figure 4.1 is consisting of two sets of perpendicular lines
representing the meridional direction (circles) and the radial direction (straight lines)
where the intersection of these lines constitute the mesh points (the nodes) where the
solutions of the governing equations are obtained . The circles are concentric starting
from the surface of the sphere with constant Z values and extended until the edge of the
boundary layer while the straight lines pass through the center of the sphere and each of
them is a constant X-line (at a constant angle) . The grid consists of n+1 points in the
radial direction where the first being the surface of the sphere (Z = 0) and the last is
located outside the boundary layer edge . On the other hand, the number of meridional
stations is m+1starting from X = 0 (at the front stagnation line) and extending until the
angle of flow separation . The index i represents the radial mesh points (Z-direction)

starting with i=1 at the surface of the sphere (Z =0) till i = n+1 in the free stream while
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the index j represents the X-mesh points starting from j = 1 at the front stagnation line
(X = 0) till the point of separation where j = m + 1 . Therefore, the finite difference
representation of these mesh points will be as follows ;

Z;=(-1)AZ wherei=1,2,3, ..., n+l

X;=(-)AX wherej=1,2,3, ..., m+l

Here. AX and AZ represent the step sizes for the meridional and the radial
directions, respectively, and the subscripts denote the location of the variable under
consideration, e.g. U;; means the meridional velocity at the i'th radial location and j'th

meridional location .

4.2.2 Linearizing Technique

The finite difference formulation of the governing equations should retain the
same characteristics of the parent equations developed in the previous chapter . The
governing boundary-layer equations are parabolic in nature with the terms in the
marching (X) direction are the convective terms while those in the transverse direction
(Z) are diffusive . Therefore, backward differences are employed for the convective
terms and central differences are employed for the diffusive terms . For each meridional
location, the variables with subscript (j) will be assumed to be known and those of
subscripts (j+1) are assumed unknowns for all values of i and the solution of all (i)
variables will be organized in a matrix form solved along the constant (j) line then it

marches forward for the next meridional step till the separation occurs and the solution



Fig. 4.1 : Numerical grid



wn
I

stops for the current time step and restarts from the beginning for the next time step .
The entire solution will terminate if the surface temperature reaches the free stream

temperature .

The governing equations are approximated by finite differences in separate
domains [9] where the location of each derivative was chosen to ensure stability and
consistency of the solution , following the technique used in [9] a ringed point will
represent the location where derivatives are calculated while the cross points represent
the grid points involved in the difference approximation, for the ringed points that do not
coincide on grid points, derivatives are approximated and an average value is taken .

The grid is shown in Figure (4.2) .



Continuity equation

SN
i+ i il b

Meridional momentum and energy equation

Fig. 4-2 : Gas phase finite difference domain
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The order by which the numerical solution is devised for starts by solving the
meridional momentum equation for U;;,,, then the continuity equation has to be solved
for W, . Therefore, the term W found in the meridional momentum equation will be
represented by W;; (i.e. from the previous meridional step), while in the continuity
equation U will be expressed as U, since it would have been already obtained from the
solution of the preceding momentum equation . Both U and W in the energy equation
will be represented at the (i,j+1) points since the flow field is assumed to be steady, and
the energy equation is the last to solve (after solving the momentum and continuity
equation and hence the flow field components are all known) . Therefore there are no
changes in U and W as time elapses, and the transient term is solved as if we had a
series of spheres where U and W are constants and the only variable is the temperature
which will be solved for at each meridional location for all Z values starting from the
surface of the sphere until the free stream and then these values are used to repeatedly
march the solution to the next meridional station till the external flow separation point is
reached . Then the whole procedure is repeated for the next time step until the state of
uniform surface temperature is reached when the surface temperature reaches the free

stream temperature .

4.2.3 Finite-Difference Representation of the Derivatives

Following the notation described in the previous section and shown in Figure
(4.2) the finite difference representation of the various derivatives present in the

governing equations can be written as follows :



oUu U, ., _U/.j
Y _ T T 4.1
oX AX,
ouU Ui+ + _UI— j+

_Jinan 1j+1 (4.2)
VA 2AZ
8*U  Uirise1 =2Ujjs +Uisgja

= 3 4.3)
oz~ AZ®
ow _ Wi =W, . 4)
A AZ
oT _ Tsain =T jan 4.5)
X AX,
oT_ RN RT Ry SR (4. 6)
o0z 2AZ
62 72'= I;+I.J+l.k+l -2 I;.j-*l;‘k*'l + T"J*'-"“ (4. 7)
oz AZ
2{: I;,j-o-l.lu-l - 7;_j+l,k (4. 8)

ot At

4.2.4 Finite-Difference Representation of the Meridional Momentum Equation

oU Re aU_U.aU‘ Y

Vaxt2"5z" oz 3.8)
0X 2 0Z 0X 0Z
g, D Ui Reg Ui Ui _
TAx, VY “s
U, ..-2U. +U._ .
%Sln(JAe)Ti'Re COS(jA9)+ i+l j+l AZI.;;-I i-1,j+l
Boundary conditions :

U;;=0 (stagnation line) (4.10-a)



-1
R (4 10-b)
(1+(i- haz)>
U lj =U ag & Wl\l = 0 (4.10‘0)

1 s
Uprj -(1 +mj sin((j - 1)A0) (4.10-d)

Matching of the shear stress at the surface :

U-) —U i Ul —U j
] ( Y 1.1) _ (Y Y (4. 11a)

It is worth mentioning that in the present studty, all runs were carried out

considering equal magnitudes of the radial step . i.e. AZ=-AZ,

u,, U,
therefore, MW o U, -U,;
n B ’
U,; 1
or U,=—+-U,;|—=-1 (4. 11b)
M u
Rearranging :
-WRe 1 Ui 2
Uiul - ) +U G (—+ >) +
4A7 (AZ) AX, (AZ)
W, Re U;.)?
+U,,, i (—2——m L ) Uiy +2Re Sin jA® Cos jA® 4.12)
T 4AZ (AZ)? AX, 8

Note that %Re Sin jA® Cos jAO = %Re Sin (2jA8)
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_pVij R 1
Let C@)=( 4AZ e—(AZ)Z ) (4.13)
2
A() = (—’—’+ oz =) 4.14)
1
. (U, )2 9
D()= v 1 6Re Sin(2 jAB) (4.16)

1

U 1- p
note that U,;=U,,=—= —U
T w

Therefore, the momentum equation can be written as :
Fori=1: C1U0+A1U1+B[U2=Dl
taking into consideration that U,; = U, ; and using (4-13), the above equation can be
rewritten, for a given j, as
Fo 1. 1-p’ G
fori=l: (4-q=Hv, +( 4BV, =D,

similarly ,
Fori=2: C2U1+A2U2+B2U3=D2
Fori=3: C3 U2 + A3 U3 + B3 U4 D3 (4.17)

Fori=n : C,U,, +A,U, +B,U, =D,

Or Cn Un-l + An Un Dn - Bn Uml

These equations can be represented in a matrix form as follows;



A'l B'l U, D,
C, A, B, 0 U, D,
C] A3 B3 U3 D-’
=] (4. 18)
0 . . . .
Cn-l An—l Bn-l Un—l Dn—l
L. Cn An Jd L Uﬂ . L D‘n J
Where;
D,=D,-B, Uy, (4.192)
: 1-p°
A =4,-C (—E—)
: (4. 19b)
B; =B, +§1,- (4.19¢)
n
4.2.5 Finite Difference Representation of the Continuity Equation
6U+E_e_aW+R w +EEUCot9 _ o 3
03X 20z 1+z 2 14z G-7

Finite Difference Representation :

Uiju + Ui,j+l W, in + Ui jn +Ui.j+l YReCot (j AB)

20K, 2 AZ 4(1+Z,,2)

i+l j+ —Ui+l,j "Ui,j + Re Wi+|,j+l -

(4. 20)
Re(FfIi+l,j+l + le,j-o-]) -
2(1+ Zi+IIZ)

0




Rearranging :

1
Wi j*l :R—e ( l _—) + wiv-l i+l Ee— _——l-—_— + —l— =
T2 \1+Z,,, AZ T2 \(+ 2, AZ

_ Um_,‘u +Ui.j¢l —Ui+l.j "Ui.j _ (Um‘,’u +Ui,j+l)ReC0t(jAe)
2AXMI.’. 4(1+Zi.|/:)
Let;
) = L)
YT ez, Az
B() Re 1 N 1 )
i)=— —
2 1+2,, AZ
D(i) =~ Uiijur Ui = Uiy - U B
28X,
(Ui+l,j+l + Ui.j+l )ReCot(jAB)
4(1+Z;,,)

Equations can be represented, for a given j, as;

fori=1 AW, +B, W, =D, (W;=0 “Sphere Surface”)
fori=2 A2W2+B2W3=D2

fori=n-1 Apt Woy ¥ By W, = Dy

fori=n AW, +B,W,, =D,
4.2.6 Finite-Difference Representation of the Energy Equation :

13T UaT Re.. 0T _1_62T

—_—tU—+ —+
Pr ot 6X 2 0Z ProZ

Ti,j+l.k+| "Ti_j+x.k + Re.Pr wi.j+| Ti~l.j+l,k+l —Ti-l,j+l,k+l
At ) 2 2AZ
+PruU Ti.j+l,k+| _Ti,j.k+l — Ti+l,j+l.k+l _2Ti,j+l.k+l +Ti-|,j+|_k+|

b AX, AZ*

+S.Pr

@.21)

@.22)

4.23)

(4.24)

(4. 25)

3.9)

(4. 26)
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Rearranging ;

—-RePr#, . 1 1 > U . Pr
T;-Ljn.kn ( Zhdl )-4-7';_/_”'“] (___ , et )_*_

> +—:-r
4AZ AZ At AZP AKX, @.27)
(RePrI/Vi,jH _ l ]= T;,/H,k + Ui_j+l PrT;’,j.kvl +S Pr
A WYY AZ? At AX, '
Foragivenj, let;
cliy =(n RePr 1 ) 4.28
1) = - .
4AZ (AZ)? ( )
1 2 U, .. Pr
A@G) = (—+ =)+ —L 4.29
@) (At (AZ)-) AX (4. 29)
B ==L 4.30
)= - .
4AZ (AZ)? ( )
T. u .T...Pr
D(l)= ij+1,k + ij+l 20, f k+l +SPI' (4. 31)
At AKX,
Hence, equation (4.27) can be rewritten as
B() Tirtjer, ket + AQD) Tigorjort + CA) Tioggrrporr = D) (4.32)
subject to the boundary conditions :
Tl,i,k = ] (4.33"3.)
Tn+l Jk =1 (4.33"))
Toj=ToyK - T 1KHYK (4.33-¢)
casea: Ti;u=0 (4. 33-d)
Tij =1 (4.33-¢)

el T 4339



Tiju = (:l'_ll) (4.33-g)

casec: T =0 (4.33-h)
for the three cases (a,band ¢) T,;, =1 (4.33-i)
substituting and rewriting (4.32) for given j and k one gets
Fori=1: BT, +A,T,+C; T, = D,
Fori=2: B,T;+A, T,+C, T, =D, (4. 34)
Fori=n : B T, +A, T, +C,U, =D,
Or CoaToy +AT, =D, - B, Tpe
Taking into consideration (4.33d), the first equation becomes :

[A, -C, (%}] T, + (%+B,) T, =D,

4 = 4-C (%) (4.35)

B = (&+ BI)
K



Equations (4.34) can be represented in a matrix form as follows;

(4 B 1rt] b7
G 4, B I D,
=| (4.36)
0 . . . .
Cn—l An—l Bn-l ]:l-l Dlr-l
L Cn An 1L L Dll J
Where;
Dn' = Dn - Bn Tn-f-l

Note that in the computer program, the initial time step (t = 0) is a case in which
the sphere surface temperature is known (T=0) . Therefore the matrix starts in this case

from i = 2 while for any other time step (t > 0) the temperature at the surface is to be

calculated and this will be taken care of in the program code .

4.3 Liquid Phase Equations

4.3.1 Numerical Grid and Linearizing Technique

The numerical grid used to solve the governing equations in the liquid phase
(inside the sphere) is shown in Figure 4.1 while the numerical domain in which the finite
difference equations are written is shown in Figure 4.3 for the continuity, momentum

and energy equations . The main differences between this solution and the gas-phase
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solution is mainly in the marching direction with respect to Z; it starts at the surface of
the sphere and moves towards its center (increasing Z) . In addition, the X-grid spacings
(AX) decrease in the direction for Z,. The details of uncoupling the gas and liquid

phases may be noticed in the boundary conditions at the interface (Z = Z, = 0) and will

be explained in the next chapter .

It should be pointed out that for solving the liquid phase equations, the boundary
conditions at the surface of the sphere (where the solution begins) are supposed to be
known from the solution of the gas-phase equations leading to simple Direchlet
boundary conditions (i.e., values of the velocity are known at the surface of the sphere,
Z,= 0) rather than employing the viscosity ratio or the thermal conductivity ratio as done

in the case of external flow (gas phase solution) .



ax(1)

Continuity equation

i-1 i i+l j j+

Meridional momentum and energy equation

Fig. 4-3 : Liquid phase finite difference domain
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4.3.2 Finite-Difference Representation of the Meridional Momentum Equation

oU, Re 08U, U, .0%U,
‘3%, 2%z Unax ™ oz @-24)
Uli - —Uu' Um i+ —U“._ i+ 2 o
U, -, = 3y [i-2 (1-2,)° T
.» 247, (4.37)
x(sinz ) Cj+| _Cj Re C_, Sinze) N Uli+|,j+| _2Uti_j+l +Uli—l.j+l
AX,() | 4(1-2) IVE

where C(j) is the ratio between the actual meridional surface velocity and the meridioanl
component of the potential Hill's vortex at the sphere’s surface and it represents the ratio
between actual and inviscid Hill's vortex strength .

Rearranging;

W, V" U, 2v° W, Re '
Ul'—l j+1 —RE o Y 2 +U¢i j+i ot va '*'Utm v |~ - - z 2
WY 2 2AZ, AZP " AX,, AZ? o 4AZ AZ7

. 7, e (4.38)

¢ (4

Cu-C; ReC, 2
= 2Cj [1‘2 (1-2,) T (sin’@ —L—L 4 J sin29)+(U°)
4 AX,(G) 4(1-2Z)

L

Now, for given j, let;

Wu’j Re v’
C@) = (- 1Az +(AZ )2) 4. 39)
N _ Uu,; _ 2V.
A(x)—(A—X-: ( AZ‘)z) (4. 40)
W;,“Re V.
B(i) = (—X =) (4. 41)

+
4AZ, (AZ)



. 9 202,002 C’+l_C'
D(i)= ch [1-2(1—2,) ] (sin e—fAX—“_’+
eC, 2
+— sin26)+—(U”)
4(1-2) AX,,

Equation (4.38) now becomes;
CiUsa AU, +B Ui = Dy
Fori=2: C U, +A, U, +B, U, = Dy
Fori=3: C U, +A;U,;3+B; Uy = Dy
Fori=n-1: C,U,pa+An Uiy + Bt U = Dy
Fori=n : C,U,.q tA, U,y +B, U, = Dy
Or CoUpnt AUy =D, - By Ujnet
It should be noted that Unr1 = Uy

Ull=Uo
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@. 42)

4. 43)

and these are the two boundary conditions in this case . These equations can be

represented in a matrix form as follows;

_AZ Bz 17 Uez ] i
C, 4, B 0 U,
C, 4, B, U,
0 : : :
Cn-l An—l Bn—l Uln—l

L C 4 1LU.] |

ACIRS)

4. 44)
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Where;
D,=D,-C, Uy

Dn = Dn - Bn Utn+l

It is worth mentioning here that the surface velocity distribution is obtained from
gas side solution . For the selection of n, at each meridional station (j) an iterative type
method is used . In this method the values of n, should be large enough so that the
computed meridional velocity distribution U, is close in tangent at the innermost points
(i =n;+1), within an arbitrarily chosen accuracy, to the corresponding modified potential
spherical vortex distribution Uy . For given j and a value of n, once the computations
have been carried out for U, and the aforesaid matching was not attained, the values of
n, could be increassed, the computations again performed and the computed values of U,

accepted if the aforesaid matching criterion is satisfied and hence the boundary layer

thickness is determined .

4.3.3 Finite Difference Representation of the Continuity Equation

0U _ReOW. et  RelUlCotb _, 3.23)
0X, 20z 1-z, 2 1-Z

The finite difference representation of eqn (3.23) is :

U +U

tivl,j+l

e Ulhl.j - Uli,j _E W:uuu - Wll,j+l
2AX 2 AZ

ivl/2

+
4

(4. 45)
Re(Wli+l,j+l + Wli.j+l) + (Uli+l,j+l +Ull,j+l)ReC0t(jA9)

=0
2(1‘ Z:M/z ) 4(1_2454»1/2)




Rearranging :
Re 1 1 Re 1 1
Wn.m —7'[ _ "__) leioI.j«rl - (_—_ + _) =
2 \1 Zmuz AZ, 2.\ Zmuz) AZ,
- Uml.pl +Uu.j+1 _Uml,j _Uu,j _ (Uzm_jq +Uli_j+l)Re Cot (.] Ae)
2 AXm-uz 4( I_Zlmzz)
Now, Let ;
Re 1 1
A@) =—( -—)
2 I_Zti+l/2 AZ:
Re 1 1
B(@) =—( +—)
2 l—Z:i+l/2 AZ:
D(i) =- Uti+l.j+l +U¢i,j+l _Uzm,j —Uu',j
2AXu'+I/2
W, s + Vs ju) ReCot ( AB)
4( 1.‘l'-Zti+lIZ)

For a given j, equation (4.46) can be represented as;

fori=1 AW, +ByW,, =D, (W;=0, “Sphere Surface”)
fori=2 A, W, +B,W,3 =D,

fori=n-1 Ay Wi +Buy W, = Dy

fori=n AW, +B, W,y =D,

4.3.4 Finite-Difference Representation of the Energy Equation

N aT, v’ a'T,
0z, ‘90X, Praz?

VoL (R 3o
Pr, 0¢ ‘2 Pr,(1-2)
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(4. 46)

4. 47)

(4. 48)

(4. 49)

(4. 50)

3.25)



0 T; _ 7::‘+I.j+l_k+| —]:i—l.ji-!,ln-l

let, =
0Z, 2AZ,
d° T, _ Tml,ju.k a=2 T;i,j-l-l,kﬂ +I;i—l.j+!.k+l
8z? AZ!

oT, _ Ly ket = Li ji

3

ot At

oT, T;i,j+l.k+l - ]:i,j,hl

0X, AX

1]

Substitute eqns. (4.51) - (4-54) in energy equation (3.25) to get ;

T:i, J+lA+l —Il'i Lk +( 2 RePr, W{i,jnj(zm\m, K+l —Zi-lJ+l,k+lJ +

At 1-(-1)AZ, . 2AZ,
U,, i+ PI', (T _T )= ]:;-1‘;+1.k+1 -21:111'441‘*-1 +7:i+lJ+lJ<+l
+ —\T.EY:- tij+l e+ ti j kel Ale
Rearranging;

[ 2 RePr#, . 1 1
T _ ¢ j+t +
Cinl jl, k+l — g - 2
1-(-1)AZ, 2v 2AZ, AZ,

¢, j+l

2 RePrW, 1 1
Licijurin| = - . -7 |t
i 1-(i-1)AZ, 2v 2A0Z, AZ,

T ( 1 + 2 + Uti,jﬂ Pr) _ I:i,j+i,k + Uu,j+l PI‘, T
e jelk+l | o, 2 . = i j R+l
At AZ' V'AX, At AX,
Now define ;

RePr, W7 . .
C(i) = —( 2 ‘.""*‘] S—
1-(i-1)AZ, 2v 2A0Z, AZ
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(4. 51)

4. 52)

4. 53)

(4. 54)

(4.55)

(4. 56)

@.57)



. 1 2 Uli j+1 Prl
A@)=| —+ — (4. 58)
At AZ~ VvAX,
2 RePr, W, ..
B() = [ . ) L 4.59)
1-(i-1)AZ, 2v 202, AZS
T. . . Pr
D(i)= —2int 4. 60
()= =3 =T (4. 60)
Finally, the energy equation (eqn. 4.55) becomes
COTipjeigrt T AD T, i1t + BA Ty g o = DE) (4. 61)

fork=1

fori=2

C@) T2z + A) Tepp2 + B2) Teaz2 =D(2)

A@R) T222 + B2) Te3p2 =D(2)-C2) Ty, =D'Q)

fori=3

fori=nn-1

Note that ; ati=nn

at

Therefore,

fori=nn-1,

Clon-1) Ty pnazp + A'(O0-1) Ty 2

Z¢=1

Clnn-1) T, pnppp + [Aan-1) + B(an-1)] T, o2,

CB) T,222 + AB) Ty322 + B(3) Tyuz2 =D(3)

C(nn-l) Tlnn-Z,,Z,Z + A(nn"l) Tenn-l,2,2 + B(nn'l) Ttnn,z,z =D(nn'1)

T

enn2 T Cenn-12 0

. 62)

en2 T tenn-12

=D(nn-1)

= D(nn-1)

Now we can express these equations in a matrix form as follows ;
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4, B, T, D,
C3 A3 B3 0 T;3 D3
C4 A 4 B.; 7;4 D-‘

= (4. 63)

Cnn—! Avm-Z B nn-2 T;m-Z Dnn-l

C A ' nn-1 R T

L nn-1 L*em-1 ]

o

=t |

Thomas method can by used to solve these sets of algebraic equations
corresponding to the meridional and energy equations for both phases while the
continuity equation can be solved by direct back substitution. However, it should be
pointed out that for the energy equation in the liquid side, the final point in the radial
direction to be solved was expressed as nn instead of n as was used previously since this
equation is solved along the entire domain of the sphere till it reaches the center of the
sphere and the velocity components used in the equation will be the boundary layer
velocity component inside the liquid boundary layer and then the Hill's vortex velocity

components from the edge of the internal boundary layer up to the cent er of the sphere .



CHAPTER YV

SOLUTION METHODOLOGY

5.1 Introduction

This chapter is aimed at introducing the detailed method of solution for the
problem under investigation where the finite difference form of the derived governing
equations is used in the programs repetitively at each node in the numerical grid to

generate the solution for the specified boundary and initial conditions .

Engineering parameters such as the shear stress at the surface of the sphere, the
vorticity at the surface , the angle of flow separation and the coefficient of drag were
calculated during the solution and their values were reported for a wide range of
independent variables such as Reynolds number and viscosity ratio . Shear stress is
responsible for generating the internal motion of the liquid sphere and its values is of

extreme importance for determining the internal circulation flow patterns .

The numerical scheme in the whole domain is obtained by marching in the
meridional (X) direction starting from the front stagnation line where the velocity and
temperature profiles are assumed to be known and the solution proceeds in this direction

step by step till the point of flow separation is reached . At each meridional station,



74

systems of equations were solved to obtain the values of the dependent variables
(velocities and/or temperature) along this line starting from the surface of the sphere up
to the edge of the boundary layer which is obtained by iterating the solution until a
matching condition is satisfied as will be explained later in this chapter . Upon
obtaining the required profiles for the gas phase, the program that handles the liquid
phase can be run using the quantities at the surface of the sphere that were obtained
from the gas phase solution as boundary conditions . The solution proceeds in a similar
manner until the edge of the internal boundary layer (that is also obtained iteratively) or
until the core of the sphere for the temperature distribution . The solution of the liquid
phase continues in the marching X-direction until the point of external flow separation is

reached .

5.2 Numerical Grid

The numerical grid parameters are selected to be variable and have small values
in the meridional direction especially at the points where high gradients are expected as
in the case of the flow near the separation point . Along each meridional station, the
grid size is assumed constant ( AZ = 0.001) where a minimum number of mesh points
was given and the convergence criterion was tested at the outer point, if the convergence
criterion was met, the solution proceeds to the next meridional step, otherwise the
number of steps is increased by 2 and the solution is repeated along this meridional step.

This process is repeated till the criterion which is presented in the next section is met .
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The solution proceeds in the marching X-direction with an equal grid size (1°) until the
point of separation is reached then the program adjusts itself and returns onc meridional
step back to reduce the X-direction grid size to (0.1°) in order to accurately determine

the point of flow separation .

5.3 Criteria For Convergence

Two criteria are supposed to be met during the solution, the first is at each
meridional step where a minimum number of grids is assumed and the velocity gradient
is tested at the uppermost point against the corresponding gradient of the potential flow

around a sphere. The details of this procedure are given in the following paragraph .

For the flow around the liquid sphere, a2 minimum number of mesh points in the
Z-direction for a certain meridional step was chosen to be 20 (n = 20) . Upon calculating
the meridional velocity component along this line, the tangent of the velocity at the
upper most point was calculated and the slope of the velocity (8U/6Z) is calculated at
the uppermost point (n+1) . Then the slope of the potential flow around a sphere is
calculated at the same point and the two values are compared . If both slopes are
matched within a certain arbitrarily specified tolerance (a value of 0.005 was chosen in
the present work) the solution is supposed to be convergent and this would determine
the edge of the boundary layer. Otherwise, the number of radial steps (n) is increased

by two and the procedure is repeated until the matching criterion is met .
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The matching criterion for the liquid phase solution is done in a similar way .
However the potential flow used for comparison this time is the meridional component
of Hill's vortex of reduced strength (strength is reduced because of the presence of the
boundary layers and it is calculated by dividing the surface velocity obtained from the
gas phase solution by that calculated for potential Hill's vortex at the surface of the
sphere; this ratio represents the reduction in the Hill's vortex strength) . It is worth
mentioning that the minimum number of mesh points in the Z direction for a certain
meridional step was chosen to be 20 (similar to the gas phase solution) after which the
equations for the reduced Hill's vortex velocity components are applied up to the center
of the sphere and hence the fluid flow pattern will be available for the whole domain

inside the sphere .

5.4 Flow Separation

External fluid particles accelerate in the region 0 < 8 < 90 and decelerate in the
region where 6>90 , hence the pressure decreases in the accelerated region and then
increases in the decelerated region [75] . Since the external pressure is imposed at the
boundary layer, the transformation of pressure into kinetic energy takes place in the
accelerated region and a great deal of the kinetic energy of the particles adjacent to the
wall is consumed to move against the friction forces . In the decelerated region, the

remainder of the kinetic energy is too small to keep those fluid particles moving in the
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region of the high pressure, so, they would be eventually arrested and the external
pressure would force them to move in the opposite direction separating from the surface
of the sphere and the point of flow separation can be detected by the condition that the
velocity gradient at the wall vanishes or (BU/6Z = 0 ) . Therefore the flow separation
would be accompanied by a vanishing velocity gradient, a larger boundary layer
thickness due to the increase of the number of radial steps required to satisfy the
matching criterion at the edge of the boundary layer and a larger value of the radial

velocity component because of the increasing outward direction of the flow .

The program is developed such that a constant meridional step is followed in the
marching X-direction until flow separation occurs where zero or negative values
unexpected values of U can be obtained . Then a finer mesh is used in X-directions (i.e

for AX) and the point of separation is obtained .

5.5 Matching Conditions at the Surface

The boundary conditions at the surface of the sphere are applied by matching
the meridional velocity of both gas and liquid phases , matching the shear stresses and
matching the heat flux at the surface as well . These matching conditions were the
factors utilized in uncoupling the gas and liquid phase solutions so that the gas phase
solution may be solved first and thus computing the quantities at the surface of the
sphere . These quantities (namely velocity and transient temperature distribution) are

then used as boundary conditions for the liquid-phase solution . This uncoupling of the
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solution leads to savings in computer storage and time . For example, for a given
interior-to-exterior viscosity ratio, p.., gas phase solution would be needed only once if
the internal fluid flow or heat transfer patterns are obtained for different internal to
external density ratios, while the liquid phase needs not to be run at all for testing

parameters for the external flow around the sphere .

Conditions used at the interface are

1. Equality of the meridional velocity component ,i.e. U=T0,

2. Continuity of the shear stress leading to equation (3.13)

U, =—% -U, (L— J 3.13)
n
Hence, the whole matrix solved for the gas phase is expressed in terms of the

gas phase meridional velocity components and the internal-to-external viscosity ratio p"

3. Continuity of the heat flux leads to a similar equation for the temperatures around the

sphere ,namely, equation (3.39)
T,=T/K - T,0KHYK (3.39)

where K* is the internal to external thermal conductivity ratio . However, it should be
noted that studying the effect of viscosity ratio or thermal conductivity ratio on the

internal profiles encounters the solution of the gas phase first before running the liquid

phase program .
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5.6 Calculating Engineering Parameters

Upon computing the velocity and temperature fields (for the whole domain of
numerical solution) , the engineering parameters can be calculated . The parameters of
interest are, the shear stress at the surface, the vorticity at the surface, the coefficient of

drag and the Nusselt number .

5.6.1 Calculating the Shear Stress at the Surface

Shear stress can be calculated as T=-Q —Z—Z; 3.1
< =0
JRe/2
or, in dimensionless form T, =T—R-C:/—“ (5.2)
pU,
Eqn. 5-2 can be written as T, =, / 29U 5.3)
Re 87|, ,

5.6.2 Calculating the Vorticity at the Surface

Since the vorticity is equal to twice the average rate of rotation ; then for our case and in

the spherical polar coordinates it can be defined as;

Vo OVy 10v,

C:

r or r 09
(5.4
_u,0u 10w
r or r 00

Using the non-dimensionalizing parameters introduced in Chapter II, we get

g=—0b U 98U 203W 5.5)
(U,/a) 14Z 8Z Re 9X
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Now, using finite-differences for the derivatives, we get :

C - Ui.jq —UB.jH +4U:‘j¢l —3UI.j+I _ _2_ wi.m"wi.,‘
1+(i-1Z 2AZ Re AX,
(5. 6)
5.6.3 Calculating the Coefficient of Drag
% U
C, =4 fﬁ R Sin® d6 6.7
0 0
5.6.4 Calculating Nusselt Number
2
Nu=—§£ (5.8)
or, Nu=-2 _B_T 5.9
0
o
5.6.5 Calculating the Coefficient of Friction
T [
C,= ] (5-10)
- Ui
2
T,

or, C, = 5-11
7 [Re/8 -11)

5.7 Solution Procedure

The goveming finite-difference equations obtained in Chapter IV to solve the
problem under investigation are governed by some controlling parameters, namely,
Reynolds number, viscosity ratio, density ratio and Prandt! number . These controlling
parameters should be fixed each time the programs are run . The solution starts by

selecting appropriate values for these parameters and then proceeds as follows ;
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5.7.1 Gas Phase Solution

2

L9

. The program starts in the marching X-direction; the variables at the first meridional

station (j=1, i.e. at the front stagnation line) are known where boundary-layer
thickness is assumed zero . Hence U,W, and T are known and specified at this first
station (U =0, T= 1, and W is obtained from the potential flow distribution) . So
the program starts to obtain solutions at the line j=2 assuming a number of radial
grid points of 20 .

Finite-difference equations arranged in a form of a matrix for U values are solved

first, then followed by solving the continuity equation to get W values .

. The matching criterion at the uppermost point is checked . If the criterion is not met,

the number n is increased by 2 and the solution is repeated again .

Steps 2 and 3 are repeated till the convergence criterion is met . Then the energy
equation matrix is solved and the temperature distribution along this line (X =
constant) is obtained.

The obtained values are reported and prepared to be the initial values for the next
meridional step .

The solution then proceeds in the marching X-direction repeating the same previous
steps (2 through 5) until the separation point is reached where finer mesh is used
(smaller increments in the X-direction), and the angle of separation is estimated as

explained previously .
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7. Engineering parameters like drag coefficient and local Nusselt number are
calculated .

8. The whole process is repeated for the next time step until the state of uniform surface
temperature is reached which is characterized by the condition that the average
surface temperature approaches the free stream temperature within a specified
tolerance .

9. The liquid phase solution then continues until the temperature of the sphere’s center

reaches the free stream temperature and this will be the final steady state condition .

5.7.2 Liquid Phase Solution

First, it should be pointed out that the surface velocity distribution as well as the
surface temperature along the time period till the uniform surface temperature is reached
are reported and written from the gas-phase solution in data files that can be logged into
the liquid-phase program as boundary conditions . The liquid-phase program works in a
similar manner as the gas-phase program . However, the solution of the flow field
starts at (n=20) until the boundary-layer edge where the matching criterion between
boundary layer flow and reduced Hill's vortex flow is met . Then the domain of flow
solution is extended by calculating Hill's vortex velocity components up to the center of
the sphere to provide the required values of the velocity to be used in solving the energy
equation . Solution of the energy equation is extended till the center of the sphere where

the temperature gradient is essentially zero (because of the axisymmetric nature of the



problem) . The solution marches in the meridional (X-) direction until the point of
external flow separation is reached and in time until the required criterion pertinent to
sphere core heating is encountered . This means that although the surface tempcrature
approaches the free stream temperature, the liquid phase heating continues until the

core is heated .



CHAPTER VI

HYDRODYNAMIC RESULTS AND DISCUSSION

6.1 Introduction

In this chapter, the results of solving the governing momentum and continuity
equations are presented for both around and inside the liquid sphere . First, the velocity
profiles , shear stress and vorticity around the sphere are presented . These clarify the
effect of the controlling parameters such as Reynolds number and viscosity ratio on the
flow field and the angle of flow separation . Then velocity profiles inside the sphere are
presented considering the effect of the aforesaid controlling parameters plus the ratio of
the densities between the liquid and gas phases . Results of solving the energy equation
are reported afterwards in Chapter VII highlighting the effect of the former parameters
(Reynolds number and the interior-to-exterior viscosity ratio) and Prandtl number on the
temperature distribution around the sphere as well as the local Nusselt number .
Comparisons between the present study with some data reported in the literature are

carried out for the sake of validation of the present results .
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6.2 Results of Velocity Profiles Around the Sphere

6.2.1 Meridional Velocity Profiles :

External flow about a liquid sphere is mainly controlled by the free stream
Reynolds number and the viscosity ratio between the gas and liquid phases . The main
purpose of this work is to investigate the effect of each of them on the flow
characteristics including velocity profiles (meridional as well as radial velocity
components), surface velocity distribution, separation angle and on some engineering
parameters such as the shear stress at the surface of the sphere (which motivates the

internal motion inside the sphere) and the vorticity at the surface .

A wide range of Reynolds number is considered in this work ranging from values
that may be as small as a few hundreds to as high as 10000 in magnitude . The range
investigated for the viscosity ratio is between unity and 100 . This range proved to be

enough to approach the case of a flow over a solid sphere .

Figure 6.1 shows the meridional velocity profiles along the radial distance (Z)
starting with a certain value at the surface of the sphere (Z=0) till it matches the free
stream velocity components thus representing the edge of the boundary layer
surrounding the sphere . These profiles are plotted at four meridional stations (angles)
measured from the front stagnation point namely at 30,60,90 and 105 degrees where the
last one was very close to the point where the separation occurs . The figure also shows

the increase in the boundary layer thickness as we move further on the sphere surface in
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Fig. 6-1 : Meridional velocity profiles versus radial distance at different viscosity ratios
for different meridional locations
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the meridional direction illustrating the boundary layer development near to the point of

separation where maximum boundary layer thickness is encountered .

As can be seen from this figure, these profiles are greatly influenced by the
viscosity ratio . For a given 8, each of these profiles has its own value of the surface
velocity U, but all profiles asymptotically approach the potential flow at large Z (far
away from the surface) . It is also clear that higher surface velocities correspond to lower
viscosity ratios and the extreme case of zero surface velocity is corresponding to infinite
viscosity ratio (the case of flow about a solid sphere) . However, it should be pointed
out that in the case of a flow about a solid sphere, the surface velocity is imposed on the
solution as a boundary condition (U,=0), while for the case considered in the current

work it is treated as a variable and calculated from the solution .

For a given value of the viscosity ratio (u‘ =5), Fig. 6-2 shows the meridional
velocity profiles at a fixed angle (8 = 60°) for different values of Reynolds number
ranging from 200 to 10000 . This figure clarifies effect of Reynolds number on the
boundary-layer thickness; the higher the value of Reynolds number, the thinner the
boundary layer . This is attributed to the high velocity gradient at higher Reynolds
numbers requiring less boundary layer (less distance) for the velocity to drop from its
free stream value at the edge of the boundary layer to its value at the surface of the

sphere . It is also worth mentioning that as Reynolds number increases, the rate of
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transfer of momentum increases too leading to higher velocity gradients and hence less

boundary layer thickness.

Figures 6-3a and 6-3b illustrate the effect of viscosity ratio on the meridional
velocity profiles in the boundary layer at a fixed meridional station (6 = 60°) and at two
given values of Reynolds number (Re=1000 and 10000 respectively) . The range of
viscosity ratio shown in each figure is from 1.01 to 2 and the effect on the surface
velocity (at Z = 0) is clear; the higher the viscosity ratio (i.e. more viscous liquid sphere)
, the lower the surface velocity . The case of flow about a solid sphere (previously
investigated by El-Shaarawi et al. [10]) at the same value of Reynolds number (Re =
10% is plotted in Fig. 6-3b for the sake of comparison and validation of the present
analysis . It is clear that increasing the viscosity ratio leads finally to that case of a flow
about a solid sphere . Thus, this latter case can be a special case of the present study by
using a very high value of the viscosity ratio. It was found that increasing the viscosity
ratio more than a certain value (pf >100) leads to insignificant changes in meridional
velocity profiles which almost coincide with the corresponding profiles of [10] , this

provided a check on the adequacy of the present model and the computer code .
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The velocity distribution on the sphere surface up to the point of separation is
shown in Figs. 6-4a and 6-4b which are plotted at two different viscosity ratios (p" = 2
and 3, respectively) and for various values of Reynolds number . It is clear from the
figure that the values of the surface velocity are increasing from their initial zero value at
the front stagnation point reaching a maximum at about (6 = 60°) and then decreasing till
they reach the minimum (almost zero) value at the point where the flow separates and
the boundary-layer solution is not valid anymore . It can also be shown from the figure
that increasing Reynolds number increases the surface velocity due to increasing the free

stream velocity (Re =2 U_ a /v).

The effect of viscosity ratio on the surface velocity distribution along the
meridional direction at a fixed value of Reynolds number (Re = 10000) is illustrated in
Figs. 6-5a and 6-5b . Figure 6-5b shows such a variation for values of viscosity ratio
representing its high range (namely p' = 1.5,2 and 5) while Fig. 6-5a is limited to low
values of u” (1.05 and 1.1) . It is clear that increasing the viscosity ratio (i.e. using more
viscous liquid spheres) leads to the decrease in the surface velocity and in the extreme
case of very large value of viscosity ratio zero values of the surface velocity are
expected . Figures 6-6a and 6-6b also present the same trend at another value of
Reybolds number (Re = 1000) and it would be pointed out that these latter figures show
less values of the surface velocity for each viscosity ratio when compared to the former

case of Re = 10* .



0.16

Re ='10000

0.12

0.08

0.04

0.00 : L :
0 30 60 90 120

Fig. 6-4a : Effect of Reynolds number on the surface velocity
versus the angle , u*= 2

0.08

0.07 |- Re = 10000

0.06 5000
0.05
0.04
0.03
0.02

0.01

0.00

120

Fig. 6-4b : Effect of Reynolds number on the surface velocity
versus the angle , p.*= 5



100 ——
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00 Y S R UR NS [N
0 30 60 9 90 120 150

Fig. 6-5a : Effect of velocity ratio on surface velocity versus
*
angle, (p =1.05and 1.1)

1.1 -

F T rrTrrTrriTroruTurrorTd

0.28 ‘ T : T ' T ' 3

0.24

0.20

0.16

0.12

0.08

0.04

0.00

0 30 60 90 120

Fig. 6-5b : Effect of velocity ratio on surface velocity versus angle,
K'=1525and 100



94

0.60 —_—

T ' I R
- Wol0s Re=1000 -
0.50 — _
0.40 (— i
B 1.1 ]
0.30 }— .
0.20 — |
0.10 |— ]
0.00 R T RN
0 30 690 90 120

Fig. 6-6a : kffect of viscosity ratio on surface velocity versus angle
for Re = 1000, 1 =1.05and 1.5

010 T T T T T T T
Re = 1000

0.08

0.06

0.04

0.02

0.00

0 30 60 90 120

Fig. 6-6b : Effect of viscosity ratio on surface velocity versus angle
for Re = 1000, 1= 1.5,2,5 and 100



95

Maximum surface velocity for different values of viscosiiy ratio over a wide
range of Reynolds number is plotted in Fig. 6-7 where the effect of increasing the
velocity at the surface of the sphere for a given ' due to increasing the free stream
Reynolds number is clear . Meanwhile, the effect of increasing the viscosity ratio on
reducing the surface velocity, for a given Re, is clear for a wide range of viscosity ratios

(ranging between 1.01 and 100) .

Figure 6-8 is a cross plot of Fig. 6-7 where the effect of viscosity ratio on the
surface velocity is illustrated for three values of Reynolds number (100,1000, and
10000) . For a range of viscosity ratio from 1 to 10, this figure can be used to obtain the

. . . -
maximum surface velocity for any given value of u .

Figure 6-9 shows the effect of both viscosity ratio (p') and Reynolds number
(Re) on the angle of separation . For a given p', increasing the Reynolds number has
the effect of delaying the separation angle (retarding the flow separation) due to thinning
the boundary layer . On the other hand, for a given Re, lower values of viscosity ratio
lead to higher surface velocities and hence higher sphere rotation in the meridional
direction and hence higher angle at which the flow separates and vice versa . In the
limiting case of a very high viscosity, the separation angle approaches the corresponding

value for the flow about a solid sphere .
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Fig. 6-8 : Variation of maximum surface velocity with viscosity
ratio at different values of Reynolds number
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The present O -resuits have been found to approach thc corresponding solid
sphere results at considerably large viscosity ratios; this finding provided a check on the
adequacy of the present code . For example, for Re = 10%, separation angle for solid
sphere is 107 [10] while corresponding 6, for 1 =100 is 106.4°, i.e. the difference is only

0.56% .
6.2.2 Radial Velocity Profiles :

Figures 6-10, 6-11a and 6-11b present the developing radial velocity component,
W, corresponding to selected values of the controlling parameters (namely Reynolds
number and viscosity ratio) . In Fig. 6-10, the radial velocity profiles are plotted at the
selected meridional stations (angles) 6 = 30,60,90 and 105° for a given value of
Reynolds number (Re = 10000) and two values of viscosity ratio (p.' =1.05and 2). Itis
clear that all these profiles start with a zero value at the surface of the sphere (no fluid is
crossing the boundaries, i.e., no suction or blowing ) . However they end at different
values of the radial coordidate (Z) where the numerical solution was terminated when
the solution criterion was satisfied . Profiles are negative for meridional angle < 90°
while they have positive values for 8 > 90° . This behaviour shows that the radial
component of velocity is pushing the boundary-layer fluid towards the sphere’s surface
in the accelerated region of the flow . Compared with the W-profiles in the adverse
region (6> 90°) where the tendency changes to suction of the fluid, the radial component
of velocity assist increasing the boundary-layer thickness till the maximum thickness is

reached at the point where the flow separates . As can be seen from Fig. 6-10, increasing
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the viscosity ratio (from 1.05 to 2) decreases the boundary-layer thickness in the
accelerating region and increases its thickness in the adverse region (increasing the
sucking effect) . This process results in an earlier point of flow separation (this is
compatible with the previously reported result that the higher the value of viscosity ratio,

the earlier the separation of the flow) .

For a given viscosity ratio (u* = 2), Figs 6-11a and 6-11b illustrate the effect of
Reynolds number on the radial velocity profiles at two selected angles (8 = 60° in Fig. 6-
lia and 6 = 90° in Fig. 6-11b) . Increasing the Reynolds number always has the effect
of decreasing the boundary layer-thickness (as previously illustrated) in the accelerating
region and hence delaying the point of flow separation while the boundary layer

thickness increases the adverse region as discussed in the previous paragraph .

6.2.3 Results of Engineering Parameters :

Fig. 6.12a shows the distribution of the shear stress at the surface of the sphere
for two selected values of Reynolds numbers (Re = 200 and Re = 10000) and for two
values of the viscosity ratios (p'= 1.05 and 2) . The behavior of the shear stress generally
starts from a zero value at the front stagnation point arising from the meridional velocity
gradient at this point and then increasing till it reaches a peak value at a meridional angle

of about 60° then it drops again till it reaches zero at the corresponding
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separation point . The effect of the viscosity ratio on the shear stress is illustrated in
this figure where the values corresponding to higher viscosity ratio are higher than those
for small values of viscosity ratio because of higher velocity gradients encountered with
more viscous fluids . Figure 6-12b presents the shear stress profiles for several values of
Reynolds number and clarifies the effect of increasing Re on the reduction of the shear

stress values .

For a given value of Reynolds number (Re=10000), the effect of the viscosity
ratio on the shear stress distribution is more clearly illustrated in Fig. 6-13 for different
values of viscosity ratio (1.05, 1.1, 1.5 and 2) ; the increase in shear stress values with
viscosity ratio (using more viscous liquid spheres) is obvious . The shear stress
distribution for the extreme case of flow over a solid sphere (previously investigated by
El-Shaarawi et. al [10]) is also presented for the sake of comparison and validation of
the present resuits and it is clear that the shear stress values for this case are the

maximum since the viscosity ratio is infinitely high .

Figure 6-14 shows the distribution of the vorticity at the surface of the sphere
along the meridional direction for different values of the Reynolds number where it is
clear that increasing the Reynolds number results in an increase in the surface vorticity
due to increasing the rotation of the fluid particles near the sphere surface . A

comparison between the surface vorticity of the current investigation at a Reynolds
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number of 100 and the boundary layer analysis by Hamielec et al. [1] is shown in Fig.

6-15 where the close agreement between the two results is shown in the figure .

Knowing the shear stress at the interface, the dimensionless drag coefficient has
been computed and is given as a function of the viscosity ratio u‘ and Reynolds number
Re in Table 6-1 . As might be expected, the value of Cp, increases with p‘ and decreases
with Re . It is also worthy of note that the value of Cp, at p' = 100 and Re = 10" differs
by only some 3% than that of a solid sphere ( p' = x0) for the same value of Re=10"; the

latter was given by El-Shaarawi et al. [10] to be 0.06716 .

Figure 6-16 shows the effect of Reynolds number on the coefficient of friction
around the sphere for a given viscosity ratio u* = 1.5 and for five selected values of
Reynolds number (Re = 100, 500, 1000, 5000 and 10000 ) . It is clear from the figure
that higher Reynolds numbers result in higher velocities in the boundary layer and

higher surface velocity and hence lower values of the coefficient of shear stress .

Figure 6-17 shows the effect of viscosity ratio on the coefficient of friction for a
given value of Reynolds number Re = 1000 and for four selected values of viscosity
ratio (u* = 1.01, 1.05, 1.5 and 5 ) . The figure indicates that higher viscosity ratios are
corresponding to higher values of C; since the friction factor is proportional to the shear

stress and hence it is proportional to the viscosity ratio for a given velocity gradient .
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Table 6-1 : Variation of Cp, with u” for various values of Re

i0%

u Co
Re = 100 Re = 500 Re = 1000 Re = 10000
T.01 055586 0.17586 0.10224 0.01351
1.05 0.64023 0.26210 0.17785 0.04087
1.10 0.65415 0.27470 0.19040 0.05175
130 0.66414 0.28460 0.19979 0.06020
1.50 0.66589 0.28670 0.20190 0.06199
2.00 0.66811 0.28847 0.20354 0.06339
5.00 0.66825 0.28955 0.20457 0.06459
10.0 0.66870 0.28975 0.20513 0.06482
100. 0.66902 0.28990 0.20533 0.06499
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6.3 Results of Velocity Profiles Inside the Sphere

6.3.1 Meridional Velocity Profiles

Results of the solution of the liquid-phase boundary-layer equations inside the
sphere are presented in this section . The effect of changing the viscosity ratio on the
meridional velocity profiles inside the sphere at fixed values of Reynolds number (Re =
500) , kinematic viscosity ratio (v' = 0.04) and angle (8 = 60°) is illustrated in Fig. 6-18
for three selected values of the viscosity ratio (p‘ = 1.001, 1.01 and 1.05) . The figure
shows that increasing the viscosity ratio decreases the meridional velocity inside the
sphere due to the lower values of the surface velocity calculated from the gas-phase
solution . The liquid-phase boundary-layer thickness also increases for higher values of
the viscosity ratio and this is indicated by location where the matching with Hill's vortex
components starts (dotted line); this matching location indicates the thickness of the

liquid-phase boundary-layer .

Figures 6-19a and 6-19b show the effect of Reynolds number on the meridional
velocity at given viscosity ratios , kinematic viscosity ratios and angle (8 = 60°) .
Increasing the Reynolds number increases the surface velocity of the liquid sphere,
hence increases the meridional velocity in the liquid-phase boundary-layer and
consequently decreases the thickness of the boundary layer in a similar manner to what

was encountered for the external boundary layer . The dotted lines are representing the
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Hill's vortex meridional velocity component that are matching the meridional velocity at

the edge of the boundary layer .

Figure 6-20 shows the meridional velocity profiles in the internal boundary-layer
at fixed values of Reynolds number (Re = 300), the viscosity ratio (u = 2) and the
meridional station (angle) 8 = 60° for three selected values of the Kinematic-viscosity
ratio (0.009, 0.01 and 0.075 ) which are corresponding to values of the liquid-to-gas
density ratio of 111, 100 and 13, respectively . This figure shows that increasing the
kinematic viscosity ratio (decreasing the density ratio) at a given Revnolds number
decreases the boundary-layer thickness since it results in an increase in the meridional
velocity component and hence thinning the boundary layer . However, although the
surface velocity is not affected by changing the kinematic viscosity ratio , meridional
velocity profiles inside the liquid-phase boundary layer seem to have slightly higher

values at the edge of the boundary-layer with higher kinematic viscosity ratios ( U,

0.024 at the edge of the boundary layer for v’ = 0.009 while it equals 0.026 for v

0.075) since the liquid in these cases would be less dense allowing slightly higher
meridional velocities . Table 6-2 presents these values of U, at Re = 300 for the
aforementioned three kinematic viscosity ratios . The slight change in these U, values is
due to the slight curvature of the velocity profiles shown in Figs. 6-16 through 6-18 and

hence the effect of v* on the internal velocity profiles is insignificant .
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Table 6-2 Meridional velocity inside the sphere at different values of v'

Re=300&p =2

117

Z U U. U,
v =0.009(p’= 113) v =0.01(p"= 100) v =0.075(p = 13)

0 0.027400 0.027400 0.027400
0.005 0.026837 0.026843 0.026856
0.010 0.026281 0.026291 0.026313
0.015 0.025736 0.025749 0.025770
0.020 0.025209 0.025222 0.025230
0.021 0.025105 0.025118 0.025123
0.023 0.024801 0.024908
0.025 0.024694
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Figure 6-21 shows the meridional velocity profiles at different angles measured
from the front stagnation point . Maximum values are corresponding to higher angles
(which is following the value of the velocity at the surface) with almost unremarkable
change in the boundary-layer thickness at this relatively high Reynolds number (Re =
500) . However, the boundary-layer thickness increases significantly as we approach
the point of flow separation as illustrated in Fig. 6-22 at a Reynolds number of (Re =
200) where the thickness of the boundary layer is shown to significantly increase at 6 =
103° and even with a much higher rate between 6 =103° and 6 =105° , the latter (0
=105°) is very close to the point of separation (almost at 106°) . It is also noticeable that
the surface velocity and hence the liquid-phase boundary-layer velocity decrease

significantly at these angles .

6.3.2 Radial Velocity Profiles

Figure 6-23 shows the effect of the viscosity ratio on the radial-velocity
distribution in the liquid-phase boundary-layer . As previously mentioned in the gas-
phase boundary-layer results, all radial components of the velocity have a zero value at
the surface of the sphere representing a non-evaporating liquid sphere . Increasing the
viscosity ratio (representing the use of more viscous fluids) decreases the radial velocity.
However, the increase in the viscosity ratio is also accompanied by an increase in the
boundary-layer thickness as illustrated in the figure . This was also noticed because of

the decrease in the surface velocity (hence the values of the velocity inside the sphere)
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similar to the effect of decreasing Revnolds number on the increase of the boundary -

layer thickness .

The effect of the kinematic viscosity ratio on the radial velocity is shown in Fig.
6-24 . This figure shows that the thickness of the boundary layer is atfected by the
kinematic viscosity ratio as was previously explained in Fig. 6-20 by linking the
decrease in velocity (and hence increasing boundary layer thickness) to the decrease in
kinematic viscosity ratio ( or the increase in density ratio) at constant viscosity ratio and

Revnolds number .
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CHAPTER VII

HEAT TRANSFER RESULTS AND DISCUSSION

7.1 Introduction

In this chapter, the results of solving the energy equation around and inside the
liquid sphere are presented . Two cases were studied when solving the energy equation
around the sphere . In case (1), the steady energy equation was solved to obtain the
temperature distribution in the external boundary layer emphasizing the effect of the flow
controlling parameters such as Reynolds numbers, viscosity ratio, and Prandtl number on
the temperature profiles at different meridional stations . Then, in case (2), the transient
energy equation was solved to obtain the temporal temperature profiles as time elapses till
the surface of the sphere approaches the free stream temperature (within a certain
numerical tolerance of 0.005) . It is worth mentioning that transient solution of the
energy equation was considered for three cases (a,b and c¢) according the initial
temperature profile . In case (2-a), the initial temperature distribution throughout the
external boundary layer is assumed equal to the free stream temperature, i.c., a step
temperature change (from zero to one) takes place at the surface of the sphere . In case

(2-b), an initial linear variation of the temperature is assumed starting from zero at the



surface and increasing linearly till unity at the edge of the boundary laver . The thivd case
in the transient model. (case 2-c). assumes a step change in temperature occurring at the
outer edge of the boundary layer . In other words. the initial temperature throughout the
boundary layer is zero while it equals unity at the boundary layer edge . The transient
temperature profiles around the sphere for the three former cases are presented for
different values of the controlling parameters, namely, Reynolds number (Re), interior-to-
exterior viscosity ratio (p'), and Prandt! number (Pr) . The effect of these parameters on
the time required for the surface of the sphere to reach the free stream temperature is then
presented for each case . Engineering parameters such as Nusselt number are also
illustrated for each case . Finally the results of the transient temperature profiles inside
the liquid sphere up the core of the sphere are presented and the time required to reach the
steady-state condition (i.e., when the temperature at the center of the sphere approaches
the free stream temperature ) is presented . For a given time, the effect of Reynolds
number and viscosity ratio on the temperature profiles inside the sphere is then presented

and discussed .

7.2 Results of Temperature Profiles Around the Sphere

In this section, temperature profiles around the sphere are presented . First, the
steady temperature distribution, (Case 1), is shown . Then, transient temperature
distributions (Case 2) for each of the three cases (a,b and c) representing different initial
temperature profiles are presented showing the effect of the controlling parameters for

each case .
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7.2.1 Case 1 : Steady State Temperature Distribution Around the Sphere

7.2.1.1 Temperature Profiles

The steady energy equation was solved with the boundary conditions specified .
The dimensionless temperature is considered equal to zero at the sphere’s surface and is
equal to unity at the edge of the thermal boundary layer . In the meridional direction the
boundary condition is taken at the front stagnation point where the boundary layer

thickness is equal to zero and the value of the temperature is unity .

Figure 7-1 shows the effect of Reynolds number on the temperature distribution
for given Prandtl number Pr = 0.7, viscosity ratiop” = 1.5 and angle® = 60 ° . It is clear
from the figure that as the Reynolds number increases, the thickness of the thermal
boundary layer decreases . This implies more heat convected inward to the liquid sphere
(due to higher velocities in the external boundary layer ) as Re increases . Therefore,
higher values of temperature at a given radial location are obtained for higher values of

Reynolds number .

The effect of the interior-to-exterior viscosity ratio on the steady temperature
profiles is shown in Fig. 7-2 for given Reynolds number Re = 1000, Prandtl number Pr =
0.7 and meridional angle ® = 60 ° . In this figure curves corresponding to four selected
values of the viscosity ratio (1 = 1.01, 1.05,1.5 and 5) are shown . Lower viscosity

ratios result in higher velocities in the boundary layer and hence higher rates of heat

convection.
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Therefore, higher temperatures at the same radial location are obtained at lower viScosity

ratios .

Figure 7-3 shows the temperature profiles at different meridional stations (8 = 30°,
60°, 90° and 105°) for selected values of Reynolds number Re = 1000, Prandt! number Pr
= 0.7 and viscosity ratio p.' = 1.5 . Higher values of temperature are found at earlier
angles since the maximum temperature is attained at the front stagnation point where the
boundary layer thickness is equal to zero and T = 1 . The value of the temperature
decreases as we move forward in the meridional direction till it reaches its lowest value
close to the point of flow separation where higher boundary layer thickness is

encountered .

The effect of Prandtl number on the temperature profiles is shown in Fig. 7-4 .
Higher values of Prandtl number increase the rate of heat convection and hence result in
higher temperatures at the same radial location . Therefore, less thermal boundary layer
thicknesses correspond to higher values of the Prandtl number . The meridional velocity
profile is also plotted in Fig. 7.4 to compare between the hydrodynamic boundary layer
and the thermal boundary layer at different values of Prandtl number . It is clear from the
figure that higher Prandtl numbers are corresponding to less thermal boundary layer

thickness compared to the hydrodynamic boundary layer thickness .
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7.2.1.2 Nusselt Number

Figure 7-3 shows the effect of Reynolds number on the local Nusselt number
distribution . Nusselt number profiles are plotted versus the central angle till the point of
external flow separation is reached for a selected value of Prandtl number Pr = 0.7 for
different values of Reynolds number (Re = 100, 500, 1000, 5000 and 10000) . It is clear
from the figure that increasing Reynolds number increases the heat convected to the
sphere and hence increases the temperature gradient at the surface of the sphere .
Therefore, the highest values of Nusselt number correspond to the highest Reynolds

number .

Figure 7-6 shows the effect of the viscosity ratio on the local Nusselt number at
given Reynolds number Re = 1000 and Prandtl number Pr = 0.7 for four selected values
of the viscosity ratio ( p.‘ =1.05, 1.1, 1.5 and 5) . Lower viscosity ratios are resulting in
higher velocities within the boundary layer and hence higher rates of heat convection .
This leads to higher temperature gradient at the sphere’s surface i.e., higher values of the

local Nusselt number .
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7.2.2 Case 2 : Transient Temperature Distribution Around the Sphere

In this section. the transient energy equation is solved for the cases mentioned in
the introduction of this chapter starting with the case where a step change in temperature
is at the sphere’s surface .
7.2.2.1 Case (2-a) : Step Change in Temperature at the Sphere’s Surface

In this section, the results of the temperature profiles around the liquid sphere are
presented for case (2-a) where the initial temperature profile around the sphere is assumed
to have a step change (from zero to one) at the surface of the sphere; i.e., the temperature
throughout the boundary layer is assumed to equal unity at time t = 0 . Values of the
temperature close to the surface of the sphere are expected to decrease first due to the
presence of the cold surface and then increase due to the continuous transfer of heat from
the free stream (T = 1) until the surface temperature of the sphere reaches its final
uniform value that is equal to the free stream temperature (within a certain specified
tolerance of 0.005) . The effect of the various controlling parameters (i.e. Reynolds
number, Prandtl number and the internal-to-external viscosity ratio ) on the temperature
will be shown . Results of engineering quantities such as Nusselt number and the time
required to reach the uniform surface temperature profile are to be deduced from these
profiles .
7.2.2.1.1 Temperature Profiles

Figures 7-7a through 7-7f and 7-8a through 7-8f present the transient distribution
of temperature around the sphere for case (2-a) at different radial locations (Z) for

selected meridional stations (central angles) from 6 = 30° up to 8 = 105°
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which is before the point of external flow separation . Temperature distributions are
presented for Prandtl number Pr = 0.7. viscosity ratio u = 1.5 and two selected values of
Reynolds number, namely, Re = 500 in (Figs. 7-7a through 7.7t) and Re = 1000 (in Figs.
7-8a through 7-8f). It is clear from these figures that the temperature in the boundary
layer starts initially from unity, decreases for a short period of time due to the presence
of the cold sphere and then increases along the surface due to the continuous transfer of
energy from the free stream till it reaches a uniform value which is equal to its the free
stream value . Higher values of temperature are noticed for outer radial locations that are
essentially far from the sphere surface . The effect of Reynolds number on the time
required to reach a uniform surface temperature (equal to the free stream temperature
within a specified tolerance of 0.005 ) can be seen from the comparison of the figures .
For high Reynolds number (Re=1000) this time is 0.07 while it equals 0.1 for Re = 500 .
This is attributed to the increase in convective heat transfer for higher Reynolds numbers

(higher velocities in the boundary layer) .

Figure 7.9 shows the transient development of the temperature profiles inside the
boundary layer for given values of Reynolds number (Re = 500), Prandtl number (Pr =
0.7) , viscosity ratio (0" = 1.5) and meridional angle (6 = 60°) . Dimensionless
temperature (T) starts initially from zero at the surface of the sphere and unity throughout
the boundary layer . As time proceeds, the surface temperature increases and the adjacent

layers’ temperature first decreases and then increases until it approaches the free stream
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value . When such a uniform surface temperature is achieved, the external flow program

is stopped .

Figure 7-10 shows the temperature profiles for some selected meridional stations
under the same conditions stated above (the same values of the controlling parameters;
Re, Pr and 1) for a given time step (t = 0.0005) . This figure shows the variation in the
temperature profiles as the hydrodynamic boundary-layer thickness increases along the
surface of the sphere until the maximum boundary layer thickness is encountered near the
point of flow separation . It is clear also from Fig. 7-10 that the temperature decreases at
the same radial distance as the meridional angle increases as a result of the increase in the

boundary layer thickness with the meridional angle .

The effect of Reynolds number on the developing temperature distribution while
the other controlling parameters are kept unchanged is shown in Fig. 7-11 at a fixed radial
distance (Z = 0.02) . It is clear from this figure that increasing the value of Reynolds
number increases the rate of heat transfer from the hot surrounding to the cold sphere .
This effect is due to the thinning of the boundary layer with Re as was discussed in the

previous chapter.

Figure 7-12 gives the variation of the time required to reach uniform surface
temperature with Reynolds number for two selected values of the interior-to-exterior

viscosity ratio, namely 1.05 and 5. The time to reach a uniform surface temperature
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(equal to its free stream value) is maximum at the lowest Reynolds number investigated
(Re = 200) and its value decreases as Reynolds number increases . Moreover, for a given
Re. t, increases as p‘ increases . This is attributed to the thickening of the hydrodynamic

boundary layer with p” as was explained in the previous chapter .

Figure 7-13 shows the effect of the viscosity ratio on the temperature profile for a
selected time step (t = 0.0005) at a fixed meridional position (6 = 60°) . The figure shows
that increasing the internal-to-external viscosity ratio decreases the heat transfer and
hence it results in lower values of the temperature at the same radial distance . This is
attributed to the decrease in the heat convected to the sphere due to lower velocities and
larger boundary-layer thickness corresponding to higher viscosity ratios . The effect of
changing the viscosity ratio on the transient temperature profiles at a fixed radial distance
(Z = 0.02) for the same meridional angle is shown in the figure . Higher values of

temperature in the boundary-layer are corresponding to the lower viscosity ratios .

Figure 7-14 illustrates the effect of viscosity ratio on the temperature distribution
in the boundary layer at selected values of Reynolds number Re = 1000, Prandtl number
Pr = 0.7, meridional angle 8 = 60° and for a fixed radial location Z = 0.02 . It is clear

from the figure that lower viscosity ratios result in higher values of the temperature.
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Figures 7-15a and 7-15b show the surface temperature profiles for two selected

values of Reynolds number, namely, Re = 500 in Fig. 7-15a and Re = 1000 in Fig. 7-15b
. Itis clear from these figures that, for a given time, the surface temperature starts with
one at the front stagnation point and then decreases with 8. However. the surface

temperature does not vary significantly along the surface for the initial condition used in

this case where the temperature throughout the boundary layer is initially unity .

The effect of Reynolds number on the time required to reach uniform surface
temperature (that can be considered a gas-phase steady state after which the external
program is stopped) is presented in Fig. 7-16 for a given value of Prandtl number (Pr =
0.7) at a viscosity ratio of u* = 1.5. It is clear from the figure that the time required to
reach the uniform surface temperature increases as Reynolds number is decreased . This

is attributed to the increase in heat convected to the sphere at higher Reynolds numbers.

Figure 7-17 shows the effect of viscosity ratio on the variation of surface
temperature with time for a given Reynolds number Re = 1000 and at a meridional
station © = 60° . Increasing the viscosity ratio leads to less heat convected to the sphere
and hence requires more time to reach the uniform surface temperature . The shortest

time to reach a uniform surface temperature corresponds to the lowest viscosity ratio .
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Increasing the value of Prandtl number increases the heat convected inward to the
sphere and hence results in higher surface temperature and shorter time to attain a
uniform surface temperature . This is illustrated in Fig. 7-18 where three selected values
of Prandtl numbers were used (namely, Pr = 2. 0.7 and 0.01 ) and the shortest time to
attain a uniform surface temperature and also the highest surface temperature are

corresponding to Pr=2 .

Figure 7-19 shows the transient profile of the rate of change of surface
temperature with time for a given Reynolds number (Re = 1000), Prandtl number (Pr =

0.7) , viscosity ratio (" = 1.5) and at selected meridional angles (8 = 30°, 60°, 90° and

105% . It is clear from the figure that the rate of change of temperature %% decreases

with time for all angles because of the increase in the sphere’s surface temperature and
the thermal boundary layer till they approach unity and the rate of change of temperature
diminishes . Moreover, the decrease of the rate of temperature is faster at lower angles

where higher surface temperature are reported .
7.2.2.1.2 Nusselt Number

Figure 7-20 shows the transient profiles of the local Nusselt number along the
surface of the sphere as we move in the meridional direction . As time elapses, the

temperature of the surface of the sphere increases and hence the temperature gradient at
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the surface decreases until it reaches a minute value as the surface approaches the free
stream temperature . At a given time, the local Nusselt number values decrease as we
move along in the meridional direction ( as 0 increases) . This is attributed to the increase
in the boundary layer thickness that leads to decreased temperatures in the meridional

direction and hence decreased temperature gradient at the surface of the sphere.
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7.2.2.2 Case (2-b) : Linear Initial Temperature Profiles

In this case (2-b), the initial temperature starts from zero at the surface of the
sphere and increases linearly till the edge of the thermal boundary layer where the value

of the temperature is equal to unity .

7.2.2.2.1 Temperature Profiles

Figure 7-21 shows the increase in the temperature profiles around the sphere as time
elapses at a given value of Reynolds slumber Re = 1000, Prandt! number Pr = 0.7,
viscosity ratio p* = 1.5 and at an angle 6 = 60°. Temperature profile starts at the initial
time (t = 0) then increases linearly as time elapses till it reaches the free stream value

along the surface .

Figure 7-22 shows the temperature profiles at a particular time t = 0.0005, a given
Reynolds number Re = 1000, Prandtl number Pr = 0.6 and viscosity ratio p'= 1.5 for
selected meridional stations . Higher temperature at the same radial location Z are
corresponding to earlier angles and decreases as we move along the sphere surface in the
meridional direction since the temperature has a maximum value of 1 at the front
stagnation point (zero boundary-layer thickness) and then decreases as the boundary layer

thickness increases in the meridional direction .
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Figure 7-23 illustrates the effect of increasing Reynolds number on the
temperature profiles for given values of Prandtl number Pr = 0.7, viscosity ration” = 1.3,
angle 6 = 60°. It is clear from the figure that increasing Reynolds number leads to higher
values of the temperature due to the increase in heat convected at a fixed radial distance .

Hence shorter times are required to reach the uniform surface temperature at higher

Reynolds numbers .

Figure 7-24 shows the effect of Reynolds number on the time required to reach
the uniform surface temperature for two given values of the viscosity ratio (u* = 1.05 and
1.5) and at a given value of Prandtl number Pr = 0.7 . Decreasing the values viscosity
ratio leads to shorter times required to reach the uniform surface temperature due to the

increase in convected heat transfer , similar to the effect of increasing Re .

Transient surface temperature profiles are shown in Fig. 7-25a and 7-25b for Re =
500 and Re = 1000 respectively . For all the profiles, surface temperature starts with
unity at the front stagnation point (8 = 0) and decreases in the meridional direction till
the point of external flow separation . It is also clear from both figures that the
surface temperature increases with time till it reaches a uniform value that is equal to the
free stream temperature (T = 1) in time t = 0.012 for Re = 500 and t = 0.008 for the higher

Reynolds number case (Re = 1000) .
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Figure 7-26 shows the effect of Reynolds number on the transient surface
temperature profiles . Higher Reynolds numbers result in higher surface temperatures at a

given time and hence shorter time are required to reach the free stream value for high Re.

The effect of viscosity ratio on the transient surface temperature profile is
illustrated in Fig. 7-27 for a given Reynolds number Re = 1000, Prandt] number Pr = 0.7
and meridional angle ( & = 60°) . The figure shows that lower viscosity ratios lead to
higher surface temperature and shorter time required to reach the free stream temperature,

and hence higher rates of heat convected to the sphere .

The effect of Prandtl number on the surface temperature is showed in Fig. 7-28 for
a given Reynolds number Re = 1000, viscosity ratio " = 1.5 and meridional angle 6 =
60° . Higher Prandtl numbers (i.e. higher heat convection to the sphere) any given time t

result in higher surface temperature .

Figure 7-29 presents the transient profile of the rate of change of surface
temperature with time for a given Reynolds number (Re = 1000), Prandtl number (Pr=

0.7) , viscosity ratio (1" = 1.5) and at selected meridional angles (8 = 30°, 60°, 90° and

105%) . It is clear from the figure that the rate of change of temperature aa—T[” decreases

with time for all presented angles because of the increase in the dimensionless surface
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temperature and the thermal boundary layer till they approach unity at the state of
uniform surface temperature and the rate of change of temperature diminishes .
Furthermore, the decrease of the rate of temperature is faster at lower angles where higher

surface temperature are reported .

7.2.2.2.2 Nusselt Number

Figure 7-30 presents the transient local Nusselt number along the surface of the
sphere . For any given time t, the value of the local Nusselt number decreases as one
moves along the surface of the sphere in the meridional direction due to the increase in
the boundary layer thickness and the decrease in the values of the temperature . Nusselt
number profile also decreases with time due to the increase in the surface temperature as

time elapses .

7.2.2.3 Case (2-¢) : A Step Change in Temperature at the Boundary-Layer Edge

In this section the case where the initial temperature throughout the boundary
layer is equal to zero while its value at the boundary layer edge is unity is presented, i.e.,
a step change in the value of the temperature from zero to unity occurs at the edge of the

boundary layer .
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7.2.2.3.1 Temperature Profiles

Figures 7-31a through 7-31f, 7-32a through 7-32f and 7-33a through 7-33f
present the transient increase in temperature inside the thermal boundary layer as
one rotates around the sphere at different radial locations (Z) from 6 =30 up to 8
= 105° (this angle is just before the point of external flow separation) . In these figure.
temperature profiles are presented for Prandt! number (Pr = 0.7), viscosity ratio (1" = 1.5)
and three selected values of Reynolds number, namely, Re = 200, 1000 and 10000
respectively . It is clear from these figures that the dimensionless surface temperature
starts from zero and then increases both with time and along the surface till it reaches a
uniform value which is equal to the free stream temperature . For a given time, higher
values of temperature are noticed for earlier angles since the boundary layer thickness
starts from zero at the front stagnation point (8 = 0) where the surface temperature
theoretically equals the free stream value and then the boundary layer thickness increases
as one moves along the surface of the. The effect of Reynolds number on the time
required to reach the state of uniform surface temperature (equal to the free stream
temperature within a certain numerical tolerance) can be seen from these three sets of
figures . For high Reynolds number (Re = 10000) this time is 0.001, for Re = 1000, time
is 0.007 while it equals 0.03 for the low Reynolds number (Re = 200) . This is attributed

to the increase in convective heat transfer as Reynolds number increases .
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Fig. 7-31b :Transient temperature distribution at different radial
distances for 6=45and Re = 200, case (2-c)
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Fig. 7-31c :Transient temperature distribution at different radial
distances for 8=60°and Re = 200, case (2-¢c)

1.00
0.80 - -
{___Z=0.0 (sphere's surface)
i 0.05 T
0.60 |- 0.9 _
i 0.13 i
0.40 / ~
6=75" |
Re =200
0.20 Pr=0.7 —
w=15 |
0‘00 \ 1 ! | L ] 1
0.00 0.01 0.02 0.03 0.04
t

Fig. 7-31d :Transient temperature distribution at different radial
distances for 6=75"and Re = 200, case (2<¢)
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Fig. 7-31f :Transient temperature distribution at different radial
distances for 6=105°and Re = 200, case (2c)




1.00 T ! T
0.80
L Z = 0.0 (sphere's surface) ]
0.04
0.60 — 7/ 0.05 ]

0.06

0.40 .

0=30"

Re = 1000 —
0.20 Pr=0.7

p.*= 1.5 e
0.00 ) ! ) ] !

0.000 0.004 0.008 0.012

t

Fig. 7-32a :Transient temperature distribution at different radial
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Fig. 7-32b : Transient temperature distribution at different radial
distances for 8=45"and Re = 1000, case (2-c)



1.00 T

0.80
o Z = 0.0 (sphere's surface)
0.60 008 1
. 0.06
[/ 0.065

0.40 R
0=60"
Re = 1000 .

0.20 Pr=0.7
p.*= 1.5 -

OOO 1 | L | !

0.000 0.004 0.008 0.012

t
Fig. 7-32¢ :Transient temperature distribution at different radial
distances for 6=60and Re = 1 000, case (2<)

1.00 ‘
0.80 -
R —— Z = 0.0 (sphere's surface) B
0.05 ]
0.60 H 0.08
0.07
0.40 _
0=75"
Re =1000 -
0.20 Piz 0.7
n=15 i
0.00 ] | 1 | !
0.000 0.004 0.008 0.012
t

Fig. 7-32d :Transient temperature distribution at different radial
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Fig. 7-32e :Transient temperature distribution at different radial
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Fig. 7-32f :Transient temperature distribution at different radial
distances for 6= 105°and Re = 1000, case (2-¢)
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Fig. 7-33a :Transient temperature distribution at different radial
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Fig. 7-33b : Transient temperature distribution at different radial
distances for =105"and Re = 10000, case (2-c)
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Fig. 7-33d :Transient temperature distribution at different radial
distances for 8 ="75%and Re = 10000, case (2-¢)
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Fig. 7-33f :Transient temperature distribution at different radial
distances for 6 =105"and Re = 10000, case (2-c)
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Figure 7-34 shows the development of the transient temperature profiles inside the
boundary layer for given values of Reynolds number (Re = 1000). Prandtl number (Pr =
0.7) , viscosity ratio (p‘ = 1.5) and meridional angle (8 = 60°) . Such profiles can be
obtained by cross plotting in Fig. 7-31c . Dimensionless temperature (T) starts initially
from zero at the surface of the sphere while the free stream temperature has a value of
T=1 . As time proceeds, the temperature increases inside the boundary layer and the
temperature of the surface of the sphere increases each time increment until it approaches
the free stream value . Such a uniform surface temperature is achieved in Fig. 7-33 when

the time t = 0.007 then the external flow program is stopped .

Figure 7-35 shows the temperature profiles for some selected meridional stations
under the same conditions stated formerly (the same values of the controlling parameters;
Re, Pr and p.') and for t = 0.005 . This figure shows the variation in the temperature
profiles as the hydrodynamic boundary-layer thickness increases along the surface of the
sphere until the maximum boundary layer thickness is encountered near to the point of
flow separation . It is clear from Fig. 7-35 that the temperature decreases at the same
radial distance as the meridional angle increases as a result of the increase in the

boundary layer thickness with © .

The effect of Reynolds number on the developing temperature profiles while the
other controlling parameters are kept unchanged is shown in Fig. 7-36 at a fixed radial

distance (Z = 0.02) . It is clear from this figure that increasing the value of Reynolds
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number increases the rate of heat transfer from the hot surrounding to the cold sphere and
so decreases the time required to reach the state of uniform surface temperature . This
effect is due to the thinning of the boundary layer which has already been discussed in

chapter 6 .

Figure 7-37 summarizes this result by showing the effect of increasing Reynolds
number on the time required to attain uniform surface temperature for three selected
values of the interior-to-exterior viscosity ratio, namely 1.01, 1.05 and 5. The time
required to reach a uniform surface temperature (equal to its free stream value) increases

as Reynolds number decreases

The effect of changing Prandtl number on the temperature profiles at a particular
time (t = 0.005) for a given & = 60 ° is shown in Fig. 7-38 for three values of Prandtl
number (Pr=10.1, 0.7 and 2) . It is clear from this figure that increasing Prandtl number
increases the heat convected to the sphere and hence results in higher values of the

temperature at the same radial distance .

Figure 7-39 shows the effect of changing the viscosity ratio on the transient
temperature profile at a selected time (t = 0.005) at meridional angle (8 = 60°) . The
figure shows that increasing the internal-to-external viscosity ratio decreases the heat
convected to the sphere and hence it results in lower values of the temperature at the same

radial distance . This is attributed to the decrease in boundary layer velocities at higher
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viscosity ratios and larger boundary-layer thickness as was discussed in the previous

chapter .

Figures 7-40 and 7-41 show the transient temperature profiles at five selected
meridional angles (8 = 15°, 30°, 60°, 90° and 105°) for particular times . Each figure
represents a given time and the temperature distribution is plotted versus the radial
distance starting from the surface of the sphere (Z = 0) till the edge of the boundary layer
where the value of the dimensionless temperature approaches unity (T = 1) . Two values
of Reynolds number were ;elected, Fig 7-40 shows the temperature distribution for Re =

500 while Fig. 7-41 presents the temperature distribution for Re = 1000 . Increasing Re

reduces the time required to attain the state of a uniform surface temperature .

For a given radial position (Z=0.02) , Fig. 4-42 shows the temporal increase in
temperature at different meridional angles for a Reynolds number (Re = 1000), Prandti
number (Pr = 0.7) and a viscosity ratio (ut = 1.5) . Itis clear from this figure that the
temperature decreases as one moves along the sphere in the meridional direction since the
maximum temperature (T = 1) is located at the front stagnation point where the boundary
layer thickness is zero and then the thickness increases in meridional direction hence

decreasing the temperature .

For a given meridional station 6 = 60°, Fig. 7-43 shows the increase in

temperature with time at different radial distances (Z = 0.0, 0.02, 0.05 and 0.07). It is
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Fig. 7-41b : Temperature profiles around the sphere at
different angles, Re = 500, t = 0.005, case (2-c)
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worth stating that the curve corresponding to (Z = 0) represents the condition at the
surface of the sphere . The values of the temperature at any time are higher at the outer
locations of the boundary layer and heat is convected inward increasing the temperature
of the locations closer to the surface of the sphere till state of the uniform surface

temperature is attained .

Figure 7-44a shows the variation in the surface temperature with time versus the
angle 0 tor a given value of Reynolds numbers Re = 500, Prandt! number Pr = 0.7, and
viscosity ratio 1 = 1.5 . Surface temperature starts from a value of (T = 1) at the front
stagnation point and then decreases as the angle increases (and the boundary-layer grows
in thickness) till it reaches a minimum values at the angle of external flow separation (8,
=106.2°) . It is worth mentioning that the program is stopped when the lowest surface

temperature approaches the free stream temperature .

Figure 7-44b presents the surface temperature profiles versus the angle as time
elapses for a selected value of Reynolds number Re = 1000, Prandtl number Pr = 0.7 and
viscosity ratio u_ = 1.5 . It is noted in the figure that the time required to approach free
stream temperature is less than the case of Re = 500 discussed in Fig. 7-44a . However,
the same profile of decreasing temperature from the front stagnation point along the

surface is shown in the figure .
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Transient variation of the surface temperature with time at different angles is
shown in Fig. 7-45 . Initially the temperature of the surface of the sphere is zero (T = 0)
and it increases till it approaches the free stream temperature (T = 1) . On the other hand.

the temperature values decrease around the surface of the sphere in the meridional

direction .

Figure 7-46 shows the effect of the viscosity ratio on the transient surface
temperature for a given Reynolds number (Re = 1000), Prandtl number (Pr = 0.7) and
meridional angle (6 = 30°) . Higher values of the surface temperature correspond to
lower values of the viscosity ratio due to the higher convective effects (higher velocities

attributed to lower viscosity ratios) .

The effect of Reynolds number on the transient surface temperature is illustrated
in Fig. 7-47 . Higher Reynolds numbers yield higher surface temperatures at any given
time . This is attributed to the high rate of heat convection to the sphere at higher values

of Reynolds number .

Figure 7-48 shows the effect of Prandtl number on the transient surface
temperature profiles for a given Reynolds number Re = 1000, viscosity ratio p‘ = 1.5,
meridional angle ® = 60° . Higher Prandtl numbers are corresponding to higher heat

convected to the sphere and hence require less time to attain the uniform surface
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temperature . Meanwhile, lower values of the temperature at any time are corresponding

to lower Prandtl number .

Figure 7-49 presents the transient profile of the rate of change of surface
temperature with time for a given Reynolds number (Re = 1000), Prandti number (Pr =

0.7) , viscosity ratio (" = 1.3) and at selected meridional angles (6 = 30°, 60°, 90° and

-

- . CcT
105%) . It is clear from the figure that the rate of change of temperature —2 decreases
= e P ot

with time for all presented angles because of the increase in the dimensionless surface
temperature and the thermal boundary layer till they approach unity at the state of
uniform surface temperature and the rate of change of temperature diminishes

Furthermore, the decrease of the rate of temperature is faster at lower angles where higher
surface temperature are reported . On the other hand, the rate of decrease of temperature
is faster for case (2-a) where initial temperature profile throughout the boundary-layer is
assumed unity and it is less for case (2-b) where a linear initial temperature profile from
zero at the surface to unity at the boundary-layer edge is assumed while this rate has its
lowest value for case (2-c) where the initial temperature throughout the boundary layer is

assumed equal to zero .

7.2.2.3.2 Nusselt Number

The effect of increasing Reynolds number on the values of Nusselt number which

is defined as the dimensionless temperature gradient at the surface is shown in Fig. 7-50
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at given values of time (t = 0.005), Prandtl number (Pr = 0.7), and for a viscosity ratio m
= 1.5) . The figure shows higher values of Nusselt number corresponding to higher
Reynolds numbers . This is attributed to the increase of heat convected to the sphere at
high Reynolds numbers thus increasing the temperature gradient . Furthermore, Nusselt
number decreases as the meridional angle increases for all Reynolds numbers because of
the lower surface temperatures as we move along the surface of the sphere and thicker

boundary layer resulting in lower temperature gradients and hence lower values of the

Nusselt number .

Figure 7-51 shows the effect of viscosity ratio on the values of the local Nusselt
number at a particular time (t = 0.005) for Re = 1000, Prandtl = 0.7 at a particular time for
Re = 1000, Prandtl =0.7 . Higher values of Nu obtained at lower viscosity ratios that are
leading to higher rates of heat convection (higher velocities in the boundary layer) and
hence higher temperature gradients . It is worth to mention that increasing the viscosity
ratios more than (},l.‘ = 10) resulted in no changes in the values of Nusselt number and
this high viscosity ratio is closer to the case of flow over a solid sphere where no more

changes in Nusselt number occur .

Transient temperatures of the sphere and its boundary layer increase as time
elapses and the temperature gradient at the wall and hence Nusselt number decreases
significantly till the uniform surface temperature when the Nusselt number reduces to

zero as shown in Fig. 7-52 .
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Values of the local Nusselt number were calculated at the first time step (t =
0.001) at a low Reynolds number Re = 100 and Prandtl number Pr = 0869 for sake of
comparison with reported data in the literature . Fig. 7.53 shows the comparison between
the local Nusselt number values calculated in the present study and those reported by
Renksizbulut and Yuen [48] for a Reynolds number (Re = 100) and Prandt] number (Pr =
0.869) . The match of the present analysis with those given by Renksizbulut and Yuen is
excellent with a maximum difference of about 8 % . However, It should be pointed out
that the analysis of Renksizbulut and Yuen is based on solving the full Navier-Stokes
equations while the present analysis considers the boundary-layer approximation that

leads to a simpler and much faster solution .

Figure 7-54 shows the comparison between the local Nusselt number obtained by
the present analysis and that reported by Chiang et. Al. {58] for a Reynolds number (Re =
100) and a Prandtl number of (Pr = 0.7) . The two profiles match with a maximum
difference of about 7 % . It is worth to say that Chiang et al. solved numerically the full
Navier-Stokes equation and hence their solution is valid up to the rear stagnation point
while the present analysis uses the boundary-layer approximation and hence its solution is

valid up to the point of flow separation .
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It is worth of mentioning that the values of the average Nusselt number were
computed from the present analysis and compared with some reported correlations in the
literature . Table 7-1 Presents a comparison between the present analysis and some of the

correlations reported in the literature such as the formula suggested by Raithby and
Eckert [79], Nuy=0257Re(™, the formula suggested by McAdams [80].
Nuy =037 Reg'(’, the formula suggested by Achenbach (81],

Nuy =2+(025Re, +3x 107" Re}®) >, However, it is worth stating that these formulae
did not account the effect of Prandtl number or the viscosity ratio . The formula

suggested by Whitaker {82] considered Prandtl number in calculating the value of the

0.23
average Nusselt number around a sphere, Nu, =2+ (04 Reg'5 +0.06 Reg'67 )Pro4 (—“-]
Hs

On the other hand, this formula contains a ratio of the viscosities that does not represent
the interior-to-exterior viscosity ratio but it is the ratio of the gas phase viscosities at two
different values of the temperature namely the free stream temperature and the sphere’s
initial temperature . To the best of the author knowledge, no formula in the literature

considered the viscosity ratio between liquid and gas phase .



Table 7-1 : Comparison of the average Nusselt number with reported data

Nu,,
Analysis Re=200 | Re=3500 | Re=1000 | Re = 5000 | Re=10000
Present Study 4.57 10.06 17.4 49.77 72.98
Raithby and Eckert [79] |5.8 9.93 14.925 38.453 57.8
McAdmas [80] 8.9 15.4 23.34 61.32 92.94
Achenbach [81] 9.17 13.45 18.4 40.7 59.04
Whitaker [82] 8.7 13.1 18.3 42.17 61.58
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The time mean value of the Nusselt number was calculated by obtaining the
average Nusselt number along the sphere’s surface then by computing the average value
over the time required to reach the state of uniform surface temperature . The Effect of
Reynolds number and the viscosity ratio on the time mean value of the average Nusselt
number is presented in Fig. 7-55 . It is shoen in the figure that increasing Reynolds
number or decreasing the viscosity ratio increases both the local and the average Nusselt

number and hence increases the time mean value of Nusselt number .

Figure 7-56 presents a comparison between the three cases showing the effect
Reynolds number on the time required to reach the state of uniform surface temperature .
It is clear from the figure that case (2-a) was the first to reach uniform surface
temperature because in this case it is assumed that the initial temperature throughout the
boundary layer is unity and hence less time is required to raise the temperature of the
sphere’s surface . Case (2-b) in which an initial linear temperature profile is assumed
(dimensionless temperature is zero at the sphere’s surface and unity at the boundary-layer
edge) required more time to reach a uniform surface temperature while the initial
temperature is zero throughout the boundary-layer resulted in the highest values of the

time required to attain a uniform surface temperature .



100.00 —

= " 3
Numean - :
10.00 £ |
1.00 b .
0.10 £ _:
- Pr=07 :
0_01 i 1 1 1 1 11 l — 1 1] 1 1 1 1.1
200 1000 10000

Re
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7.4 Temperature Profiles Inside the Sphere

Results of the temperature profiles inside the liquid sphere are presented in this
section . It is worth to mention that throughout the present work, the time increment
inside the sphere (liquid phase) and outside the sphere (gas phase) is kept at the same
value so that the values of the surface temperature obtained from the gas phase solution
can be used as boundary conditions at the sphere's surface at different times in the liquid
phase solution thus giving temporal temperature rise in the liquid phase . However, the
gas phase solution stops when the surface temperature approaches the free stream
temperature (T = 1) while the liquid phase solution continues beyond this time until the
sphere center is heated up to this temperature (within a certain tolerance) as will be shown

in the next paragraphs .

Figure 7-37 shows the transient development of the temperature distribution for a
given value of Reynolds number (Re = 500), viscosity ratio (p' = 1.5), Prandtl number
(Pr, = 10) and meridional angle (8 = 60°) at different time increments . The surface
temperature increases till it reaches a constant value at (t = 0.012) at which the gas phase
solution stops and the surface temperature is fixed at its uniform value of unity
However, liquid phase heating continues beyond this time till the steady state condition is
reached, i.e., when the sphere center is heated to the free stream temperature . For this

case, the dimensionless time required to reach the steady state is 0.4 .
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The effect of Reynolds number on temperawre distribution inside the liquid
sphere is shown in Fig. 7-38 at fixed values of viscosity ratio (u = 1.5). meridional
station (6 = 60°), and at a selected time (t = 0.09) . The figure shows that increasing
Reynolds number leads to higher values of the temperature at the same radial location
due to the increase of convective effects that are attributed to higher velocities at higher

Reynolds numbers .

Figure 7-59 presents the temperature distribution inside the sphere at different
meridional locations (angles) for a selected value of Reynolds number Re = 500, viscosity
ratio u’ = 1.5 at a selected time t = 0.009 where it is clear that higher values of the
temperature are corresponding to earlier meridional angles (measured from the front
stagnation point) since the higher surface temperatures are also corresponding to earlier
angles with a maximum value of (T =1) at the front stagnation point where the thickness
of the external boundary layer is zero and the surface temperature is equal to the free
stream temperature . The surface temperature decreases as we move along the meridional

direction as shown earlier leading to lower values of the temperature inside the sphere .

Figure 7-60 shows the effect of the viscosity ratio on the temperature distribution
inside the sphere for given values of Reynolds number, Re = 500, Prandtl number, Pr =
10, time, t = 0.009 and for four selected values of the viscosity ratio (u* = 1.01, 1.1, 1.5
and 5 respectively) . It is clear from the figure that lower viscosity ratios are

corresponding to higher velocities at the surface of the sphere as shown in the previous
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chapter and thus higher velocities inside the sphere are also expected leading to higher

convective effects increasing the temperature at all radial locations .

Figure 7-61 presents the combined temperature distributions both outside and
inside the sphere as time is proceeding to show the temperature profiles as they increase
with time from the edge of the external boundary layer up to the center of the sphere .
higher velocities in the gas phase boundary layer leads to a rapid increase in temperature

However, since the velocities in the liquid phase are much less in magnitude compared
to gas phase velocities, slower rate of temperature rise are encountered in the liquid
phase. It is worth mentioning that temperature distribution around the sphere takes about
twelve time steps to reach its steady state value in the external boundary layer whose
thickness is about (Z = 0.1) while 400 time steps are required to heat the sphere center

that is at a distance of (Z = 1) from the surface of the sphere .

7-5 Computer Run Time

It is worth mentioning that one of the remarkable advantages of the present
models is the short total computer run time . Run time for the gas-phase program does
not exceed 20 seconds on a personal computer (Pentium 100 Mhz) while the liquid phase
program has an average total run time of about 7 minutes . This may be considered a
considerable improvement in the models compared to the much more excution time
reported in the literature using super computers and workstations that may range between

several minutes in the gas-phase programs to several hours for the liquid-phase programs.
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Fig. 7-61 : Transient temperature profiles outside and inside
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CHAPTER VIII
CONCLUSIONS AND RECOMMENDATIONS

8-1 Conclusions

A simple, linearized and non-iterative finite-difference scheme has been
developed and successfully used to solve the boundary-layer equations governing the
laminar flows around and inside a spherical fluid sphere moving steadily in another
immiscible fluid . Two hydrodynamic similarity parameters are needed to describe the
external flow around the sphere; these are the Reynolds number (Re) and the interior-to-
exterior viscosity ratio (p‘) . An additional parameter of similitude, v" (the kinematic
viscosity ratio), is needed for the description of the flow inside the sphere . Results not
available in the literature have been obtained for circulating spheres at intermediate and
high viscosity ratios (i.e., with a strong coupling between the internal and external
flows) and large values of the external flow Reynolds number . The obtained results
clarify that each of p” and Re has significant effects on the flow characteristics both
inside and outside the sphere while the third parameter v ) has negligible effects on the
flow inside the sphere . Over the ranges 1.01 < p” < oo (solid sphere : u* > 100) and 100
< Re < 10000 results are presented for the meridional velocity profiles inside and outside
the spherical sphere, the interface shear stress, the external flow point of separation, the

sphere’s surface velocity and the drag coefficient .
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The energy equation was then solved for both gas phase and liquid phase (up to
the center of the liquid sphere) presenting the transient temperature distribution for both
phases . Three cases for the initial temperature distribution throughout the external
boundary layer were considered . First, a step change in dimensionless temperature
trom zero to unity is assumed at the surface of the sphere . Second, a linear temperature
profile across the thermal boundary-layer was considered as an initial condition . In the
third case, a step change in temperature from zero to unity was assumed at the boundary-
layer edge (i.e., initial temperature throughout the boundary layer is zero) . Higher
values of the temperature at a fixed time are corresponding to case 2-a and less values of
temperature are corresponding to case 2-b while the lowest values are corresponding to
case 2-c . The effect of the controlling parameters, namely Reynolds number and the
viscosity ratio on the temperature profiles and the time required to reach the steady state
condition was presented and discussed for each case in addition to the Effect of
changing Prandtl number on the temperature distribution . Increasing Reynolds number
or decreasing the viscosity ratio result in higher temperature at the same radial location
and thinner thermal boundary-layer for all cases . Case 2-a required less time to reach
the state of uniform surface temperature while case 2-b required more time and the
maximum time to reach uniform surface temperature was corresponding to case 2-c .
The effect of the hydrodynamic similarity parameters on Nusselt number was also
analyzed where increasing Reynolds number or decreasing viscosity ratio result in
higher values of Nusselt number . A comparison between the computed values of

Nusselt number with some data found in the literature was carried out in the reported
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range of Reynolds number and viscosity ratio obtaining a good agreement between the

present analysis and these values .

8-2 Recommendations for Future Work

It is recommended to extend the present work to account for :
1. variable properties (e.g. p. a, Cp, ... etc) . New values of these quantities that
change with temperature may be computed at each time step applying the 1/3 rule

discussed in Chapter 2 .

]

dynamics of the sphere motion (deceleration of the sphere and hence the Reynolds

number will decrease with time ) which is the typical condition in combustors .

(U8 ]

mass transfer at the surface of the sphere (radial velocity, W, at the interface would
not equal to zero) and the latent heat for vaporization may be utilized in the matching
boundary condition at the interface for solving the energy equation .

4. evaporation effect (surface regression of the sphere) .

5. high temperature and pressure environment .
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Appendix A

GAS PHASE GOVERNING EQUATIONS

A.1 Introduction

In this appendix , the governing equations for the case of flow around a liquid
sphere are derived . Navier Stokes equations for spherical coordinates as well as the
continuity equation are presented first and then the equations are simplified using the
assumptions stated in Chapter III . Equations are then transformed to orthogonal
curvilinear coordinates whose relation to spherical polar coordinates were given
originally by El-Bedeawi [9] . Nondimensional parameters are then introduced and the
equations were transformed using these parameters to a final dimensionless form . An
order of magnitude analysis then is carried out and the final boundary layer equations

were reached .

Then the same procedure is done for the energy equation reaching to a final
dimensionless form of the energy equation in the curvilinear orthogonal coordinate

system defined early in this appendix .

A.2. Continuity and Momentum Equations :
Starting from the Navier Stokes equations in the spherical polar coordinates for

axisymmetric flow (in r and 6 directions only) . It is to be noted that changes with respect
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to @ are absent as well as its velocity component v, (refer to the assumptions and

simplifications in Chapter III) . Therefore, equations can be written as follows ;

A.2.1 Equations in the Spherical Polar Coordinates

Continuity equation :

ow lou 2w ucote_

—t——t— =0

ér ro0 r r

where u : meridional velocity component (vg)

w : radial velocity component (v,)

Meridional Momentum equation

laz (ru) +i62 U, cotb du

ou udu uw -1dP r or? r? 962 r- 8_9
w—- + +Vv
or rdé® r prdb 20w u

r* 806 r’sin’0

Radial momentum equation

laz(rw)+l62w+cot9ﬁv_+
ow udw uz__—ld_P r 8r* r1 00> r* 00

+V
ér rée r p dr 20u 2w 2cotbu

(A. 1)

(A.2)

(A.3)
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Now transforming the equations to the curvilinear coordinate system shown in Figure 3.1

in Chapter III , we'd define ;

0 0 .

—=r— since x=rH

0 Ox

ox 2 _oox_ @
00 00 0x006 Ox
r=a+:z a—':_:l

0 i@:

zi__a_[i)_z[ij?_:_i (ij _&
r: o6r\or) 0z\0r)or 6z\08z) oz

Hence , continuity equation becomes

ow Ju 2w ucotB
-t —+—+ =0
0z 0O0x a+z a+z

meridional momentum equation becomes

1 62((2:+a)u)+62u+ cotd Ju
ou Ou uw -1dP z+a oz ox* a+zdx
wW—+u—+ S——v
0z 0x a+z p dx 2 dw u

a+z0x (a+z)*sin’0

and the radial momentum equation becomes

1 62((2:+a)w)+62 W, coth dw

ow ow u’ _—ldP_*_V z+a az* dx* a+zdx
0z Ox a+z pd:z 2 du 2w 2cotBu
a+z9dx (a+z)) (a+2)°

(A.4)

(A.5)

(A. 6)

(A.7)
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A.2.3 Dimensionless Form of the Equations

Non-dimensionalizing parameters

(A. 8)

Now, by nondimensionalizing the continuity equation we get,

u,ow 2U_,0U 2W_W U/Ucotd
— + +— +— =0 (A.9)
a 0Z aRedX a(l+Z2) a(1+2)

2 2w
6W+_6U+ +Ucot9=0 (A. 10)
0Z RedoX (+2) (1+2)

Meridional momentum becomes ;

UlouU 20U aU+U§ UW -2 dP 2pU}u

w=2"

a 6Z aRedX a 1+Z 2pdx aRe
U, 3'a(l+2)U  4U, 3°U (A.11)
y a’(1+2) o A a*Re* 8 .X°*
,2c0t0U, 89U _ 4U, oW _ Uu,
a*(1-Z)Red X a*(1+Z)Red X a’(1+Z)sin’6

ouU 2 oU UW dP 1
W——+U— + =- —
7} Red X 1+Z d X Re

2 62(1+Z)U+ 8 2°U
Re(1+Z) 82° Re’ 8 X*
L 4cotd U 8 oW 2U
(1+Z)Re* 38X (1-2Z)Re* 68X (1+Z)Resin’0

(A. 12)




while the radial momentum equation becomes ;

YN O _ 2
WU_OW U:6V+U~nb __lﬁii pU

a éZ aRe 0 X a l+Z2 2pdZ a

.vUB 5=a(1+2)W+ 4U 63W++ cot U, 8w (A. 13)
NERGEYS) 52 a’Re*d X* a*(1+2)62
4U, eu 20U, 2cotf UL,
" @'(1+Z)Red X a'(1+2)° a‘(1+2)° |
we . U_Z_ﬂ_U=—ldP+
cZ Red X 1+Z 2 d2Z
2 (1+Z)W 8 8w (A.14)
.| Re(1+2) 5z° ReaX
4cot6 oU 8 cU W _ 4UCotd

+ - - B - E 3 2
(1+Z)Re* 6 X (1+Z)Re*8X (1+2) Re’ Re(l+2)

A.2 Order of Magnitude Analysis for the Governing Equations

Re >>1 , 0<<l
U=s2200) , W=2%00)
o U,
z 2x 1
Z=—=0(8 . X= ~0(— A.15
a ©) ’ aRe (Re) ( )
d 0° )
—= O(R , ~~0(Re”
I (Re) 5 %7 (Re?)
a 2
—=0(1/8) , —=0(1/%
57 (1/8) 3 0(1/8?)

A.3.1 Order of Magnitude Analysis for the Continuity Equation :

2
GW aU 2w Ucote =0 (A. 16)

9

3Z RedX (+2) (+2)
/5 1/Re(Re) & 1

1 1 ) 1
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The third term in this equation has a lower magnitude (3) compared to the other three
terms O(1) and it can be safely be dropped . However, this term will be retained in the

equation since it would lead to a simpler solution algorithm for the continuity equation as

described in Chapter 3 .

A.3.2 Order of Magnitude Analysis for the Meridional Momentum

Equation
7 -
Wa_U+U._a_U+Lj_pK.=_ld_P+
cZ RedX 1+Z RedX
st 1t 8 1t P
o Re_l_ 1 Re |
Re 1/ Re
2 2+ 8 U ]
Re(1+2) 482Z°¢ Re’ 6 X*
L L1
+| Re 8 Re’ 1/Re’
4cotd OU 3 ow 2U
+ 2 * 3 - T il (A.17)
(1+Z)Re" 0 X (1+Z)Re" 3 X Re(l+Z)*sin’0
Lol L. 1/Re
Re® 1/Re Re" 1/ Re i
Therefore, it is obvious that : O (Re 82) ~1 or Re ~ 0(1/62)
o®) ~0()

Terms of order & and more can be safely dropped and hence the meridional momentum

equation becomes :

woU , 28U _-24dr 235'U

2 U 2 (A. 18)
VA RedX RedX RedZ?

or
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(8}

U (A. 19)

Zwiliu -2
dXY &z

2 cZ

Re 6U  oU _ dP

cX
At the edge of the boundary layer, meridional velocity component is U which is the
meridional component of the potential flow around a sphere and it is a function of x only
and hence its first and second derivatives with respect to Z are essentially zero .

Substituting in the momentum equation leads to

At the edge of the internal boundary layer (Z = ) we have

U . PR
EW.CL +U.6U - dP 0 L’ (A. 20)
G Z X dX ¢2z°
Then ,
U.aU __ dP (A.21)
0X dX

Finally, the meridional momentum equation becomes;

y8Y RendU ,-0U [ O°U (A.22)
cXxX 2 VA X A

A.3.3 Order of Magnitude Analysis for the Radial Momentum Equation

woW  y2 oW U _-1dP
07z Rec X 1+Z 2 dZ
g L8 1 P
8 Re 1 1 )
Re

2 63(1+Z)W+ 8 8*wW
Re(1+2) 02Z* Re’ 8 X*

1 3 1 )
.| Red® Re’ 1/Re’
4coth oW 8 ou 4W 4U Cot9
(1+Z)Re* 82 —(1+Z)Re2 X (1+2)* Re® —Re(l+Z)2 (A.23)
18 Lo 5

1/ Re

Re® 1/Re Re® 1/Re Re?



from which we get 1 =P/§ that indicates that the variation of pressure P in the
boundary layer is proportional to 3 and it can be neglected . Therefore, dropping the

terms of order 8 and higher order leads to safely dropping the whole equation .

A.4 Formulation of the Energy Equation Around the Liquid Sphere :
Energy equation in spherical polar coordinates can be written for incompressible

constant properties neglecting viscous dissipation term [77]

pC, %:k\?2 T +q° (A.24)

Where;
DT 8T 8T v, 8T v, T
—=——+V, +— +—
Dt ot dr r 00 rsin® 8¢
V2 T'=L,-§—(r2 £)+ 1 i[smeaT)+ . 1 "'T, (A. 25)
r-or or ) r’sinf 80 00 ) risin"® 8¢°

q" = Heat Genarated ( source term)

Assumptions :
0
Axisymmetric flow Vy = % =0 (A. 26)

Therefore, equation A.24 reduces to;

1 i(ﬁ ar‘j+
oC (a_T_H £+E.a_7’) oy o +q" (A.27)
P\lar T or r 08 1 a[_ aT')
- —| sin@
r* sind 80 20
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1 o ( 2ar‘)
. . . e A
(ar aT v‘,aT] rror\ ar g
+v, +— = +
at ér r 09 I & ( ar‘] pC,

Fsne ool 20

Now using the definitions in equation (A.4) and the nondimensionalizing parameters in

equation (A.15) we get ;

L.@.(zaf}
y 5T 5T rt oz 0=z "
(a—T+WUnOT LY rOT)=a +2 (A. 28)
ot dz r dx 1 5 ( 6T) pC,
—— r— | sin@r —
r-sin6 0Ox x
1 2 , 0T
o or 1) a|@rr e\t T
[L”+ orT +U5TJ=i z L4 (A.29)
U, at oz ox) U,| 1 a(. aT" U.pC,
— —| sin@r — ’
rsin@ 0 x 0x
Introducing the nondimensionalizing quantities :
O— L] ,) .
=X =T .z g 22 (A. 30)
T «-T, a aRe a

Using the same nondimensionalizing parameters as done for momentum and continuity

equations, the energy equation becomes;
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(u T T 7U6T]

- —+ W +
arU, ot acZ aRedX
(A.31)
0 ( 020 2.
a (1+2) acZ oz
i + qll'

C:

- s U,pC(T'=-T".)
2" a (. oT '
- - - sinBa(l +Z2) —
| a (1+Z)sinB Re” 0X 0X

Note that Reynolds (Re) is defined as : (2 U, a/ v) and Prandtl number (Pr) is

defined as :(v/at)

1
1 8T U3T o 08T 1 (IZ)GZ[(Z) )

+ — T —
RePr ¢t RedX 2 adZ RePr 4 1 ( aT)
(1+Z)sm9Re °0X 0X/ ]|

(A.32)

tee

N aq
C2U, pC(T - =T)

; (

(1+2) ]
18T . 8T Re. oT 1|(1+2°0Z
——+U—+—W—=— +S (A. 33)
Prd:r 86X 2 08Z Pr 4 1

| (1+2)sin8 RS a)(((1 D 65)_()

aqllee
2U,pC,(T,-T,)

where S (dimensionless heat generation term “ source term” ) =

With regard to the order of magnitude analysis, the second term in the previous

equation has the quantity (I/Rez) and since Reynolds number is in the order of (1/82)
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hence, 1/Re* ~O (8*) . Then. this term can be dropped . This is supported by the fact
that for boundary layer analysis, the longitudinal changes (with respect to X) are much

smaller than the lateral changes (with respect to Z) and hence can be neglected .

Then. energy equation reduces to :

10T yOT (Rep, 0T 1 [ t 9 ((1+2)3°Tﬂ+s (A. 34)

Pr o¢ 8X 2 8Z Pr (1+2)' a6z 0z
0 ,0T cT , 0°T
; o T =2(1+ +2) =~ .
Note; 3 Z((HZ) 3 Z) 2(1 Z)a 7 +(1+2) 37 (A. 35)

o(1) o(1/8) << o(1/8%)

Finally, the energy equation becomes;

Lﬂ.{. Uél + EWQ =
Pr ot X 2 éZ

LA (A. 36)
Pr 6Z-



Appendix B

LIQUID PHASE GOVERNING EQUATIONS

B.1. Equations in Spherical Coordinates :

Starting from the Navier stokes equations in the spherical coordinates .

Continuity equation :

;
ow 10u 2w ucotb , (B. 1)
or rdéb r r

Meridional Momentum equation

10%(ru) 1 3*u cotb du
- Tt Tt 57t
w6u+u6u uw -1dP r or- r- 06- r- 06

— et —=——— vV, (B.2)
or ré® r prdb 20w u
r: 86 risin’6
Now define ;
0 0 )
——=r— since x=r0
00 Ox
ox_, o _80x 0
o0 00 0x086 dx
or
==z —=-1 .3
r=a 37 (B. 3)
0 _00z__ 08
or d8zor oz

i __«z.(_a_)_i(ijz i(_i](_l)_ o
or’ 8r\or) 6z\8r)dr 08z\ 8z 9z*

Hence, continuity equation becomes

_6w+§£+ 2w+ucot9=0 ®. 4)

0z O0x a-z a-z

and the meridional momentum equation becomes



8% u 2 du 8*u coth du

- 5 - ')+ .
du ¢u uw -1dP 8z~ a-zdz ox- a-z Ox .
A A L. S (B. 5)
0z ¢x a-z pdx | 2 8w u

a-z dx (a—z)*sin* B

It is worth mentioning that from now on, the velocity components and the
temperature of the liquid phase will have the subscript "¢' in order to be distinguished

from the gas phase parameters . Introducing the non-dimensionalizing parameters:

. 2 2
U=-t | W=tz =2 x=2 | pe-2Un2
U, - U, - a aRe Vg
* ) (B‘6)
U‘H=ui : R=-r° 7P= p2
Ue aRe Py U

Ui oy, 2U2 8U, U UMW, -1 dP 2p,Ul
— =U + — +

‘"a 2z, 'aRe dX, a 1-Z, p, dX, aRe
U, 2'U, u, 2 U, 4U, U, (B.7)
a’ 9z} a* 1-Z,3Z, a’Re’ 56X
Y 2coteu, suv, au, oW, U,u,

+ —
a’(1-Z,)Re X, a?(1-Z,)ReéX, a’(1-Z,)%sin’0

ou, . 2 oU, UW, -1 dP 2p,

‘8z, ~RedX, 1-Z, p, dX, Re
vy *U, vy 2 90U, 4V *u, (B. 8)
v,{ Usa9z? U,al-Z,0Z, U_,aRe® 8X,’
Z . '.Zcotevg ou, 4vg oW, UlvB

+ + -
aU,(1-Z,)Re 60X, aU,(1-Z,)RedX, aU_(1-Z,)%sin’0
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(¥4
W

% W, =2 2
w8V 22U UW. -2 dP 2p,
" 0Z, RedX, 1-Z, Re dX, p,
23y, 4 oU, 8 &’ u, (B.9)
.| Redz? Re(1-Z))6Z, Re’oXx.?
+V :

4cotv, 5U, 8 éW, 2U
L, L
(1 Z,)Re* 90X, (1-Z,)Re’ 83X, Re(1-Z.)*sin’0|

While, by nondimensionalizing the continuity equation we get,

_U,0W, 2U,0U, 2U, W, U,U cotd

- B. 10
T2 90X, aRe oX, a(-Z) a(-Z,) (B-10)

ow, 2 6U 2w, U, cot®
oW, 20 cotd (B. 11)
0Z, RedX, (1 Z, ) (1-2))

B.2 Order of Magnitude Analysis for the Governing Equations

E
g

U= =0(1 s W=—=0(3
1) T (3)

Ua ® (B. 12)

z 2x 1 )
=—- 8 N X:—zo —_—

a 0() aRe (Re)

B.2.1 Order of Magnitude Analysis for the Continuity Equation :

W, 2 ;o 2W,
0 ,+__6U‘ N U cot® 0 ®.13)
0Z, RedX, (1-Z, ) (1-Z)

0/ 1/Re(Re) d 1

1 1 3 1
The third term in this equation has a lower magnitude (8) compared to the other three

terms O(1) and it can be safely be dropped . However, this term will be retained in the
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equation since it would lead to a simpler solution algorithm for the continuity equation

as described in Chapter III .

B.2.2 Order of Magnitude Analysis for the Meridional Momentum Equation

ou. 2 0U, UW -2 dp 2p,
"W;— Ul——:———-i- = ——— +
ez, RedX, 1-Z. RedX, p,
st Lt s8_L_P
5 Re | 1 Re 1
Re 1/ Re
223U, 4 6U;+863U; i
Re 3z, Re(1-Z,)8Z, Re’ X,
IR U N L1
-y Re §2 Re 3 Re’ 1/Re’
. 4COt9Vg7 eu, + 8 _ oW, _ ZU,’ (B. 14)
(1-Z,)Re* éX, (1-Z,)Re’ 86X, Re(l-2Z,)*sin’®
S LI 1/ Re
Re- 1/Re Re* 1/Re

Therefore, it is obvious that :

O (Re &) ~1 or  Re~O(1/8)

O (P)~0(1)
Terms of order § and more can be safely dropped and hence the meridional momentum

equation becomes :

2 0 =2 o 2 2 i S
—w, 29y, 2 80 2 P By 120U, (B. 15)
1 a9z, Re X, Re dX, p, Re 67,°
-~ 9 2
_Re ’0U5+ L5U5=_ dP 2Py 0" U, (B. 16)
2 ‘oz, axX, dX, p, 8z}

At the edge of the boundary layer, meridional velocity component is Uy which is a

function of x only and hence its first and second derivatives with respect to z are
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W
(9]

essentially zero . Therefore. applying the momentum equation at the edge of the

internal boundary layer (Z; = J) is expressed as;

- ATt 2 2
—-EWHOUH%—UH C“UH - dP pg +V. 0 U’H (B. 17)
2 0z, cX. dX, p; oz’
Then,
eu dP 2p,
g —t=- 3 (B. 18)
0X, dX, p
Finally, the momentum equation becomes;
~ 2
U;GU;__R_eW'aU =UH CUH +V' 0 U’,‘ (B. 19)
'ax, 2 ‘oz 3X, 2z,

B.3 Formulation of the Energy Equation Inside the Liquid Sphere

Energy equation in spherical coordinates is written as follows :

8T AT 4OT' {1@(,%‘] 1 a(. ar.‘ﬂ
+— =0 ——|r —— |+ —| sin@ —

W =
ot or r 06

rior or) r’sin® 60 0
(B. 20)
+ 4
p.C,
Following the definitions in equation (B.3) we get ;
10 0T ]
. . . 2 (a—zz) +
aT; aT; aTl (a—zl)- 62, az, quv
=W, +4, =q, N (B.21)
ot 0z, 0 x, 1 o [ . oT p,C,
+ — sinf r
L (@a—-z,)"sinB O x, ox,

In addition to the non-dimensionalizing parameters in equation (B.6) ,we further define
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w
(=

T T'—T.n a;t. B 9
- T‘n‘T’n ’ a2 ( .-2)

Then equation (B.21) becomes ;

T:o‘;Tua'OTE_WUnTw"‘ToaT;_i_Tao_TozU’Um UTZ=
a ot ' a 0Z a Re 04X,
1 a8, 0T . . ]
Y a” I“Z, - T :o_Ta + .
a’(1-2.)? az,( (1-2) ab‘Zl( )] (B.23)
o, ) . + qC
2 x = o . 2 a 7 !
ET T, ). 0 (asme(l—Z.)——— T] P
 Rea™(1-Z,)"sin6 0 X, “aRed X,
o, 07 0T, 2U0T «a,
' W —t ———=—x
U,a ot 0Z, RedX, U,a
1 @ , 0T,
ce| (1= Z,) 222 |+ :
(1-2)' 82 (( ) az!) 7" (B.24)
+ . .
4 - [ ) a]j) p.C(T--T U,
- - sin@ —
| Re“(1-Z2,) sin8 8 X, 90X,/
However, it should be noted that
Re=2U""a and hence, Rea, =—1-—
v 2U,a Pr
Therefore, the energy equation (B.24) becomes ,
v 3T _, RedT 0T v
Pr, 0t "~ 20Z dX, Pr
1 d oT, _
—i(-Z 2_t]+ .25
(1-2)* 82, (( ) oz, Reg"" ®.23)

+ - {]
4 0 ( . az:) 2p!Cp(T°°—T°)U:n
sin@ —

Re 2(1-Z) sind 9 X, a7,



The last term in the right hand side of the previous equation represents the
dimensionless source term and it will be set to zero for the case of non-combusting, non-
evaporating droplet . Besides, it was proved by other investigators [47, 50, 51, 55, 36,
58. 63-65] that due to the internal motion inside the sphere, the changes of temperature
in the meridional directions are neglected compared with the changes in the radial
directions . It was also considered that the isotherms coincide with the streamlines .
However, further investigations of the previous equations for the range of intermediate
to high Reynolds number show that the value of the second term in the right hand side
will be very small since it is divided by (Rez) and hence it can be safely dropped and

equation (B.25) becomes :

l'_.a_I;_W,EEﬂ.,.U!_.aY: =y i[(l_z!f éi) (B. 26)
Pr,or 20z '9X, Pr|dz oz,

Now, considering the right hand side of this equation and noting that :

P 23"1"!__262’1“,81‘!8_2
[ﬁ((l—Z;) _a—Z—H_(l Z) 5+ (1-Z,)

) 0Z/7° 0Z,0Z,
, O°T aT,
=(1-2Z)> Lot 1-2,
1-Z) 222 oz, (1-Z)

we obtain :

1 ) ) a'r,) *T, 2 0T
— I—Z' a = —— - .2
[(1_25)2 0Z, (( 2 0z, ] 8z} (1-2) az, (®-27)
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Finally. the energy equation becomes :

€« - . 2 o)
v eT _,, RedL . 3T ;_[a T 2 ar} (B.28)
T,

P, or ' 208Z ‘dX P |az® (-2Z)oZ

Or:

- - ’ ) - . 2
v ar LWRe 2 ]or 8L v &1 (B.29)
Pr, 6¢

T +U - 2
"2 Pn(1-2))3z T EX P 82



Appendix C

FLOW CHARTS OF THE PROGRAMS

C.1 Flow Chart of the Gas Phase Program

Read Re, vis. ratio,
N, M, dz, Pr

Initialize arrays at stagnation line, free
stream velocities and intial temperature

v

Initialize temperature distribution at the
surface and in the boundary layer

\

j=2,L=2
Y

@——b Solution of the meridional momentum

equation matrix

U<0

l no
No Yes

M= 18007

Solve the Continuity equation matrix

! v

j=i-1
m = 1800

write
separation
angle

Calculate the vorticity

A

Calculate the potential velocity
components at B.L. edge

v

Calculate velocity tangent and compare
with potentiaf flow




END

no

angents are matching 2

Calculate shear stress and
friction coefficient

Y

Solve energy equation matrix and
calcuiate T, Nu

Y

no

n=n+2

0-T(n,j2)>

yes

Replacement of data to next meridional step

Y

j=j+1

calculate average Nu and drag coefficient

!

Replacement of temp. data to next time step

No Yes
1-Tav>e | L=L+1

260



C.2 Flow Chart of the Liquid-Phase Program

Read Re, vis. ratio,
N, M, dz, Pr

l
\ 4

Read data files of surface velocity and
traansient surface temperature

v

Caiculate potential velocity components
of Hill's vortex

y

j=2,L=2

2

@—> Calculate actual vortex strength and

recalculate vortex velocity components

Soive meridional velocity
matrix

U<0

lNo

Solve the Continuity equation
matrix

!

Calcuiate the vorticity

Cafculate velocity tangent and compare
with vortex component

i=j-1
m = 1800

write
separation
angle



no

angents are matching 2

Solve energy equation matrix and
calculate Tup to sphere's center

no

n=n+2

1.0-T(nn,j,2)>e

l yes

Replacement of data to next meridional step

,15+1

Replacement of temp. data to next time step

No Yes

END L=L+1
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C.3 List of the Gas-Phase Program

88
79

80

902

903

DIMENSION U(501,2),W(501,2),A(501),B(501),C(501)

1 ,WP(501,2),UP(501,2), TX(150), TEM(501,180,2) FX(150)
1 ,D(501),E(501),F(501),DRDX(2),R(2),DX(501)

character*8 time@

print *'program starting execution at : ', time@()
open(15 file="Input' status='OLD')
open(2,file='srf.dat',status="UNKNOWN')
open(4,file='u.dat',status="UNKNOWN")
open(5,file="tau.dat’,status="UNKNOWN")
open(16,file='cd.dat',status='UNKNOWN')
open(7,file='vort.dat’,status= UNKNOWN")
open(8,file='w.dat' status="UNKNOWN")
open(9,file="t.dat',status="UNKNOWN'")
open(10,file="TSURF .dat' status="UNKNOWN")
open(11,file="TT.DAT',STATUS="UNKNOWN)
open(12,file='nusselt.dat',status='unknown')
read(15,*)DZ,dzI,RE,N,M, VISR FACT,IN,DT,PR,ISTEP,akk K
R(1)=0.0

L=1

DO 88 J=1,180

TEM(1,J,1)=0.

DO8I=1N

W(,1) = LA(1.+(I-1)*DZ)**3)-1.

U{L,1)=0.0

TEM(,1,1)=1.0

CONTINUE

I=1

TEM(1,J,2) = 1.0

G=0.0

J=1

=1

IF(K.EQ.1) THEN

DO9%021=1N

D0 902 J=2,130

TEM(LJ,1)=1.0

ELSEIF(K.EQ.2) THEN

DO 903 I=1N

DO 903 J = 1,130

TEM(LJ,1) = (I-1)/(N-1)



81

34

90

105

106

107

110

115

120

w
W

ENDIF
=1
DTHETA = 3.1415926536/M
DX(1) = 2. *DTHETA/RE
W(1,2) =0.0
DRDX(2) = COS(G+DTHETA)
R(2) =2.* SIN(G+DTHETA)RE
Joo=I+1
IF(JJ.LT.J) JJ=J
TEM(1,2,1)=0.
IF(L.EQ.1) TEM(1,2,2)=0.
W(N+1,2) = -(1.-1./(1+N*DZ)**3)*COS(G+DTHETA)
U(N+1,2) = (1.+1./(2.*(1+N*DZ)**3))*SIN(G+DTHETA)
UN+2,2) = (1.+1.A2.%(1.+(N+1)*DZ)**3))*SIN(G+DTHETA)
DO 90 I =2,N+1
DX(D)=(1.+DZ*(I-1))*DX(1)
DO 1051 = I,N+1
C(I) =-(W(L1)*RE/(4.*DZ)+1./(DZ**2))
DO 106 I=1,N+1
A = U, 1YDX(I)+2.(DZ**2)
DO 107 I=1,N+1
B(I) =W(,1)*RE/(4.*DZ)-1./(DZ**2)
DO 110 I=LN
D(I) = (U(L, 1)**2)/DX(I)+(9./16.) * RE * sin (2*(G+DTHETA))
A(1) = A(1) - C(1) *(VISR-1.)/VISR
B(1) =B(1) + C(1)/ VISR
D(N) = D(N) - BON)*U(N+1,2
E(1) = A(1)
F(1) = D(1)/E(1)
DO 115 I=2N
E(I) = A(D-C(I)*B(I-1)/E(I-1)
F(I) = (DA)-CAY*FI-1))/E(D)
U(N,2) = F(NV)
DO 120 I = 1,N-1
I=N-II
U(®1,2)=F(0)-BD)*U(I+1,2)/E(D)
IF(U(1,2).LT.0.0)GO TO 270
CONTINUE
IF(L.EQ.1) THEN
WRITE(2,50) J-1,U(1,2)
FORMAT (5X,14,5X F12.4)
IF(J.EQ.IN) WRITE(4,55) (DZ*(I-1),U(1,2),I=1 N+1)
FORMAT(2(10X,F10.4))
ENDIF
DO 125 I=I,N

264



901

A(D) = RE/(2.*DZ)
B(I) = -RE/(2.*DZ)
CCOT = COS(G+DTHETA)/SIN(G+DTHETA)
DO 130 I=1,N
D(I) = (U(I+1,2)+U(L,2)-U(I+1, 1)-U(L 1)(DX(D)+DX(1+1))
1 +U(I+1,2)+U(L,2)*RE*CCOT*0.25
W(2,2) = D(1)/B(1)
DO 135 [=3.N
W(L2) = (D(I-1)-A(I-1)*W(I-1,2))/B(I-1)
IF(L.EQ.1) THEN
IF(J.EQ.IN) WRITE(8,55) (I*DZ,W(I,2),I=1,N)
ENDIF
DUDZ = (-U(3,2)+4.¥U(2,2)-3.*U(1,2)) / (2.¥DZ)
VORT = (U(1,2)*DUDZ -(2./RE)*(W(2,2)-W(2,1))/DX(1))
VORT! = VORT / (RE**0.5)
[F(L.EQ.1) THEN
WRITE(7,901) J-1,VORT,VORT]1
FORMAT(5X,14,5X F12.7,5X F12.7)
ENDIF
WP(N-1,2)=-(1.-1./((1.+(N-2)*DZ)**3))*COS(G+DTHETA)
WP(N,2) =-(1.-1./((1.+(N-1)*DZ)**3))*COS(G+DTHETA)
UP(N-1,2)=(1.+1./(2.*((1.+(N-2)*DZ)**3)))*SIN(G+DTHETA)
UP(N,2) =(1.+1./(2.*((1.+(N-1)*DZ)**3)))*SIN(G+DTHETA)
SO =0.0
TEM(1,1,1) = 1.0
IF(L.EQ.1) TEM(1,J,1) = 0.0
TEM(1,1,2) = 1.0
TEM(N+1,J,1) = 1.0
TEM(N+1,J,2) = 1.0
[F(L.EQ.1) THEN
M=2
ELSE
M=1
ENDIF
DO 303 I=ILN
A(D = (1/DT)+(2.0/DZ**2)+U(I,2)*PR/DX(T)
DO 304 I=II,N
B()=(RE*PR*W(L,2)/(4.0*DZ)) - 1./(DZ**2)
DO 305 I=I,N
C(I) = (-RE*PR*W(I,2)/(4.0*DZ)) - 1./(DZ**2)
DO 306 I=II,N
D(D) = TEM(LJ, 1)/DT+U(L,2)*PR*TEM(L,J-1,2)/DX(1)+SO*PR
IF(L.GT.1) THEN
A(1) = A(1)-C(1)*(1-AKK)/AKK
B(1) = C(1)/AKK + B(1)
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ENDIF

D(N) = D(N) - B(N)

E(II) = A(ID)

F(I1) = DII/E(1I)

DO 715 I=II+1,)N

E(I) = A(D-C(H*BI-1)YE(I-1)

F(I) = (D(D-C(D)*F(I-1))E(T)

TEM(N,J,2) = F(N)

DO 720 II = [,N-1I

[=N-II
TEM(1,J,2)=F(I)-B(D)*TEM(I+1,J,2)E(I)
CONTINUE

ANU = (1./DZ)*(TEM(2,J,2)-TEM(1,],2))
TEST = ABS(1.-TEM(N,J,2))
FORMAT(5X,I4,5X,F12.5)

[F(J.EQ.IN) THEN

write(9,*) 'L =",

WRITE(9,55) (DZ*(1-1),TEM(,J,2),I=1,N+1)
WRITE(11,55) (L-1)*DT, TEM(ISTEP,J,2
ENDIF

WRITE(12,56) J,LANU

DUB =2.* U(N,2)-(U(N+1,2)- U(N-1,2))/2.
DUP =2.*UP(N,2)-(U(N+1,2)-UP(N-1,2))/2.
PERU = ABS(DUB-DUP)/ABS(DUB)

DWB =2* W(N,2) - (W(N+1,2)- W(N-1,2))/2.
DWP =2*WP(N,2) - (W(N+1,2)-WP(N-1,2))/2.
PERW = ABS(DWB-DWP)/ABS(DWB)

G =G+ DTHETA

I[FJ.LT.6) GO TO 160

[F(PERU.GT.0.005) GO TO 180

TX0 =(-U(5,2)+4.¥U(2,2)-3.*U(1,2)) / (2.*DZ)
TX(J) = 4.*R2)*(x0)*(SIN(Q))

FX(J) = TEM(1,1,2)*SIN(G+DTHETA)/(1.-COS(108*(22./7.)/180.))
T =(TX0)*((2./RE)**0.5)

TTX = T *(2.%%0.5)

IF(L.EQ.1) WRITE (5,6) J-1, T,TTX
FORMAT(10X,14,2(10X,F12.5))

DO 200 1= 1, N+1

U(1,1)=U(,2)

W(,1)=W(,2)

R(1) =R(2)

GO TO 84

N =N+2

G=G-DTHETA

DO 141 I=NN+1
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UL D=(1.+1./2.*(1.+(I-1)*DZ)**3))*SIN(G)
W, 1) =-(1.-1./(1.+(1-1)*DZ)**3)*COS(G)
GO TOS3

[F(M.EQ.360) GO TO 281
[F(M.EQ.1800)GO TO 295

AW =TX(J-1)

DO 2211=2]J-2

W= (I+1)2

AW = AW +(2.+2 *(I+1-IW*2))*TX ()
CW = AW*DTHETA/3.

TW =FX(J-1)

DO 777 1=2,J-2

W=+1)2

TW =TW + (2.+2 *(I+1-IW*2))*FX(I)
TAVE = TW*DTHETA/S.

M = 1800

GO TO 81
G1=(G)*180./3.1415926536

GG=G

AW=TX(J-1)

DO 220 1=2,J-2

IW=(1+1)/2
AW=AW+(2.+2.*(I+1-IW*2))*TX(I)
CW=CW+AW*DTHETA/3.
IF(L.EQ.1) WRITE(16,508) CW
FORMAT(18X,'CD ="F16.10)

TW =FX(J-1)

DO 555 1=2,J-2

IW=_d+1)2

TW =TW + 2.2 *(I+1-IW*2))*FX(I)
TAVE = TAVE+TW*DTHETA/3.

DO S11J=1J)

DO S111=1, N+l

TEM(1,J,1) = TEM(1,J,2)
WRITE(10,56) (J,TEM(1,],2),J=1,1])
IF(TEM(1,60,2).GE.0.99) THEN
write(6,290) G1

FORMAT(2X,'THE APPROXIMATE SEPARATION POINT AT',3X,F6.2)

WRITE(6,*) 'STEADY STATE CONDITION REACHED

GOTO 300
ELSE
L=L+1
N=20
M=180
GO TO 79



ENDIF
300 WRITE(6,509)
write(6,*) 'program ending execution at ', time@()
509 FORMAT(10X,//////// END OF RESULTS ////iI")
STOP
END

C.4 List of the Liquid-Phase Program

DIMENSION U(1001,2),W(1001,2),A(1001),B(1001),C(1001),D(1001)
1 ,UP(999,2),US(1,200),CR(150), TEM(1001,140,2)
1 ,E(1001),F(1001),DX(1001)

OPEN(2,FILE='SURF.DAT',STATUS='OLD"
OPEN(4,FILE='UIN.DAT',STATUS='unknown')
OPEN(S,FILE="'WIN.DAT',STATUS='unknown')
OPEN(7 file="TPT' status="old")
OPEN(S,FILE="UHILL.DAT',STATUS="UNKNOWN")
OPEN(9,FILE='CR. DAT',STATUS="UNKNOWN")
OPEN(10,FILE="TIN.DAT',STATUS='"UNKNOWN")
OPEN(11,FILE='UH1.DAT',STATUS="UNKNOWN")
OPEN(14,FILE="TSURF.DAT',STATUS='OLD")
OPEN(15,FILE=1J STATUS='OLD")
READ(7,*)DZ,DZL RE N, M, VISR, FACT,IN,DT,PR,ISTEP
write(10,*)DZ,DZL,RE,N,M, VISR, IN,DT,PR,ISTEP
fact = 5000.
DO 20 I=1,200
READ(2,*) K,US(1,])
IF(K.EQ.0) GO TO 30

20 CONTINUE

30 kk=i-1
CONTINUE
WRITE (6,*)NUMBER OF MERIDIONAL STATIONS ='KK
READ (15,*)JJ,.LL

56 FORMAT(5X,14,5X F12.5)

L=1
do 500 j=1,jj
do 500 i=1,999
tem(i,j,1) =0

500 tem(i,j,2) =0

89 IF(L.GT.)GOTO87
DO 111 =117

111 READ(14,56) J,TEM(1,],2)

87 DO8I=1N
W(,1)=0.0
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38
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110

115

UL1)=0.0

CONTINUE

G=0.0

M = 180

N =20

T=1

DTHETA = 3.1415926536/M

DX(1) = 2.*DTHETA/RE

W(1,2) =0.0

] =3+

IF(J.GT KK) GO TO 300

U(1,2) = US(L,J)

UHS = 1.5 * SIN(G+DTHETA)

CR(J) = U(1,2)/UHS

DO 88 [=20,999

W(I,2) = 1.5*CRQ)*((1.-(I-1)*DZL)**2)  *COS(G+DTHETA)
U(L,2) = -1.5*CRUI)*(1.-2.%(1-(I-1)*DZL)**2)*SIN(G+DTHETA)
UN+1,2) =-1.5*CRJ)*(1.-2.*(1-N  *DZL)**2)*SIN(G+DTHETA)
U(N+2,2) =-1.5*CR(J)*(1.-2.*(1-(N+1)*DZL)**2)*SIN(G+DTHETA)
W(N+1,2) = 1.5*CR(J)*((1.-N*DZL)**2)*COS(G+DTHETA)
DO 90 I = 2,1000

DX(I)=(1.-DZL*(I-1))*DX(1)

DO 1051=2N

C(D) =(W(L1)*RE/(4.*DZL)-FACT/(DZL**2))

DO 106 I=2,N

A =U(,1YDX(I)+2.*FACT/DZL**2)

DO 107 I=2,N

B(I) =(-W(I,1)*RE/(4.*DZL)-FACT/(DZL**2))

DO 110 I=2,N

Q = (9./4.)*CR)*(1.-2.*(1-N*DZL)**2)**2

P1 = (SIN(G+DTHETA))**2*(CR(J)-CR(J-1))DX(I)

P2 = RE * CR(J) * SIN(2*(G+DTHETA))/(4.*(1-N*DZ))

P =P1+P2

D(I)= Q * P + (U(L, 1)**2)/DX(1)

D(2) =D(2) - C(2) * U(1,2)

D(N) =D(N) - B(N) * UN+1,2)

E(2) = AQ2)

F(2) = D2VE(2)

DO 115 I=3.N

E(I) = A(D)-C(1)*B(I-1)/E(I-1)

F(I) = (D@)-CA*FI-1))/E(D)

UN,2) =F(N)

DO 120 11 = 1,N-2

[=N-II

U(L2)=F(D)-BM)*U(I+1,2)/E(T)

269
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CONTINUE

[F(L.EQ.1) THEN

IF(J.EQ.IN) WRITE(4,55) (DZL*(1-1),U(1,2),I=1,N+2)
ENDIF

FORMAT(2(10x,14.6))

DO 125 I=],N

A(I) =RE/(2.*DZL)

B(I) =-RE/(2.*DZL)

CCOT = COS(G+DTHETA)/SIN(G+DTHETA)

DO 130 I=1.N

D(I) =-(U(I+1,2)+U(L,2)-U(I+1, D-UL D)/(DX(I)+DX(I+1))
-(U(I+1,2)+U(1,2))*RE*CCOT*0.25

W(2,2) = D(1)/B(1)

DO 135 =3,N

W(,2) = (D(I-1)-A(I-1)*W(I-1,2))/B{-1)

[F (L.LEQ.1) THEN

[F(J.EQ.IN) WRITE(5,55) (DZL*(I-1),W(L,2),I=1,N)
ENDIF

UP(N-1,2) =-1.5*CR(J)*(1.-2.*¥(1.-(N-2)*DZL)**2)*SIN(G+DTHETA)
UP(N,2) =-1.5*CR(I)*(1.-2.*(1.-(N-1)*DZL)**2)*SIN(G+DTHETA)
DUB =2.* U(N,2)-(U(N+1,2)- U(N-1,2))/2.

DUP =2 *UP(N,2)-(U(N+1,2)-UP(N-1,2))/2.

PERU = ABS(ABS(DUB)-ABS(DUP))/ABS(DUB)
[FJLT.7)GOTO 119

[F(PERU.GT.0.009) GO TO 180

CONTINUE

G=G+DTHETA

tem(1,1,1)=1.

tem(1,1,2) =1.

DO 1951=2,999
C(D=(-2./(1.-I-1)*DZL)+RE*PR*W(I,2)/(2.*s))/(2.*DZL)-1./(DZL**2)
DO 196 I=2,999

A(D= (1./DT)HU(I,2))*PR/(DX(I)*s)+2./(DZL**2)

DO 197 1=2,999
B(I)=(2./(1.-(1-1)*DZL)-RE*PR*W(1,2)/(2.*s))/(2.*DZL)-1./(DZL**2)
DO 198 1=2,999
D(D=(U(1,2)*PR*TEM(LJ-1,2))/(DX(I)*s)+TEM(,J,1/DT
D(2)=D(2)-C(2)*TEM(1,]-1,2)

A(999)=A(999)+B(999)

E(2)=A(2)

F(2) =D(2)/E(2)

DO 515 I=3,999

E(I) = AD)-CO*B(I-1)YE(I-1)

F(I) = (DA)-CO)*FI-1))E(D)

TEM(999,],2) = F(999)
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DO 52011 = 1,999-2

[ =999-11
TEM(LJ,2)=F(D)-B(I)*TEM(I+1,J,2)/E(])
CONTINUE

TEM(1000,J,2)=TEM(999,J.2)

[F(J.EQ.IN) THEN

if(l.eq.6) WRITE(10,55) (DZL*(I-1), TEM(L,J,2),I=1,1000,50)
if(l.gt.1l) then

[F(mod(l,50).eq.0) THEN

WRITE(10,*)'L="L

WRITE(10,55) (DZL*(I-1),TEM(I,J,2),I=1,1000,50)
WRITE(10,55) DZL*(1000),TEM(999,J,2
ENDIF

else

if(mod(l,3).eq.0) then

WRITE(10,*)'L="L

WRITE(10,55) (DZL*(I-1), TEM(L,J,2),I=1,500,2)
endif

endif

endif

DO 2001=1, N+l

U, 1)=U(,2

WD) =W({,2

GO TO 84

N =N+2

G=G-DTHETA

DO 141 I=N,N+1

U(L,2) =-1.5*CR(J)*(1.-2.*(1.-(I-1)*DZL)**2)*SIN(G+DTHETA)
W(1,2) = 1.5*CR(*((1.-(I-1)*DZL)**2)*COS(G+DTHETA)
GO TO 83

IF(M.EQ.360) GO TO 281

IF(M.EQ.1800)GO TO 295

M = 1800

GO TO 81

G1 =(G)*180./3.1415926536

L =L+1

I[F(L.GT.LL) THEN

DO 1171=1J1]

TEM(1,I,1) = TEM(1,1,2

ENDIF

IF(TEM(900,60,1).GT.0.9) THEN

GO TO 301

ELSE

DO 201 J=1,11

DO 201 I=2,1001
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TEM(L,J,1) = TEM(LJ,2)

GO TO 89

ENDIF

write(10,*) 'L ="1

write(10,55) (DZL*(I-1),TEM(],in,2),I=1,1000,50)

WRITE(6,509)

FORMAT(10X,///{/{///l END OF RESULTS, STEADY STATE REACHED /////I")
STOP

END



VITAE

Name : Mohamed Abdelkarim Mohamed Antar

Date of birth  : 18" August, 1963

Marital status : Married ( + one child)

Education : B.Sc. in Mechanical Engineering. Alexandria University, Egypt.
with degree of honor, June, 1985 .
Worked as a teaching assistant in Mechanical Engineering
Department, Tanta University, Egypt .
M.Sc. in Mechanical Engineering, Alexandria University, Egypt,
September, 1989 .
Joined KFUPM as a Ph.D. student, end April 1991 .

Ph.D. in Mechanical Engineering, KFUPM, January, 1996 .



