Architectures for Arithmetic Operations
in Galois Fields GF(2™)

by

Mohamed Ahsan

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

ELECTRICAL ENGINEERING

June, 1995

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

/

.\%’ei SRS SOAR AN a?fﬁei%i4&4@‘%1%4@45&4@1%R!fisfiakh%ia?eweb%b?g
% %
s Architectures for Arithmetic g
Operations in Galois Fields GFQ™) | &

BY K

Mohamed Ahsan n%:

A Thesis Presented to the %

FACULTY OF THE COLLEGE OF GRADUATE STUDIES éj{

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS :@

DHAHRAN, SAUD! ARAB:A :‘\"%:

%

In Partial Fulfillment of the
Requirements for the Degree of

9! e e e ol e e e e e ol e e e e e el e

t

—

%i MASTER OF SCIENCE

s In

:%/. . . [

:z;; Electrical Engineering

s June 1995

ao

o

R A A A A A PP T

ST

t@ﬁﬂwﬁ%@;ﬁﬁfﬂ%fﬁw%f

UMI Number: 1378712

UMI Microform 1378712
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

ARCHITECTURES FOR ARITHMETIC

OPERATIONS IN GALOIS FIELDS GF(2")

MS Thesis

Mohaimned Ahsan

June, 1995

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA
COLLEGE OF GRADUATE STUDIES

This thesis, written by
Mohamed Ahsan

under the direction of his Thesis Advisor, and approved by his Thesis committee, has
been presented to and accepted by the Dean, College of Graduate Studies. in partial

Julfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Thesis Comniittee :

~ S——— ' " 7
. g - . s
;o - . A /, oS
= . AR . . Zly L/

Drw:Gerhard F. Beckhoff (Chairan)

A =
26/6/95
Dr. Kz Hussain Bivari (Memoe;)
//j Dr. Essam E. M. 1~}c/zssah (Member)
Dr. Abdallah M . Al-Shehri CW"&)\J
Department Chairman Dr. Baher Hussein (Member)
8 7&/_)\ N) '
Dr. Ala H. Rabeh " Dr.S. Z Al-Akhdhar (Member)

Dean, College of Graduare Studies

3o .o~ W
R Y AN

Date

Dedicated to
my Parents and
my Wife
whose prayers, inspiration and love led to this

accomplishment

Acknowledgment

I would like to express my sincere appreciation to the folowing, whose support
has been invaluable in the completion of this work

To Dr. G. F. Beckhoff, my thesis advisor; his very presence has been like the
proverbial sun, and the constant encouragement and able guidance right through
the course of this work has been tremendous, for which I am extremely indebted.

For having spared the time and effort in critically reviewing this work, I thank
my committee members, Dr. Khalid Hussain Biyari, Dr. Balier Hussein. Dr. Essam
Hassan and Dr. S. Z. Al-Akhdhar.

To all my friends and colleagues at KFUP!: their support and company made
my stay infinitely enjoyable, which is gratefully acknowledged.

And lastly a word of grateful thanks to my parents, my wife, my sisters and
my brother-in-law who never shackled my freedom and have always allowed me the

ultimate discretion in pursuing my options.

Contents

1

List of Tables

List of Figures

Abstract (English)

Abstract (Arabic)

Introduction

1.1

1.2

1.3

Binary Exteusion Fields

Bases of GF(2") over GF(2)

121 Standard Basis

1.2.2 Norial Basis

Systolic Arravs

1.3.1 Parallelism

1.3.2 The Locality Principle

1.3.3 The Systolie Maodel

i

vi

ix

1.4 Literature Review

Architectures Using Linear Shift Register Circuits

2.1 Linear Switching Circuits.

22 Addersfor GF(2™) e

23 Multipliersfor GF(2™)o
2.3.1 Multiplication of a Field Element by a Fixed Field Element
2.3.2 Multiplication of any Polynomial by a Fixed Polynomial
23.3 TwolInput Multiplier
2.3.4 Proposed Serial Modified Massey-Omura Multiplier

24 Dividersfor GF(2™) e

2.5 Applications: Reed-Solomon (RS) Codes
2.5.1 Preliminaries oo
2.5.2 Systematic Encoding of RS Codes
2.5.3 Decodingof RSCodes L.

Architectures Using Systolic Arrays

3.1 Multipliersfor GF(2™)
3.1.1 Parallel-In-Parallel-Out Systolic (PIPOS) Array
3.1.2 Serial-In Serial-Out Systolic (SISOS) Amay.

3.1.3 Conclusions

.................

i

19

21

21

23

29

48

48

49

33

63

3.2.1 An Algorithm for Computing A~ and B+ A~ iu GF2™) . . 69
3.2.2 The Gauss-Jordan Algorithm 72

3.2.3 Systolic Array Implementation of the Gauss-Jordon Algorithm

over GF(2™) 75

3.3 Application: Encoding of Reed-Solomon Codes 9
3.3.1 Nonsvstematic Encoder.o 79
3.3.2 Svystematic Encodero S1
33.3 Conclusions 96

3.4 Application: Decoding of Reed-Solomon Codes .. 0 0 0oL, 96
3.4.1 Swyndrome Caleulation L L 98
342 Key Equation Solver 00000 100
343 Ewor Caleulationo o000 108
344 Emor Comrection 114
345 Exceptional Errors L0 114
346 Conclusions L L 115
Bibliography 115
Appendix 121

Vitae 121

List of Tables

1.1

2.1

2.2

23

3.1

Representation of elements of G F(2%) 5

Examplesofm 8

Comparison of Normal basis multipliers generated by the irreducible

AOPofdegreem 39
Parameters of the proposed serial multiplier 44
Error Trapping Example 62
Operating modes of the main array cell 7

v

List of Figures

1.1 Locally connected network of processors

2.1 The building blocks for linear switching circuits.
2.2 Addition of two field elements of GF(21)

2.3 Serial multiplication implementation of a - ,3

2.4 Parallel multiplication implementation of a - 3

2.5 Parallel multiplication implementationof a®- 3.
2.6 Shift Register Circuits for multiplying polynomials.
27 Atwoinput multiplier
2.8 A two input multiplier with h(2) = 3 + 2+ 1 and k(2) = 2% + 2 + 1.
2.9 A structure for the Massey-Omura parallel multiplier over GF(21). . .
2.10 A structure for the modified Massey-Omura parallel multiplier over
GF(2%) generated by irreducible all one polynomial of degree m. . . .

2.11 Circuit diagram of By and B, of the modified Massey-Omura multiplier.

2.12 Proposed serial implementation of the normal basis multiplier

vi

18

25

vil

2.13 A circuit for dividing polynomials.o 000 45
2.14 Type 1 circuit for dividing polynomials. 46
2.15 Type 2 circuit for dividing polynomials.. 47
2.16 An (n-k)-stage feedback shift register encoding circuit 52
2.17 Encoder for the RS (7,3) code using binary logic elements. 54
2.18 Pipelined LFSR encoder 35
2.19 Syndrome Calculator for the RS (7.3) code. 58
2.20 Pipelined decoder for the RS (7,3) code 60
3.1 (a) Parallel-in-parallel-out bit-level systolic array for multiplication

3.2

3.3

3.4

in GF(21). (b) Circuit of the (i, k) cell in part (a).. 66
(a) A serial-in-serial-out systolic array for multiplication in GF(21).
The result p; will appear after a; passes through the array. (b) The
circuit of each basiccellin(a). G8

(a) Systolic array for inversion in GF(23) (b) main array cell (c)

boundaryvcell. 76
Cauchy cell Cj-basic computation 85
Basic Cauchy Encoder 86
Cell Cpre forthe (7 3)RScode 88
Cell G oo oo 90

Output strecam circuitry forcell Cj. . . o 0 00000000000 91

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

viii

Complete Cauchy Encoder 04
PE for the systolic encoder of (7,3) RScode 97
Block diagram for a pipeline RS decoder 99
Systolic syndrome calculator for the RS (7,3)code 101
COMBXARD 104
Processing Element 105
Reduction Circuit 107
Block diagram of the key equation solver based on the COMB _XARD

algorithm 109

A circuit that generates the elements of GF(2™) in reverse order . . . 110
A systolic architecture for polynomial evaluation 112

Error Evaluation Block diagram

Abstract
Name: Mohamed Ahsan
Title: Architectures for Arithmetic Operations in

Galois Fields GF(2™)
Major Field: Electrical Engineering
Date of Degree: June, 1995

Galois fields are used in numerous applications like Reed-Solomon (RS) codes. digital
signal processing (DSP) and cryptology. There is a need for fficient multiplication
und division methods that can be casliy realised on VLSI chips. Masscy and Omura
have recently developed « new multiplication algorithm for Gulois ficlds based on the
normal basis representation. A new bit-scrial modificd Masscy-Omura multiplier is
developed in this thesis to compute multiplications over GF(2") In contrast to the
existing multiplicrs. this new multiplier requires the minimum chip area. A serial-in
sertal-out systolic array is presented for performing clement tmuoersion with standard
basis represented. The architeeture is highly regalar, modular and nearest neighbour
connected.

Furthermore. a systolic architeciure for an RS encoder. based on Cruchy rep-
resentation of generator matric of the code. is presentad. consisting of r+ 1 cells.
where r is the redundancy of the code. This encoder is systematic. docs not require
any feedback or other global signals. Its cells are of low complerity and it is castly
reconfigurable for vaviable redundancy and changes in the choice of the generator
polynomial of the code. the architceture is suitable for very high-speed applications.

Finally. a systolic array of an RS decoder. is prescnted. Systolic array arelitec-
tures are derived for the carious steps including syndrome caleulation, hey equation
solution and crror coaluation. The: miprovcmants over caisting systolic implemen-
lations are discussod,

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

June 1995

el | gl

olws! desa -0 el
. GF (2™ ,n?dsa@sa_»wn Ollasll Jy -0 csadl laie

a0 s wie - asyall ag)ta

clasil aadime (s ¢ " 35S o sllausyy " e ¢ Basbill e 558 3 L sl Sio
o oSy silly dewidlly Gy all allwd 33b s9as N dals Al L el Sy dpedll
ol Bapie hpb b b basly e " VLST " 8l oo alsmuy Loaudis Lala
oash = geale 3l eppanns . " Nomal Jayss " e sde Bslaie! sl Jaod ol
ayball WBk 6. ol Jis e opill clides Olusd Al sda 8 caouds aallsikl
Al eldgia Bs8nn . pildll e dlue 51 ol plisd Baaaadl Ll € ¢ B3so-shl
o abiie il 3a . puslead! " Standard 3y336” Liiss o uSsmhl il Jasd crdse
e 53y ey oSS

eSS e s aimd gaslla sy Badds ladgim sl e I3 Jf aslayl
Bl s 5 Mens cals (Vo) e goTad Bkl gie L Bk Balskl dsbnnll
el e
Bslel g Aonums 3ubmi Bl s Lab¥s . delayia] 3355 5Y Lisd Vs delsiie B0kl
5l 2alghl 3ganll Baamie Jlial yusds . A3l skl JuSds

oo el @labal) Calie St 13a
csiidl oo Bohuae by .l 63a @ cubye 3 o) dlsian Bsiae ¢ b
el L b3l i3y ¢ pliskl Aalee o ¢ | againe | olus diedie Baxie olshal
-l g3 8 3853 2okl idpiaw 3335 Je

Chapter 1

Introduction

Finite or Galois ficlds are important in many applications. such as error-correcting
codes [1, 2. 3]. switching theory [4]. ervptography [5] and digital signal processing

[6].

1.1 Binary Extension Fields

Galois field GF(2") is a mumber system consisting of 2 clements. where cach
element is represented as a veetor of m bits. When considered from the hardware
point of view. the field GF(2"™) is of particular interest for computer applications. In
particular, for digital computers and digital data transmission usually two svinbols,
0 and 1 are used. Therefore. in the following text ouly GF(2') ficlds are considered.

for which addition and multiplication are defined as follows :

o

+10 1 01
010 1 0({0 O
111 0 110 1

The addition and multiplication defined above are called modulo-2 addition and
multiplication respectively. It should be noted that 1 = —1 since 1+ 1 = 0. The
alphabet of two symbols, 0 and 1, together with modulo-2 addition and multiplica-

tion is called a field of two elements (or a binary field), which is usually denoted by

GF(2).

Definition 1.1 Consider a polynomial F(a'), with one indeterminate & and with

coefficients from any field F:
F(x) = fo + fix + fa2? + -+ + fua”.

The degree of a polynomial is the largest power of in a term with a nonzero coef-

ficient. The degree of the 0 polynomial is 0.

Definition 1.2 A polynomial is called monic if the cocfficient of the highest power

of x is 1. Polynomials can be added and multiplicd in the usual way, and they form

a ring.

Definition 1.3 A polynomial of degree n which is not divisible by any polynomial

of degree less than n but is greater than 0 is called irreducible.

Definition 1.4 The greatest common divisor of two polynomial is a monic polyno-
mial of greatest degree which divides both of them. Two polynomials are said to be

relatively prime if their greatest common divisor is 1.

Consider computations with polynomials whose coefficients are either 0 or 1. For
real numbers, if A is a root of the polynomial f(x) (that is, f(A) = 0). f(z) is
divisible by x — A. This is still true for f(x) with binary cocfficients. The only
polynomials of degree 1 are » and ' + 1. The only polynomials of degree 2 are 22,
22+, 2241 and 22 + 2 + 1. Of these polynomials of degree 2, +2 and 22 4 z factor
in an obvious way. Since 1241 = 0, 22 + 1 must be divisible by a4+ 1. In fact,
(z+12 =224+r+2+1=224+1. However, 22+ 2 + 1 does not have 0 or 1 as
roots and so is not divisible by any polynomial except 1 and itself. A polynomial
F(z) of degree m is said to be #reducible over a binary field GF(2) if F(z) is not
divisible by any polynomial of degree less than m and greater than zero. It can i e
proved that 2* + 2 + 1 is irreducible by noting that if it is not irreducible, then there
must be irreducible factor of degree cqual to or less than 2. Since 0 or 1 are not
roots, x and x + 1 are not factors. The only remaining possibility is 22 + 2 + 1. it
can be verified by long division that 2 + & + 1 is not divisible by 22 4+ & + 1. Thus,
a! + r + 1 is irreducible.

Fields with 2™ symbols are called Galois fields, and they are denoted by GF(2™).
They are important in the study of cyclic codes. In particular, they are used in

decoding BC H codes and as symbols in Reed — Solomon codes.

Definition 1.5 In general, in any GF(q), there is primitive element a, that is, an
element of order g~ 1. Every nonzero element of GF(q) can be expressed as a power

of a; i.e., the multiplicative group of GF(q) is cyclic.

Definition 1.6 An irreducible polynomial of degree m over GF(2) is called primi-
tive if it has a primitive element a from GF(2™) as a root. Then this root and hence

. m=1 . g
all the roots (i.c.,.a, a®, --- a®"7) are all primitive.

An arithmetic field with 2™ symbols is derived as follows. First we start with an
arithmetic with two symbols and an irreducible polynomial F(z) of degree m over
GF(2). Next we introduce a new symbol, a, and assuming that F(a) = 0. Then a
table of powers of a is developed. If F(x) is chosen properly, i.e., if it is irreducible
in GF(2), then the powers of a up to 2" — 2 will be different, *"~! = 1, and 0, 1,
a, a?, .-+, 02" 2 will be the set of 2" ficld clements. Furthermore, each element can
be expressed as a sum of the elements 1, a, a?, ---, a™~!. The nonzero elements
form a cyclic abelian group under multiplication, a gencrator of this group is the
prinitive element of GF(2™). For example, for m=3, F(2) = 2® + 2 + 1 gencrates

the field elements as shown in Table 1.1.

Exponent | Polynomial | Binary | Decimal
0 000 0
a® 1 001 1
al a 010 2
a? a® 100 4
a® a+l 011 3
a? a’+a 110 6
a® a’+a+1 | 111 7
a® a?+1 101 3

Table 1.1: Representation of clements of GF(2?)

In general. any element of GF(2™) whose powers generate all the nonzero cle-
ments of GF(2™) is said to he primitive. It has heen proved that for cach positive
integer m there exists at least one primitive polynowmial of degree m. It is not casy
to recognise a primitive polvnomial. However. there are tables of polynomials in
which primitive polynomials are indicated. A list of primitive polynomials are given

in [1].

Definition 1.7 Let 3 be an arbitrary clement of the Galois field GF(2™). The
polynomial m(x) of smallest degree with binary cocfficients such that m(3) = 0 s

called the mindmal polynomial of 3. The mindimal polynomial of 3 is drreducible.

This can be seen as follows: Suppose that () is not hreducible, say () =
my()ma(r), where my(r) and mo(r) are nontrivial. Both () and ma(2) have
degree lower than the degree of m(r). Since m(.3) = m(Fm(4) = 0. then cither
my(3) or my(.3) must be zero. This contradicts the hyvpothesis that m(e) is the
puiynomial of the smallest degree such that m(4) = 0. Therefore . m(a) cannot
have nontrivial factors and it must be irreducible. It has been proved that every
clement of GF(2") has a mininmm polynomial whose degree is moor less. Since

m(.3) =0 and [/u(.r)]"'l = m{+?). then
[m(”]._,: = m{ f")l) = (.
This is to say that 42 is also a root of m (). Consequently,

52 5Y

B0 LI LN LA

are all roots of m(.x). Siuce m(r) has finite degree. it must have a finite numnber of
roots. Thus, there must be a repetition in the above sequence. Let e be the degree

of m(x). It can be shown that 3. 3% 3% - 377" are all the distinct roots of m(x).

4 =1

These elements repeat in the sequence after

Definition 1.8
All-One Polynomial
A polynomial pla) = 0" +.0" o+ 0+ 1 over GF(2) s called all one polynomial

(AOP) of degree m.

Attention is restricted to AODP s over GF(2) only. An AOYP of degree me is irreducible
over GF(2) if (m + 1) is a prime and 2 is the generator of GF*(im + 1). where
GF~(m+1)is the multiplicative group in GF(m+1). Tablel.2 shows some possible
values of m for an AOP of degree i to be irreducible {7]. Trreducible AOPs are
special irreducible polynomials. having the following iuteresting property : Let p(a)

Y

« . . . =1 3
be an irreducible AQP of degree nr. then the roots {a.a?.a ot T o pla) =
0. are linearly independent over GF(2). It should be noted that the set of roots of

par) = 0 constructs a normal basis [3] over GF(2). where p(a) i1s an irreducible AODP

over GF(2).

o

28 66 138
i1 36 82 148
10 52 100 162
1258 106 172
18 60 130 178

e

Table 1.2: Examples of m

Arithimetic operations including the oues discussed above can be implemented
in software but the speed of computations is not satisfactory. Thus. to achiceve
a desired rate of output. several dedicated circuits have heen proposed. These
are linear feedback shift register (LFSR) circuits [1. 2]. Recently many systolic
architectures to perform arithmetic computations in GF(2™) have been proposed in
literature. The purposc of this thesis is to study various arithmetic operations in
GF(2™) and the possible systolic circuits that implement them. The application of

these circuits to encode and decode Reed-Solomon codes is studied.

1.2 Bases of GF(2") over GF(2)

1.2.1 Standard Basis

GF(2™) is a vector space of dimension 1 over the ground field GF(2) = {0.1}. Any
set of m lincarly independent clements can be used as a hasis for this vector space. In
coustructing GF(2™) from a primitive irreducible polynomial F(r). the hasis used
isl.a.a®.---.a" ! wlere a is a root of the primitive irredueible polvnomial. This
basis is known as the standard basis vepresentation also called as conventional basis
representation or polynomial basis representation of ticld elements. The elements of
GF(2™) can be represented using the standard basis representation. Any element

can be expressed as a polvuomial of a with degree less than . That is.

GF(2") = {”n._ll""_' 4o taja+agla; € GFR2)for 0 < i< — 1},

10

Table 1.1 demonstrates an example of the standard basis representation of the field

elements.

1.2.2 Normal Basis

A normal basis of GF{2") over GF(2) is of the form A AZ AT ... A7 Tt has
been proved in [3] that a normal basis exists in any field GF(¢™) and auy field

. . .. m-=1 . .
GF{q™) contains a primitive element \ such that \oAPC--- JA 7 s & normal basis.

Anclement b € GF(2™) can be represented in norinal basis as

e

b=bya + b+ +b,_0°

where b; € GF(2") (0 < i <m—1). If i is odd. GF(2") has a scelf- complemen-

tary normal basis. GF(2™) contains a primitive clement of trace 1 or conversely,
. . . e . . 2 am =1

according to [8] a necessary and sufficient condition for \. A2 AT AT to be a

normal basis of GF(2™) is

=1

It:(’\)=1\+/\2+/\2-‘+-.._r_,\- =1.

This relation implies that the nonual basis representation of 1is (1.1.1.....1).

1.3 Systolic Arrays

Systolic arrays are iutegrated. special purpose processors whose dominant chavac-

teristics are:

11
¢ massive, decentralised parallelism
e local communication

e synchronous mode of operation.

1.3.1 Parallelism

The concept of parallelism breaks with the classical approach of obtaining speed by
performing each operation more rapidly. In parallel computation, the speed increase
comes from the simultaneous execution of operations. Multiprocessors are computers
which have more than one processor. Tlhe architecture of the multiprocessor is more
complex than that of the sequential machine: the problems of memory access become
crucial because data have to be supplied to processors at the right time; similarly the

problems of communication and synchronisation between processors are important.

1.3.2 The Locality Principle

When one tries to make best use of a parallel architecture for executing a pre-
existing algorithm, the principal problem is that of distributing the algorithm across
the processors in such a way that they will be actively engaged in executing the
algorithm and will also be doing other useful work.

On close examination of the problem one comes to the conclusion that the main

way in which one can be successful is not so much to employ fast processors which can

12

perform operations quickly. but rather, to arrange the processors so that they can
communicate efficiently. That is, the processors can access information as quickly
as they can process it.

Every interconnection network uses the concept of locality in some way or an-
other: for a given spatial distribution of processors, it is not possible to connect one
processor to another unless they are ncighbours (Fig. 1.1). As a consequence, an
algorithm can be programmed in an efficient fashion if it can be distributed in such
a way that each processor need only communicate with its neighbounrs.

As a second consequence of the local connection method concerns the relationship
between I/O and computation. Since it is not possible to counect cach processor
10 every other, it is, in the same way, difficult to imagine that cach processor could
be connected directly to the machine’s external environment (that is to the host
computer system), and it is the external environment that is supposed to supply
data to the algorithm and to gather its results. In one way or another, this shows
that the complexity of an algorithm must reside in its component operations and

not in the number of I/O operations that have to be performed.

1.3.3 The Systolic Model

A systolic architecture is organised as a network composed of a large number of
identical, elementary cells which are locally connected. Each cell receives data from

its neighbouring cells, performs a simple calculation and then transmits its results

Figure 1.1:

Locally connected network

of Processors

13

14

(again. only to its neighowrs) one cyvele later. Only those cells that are at the edge
of the network communicate with the external world. To fix an order of size, 1t can
be assumed that cach cell is about as complex as a microprocessor.

The cells operate in parallel under the control of a global clock (i.e.. they are
totally synchronised): several computations are performed at the same time by
the network. and several instauces of the same problemican be pipelined over the
network.

The name systolic comes from an analogy between the cirenlation of data streamns
i the network and the circulation of blood in the nman vascular cirenlatory system.

The clock which maintains synchrouisation is the “Leart” of the systen.

1.4 Literature Review

Important arithmetic operations in finite fields include addition. subtraction. mul-
tiplication. division. exponentiation and munber inversion. Among these. addition
whicli is the same as subtraction is the simplest one and inversion has been identified
as the most complicated and lengthy operation [9].

Multiplication in GF(2™) is completely systolisable. One of the first sindies on
systolic multipliers for finite ficlds was published by Yelr et al.{10]. They developed
a serial-in-serial-out systolie (SISOS) array aud a parallel-iu-parallel-out systolic

(PIPOS) arrav for implememation of GF(2") multipliers using the standard ba-

15

sis representations. Both are well suited to VLSI implementation. but the former
(SISOS) requires two control signals and the latter (PIPOS) has contra flowing data
streams. A system with unidirectional data flow gains advautages over a system
with contra flow in terms of chip cascadability. fault tolerance and possible wafer
scale integration. The systolic architecture deseribed in [11] is also suitable for im-
plementation using VLSI techuignes. but involves broadeasting in data flow. It is
often desirable to avoid hroadcasting when desiguing a high-speed system. Wang
and Lin [12] propose a parallel-in-parallel-ont systolic array and a serial-in-serial-
out systolic array for implementation of G F(2™) multiplicrs using the standard basis
representation. both of which have unidirectional data flow. The parallel forn struc-
ture incorporates fault-tolerant design and the serial form strneture requires only
one control signal. Zhou [13] proposes a new bit-serial systolic array to compute
multiplication over GF(2™) which requires oue control signal.

Hasan and Bhargava [9] have studied division over GF(2™). Their work has been
extended by Flenn et al[14]. A systolic solution to the problem of division lias heen
proposed by Wang and Lin [13]. Hasan aud Bliargava [9] propose bit-serial systolic
divider and multiplier for finite fields GF(2™)

The problem of encoding of Reed-Solomon{RS) codes nsing systolic arrays has
been studied by Seronssi [16]. One of the first studies on decoding of RS codes
using systolic arrays has been published by Shiao ef al. {17]. They use the modified

Euclidean algorithm to solve the key equation. INimmra ¢t al. [18] propose a systolic

16

solution to the problem of RS decoding. They use the extended Euclidean algorithm
to solve the key equation. Their solution is basced on the work proposed by Brent ef
al. [19]. Several others [20. 21, 22] have proposed other nonsystolic versions to the
problem of RS decoding. Nelson et al. [23] propose a systolic RS decoder whicli uses
the extended Euclidean algorithm to solve the key equation. They use the systolic
array proposed by Fitzpatrick et al. [24] to solve the key equation. The RS decoder
proposed in [23] is least complex in terms of area and time. The systolic array of

[24] to solve the key equation has been improved by Dovle et al. {23].

Chapter 2

Architectures Using Linear Shift

Register Circuits

Galois field arithmetic can be implemented more casily than ordinary arithmetic
because there are no carries. Several cireuits have heen proposed in {1, 3. 2] to

perform the arithmetic operations in Galois fields.

2.1 Linear Switching Circuits

In lincar switching cireuits. information is assmmed to he some representation of
elements of GF(2"). Three basic types of devices are used as shown in Fig 2.1.
A linear finite-state switching cireuit is auy cireuit consisting of a finite mnuber

of adders. storage devices, and constant multipliers connected i a permissible way.

Adder

Storage Device

a_@__»ck

Constant Multiplier

Constant Multiplier for k = a3

Adder can be implemented using an XOR
gate.

The storage device is a D-type flip-flop.

For binary case, the constant multiplier is
as follows:

1 —Connection

0 —= No connection

For nonbinary case, it can be an ordinary
m-input m-output binary logic circuit,
whose design is dependent on the
irreducible primitive polynomial.

e.g., for GF(23) using F{x) = OSexl.
Let k = 0. The input can be
represented as a polynomial

B= a2a2 +a;a + ap. Therefore,

a3(a2a2 +a;0+ ao) = (a2+a])a2 +

((11+02+ao)(1 + (02+00).

Figure 2.1: The building blocks for lincar switching circuits.

18

19

2.2 Adders for GF(2™)

Addition in GF(2™) is bit independent, straight-forward and is easily realised by m
independent XOR gates. In order to add two ficld elements, their vector representa-
tions are added and the resultant vector is the vector representation of the sum of

the two field elements.

Example 2.1 Toadd o’ and a*® of GF(2*). Their vector representations are (1101)
and (1011), respectively. Their vector sum is (1101) + (1011) = (0110), which

corresponds to the exponential representation of a.

Addition can be performed both serially and in parallel. Fig. 2.2 shows a circuit for
addition in GF(24) for cach of the two cases: serial and parallel data flow. In each
case, the addends are in shift registers to start with, and the sum is i1 a third shift
register at the conclusion of the addition. The circuit for serial addition requires four
clock times to complete the addition: the circuit for parallel addition requires only
one clock time but has more wires and modulo-2 adders. If desired, the addends
could be fed back to the inputs of their own registers so that at the end of the

addition they could again be found in their registers for other purposes.

Serial

Y

Y

“

=

Parallel

] '*Sr >
- il

Figure 2.2: Addition of two field elements of GF(2?).

20

21

2.3 Multipliers for GF'(2")

2.3.1 Multiplication of a Field Element by a Fixed Field

Element

Let 3 be a field element in GF(2™), then it can be represented as a polynomial in

a as follows:

3 = bm—lam-_1 R I)x(l + ('(J

Example 2.2 Let us multiply 8 in, say GF(2'), by the primitive element «, whose

minimal polynomial is F(r) = 24 + 2 + 1.
Then 3 should be expressed as a polynomial in a as follows:
B=0by+ba+ I)202 + b;x(l:s-

Multiplying both sides of the equality by a and using the fact a? = a + 1. the

following cquality is obtained:

a3 = boa + bja® + ba® + bzat mod (o + a + 1)

by + (by + b3)a + bja® + ba®.

This multiplication can be carried out by the feedback shift register shown in
Fig. 2.3. First, the vector representation of (by. by, 0, 03) of 3 is loaded into the

register. Then the register is pulsed once. The new contents in the register form the

Figure 2.3: Serial multiplication implementation of a - 2.

22

23

vector representation of a3. The equivalent parallel multiplication is given in Fig.

2.4.

Example 2.3 To multiply an arbitrary clement 5 of GF(2!) by the element a®.
Again 3 is expressed in polynomial form as
B = by + bia + bya® + bya®.

Multiplying both sides of the equation by a?, the following equation is obtained:
a3g = bya® + biat + bya® + bza®
= by + (14 a)+ baa + a?) + bs(a® + a?)

= b+ (bl + b-_))O + (b-z + b;;)(l") + (bo + l)3)0‘3.

Based on the expression above, the circuit obtained is shown in Fig. 2.5. Multi-
plication is carried out by first loading the vector representation (bg. by. b, b3) of 3
into the register. On pulsing the register, the new contents of the register are the
vector representation of a33. The serial implementation uses the same circuit as
given in Fig.2.3. This time the register is pulsed three times. The new contents in

the register form the vector representation of the product a®3.

2.3.2 Multiplication of any Polynomial by a Fixed Polyno-
mial

The circuit shown in Fig. 2.6 is known as linear feed-forward shift register in digital

system theory and is also known as a finite impulse response (FIR) filter in digital

b3 bo
bo by
by + bg+b3
bo bs

Figure 2.4: Parallel multiplication implementation of a - 3.

24

Figure 2.5: Parallel multiplication implementation of a3 - 3.

3
a

3
a

Y
Y

Type 1 multiplicr

=

’

Type 2 multiplicr

Figure 2.6: Shift Register Circuits for multiplying polynomials.

Sue o/
000/} ol
ool 1
1 do 0.5
o |1t 1 a3 &
ojfor11})1
0oloo1]dl
olooofo
P | Sue or
3]l ooo |
1 | ofa®o |1
1 o3 adat|ad
0 0 a0 fo
0 oo ol
Q 00 (13

26

signal processing (DSP). It multiplies any input polynomial

a(z) = qa* + w2+ -+ ae + ap, @ € {0,1}
by the fixed polynomial

h(z) = hea" + heoy2™' 4+ oo 4+ hx + hg, h;€{0,1}.

Example 2.4 Let the fixed multiplicer be 2% 4+ a.xr -+ a® and the variable multiplicand

be a®z? + x + 1.

The storage devices are assumed to contain 0’s initially. and the coefficients of
a(x) are assumed to euter high-order first.

Another circuit for multiplication is shown in Fig.2.6, which is an unconventional
form of an FIR filter. The number of shifts required to obtain the complete product

is equal to the sum of the degrees of the input polynomial added to 2 (= 7in this

case).

2.3.3 Two Input Multiplier

Circuits of the type shown above can have more than one input. The circuit shown

in Fig. 2.7 has two inputs.a () and ay(x), and the output is

b(x) = ay(x)h(x) + ax()h(a).
where

h(a) ="+ h_ 27 o4 D,

s

Y

OO
@ @ > >)

OO .

@

lnp'ul as(x) -

Figure 2.7: A two input multiplicr

Output

28

29

k(z) = koa" 4+ ko127 -+ ko,

The circuit is shown as if 1(.r) and k(z) have the same degree, but in case the degrees
are not equal, r can be taken as the larger degree, and the high order coefficients of
one polynomial can be 0.

It is to be noted that in these circuits, the coefficient of the ™+ comes at the
same time that the coefficient of x' goes in. The cocfficient of 2™ in the product
comes out r units of time after the coefficients of 2 enters the input. Thus, in a

sense, the output is delayed r units of time.

Example 2.5 Let h(z) = 22+ 241 and k(x) = 2% + 2 + 1 be the fixed polynomials

and the inputs be a,(x) = 2% + z + 1 and aa(xr) = @ + x + 1 respectively.

The resulting two input multiplier circuit is shown in Fig. 2.8.

2.3.4 Proposed Serial Modified Massey-Omura Multiplier

Masser and Omura developed a multiplier which obtains the product of two elements
in the finite field GF(2™). They utilise a normal basis of form {a.a?,a®.-- - .a?" 71}
to represent each element in the field, where a is the root of an irreducible polynomial
of degree m over GF(2). In this basis, each clement in the field GF(2™) can be

represented by m binary digits.

30

a4(x)
al a2| ShiftReg | Output
! 11 000 0
10 110 0
—>®—> —>€+—>—-> -+ 10 101 0
0 1 111 0
00 000 0
0 0 000 0
ag(x)

Figure 2.8: A two imput multiplier with h(x) = ¥ + 0+ 1 and k(2) = 22 + & + 1.

31

Preliminaries

Multiplication in the normal hasis representation requires for any one product digit
the same logic circuitry as it does for any other product digit. Adjacent product-
digit circuits differ only in their inputs, which are eyclically shifted versions of one
another. Wang et al. [26] have developed a pipeline architecture for a Massey-Omura
Multiplier (MOM) on GF(2") suitable for VLSI design.

Representing an clement of GF (2™) in normal basis as
b=bya + b +-.. + by !
where b; € GF(2) (0 << m—1)is the ith coordinate of b, In vector notation.
b = bat.

. gm—1
where b = [y 0. - - o] a=laa? g2]. and t denotes the vector trans-

position.

Let d be the product of any two clements b and ¢ of GF(2™), i.c

X

d =bat(cat)t = bMct (2.1)

where the mudtiplication matriz M is defined hy

r -
20 4 o0 DLNIDY| D0 L ym—1
o=t e (R

“-_)l+2() “-_)1+A_)_I 2I+-_)m-l

¢

a‘a = . (2.2)

“-)n:—l_*_..)(i 0~_)m—l+n_)l . (‘-_)m—l_i_-_)m—l J

We may write M as

n-1

M =Mga +M;a? + - + My_10? (2.3)

where the entries of the Boolean matrix My belong to GF(2). In My, cach row
and column is numbered as 0.1.---.m — 1. Then entry (i.j) of My contains the
coefficient of a2 when a?*? is expressed in terns of the normal basis using k =
0.1.---.m — 1. From equ. 2.1 and equ. 2.3. oue obtains the coordinates of the

product as
dy_i_y = me_k_lct. h=0.1.--v.m~—1
(2.4)
= b*IM,, kit

where b is the k-fold right cvelic shift of b, A parallel multiplier based on eqn.
2.4 is shown in Fig. 2.9 aud is known as a parallel-type Massey-Omura multiplier.
These are m identical blocks for the m coordinates of the product d. The adjacent
blocks differ only in their inputs, which are evelically shifted versions of one another.
The complexity of the module and. consequently. that of the multiplier depends on

the irreducible polynomial generating the ficld.

A Modified Parallel Massey-Omura Multiplier

In this section. based ou the work presented in [27]. finite fields GF{2") generated
by irreducible AOP are cousidered which lead to low complexity multipliers. Let
A () be the irreducible AOP over GF(2). It a € GF(2) satisfies 4,,(a) = 0. then

B gm—1 . . . J e e
a.a®.---.a®7 are lincarly independent roots of A, () and form a normal basis for

33

/ (c] c [c]
A S S
bobbobs ~7% i S
c] c] c]
€0c1c2¢3 s| s s
7z J\} N4 4
By By Bo Bo
da o d1 do
) b3
b
bob1bab3 bgbgbibp = z; % bf:
b3)
Cyclic Shift

Figure 2.9: A structure for the Massey-Omura parallel multiplier over GF(24).

34

GF(2™). This normal basis is an optimal normal basis in the sense that it results in
the lowest number of 1's in M,_1 and yields a low complexity multiplier [7]. The

distribution of 1’s in M, is given in the following theorem.

Theorm 2.1 The number of 1’s in the matriz Mm_y of an irreducible polynomial

of degree m is 2m — 1. These 1’s appear at row i and column j satisfying
9Ui=m/241) 4 olli=tm/D+1) = 0 or m mod (m + 1), (2.5)
where ((1)) denotes i mod m.

Using the above theorem. it can be shown that i = ((& + 7)) always satisfies
eqn.2.5 [46). Separating these m 1's, one can express My -1 as a sum of two matrices.
ie..

Mupn-: = P + Q (mod 2). (2.6)

where the entry at (i.7) of P 2 [P, j]}{'J-;l(] is given as follows:
L= (3 +))).
pij = { (2.
0. otherwise,

(8]
-1
—

Referring to eqn. 2.4, one can write the shifted vector b as
b¥) = bTH, (2.8)

.. k) D -1
where the entry at (i, j) of matrix T® £ [)]:“Flu is

1, ifi = ((j=F)).
oo T 29)

0. otherwise.

Now it can be easily scen that for any integer &
THpT® = P, (2.10)

Using equations 2.4, 2.6, 2.8 and 2.10, for 0 < k& < m — 1, we obtain

i I bTRPT®Ect 4 pkIQchH (mnd2)

bPc' + b®Qc* (1m0d2) (2.11)

>

d + d,_1—; (mod2).
Since d, which is independent of &, is present in cach coordinate d,,_;—, it needs

to be computed only once for k& = 0.1.---.m — 1, resulting in a reduction in the

circuit complexity of a parallel-type multiplicr.

Example 2.6 Consider the irreducible all-one polynomial of degree m = 4, i.c.,
As(z) = 2 + 23 + 2% + x 4 1. Since the order of the root a of the irreducible

polynomial is m + 1. the multiplication matrix M becomes

o> ad a® o a2 ot 1 ot
a® ot o8 a'® At a' a1
M = =
a®> ab o 1 a o a?
) .)
L a¥ a'0 2 16 i a1 a? a

Mya + Mja? + Mya! + Mya®

Moa + M102 -+ 1\/‘[204 -+ Mg(l:‘.

As the roots a, a

and the Boolean Matrix M,,_; = M is

Then

Finally,

dm-—l—k -

dm—l-—k

Fig. 2.10 shows

2 4

, O

1

bPCt = [bo, l)].

Mm—l =

60 0

00

0

01

b(k)Qc(k)!

1

0

by, b:i]P[Cu-, ¢y, G2, C'sl

7
0
1
0
0-

-01
10
00

LOO

Oi=rns Dy=ks1ys Bi—rr2yys Dii=ks3)

. . t
Qleq-m- Cu=ran. Cumre C-raa]

d + d,,-

-k

(0 <k

36

, a8(= a?) are linearly independent, a + a2 +a% +a? = 1

< 3)

a structure for the parallel multiplier based on eqn. 2.11. The

common term d is generated by block B), and the coordinate-dependent terms

A1k (K

0, 1, ---,m = 1) by m blocks of the same kind denoted as By. The

inputs to two adjacent By blocks are cyclically shifted versions of one another.

Vi

~ c o4 ?
bobsbobs ~73 5 s >
Vi c cl el
7 — : :
€oS1C2C3 4 M
\} SN2 <7 '\/L
B2 Bz

X’,‘}r’ér’é r’§9
} o

d

bo by
bobybabs babobybp => I % %0
b2 04
b3 b2

Cyclic Shift

Figure 2.10: A structure for the modificd Massey-Omura parallel multiplier over
GF(2') generated by irreducible all one polynomial of degree m.

Referring to eqn. 2.7, the matrix P has one 1 in cach row and colmmn. resulting
in m AND gates and m — 1 XOR gates in By. It has been shown in [27] that M,,
has two 1's in all rows and columns. except the last where there is only one 1. It
follows from equ. 2.6 that matrix Q has i — 1 1's which are distributed in m -1
rows and m — 1 columns. Each row and column has one 1, except the last row aund
column, resulting in m —1 AND gates and m —2 XOR gates in Ba . The total number

of gates for the modified Massey-Omura multiplier is as follows:

AND: m 4 m(m=1) = m?
NOR: m =1 4+ m + m(m=2) = m? — 1
For comparison. the other parallel-tvpe NMOM [26] (hereafter denoted as NOM)
of the same class of finite ficlds GF(2"). it is generated by an rreducible polynomial
and uses normal basis. Like the MO the multiplier proposed in {27] (dencted as
AOMAI) uses the normal basis. The realisation of botl nmltipliers requires only
AND and XOR gates corresponding to mod 2 additions and multiplications. The AND
gates. however. can be direetly substituted by NAND gates as the XOR of two AND
outputs is equivalent to the XOR of two NAND outputs. Although time delavs due
to gates for the NON and the NMOMO are the same. the latrer reguires ouly abont
half the XOR gates. The summary of the gate counts and time delays is presented

in Table 2.1 [27].

39

Multiplier Number of Number of Time delay due to gates
AND gates XOR gates

MOM m? 2m? —2m Dy + (1 + [logym — 1])Dy
MAMOM m? m?—1 Dy + (1 + [logym — 1])Dy

Table 2.1: Comparison of Normal basis multiplicrs generated by the irreducible AOP
of degree m

40

Proposed Serial Multiplier

For the parallel multiplier of [27]. the internal description By and B3 is not given.
A suggested circuit diagrani for B} and B, is given in Fig. 2.11. It satisfies the gate
count given in [27].

The work in [27] or 7] does not discuss any serial form implementation of the
normal basis multiplier. They both use ail one primitive irreducible polynomials.
A suggested serial implemeutation of this multiplier is shown in Fig. 2.12. The

proposed multiplier is also based on an all one primitive irredneible polynomial.

Operation and Implementation

It is based on the same principle as the parallel multiplier proposed in [27]. It
requires first m bits to load the nputs into the shift registers. Then me shifts are
requires to obtain the digits (i,,,_k_, (0 < k< mw - 1. Additional logic circultry is
required to generate the output d continnously as it is required to add d to cach

Am_t-1 (0 <k < m = 1. The additional logic cirenitry can be a simple flip-flop (JIX

flip-flop) which can latch the output at d for rest of the operation.

Conclusions

The proposed multiplier can he realised by simple AND and XOR gates. It can be
seen that the serial type multiplier requires the miniimm munber of gates. The

price paid is the the delay in getting the output. It requires i shifts to compute the

41

o
[oR]

B(-ke1))
(k)
b))

C(k+1))

"«-k+2»:D
C((-k+2))

dm-k-1

Figure 2.11: Circuit diagram of B, and B, of the modificd Massey-Omura multiplier.

b0b1b2b3 \
8y
CoC1C2C3
A
am-k-i
B1 o J A
Q -+
d
e
__-> K

Figure 2.12: Proposed serial implementation of the normal basis multiplier.

42

43

product. The maximum switching speed is determined by the delays due to gates,
which is this case is given by Dy + (1 + [logym — 1]) Dy, where Dy is the delay due
to an XOR gate and Dy is the delay due to an AND gate. Therefore, the delay due
to the gates in computing the product serially is m{Dxy + (1 + [logym — 1])Dy}.

All the parameters are tabulated in Table 2.2

2.4 Dividers for GF(2™)

Division in GF(2™) is performed by linear feedback shift registers (LFSR), also
known as infinite-impulse-response filter (1IR). A circuit for dividing d(r) = dp,2" +
dpo1a™ V4o 4+ dy by g(2) = 92" + gp 2" 4 -+ + gy is shown in Fig. 2.13.
The storage devices must be set to 0 initially. The output is 0 for the first r shifts.
that is, until the input symbol reaches the end of the shift register. Then the first
nonzero output appears, and its value is d, ¢!, the first cocfficient of the quotient.
For each quotient coefficient ¢;, the polynomial ¢jg(r) must be subtracted from the
dividend. The feedback connections accomplish this subtraction. After a total of n
shifts, the entire quotient has appeared at the output, and the remainder is in the

shift register.

Example 2.7 Two types of circuits which performs division in GF(23) are pre-
sented in Figs. 2.14 and 2.15 for dividing the input polynomial v(z) = af2® +

a®2% + a%2 + a® by the fixed polynomial g(x) = ' + a®43 + 22 + ax + o,

Basis used Normal
Number of AND gates 2m—1
Number of XOR gates 2m -2
Delay due to gates Dx + (14 [logym ~ 1])Dy

Number of shifts required m

Table 2.2: Parameters of the proposed serial multiplier

44

output

® OO ® & e & O
@ @ (1) O:

input

Figure 2.13: A circuit for dividing polynomials.

46

\
N

*d)-' ::: X g
— 0%

!Typc 1 dmdcrl

P} Suate or
a*joooo o
0jc*000 j0
0loc00 [0
3100 oo jo
0 |00 cf0
b1 a?alt [af
0.4 G‘O}GGGGI
0| aadall

" Quotient = a#x2 + x + a®

)
|

—
Remainder = x3

+(14X2+(15X+0.

Figure 2.14: Type 1 circuit for dividing polynomials.

7

MUX

L L . .
quotient during

o shifts from4 107
1 » femainder during shifts

from4t07

Y

I
o

y=0forshifts 1107
v=1{orshifts 810 11

State

Quotient | Rem.

oggc&oopﬁ%

o o

000 O
do0 0
100 0
1 a0
1 061 of
ab1 af 1
aa®1 ob
adadb 1

0 ada af
00 a3 a
00 0 of

000 O

0

—lpaoooo

Quotient = a%x + x + a®
Remainder = a6x3 + a®x2 + of

Figure 2.15: Type 2 circuit for dividing polynomials.

47

48

2.5 Applications: Reed-Solomon (RS) Codes

2.5.1 Preliminaries

Reed-Solomon (RS) codes are cyclic non-binary codes. They are used in error control
coding for deep space communication and for data storage devices. The codewords
can be represented as polynomials where the coefficients are m-bit symbols taken
from a finite field GF(2™). RS error correction is concerned with correcting symbols

and not individual bits. For a t-error corrccting (TEC) Reed-Solomon code the

generator polynomial is

g(r) = (x —a)(x —a?)- - (x =). (2.12)

This always is a polynomial of degree 2¢t. Hence a RS code satisfies n — k& = 2¢.
They are Maximum Distance Separable (MDS) codes, and the minimum distance is
n —k+1 which is the largest minimum distance a code can have. For a fixed (n, k).
1o code can have a larger minimum distance than a RS code. The parameters of an

RS code defined over GF(2™) are given bhelow:

Number of bits per symbol m

Code length in symbols Tn=2" -1
Number of information symbols k= n-d+1
E'rror correcting capability ot

Number of parity symbols 2 2t

49

Minimum distance cd=n—-Lk+1

The cyclic property of the RS codes makes it attractive to use shift-register
circuits for constructing encoders and decoders. RS codes can be implemented non-
systematically by multiplication of the variable information polynomial i(z) with
the fixed polynomial g(x) to get the codeword ¢(x). This can be implemented with

a FIR filter over GF(2).

2.5.2 Systematic Encoding of RS Codes

Given the generator polynomial g(z) of an (1, k) RS code. the code can be put in a
systematic form. That is, the first k digits of the each code word are the unaltered
information digits: the last n — k digits are parity check digits. Suppose that the
message of k digits to be encoded is
m = (mg.my, Mo, -,y — 1). (2.13)
The corresponding message polynomial is
m(x) = mo +mx + ma® + o 4 myggat ! (2.14)

Multiplying m(z) by 2% and then dividing by ¢(xr), we obtain

2" Fm(a) = g(a)g(x) + r(x)

o
i
Ot

=

where ¢(x) and r(x) are the quotient and the remainder respectively.

Since the degree of the generator polynomial g(.r) is n — k| the degree of r(a) must

be n — k -1 or less,
r(z) =19+ iz + raa’ + oo 4 rpopena™ L (2.16)

Rearranging eqn 2.15, we obtain

k

RV
—t
-1
~—

r(z) — 2" "'m(z) = gx)g(x) (2.

This indicates that r(z) + z"*m{x) is a multiple of g(x) and has degree n — 1 or

less. Therefore, r(x) + z"*m(x) is a code polynomial of the RS code ¢ generated
by g(x).
dx) = rla)+ 2" m(x)

2 . n—k=1
T o N T o DY i ST S AN SEP +

moa" F + mya" R ! (2.18)

From eqn 2.18, it is clear that the encoding of a message block m(a) of k digits
is equivalent to calculating the parity check polynomial #(x) which is the remainder
of dividing #"~*m(x) by the generator polynowmial g(x). This is accomplished by a
dividing circuit which is a shift register with feedback connections according to the

generator polynomial, with gy = 1,

Y=g+ qr+ g+ + Goopra"F 4 ik (2.19)

51

An encoding circuit with an (n — k)-stage shift register is shown in Fig. 2.16.
The quantities gg, g1, - - , g- are the coefficients of the generator polynomial of the
code.

Cousider the example of a double error correcting (DEC) RS (7,3) code with

symbols from GF(2%). The primitive polynomial is
plz) =2+ 41
and the generator polynomial is given by

g{x) = LCM [m,(x), ma(x), ma(z), my(2)]

= (z+a)(z+a?)(z +a®)(z +a)

=22+ (e +a?)x + a2+ (a® + at)a +]

= (22 + o + a®)((2? + abz + o)

=2+ (aS+a®)ad + (1 + a3 +a3)a? + (o' + a?)r + a3

=zt +add + 22 +ar+ad
Therefore, g(z) = 24 + o323 + 2?2 + axr + o®. When implemented with binary cir-
cuits, the octal shift registers stages are three binary shift register stages in parallel.
All data are 3-bit wide. The binary equivalent of the coefficients of the gener-
ator polynomial are caleulated by multiplying the cocfficients with a polynomial
a2 + a1z + ag. a; € GF(2) and taking the remainder on division by the irre-

ducible polynomial p{z). The computation is described below:

Ry [23(a22 + ay2 + ag)] = (a) + @2)2? + (ag + @) + az)z + (ayg + az)

_ . feedback
@ @ @ @ output
—
e-{o— o

input

Figure 2.16: An (n-k)-stage feedback shift register encoding circuit

93

Ry l2(a22® + ayz + ap)] = a12% + (ag + ag)z + ag

The binary implementation of the (7,3) RS code is shown in Fig. 2.17.

The implementation shown above is in wide use. It is simple, and it meets the
requirements for most applications. However, in some very high speed applications,
the presence of a global feedback signal imposes constraints on the switching speed
of the encoder. The fact that the input to all (n — k) stages depend on the feedback
signal, forces the (n — k) stages to be synchronous, hence imposing the use of a
global clock. The need to distribute the global clock and the feedback signal to
all stages of the encoder might restrict the maximum switching speed achievable
in a practical implementation. An alternative approach for the elimination of the
feedback is to modify the FSR encoder of Fig. 2.16, by “pipelining” the feedback
path so that the feedback signal goes through one delay unit before it is fed back

to each shift register stage. This architecture is shown in Fig. 2.18. The resulting

encoding stream is interleaved 2:1.

2.5.3 Decoding of RS Codes

When a codeword is transmitted over a noisy channel, it may be corrupted by noise.
At the output of the channel, the received word may or may not be the same as the
transmitted code word. The function of the decoder is to recover the transmitted

code word from the knowledge of the received word. Let the received word be

=50
T -k
() 6’ 'q_ MUX ::
Ll L }ﬁb‘ LA
O S I T
L — o —o—eT -

Ccs

Figure 2.17: Encoder for the RS (7,3) code using binary logic elements.

o

= n

-0 5D o3

Figure 2.18: Pipelined LFSR encoder

55

56

represented by the binary polynomial

: -1
v(r)=v+unzr+ vt 4 vt

The decoder first checks whether or not the received polynomial corresponds to a
codeword by dividing the polynomial by the generator polynomial g(z) of the code.

The remainder after the division is the syndrome of the received word.

v(z) = p(a)g(a) + s(x), (2.20)

where s(r) is a polynomial of degrec (n — k — 1) or less. Thus, the syndrome is a
(n — k)—tuple. If the syndrome is zero. the received polynomial is divisible by the
generator polynomial and correspouds to a codeword; tlhie decoder will accept the
received word as the transmiited code vector. If the syndrome is a nou-zero vector,
the received vector is not a codeword and crrors have been detected. Supposing that

¢(z) be the transmitted polynomial. then in the case of an error

v{x) = c(v) +e(r) (2.21)

where e(x) is the error pattern caused by the channel disturbance. Since ¢(7) is a

code polynomial, it must be a multiple of the generator polynomial g(r), say

cx) = m(x)g(x). (2.22)

Combining Eqs. 2.20. 2.21 and 2.22, we obtain

e(x) = [pla) — m(x)] gla) + s(x) (2.23)

o7

That is, the syndrome of v(x) is equal t.. the remainder resulting from dividing the
error pattern by the generator polynomial g(x) of the code. Thus, the syndrome of
the received word contains the information about the crror puttern in the received
word, which will be used for error correction.

The syndrome calculation is accomplished by a division circuit which is identical
to the encoding circuit at the transmitter. The syndrome calculator for the RS (7.,3)
code is shown in Fig. 2.19.

The received word is shifted into the register with all stages initially set to “0".
After the entire received word has been entered into the shift register. i.e., after n

shift pulses, the contents will be the syndrome.

Error Trapping

An error trapping decoder is a modification of a Meggitt decoder that can be used for
certain cyclic codes including BCH codes and RS codes. Suppose that all errors in
a received word occur close together. Then the syndrome, properly shifted, exhibits
an exact copy of the error pattern. Defining the length of an error pattern as the
smallest number of sequential stages of a shift register that must be observed so
that for some cyclic shift of the crror pattern, all errors are within this segment
of the shift register. Supposing that the longest-length error pattern that must be
corrected is no longer than the syndrome. Then for some cyclic shift of the crror

pattern, the syndrome is equal to the crror patteru. For such codes, the syndrome

v(x)

Y Y

\‘V I\V
<l>§r><
D@
A |V

:?@ > -—}’@ Y
B Em R

{V Y
r

Figure 2.19: Syndrome Calculator for the RS (7,3) code.

39

generator is shifted until a correctable pattern is observed. The content of the
syndrome generator is subtracted from the cyclically shifted received polynomial
and correction is complete. Referring to the example of the Reed-Solomon (7,3)

code over GF(8) with generator polynomial
gr) =+ 4+ D23+ 22 + o+ (2 + 1),
where the field elements are expressed as polynomials in z. Alternatively,
glz) =2t +a®2? + 2t +ax + a?,

where the field elements are expressed in terms of the primitive element a = z. This

is a double error correcting (DEC) code. The crror pattern e(ar) has at most two

a’ =1 glz) =21+’ + 22 +ax + o’

al =z () = a2 + a2t + 2% + abr + a®
a® = 22 e(z) = a'zt +a®

al=:z+1 v(r) = a'a® + a®2® + o + o
al=:24:

a®=:+:+1

ab=22+1

nonzero terms and is a polynomial of degree G or less. It can always be cyclically
shifted into a polynomial of degree 3 or less. Because the syndromes are of degree 3
or less, error trapping can be applied. The error trapping decoder is shown in Fig.
2.20. The binary circuit implementation uses octal shift register stages with three

binary shift register stages in parallel. The multiply-by-z+1 (that is, by a?) and

vix) .
b
I
i
I . . .
. . . O, &
N i i
L3 . v e PP ° -

R . . e e }
- ;

&

i

{
I
L
.

: Clock
v v v v
>é : é« . & ’é
|
: . O . . e
| ’ . : ‘ ¥~
. ‘e . |_/‘?_/ A
N o ‘
' ’ . Testforafleast2 zero
v v v V| bytes i
J 4 4 9
o
& estiorall
7 Tzeroes
1st correction ond

- A000000%0000000 s

Figure 2.20: Pipelined decoder for the RS (7.3) code

60

61

-z (that is, by @) circuits in the feedback path are simple three-input threc-output
binary-logic circuits. A total of 21 shifts arc necessary for this decoder to correct
all errors. The first set of 7shift computes the syndrome. The second set of 7 shifts
corrects at least one error and the third set of 7 shifts corrects the second error.

In Table 2.3, for each shift, the content of both the syndrome register and the
information buffer are listed. Beginning with the eighth shift, the circuit will correct
an error whenever it sees an error-trapped pattern. This is a pattern with at most
two nonzero symbols and one with one of the nonzero symbols in the right-most
place. Such a pattern must always occur at least once in the second 7 shifts if no
more than 2 errors occur. In the example, it occurs at shift 13, Hence, the error
is trapped. It is to be noticed that the high-order syndrome symbols are normally
to the right. That the error is trapped can be seen from a 4 symbol segment of
the cyclically shifted error pattern (e4. es. €5, eg). Because the error is trapped,
ep is corrected in the information register and set equal to zero (or subtracted from
itself) in the syndrome register. After 14 shifts. the syndrome register contains the
syndrome of the remaining error pattern. The process repeats through a third set
of 7shifts, after which the error correction is complete.

If the syndrome is initially nonzero bhut no error is trapped during the second
set of 7 shifts, then more than two errors occured (but the couverse is not true).

Additional logic can easily included to detect an uncorrectable error pattern.

Shift Syndrome Register Information Register
0 0000 0000000
1 1o%*1 a’000000
2 a’alalel 0000000
3 a%aala 000000
4 ala'ddal a®00a'000
5 oo add® 0% 0a'00
6 a'00a® a%0 a%0 0 a0
7 a%0 a%af Syndrome a'a%0 %0 0 o?
8 a‘a*aa® a*a'a’0 a30 0
9 aladd 0 a‘a?a’0 a0
10 aa’a’l 00 a'a?ab0 a3
11 a3%0 a%a® a30 0 a*a*a®0
12 o?a afa 0 a30 0 a’a’a®
13 a%00a’ « Trapped error a%0 a%0 0 a'a?
14 0a%0 a%a®0 a0 0 a*
15 000" a%a%0 a%0 0
16 000 a? «— Trapped error a8a%0 30
17 0000 a%af0 a®
18 0000 a%a%0
19 0000 a%af
20 0000 a’
21 0000

Table 2.3: Error Trapping Example

62

Chapter 3

Architectures Using Systolic

Arrays

The advantages of the LSR circuits and the designs based on the normal basis are
that they take lesser area. However. they are less expandable because irreducible
polynomials for different m are not related. but the design focusses on one particular
m each time. Since svstolic arrays have the advantages of regularity. modularity and

expandability, systolic designs are worthy of consideration.

3.1 Multipliers for GF(2")

Multipliers based on standard basis or conventional basis do not require any basis

conversion. Wang and Lin [1‘2] developed a serial-in-serial-out systolic (SISOS) ar-

G3

G4

ray multiplier and a parallel-in-parallel-out systolic (PIPOS) array multiplier which
obtains the product of two elements in the finite field GF(2™) in standard basis.
The multipliers are based on the algorithm developed in [28]. which is presented in

the next section.

3.1.1 Parallel-In-Parallel-Out Systolic (PIPOS) Array

Let two clements of GF(2") be A(r) = ap 0™ 4+ oo+ ayr + ay and B(r) =
Dy 12" Voo b+ Dy, and the irreducible polvnomialbe F(a) = ™ 4 ¢, 10" '+
- +grr+1. where the coefficients aj. b;. and g; € GF(2). The product A(0)B(r)modG(r)
can be represented by P(o) = pp,_p 0™~ oo 4 prr 4 py.
The multiplication A(r)B(r)modG(ar). can be expanded by multiplying cach

term of B(.r) by A(r) as shown below in eqn. 3.1,

Plr) = A()Br)modG(r)
= A by e b + by hmod Gl
= {A() 1" modG) (3.1)
+ oo+ A b rmodG)
+ A bymod G).
Beginning with the first term. A(e)b,,— 0 ~'mod G (). cach successive term in equ.

3.1 is added to it and the sumn reduced modG (o) until all terms have been used.

Based on the above algorithm. P(.) can be computed recursively as follows:

To() = 0 (3.2)

T(r) = [Tioy()r] mod G()

(3.3)
+ A(r)b,, ;. it = 1.2.---.m
P(r) = T,(r) (34)
where
Ti(r) = o1 2™ F tiad™ ™2 bt + ty (3.5)
Plr) = pa_p™ '+ Pot™ 2 4 o+ mr o+ . (3.6)

Denoting the coefficient of the highest order term of T;(a') by M. we can write the
recurrence relation as
Ti(w) = Tioy(a)r +G(r) M _
(3.7)
+ A(r),,-;. = 1.2.3.---.m
The above computing procedure is realised by a PIPOS array as shown in Fig.

3.1 [12]. where m x i basic cells are used. The basic cel] at position (¢. &) performs

the following logic operation:

tie = ticiksr @ (G- Mizy)
(3.8)

69(””)—# : l)lu—i)

In this array. one 1-bit delay (denoted by o) has heen placed at cach horizontal

path and cacly slant path between cells. and two 1-bit latches are placed at cach

(8)

GO

o e
4
1
! |
; P
N R A
Al
ol
N
¢ ' ' 1
i
e H N
VN
/ t I
/,,_~_’ I
/’ 1 '
by

Figure 3.1: (a) Parallel-in-parallel-out hit-level systolic array for multiphcation in
GF(2%). (b) Circuit of the (i. k) cell in part (a).

67

vertical path between cells. The coefficients «; and g; enter the (m — j)th col-
umn from the top, and b; enters the (m — j)th row from the left-hand side, where
j = 0,1,2,---,m — 1. In addition, a;(g;) is staggered by one clock cycle relative
to a;41(g;+1), and b; is staggered by two clock cycles relative to bj4.1.

The operation of T;(z) = T;_i(z)r + G(x)Ai-y + A(2)b,-1 in eqn. 3.7 is
performed at the ith row of the array. All logic operations are pipelined such that
each cell is doing the logic operation of e¢qn.3.8 for an (i, k) pair and passcs data
and the result to the neighbouring cells. It can be scen that the output bit p;;; will
emerge from the bottom of the (m — j — 1)th column one cycle ahead of p; which
will emerge from the bottom of the (m — j)th column. If the input data come in
continuously, the array will yield output results at a rate of one per clock cycle after

an initial delay of 3m clock cycles (including the input/output delay).

3.1.2 Serial-In Serial-Out Systolic (SISOS) Array

The serial-in-serial-out systolic array is shown in Fig. 3.2. The coeflicients of
A(x)(G(2) enter the array in a serial format with the MSB first. Since the MSB of
each partial result T;(2) is required to coutrol the modG(a) operation, as given in
eqn. 3.7, we need some extra circuitry to latch such bits. In the basic cell shown in
Fig. 3.2, an AND gate and a switch or a multiplexer (MUX) are added for this pur-
pose. The operation of the extra circuitry are coutrolled by a sequence of 011---1

with length m. The zero bit of the control sequence enters the array one cycle aliead

68

0] - o> 1__,PoP1P2P3
80919293 — g - o> >
80A13z23 ~o—> o> e D

o—-t—> o

A
} } ! |
b3) by bo
(a)

Y
u
X
i

A J
Y
om
[s]

ag

Ci» » Co

by

{b)

. oy I ed N
Figure 3.2: (a) A serial-in-serial-out systolic array for multiplicationin GF(27). The
result p; will appear after a; passes through the array. () The circuit of each basic
cell in (a).

69

of the MSB of 4(x), and it is synchronised with the NSB of Tj(x). If the data comes
in continuously, it will yield output results at a rate of one per m cycles after an
initial delay of 3m cycles. The output result emerges from the right-hand side of

the array in serial form with the NSB first.

3.1.3 Conclusions

Both the arravs have unidirectional data flow. The parallel form incorporates fault
tolerant design. and the serial form requires ouly one control signal. All the opera-
tions are pipelined in such a way that cach block performs the same logic operation

and passes the data and the result to the neighbouring cells.

3.2 Standard Basis Inversion and Division

In this section an algorithm for computing A~" aud B- A~ in GF(2") is developed
based on the Gauss-Jordon eliminatiou niethod [29] for a system of linear equations
over GF(2). Finally. a systolic array implementation of the Gauss-Jordon algorithim

based on the design given by Wang and Lin [13] is presented.

3.2.1 An Algorithm for Computing A~} and B-A~! in GF(2")

Let A(x) he the polynomial representing a nonzero element of the finite field GF(2™)

with a primitive polynomial G(.r) of degree m. Then the inverse clement of A() is

a polynomial C(x) such that

A(z)-C(z) = 1{mod G(z)} (3.9)
or
A@)-C(x) + H(z) -G(z) = 1 (3.10)

where H(r) is also a polynomial. Since any element in GF(2™) can be represented

by a polynomial of degree m — 1 or less, H(z) must Lave a degree satisfying

deg H(x) < m —2. (3.11)
Thus we can have
A2) = o2 o+ ar g (3.12)
Clr) = o™ P4+ +co (3.13)
H@) = hpood™ 2 4o+ hyar+ g (3.14)
G(z) = gur™ + gura™ + o+ air + 00 (3.13)
where coefficients ¢;. b;. and g; are from GF(2) = {0.1} and g,y = g0 = 1.
On multiplying out equ. 3.10, we obtain
gohg + ayco (3.16)
+Hgho + arcg + golty + ayey) (3.17)
Hgaho + asey + g1l + ayey + golts + ages)2 (3.18)

+(gmhm—2 + O—1Cr—1)'1"2“’—2 = 1. (320)

71

In matrix form, this becomes eqn. 3.21. Clearly, finding an inverse element in
GF(2™) can be achieved by solving a system of 2m — 1 linear equations with 2m —1
unknowns over GF(2). Since every nonzero clement has an inverse, there always
exists a solution for eqn. 3.21. This means that the determinant of the square

matrix is nonzero if A(z) # 0.

g0 0 - 0 g 0 . 0 ho
g9 % - - o tp : ‘ :]
1
9 e 0 : Q 0 N
0
Yo ‘ . ay Co
. = (3.21)
9m S g1 Uy : a) Cy
0 gm 0 am-l ° Co
0
0o . . 0 . . : ST
l 0 ° G 0 . LT | Cm—1
Let
B(x) = bpyoyd™ e b + Dy (3.22)
be an element in GF(2™) such that
A(2)-C(x) = B(a){mod G()} (3.23)
or
A(r)-C(x) + H(x)-G(x) = DB(r). (3.24)

Then, C(2) = B(x)- A™Yx) mod G(a). Analogous to eqn. 3.10. 3.24 can be

72

expressed in matrix form as eqn. 3.25. By the same reason. the result of B(z)A™!(2)

in GF(2™) can be obtained by solving the system of linear equations given by eqn.

3.25.
- -
g 0 - 0 a 0 . 0 - . - .
hO bo
L
b
a - 0 ag -0
/I,,,_2
g - < a
o = | by (3.25)
Im - 01 U : y
1 0
0 9m 0 [N
0 : 0
L Cin—1 i L 0 i
| 0 : © Ym 0 - Gm—1]
3.2.2 The Gauss-Jordan Algorithm
Given an n x n nonsingular matrix 4 = [¢;;] and an n-dimensional column vector

b = [bi;}, where a;; and b; are in GF(2), the solution of Ax = b can be produced by
using the Gauss-Jordan algorithm given as follows:

Algorithm

Step1 For k=1 ton do Steps 2 to 6.

Step 2 Search the first nonzero element of the L'th column from the first element

1 =1

Step 3 If ay # 0 Then go to Step 5.

73

Step 4 Row Passing: (g cannot be used as a pivot clement and the ith-row

elements are not processed during the Ath iteration) i = ¢ 4+ 1; go to Step 3

Step 5 Row Loading: (a; is chosen as the pivot element for the Ith iteration

and the ith- row elements are stored for use in Step 6)

Tj = @j, j=l\'+1.1"+2,---,7l

Tngl = bi

Step 6 Column Elimination and Row Rotation: (Subtract row 7 times am + 1,k
from row m + 1 of {4|}] and store the result on row m, where m = 7,i +
1,---,n =1, and then store the old row ¢ on row n. all arithmetic operations

are performed by taking the results modulo 2)

Umj = Q1 O (Qgrk - 75)

m=iit+l---n—-land j=~r+1.k+2.--- ,n =1
by = b1 ® (g g Tner)om=100+1-- n—1
tpj=rj.j=k+1LE+2,---.\n

bn = Thtd

We can sce form the above that the Ath iteration of the Gauss-Jordan algorithm
involves ¢ (0 < ¢ < n—1)row passing operations, one row loading operation, and
n — ¢ — 1 column elimination and row rotation operations. Note that the resulting
n—dimensional vector b = b; for i = 1.2.---.n. To further illustrate the above

algorithms, we present the following example to show the operation of inversion.

Example 3.1 Consider G(2) = a3 + v + 1 and let A(2) = 22 + 2 over GF(23)

The polynomials A(x), G(x). H(x) and C(.r). can he written as

A(r) = a2 + ayr + ag

Cla) =2+ ¢r + ¢
H(x)=Mhar+ Dy

G(x) = gg* + 2 + g1 + go

Equation 3.21 in this case hecomes

g 0 a 0 0 | Iy - 1 -
g1 g0 ay «y O In 0
g2 @ oay ag | = 0
g3 g3 0 a2 e 0
LO g3 0 0 az | _cn_,_ -OJ

which represents a system of 2m — 1 (= 3) lincar equations over GF(2). They cau

be solved using the Gauss-Jordon reduction method. which results in the following

10000 || Iy - 1
010600 Iy 0
00100 “y = 1
00010) 1
00001 y 0

Therefore. the mverse in this case is C(r) =+ + 1

=1
[24

3.2.3 Systolic Array Implementation of the Gauss-Jordon

Algorithm over GF(2™)

Based on the Gauss-Jordon algorithm, a triangular systolic array is constructed for
GF(2°) as shown in Fig. 3.3 for the solution of a system of n linear equations
Az = b over GF(2). This array consists of (n? + n)/2 main array cells and
n boundary cells. The kth row from the bottom of the array is used for the kth
iteration of the Gauss-Jordan algorithm. Each main array cell operates in one of
three modes depending on the westhound tag bit T and the data bit E. When
T = Oand E = 0, the pivot clement has not been found and the main array cell
operates in the row passing mode, in which it exchanges the data stored in the R
register with th . data arriving at the northbound input (D) aud sends the old value
to its northbound output (D). If T = 0 and £ = 1, meaning E is a pivot clement,
the operations of the main array cell are the same as those of the row passing mode.
For each of presentation, this case will be referred to as “row loading mode” rather
“row passing mode”. When T = 1, the data E is an clement to be eliminated; in
this case, the main array cell operates in the coluinn climination and row rotation

mode, where its northbound output D’ is updated according to
D' = D@ (E-R).

The three modes of operation for the main array cell are swnmarised in Table 3.1.

The circuit for the realisation is shown in Fig. 3.3.

-
!

’-——“"‘ ’_‘—. - _—
-— P.”‘_‘.‘. PIS . e Pic P13

i 1 o
. . . .
- - .e—9 ..

-)
N al
! EN
d 0
i o
O
i
ia)

Figure 3.3: (a) Systolic array for

arv eell,

- Ol
- B .

MO e T
DA
[A
Sl
Hals!
1
§T=0 then T T4 -
=R EvTi e T [F
R=E | IMUX
L] clse Lf? I,:_i
—— D'=D=t¥ R) -
. R=R g
. \
DO D
L)
L) thi

[{82)

S}

inversion in GF(2Y) (hy main arrav cell (¢) hound-

T E Operating Mode

0 0 Row passing

0 1 Row loading

1 0 Column elimination and Row rotation
1 1 Column Elimination and Row rotation

Table 3.1: Operating modes of the main array cell

~1

-]

78

Although the row passing mode and the row loading mode of the main array
cell have the same operations, they should be followed by different operating modes.
We can see from the Gauss-Jordan algorithm that a row passing is followed by
either a row loading operation or a row passing operation for each iteration, while a
row loading operation is always followed by a column elimination and row rotation
operation except at the end of each iteration. This means that the tag bit T for the

kth iteration must be initialised by 0 and then be changed based on the following

two rules:

Rule1 If T = 0and E = 0 (row passing mode) occurs at the first clock cycle.
then T = 0 must hold until E = 1 (row loading mode).

Rule 2 If T = 0and E = 0 (row loading mode) occurs at the ith clock cycle,
then T = 1 (column elimination and row rotation mode) must occur from

the (i + 1)th to nth clock cycles, where we assume that it takes n clock cycles

for the kth-row main array cells to complete the Ath iteration.

With these two rules, it can be scen that the tag-bit pattern for the Ath-row
main array cell is a sequence of ¢ + 1 zeroes followed by n — ¢ — 1 ones as the
triggering signal.

It can be seen that the latency of the of the array is 8m — 4 clock cycles, and

the throughput rate is one inverse element per 2m — 1 clock cycles.

79
3.3 Application: Encoding of Reed-Solomon Codes

A systolic Reed-Solomon encoder architecture presented in [16] does not nse any
feedback. In this architecture, a given cell uceds only be svnchironous with those cells
it communicates with. Hence the clock that governs the systolic computation cau be
propagated from cell to cell along the data, rather than being globally distributed.
This clocking scheme (which has also been termed as hypersystolic) allows for higher
switching speeds than those achicvable in architectures with global clocking. This
architecture is suitable for very high speed speed applications. in the Gigabit /second-
order of magnitude. This performance is this encoder is enhanced by introducing

several modifications.

3.3.1 Nonsystematic Encoder

Consider an RS code C of length n = ¢ — 1 and redundaney r < n over the finite
field F = GF(q). Let a be a primitive clement of F. and let al. al+) .. (F+r=

be the roots of the code for some integer L. Let a = 1 = L mod n. The following is

80

a nonsystematic generator matrix of C:

O,(n—l)a Q,(n—2)n

aln=Datl) p=2)0a+l) . glet]) g

(3.26)

a(n—l)(a-{-k—l) a(n—?)(a-{-k—l) .. a(a-i—k—-l) 1

This generator matrix leads in a natural way to a nousystematic encoder in which a

message m = (mg,my,---.my_y) is encoded into a codeword v = (vg. vy, -+ -, Un—1),

with
k=1 -
vj =Y malnTimiledin
i=0

This encoder is readily implementable in a systolic array without global feedback

signals. However, it has the disadvantage of being nonsystematic, and of requiring

k (usually > 7) systolic cells.

Example 3.2 For the case of the RS (7.3) code over GF(2%), the nousystematic

gencrator matrix turns out to be

Qa a® o ot a2 1 |- (3.27)

S1

where L = 0, therefore ¢« = 1. The above G matrix reduces to

G=1qo at a ab ol a2 1] (3.28)

al a o’ o* o' o

3.3.2 Systematic Encoder

Based on the design proposed in [16]. a svstolic RS encoder is developed in this
section. Several modifications have heen introduced for the hetter performance and

to reduce area complexities.

Theory

Regular RS codes are a subset of a more general family known as gencralised Recd-

Solomon (GRS) codes. These have a generator matrices of the form

G= [G()Gl "'Gu-l]-

where
[1
1
QO
9
a;i
G = . u;, 0<i<n—1
L (\f‘l
for some elements ag.Qy. <+ .Qpuy. g Uy« .u,_y of F (the a; must be distinct.

and the u; nonzero [3]). These elements satisfy the conditions:
a; =a""' 0<i<n=-1 (3.29)

wj = al"=i= 0<i<n—1 (3.30)
A systematic generator matrix has the form
Gy =11 4]
where I is the identity matrix of order & and A is a b x r matrix. The eutries A,

of A can be expressed in the form [30]

¢id;

Aj=——- 0<i<k-1. 0<j<r-1 (3.31)
rity; ’

for some clements ¢;. dj. 2y y; of F. A is called a gencralised Cauchy matriz.

For arbitrary GRS codes. the paramcters ¢ dj. a. y; are related to the defining

83

parameters a;. u; of the code by the formulace:

TP = —a. 0<i<k-1.

Yj = Qpyj. 0<;<r—-1.

= o 0Sisk-L.
0<I<k—1
t#£

dj = gy, H (Qpgj —) 0<;<r-1.
0<I<h~1

Combining the above equations with equ 3.29 and equ 3.30 for C'.
ri=—a" ' < i<k -1, (3.32)

yj = a0 < <~ (3.33)

“—(n—l—l)n

C; = T ()SISI{""I.
[T tonmtmioanmion (3.34)
<t <h=-1
t £
d; = aln=1=k=ja H (" 1mkmd ==t <j<r-1. (3.35)
0<I<k=1

Let w = (wywy « -+ w,_y) denote the vector of check digits produced by a svstem-
atic encoder for a message veetor m = (mgmy -+ me_y), be.. w = mA. where 4 is

the matrix defined in eqn 3.31 - eqn 3.35. Then

wj = Yk midy; = d; o -."{‘LL';; 0<j<r-1. (3.36)

34

Implementation

The proposed encoder will consist of r Cauchy celis Cy, Cy, - -, C,—y, each computing
one of the check digits according to eqn 3.36. Cell C; computes w;. It contains the
constants y; and d; stored in registers that can be either “hardwired”, or initialised
once at encoder setup time (before processing the first codeword). C; also contains
a register that holds the value of x; = —a"~*~', The contents of this register are
initialised to 79 = —a™"! at the beginning of each code block, and are multiplied
by the constant a™! at every clock cycle. Let wjl = w;j/d;. Cj computes w;/ during
the first & clock cycles of a code block. In every one of those cycles, C; receives an
input of the form mjc;, computes m;c;/(x; + y;). and adds the result to a register
where w;/ is accumulated. The basic structure of C; is shown in Fig. 3.4. and the
way these cells are connected to form a basic Cauchy encoder is shown in Fig. 3.3.
It is assumed that m; = 0 for k <7 < n — 1, and that m; with / < 0 corresponds to

message digits of a previous block. Also, indices for the sequence of constants {ci}

are computed modulo n.

Operation

Figs.3.4 and 3.5, and the preceding discussion, show the basic computing structure
of the Cauchy encoder. Addressing the input-output issues, and the transfermation

of the input stream u; into an outgoing cncoded stream:

Computation of mic;: The encoder contains an additional cell, G, that generates

mig;

Y

me;

Figure 3.4: Cauchy ccll Cj-basic computation

Cry Cr2 G

kak.....m 101,mfc
—_—>

mgj

Figure 3.5: Basic Cauchy Encoder

me;

86

87

the constants ¢; and premultiplies the input stream m; by the stream ¢;, producing
m;e;. The constants ¢; are generated using a recursion described below. The im-
plementation of the cell €, is not given in (16]. A suggested implementation for a
particular case of (7.3) code is shown in Fig. 3.6. The modification for other codes
is obvious.

Recursion for the constants ¢;: From equ. 3.34. applied to index 7/ + 1. the following

results are obtained.

“—-("—I-:—l)u

Gyl = I fan=l=i=l _ u=1-1,

N1 <k -

t# 41

“u“—(n—l—:)n
"—-(k—I)H (an—t=i_gn—1-(1-1),

0<r<k—1
t#1 41
— (‘(l‘{"l\""l ”—(n—l—')u (3‘37)

H (“n—l—i_"n—l—sj

0w h—2

S

!l+l-'-l . “u—-l—:_”n—l—‘k-%l . “_‘,,_l_,),,

“ anTiTi—anoit n (:.ll—l—i_,.u—l—lj'
— 0<1<k—1
t#
0<i<k-2
It follows from eqn 3.34 aud eqn 3.37 that
. -Gl _ -k .

CGpp = Ut L 0< i< k=2, (3.38)

Starting with initial ¢y, the sequence ¢; can be generated using the recursion in equ

3.38. The value of ¢4 is obtained from ¢; using one division. one full multiplication,

MaC2,M1C1.MpcQ

L.
T

I —E
A

Y

ak +

T PR —
% €210 %

momy

» mamymo

p:u‘(“'l)
q:a"(a+k— 1)

Figure 3.6: Cell €, for the (7.3) RS code

88

Y]

one constant multiplication, and two constant additions.

Computation of w;: To obtain w;j, the computed «f is multiplied by ;. Since the
computation of u';. takes & clock cycles out of the n cycles required to process a
codeword, the product wid;j can be computed in the &k + st cyvele. It should also
be noted that. by stcring d}‘ instead of d;, we can compute w; = u'}/dj‘1 using the
divider already preseut in the cell. The design in [16] does not indicate low it can
be done. A suggested approach is to use a switeh S2 to do this. The switeh S2 is
in position M for the first & cycles and then in position N in the & + 1th evele. The
switch can be controlled using the same control circuit as is used for switeh S1 (not
shown). The complete cell C; is shown in Fig. 3.7

Generation of the Encoded Output Stream: To generate the output stream. the
encoder must reproduce the message strcaw mg.my.--- . mg_y during the first &
cycles of a code block. and produce the check stream wy. wy. -y during the
last r cycles. This is achieved by running an “output stream™ line through the cells
of the encoder. Each cell will propagate the stream i, on its output line during
the first & cycles of the block. insert its computed check digit during the & + 1st
cyele, and propagate results from previous cells (delaving them by one clock evele)
during the remaining » — 1 cyeles. The circuitry for the output stream is shown in
Fig. 3.8. Switch S1 is in position A for the first & cveles of a block. in position B
during the &+ Ist cycle, and in position C for the remaining eveles. Let D;, denote

the value at the output line of Cj.0 £ j < r =10 at the ith evele of a code block.

Figure 3.7: Cell C;

90

J

+1,i

Y>>

S1

Y

Figure 3.8: Output stream circuitry for cell C;.

91

92

0 < i < n—1(the cycle index i is counted according to the local clock of C;). Also,
defining D,; as the value at the output line of €', at the ith cycle of a code block.

Let Dj = [D"oD"l c Dj.n—l] ,0 S_] S r. Then,
D, = [mgm, -+ - my-100--- 0],

and
D; = [momy -+ - my_jwjiwjq coew,0--0) 0L i< r—~1.
In particular,

Dy = [momy -+ - my_ywgwy -+ weni)

is the desired codeword.

The computation at cell C; can be summarised as follows:

Cycle -1 : initialise u';. =0, x; =29

Cycles0tok -1 : compute u;¢;/(x; + y;), and accumulate
intow’, 0<i<h-1

Cycle k : compute w; = u.'j-/d;l sinsert wyj in
output streani.

Cycleskton—1 : propagate results from previous cells.

This computation is synchronised by propagating a binary timing signal T;
through the cells. T; can be generated at the preprocessing cell €., so that T;=1

for 0 <i<k-1,and T;=0 for k </ < n — 1. This cnables the Cauchy cell to

93

recognise the beginning, the & + 1st cycle, aund the end of a code block. T; goes
through one delay unit at each Cauchy cell. The complete Caucliy encoder is shown
in Fig. 3.9.

The Cauchy encoder can be greatly simplified if the constants ¢; and d; are set
to 1. In this case, the resulting is not the original RS code, but a GRS code with
the same error-correction capabilities. The simplified encoder does not require the
preprocessing cell Cye, the circuitry for transforming w} into w;, or a second set of
data lines (since the streams m; and m;c; are identical in this case).

Another interesting property of the Cauchy encoder is that it is easily recon-
figurable for variable redundancy: Any redundancy ' < » can be accomodated by
forcing the last r — 7' cells of the encoder to be in "message propagation” mode
(switch S1 at position A) all the time, and by initialising the values of the constants
d; and y; in each cell according to equ 3.32 - cqu 3.35 for the desired redundancy
value. The set of roots of the code is also casily reconfigurable by changing the
values of d; and yj, as well as the value of the integer « in the initial preprocessing

cell.

Example 3.3 For the runuing example of the RS (7.3) code, the design of the

systolic encoder is as follows:The G, . matrix is of the form G, = [I'| 4], where |

Mysisj

Mryivje 1Cr4icj-1

pre

mg; m;.yCi.
5 - > .._lc_l.). _’L'.1...._>
jofe Di.q: D;;
r.rei 7: Cr.1 > Crol---- gL ¢ Tar LA —]
Trei1 LT PR/ R L/ S

Figure 3.9: Complete Cauchy Encoder

Do.isj-1
—
Tisj-1
"

94

is the identity of order 3 x 3 and A4 is a 3 x 4 matrix given by

- -

An A A Al

A= An Az Ay Aw |

| Azl Aze Asz Asg
where A;; = <l g<i<k-1 and 0<j<r—1 The calculated values of

zi+y;

I;, Y;, ¢i and d; are tabulated in the table below.

vn=ad{yp=a =0l dh=na

n=adly=a?|c=a|d =ab

y3 =1 dy = a?

Based on these values, the parity check bits w; are calculated as given helow.
6 2
wg = Mm@ + M1a° + mpa
= 3 4 5
wy; = mga® + e’ + moa
wy = mya’ 3
5 = mga” + my + nea

wy = myal + ma + myal

The Ggys matrix is therefore given by

100|a o o' a°

00 1|a2 a® % af
L

The proposed encoder has 4 Cauchy cells, Cy. Cy. Cy and C3 computing wo, wy, 1,

and w; respectively. Each ccll contains a register to hold the value o which is

96

multiplied by a=! at every clock cycle. The complete Cauchy encoder is shown in

Fig. 3.10. The cell C), is shown in Fig. 3.6.

3.3.3 Conclusions

A modification to the circuit given in [16] is that the delay clement iu the path
of the stream wu;c¢; has been removed since u;c; should be available to all the cells
at the same time during the first & cycles. Another modification is the suggested
circuitry for the use of same divider to divide the term «f) by d7'. By doing so we
are reducing area. This reduction comes as the same control circuitry is being used
which is used at the output.

The foregoing proposed encoder for the RS codes does not require any global
feedback as is required in the case of the traditional feedback shift register encoder.
This enhances the throughput of the encoder. The encoder described is systematic.
noninterleaved and uses only forward data path. The architecture is snitable for

very high-speed applications of the order of Gigabits/sec.

3.4 Application: Decoding of Reed-Solomon Codes

Svstolic array architectures can be applied to the various steps involved in decoding
non-binary block codes. Systolic array architectures can be used in all stages of the

decoding process including the syndrome caleulation. kev equation solution using

97

" ™
A
>% St
Disri .
UJ | v i

»O

Figure 3.10: PE for the systolic encoder of (7.3) RS code

98

Euclid’s method and error evaluation. In this scction a modified decoder for the
running example of the (7.3) RS code is presented. The throughput of the decoder
is effectively determined by the speed of the multipliers used. Fig. 3.11 shows an
overall block diagram for a pipeline or systolic based RS decoder. At the highest
level the pipeline consists of separate blocks for calculating the syndrome, solving
the key equation and locating the errors. Each of these blocks is in turn made up

of linear systolic arrays. In the following scctions the implementations of each block

will be described.

3.4.1 Syndrome Calculation

Defining the received polynomial as

n—1
v(r) = Z vt
i=0
The syndrome computation
n-1)
Sk =Y vi(a®) 1< k<2
i=0

is an evaluation of a polynomial of lengtli » on 2t points. Since n > 2¢, it is best to

compute all syndromes simultancously. Sy, is computed in the following manner:
k k k
Si = (vpra” + v,29)a" 4+ - 4 0))a” + .

It should be noted that v,_, is the first received symbol. Starting from the innermost

parenthesis, syndrome Sy, is gradually computed as the v are received. After vy is

Received

v(x)

I Delay !
T
iy Syndrome »| Key Equation > Error
Calcutator Solver Calculaton
Six) Alx)
)(x)
Syndtome
Error Locator

Error Evaluator

e(x)

Error

-

Estimated

codeword
c'(x)

Figure 3.11: Block diagram for a pipcline RS decoder

99

100

entered. all 2f syndrome computations arce completed at the same time. They are
ready to be shifted out serially at that point. A systolic array design of svudrome
computation circuit is shown in Fig. 3.12.

Initially the accumulator registers 4; are cleared and the argument registers con-
tain the value of the argument a! to a*. which are constants and may be hardwired.
The symbols from the received codeword are then sent to all the cells simultane-
ously. When the complete codeword has heen processed. the svudromes are sent to

the key equation solver.

3.4.2 Key Equation Solver

Implementing the Extended Euclidean Algorithm using Systolic Arrays
The extended Euclidean algorithm (NEA) is a well known method for fiuding the
greatest common divisor (or ged) of two polynomials f(a) and g(a) whose coefficients

lie in a field A" as well as polynomials a(.r') and () such that

ged[f(x).glo)] = ale)fle)+ Hrgle) = ().

Brent and Kung [19] have given a systolic design for the (ordinary. nnextended)
Euclidean algorithm and indicated how their methods might be developed to carry
out the extended algorithin. Several anthors Liave proposcd systolic RS decoders
[18, 31, 17] in which the key equation is solved using a systolic NEA which improved

on existing designs. In [24]. a svstolic XEA is deseribed which improved on existing

101

VoV1--Vg.

ul as X (13

S4

Figure 3.12: Systolic syndrome calculator for the RS (7.3) code

102

designs. Below is presented the systolie design to implement the key equation solver
presented in [23].

The Algorithm

The basis of the XEA is the polynomial remainder sequence Sy 59, - gy de-
rived by initialising 5_;(r) = f(r).50(r) = g(r) (assuming 6f > g where § de-
notes degree) and setting - ;1. to he the remainder on division of 5 by 5,41, Here
Tt = 0 and 5, = ged(f.g). Viewing division as repeated shifting. cross multi-
plication by leading cocfficients and subtraction one obtains the left-shift XEA in
which two vectors of three polynomials f=(f1. £2. £3) and g=(¢l.¢2. ¢3) are carried
along representing successive iterates of the polynomials f1(). f2(r). £3(). This
is converted into a separated action form XARD. in which cach operation is one of
ADVANCE(g). REDUCE(f). DELAY(g) or SWAP(f,g). For a systolic implemen-
tation. these actions are combined in order to force cach processing clement (PE) to
reduce the degree of the current f3(a) by at least 1. The combined action version
COMBXARD algorithm is given in Fig. 3.13. The parameter f appearing in the
definition of the variable < decwina > corresponds to the error-correction capability
of an RS code. For the full XEA algorithm its value is taken as 0.

Implementation

The circuit of the PE for the systolic COMB_XARD algorithin uses 3-bit coefficients
correspouding to clements from the Galois field GF(8). The cell architecture in Fig.

3.14 comprises the polynomial reduction circuitry and subsequent delay control to

103

Input: {, g polynomials with coefficients in K. not both zero.
Output: f where f1f + f2g = {3 = ged(f,g).
procedure comb XARD ged(f,g)
{Initialisation}
3:=f; g3:=g;
if 6f3 < 4 g3 then swap(f3,g3);
fl:=1; £2:=0; gl:=0: g2:=1;
start :=x%/3; {align start - regarded as a polynomial - with the
leading coefficient of {3}
gshift :=0 { g is multiplied by x9*"/* }
decwina := 6f3 - t + 1 - gshift;
decwini := decwina;
{Calculation}
{f,g and control signals are passed through a pipeline of
systolic cells whose algorithm follows}
{Cell operation}
{L’() denotes the coefficient coincident with the start signal asserted}
if decwina > 0 then
case (L’(f3) = 0, L*(g3) = 0) of
{Adjust} (T,T):begin
decwing — —;
delay(fl, 2, g1, g2, start);
end;
{Reduce} (F. F):
(T, F): begin
f:=1L'(g3)f- L'(3)g:
if (gshift > 0) then
begin
{Declay} delay g:
delay f1, £2, g1, g2. start:
gshift — —;
end;
else
begin
{Swap} swap(f,g)
{Advance} delay(f, start):
gshift + +;
decwina — ~;
end

{Advance}(F,T): begin
delay(f, start);
gshift + +;
decwina — —;

end;
end{case}
else
{Null}
{Completion}
if (gshift > 0)
{g multiplied by x9s4i/t }
begin
for n:=1 to gshift do
begin
delay(g):
decwina + +;
end;
swap(fg
{Result always in f }
end;
{f3 is too far advanced by decwina }
for n:=1 to (decwini — decwina) do
delay(f3)
return (£/L(f3));

Figure 3.13: CONMBXARD

104

Figure 3.14: Processing Element

T EE 1
r—El} L(f8)j L(g5 5] 1 cmw MUXSEL [0..2L
e [P]
[-on /= [ccn_&F; =
13 [0..2] — % I £3 out
T D ?-'—}Ji—_v_:j—] MUX 1 #3 out
310..2] REDUCE !
L l "L__D_JJ?“f_D..._ji
f2.00..2) 2l +— fzout
b o 5 Y ___[: L—l g.. out
t— =D MUY 2
. reovce | [T] e
Jato..2) | o 10
MmN 1 S =
I S * pe
k= J
L —
S i
DECWINA L : L —
/> 1 —J | T 3 — \
T e e [B
3 . (— START out
—> START 41'_‘! ——dg l—‘L_J
==TCrock —

106

implement the advance, delay and swapping functions. The action of the cell is
determined by the zero/non-zero value of the leading coefficients and the < gshi ft >
and < decwina > signals.

The operation of the PE is as follows. On the rising edge of a < start > signal the
leading (highest degree) coeflicients of f3 and g3 are latched for subsequent multi-
plication in a reduction stage and at the same time tested for zero/non-zero status.
The result of this comparison along with the values (1 or 0) of < gshift > and
< decwina > determine the contents of the NUNXSEL[0:2] bus for the current op-
eration. MUNSEL[0:2] defines the input selection of the multplixers MUX1, MUX2
which ensure correct time alignment of the output polynomials. The increment and
decrement of the < gshift > and < decwina > signals is also determined by the
output multiplexers which select the appropriately delayed input signal. These mul-
tiplexers are controlled by logical function of the NMUNXSEL[0:2] bus value determined
in the CTL2 block.

The reduction circuitry comprises two multipliers which cross multiply f and g
by the leading coefficients of f3 and g3 respectively and a subtracter to obtain the
difference of the results. The result is the new fin which the degree of f3 has been
reduced by at least 1. The multiplier uses an array of binary inner product cells
combining the summation and reduction associated with finite field multiplication.
The coefficients G{0..2] of the ficld generator polynomial are hardwired in this case

but they can easily be brought out to pads for external programmability. The mul-

<xfh, b,)] [

Ligs)

LfFs)

$(5: 900 D)

SUBTRACT

Figure 3.13: Reduction Circuit

107

108

tiplier can be one of the available multipliers e.g., the one proposed by Wang and
Lin [12]. Subtraction is a bitwise XOR operation. Exceptious to the norinal multi-
plication occur in the NULL and ADJUST opcrations when the leading cocfficient
values (indicated by L) are overwritten by L(f3)=0 and L{g3)=1 to eusurc that f
passes unchanged. These operations are performed by the blocks labelled F.CTL.
G.CTL

Fig. 3.16 gives a block diagram of the conuections of the PE’s to caleulate the
error locator polynomial and the error evaluator polynomial. where f1 aud gl have
been suppressed as they are not involved in this particular computation.

This design improves over the one presented in [23] which uses the design given
in [24]. The systolic array for the NEA nsed in the proposed design of the decoder

15 an improved version of that given in [24] in terms of cell complexity.

3.4.3 Error Calculation

The error calculation part requires the evaluation of the error locator polynomial

AMa)for o™l 0<i<n—11t0find its inverse roots. If

Ma ™)y =0

then v is a corrupted symbol. The inverse clements of GF(23) are generated by
an LFSR, as shown in Fig. 3.17 for the generator polvnomial 3 4+ .+ + 1. Note

the correspondence hetween the feedback connections and the nonzero coefficients

109

S(x)—

stant

Initialisation
Block

{3

Cell 3
f2

g2

gshift
decwina
stant

TN

1RIRE
I

{3

Call 2¢
f2
g2

gshift
decwina
start

{3

Completion
12 Block
g2

gshift
decwina
start

EPRTEY

(%)

PR(X)

siant

Figure 3.16: Block diagram of the key cquation solver based on the CONMB_XARD

algorithm

110

Figure 3.17: A circuit that gencrates the elements of GF(2™) in reverse order

111

of the generator polynomial. This is as shown in [1].
The corresponding error magnitudes are computed by evaluating Q) and \' ()
fora™, i=0,1.---.n — 1. That is the crror magnitude is given by

O(a~") .
;= — <1 <n-1.
€; Vo) 0<:/1<n

The error equation requires that \(r) is formally differentiated and this is rela-
tively straightforward to implement for GF(2"). Cousider the polvuomial A(r)

over GF(2™):

-

A) = @ " 0T + ay
Ay = (= D ™72 4 (= 2ty —ot™ 3 s+ (3.39)
=y " gy g™ T for m even
All the coefficients of even powers of »r in \(.r) and the odd powers remnain the same.
since addition corresponds to the XOR operation: aud the resultant polvuomial is
divided by .r. which can be implemented as a shift right or delay.

The circuit that perforins the differentiation of \(#) in GF(2%) is shown as a
part of Fig. 3.19. Fig.3.19 contains a block diagram showing the various arrays
and the anxiliary blocks required. The implementation is based on Fig. 3.18 where
the argument and the accumulator are passed through an array of cells holding the

polynomial coefficicnts,

The approach presented liere is opposite to the one given in 23], This paper

112

Am-Aj-Ag

l

&n > an.4 — 3 — 8p
Xy XjeXq

Y

Acut = AinXin + 3

Xout = Xin

Figure 3.18: A systolic architecture for polynomial evaluation

113

&x)
t—»

i1
-
0
-1

i
1
¢
I
I
1
b
[}
i

+
Q

n-1
oliidiniai i |
X

+
A

X

I TR

M. A --—--- :|M I3 n
- == - i~ b
e 1 E=> <
I (bee | -4
- H . o
T !
s | I]
s h X | = =
R U B %
< = a
21 _A 2
2 2 2
® |55 (kS E]
S {"ATT"T"" I 3l K 3
2 3 2
5 3 3
PR P 4-)|d [~ =]- 2oz~ H4-la L
! [1 ! Do [
t {(H)=eq < p 1 (+ < \
) . 1 '
' t \
1
X
1 (X . ' .
1 \) .
! 1 ! U
! I !)
.lv.w. |||||| J, _...._. |||||| —,
=)
o - 1
T
1
vy
'

Figure 3.19: Error Evaluation Block diagram

114

evaluates the error locator at af and assumes that an error has occured at o' i.e.,

Ala®) =0 — error at a'
Qa')
e; = -
A'(at)

Applying this result to the running example has not given correct results.

Besides differentiation. the remainder of the crror location operation involves
only polynomial evaluations and the generation of the sequence a""1 to a®. Polyno-
mial evaluation is required for A(x), \'(2) and Q(x). For pipeline implementations
it is easier to evaluate all three for all values of a~' and to ignore A’'{a™) and Q(a™)

except where A(a™) = 0.

3.4.4 Error Correction

The error correction is implemented by adding the crror and received codeword.
The received codeword is delayed until its corresponding error polynomial has been

calculated. The adder is implemented using XOR gates.

3.4.5 Exceptional Errors

There are two special error conditions that must be considered: no errors and more
than ¢ errors. In the case of no errors the syndrome will be the zero polynomial,

S(z) = 0. When the key equation solver terminates, then A(r) = 1 and Q(x) = 0.

115

Therefore, the error locator polynomial will equal 1 for all error locations which
results in no error correction of the reccived codeword.

When more than ¢ errors occur, the design may be expanded to detect incorrect
decoding. A suggested method of implementing this is to count the number of error
locations and compare this with the degree of the error locator polynomial. If the

two are not equal an uncorrectable codeword has been detected.

Example 3.4 For the running example of the RS (7,3) code, let the received word
be v(z) = a'2% + a323 + abr + a* and the generator of the code be g(x) = z* +

3+ 22+ azr + a®

The step by step procedure of error correction is shown in the Appendix.

3.4.6 Conclusions

Decoding RS codes can be implemented using systolic arrays. The architecture pre-
sented here improves upon the previous designs. Morcover. the PE in the calculation
of XEA is significantly simpler than those in previous designs. For example the de-
grees of the given polynomials f and g and their updates are not carried and the
stopping conditions (in the RS decoder application) has been reduced to a simple
zero/nonzero comparison. A further improvement lies in the way, the growth in the
degrees on the auxilliary polynomials f1 and f2 are handled. avoiding the possibility

of these polynomials becoming “too far advanced” and the consequent loss of data.

Bibliography

[1] W.AWL Peterson and Jr. E. J. Weldon. “Error-Correcting Codes”. MIT Press.

Cambridge. MA. 1972,

[2] Shu Lin. ~An Introduction to Error-Corrccting Codes “. Prentice Hall. Inc.

Englewood Cliffs. NJ. 1970.

[3] F.J. Macwilliamsand N. J. A. Sloane. “The Theory of Evror-Correcting Codes

. North Holland. NY'. 1977,

[] B. Benjauthrit and I. S. Reed. “Galois Switching Functions and their Applica-

tions ". IEEE Transactions on Computers. C-253:78 -86. Jaumary 1976.

[3] D. E. R. Denning. “Cryptography and Data Sccurity ~. Addison-Weslev, Read-

ing. MA. 1983.

[6] I S. Reed and T. IN. Truong. “The use of Finite Finite Ficlds to Compute
Convolutions “. IEEE Transactions on Information Theory. 1T-21:208 213.

March 1975.

116

117

[7] Toshiyo Itoh and Shigco Tsujii. “Structure of Parallel Mnltipliers for a Class

of Fields GF(2™)". Information and Computation, 83:21-40. 1989.

[8] Din Y. Pei. Charles C. Wang. and Jim K. Omura. “Normal Basis of Fiuite
Field GF(2™)". IEEE Transactions on Information Theory. IT-32(2):285-287.

March 1986.

[9] M. Anwarul Hasan and Vijay K. Bliargava. “Bit Serial Systolic Divider and
Multiplier for Finite Fields GF(2™) . [IEEE Transactions on Computers.

41(8):972-980. August 1992.

[10] C.S.Yeh, Irving S. Reed, and T.Ix. Truong. “Systolic Multiplicrs for Finite Fields

GF(2*)". IEEE Transactions on Computcrs. 33:357- 360. April 1984

[11] A. Sengupta S. Bandyopadhvay. “Algoritluns for multiplication in Galois field
for implementation using syvstolic arrays™. IEE Procecdings. 135(6):336 339.
1 g s . g

November 1988.

[12] Chin-Liang Wang and Jung-Lung Lin. “Systolic Array Implementation of Mul-
tipliers for Finite Fields GF(2")". [EEE Transactions on Circuwils and Systeimns.

38(7):796--800. July 1991.

[13] B. B. Zhou. ~ A New Bit-Serial Systolic Multiplier Over GF(2™)". [EEE

Transactions on. Computers. 37(6):749- 751. Junc 1988.

118

[14] S.T.J. Flenn, D. Taylor. and M. Benaissa. "Division over GF(2")". Elcctronics

Letters, 28(24):2259-61. November 1992.

{15] Chin-Liang Wang and Jung-Lung Lin. “A Systolic Architecture for comput-
ing Inverses and Divisions in Finite Fields GF(2") ". IEEE Transactions on

Computers, 42(9):1141-46. September 1993.

[16] Gadiel Seroussi. ~A Systolic Reed-Solomon Encoder™. [EEE Transactions omn

Information Theory. 37:1217--1220. July 1991.

[17) Howard M. Shao and Iiving S. Reed. ~On the VLSI Design of a Pipeline Reed-
Solomon Decoder Using Systolic Arravs™. IEEE Transactions on Computers.

37(10):1273-1280. October 1988.

(18] Masayuki Kimura. Hideki Imai. and Yasanuri Doli. “Systolic Decoder for
Reed-Solomon Codes™. Electronics and Communications in Japan. Part 1.

10(8):731-6. 1987.

[19] Richard P. Brent and H. T. Kung. ~Systolic VLSI Arravs for Polynomial GCD

Computation”. IEEE Transactions on Computers. 33(8):731 6. Angust 1984,

[20] Tetsuo Iwaki. Toshihisa Tanaka. Eiji Yamada. Tolru Okuwda. aud Taizoh
Sasada. “Architecture of a High Speed Reed-Solomon Decoder™. JTEEE Trans-

actions on Consumer Elcctromics, 40(1):75 S1. Febrary 1994,

21]

[22]

[23]

[24)

119

Hirokazu Okano and Hideki Imai. “A Construction Method of High Speed
Decoders Using ROM's for Bose-Chaudhuri-Hocquenghem and Reed-Solonion

Codes”. IEEE Transactions on Computers. 36(10):1165- 71. October 1987.

Shyue-Win Wei and Che-Ho Wei. ~High Speed Decoder of Reed-Solomon
Codes™. IEEE Transactions on Communications. +1(11):1388 -93. November

1993.

John Nelson. Abdur Raluman. and Eamonn McQuade. “Svstolic Architectures
for Decoding Reed-Solomon Codes™. International Conference an Application

Specific Specific Array Processors. pages 67 77. 1990,

P. Fitzpatrick. J. Neison. and G. Norton. “A Svstolic Version of the Extended
Euclidean Algorithm ™. Proceedings of the Confercnce on Systolic Array Pro-

cessors - Killurney 1988. pages 477 436. 1989.

Rory Doyle. Patrick Fitzpatrick. and John Nelson. ~An Improved Svstolic
Extended Euclidean Algu ithm for Reed-Solomon Decoding: Desien and -
plementation”. International Conference on Application Specific Specific Array

Processors. pages 148 136. 1990.

Charles C. Wang. T.K.Truong. Howard M. Shao. Leslic J. Dentsch. Jiny K.

Omura. and Irving S.Reed. “VLSI Architectures for Compnting Multiplica-

120

tions and Inverses in GF(2™)". IEEE Transactions on Computers, 34:709-7T17,

August 1985.

[27] M. Z. Wang M. A. Hasan and V. K. Bhargava. “A Modified Massey-Omura
Parallel Multiplier for a Class of Finite Ficlds *. IEEE Transactions on Com-

puters. 42(10):1278-1280. October 1593.

[28] P. Andrew Scott. Stanford E tavares. and Lloyd Peppard. A Fast V'LSI Multi-
plier for GF(2™)". IEEE Jowrnal on Selected Arcas in Communications. SAC-

4:62-66. January 1986.
[29] G. Strang. “Linear Algcbra and Its Applications ~. Academic. New York. 1980,

[30] R. M. Roth and G. Seroussi. “On Generator Matrices of NIDS codes™. [EEE

Y

Transactions on Information Theory. 1T-31(6):826- 830. November 1985.

[31] H. M. Shao. T. K. Trnong. L. J. Deuteh. J. H. Yeun. and L S. Reed. "AVLSI De-
sign of a Pipeline Reed-Solomon Decoder™. IEEE Transactions on Computcrs.

34:393 -402. 1985.

Appendix

Syndrome Calculation:

ot=4 Q= n-1=6
S(x)=z1ijj and S = v(a) =OZ vjod!
]:

S1 =1
S2 =02 S(x) = o*x3 + 09x2 + o2x + 1 s the syndrome polynomial
S, =a’
3 o
S4 = a4 2t = 4, therefore x2t = x*

Key Equation Solving:

{ Initialisation }

f=(fl, 2, £3)=(, 0, x
g=(gl,g2,g3)= (0, 1. o3x3 + odx2 + o2x + 1)

start = x* | gshift = 0, decwina=4-2+ 1 - 0 = 3. decwini = 3

{ Calculation }

if (decwina >0)
Case(L'(f3) =0, L’(g3) = 0) of

FT

FF

delay(f, start) -> g = gx, therefore g = (0, x, adx4 + 03x3 + 02x2 + x)
gshift ++ =1, decwina -- =2

f=L"(g3)f-L(f3)g
—(a 0, ox 4) (0, x, a4x4+asx°’+a2x~+x)—(a X. 09X
gshift >0,

3+0(“>r1~x)

delayg > (f=fx) > f= @4, x, adx3 + 02x2 + x)
dﬁla}’(fl f2,g1,g2.start)

f= (0: xa34+a-x3+x)g—(0 a3 v adx3+u2x2+

gshift -- =0

f=L"(g3)f - L'(f3)g

- (o, o 6,3 2.4

axov-x + 0% + o xz)-(O.(xs.orx 3

+ax +>\ +0t>\)

=(a, oty + a5. a4x3 + odx? + asx)
gshift =0
swap(f.g)

g=(0.,(14x+0.5

. a4x3 + a5x2 + (xsx)
f=(0, 1, o*x4 + 09x3 + o2x2 + X)
delay(f, start) -> g=gx
g=(ox, a4x2+a5x, adxte o3x3 + adx?)
gshift ++= |, decwina--= |

f=L"(g3)f-L'(f3)g

4 5. 2 oy ond o 23

) 9 7 9.
(O,a4,ax +a-x3+a6x~+a4x)-(0(~x.(xx-+o.~x,ax + 0=X7 + U~X”)

f= (a5x. ouc2 + azx + 0.4. X2+ a4x)

gshift >0, delay g -> (f=fx) > f= (asxz, ox? + a2x2 + otx. x3 + a4x2)
delay(fl, f2, gl, g2, start)
f= (a5x, ox2 + o2x + a”' x3 + ot) = (0, atx + OLi odxte odx3 + x>

gshift--=0

)

TF f=L"(g3)-L'(f3)g

= (azx. ax2 + ox + Q, o3 + ax'-’) -(0)
gshift =0
swap(f,g)

f=(a, ox + 02, adxd+ adx3 + odx2), g= (03x, odx2 + abx + o, 04x3 + ax?)

delay(f, start) ->(g=gx)->g= (azxz, o3x3 + aOx2 + ax, x4 + axz)
gshift ++ =1
decwina --=0

{ Completion }

gshift > 0,
forn=1tol

begin: delay(g)->g=g/x= (02x, «2x2 + oOx + a. 53 + ox?)

decwina = 1
swap(f,g) : f = (@2x, a3x2 + ofx + o, adx3 + ax2).

4

g = (o ofx + 02, oxd+ oIx3 + o0x2)

for n=1t0(3-1)do

delay(f3) n=1 o2t ax

return (£/ L(f3) = (azx. adx2 + o0y + «, oy + o)/ at

£2 = ox2 + o2x + o = A(x)
f3=x+a4=Q(x)

Ax) = ax2 + azx + a4

Evaluating the error locator polynomial at 1, ol , o6
A(D) za+al+0t =0
A(a‘l) =a6+a+a4 =1
A =ot+1+0d =1
A(a’3) = a2 + a6 + a4 = a5
A(a“4) =o/+od+0t =0
A(a‘S) = a5 + a4 + a4 = o
+0d+

A(a‘6) =3 o = o

Therefore the error locations are (10 =1 and a'3 = a4

Qx)=x + ot
N(x)=20x + o? = o?

Error calculation
e; = Q(x) / A'(x)

e =) /A1) =(1+0% /0= g3
eq=Q03) /A= (o3 +atyre?= od

Therefore the error polynomial is e(x) = o + o3

Error correction
The corrected codeword is, therefore, ¢(x) = v(x) + e(x)

(oc4x6 + oc3x3 + a6x + a4) + (a4x4 + a3) = (014x6 + a4x4 + a3x3 + a6x + a6)

Therefore, the corrected codeword is c(x) = ox0 + atx? + 03x3 + 0Ox + 00,

Vitae

Mohamed Alisan
Born in June 1970 at Bijapur (INarnataka). India

Received Bachelor of Engineering {B.E.) degree in Electronies and Communi-
cation Engineering from M. J. College of Engg. and Tech. (NUJCET 1. Osinania

University (OU). Hyderabad. India in June 1992

Joined the Department of Electrical Engineering at King Falid University
of Petroleum and Minerals (KFUPM). Dhabran. Sandi Arabia as a Re-

scarch/Teaching Assistant in December 1992

Received Master of Science (MLS.) degree in Electrical Enginecring from

KFUPAL Sandi Arabia in 1995

