Efficient Algorithm for Collision Detection and
Path Planning for Robotics Application

by

Mohammad Dikko S. Aliyu

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

SYSTEMS ENGINEERING

June, 1994

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material bad to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Informatien Company
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313:761-4700 800/521-0600

Order Number 1360404

Efficient algorithm for collision detection and path planning for
robotics application

Aliyu, Mohammad Dikko S., M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994

UM

300 N. Zeeb Rd.
Ann Arbor, MI 48106

—e

ds’ei%ia%i#si#eiisﬁ%ﬁsﬁs@s&L#i%i#&i%&i%i%%%%&iﬂ%

el el Jel el el el e el el el el e el el bl el el el el el el bl el el it be

L

13

Efficient Algorithm for Collision
Detection and Path Planning for

Robotics Application
BY

Mohammad Dikko S. Aliyu

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

Requirements for the Degree of

MASTER OF SCIENCE

In
Systems Engineering

June, 1994

WWWWWWWWWW&

DHAHRAN, SAUDI ARABIA %
In Partial Fulfillment of the E
%

T& o

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis , written by Mohammad Dikko S. Aliyu under the direction of his Thesis advisor
and approved by his Thesis Commitee, has been presented to and accepted by the Dean of the

College of Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER

OF SCIENCE.

)
‘ . - -,
T [ORI

~—

Dr. Khaled Saleh Al — Sultan (Advisor)
Dr. Mahmut Reyhanoglu (Member)
Dr. M ohaﬁh’w/i/ﬂ Ben Daya(Member)

—

v

et Ll

Dr. Shokri Z. Selim (Member)

-

oo el b s

Chairman Systems Engineering -~

i \
oAl .

e .
Dean, College of Graduate Studies

€ & (AR
+

Date .

e

¥

ACKNOWLEDGEMENTS

After praise and thanks to Allah (SWA) for his help and beneficence in this thesis, and salutations
to his noble prophet Muhammad (peace and blessings of Allah upon him), I wish to express my
profound gratitude to my advisor, Dr. Khalid S. Al-Sultan, for the initiation, guidance, support
and encouragement that he provided throughout all the stages of this thesis.

I am greatly indebted to Dr. Shokri Z. Selim, Dr. Mohammad Ben Daya, and Dr. Mehmut
Reyhanoglu for the significant contribution, untiring guidance and encouragement that they have
provided in this thesis.

The encouragement and good wishes of the following friends in Systems Engineering Dept.
and other Depts. is also worthy of acknowledgement. They are: Mr. Wasim Al-Baroudi, Mr.
Samir Al-Amer, Mr. Imran Tasadduq, Mr. Asim Humayun, Mr. Farooq Anjum, Mr. Saleh Al-
Rumaih, Mr. Ma’aroof Khan, Mr. Jibril Odogba, Mr. Moh’d Al-Fawzan, Mr. Anwarul Islam,
Mr. Ammar Abdu, Mr. Farruk Pulak, Mr. Anas Vaqar, Mr. Essam Telmesani, Mr. Azhar
Sayeed, Mr. Mueez Irfan, Mr. Javeed Nizami, Mr. Muhsin Siddiqui, Mr. Moh’d Sami and above
all my honourable friend Sayyed Aiman Al-Maimani.

Finally, acknowledgement is due to King Fahd University of Petroleum and Minerals, Dhahran,

Saudi Arabia, for fully supporting this research.

Dedicated to my late uncle
Prof. A. Y. Aliyu

May Allah have mercy on him

a4

Contents

1

Acknowledgement

List of Figures

List of Tables

Abstract (English)

Abstract (Arabic)

NOTATIONS

INTRODUCTION

1.1 Problem Definition
1.2 Requirements for Collision Detection
13 Terminology
1.4 Representation of Objects

1.4.1 Sweep Representation . .

1.4.2 Constructive Solid Geometry

1.4.3 DBoundary Representations

ooooooooooooooooooooooooooo

.........................

...........................

...........................

...........................

..........................

...........................

viii

144 Cell Decomposition
1.4.5 Spatial Occupancy Enumeration
146 OctreeRepresentations

1.5 Research Objectives. o i i i i i i it e e

LITERATURE REVIEW

2.1 Introduction o i i e e e e e e e,

23 PathPlanning o oo i i e

2.3.1 The Potential Field Method

THE COLLISION DETECTION ALGORITHMS

3.1 Introduction i e e

3.2 Review of Transformations:
3.2.1 Euler Angles Representation of Orientation.

3.3 Transformation of Object Features

34 TheAlgorithms e

COMPUTATIONAL EXPERIENCE ON THE ALGORITHMS

41 Imtroduction i e
4.1.1 LinearProgramming

42 Implementation i it i e

43 TwodimensionalExample

44 Conclusion. T e e e e e e e e e e e e e e e e e,

ii

12

12

12

12

14

14

28

33

43

43

44

49

32

56

iii

5 APPLICATION TO A ROBOTIC PROBLEM 79
5.1 Imtroduction 79
5.2 RobotKinematics. 80

5.2.1 Kinematic Equations of the two link Manipulator 81
53 Simulation 85
54 Conclusion. o 85

6 PATH PLANNING 86
6.1 Introduction 86
6.2 Requirements for an Artificial Potential Function 87
6.3 Problems with Earlier Approaches 88
6.4 The New Potential Function 89
6.5 A New Approach to Path Optimization 93
6.6 Practical Comsiderations 97
6.7 Simulations 99
6.8 Comclusion. 100

7 SUMMARY AND CONCLUSIONS 108
Appendix 112

A PROGRAM 1 112

B PROGRAM 2 115

C PROGRAM 3) 119

iv

D PROGRAM 4 123

REFERENCES 128

Vita 138

List of Figures

1.1 Heirachical Control of an Autonomous Robot 4
1.2 Octree decomposition of a solid block(adopted from {53]) 13
2.1 (a)Sweeping and (b)Extrusion in two dimensions 16
2.2 Three types of interactions between colliding objects 19
2.3 Interactions between objectsfeatures 20
2.4 SSA representation of a convex planarobject 22
2.5 The separating slab generated by the nearest points vy and v 24
2.6 (a)Alarming configuration (b)Non-alarming configuration 26
2.7 Visibility graph with polygonal obstacles (adopted from [13]). 30
2.8 A path in the connectivity graph from exact cell decomposition (adopted from [53]). 31
2.9 The FIRAS potential function: (a) two polygonal obstacles, (b)attractive potential

field,(c)repulsive potential field,(d)the sum of the two, (e)contour plot of the total

field, (f)vector field of the total potential (adopted from [53]). 35
2.10 Construction of panels from an obstacle (adopted from 50) 42
3.1 Framerotation 45
3.2 Frame translationandrotation, 46

149

vi

3.3 Roll, pitch and Yaw Eulerangles 48
34 Examplel. e 50
35 Example2. e 51
41 Atwodimensionalexample 61
4.2 An example to study the effect of changing the time interval 67
43 Thecaseof translationonly 76
44 Thecaseof translationonly 76
4.5 The case of simultancous translation and rotation 77
4.6 The case of simultanecous translation and rotation 7
5.1 Atwolinkmanipulator. 83
5.2 A two link manipulatorexample. L oL, 83
6.1 (a)Potential field of two circular objects (b)Contour plot of the field 91
6.2 (a)Potential field of two rectangular objects (b)Contour plot of the field 92
6.3 A system of electrostaticcharges 93
6.4 Depth-first planning using expanding circles 96
6.5 Vertex graph path of a polygonal robot through a set of expanded objects. 97
6.6 A circular robot moving among circular obstacles 98
6.7 Pathl e 101
68 Path2 e 101
69 Pathl e 102
6.10 Pathd e e e e e e e e e e e e e e e e 102
6.11 Pathd e 103

vii

612 Path6 103
6.13 Path? 104
6.14 Path8 104
615 Pathd 105
6.16 Path10 105
6.17 Pathll 106
6.18 Pathl2 106

6.19 Pathld 107

List of Tables

4.1 Algorithm I Linear path with translation

.......................

4.2 Algorithm I Linear path with translation and rotation

................

4.3 Algorithm I Parabolic path with translation

.....................

4.4 Algorithm I Parabolic path with translation and rotation around X-axis

4.5 Algorithm II Linear path with translation

4.6 Algorithm II Linear path with translation and rotation

4.7 Algorithm II Parabolic path with translation

.....................

4.8 Algorithm II Parabolic path with translation and rotation around X-axis

4.9 Effect of changing time interval At

..........................

5.1 Manipulator Collision Detection

............................

viii

Abstract

Name: Mohammad Dikko S. Aliyu
Title: Efficient Algorithms for Collision Detection and Path Planning for Robotics
Application

Major Field: Systems Engineering

Date of Degree: 1994

The problem of detecting collision between moving rigid objects in three dimensional space is
considered. Two efficient algorithms that use linear programming technique are developed for
solving this problem. The algorithms can detect exactly all possible collisions for objects moving
on a general path in ®3 with simultaneous translation and rotation. Computational experience
with the developed algorithms is also presented.

The potential field approach to the path planning problem is also considered. A new potential
function that has the remarkable feature that it is free from any local minima in the free-space
for any number of obstacles in the work-space is developed. Furthermore, a new approach to
path optimization using an expanding sphere is also proposed. The new potential function is

tested using a point mobile robot and smooth obstacles.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

" 1994

Pl

o T N

_}:1.9)&.54.«5-1 V-MY|
Atk y psladl (s d Ol i 0 WL Ol
S WREPS S K

@I 1 B A8 il Al oo adlail (g a0 Al (o Dl 038
(k) (s s skl o5 i o gy JEEYY A el Jadi Cyny Alaf U
pran L) oy Sl e apkiidy Al o3a Jad ddasl Al Gleadiad (s
5 2 5s5 Ll 1S £ 1,0 B ale e 3 AS et plus D Aldadl) asboatll Ll
O bl (Als Gyl

paiy ¢ jlanall Jaghass ol (e A Jlava cogbad (s Ll ¢ Baula () Ai=Y

O e 3ol o Adaall (5 yhaall clledl e Ala Ly 5o Jlaall 138 300a Al

Ja ol Alical 503 e 3_S oladiuady 5y Ziyyh) ghat o3y alua¥) e AN ¢ 3l

plusal g 48 jaie Blahy Jias iy plastalysaysall 46yl 38 Gasdiy ¢ luall JidY
)

oslall srismalo da s
Jaleolly Jo yiall sad SlJ1 daola
dasgnall doggall dGlaoll ylsalall
JRLLY;

Rn

(3

{-}
maz
min
| M|
\%
Min
subscipt

superscript

NOTATIONS

Real Euclidean n-dimensional vector space.

Euclidean norm of a vector z. If 27 = (z,,.....7,,)7,

lz]= \/:v% +..32

Subset symbol

Set intersection

Set union

Set difference

Such that symbol

Defines a set
The maximum element of a set
The minimum element of a set
Determinant of a matrix M
The differential operator
Minimization of a function
An element of a vector or set index or matrix index

Matrix index

then

Chapter 1

INTRODUCTION

The ultimate objective of robotics is to develop autonomous robots. These robots will have
the capability to accept high-level descriptions of tasks and execute them without any further
human intervention. The high level language will specify what the task is rather than how to do
it. Applications of these robots in hazardous environments such as nuclear reactors, radiation
zones and polluted areas; in milatary surveilance, space and undersea exploration; in automated
industries such as AGV’s and tele-operator systems; and in homes and hospitals, cannot be
overemphasized.

The task of developing autonomous robots is however not an easy one. It is an undertak-
ing with complex interrelationships between artificial intelligence, perception and control. It
embraces many difficult problems amongst which motion planning is of central importance.
Motion planning answers the following problem: How can a robot decide what motions to per-
form in order to achieve goal arrangement of physical objects ? This capability is absolutely

necessary for an autonomous robot.

Generally speaking, motion planning involves such diverse aspects as computing collision-free

paths among possibly moving obstacles, coordinating the motions of several robots, planning
sliding and pushing motions to achieve precise relations among objects, reasoning about un-
certainty to build reliable sensory-based motion strategies, dealing with the models of physical
properties such as mass, gravity and friction, and planning stable grasps of objects. Motion
Planning also interacts with other major problems such as real-time motion control, sensing and
task-level planning (see figure 1.1). Due to the complex interactions among these problems, the
design of truly autonomous robots certainly requires concurrent solution of all these problems.

Three subsidiary problems to motion planning are: the collision detection, obstacle
avoidance and path planning problems. The collision detection problem is to determine
whether a known robot configuration (or path) would cause collision between potentially col-
liding parts such as links, payloads or obstacles in the three dimensional workspace. While the
obstacle avoidance problem is to modify a known robot path so as to avoid foreseen or unforeseen
obstacles. Strictly speaking, obstacle avoidance is a control strategy, and involves the determina-
tion of appropriate forces/torques to drive the robot onto a collision-free path [10,36,45,50,68,85).
This may further require the optimization of a certain criteria (eg. time, distance or energy) in
the presence of the constraints on the path, torque, end-effector, friction etc. However, an easier
problem involves the determination of a purely geometric path which is collision-free, without
regard to the forces required to move the robot along this path. This is known as the path
planning (or find-path) problem. These three subproblems are part of the paraphernalia of au-
tonomous robot motion planning. The integration of these subsystems with other subsystems
such as trajectory planning and trajectory tracking, achieves in a more simplified manner, the
solution of the generalized motion planning.and control problem.

The interaction of the various sub-systems can be explained in the light of Fig.1.1. From

a task planner[27] we obtain an ordered sequence of actions to be executed to perform a task.
These actions are decomposed into robot motion commands which can be implemented in a
standard robot programming language. The motion commands involve point-to-point motions,
transfer movements, sliding and pushing, gripping and grasping etc. The selection of appropriate
geometric path (eg. collision-free) to achieve the desired motion is done by the path planner.
The output of the path planner is therefore an ordered sequence of points in cartesian space
(task space) which represent a collision-free path if we connect them properly (eg. by straight
line segments or splines). The trajectory planner in-turn accepts these input variables including
path constraints, and generate a sequence of time-based intermediate configurations of the robot
(position and orientation, velocity and acceleration), expressed usually in joint space, from initial
location to the final location. These are then fed to the robot controller or trajectory tracker
which computes the forces/torques to be exerted by the actuators at each time in order to perform
the desired motion.

The above discussion has focussed on motion planning for general robotic systems without
descrimination between mobile and manipulator robots. However, there is a fundamental dif-
ference! In the context of mobile robots, path planning is simplified by restricting the robot to
three degrees of freedom on the plane, and motion planning is referred to as navigation [69].
Nevertheless, much of the work in path planning for mobile robots is derived from earlier work
in path planning for manipulators.

In this thesis, we are interested in developing efficient algorithms for solving the collision
detection and path planning problems. In both problems, we are interested in developing off-line
schemes in which there is accurate knowledge of the nature, position, orientation and motions of

the obstacles. For collision detection, we will consider a general approach to the problem, while

TASK
PLANNER

/

MOTION OLLISION
SENSOR™ PLANNER DETECTOR

TRAJECTORY
PLANNER

Y
CONTROLLER | g

(TRAJECTORY TRACKER)
A

ROBOT dg.

> ACTUATORS ROBOT;

\

SENSORS |«

Figure 1.1: Heirachical Control of an Autonomous Robot

for path planning, we will consider only local approaches. In particular, we shall consider the
potential field approach to path planning.

The organization of the thesis will be as follows: In the remaining portion of chapter 1, we will
give formal definitions of the problems, introduce some terminology and discuss various methods
of solid modelling schemes which will form the basis for our algorithms. At the end of the chapter,
we shall define our research objectives. In chapter 2, we will give detailed literature review of
what has already been done on the two problems of collision detection and path planning. This
will give a clear picture of our aims and objectives in this thesis, and give us direction on how

to achieve them. In chapter 3, we will develop and present our collision detection algorithms.

This will be followed by a discussion on the computational experience on the collision detection
algorithms in chapter 4. In chapter 5, we will demonstrate how the collision detection algorithms
can be used in a robotic application. This will be followed in chapter 6 by our new approach
to the potential field method for path planning. We will develop the new approach and give
computational experience on it. Finally, in chapter 7, we will give a summary and conclusions

on the whole thesis, and give recommendations for future work in the area.

1.1 Problem Definition

In this section, we give general definitions of the motion planning and collision detection prob-

lems and show the relationship between the two. Then we will review the literature on the two

problems.

Basic Motion Planning Problem

Let A be a single rigid object -the robot- moving in a workspace W C ®"
(n =2 or 3), the Euclidean space.

Let
By, By,By be fixed rigid objects distributed in W, called obstacles.

Assume that both the geometry of A, B, Bs, ...By and the locations of the
Bis in W are accurately known. Assume further that no kinematic constraints

limit the motions of A (we say A is a free-flying object).

o -

The problem is : Given an initial position and orientation, and a goal posi-
tion and orientation of A in W, generate a path I in W specifying a continuous
sequence of positions and orientations of A avoiding contact with the Bs, start-
ing at the initial position and orientation, and terminating at the goal position

and orientation. Report failure if no such path exists.

Defined in this way, the basic motion planning problem with purely geometric path searching

is usually referred to as path planning.

Collision Detection Problem

A more general definition of collision detection may be stated as follows:
Given representations of N + 1 objects A, B;, Bs,....By, whose locations in
space at any time ¢ are given by functions L(t) ,L;(t) ,La(t),....Ln(t) , respec-
tively, over a time interval [t;, ¢;], determine whether any pair of the objects

occupy some common space at the same time during this interval [1].

In particular, check whether

AR)NBi(t) # 0 for t € [t,,tf] ,i =1,2...N

where A(t), B(t) are the sets representing the two objects A and B; at any time ¢.

In the above definition, A is typically a robot moving in a workspace W in which there are

-1

obstacles B;,7 = 1,2...N. Furthermore, the connection between the motion planning problem
and the collision detection problem can easily be made out from the above definitions. The
collision detection problem is the path planning problem with a hypothesized path. The path
is tested for any collisions, if it fails, another is hypothesized until a collision-free path is found.
This is one application of collision detection and is known as the propose-and-correct approach
to path planning.

We are especially interested in solving the collision detection problem for robotics, but the
solution has application in other problem areas such as VLSI and electronic circuit layout, cloth
cutting, bin packing, assembly planning and geometrical modelling and simulation [16].

In robotics, the collision detection problem is of interest because of the following reasons:

o Off-line robot programming systems are mostly based on interactive graphics under human
control. A fast collision detection facility can greatly assist the programmer in spotting

collisions which would otherwise be very difficult.

o A collision detector may be used to test for a valid path in a propose-and-correct approach

to path planning (figure.1.1).

e Present collision avoidance schemes are complicated and can handle only a limited range

of shapes and motions.

1.2 Requirements for Collision Detection

In order to describe collisions precisely, it is useful to define three possible interactions between a

pair of objects, viz: separation, contact and interference. Two objects are said to be "separated”

if their intersection as sets of points is empty, "contacting” if their intersection includes only
points from the surfaces of the objects, and "interfering” when the intersection includes points
from the interior of either object. In most cases, collision refers to contact brought about by
relative motion between the objects. An algorithm for collision detection should satisfy the

following requirements:
1. No detection miss.
2. Locate exact time and point of the earliest collision.
3. Accurately approximate the motions of the objects.

4. Exclude all false collision report.

1.3 Terminology

Often, we will be mentioning some terms in the literature and in our discussion, hence, it is
appropriate to introduce them at this point.

" and

Configuration Space: A configuration q of A is a specification of the position 'P
orientation O of the reference frame of 'A’, F4, with respect to a world reference frame Fy. The
configuration space of A is the space C of all the configurations of A.

Path: The path of A from the configuration g;,; to the configuration gy, is a continous

map :

r:[o,1]-cC
with -

F(O) = Qinit 1and F(l) = Qgoal

L9

Qinit and ggoq are the initial and goal configurations of the path, respectively.

C-Obstacle: Every obstacle B;,i =1,2....N in the workspace W maps in C to a region
CBi={q€ C| Alg) N B; # 0}

which is called a C-obstacle. The union of all the C-obstacles UY., CB; is called the C-obstacle

region, and the set
N
Cf,-“ = C\ U CB; = {q eC I A(g)n (U?_’__IB,') = 0}
i=1

is called the free space. Any configuration in C. is called free configuration.

1.4 Representation of Objects

In this section, we will discuss some of the methods used in modelling solid objects in three
dimensional space. Ve shall discuss six methods, out of which we will choose the one most
appropriate for our work. The method of representation of the objects is very important be-
cause it characterizes the nature of the algorithms and their complexity. These methods are:
1) Sweep representation; 2) Constructive solid geometry; 3) Boundary representation; 4) Cell

decomposition; 5) Spatial occupancy enumeration; and 6)Octree representations.

1.4.1 Sweep Representation

This is a description of a surface and the volume it generates when it sweeps along a trajectory
in curvilinear coordinates. Techniques in analytical geometry are used to derive the equations
of these surfaces. They are very well structured but the generality of these schemes are not well

understood. However, elegant two dimensional representations have been demonstrated. Three

10

dimensional applications are restricted to simple cases, and the scheme is of primary interest for

high level descriptions of objects naturally decomposable into elongated elements.

1.4.2 Constructive Solid Geometry

These are expressions of primitive portion of space and combinatorial (intersection, union,)
and motional (translate,rotate) operators. Varieties of possible choices of primitive portion of
space are possible, such as bounded primitive solids and unbounded half-spaces. These schemes

are extensively used in manufacturing systems

1.4.3 Boundary Representations

These are mostly used in computer graphics and are the most familiar. Solids are represented
by their bounding faces which inturn are represented by their bounding edges, which inturn are

bounded by vertices. They can only represent polyhedra adequately and other solids have to be

approximated as polyhedra with many faces.

Representation of Polyhedral objects

Convex polyhedral objects can be modelled using boundary representation in R*, (n = 2,3)
by polyhedral sets defined by the intersection of finite hyperplanes or as convex hulls of finite
number of vertices. Both representations have their advantages, and one will choose one of the
two depending on the application. In robotics, both representations are useful as we are going

to see.

In the first representation, the objects are defined by a system of linear inequalities of the

11

form:

A,':L‘Sbi ;i=1,2....N (1.1)

Where N is the number of objects, z € R" ,A; is (m; X n;), and b; is (n; X 1). The above system of
linear inequalities represents an intersection of the halfspaces whose bounding hyperplanes define
the faces of the object. This representation can be obtained from a complex object(polyhedron)
by projecting the planes of the faces of the object onto the three axes of the reference frame
and determining their intercepts. The accuracy of this representation depends on the number of
hyperplanes used; the more the number of hyperplanes used, the better the accuracy.

In the second representation, the objects are represented by point scts defined as convex hulls
of a finite number of vertices.

[1
coX:{z:Z/\j.‘vj:z/\j=1 ;/\j 20;7= 1"'1} (1'2)

j=1 i=1
where A; € R and z; are the vertices of the object. This representation implies that any point on
the object is represented as a linear combination of the vertices of the object with nonnegative
coefficients. By the Caratheodory theorem[18] I > n + 1.
In the above represcntations, smooth objects cannot be represented adequately, they can
only be approximated. However, smooth compact objects (eg. spherical or ellipsoidal) can be

represented using analytic inequalities of the form:
9(z) <05z € R ;9(z) C C¥0,00) (1.3)

Nonconvex objects can also be represented as union of simple polyhedral sets.

12
1.4.4 Cell Decomposition

These are generated by triangulation, and a model is decomposed into elementary solids (usually
tetrahedra) meeting exactly at a common face, edge or vertex. They are suitable for computing
certain topological properties of represented solids and are extensively used in finite element

analysis. They are also the basis for certain robot motion planning algorithms[53].

1.4.5 Spatial Occupancy Enumeration

These are data structures of voxels (volume elements), usually cubes lying on a square grid, of
the solid. They are simple but, lead to large amounts of storage. They can be considered as

special cases of cell decomposition in which the cells are of identical size and shape.

1.4.6 Octree Representations

These are special cases of spatial occupancy enumeration schemes. An octree is a hierachical
data-structure aiming at reducing the amount of redundancy in spatial occupancy enumeration
schemes. A cubic reference portion of three dimensinal space is divided into eight octants. Each
octant can further be recursively decomposed into smaller octants leading to a tree of order eight.
The nodes of the tree are labelled according to their position on the solid i.e. whether empty,
mixed or full (see Fig.1.2) Octrees are widely used in robot motion planning , computer graphics,

computer vision, CAD, e.t.c.

1.5 Research Objectives

The following are our research objectives in this thesis:

dard

13

“» ‘Q : zg} 55 /
| MO0 000n
6
g8—> 112 .
413 D EMPTY cell MIXED cell . FULL cell

Figure 1.2: Octree decomposition of a solid block(adopted from [53])

1. To develop efficient algorithms for collision detection using different representations of

objects.

2. To introduce a new potential field approach to path planning and obstacle avoidance.

3. As a minor objective, we shall also make an extensive literature survey of collision detection

and path planning algorithms in rohotics.

e

Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we will give a comprehensive literature review of the collision detection and path
planning problems. These two problems have received substantial attention from researchers
and the literature is replete with various contributions. To make our presentation neat and
elaborate, we will classify the various algorithms for collision detection and path planning into
five classes each. These classifications will be based on the methods of representation of the
objects and the nature of the algorithms. For the collision detection problem, the five major
classes of algorithms are: a)Swept volume approach; b) Intersection calculation; ¢)Minimum
distance calculation; d)Multiple interference detection: and e) Constructive solid geometrical
schemes. However, we will first give a detailed presentation of all the algorithms in their own
perspective before attempting to classify them. For path planning on the other hand, we will
first give the classification of the algorithms since this already exists, and then briefly highlight

their nature. However, in the case of the potential field approach which we will be extending in

14

R

this thesis, we will give a full literature review of what has been done so far.

2.2 Collision Detection

One of the earliest work in collision detection (interference checking) was presented by Boyse[11].
He treated separately the cases of uniform translation and rotation around a fixed axis. The
algorithm involves a brute force approach in which each edge of the moving object is intersected
with each face of the stationary object. The algorithm is so unrefined that it is only applicable
to simple objects and simple motions.

Ahuja et al. [18] have described two methods for detecting intersections among three dimen-
sional objects. The first method involves detecting overlap among the projections of the objects
on a given set of planes, while the second method uses a three dimensional octree representation
(chapter 1) of the objects. Interferences are detected by traversing the octrees of the objects
in parallel. If there exists at least a pair of corresponding nodes on the octrees of two objects
having opposite labels, then there is interference between them. However, these methods do not
give an exact method for interference detection and cannot be applied to the case of complex
motions. THis is because, the projections of the objects on a given set of planes is difficult to
obtain and the representation of complex motions using octrees is computationally intensive.

Shigematsu et al.[78] have described an algorithm based on the simplex method. The objects
are represented as convex polyhedra defined by the intersection of halfspaces. The intersection
of the union of the half spaces from two objects gives the interference region if there is any. The
algorithm is attractive but it is limited to only static objects.

Cameron|[15,16] has described three methods for the "clash detection” problem for moving

16

(a) (b)

Figure 2.1: (a)Sweeping and (b)Extrusion in two dimensions

polyhedra viz : multiple interference detection which is based on sampling the motion at discrete
points of time and doing static interference detection at each point; four dimensional intersection
detection which is based on the representation of the objects in a four dimensional space (with
time as the fourth); and sweeping which is based on computing the swept volume generated by
the objects along their trajectories (see Fig.2.1) None of these methods compute exact collision
points for paths with simultaneous translation and rotation.

Hayward [37] has also described an algorithm based on octree representation of the robot
and obstacles, or alternatively, the free-space of the robot. Collision detection for a point on the
moving object (the robot) is determined by inspection of the octree nodes to characterize the
point by the label on the octant to which it belongs; whether it is labelled empty’, *full’, or 'mixed’
(see Fig.1.2). The algorithm has several drawbacks: First, is the amount of storage required for
the representation. Second, transformations on octrees such as translations, rotations, erosions,
growth e.t.c. are computationally intensive. Thirdly, the algorithm is combinatorial in the

features of the objects.

ek

17

Culley and Kempf [23] have described an algorithm based on velocity and distance bounds.
The algorithm utilizes the maximum velocities of the objects to determine the minimum time it
will take the objects to reach contact. The shortest distance between the objects is also computed
to determine their contact or separation. However, the algorithm does not compute the exact
collision points and cannot be readily implemented.

Meyer[65] has described an algorithm using the shortest distance between the objects (rep-
resented as boxes). For complex objects, this distance is very difficult to compute [32]. Further-
more, the algorithm does not treat the case of simultaneous translation and rotation, and does
not compute exact collision points.

The first algorithm that computes exact collision points with simultaneous translation and ro-
tation for a moving object amidst obstacles was described by Canny[17,18]. He used quaternions
to describe the orientation of the objects and then considered three types of interactions between
the moving object A and the obstacle(s) B. Type-A contact occurs when a vertex of B touches
a face of A; type-B contact occurs when a vertex of A touches a face of B ; and type-C contact
occurs when an edge of 4 touches an edge of B (Fig.2.2). These three interactions cover all the
possible types of contacts between the objects. The basic algorithm is based on the following

constraint equations.

For type A contact
[QF4Q* (145 - £)] =0 (2.1)

Where A is moving and B is stationary. The "bar” denotes quaternion while the arrow denotes

vector.

et 4

18

Q = qo + § defines the orientation of A

Z is the translation vector of A.

Pp is the position vector of any vertex of B.
Fy =d4 + 4 defines a face of A.

fia is the unit outward normal of the face F

d, is the normal distance from the origin to the face F;

For type B contact
[Fa(l+QpaQ" + 7) =0 (2.2)
where

Fg = dg + iig defines a face of B.

Pa is the position vector of any vertex of A.

For type C contact

S
El
Ql
+
8y
|
S
Fal
&J
2
O

“€p] =0 (23)
Where €4 and €p represent unit direction vectors of the edges of A and B respectively. The
square brackets imply the scalar part of the vector quaternion product.
Q and 7 are typically functions of a parameter "s” that defines the path. Substituting these
in equations (2.1), (2.2), and (2.3), results in cubic algebraic equations in s. These are solved to
determine the value of s for which there is a contact, and subsequently determine the position

and orientation of the objects.

The only shortcoming of this algoritlm_l is in defining the faces, vertices and edges of the

il and 4

19

\>

Type A contact Type B contact Type C contact

Figure 2.2: Three types of interactions between colliding objects

objects; especially, when the objects are not simple (e.g. smooth objects). Furthermore, the
algorithm has to test for cach type of contact for all vertices, faces and edges. This implies long
computational time and high cost.

Lozano-Perez[58] has given expressions for contact angles for manipulator links and obstacles
in joint space. These are useful for motion planning.

Basta et al [5] have presented an algorithm for planning collision-free motion of two robot
arms in a common workspace. The algorithm uses a sphere model for the wrists and detccts
collisions along straight-line segments of the paths of the two robots. If at any point the distance
between the two segments is less than the sum of the radii of the two spheres representing the two
wrists, then there is a potential collision. The set of points for which the above applies gives a
Parametric-Space-Potential-Collision Region Diagram (PSPCRD). Using trajectory information,
the time range when the potential collisions along each path occur can be determined. Any
overlap in the two time ranges suggests, but does not guarantee, the existence of a space-time
collision.

Another exact algorithm developed by Kawabe et al.[44] also considers three types of inter-

actions between the objects: Type I contact (a vertex of a moving object touches a face of a

20

[F<[G

Type 1 contact Type 2 contact Type 3 contact

Figure 2.3: Interactions between objects features

stationary object); type 2 contact(a face of a moving object touches a vertex of a stationary
object); and type 3 contact (an edge of a moving object touches an edge of a stationary object

)(see Fig.2.3). The detailed algorithm is based on the following three constraints equations.

For type 1 contact

aXi(t) + bYi(t) + cZi(t) + d =0 (2.4)

Where (Xi(t), Yi(t), Zi(t)) = Ti(t)P are the coordinates of the moving vertex P, Ti(t) is the
homogeneous transformation matrix defining the relative motion of the object ¢ with respect to
object j and a,b, ¢,d are constants of the plane of the face.

Xi(t), Yi(t), Zi(t) are typically cubic functions of time, hence, the degree of equation (2.4) is
three. This gives three answers, and the minimum that satisfies the bounds in time and object

dimensions is selected.

For type 2 contact

a(t)X +b(t)Y +c(t)Z + d(t) =0 (2.5)

Where X, Y, Z are the coordinates of the stationary vertex and a(t), b(t), c(t), d(t) are cubic fun-

21

tions of time. The order of eqn.(2.5) is three,and we get three answers out of which we select the

best.

For type 3 contact

a(t)u+d(t)=cv+d (2.6)
or o
u
[at) —cb(t)=d]| , | =0 (2.7)
. 1 o
or
la{t) —c b(t)—d|=0 (2.8)

Where u and v are parameters, ¢ and d are constant vectors , and a(t) and b(t) are vectors each
of whose elements is a cubic function of time.

The degree of eqn.(2.8) is six, and we obtain six answers out of which we select the best.

Finally, for the three types of contacts, we select the minimum answer as the time when
collision occurs for the first time during the motion.

The drawback of this algorithm s in the accurate determination of the functions X(t), Yi(t), Zi(t), a(t
and d(t) for the various faces, edges and vertices of the objects. Secondly, the computational
cost of the algorithm is not low because of its combinatorial nature.

Bonner and Kelley [9] have presented an algorithm based on a successive spherical approxi-
mation (SSA) of the objects. The SSA representation of an object is made up of a hierachy of
representation levels based on the division of an object-encircling sphere into spherical sectors.

The most coarse approximation is a pair of spheres with a common centre. The outer sphere

22

Level O

Figure 2.4: SSA representation of a convex planar object

contains the object and the inner sphere is contained within the object. The next finer approxi-
mation is formed by dividing the sphercs into spherical sectors defined by the object faces (sce
Fig.2.4). Collision detection is done by incrementally checking for intersection between these
spherical sectors. Again, the algorithm makes gross approximations and can only treat limited
types of motions.

A relatively recent work on the collision detection problem has been reported by Gilbert and
Hong [34]. The algorithm applies to convex objects and uses, as a substep, the computation of
the shortest distance between the objects [32,33]. A brief outline of the basic algorithm is given

here.

Let the spaces occupied by the potentially colliding objects be represented by point sets
Ky, Ky € R* n =2 or 3. Thus,
Ki(q)¥ {z=Ri(qw+pi(g):weCi};i=1,2 (2.9)

Where g is the configuration vector which belongs to a configuration space Q, pi(q) is the trans-
lation vector, Ri(g) is the n x n(orthogonal) rotation matrix, C; C R" is the set of points which

describes the space occupied by object i in its reference position and orientation. The configura-

bl g

23

tion vector moves along a path in Q which is specified parametrically by a continuous function

q:0 — Q. © = [0,,0], where ¢(8,) is the starting point on the path and ¢(fy) is the final or

ending point on the path.

Define the support functions of the sets hg, : R* - R by

hcaof(€) & maz{(€,2(8)) : 5 =1,..M;}: i = 1,2 (2.10)

where £ is the normal to the supporting hyperplane of the set, and A; are the number of vertices

of the object. Also, define di as the shortest distance between the two objects, & = vy — 1y
and v, v, are a pair of nearest points [4,91] on the two objects respectively (see Fig.2.5). The
collision detection problem (CDP) is then stated as follows :

Assume

K\ (6,) nKy(0,) =0
find the collision point

6" = min{f € © : K,(0) N I(6) # 0}.

or show that

Ki(0)NKy0)=0 forall 6 € ©
The basic collision detection algorithm is as follows.

Basic Collision Detection Algorithm (BCDA)

step 1 set k=0 and 6y = 9,

24

1

v

§=“I“"Z\
K2

IK1,K2(€) =d(K 1. Ko)

Figure 2.5: The separating slab generated by the nearest points v, and 1,
step 2. Determine dy and §.
step 3. If d;. < ¢, stop and set §* = 4,
step 4. solve, if possible, the problem of finding the smallest root of /(8; &) = 0 on [6x, 8]

Equivalently, find, if it exists, the smallest root of

Fioy = hiyo) (=) + hpey0y (&) =0

step 5. If the root finding problem has no solution, stop. There is no collision on ©

step 6. Let Oy be the solution of the root finding problem. Increment k by 1 and go to step

2.

End

The main computational effort in this algorithm is in the determination of d. and the root
finding problem which corresponds to a point on the path where the distance between the objects

is zero . These two subproblems are very difficult[32,34] and contribute to the inattractiveness

of the algorithm.

Two more recent works on the collision detection problem have been reported by Schweikard
{76] and Kyriakopoulos et al.[51]. Schweikard has described a polynomial time collision detec-
tion scheme for manipulator paths specified by joint motions. But obstacle motion is normally
described in task space. Kyriakopoulos and Saridas have developed an on-line algorithm for
distance estimation and collision prediction. The descriptions of the objects and their motion
are uncertain, and have to be estimated by sensing and filtering.

Again Kyriakopoulos et al. [52] have given a swept volume approach for on-line collision
prediction of a mobile robot and mobile obstacles. Consider a convex polyhedral description of

the mobile robot and a moving obstacle represented by
Az, < B, (2.11)

Aoto < B, (2.12)

respectively. Where z,,7, € 2. A,, B, are functions of the path parameter s, while 4,, B,
are functions of time ¢. The trajectories of the mobile robot and the moving obstacle under

horizontal translation can be parameterized by

z.(s) = & + Av,, (2.13)

To(t) = o + pv, (2.14)

which on substitution into equations (2.11) and (2.12) give the swept areas of the objects respec-

tively. v, and v, are the robot and obstacle velocities respectively. If their swept areas intersect,

then -

T+ v, = 2o + pv, (2.15)

¥ g

26

x(s)

Figure 2.6: (a)Alarming configuration (b)Non-alarming configuration
Introducing equation (2.15) into equations (2.11) and (2.12), their area of intersection is given

by the set
S={Xe®| AX < B}, (2.16)

where
A 0 A, —-Awv,

0 A, —Av, A,

&

x"
X =
)
\)

B,

B =
B,
The solution of the above system can be obtained using linear programming[3,7,25]. However,

a collision will occur (alarming configuration in Fig.2.6) iff;

’\maz = marxes A> 0’

and

Mmar = MaTxes 1 > 0.

Gallerini R. et al. [29] have described implementation of algorithms based on linear program-
ming. The algorithms use similar ideas in [66,78] with practical considerations. The algorithms

treat the case of linear traslations only.

In general, the existing algorithms for collision detection can be divided into five categories :

a) Multiple Interference Detection:

In this class of algorithms, the position and orientation of the moving object is calculated at
a reasonably sampled time and interference check is performed at each point. Methods for de-
tecting interferences among stationary objects are therefore utilized [20,70]. The time interval
between successive checks is kept short to avoid a collision miss. However, if this time is made

too short, the computation time may become too long for practical purposes. The algorithms in

[15,23,87] belong to this category.

b) Swept Volume:

In this class of algorithms, the volumes swept out by the objects over their motions are com-
puted and collisions are declared if these swept volumes intersect. But at present, it is difficult
to obtain a swept volume unless the motion of the objects is described by linear or quadratic
equations. Besides, an intersection of the swept volumes may not result in a collision if the
objects are moving. Furthermore, even if a collision is detected, it may be very difficult to obtain

the exact time and position of the collision. Two of the algorithms in (15] and the algorithms in

14O

28

[1,11,16,52] belong to this category.

c) Intersection Calculation:
In this class of algorithms, the trajectories of the faces, edges and vertices of an object are de-
scribed by functions of time, and the conditions for contact are used to derive the equations for

collision. By solving these equations, the exact time and position of the collisions are obtained.

The algorithms in [11,17,18,44,58,76] belong to this class.

d) Minimum Distance Calculation:
This class of algorithms compute the minimum distance between the objects and determine the
point on the path when this distance will shrink to zero. The distance is usually computed at dis-

crete times along the path. The algorithmsin [5,9,20,23,29,34,62,51,65,74,76] belong to this class.

e) Constructive Solid Geometry Schemes:
This class of algorithms use data structures in the form of octrees/quadtrees [54] to decompose
the objects and the free-space. Collisions are determined by inspection of the labels on the nodes

of the octrees representing the objects. The algorithms in [2,37,84] belong to this class.

2.3 Path Planning

Path planning has emerged as one of the most challenging problems in the development of

autonomous robots. Consequently, a lot of research cfforts have been devoted to it over the past

two decades. This literature is very rich, and we will not try to exhaust it. However, we will

LA

29

mention the most popular approaches that have been developed and concentrate on the potential

field approach which we hope to extend in this thesis.

Over the years, five main approaches to the path planning (or path finding) [12,14,57] problem

have emerged. These are :
¢ Roadmap methods.
¢ Cell Decomposition methods.
¢ Optimal Control methods.
¢ Mixed methods.
¢ Potential Field methods.

Furthermore, algorithms can be classified as being exact or heuristic. Exact algorithms either
find a solution or prove that none exists, and they tend to have high complexity. Heuristic
methods on the other hand, attain faster solutions at the expense of reliability.

The roadmap method consists of constructing a network of one dimensional curves that
capture the connectivity of the robots free-space (C/re) or its closure. Once a roadmap R has
been constructed, path planning reduces to connecting the initial and the goal configurations to
points in R and searching R for a path between these points. Variants of the roadmap method
include visibility graph, freeway net, and silhouette [13,14,18,56,58]. Fig.2.7 shows a visibility
graph with polyhedral obstacles.

Cell decomposition involves the decomposition of the robot’s free-space into simple regions
called cells such that a path between any two configurations in a cell can be easily generated.

The graph arising from connecting adjacent cells is called the ’connectivity graph’. Two major

1davd

30

Figure 2.7: Visibility graph with polygonal obstacles (adopted from [13]).

types of cell decomposition are the exact and approximate cell decomposition (see Fig.2.8and
references [28,35,43,55,59,76]).

Optimal control methods for path planning determine a path or trajectory while minimizing
certain performance indexes - usually time or distance. The path is parameterized as a function
of a scalar variable and the objective function (or performance index) is minimized subject to
constraints due to the robot dynamics and kinematics. In this way, the derived path is both
dynamically and kinematically optimal. The path is also smooth. An added advantage to
this method is that, it can directly yield the optimal controls required to move on the path.
However, there is a penalty to pay. They are computationally intensive [8,31,40-42,46,49,60,61]-
[66,73,77,79,80-83).

A formulation of the optimal path planning algorithm due to Gilbert and Johnson [31,41,42))
is outlined below:

The problem is to minimize

J=/°’ dt

31

NN
//////

//////// ‘//

7//////

\'N
—

Figure 2.8: A path in the connectivity graph from exact cell decomposition (adopted from [53]).

Tdoo)

32

s.t.
g = (M(q))""(H(q)u - F(q,9))
h(q(0),9(7)) =0
9(q(t),u(t)) <0
& — dij(q(t)) < 0
tel0,7}; i,jelc{1,2.N}
0 <7< a
where
dij(q) = min{|z; — z;] : z; € Ki(q), z; € K;(q)}
and
Ki(q) = T(q)C; + pi(q)

is as defined in section 2.2 above, 7 is cither free or fixed, a is fixed, ¢ C C"[0,a] uw € U
(set of measurable bounded functions from [0,a]} to R”) is the actuator input. M(q) € RP*P is a
nonsingular inertia matrix, F(g, §) represents a varicty of force terms including actuator damping,
H(q) € ®"*? is a nonsingular actuator coupling matrix. h defines the initial and terminal states,
g defines the states and control constraints, and d;; is a margin for error in avoiding collision.

The mixed methods combine various techniques such as cell decomposition, roadmap, orthog-
onal projections, collision checking, shortest-path, sensing and other computational geometric
approaches [13,19,22,24,26,30)-[48,59,63,64,86,88,92].

Most of the above mentioned methods have three disadvantages. First, the allowed shapes

are too restricted to be applicable in general. Secondly, they may fail to find a solution even if

there is one. And thirdly, their computational time may be too high.

33

2.3.1 The Potential Field Method

The roadmap and the cell decomposition methods are global methods i.e. these methods search
for a free path by first analyzing the connectivity of the whole free space of the robot; and are
guaranteed to find a path if it exists. However, their computational time increases exponentially
as the degree of freedomn of the robot increases [53]. on the other hand, the potential field method
which will be the focus of our discussion, is a local approach depending on local information of
the resultant force due to an artificial potential induced by the obstacles and goal. The robot
is represented as a point mass under the influence of the artificial potential U. This potential
is usually defined over free-space as the sum of an attractive potential pulling the robot toward
the goal configuration, and a repulsive potential pushing the robot away from the obstacles.
The robot and the obstacles are assumed to carry positive electic charge while the goal point is
assumed to carry a negative charge. The resulting scalar potential field is used to represent the
free space.

We have choosen to work on the potential field method because of its speed, though it might
fail to find a solution for a small set of hard problems. At the same time, it allows a richer set
of objects and motions.

The potential field method is very elegant and can be very efficient requiring no prior model
of the obstacles when used in an on-line collision avoidance scheme. Although not as thorough
as the graph seaching techniques, the speed of the algorithms and the easy extension to higher
dimensions make them excellent alternatives to the graph searching techniques. However, the
potential field method has one serious drawback. Since it is essentially a fast optimisation descent

scheme, it can get stuck in a local minima other than the goal configuration. For few obstacles

M g

34

in the configuration space, this problem may not arise. But for a cluttered environment, this
problem seriously limits the application of the potential field method.

The local minima are created due to the addition of attractive potential due to the goal and
repulsive potentials from several obstacles. Therefore, at certain points in the potential field, the
net force on the robot becomes zero, which are local minima of the potential field, and therchy
the robot stops at an unintended location.

The potential field approach was pioneered by Khatib [45] who used it in real-time collision
avoidance. Khatib first used the FIRAS (force inducing artificial repulsion from a surface)

function. Using an analytic description of the obstacle O : f(g) = 0, the repulsive potential is

given by
1. (1 L\ .
M7 — 7)) if f(9) < flgo)
U,-ep,o(q) = (I(Q) f(q)) (217)
0 if f(q) > f(q)
and the repulsive force is given by
1 1 1 :
. N7e ~ 1) Visg) i fla) < flgo)
F,.ep‘o - "'VU,-CP'O - (I(Q) I(q)) f(Q) } (2-18)
0 if f(q) > f(q)

where gq is a point in the vicinity of the obstacle and 7 is a constant gain. The region of influence
of this potential is between f(¢) = 0 and f(q) = f(go). Urep is a non-negative continuous and
differentiable function whose value tends to infinity as the robot approaches the obstacle’s surface,
and becomes negligible beyond that. A plot of this potential and its contour plot is shown in

Fig.2.9

Later, Khatib proposed the following potential function using the shortest distance to the

35

(b)

(d)

;

'/
Z
=
Ny
AN
N
i

S
~~~~~

N
AR
275

”k::
-ﬂ
e
=
""_:\
M

é&
=
—
§ i
7oA
=

| v s P/ ’{’

Tl

4
=
{777
I 127

7%
AN
B IR
S
=N

(f)

Figure 2.9: The FIRAS potential function: (a) two polygonal obstacles, (b)attractive potential
field,(c)repulsive potential field,(d)the sum of the two, (e)contour plot of the total field, (f)vector

field of the total potential (adopted from [53)).



36

obstacle.

1 1 \2 .
MNag — ) if p(a) < po
Urepol) = (p(q) p(qo)) } (2.19)
0 if p(q) > po

where p(g) denotes the distance from the current position g to the C-obstacle region CB i.e.

L] ol

plg) = mingecp g~ q ||
and pyg is a positive constant called the distance of influence of the C-obstacle. For a convex CB
region, the artificial repulsive force due to Usep,0 is given by

1 1 1 1 ;
= 3\ ata1 ~ 50 ) 77 V() if p(q) < po
Frepo = =VU,epolq) = (p(q) po) Pi(q) } (2.20)

0 if p(g) > po
The attractive potential due to the goal is a parabolic well and is given by
=1 Lo 2.21
Uattgoat = 5 1| 4= Ggoat 1= 5¢050a(4) (2.21)
where
pgoal(q) =" q — Ggoal ”

The function Uy goqr is everywhere differentiable and attains its minima at the goal where
Uatt,goal(4goat) = 0. The attractive force at any configuration g is

-

Fatt,gonl(‘]) = ""VUaN.goal(Q) = —Cpgoal((I)v/)goaI(Q) = ~((q - qgoal) (2'22)

The conic well can also be used as an attractive potential, but it does not posses the stabilizing

characteristic of the parabolic well [53].

The total potential on the robot at any position is the sum of the two potentials; subsequently,

the total force on the robot is the sum of the corresponding forces i.e.

U(g) = Uau(g) + Urep(q) (2.23)



37
and
F=-VU(q) = =V — VU (2.24)

The above two repulsive potential functions proposed by Khatib are not devoid of local minima.
The potential field approach has also appeared in the Russian literature due to the work of

Pavlov and Voronin [67]. They proposed the use of the following potential functions:

Py = Ke™®'
K
2T 1+ ap?
P==

||

where @, K are positive constants .
Pl X-X"]];X, X" e

where X" is the danger point.

To overcome the problem of local minima in the potential field of the robot, Koditchek [71,72]
proposed the notion of a navigation function. This is a local-minima-free potential function. The
goal is the global minimum whose domain of attraction includes the entire subset of Cjee that
is connected to the goal. However, the construction of such a function is difficult except for
restricted shapes of obstacles [53]. For the case of a spherical work-space and spherical obstacles
defined respectively as

W {ge R [ q|P< o)
O;j={gqeR" :Jlqg-g; I’< pf} Jj=1,2....N(number of obstacles)

If we define the spherical obstacles functions by

olg) = - || g —g; |I> +p}



1£9

38

Bil@)=~llg—1g; |I* +p2 forj=1..N

then the function

_ I ¢ — gg0at I
Ha)= [l ¢ = ggoat II¥ +5(q)]1/* (2:25)

where f(q) = H;-';o B; , is a navigation function provided the constant k exceeds a certain function
of the geometrical data.

Because of the difficulty in constructing analytic navigation functions, numerical navigation
functions have been proposed. These involve the discretization of the robots free-space into
rectanguloid grids and assigning values for the potential function in each grid [53]. Various other
methods for tackling the local minima problem have also been proposed with limited success
[53).

Volpe and Khosla [47,89] have proposed the use of elliptical and superquadric artificial poten-
tials for obstacle avoidance and approach. These potential functions can closely model arbitrary
convex obstacles (eg. rectangular, conic,triangular and etc.), yet they do not generate local
minima.

The idea is to generate spherical potentials so as to avoid the creation of local minima when
these potentials are added to an attractive well. We will consider the superquadric potentials
since they are a generalization of the elliptical potentials. The obstacles are surrounded by a

superquadric defined as

em) +s) | ) - e

where fi, fa, f3 are scaling functions and m , n are exponential parameters. If f; = a, fo = b, f3 =

s

¢, and m = 1, the superquadric becomes an n-ellipsoid; in two dimensions we have an n-ellipse.



o

39

Now, define a contour function by

Q)" +wa (g -

This function generates spherical contours away from the surface of the object and converges on

its surface. Define the Pseudo-distance from the obstacle by

= (&) serm (3] -

where k varies from zero on the n-ellipse to infinity away from it. Therefore, it can serve as a

repulsive potential for some n defined by

1

n=1—e‘°"

where a is an adjustable parameter. n must vary from infinity to one while K varies from zero

to infinity. The repulsive potential is now defined by

—ai

K

Urep(z,9) =1

where 7 is a scaling factor, a determines how fast the potential rises near the object and falls
away from it. The potential also has an inverse dependence on the distance.

Warren [90] has used potential functions in a trial and error fashion for global path planning.
In his approach, a candidate path is proposed and then modified under the influence of the
artificial potential field until a collision-free path is determined. By considering the whole path,
the problem of becoming trapped in a local minimum is greatly reduced. The potential field is
divided into two parts: the potential inside the C-space obstacle, U;, and a lower potential U,

outside the C-space obstacle. The two potentials are given by

_ R
Uin = Unas (1 -

) + Uoffset (2.28)

mazxr



40

and

1 1
Uowt = EUof]aet (m) (2.29)

Where Up. is the maximum potential allowed, R;, is the distance from the current position to
the centroid of the obstacle, R,,q. is the distance from the centroid to the farthest point on the
boundary of the obstacle. Uofyset is an additional potential applied to all points on the obstacle
used to produce more of a penalty for crossing an obstacle. With an additional potential function
to penalize the length of each path segment, the total potential is minimized in a discretized C-
space to determine the shortest safe path.

Boreinstein {10] has used a combination of certainty grids for obstacle representation, and
potential field method for on-line obstacle avoidance. The models of the obstacles are derived
from sensory data.

Tilove [85] used the distance to the nearest object as sensed by a ring of range sensors as a
repulsive potential. Path planning is then done using two algorithms. A hill climbing algorithm
which corresponds to steepest descent in the potential field, and a force control algorithm which
utilizes the velocity and acceleration to determine the path.

Huang and Ahuja {38] proposed the use of the following potential function in an algorithm

comprising of a global planner and a local one.

1
P = S e T 1l (2:30)

where g;(z) < 0 ¢ = 1,2...m represent the set of inequalities describing the convex obstacle and
¢ is a very small positive penalty parameter. This potential function has the advantage that it
can handle convex polytopes, although it is not continuosly differentiable.

Kim and Khosla [50} have proposed the use of hydrodynamic harmonic potentials for real-



<9

41

time obstacle avoidance using the panel method. The most important property of the harmonic

potentials is that they are free from local minima. The total potential due to obstacles, goal,

and uniform flow is given by

2

m A moy.
¢(.’II, y) = ¢unijorm + ¢goal + Z¢J = -—U(.’L‘ cosa + ySin a) + _;, + Z 2—; /log Rjdl.‘i (231)
j=1 j=1 J

where @yniform is a harmonic potential.

Ry = y/(z —24)? + (y — y,)? g for goal

Rj=\/(z - z;)? + (y — y;)? j for panel

a is the angle between the direction of uniform flow and the X-axis

m - the number of panels representing an object.

Ag » A; are the strengths of the goal and panel respectively.

U - is the strength of uniform flow.

Once the strengths of the panels have been determined [50], the velocities of the point robot

are determined from

A
ux(r,y) = —¢, = ucosa — =

. A
uy(2,y) = —¢, = usina - ﬁ

) m N[0

log Ri; — ng ~ f, - log Rijdl; (2.32)
) m o\ [0

log R,'j - JZ=:1 2_71'- ; 527 log R,Jle (233)

The disadvantage of this method is the enormous amount of precomputation involved due to the

large number of panels required to approximate an obstacle (see Fig.2.10) . Secondly, there may

arise the presence of structural local minima.

Hashimoto et al. [36] have proposed the use of eclectrostatic Laplace potentials for obstacle

avoidance using sliding mode control, and finally, in [39,52] potential functions are used for

on-line collision avoidance.



et

Boundary Points

Fig. 5. Panel method.

(xinyas) (xj0y,0)

Panel geometry.

Figure 2.10: Construction of panels from an obstacle (adopted from 50)

42



Chapter 3

THE COLLISION DETECTION

ALGORITHMS

3.1 Introduction

This chapter deals with the trasformation of objects features as they move in three dimensional
space, as related to the collision detection algorithms. We shall see, based on the representations
in chapter 2, how an object can be described as it translates and rotates from an initial location
to another. These transformations will form an important basis for our algorithms. Once these
ideas have been firmly established, the collision detection algorithms will be introduced.

Before we derive the expressions for representing a dynamic object, we will review some of

the fundamental transforms in rigid body kinematics.

43



3.2 Review of Transformations:

44

Consider the reference frames UVW and XY Z shown in Fig.3.1(a). UVW is assumed to be

attached to an object, while XY Z is the world coordinate frame. The transformation between

the two frames is given by:

T 100
y|1=1010
Lz_ _00

1

w

Where (z,y,2) are the coordinates of any point on the object as measured in the XY Z frame,

and u, v, w are the coordinates of the same point as measured in the UVIV frame.

Now consider the UVW frame rotated by an angle 8 about the Z —azxis as shown in Fig.3.1(h).

Then, the trasformation between the two frames is given by:

T cosf —sing 0
y| = | sind cos®@ 0
L z 0 0 1

v =

w

R:,O

u

w

(3.1)

Similarly, if the UVW frame is rotated around the X or ¥ — axis, the following rotation

matrices result{27]

1 0

Rxe=10 cosa

0

—sina

0 sina cosa

.

(3.2)



Figure 3.1: Frame rotation

cos¢p 0 sing

Ry, = 0 1 0

-sing 0 cos¢

e

‘The matrices Ry o, Ry 4, and Rzy are orthonormal and satisfy

R'=RT |R|=1

(3.3)

Now consider traslating the origin of the UV frame to a point P(pz.py,p:) as shown in

Fig.3.2. This transformation can be represented as:

™
g
i

(3.4)



1L9

46

Fo
Lot

Figure 3.2: Frame translation and rotation

To combine both rotation and traslation of the UV frame about the XY Z frame we have:

z u Dz
y|= Rxyz | v | + Dy (3.5)
2 w D:

The above transformation can be represented by a single transform matrix called homoge-
neous transform with dimension (4 x 4). The coordinates of every point are then represented in

homogeneous coordinates with dimension n + 1 {21,27,69]

T u
Y R3x3l Pax1 v
= (3.6)
z 0] 1x1 w
1 1

For example, a rotation of # about the Z-axis followed by a traslation to P(p,py,p:) is



ML

represented by the homogeneous transform :

where C8 = cos# and S8 = siné.

100 p.|]coe -so00
610p, |56 co oo
001p || O

0001 0

ce -So

S6 Co
0 0
0 0

In general, any complex transformation can be represented as :

Ny 8§ Qr Po
Ny Sy Gy Py

n, S; a. p:

< < <

0 0 0 1

47

(3.8)

where n = (n,ny,n.), s = (s;,5,,s:) and a = (a,,a,, a.) are the components of the unit vectors

of the UV frame on the XY Z frame respectively [14].

3.2.1 Euler Angles Representation of Orientation

One set of Euler angles representation for orientation is the Roll, Pitch and Yaw (RPY). It cor-

responds to the following rotations in sequence:

e A rotation of ¥ about the OX — azis (Ry y)- Yaw

e A rotation of 8 about the OY — axis (Ryg)- Pitch

¢ A rotation of ¢ about the OZ — azis (Rz4)-Roll




yaw

pitch
6

Figure 3.3: Roll, pitch and Yaw Euler angles

The three rotations are shown in Fig.3.3

The composite rotation matrix resulting from these three rotations is given by:

Rspw = RzgRypRxy =

CoCl CoSOSY — SoCy CopSOCY + SpSi

SoCO S¢S0Sy + CoCy SpSOCY — CopSy

=S8 CoSy CoCy

48

(3.9)

The position and orientation of the object is represented by the 4 x4 homogeneous transformation

matrix given by:

Trpy =
14

0

CeCO C¢S0Sy — SoCy CoSOCY + SéSy p.

S¢Co S¢pSISY+CeCy SPpSHCy — CpSy p,

CoSy CoCy P:

0 0 1

(3.10)



49

For a rotation about an arbitrary axis r'= (rzyry,7.) by an angle ¢, the orientation matrix

is given by :

2Vo+Coé rur V- r:ryVoé —1.S¢ r.r.Vo+r,S¢

Rg= reryVoé +1.5¢ r;‘;VqS +Co ryr:Vo —1r,.S¢ (3.11)

rzr:Vé —r,Sé oy, Vo+1.5¢ Vo 4+ Co ]

Where Vg =1—cos¢
3.3 Transformation of Object Features
Now consider an object represented by the system
A;.’B < b; (312)

If the object is translated by a vector P; = (Pz»py,p:) and at the same time rotated around any

. U - . .
axes, the new coordinates ' of a point z on the object are given by:

t =Rz+P (3.13)

Where R; is the corresponding rotation matrix.

Substituting equation.(3.13) in equation.(3.12) and rearranging, the new geometry of the

object is given by the following system

AiR7Y ' - P) < b (3.14)

Example 1

Consider the object O; € ®2 shown in F‘ig.3.4(a). It is represented by the system:



4

(a) -1 (b)

Figure 3.4: Example 1.

z+y<l1
z20
¥y20

Rotating it by 180° around the Z — axis results in the geometry shown in Fig.3.4(b). This is

uniquely determined by using equations(3.14) and (3.1)

T 1 -

1 1 0 —1()0W z 1
-1 0 0({X{1 ~10 yl <)o
0 -10 0 0 1 z 0
or
-r—y<1
<0
y<o0



T

o1

3 3
2

D 2
1 1

' -
1 2 3 1 2' ;‘S‘y 3
%
(a) (b)

Figure 3.5: Example 2.

For an object represented as a convex hull of vertices, translation and rotation of the object
defined by (1.2) results in the new set
[ !
coX={x=3 NTjz; : 3 N=1;)>0;j=1.0} (3.15)
j=1 Jj=1
Where the vertices z; are defined in homogeneous coordinates[14] and Tj is the homogeneous

transformation matrix representing the translation and rotation of the object.

Example 2

Consider the object O, € 2 shown in Fig.3.5(a), rotating it by 180° around the X — azis
and translating it by P = (1, 1)7, results in the geometry in Fig.3.5(b)

Initially, . ) o
1 | F 1 2

Op: X=M|1]+X|2]|+A]1

0 0 0

- L

AMtl+3=1



)

/\1 )\2 A3 > 0.
After the rotation and the translation,
_ 1¢ . \
1 0 0 1 1 1 2
0 -1 0 1 1 2 1
0,: X= */\1 + A2 + A3 >
0 0 -10 0 0 0
0 0 0 1 1 1 1
L . \ L e L /
or .- -
2 2 3
0 -1 0
X=X\ + Ao + A3
0 0 0
1 1 1
A+ +A3=1;
A1,A2,23 2 0.

3.4 The Algorithms

To develop an algorithm for collision detection, let us represent the path of the objects by their
translation vectors P(t), Pi(t),¢ = 1,2...N and their orientations by the orientation matrices
R(t), Ri(t),i =1,2..N. These two sets of functions define the location functions of the objects.
Furthermore, since the objects are in motion, each element of these functions is a function of

time.



53

To determine collision between the objects using the first representation, we represent A at

any point in time and space by
AR™Y(t)(z - P(t)) < b
and the obstacles by

ARtz — Pt)) < b; ,i=1,..N

Solving the above two systems of inequalities together for i = 1,...N at discrete points in time,

will give the collision points if there are any.

Algorithm I

Initialization step

1) Input t,,t; ,At,A, b, Aj, b; ;i=1,...N
2) Define P(t), R(t), Pi(t), Ri(t),i=1,.N
3)set i =1, t =t, and go to the main step
Main steps

4) Determine P(t), R(t), Pi(t), Ri(t).

5) Solve the system

AR™(¢) b+ AR™Y(t)P(t)
z <
A:R7Y(t) b + A;R™!(t)Py(t)
for a feasible point using a standard linear programming algorithm with zero objective function.

6) Report z(t), the collision point, if the system has a solution. Otherwise, the objects dont

collide at this instance.



54

7) If i = N go to (8), otherwise, increment i by 1 and goto (4).
8) If t = t; stop, otherwise, increment t by At, set i = 1 and go to (4).

End

To develop the second algorithm using the second representation of the objects, note that, two

objects will interfere at any instance if there is a point that belongs to the convex hulls of both

objects.
ie. if
Alt) : coX = {z = nZAAjT(t).Tj : i.‘:/\j =1;A; >0V}
= j=1
and
Bi(t) : coY = {y = iijj(t)yj ::‘:,lvj =139 > 0Vj}
= =
Then

A@)NBi(t) #0iff Iz € A(t) and y € Bi(t) |z = y.

Algorithm 11

Initialization step

1) Input the vertices of the objects as columns of the matrices O , O1,....0N.
2) Input t,,t;, At

3) Define the location matrices of the objects T'(t), Ty(t) , To(t) .... T (t)

4)set i =1,t =1, and go to the main step



Main step
5) Determine T(t), T;(t) and update the vertices of the objects O(t) = T(t)x O, Oy(t) = Ti(t)x O;
6) Solve the system

O(t)A - Oi(tyy =0
ETA=1 ) >0,Vf
Efy=1 ~20,9j

for a feasible point using a standard linear programming algorithm with zero objective function.
Where E = (1,1,...1)T and A = (A, ...0)7, 7 = (71, 72--7;)7» O(t) and Oi(t) are the first
three rows of O(t) and O;(t) respectively.

7)If the system has a solution, Compute the collision point from z, = O(t) x A. Otherwise, there
is no collision with the object at this instance.

8) If i = N goto 9, otherwise, increment i by 1 and goto (5)

9) I t = t; stop, otherwise, increment ¢ by At set i = 1 and go to (5)

End



R

Chapter 4

COMPUTATIONAL EXPERIENCE

ON THE ALGORITHMS

4.1 Introduction

In this chapter, we discuss implementation and computational experience on the proposed col-
lision detection algorithms. The algorithms are also compared in terms of simplicity of imple-
mentation, computational speed/complexity, and accuracy. In this regard, problems in two and
three dimensions were solved. We begin the chapter with a brief review of linear programming

techniques which form the backbone of our collision detection algorithms.

4.1.1 Linear Programming

The general linear program is an optimization problem that minimizes (maximizes) a linear

objective function subject to linear inequality and/or equality constraints. Mathematically rep-

96




resented as

where z € R", Cis (1 x n), Dis(m x n) and dis (m x 1)

The three main approaches for solving the above problem are:
1. The simplex method{7}
2. The ellipsoidal methods|3,7]

3. The interior point methods[3,7]

Theoretically, the ellipsoidal and the interior point methods are the only polynomial ones.
However, in practice, the average case performance is much more important than the worst case
behaviour. And for the problem of finding or identifying a feasible solution to a system of lincar
inequalities which we are interested in, the simplex method has been well tested and has proven

to have good performance.

4.2 Implementation

In our implementation of the collision detection algorithms, the simplex method was used to solve
the systems in steps 5 and 6 of the two algorithmsrespectively. A standard simplex-method-based
subroutine for linear programming is provided by the '"MATLAB optimization toolbox’ [94], and

this was used in the implementation of our algorithms. Furthermore, the algorithms require as



el

58

inputs the constraints matrices representing the objects for Algorithm I, and the vertices of the
objects for Algorithm II, the initial time, the final time, the time increments and the motions of
the objects. The algorithms have been coded in MATLAB language, and the above parameters
are read as inputs to the programs. The path is inputed in terms of the coefficients of the path

components pz, py, p.. parameterized in time. A listing of the codes is provided in Appendices

A,B,C,D.

4.3 Two dimensional Example

The two dimensional example that was considered is shown in Fig.4.1. The case of the object O
moving only was considered. The constraint matrices of the objects were determined from the
interceps of the edges of the objects projected on to the X and Y axes. The following are the

constraint matrices of the objects 1-10 including the moving object O.

0 -1 0 0
i 0 01 6 1
-1 0 0 -4
O, X<
0 -1 0 0
1 2 0 8




02:

041

06 —1 0 -18

-1 10 3
X<

-2 -1 0 -8

1 1 0 7.5
J L

1 -2 0 3

-1 =20 ~125

-2 -1 0|XZ| 145

-1 2 0
1 1 0
1 0 0
0 0 0
0 1 0
-1 -10
1 1.1 0
1 =350
-12 -1 0

12

13




A 3™

Os:

07:

09:

010 .

X<

15.7

-9.2

60



14

13

12

n

10

61

aEO
KON
N

Figure 4.1: A two dimensional example

These were inputed into Algorithm I (Appendix A and C). Similarly, the vertices of the objects

were inputed as columns of the following matrices in homogeneous coordinates into Algorithm

II (Appendices B ,D)

149




02:

042

11

13

3 43 43

o
(@)1
~1

22 17

52 4.7

8.8

13 9.8

62



o)

051

Os:

-9.5 11.7 9.7 8 W

1 1 1 1

48 55 73 6.5

0 0 0 O

8 874 6.8 6.8
73 8 85 8 73
0 0 0 0 O

111 1 1

9.2 11 11

63



o =

64

43 49 6.2
92 104 9.2
Olo :
6 0 O
1 1 1

Two paths were considered for this example. One linear, and the other parabolic. Also, in
the first set of experiments, only pure translational motions were considered, and in the second

set of experiments, simultaneous translations and rotations were considered along the two paths.

pathy : p, =5t, p, =5t

pathy : p, = 5t + 5%, p, = 5t + 5t

The initial reference point on the object O was the origin (0,0) and the final position was the
point (10,10). A time step of 0.1 units was used for the speed of 5 units/s. For higher speed of
the moving object, a criterion for choosing the time step At is to make sure that the time step
is less than the time taken by the moving object (at its maximum speed) to pass the minimum

dimension of all the other objects. This can be expressed by

minimum object dimension
At <

mazimum speed

The results of the simulations are tabulated on tables 4.1-4.8. Furthermore, the average compu-
tational time against the complexity of the obstacles are plotted in Figs.4.3-4.6.
A three dimensional problem involving two objects(polytopes) I which is diamond shaped

and static, and J which is a unit cubic, was also solved. The vertices of the two objects with



65

respect to their centers are respectively

05 -05 05 05 05 -05 -05 -—-0.5
65 05 -05 05 -05 -05 0.5 =05

05 05 05 -05 -0.5 05 -0.5 —-05

1 1 1 1 1 1 1 1

L J

The path on which J was considered to move was elliptical and is given by:
pr =3coswt; py=sinmt; p.=0VO0<t<L1

This problem was given to our Algorithm II and the time taken on the IBM/486-DX machine
was 2.86 seconds.

Further, to study the accuracy of the algorithms, the scenario in Fig.4.2 was constructed.
Algorithm I was used for this test. The objects here are thinner, and the effect of changing the
time interval from 0.1 to 0.8 was studied. The results are tabulated on Table 4.9. Again, only
object O was considered moving on a linear path at 45° to the horizontal axis. It can be noticed
from the table that as the time step is increased, the algorithm takes less time to compute all
possible collisions. However, this is achieved at the expense of the reliability of the algorithm. It
can further be observed that, up to 0.5 time steps, the algorithm detected all the collisions with
objects Oy, Oy, O3,and Oj, except at 0.3 where the object O just misses the obstacle O,. This

is due to the pencil nature of the edge of the obstacle. But beyond 0.5, the algorithm misses



M

66

more frequently. The result of this experiment applies automatically to Algorithm II with only

a speed difference.

4.4 Conclusion

It has been found out that Algorithm I is more efficient than Algorithm II in terms of lower
computational time. However, Algorithm II requires less preparatory effort since it requires as
inputs the vertices of the objects. Algorithm I represents the objects as convex polyhedra defined
by systems of linear inequalities while Algorithm II represents the objects as convex polyhedra
defined as convex hulls of a finite number of vertices. The two algorithms were developed to be
used whenever any of the representations is available. Although the first representation is more
difficult to derive, Algorithm I is faster to use.

Both algorithms can treat the general case of a three dimensional object translating and
rotating on an arbitrary path (not necessarily linear). From the limited experiments, both algo-
rithms have shown average linear computational complexities. Finally, it has been observed that
increasing the time interval for testing the collisons has the effect of speeding-up the performance

of the algorithms at the expense of decreasing their reliability of detecting all possible collisions.



- =

10

Figure 4.2: An example to study the effect of changing the time interval

10

Y

67



Table 4.1: Algorithm I Linear path with translation

No. of Objects | No. of edges | Time(s)
1 4 4.23
2 8 8.13
3 13 12.58
4 17 16.10
3 21 19.94
6 27 23.78
7 31 27.29
8 35 31.47
9 38 35.31
10 41 40.43




LA |

Table 4.2: Algorithm I Linear path with translation and rotation

No. of Objects | No. of edges | Time(s)
1 4 6.97
2 8 10.77
3 13 15.11
4 17 18.51
9 21 22.36
6 27 26.20
7 31 29.55
8 35 33.40
9 38 36.80
10 41 41.52

69



Table 4.3: Algorithm I Parabolic path with translation

No. of Objects | No. of edges | Time(s)
1 4 2.25
2 8 4.29
3 13 6.48
4 17 8.18
5 21 10.11
6 27 12.20
7 31 13.84
8 35 15.82
9 38 17.74
10 41 19.45




L

Table 4.4: Algorithm I Parabolic path with translation and rotation around X-axis

No. of Objects | No. of edges | Time(s)
1 4 2.31
2 8 4.23
3 13 6.48
4 17 8.30
5 21 10.22
6 27 12.14
7 31 13.89
8 35 15.82
9 38 17.52
10 41 19.39




A ¥

Table 4.5: Algorithm IT Linear path with translation

No. of Objects | No. of edges | Time(s)
1 4 6.43
2 8 12.41
3 13 19.44
4 17 25.21
) 21 31.37
6 27 39.00
7 31 44.49
8 35 50.36
9 38 55.47
10 41 62.28




Table 4.6: Algorithm II Linear path with translation and rotation

No. of Objects | No. of edges | Time(s)
1 4 6.43
2 8 12.31
3 13 19.39
4 17 24.99
5 21 30.98
6 27 38.45
7 31 44.16
8 35 50.26
9 38 55.09
10 41 59.54




Table 4.7: Algorithm II Parabolic path with translation

No. of Objects | No. of edges | Time(s)
1 4 3.35
2 8 6.43
3 13 10.11
4 17 13.12
3 21 16.09
6 27 19.93
7 31 23.13
8 ‘ 35 25.93
9 38 28.57
10 41 31.37




Table 4.8: Algorithm II Parabolic path with translation and rotation around X-axis

No. of Objects | No. of edges | Time(s)
1 4 3.29
2 8 6.48
3 13 9.94
4 17 12.85
5 21 15.98
6 27 19.83
7 31 23.23
8 35 26.04
9 38 28.62
10 41 31.14

-

ot



76

50 Algr. No.1 Linear Path 20 Algr. No.1 parabolic Pal’h
g ¥ 1 g 15t y .
. *
2 30 . i 8 .
g + g 10+ . -
g 2 L i E .
F . (18 M <
lo . +
0
00 50 0 50
No. of edges No. of edges
60 Algr. No. 2 Lincar Path 40 Algr. No. 2 Parabolic Path
. 1 8 30+ A
§ 4 . % .
= * o * b
Té . é 20 .
g 20 B E ol Lt ]
0
0 50 00 50
No. of vertices No. of vertices
Figure 4.3: The case of translation only
50 Algr. No.1 Linear Path 20 Algr. No.1 parabolic Path
o . 15 L
g 30 * - g 0 +
o . - 10+ + -
g 2 L ° { g .
= . = (18 * o
10 . *
0 0 .
0 5 10 0 5 10
No. of objects No. of objects
60 Algr. No. 2 Lincar Path 40 Algr. No. 2 Parabolic Path
. *
301 3
43 * .
g « . ¢ R
g . & 20k . g
g . g .
2 = .
g 2 . . E ol . )
0 —
00 5 10 0 5 10
No. of objects No. of objects

123




L% ]

Algr. No.1 Linear Path

50

40+ 4
8 *
2 aoL A
E-1 . *
v

20+ . 4
g .

10} . k

*
0 s 10
No. of objects

30 Algr. No. 2 Lincar Path
g SO o
H] ,
£ . 4
3
£ .t
E oot . |

c *

0 5 10

No. of objects

Figure 4.5: The case of simultaneous translation and rotation

50 Algr. No.1 Linear Path

$0+ * 4
4] -
& 30p * 4
5 .
g 2 . ;
B <
10 E
0
0 50
No. of edges
50 Algr. No. 2 Linear Path
40- - h
8
2 30t ¢ 4
& .
g o . :
F o 1
0
0 50
No. of vertices

Figure 4.6: The case of simultaneous translation and rotation

Time in secs

Time in sccs

Time in sccs

Time in secs

20

15

10

30

20

Algr. No.1 parabolic Path
A ——

No. of objects

Algr. No. 2 Parabolic Path

10

No. of objects

Algr. No.1 parabolic Path

No. of edges

__ Algr. No. 2 Parabolic Path

50

No. of vertices

50

-1
~1



Table 4.9: Effect of changing time interval At

At | 01| 0210304 | Os | Time(s)
0.1 X I XX *|X]| 146.81
02| X |X|[X}|*|X]| 6733
03] - | X | X[ * | X | 4543
04| X | X[X ]| *|[X| 3504
05| XXX} * X 26.97
06] - | - | X | *|X| 2192
07 - | - | X|*|X| 19.28
081 - -t-1*1X 16.59

Where X - Algorithm detects a collision

- Algorithm misses a collision

* - No possible collision with object.




1 davod

Chapter 5

APPLICATION TO A ROBOTIC

PROBLEM

5.1 Introduction

In this chapter, the collision detection algorithms are used in a robotic application, a two link
manipulator moving among stationary obstacles, to ascertain their practicality. However, recall
that the algorithms are valid for motions (paths) specified in operational (cartesian) space while
manipulator trajectories are normally specified in joint space. The transformation of obstacle
geometries and their motions from task space to joint space is a very difficult task and is not one-
to-one. But, robot direct kinematics can be used to transform joint trajectories to operational
space. Therefore, we will review robot kinematics and trajectory planning in the beginning of the

chapter, and then apply the collision detection algorithms to a two link manipulator example.



T&

80

5.2 Robot Kinematics

Kinematics is the branch of mechanics that deals with motion (position, velocity, acceleration
and higher derivatives) without regard to the forces causing them. In robot kinematics, we are
interested in two problems: direct and inverse kinematics problems which are defined below re-

spectively:

Direct kinematics
For a given manipulator, given the joint angle vector q(t) = (qi(t), g2(t), .....q.(¢))¥ and the geo-
metrical link parameters, where n is the number of degrees of freedom, what is the position and

orientation of the end-effector of the manipulator with respect to a reference coordinate system

?

Inverse Kinematics
Given the desired position and orientation of the end-effector of the manipulator and the geo-
metric link parameters with respect to a reference coordinate system, what are the various joint

angles required to attain this configuration ?

Trajectory Planning
Trajectory planning is the generation of the time history of the various joint positions, velocity
and acceleration that take the robot from an initial position to a final position along a determined

or prescribed path.




81

Trajectories can also be planned in cartesian space. However, we will be mainly concerned
here with joint trajectories. This involves, interpolating or approximating the desired path by a
class of polynomial functions and generating a sequence of time-based " control sct points” for the
control of the manipulator. There are various schemes to manipulator joint trajectory planning:
4-3-4, 3-5-3 (polynomial) and 5-cubic-spline interpolated trajectories [21,27,69].

To connect the above problems with collision detection, we now solve an example involving a
two link manipulator moving among few obstacles. To do this, we will assume that we are given
an initial representation of the manipulator links in the form of polyhedral sets as discussed
in chapter 1 and on which the collision detection algorithms are based. We will also assume
that we are given the joint trajectories and we have to transform them into equivalent cartesian
trajectories using the robot forward (direct) kinematics. This will enable us to find a scquence
of new manipulator links representations along the trajectories. Then we apply our collision

detection schemes to determine any possible collisions with the obstacles.

5.2.1 Kinematic Equations of the two link Manipulator

Using the Denavit-Hartenberg(D-H) representation of links and joints parameters, and link co-
ordinate system assigment[21,27], the D-H matrix for adjacent coordinate frames, ¢ and 7 — 1 for

a revolute joint is given by

CB,- —Ca.-SO,- SCY,'S@; a,-CO,-
N 50, Ca,—CG,- —SO‘,-C&; (1.,'50,'
Al = (5.1)
0 Sa; Cao; di

0 0 0 1




82

where a;, a;, d; are constant link paramcters and 6; is variable. For the two link manipulator

example shown in Fig.5.1, o = a3 = 0,a; = a; = 0.5m then the homogencous coordinate

transformation matrices are given by

C, -5, 00
S C 00
A= (5.2)
0 0 10
0 0 01
C, -S, 0 1
S, C, 00
A2 = (5.3)
0 0 10
0 0 01

Ci2 =S 0 ICy

6 0l Si2 Cip 0 1S 3
442 = A1A2 = (0.4)

where C; = cosf;, S; = sin;, C;; = cos(8; +-0,-) and S;; = sin(6; + 8;) .The matrices A9 and A}
transform any point on link i whose coordinates are defined with respect to the reference frame
of link 7, to the reference frame of link ¢ — 1.

Now assume that the manipulator is initially in the horizontal position with both links

stretched as shown in Fig.5.2. We can approximate the links by rectangles defined by the fol-



83

> X

Figure 5.1: A two link manipulator

Y
A
1.0 7
02
0.7
DN
0.1 ] ]
0.3 0.5 1.0 >X

Figure 5.2: A two link manipulator example




T

lowing systems of inequalities.

link; :

linky .

012

02!

03:

IN

IN

IA

IN

AN

1

84

(5.5)

~~
Ut
-1

N



Table 5.1: Manip‘l.llator Collision Detection

Link 1 Link 2
O, X t=1.5 (0.701,0.5)
0, X t=5.0 (0,5.0)

O3 | t=10 {-0.1,3.0) | t=6.2 (-2.228,0.425)

5.3 Simulation

The example of simple manipulator trajectories given by:

T T
= —— 0 = e

will be considered.
A time step of 0.1 was used and Algorithm I was applied. The results of the simulation are
presented on Table 5.1 below: Where X - No collision

The above table indicates the time and location of the earliest collision with each object.

5.4 Conclusion

The collision detection algorithm I, developed has been applied to a practical problem of a plane
two-link manipulator moving amongst planar convex obstacles. The algorithm has detected
accurately the collision of link-2 with objects 05,0, and O3, and the collision of link-1 with
object O3 only, while moving on the above simple circular trajectories (Table 5.1). This can be

verified from Fig.5.2.




Chapter 6

PATH PLANNING

6.1 Introduction

A number of industrial applications require finding of a minimum length path in the presence
of polyhedral obstacles from a starting point to a destination point. Path length minimization
of an arbitrary route is helpful in improving the productivity of a process and reducing costs.
Typical applications include path planning for manipulator and mobile robots, routing of oil, gas
and water piping systems, communication cables etc.

The shortest path between two given points in three dimensions consists of a set of straight
lines with their vertices located on the obstacles (see Fig.2.7). The global problem consists of
finding the sequence of edges through which the shortest path passes. Searching for the correct
sequence of edges is computationally expensive due to the combinatorial nature of the search
process. Moreover, in robotic application, to servo a robot on such a path will require the velocity
of the robot to instantaneously go to zero at the vertices. This presents a serious problem in

motion control.

86




87
In this chapter, we will consider the path planning problem for the case of a point mass
moving in a space where there is accurate information about the nature, position and orientation
of the static configuration-space obstacles (CS-obstacles). Furthermore, we shall assume that the
obstacles are not interpenetrating, i.e. they are separated by some distance, or are atmost only
touching. We shall introduce a new approach to the potential field method which is essentially
a penalty function method but has the remarkable feature that there is no lacal minima in the
potential field. The only global minimum is the goal configuration whose domain of attraction
is over the whole of Cy,... We shall also propose a new approach based on expanding spheres
for optimizing the path in a depth-first fashion, that can be used with any potential or penalty
function.
We begin by introducing the requirements desired for a potential function, and then discuss

some of the draw-backs of ealier approaches before we introduce our own approach.

6.2 Requirements for an Artificial Potential Function

In this section we look at the properties required for a continuous function to serve as potential
function. These requirements have motivated the development of the new potential function, as
most of the potential functions proposed so far, have fallen short of these requirements.

Khosla and Volpe {47] have summarized the properties of a repulsive artificial potential func-

tion as follows :

1. It should have spherical symmetry for large distances from the obstacle so that no local

minima is created when this potential is added to other potentials (e.g. an attractive well).

2. It should mimick the obstacle surface at close distance so as to maximize the robots free-



Vduosd

88

space.

3. It's range of influence should be limited to the vicinity of the obstacle so as not to affect

the robots motion away from the obstacle.
4. It should be a continuosly diffentiable function of class C" [0, 00) where n > 2.

An attractive potential is usually a quadratic well which has good stabilizing properties and gives
a constant gain when used in a feed-back control. A conic well also serves as a good attractive

potential but does not have the stabilizing properties of the quadratic well.

6.3 Problems with Earlier Approaches

From the literature review presented in Chapter 1, the FIRAS potential used by Khatib[45] does
not satisfy properties (1) and (4), and hence is not free from the problem of local minima when
added to an attractive well or other potentials.

"The superquadric artificial potentials proposed by Khosla and Volpe [47,89] are very attractive
and satisfy almost all the requirements of the ideal. However, the inverse dependence of the
potential with the pseudo-distance 'k from the obstacle retains a finite value for the potential at
distances away from the obstacles. Moreover, the choice of the scaling parameters and the decay
constant for the potential still remains a trial-and-error problem.

Again, the harmonic potentials proposed by Kim and Khosla [50] eliminate the local minima
problem but do not optimize the path. Secondly, as the complexity of the obstacles increases,
the number of panels required to represent them increases and the computational cost of the

algorithm may become very high.



el

89

The potential function proposed by Huang and Ahuja [38] has the advantage that it can
handle convex polyhedral obstacles but it still remains finite at distances away from the obstacle.
‘Therefore, the generation of local minima in the potential field cannot be ruled out. Although,
the use of a global planner and a local planner has given rise to a powerful algorithm.

The notion of a navigation function proposed by KKhoditchek and Rimon [71,72], is achievable

for only limited classes of objects shapes and configuration-space.

6.4 The New Potential Function

Consider an analytic description of a smooth convex object (such as a sphere or ellipsoid) given
by

9(z) £0; g(x) e C*"[0,0), T € R";n=2,3 (6.1)
Then the function

p(z) = pmax(0, —g(x))" (6.2)

where y is a very large penalty parameter and r > 2, is everywhere zero outside the object, and
attains its maximum in the interior of g{z) < 0. Hence, such a function can serve as a very good
potential function. Furthermore, the addition of such potentials arising from so many objects in
a configuration-space, will not engender the creation of any local minimum.

For a point robot moving amongst N stationary obstacles defined by ¢;(z) <0;i=1,2,...N,

a useful navigation function can be defined by

N
Uz)=zllz—x, | +uz max(0, —g;)" (6.3)

i=1]

N -

Where 7 is a constant.



o

90

The above total potential function is continuous, differentiable and has zero contribution from
the second term at locations away from the obstacles. Its remarkable property is described in
the following proposition.

Proposition : The potential function U(z) given in equation(6.3) has a unique global minimum
at the goal configuration whose domain of attraction extends all over Cy,,, for all r > 2.
Proof:

The gradient vector of the potential function is given by
N
VU = (z - zg) + (=1)"rp>_ max(0, —g;)""'Vy; (6.4)
i=1

Because of the large penalty parameter p, the interior of the obstacles is a forbidden region for
the robot, and hence if we exclude all points in the interior of the obstacles, the sccond term in

the gradient is always zero, and the solution of
VU = 0 is uniquely solved by x = x,

The hessian is positive definite at this point, and hence the result o

The only draw-back to the above potential function is that it allows the robot to approach
too close to the surfaces of the obstacles. However, this is not a very serious problem as observed
in the visibility graph method [56]. The obstacles could be expanded by a small safety factor
€ to avoid this problem. Furthermore, this seeming drawback can be used to advantage since
certain robot tasks such as docking, parts mating, and more general motion tasks, all require
navigation at or along the boundary of the configuration space. Fig.6.1 shows the distribution of
the potential due to two circular objects in 2 and Fig.6.2 shows the distribution of the potential

due to two rectangular objects obtained by approximation with an n-ellipse.



1l

91



ldaod

92

100

1ot




et =

93

o)~ ey +) o)

(a) b

Figure 6.3: A system of electrostatic charges

An analogy of the above potential field to the electrostatic potential can be drawn from
Fig.6.3. In the figure, (a) shows a system of three positive charge regions (B, C and G) and a
region of negetive charge (A) at the end. It is desired to accelerate the center of the negative
charge A to G through the field. To avoid the use of excessively high potential difference between
A and G, the problem could be solved by screening the regions B and C with metallic surfaces
as shown in (b) so that their contribution to the total potential in the region is reduced to zero

outside the metallic screens. This is exactly the purpose served by the function p(z).

6.5 A New Approach to Path Optimization

Once the total potential function from the goal and obstacles has been constructed, path planning
is usually implemented in a depth-first fashion. This involves generating successive path segments
starting from the initial configuration along the direction of the negated gradient of the total
potential function U at each successive point until the goal is reached. The amplitude of each

segment is chosen so that the segment lies in Cj,... Hence the cordinates of the configuration



M

94

T;4y attained at the #th iteration is given by
Tiy1 = 2; + 86(=VU(z:)) (6.3)

Where ¢; denotes the length of the ith segment and VU is the gradient vector of U. Usually, the
choice of §; is not optimal.

The above method of depth-first planning is a gradient-based approach which uses only first
order information about the function. This makes it very inefficient. To solve problem (6.3),
Newton'’s or quasi-Newton methods may be used. However, we are proposing a new scheme that
will avail the path planner the utilization of very efficient optimization algorithms in existence.
This can be implemented using any optimization package.

Consider the problem

N

. 1 :
Min U(z) = 3 |z =z, |I* +1Y_ max(0, —g;)"

i=1

s.t.

| z = zo I< R(2) (6.6)

The additional constraint is an expanding sphere, where zy is the initial configuration, and R(t)
is a time function which represents the radius of the bounding sphere. By the above constraint,
problem 6.3 is transformed into a homotopy in R(t), where R(t) goes from zero to d, or the
Euclidean distance from the initial point to the goal point.

The optimality conditions for problem (6.6) are

(t—z4) + (-—1)'1‘;1% maz(0,—g;) " 'Vg; — a(z — 20) =0

i=1




Vhond

(z —)? = R¥(t)
a>0 (6.7)

The conditions (6.7) are the Karush-Kuhn-Tucker conditions[6] for problem (6.6) and if we ignore
the condition a > 0, then (6.7) is a system of n + 1 equations in n 4+ 1 unknowns parameterized
by R(t) € [0, dg], or a homotopy in R(t).

Newton’s method can be used to solve the above system for various values of R(t) € [0,d,].
Clearly, all the conditions of the implicit function theorem hold, or the solution will constitute a
path that is continuous and smooth in 2 which is the desired objective.

The above has been the theoretical framework for the path planning problem. Implementation
can be done cither along the same theoretical approach outlined above, where a > 0 can be
taken care of implicitly (i.e. through starting with @ > 0 and applying the minimum ratio test to
make sure it is always nonnegative) or by solving problem 6.6 directly using any of the efficient
optimization routines which are readily available nowadays.

Fig.6.4 shows a geometrical interpretation of the above formulation in two dimensions. In each
iteration of the path search, the radius of the sphere R(t) is incremented, and the minimum of
the potential function is sought within th_e new sphere(circle). Consequently, a new configuration
is generated nearer to the goal and away from the obstacles. The rate of change of R(t) can
be typically made equal to the maximum speed of the robot. By a judicious choice of R(t), a
smooth path can be generated from the initial configuration to the goal configuration without

collision with any of the obstacles.



- e

R(t)

AN

Figure 6.4: Depth-first planning using expanding circles

Xy

96



Figure 6.5: Vertex graph path of a polygonal robot through a set of expanded objects

6.6 Practical Considerations

In practice, the robot links will have nonzero length, width and thickness; hence, the assumption
of a point robot will not work in practice. However, a non-point robot can be transformed into
a point robot by expanding the obstacles by the largest radius of the robot. This operation
is known as growing the obstacles by the robot, and transforms the workspace obstacles into
CS-obstacles. This can be achieved using an object growth algorithm 141,53,55]. Although the
operation is not exact, it provides a very good practical solution to the above problem. Fig.6.5
shows such an operation for the case of a polygonal robot moving amidst polygonal obstacles.
In Fig.6.6 we show the case of a circular robot amongst circular obstacles. But note that,
the growth operation has led to the intersection of the grown obstacles . Depending on the
location of the goal configuration, if the robot has to pass in-between the obstacles in order
to reach the goal, the robot will get stucked. Yet, the potential field approach has no way of
detecting such a problem a priori. A reasonable solution to the above problem is to define a new

obstacle which contains the union of the intersecting obstacles. We shall call this new object the



98

Goal
‘—-—“
7 S
’ Y
’ A}
S ; !
- ~ i [
’ . \ ’
’ hY Al ’
7 \ \\ e
' LI, S -"
] > ~ -
; 4 b
’ \
' 1
!
! i
\ '
\ \ 4
\ A ’
A [N N 7/
S~ ~ ’
Se -
‘ g
>
robot

Figure 6.6: A circular robot moving among circular obstacles
unionizing object. For the case of the circular obstacles, this new object can be approximated
by an n-ellipse defined as follows: let the radii of the grown obstacles be r}, 15 and their centers
be (a;,8,), (a2, by) respectively. Then the length of the major and minor axes of the unionizing

n-ellipsoid Iy, I respectively, are given by

11 = ((1+ b)+ \/(al - (12)2 -+ (b1 - b2)2.
Il = maz(ry, o)

The center of the n-ellipse (a, b) is similarly given by

(00) = 5 (@1 — a2), (b1 b))

Hence the n-ellipse can be defined by

((zl-la))”‘ + ((y; b))"’" -1




o

99
Where n > 1 is an appropriate shaping parameter.
T=zxcosf ~ysinf, §= xsind + ycosd

and

1 ay — Qs
y(@1 = a2)? + (by — by)?2

8 = cos™

6.7 Simulations

In the simulations, we considered problems in two and three dimensions with circular(spherical)
and elliptical obstacles. All the simulations were implemented using the MATLAB Optimization
Toolbox routine "CONSTR”[94].

The figures 6.7 -6.12 show the path of a point mobile robot starting from the reference position
(0, 0), the origin (without any loss of generality), to the the point (10, 10). Pathl was obtained
with three circular obstacles of radii '1' centered at (2,2),(5,5),(8,8) respectively. Path2 was
obtained also with circular obstacles of radii '2’ centered at (3,3) and (8,8) respectively. Path3
was obtained with two circular obstacles with radii '1’ centered at (2,0) and (2,2). The goal
in this case was (10,2). Path4 was obtained with a rectangular obstacle approximated by an
4-ellipse with major and minor axes lenéths 2" '1" respectively, and centered at (5,0). The goal
was in this case (10,2). Path5 was obtained using two ellipses centered at (3,3) and (6,6) with
length of major axis(along X-axis) and minor axis(along Y-axis) ’4’, '2’ respectively. Path6 was
also obtained using ellipses centered at (3,3) and (6,6) but with major axis length 4’ along the
Y-axis and minor axis length 2’ along the x-axis.

Clearly, paths 4 and 5 indicate the faflure of the algorithm to handle elliptical obstacles.

However, this does not mean that the new potential function proposed has failed to avoid the



100

obstacles, but it is rather the formulation of the path planning problem in equation (6.6) that
has failed. Nevertheless, we still have a remedy to this problem! We propose the replacement of
the expanding sphere(circle) constraint in (6.6) with a very narrow expanding ellipsoid(ellipse).
We have implemented this back-up procedure for all the above problems, and the results are
shown in Figs.6.13-6.18. It has in fact turned out that this procedure yields more optimal paths
and solves richer amount of problems. Finally, path13 represent a three dimensional example
obtained with a sphere of radius 2 units centered at (5,5,5). The time taken to solve each of the

above problems was less than 4.0 minutes on an IBM 486/433 DX machine.

6.8 Conclusion

In this chapter, we have presented a new potential function for robot path planning and obstacle
avoidance. This potential function has the remarkable feature that, no matter the number of
obstacles in the configuration space, no local minima is generated in the potential field. All that is
required to generate the potential field using the new potential function, is an analytic description
of the obstacles. This is readily available for smooth objects such as spheres and ellipsoids.
Nonetheless, convex polytope objects can still be approximated using superquadrics{47).
Furthermore, we have proposed a new approach to path optimization by parameterizing the
path as a function of the radius of an expanding sphere. This approach allows the path planner

the utilization of efficient optimization routines in existence.




Figure 6.7: Pathl

>

L

Figure 6.8: Path2

10

101



10
9l
st
T+ J
st J
5t ]
4+ 4
3} ]
2t ]
1}t ]
eollll lll‘lllll‘llllllllxllllXlxxlilllle
2
n _ |
6
8
10
Fig
ure 6.9;
.9: Path3
10
ol
8l
7+ 4
6+ ]
sk R
4+ J
3t 4
2% 4
1t J
collllllllllllllllll‘xlllll‘llllllxllx:llllle‘lllX
2 "
n . ]
6 N
8
10

Fi -
igure 6.10: Path4

102



10

(=]
]

Figure 6.11: Path5

8 pa0e,

Figure 6.12: Path6

10

103



1)

10

Figure 6.13: Path7

Vs,

Pt

(=3

(=)

Figute 6.14: Path8

104



10

10

Figure 6.15: Path9

Figure 6.16: Path10



106

Figure 6.17: Pathl1

10 . r .
oo

w o L (= -3
T y T T T

-

o
"y,
o0

Figure 6.18: Path12




Figure 6.19: Path13




Chapter 7

SUMMARY AND CONCLUSIONS

In this thesis we have developed two collision detection algorithms for detecting the collision of
three dimensional objects moving on an arbitrary path that can be parameterized as a function
of a parameter ¢ (usually time). The algorithms can handle the case of objects moving with
simultaneous translation and rotation.

The first algorithm detects collision of objects which are modelled as convex polyhedra defined
as intersection of half-spaces which can be represented by a set of linear incqualities.

The second algorithm also detects collision of objects by modelling them as convex polyhedral
sets, but defines these sets as convex hiills of finite number of vertices. This representation is
easier to derive and its accuracy increases as the number of vertices used increase.

We have followed the "multiple Interference” detection methodology. This is one of the sim-
plest approaches to the collision detection problem. In this approach, the position and orientation
of the moving object(s) are calculated at discrete intervals of time (or any path parameter), and
static interference detection is performed at each point. The time interval between successive

checks is kept short to avoid missing a collision. However, if this time is made too short, the

108



109

computation time may become too long for-practical purposes.

In our own approach to the collision detection problem, we used homogeneous transformation
matrices to represent the positions and orientations of the objects at the discrete points in
time and space. Using the above representations, the gcometries of the objects are determined
at each point in time, and static interference checks are performed using linear programming
techniques. These came handy since the above representations give rise to linear systems, and
efficient algorithms for linear programming are available.

The above simple procedure is repeated for all the discrete points on the path until the end.

In our implementation of the proposed collision detection algorithms, we have used a standard
linear programming routine "LP" from the MATLAB Optimization Toolbox. The MATLAB
environment provides suitable facilities to code the algorithms with little programming hardship
typified by other programming languages such as Fortran, Pascal and C-language. Complex
matrix manipulations that might involve hundreds of Fortran statements are performed by one
statement of NIATLAB.

Furthermore, the MATLAB environment allows the specifications of the ob jects, their motions
and the time span of interest to be inputed from the screen interactively. Hence the codes have
the features of other geometrical modelling systems. The only drawback in using MATLAB for
implementation of the algorithms is that, its speed in executing complex "do loops” and calling
other routines from different files is much slower than Fortran and C [93].

From the results of the simulations carried out in chapter 4, it has been shown that Algorithm
Iis more efficient than Algorithm II in computational time. However, both algorithms have linear
computational complexities. But their efficiency lies heavily on the decisive choice of the time

step At. Too large a value of At will miss some collisions, and too small a value wastes a lot of



110

time. Furtherniore, the algorithms can handle three dimensional objects translating and rotating
along an arbitrary time parameterized path. And although the algorithms procced to find all
possible collisions between the potentially colliding objects, they can be modified to terminate
after detecting the first collision.

Finally, it should be realized that the algorithms check for interference between the moving
object of interest, and all the other objects at each discrete point in time on the path even though
it is not necessary to do so, since objects away from the current location can be eliminated.
This adds to the computational time of the algorithms. Therefore, a natural extension to this
work should be to examine such a possibility. The modification of the algorithms to detect
possible collisions for on-line application where the objects motions are uncertain should also be
investigated.

We have also presented a methodology for local off-line path planning based on the method
of potential functions for robotics application. It applies to static obstacles in the workspace
whose presence is coded using a new artificial potential function. The new function possesses all
the properties desired for an artificial potential function, the most important of which is freedom
from local minima that can be created by addition with other potentials. All that is required to
generate a potential field using the new function is an analytic description of the obstacles. For
smooth objects such as spherical and ellipsoidal objects, this is readily available. Nonetheless,
other convex objects can be approximately described using superquadric functions [47].

In addition to the path planning scheme, we have also proposed a new approach to path
optimization that can be used with any potential or penalty function by parameterizing the
path as a homotopy in the radius of an expanding sphere. Using simulations in two and three

dimensions with a point mobile robot, we have demonstrated that a combination of the new



111

potential function for obstacle avoidance and the path optimization scheme generate a smooth
continuous path from start to goal within a very short time. This is possible because the above
formulation allows the planner the utilization of efficient optimization routines vis-a-vis the use
of first order information provided by the gradient. We have solved a rich class of problems
and we have shown representative solutions. Furthermore, we have shown that the potential
function can be applied to the path planring of a rich class of nonpoint robots by transforming
the workspace obstacles to configuration-space(CS) obstacles using an object growth algorithm.

Several motivations have led to the use of the potential field representation of the topological
nature of free space. It can be used to obtain global representation of the space so that coarse
planning can be done at the global level. Through an integration of our potential ficld-based
path planning algorithm and our collision detection algorithms, an efficient global planner can be
synthesized. It will not be difficult to use the path planner for global planning and the collision
detector for local or fine planning.

As areas of future research, it is worth investigating the use of the new potential function
for on-line obstacle avoidance using feedback control. We also intend to unify our approach
to the path planning problem by considering both translations and rotations of the robot in
three dimensions. The integration of the collision detection algorithms with the path planning
algorithm into a global planner will also be an achievement. Furthermore, the use of the new
potential function for motion planning in nonstationary environments and multiple (possibly
interacting) robots in a workspace, should also be investigated. Applications to motion planning

with uncertainty, holonomic and nonholonomic constraints will also be worthwhile.



Ak d

Appendix A

PROGRAM 1

PROGRAM FOR COLLISION DETECTION NO.1
USING LINEAR INEQUALITIES REPRESENTATION OF THE OBJECTS
THE CASE OF PURE TRANSLATION
ok kok SRRk kR kR Kok kKRR R sk ko sk ok sk s sk ek ok ko
n=input(’number of objects=’)
ts=input(’initial time=’)
tf=input(’final time=’)
h=input(’time step=?’)
disp(’initial orientation of the robot?’)
disp(’in terms of Euler angles’)
phi=input(’roll angle=')
theta=input(’pitch angle=’)
psi=input('yaw angle=’)

nx=cos(phi)*cos(theta);

112



113

ny=sin(phi)*cos(theta); -

nz=-sin(theta);

sx=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
sy=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);

sz=cos(theta)*sin(psi);

ax=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
ay=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi);

az=cos(theta)*cos(psi);

TR Ao sk s ok AR oA ook sk ok o sk kst ok ok koo sk o s s o ok
disp(’input constraint matrices of the objects’)

a=input("robot a=’);b=input(’b=’);
al=input(’ai=’);bi=input(’bl=’);a2=input(’a2=’);b2=input(’b2=’);
a3=input(’a3=’);b3=input(’b3=’);a4=input(’ad=’);bd=input(’b4=’);
aS=input(’aS=’);b5=input(’b5=’);a6=input(’aé=’) ;b6=input(’b6=");
a7=input(’a7=’);b7=input(’b7=’);a8=input(’a8=’);b8éinput(’b8=’);
a9=input(’a9=’);b9=input(’b9=’);a10=input(’ai0=’);b10=input (’b10=>);
(mai1,nat]=size(al); [ma2,na2l=size(a2); [ma3,na3l=size(a3);
[ma4,na4]=size(a4);[ma5,na53=size(a5);[ma6,na6]=size(a6);
Rkt sk stk kkkMATN  LOOP ok dok sk sk ks sk e ok ok sk eskok ke o s ok ook oo o ok ko ok sk ok ok
t=ts;N=(tf-ts)/h +1

disp(’define robot motion’)

disp(’input the coefficients of the polynomials px,py,pz up to third order’)

cx=input(’coefficients of px in descending order=’)



114

cy=input(’coefficients of py in descending order=’)
cz=input(’coefficients of pz in descending order=’)

t1=clock;

for i=1:N

px=cx(4)+cx(3)*t+cx(2)*t " 2+cx(1)*t"3;
py=cy(4)+cy(3)*t+cy(2) %t ~2+cy(1)*t~3;
pz=cz(4)+cz(3)*t+cz(2)*t"2+cz(1)*t"3;

for j=1:n;

rr=[nx sx ax;ny sy ay;nz sz az];pr={px;py;pz];

ar=a*rr’;br=b+ar*pr;

if j==1 a0=al;b0=bl;elseif j==2;a0=a2;b0=b2;elseif j==3;a0=a3;b0=b3;
elseif j==4;a0=a4;b0=b4;elseif j==5;a0=a5;b0=b5;elseif j==6;a0=a6;b0=b6;
elseif j==7;a0=a7;b0=b7;elseif j==8;a0=a8;b0=b8;elseif j==9;a0=a9;b0=b9;
elseif j==10;a0=a10;b0=b10;end;f=[1 0 0];

%xkxkxxxkNEW SYSTEM OF INEQUALITIES AND SOLUT I DN % sk skok sk skook sk o ok ok sk ke ok koo ok o o ok sk sk ok o ok o
s=[ar;a0] ;d=[br;b0] ;disp(’xx****+*Beginsxsskxx’) ;disp(j);disp(t);
disp(’collision point x =’);

xc=1p(f,s,d,zeros(3,1));

disp(xc);

end;t=ts+ixh;end

t2=clock;etime(t2,t1)



Appendix B

PROGRAM 2

PROGRAM FOR COLLISION DETECTION NO.2
USING CONVEX HULLS REPRESENTATION OF THE OBJECTS
THE CASE OF PURE TRANSLATION
ket ke e e o i s ok ook s ke oo e e o e o 3 e e s e e skl ke ook o sk ok ook ok o o ak ok 3 s 3 o ke sk s e 3k Sk S e ok o sk o ok ok ok ok ke ok ke ok ok ok ok ok ok ok Sk ok
n=input(’number of objects=’)
ts=input(’initial time=’)
tf=input(’final time=’)
R=input(’dimension of the problem=’)
h=input(’time step=?)
disp(’initial orientation of the robot’)
disp(’in terms of Euler angles’)
phi=input(’roll angle=’)
theta=input(’pitch angle=’)

psi=input(’yaw angle=’)

115



12

116

nx=cos(phi)*cos(theta); -

ny=sin(phi)*cos(theta);

nz=-sin(theta);

sx=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
sy=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);

sz=cos(theta)*sin(psi);

ax=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
ay=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi);

az=cos(theta)*cos(psi);

Tk sk ok ek AR AR AR KRR AR RSk K ok Ko ok s ok s ook sk ok sk ok ok sk ok ko o ko
disp(’input the vertices of the objects in homogeneous coordinates:’)
o=input(’o: robot=?)
oi=input(’ol= ’);
02=input (’02=’);
03=input(’03=?);
od4=input(’04=’);
o5=input(’05=’);
06=input (’06=");
o7=input(’07=’);
o8=input(’o8=’);
o9=input(’09=");
010=input(’010=’);

Ytk kdoksk Atk ook MA TN LODP %ok stk sokok koo sk s ok ok ok ok ok ok ok ok sk 3k ke s o s o sk ke ok sk s o o o sk ok ok s e



Mk = g

t=ts;N=(tf-ts)/h +1

disp(’define robot motion’)

disp(’input the coefficients of the polynomials px,py,pz up to third order’)
cx=input(’coefficients of px in descending order=’)
cy=input(’coefficients of py in descending order=’)
cz=input(’coefficients of pz in descending order=’)

ti=clock;

for i=1:N

px=cx(4)+cx(3) *xt+cx(2) %t~ 2+cx(1)*t"3;
py=cy(4)+cy(3)*t+cy(2) *t 2+cy(1)*t"3;
pz=cz(4)+cz(3)*t+cz(2) ¥t~ 2+cz(1)*t"3;

for j=1:n;

Tr=[nx sx ax px;ny sy ay py;nz sz az pz;0 0 0 1];0r=Tr*o;

if j==1;00=01;elseif j==2;00=02;elseif j==3;00=03;elseif j==10;00=010;
elseif j==4;00=04;elseif j==5;00=05;elseif j==6;00=06;

elseif j==7;00=07;elseif j==8;00=08;elseif j==9;00=09;end;
[mo0,no0]=size(00); [mo,nol=size(o);

YxxxkxxxkNEW SYSTEM OF EQUATIONS AND SOLUT I ON sk ok sk e i ok s s ok sk 3k ok sk ke s ok ok ok ke ok 3 ok ok ke ok o ok oK
cri=ones(1,no0);cr2=zeros(1,no0) ;doi=ones(1,n00);do2=zeros(1,no);

if R==3;a=[0r(1:3,:) -00(1:3,:);crl cr2;do2 do1];b=[0;0;0;1;1];

elseif R==2;a=[0r(1:2,:) -00(1:2,:);crl cr2;do2 do1l;b=[0;0;1;1];end;
[ma,na)=size(a); -

vlb=zeros(na,1);f=[1 zeros(1,na-1)];disp(’****begin***x*’);disp(j);disp(t);



118

x=1p(f,a,b,vlb, {1, [],ma); -
disp(’collision point’)

xc=0r*x(1:n0) ;disp(xc)
end;t=ts+i*h;end;t2=clock;

etime(t2,t1)



Rl g

Appendix C

PROGRAM 3

PROGRAM FOR COLLISION DETECTION No.3
USING LINEAR INEQUALITIES REPRESENTATION OF THE OBJECTS
THE CASE OF SIMULTANEOUS TRANSLATION AND ROTATION
ook kR AR kKRR kAR Rk o KR ok ok e sk sk ok o o ok K
n=input(’number of objects=’)
ts=input(*initial time=’)
tf=input(*final time=’)
h=input(’time step=’)
R=input(’dimension of the problem=’)
disp(’initial orientation of the robot?’)
disp(’in terms of Euler angles’)

phiO=input(’roll angle=’)

119



149

120

thetaO=input(’pitch angle=’) -

psiO=input(’yaw angle=’)

Ttk ook ook ook ko ok ik ok Sk AR KRR AR oK ok ok ok Rk sk ok sk sk ook ok ok
disp(’constraint matrices of the objects’)

a=input(’robot a=’);b=input(’b=’);
ail=input(’ai=?);bi=input(’bi=’);a2=input(’a2=’);b2=input(’b2=’);
a3=input(’a3=’);b3=input(’b3=’);a4=input(’a4=’);bd=input(’bd=’);
ab=input(’ab=’);b5=input (’b5=’);a6=input(’a6=’) ;b6=input(’b6=’);
a7=input(’a7=’);b7=input(’b7=’);a8=input(’a8=’) ;b8=input(’b8=’);
a9=input(’a9=’);b9=input(’b9=?);ai10=input(’a10=’);b10=input (’b10=);

AERdRdd R ok ko MA TNLO QP ok ek sk ok sk o ok sk ok s s koo sk ok ook sk ok sk ook sk ok sk
t=ts;N=(tf-ts)/h +1

disp(’define robot motion’)

disp(’input the coefficients of the polynomials px,py,pz up to third order’)
cx=input(’coefficients of px in descending order=’)

cy=input(’coefficients of py in descending order=’)

cz=input(’coefficients of pz in déscending order=’)

cphi=input(’coefficient of roll=’)

ctheta=input(’coefficient of pitch=’)

cpsi=input(’coefficient of yaw=’)

ti=clock;

for i=1:N

phi=phi0+2*pi*t*cphi/ (tf-ts);



121

theta=thetal+2*pixt*ctheta/(tf-ts);

psi=psiO+2*pixtxcpsi/(tf-ts);

px=cx(4)+cx(3)*t+cx(2)*t 2+cx(1)*t"3;-
py=cy(4)+cy(3)*t+cy(2)*t-2+cy(1)*t"3;
pz=cz(4)+cz(3)*t+cz(2) %t "2+cz(1)*t"3;

nx=cos(phi)*cos(theta);

ny=sin(phi)*cos(theta);

nz=-sin(theta);

sx=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
sy=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);
sz=cos(theta)*sin(psi);
ax=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
ay=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi);
az=cos(theta)*cos(psi);

rr=[nx sx ax;ny sy ay;nz sz az];pr=[px;py;pz];ppr=[ppr prl;
ar=a*rr’;br=b+ar*pr;

for j=1:n;

if j==1 a0=al;b0=bi;elseif j==2;a0=a2;b0=b2;elseif j==3;a0=a3;b0=b3;
elseif j==4;a0=a4;b0=b4;elseif j==5;a0=a5;b0=b5;elseif j==6;a0=a6;b0=b6;
elseif j==7;a0=a7;b0=b7;elseif j==8;a0=a8;b0=b8;elseif j==9;a0=a9;b0=b9;
elseif j==10;a0=al0;b0=b10;end;

IkkxkkxxkNEW SYSTEM OF INEQUALITIES AND SOLUTIONsokskskskskokokskokohskokohokokokskotesokkk ok k

if R==3;s=[ar;a0];d=[br;b0];f=[1 0 0];



122

elseif R==2;s=[ar(:,1:2);a0(:,1:2));d=[br;b0];f=[1 0];end;
disp(’##xxx*xxBeginsrrrsrs’);disp(j);disp(t);
disp(’collision point x =’);

%xc=relax1(s,d);

xc=1p({f,s,d,zeros(R,1));

disp(xc);end;t=ts+i*h;end

t2=clock;etime(t2,t1)



Appendix D

PROGRAM 4

PROGRAM FOR COLLISION DETECTION NO.4

USING CONVEX HULLS REPRESENTATION OF THE OBJECTS

THE CASE OF SIMULTANEOUS TRANSLATION AND ROTATION
Rk ok ok ko Ak Rk Rk K Kk ko sk koo sk ok ok koo sk ko ok ok ok o
n=input (’number of objects=’)
ts=input(’initial time=’)
tf=input(’final time=’)
R=input(’dimension of the problem=’)
=input (’time step=’)
disp(’initial oriemtation of the robot’)
disp(’in terms of Euler angles’)
phiO=input(’roll angle=’)
theta0=input(’pitch angle=’)

psiO=input (’yaw angle=’)

123




124
Tkt ok Rk Rk Rk KKk Sk ok ook ol sk ek ook ook kK oo o ok
disp(’input the vertices of the objects in homogeneous coordinates:’)
o=input(’o: robot=’) :
ol=input(’ol= ’);
o2=input(’02=’);
o3=input(’03=’);
o4=input(’o4=’);
o5=input(’05=’);
o6=input(’06=’);
o7=input(’o7=?);
o8=input(’o8=’);
o9=input(’09=’);
010=input(’010=?);
TRk kikkok bk kR MA TN LODP#tkokk ok ko ook sk ook ok ok o ko ok ook Aok ok ook ok
t=ts;N=(tf-ts)/h +1
disp(’define robot motion’)
disp(’input the coefficients of the polynomials px,py,pz up to third order’)
cx=input(’coefficients of px in descending order=’)
cy=input(’coefficients of py in descending order=’)
cz=input(’coefficients of pz in descending order=’)
cphi=input(’coefficient of roll=’)
ctheta=input(’coefficient of pitch=’)

cpsi=input(’coefficient of yaw=?)



ti=clock;

for i=1:N

phi=phiO+cphi*2#pi*t/(tf-ts); -
theta=thetaO+ctheta*2*pi*t/(tf-ts);
psi=psiO+cpsi*2*pi*t/(tf-ts);
px=cx(4)+cx(3)*t+cx(2) ¥t~ 2+cx(1)*t"3;
py=cy(4)+cy(3)*t+cy(2)*t"2+cy(1)*t"3;
pz=cz(4)+cz(3)*t+cz(2)*t"2+cz(1)*t"3;
nx=cos(phi)*cos(theta);

ny=sin(phi)*cos(theta);

nz=-sin(theta);
sx=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
sy=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);
sz=cos(theta)*sin(psi);
ax=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
ay=sin(phi)*sin(theta)*cos{psi)-cos(phi)*sin(psi);
az=cos(theta)*cos(psi);

for j=i:n;

Tr=[nx sx ax px;ny sy ay py;nz sz az pz;0 0 0 1];0r=Tr*o;
for j=1l:n;

if j==1;00=01;elseif j==2;00=02;elseif j==3;00=03;elseif j==10;00=010;
elseif j==4;00=04;elseif j==5;00=05;elseif j==6;00=06;

elseif j==7;00=07;elseif j==8;00=08;elseif j==9;00=09;end;



v -

126

[mo0,no00]=size(00); [mo,no}=size(o); -

Nxxxkxk**NEW SYSTEM OF EQUATIONS AND SOLUTION kokskok ko sk ks sk s ok sk sk ok ok e sk o ok ok
cri=ones(1,no0);cr2=zeros(1,no0);doi=ones(1,no0);do2=zeros(1,no);

if R==3;a=[0r(1:3,:) -00(1:3,:);crl cr2;do2 do1];b=[0;0;0;1;1];

elseif R==2;a=[0r(1:2,:) -00(1:2,:);crl cr2;do2 doi1];b=[0;0;1;1];end;
[ma,nal=size(a);

vlb=zeros(na,1);£=[1 zeros(1,na-1)];disp(’+**xbegin***’);disp(j);disp(t);
x=1p(f,a,b,vlb,[1,[],ma);

disp(’collision point?’)

xc=0r*x(1:no);disp(xc)

end;t=ts+i*h;end;t2=clock;

etime(t2,t1)






Bibliography

[1] Agarwal, P. K. and M. Sharir, "Red-Blue Intersection Detection Algorithms, with Appli-
cation to Motion Planning and Collision Detection,” SIAM J. of Comput. Vol.19, No.2,

pp.297-321, April, 1990.

[2] Ahuja, N., R. T. Chien, R. Yen and N. Bridwell, "Interference Detection and Collision

Avoidance Among Three Dimensional Objects,” First Annual National Conf. on Artif.

Intell.,Stanford, pp.44-48, Aug. 1980.

[3] Akgul, M. Topics in Relazation and ellipsoidal Methods. Research Notes in Mathematics

97, Pitman Advanced Publishing Program, 1984.

(4] Al-Sultan, K. S., ”Nearest Point Problems: Theory and Algorithms” Ph.D Dissertation,

University of Michigan, Ann Arbor, June 1990.

[5] Basta, R. A., R. Mehrotra , M. R. Varanasi, ” Collision Detection for Planning Collision-free

Motion of Two Robot Arms,” Proc. IEEE Conf. Robotics and Automation, vol. 1,1988.

[6] Bazaraa M. S., Shetty C. M. NonLinear Programming: Theory and Algorithms John Wiley

& Sons, USA. 1979.



129

{7] Bazaraa, M. S.,J. J. Jarvis., H. D.Sherali,Linear Programming and Network Flows, John

Wiley Sons, 1990.

[8] Bobrow, J.E., "Optimal Robot Path Planning Using the Minimum-Time Criterion”, IEEE

Trans. Robotics and Automation, Vol.4, No.4, pp.443-450, August ,1988.

[9] Bonner, S. and R. B. Kelley " A Representation Scheme for Rapid 3-D Collision Detection,”

Proc. IEEE Int. Symposium on Intelligent Control, pp.320-325,1988.

{10] Borenstein, J. and Y. Koren (1989) High-Speed Obstacle Avoidance for Mobile Robots.

IEEE Int. Symp. on Intell Control, pp.382-384.

[11] Boyse W.J. "Interference Detection Among Solids and Surfaces,” Comm. of the ACM,

Vol.22, No.1, pp.3-9 ,1979.

[12] Brooks, R. A., "Solving the Find-Path Problem by Good Representation of Free-Space,”

IEEE Trans. Sys. Man. and Cybern., Vol.SMC-13, No.2, pp.190-197, March/Apr. 1983.

[13] Brooks R. A., " Planning Collision-Free Motions for Pick and Place Operations,” First Int.

Symposium Robotics Research, pp.5-37, 1993.

[14] Brooks, R. A. and T. Lozano-Perez, A Subdivision Algorithm in Configuration Space
for Find-Path With Rotation,” IEEE Trans. Sys. Man and Cybern.,Vol.SMC-15, No.2,

pp.224-233, Mar/Apr. 1985.

[15) Cameron, S. A. " A Study of the Clash Detection Problem in Robotics,” Proc. Int.Conf. of

Robotics and Automation, pp.488-493, 1985.



130

[16] Cameron, S. A. "Collision Detection by Four Dimensional Intersection Testing,” IEEE

Trans. Robotics and Automation, Vol. 6 No. 3, June 1990.

[17] Canny, J., "Collision Detection for Moving Polyhedra,” IEEE Trans. Pattern Anal. Ma-

chine Intell., Vol. PAMI-8, pp.200-209, 1986.

[18] Canny, J. F. The Complezity of Robot Motion Planning, ACM Doctoral Dissertation Award

,MIT Press, 1987.

[19] Chien, R. T.,L. Zhang and B. Zhang, "Planning Collision-Free paths for Robotic Arm
Among Obstacles,” IEEE Trans. Pattern Anal. and Machine Intell., Vol. PAMI-G, No.1,

pp.91-96, January, 1984.

(20} Chin, F. and C. A. Wang, "Optimal Algorithm for the Intersection and Minimum Distance

Problems Between Planar Polygons,” IEEE Trans. Computers, Vol.32, pp.1203-1207, 1983.

[21] Craig J. J. Introduction to Robotics Mechanics and Control, Second Ed. Addison-Wesley

Pub. Co. 1991.

[22] Crowly, J. L. "Navigation for an Intelligent Mobile Robot,” IEEE Trans, Robotics and

Automation, Vol.RA-1, No.1, pp.3i-41, March, 1985.

[23] Culley, R.K.,and K. G. Kempf, "A Collision Detection Algorithm Based on Velocity and

Distance Bound,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1064-1069, 1986.

[24] Elnagar, A. and A. Basu, "Heuristics for Local Path Planning”, IEEE Trans. Sys. Man

and Cybern., Vol.23, No.2, pp.624-634, Mar/Apr. 1993



131

[25] Fang, S. C. and S. Puthenpura, Linear Optimization and Ertensions: Theory and Algo-

rithms. Prentice Hall 1993.

[26] Faverjon, B. and P. Tournassound, "A Local Based Approach for Path Planning of Ma-
nipulators with High Number of Degrees of Freedom,” Proc. IEEE Int. Conf. Robotics and

Automation, pp.1152-1159, 1987.

[27} Fu, K. S., R. C. Gonzalez and C. S. G. Lee, Robotics: Control,Sensing, Vision and Intelli-

gence. Mcgraw-Hill Int. Edit. 1987.

[28] Fujimaru, K. and H. Samet, "A Hierachical Strategy for Path Plannig Among Moving

Obstacles,” IEEE Trans. Robotics and Automation, Vol.5, No.1, 61-69, Feb. 1989.

[29] Gallerini, R., "On Using LP to Collision Detection Between a Manipulator Arm and Sur-

rounding Obstacles,” European Journal of Operational Research, vol. 63,pp. 343-350, 1993.

[30] Gewali, L.P. ,S. Ntafos and I. G. Tollis, "Path Plannig in the Presence of Vertical Obsta-

cles,” IEEE Trans Robotics and Automation, Vol.6, No.3, pp.331-341, June 1990.

[31] Gilbert, E. G. and D. W. Johnson, "Distance Functions and Their Application to Robot
Path Planning in the Resence of Obstacles. IEEE Trans. Robotics and Automation, Vol.RA-

1, pp.21-30, March. 1985.

[32] Gilbert, E.G., D. W. Johnson and S. S. Keerthi, ¥ A Fast Procedure for Computing the
Distance Between Complex Objects in Three Dimensional Space,” IEEE Trans. Robotics

and Automation, Vol.RA-4, pp.193-203, 1988.



132

[33] Gilbert, E. G. and C. P. Foo, ” Computing the Distance Between General Convex Objects
in Three Dimensional Space,” IEEE Trans. Robotics and Automation, Vol.6, No.1, Feb.

1990.

[34] Gilbert, E.G., and S. M. Hong, " New Algorithm for Detecting the Collision of Moving

Objects,” Proc. IEEE Conf. Robotics and Automation, pp.8-14, 1989.

[35] Gouzenes, L., " Strategies for Solving Collision-Free Trajectories Problems for Mobile and

Manipulator Robots. Int. Journal of Robotics Research, Vol.3, No.4 pp.51-65, 1984.

[36] Hashimoto, H., Y. Kunii, F. Harashima, V. I. Utkin and S. V. Drakunov, ” Obstacle Avoid-

ance Control in Multi-Dimensional Space Using Sliding Mode,” IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, pp.697-702, July, 1992.

[37} Hayward, V. "Fast Collision Detection Scheme by Recursive Decomposition of a Manipula-

tor Workspace,” Proc. IEEE Int. Conf. Robotics and Automation, vols. 1-3,pp.1044-1049,

April 1986.

[38] Hwang, Y. K. and N. Ahuja, "A poteﬁtial Field Approach to Path Planning. IEEE Trans.

Robotics and Automation, Vol.8, No.1, pp.23-32, February, 1992,

[39] Jagannathan, S., F. L. Lewis and K. Liu, "Modelling, Control and Obstacle Avoidance

With an Onboard Manipulator,” Proc. Int. Symposium on Intell. Control, pp.196-201,

August, 1993.

[40] Jia, T. and M. L. Amirouche, "Natural Dynamics of Robot Manipulators in the Presence of

Obstacles,” ASME Trans.Dynamic Systems Meas. and Control Vol.113, pp.170-174, March,

1991.




133

[41] Johnson, D. W. and E. G. Gilbert, "Minimum Time Robot Path Planning in the Presence

of Obstacles,” Proc. IEEE Conf. Decision and Control, pp.1748-1753, Dec.1985.

[42] Johnson, D. W. The Optimization of Robot Motion in the Presence of Obstacles, Ph.D.

Dissertation. University of Michigan, 1987.

[43] Kambhampati, S. K. and L. S. Davis, "Multiresolution Path Planning for a Mobile Robot,”

IEEE Trans. Robotics and Automation, Vol.RA-2, No.1, pp.135-145, Sept. 1986.

{44] Kawabe, S., A. Okano, K. Shimada, " Collision Detection Among Moving Objects in Sim-

ulation,” Proc. {th Int. Symp. on Robotics Research, pp.489-496, MIT Press, 1988.

[45] Khatib, O., "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”, Int.

Journal of Robotics Research, Vol.5, No.1, pp.90-98, 1986.

[46] Kheradpir, S. and J. S. Thorp, "Real-Time Control of Robot Manipulators in the Presence

of Obstacles,” IEEE Trans. Robotics and Automation, Vol.4, No.6, pp.687-698, Dec. 1988.

[47] Khosla, P. and R. Volpe (1988) Superquadric Artificial Potentials for Obstacle Avoidance

and Approach. Proc. IEEE Int. Conf, Robotics and Automation, Vol.3, pp.1778-1784.

[48] Khouri, J. and K. A. Stelson (1989) An Efficient Algorithm for Shortest Path in Three

Dimensions with Polyhedral Obstacles. ASME Trans. Dyn. Systems Meas. and Control

Vol.111, pp.433-436 Sept.

[49] Kim, B. K. and K. G. Shin (1985) Minimum-Time Path Planning for Robot Arms and Their

Dynémics. IEEE Trans. Sys. Man and Cybern., Vol.SMC-15, No.2, pp.213-223, Mar/Apr.




134

[50] Kim, J. O. and P. K. Khosla (1992) Real-Time Obstacle Avoidance Using Harmonic Po-

tential Functions. IEEE Trans. Robotics and Automation, Vol.8, No.3, pp.338-349, June.

[51] Kyriakopoulos, K. J., and G. N. Saridis (1992) Distance Estimation and Collision Predic-

tion for On-line Robotic Motion Planning. Automatica vol.28 ,No.2,pp. 389- 394

[52] Kyriakopoulos, K. J. and G. N. Saridas (1993) An Integrated Collision Prediction and
Avoidance Scheme for Mobile Robots in Non-stationary Environment. Automatica, Vol.

29, pp.309-322,
[53] Latombe J.C. (1991) Robot Motion Planning. Kluwer Academic Publishers, Boston.

[54] Laurini, R. and D. Thomson, Fundamentals of Spatial Information Systems. Academic

Press, A.P.I.C. Series,1992.

[55] Lozano-Perez, T(1981) Automatic Planning of Manipulator Transfer Movements. IEEE

Trans. Sys. Man and Cybern. Vol.SMC-11, No.10, pp.681-697, Oct.

[56] Lozano-Perez, T. and M. A. Wesley (1979) An Algorithm for Planning Collision-Free Paths

Among Polyhedral Obstacles. Comm. of the ACM, Vol.22, No.10, pp.560-570, October.

[57] Lozano-Perez, T (1983) Spatial Planning : A Configuration Space Approach”, IEEE Trans.

on Computers, Vol.C-32, No.2, pp.108-119, February,

[58] Lozano-Perez, T. (1987) A Simple Motion-Planning Algorithm for General Robot Manip-

ulators. IEEE Trans. Robotics and Automation, Vol.RA-3, No.3, pp.224-237, June.

[59] Lozano-Perez T., M. T. Mason and R. H. Taylor (1983) Automatic Synthesis of Fine-Motion

Strategies for Robots First Int. Symposium Robotics Research, pp. 100-110.



135

[60] Luh, J. Y. S. (1984) A Scheme for Collision Avoidance with Minimum Distance Traveling

for Industrial Robots. Jounal of Robotics Systems, Vol.1, No.1, pp.5-26

[61] Luh, J. Y. S. and C. E. Campbell (Jr) (1984) Minimum Distance Collision-Free Path
Planning for Industrial Robots with a Prismatic Joint. IEEE Trans. Automatic Control

Vol.AC-29, No.8, pp.675-680, Aug.

[62] Lumelsky, V. J. "On fast Computation of Distance Between Line Segments,” Inf. Proc.

Lett.,Vol 21, pp.55-61, 1985.

[63] Lumelsky, V. J. and A. A. Stepanov (1986) Dynamic Path Planning for an Automaton
With Limited Information on the Environment IEEE Trans. Automatic Control, Vol.AC-

31, No.11, pp.1058-1063, Nov.

[64] Lumelsky, V. J., S. Mukhopadhyay and K. Sun (1990) Dynamic Path Planning in Sensor-
Based Terrain Acquisition. IEEE Trans. Robotics and Automation, Vol.6,No.4, pp.462-472,

Aug.

[65] Meyer, W., "Distances Between Boxes: Application to Collision Detection and Clipping,”

Proc. Int. Conf. on Robotics and Automation, pp.597-602, 1986.

[66] Ozaki, H., A. Mohri, and M. Takata (1982) Planning of Collision Free Movement of a
Manipulator Considering its Body Space. Trans. of the Soc. of Instrument and Control

Engineers(Japan), Vol.18, part 9, pp.942-949.

[67] Pavlov, V. V. and A. N. Voronin (1984) The Method of Potential Functions for Coding
Constraints of the External Space in an Intelligent Mobile Robot Soviet Automatic Control,

Vol.17, pp.45-51, Nov-Dec.



136

[68] Petrov, A. A. and I. M. Sirota (1983), "Obstacle Avoidance by a Robot Under Limited

Information About the Environment. Automation and Remote Control, pp.431-439, 1983.

[69] Phillip, J. M.(1991) Introduction té; Robotics, University of Wollongong, Australia,

Addison-Wesley Pub. Co.

{70] Preparata, F. P. and M. L. Shamos,Computational Geometry: An Introduction. Springer-

Verlag, 1985.

[71] Rimon, E. and D. E. Koditschek (1988) Exact Robot Navigation Using Cost Functions: The

Case of Distinct Spherical Boundaries in E"”, IEEE Int. Conf. Robotics and Automation,

Vol.3, pp.1791-1796.

[72] Rimon, E. and D. E. Koditschek (1992) Exact Robot Navigation Using Artificial Potential

Functions. IEEE Trans. Robotics and Automation, Vol.8, No.5, pp.501-518, October.

{73] Raymond, S. R. and A. S. El-Gizawy (1992) "Minimum time Collision-Free Path Planning

for Robotic Assembly. Int. J. Prod. Res., Vol.30, No.6, pp.1301-1312

[74] Schwartz, J. T., "Finding the Minimum Distance Between Two Convex Polygons,” Inf.

Procc. Lett., vol.13, No.s 4,5, 1981.

[75] Schwartz, J. T. and M. Sharir (1983) On Piano Movers Problem 1 : The Case of a Two-

Dimensional Rigid Polygonal Body Amidst Polygonal barriers Comm. Pure and Applied

Math., Vol.36, pp.345-398.

[76] Schweikard, Achim, " Polynomial Time Collision Detection for Manipulator Paths Specified

by Joint Motions,” IEEE Trans. Robotics and Automation, vol.7 No.6,pp.865-869, 1991.



137

[77] Seshadri, C. and A. Ghosh (1993) Optimum Path Planning for Robotic Manipulators Amid
Static and Dynamic Obstacles. IEEE Trans. Sys. Man. and Cybern. Vol.23, No.2, pp.576-

584, Mar/Apr. >

[78] Shigematsu, Y., Y. Kakazu and N. Okino , " Interference Detection Algorithm by Simplex
Method,” Journal of Japenese Society of Precis. Eng (Japan), Vol. 49 Part 11, pp.1561-

1566,1983.

[79] Shiller, Z. and S. Dubowsky (1989) Robot Path Planning with Obstacle, Actuator, Gripper

and Pay-load Constraints. Int. Journal of Robotics Research, Vol.8, No.6, Dec.

{80] Shiller, Z. and Y. Gwo (1991) Dynamic Motion Planning of Autonomous Vehicles. JEEE

Trans. Robotics and Automation, Vol.7, No.2, April

[81] Shin, K. G. and N. D. McKay (1985) Minimum-Time Control of Robotic Manipulators with

Geometric Path Constraints. JEEE Trans Automatic Control, Vol.AC-30, No.6, pp.531-541,

June.

[82] Shin, K. G. and N. D. Mckay (1986) Selection of Near-Minimum time Geometric Path
for Robotic Manipulators. IEEE Trans. Automatic Control, Vol.AC-31, No.6, pp.501-511,

June.

[83] Suh, S. and K. G. Shin (1988) A Variational Dynamic Programming Approach to Robot-
Path Planning With a Distance-Safety Criterion. IEEE Trans. Robotics and Automation,

Vol .4, No.3, pp.334-349, June.

[84] Tilove, R. B. " A Null Object Detection Algorithm for Constructive Solid Geometry Com-

maunications of the ACM, Vol. 27,No.7, July 1984.



[85] Tilove, R. B (1990) Local Obstacle Avoidance for Mobile Robots Based on the method of
Artificial Potential Functions. JEEE Int. Conf. on Robotics and Automation, pp.566-571,

May, 1990.

[86] Tournassound, P. (1988) Motion Planning for a Mobile Robot with Kinematic Constraint.

IEEE Int. Conf. Robotics and Automation, pp.1785-1790, 1988.

[87] Uchiki, T, T. Ohashi and M. Tokoro, ” Collision Detection in Motion Simulation,” Computer

& Graphics, Vol. 7, pp.285-293, 1983.

[88] Udupa, S. M. (1977) Collision Detection and Avoidance in Computer Controlled Manipu-

lators. Proc. 5th Int. Joint Conf. on Artificial Intell., Boston, vol.2, pp.737-748.

[89] Volpe, R. and P. Khosla (1987) Artificial Potentials with Elliptical Isopotential Contours

for Obstacle Avoidance. Proc. 26th IEEE Conf. Dec. and Control, pp.180-185, Dec.

[90] Warren, C. W.(1989) Global Path Planning Using Artificial Potential Fields. Proc. IEEE

Int. Conf. Robotics and Automation, pp.316-321, May, 1989.

[91) Wolfe, P. "Finding the Nearest Point in a Polytope,” Mathematical Programming, Vol.11,

pp.128-149, 1976.

[92] Wong, E. K. and K. S. Fu (1986) A Hierachical Orthogonal Space Approach to Three-
Dimensional Path Planning IEEE Trans. Robotics and Automation, Vol. RA-2, No.1, pp.61-

69, March.

[93] 386 MATLAB User manual(1989), MATHWORKS Inc., MA, USA.

[94] MATLAB Optimization Toolbox manual(1992), MATHWORKS Inc., MA, USA.



Vita
o Mohammad Dikko S. Aliyu
o Born in Kano, Nigeria 1966.

e Studied B.Eng (Electrical) A.B.U. Zaria, Nigeria, 1988.

139



