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THESIS ABSTRACT
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Title: Development of An Equivalent Dispersion Coeflicient
for a Complex Contaminat Transport Model

Degree: Master of Science

Major Field: Civil Engineering

Date of Degree: November 2002

The ability of artificial intelligence systems to facilitate the generation of solutions
for difficult problems in civil engineering that require symbolic reasoning and effi-
cient manipulation of diverse knowledge has generated a considerable interest re-
cently. The process of contaminant transport in the subsurface environmeni s a
very complex problem, which can benefit from such system. Several sophisticated
theoretical models have been developed to predict the process of solute transpori in
porous media. Unknown parameters, which are extremely difficult to determine in
the laboratory, are introduced with each developed model creating an added difficulty.
In this study the parameters of a complez contaminant transport model are related to
a single parameter named the Equivalent Dispersion Coefficient (EDC). This study
also presents the development and design of artificial neural network (ANN) model
that is able to predict the EDC for a contaminant transport model. The work con-
sists of several tasks starting with generation of data from numerical simulations.
Next the data is used to train the neural network models. Two learning algorithms,
Back Propagation Algorithm and Levenberg Marquardt Algorithm are used to train
the neural network models on a specific range of data. Once the training is complete
these models are validated using synthetic as well as experimental data. The trained
models give the EDC values when it receives the dimension less parameter data as
their input. The EDC is used in linear equilibrium advective despersive equation to
predict solute concentrations. The results obtained from this new approach are in
good agreement with the previous studies. In addition to this, the advantage of the
current approach is the automated process of obtaining EDC values.

Master of Science Degree
King Fahd University of Petroleum and Minerals, Dhahran.
November 2002
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Chapter 1

INTRODUCTION

Water, is the lifeblood of every living creature on earth, covers approximately 70
percent of the earth’s surface. Only about three percent of the world’s water is fresh
water, which is needed for most human activities and two third of that is frozen
forming the polar ice caps and glaciers. The remaining one percent of the total
world water supply is freshwater available as either surface water or groundwater.

Groundwater accounts for more than two-third of this amount [12].

Groundwater is often wrongly thought of as an underground river or lake. which
is only true in caves or within lava flows. In reality groundwater is usually held in
porous soil or rocks, much the same way water is held in a sponge. When rain falls
on the ground some of the water flows along the surface in streams or into lakes,
some of it used by plants, some evaporate and returns to the atmosphere, and some
sinks into the ground filling cracks and voids in the sub-surface and forming what is

called the saturated zone. The top of this zone is called the water table. The water



may be only a foot below the ground’s surface or it may be hundreds of feet deep. In
arid regions like Saudi Arabia where surface water is scarce, groundwater becomes
the main source of freshwater. The recent growth in municipal, agricultural and
industrial sectors resulted in a huge increase in water demand, which is currently

provided by the costly desalinated water as well as by mining groundwater.

Subsurface contamination is a serious problem that modern societies often face.
Models that solve both flow and contaminant transport equations are frequently
used to evaluate groundwater quality changes with space and time. To properiv
assess and predict groundwater contamination at a given site, detailed information
about the nature of the suspected contaminants, the volume/mass of contaminants
disposed or released into the surface, the time period over which contaminants were
released and the areas on which contaminants were released is needed. The trans-
port and fate of contaminants in groundwater are affected by a site specific physical.
chemical, biological processes. These processes dictate the rate at which a chemical
constituent spreads through soil. These mechanisms often act simultaneously on
the chemical and may include such processes as advection, diffusion and dispersion,

adsorption and reaction.

Traditionally, a two parameter partial differential equation has been used to model
the one dimensional advective dispersive transport of chemicals in field soil [15].
However when comparing model predictions with experimental data some inadequa-

cies were observed in the model predictions. Due to this inadequacy, more complex



conceptual models had to be introduced in order to better represent the real world
system. These models are all based on the assumption that, either for physical or
chemical reasons, adsorption does not proceed at an equal rate in all parts of the
soil medium. The resulting transport equation contains several parameters which

must be guantified before actual predictions can be made.

1.1 Literature Review

Concern about the fate of chemicals introduced into soil-water systems has recently
intensified. It is often necessary to estimate the behaviour of a chemical in the field
without substantial knowledge of the interaction of the chemical with the solid phase
or its degradation rate. As new chemicals are proposed for future use, or as closer
scrutiny is given to those already in use, it is necessary to utilize scientifically sound,
comprehensive tools to evaluate the potential behaviour of these chemicals in the
environment. Well-constructed tools in the form of models describing transport in
soil water systems also serve the complementary purpose of increasing our under-

standing of basic processes affecting chemical fate.

N

Lapidus and Amundson [15], Brenner [4], Cleary and Adrian [6], Gershon and Nir[9],
Lindstorm and Stone[16, 17], Lindstorm et al. [18], Marino [19, 20] show that much
has been learned about the effects of diffusion, dispersion, advection and adsorption

on the transport of chemicals in soils. Numerous models have been developed in or-

der to describe the one-dimensional transport of chemicals in laboratory columns, as



well as in field soils. Many others will undoubtedly follow, such models are impor-
tant because they continuously increase our understanding of the basic transport
mechanisms involved and consequently improve our ability to predict the fate in
field soils of diverse chemicals as nitrates, fertilizers, pesticides, heavy metals and
radicactive waste materials. The models can provide valuable information about
both the quality of groundwater and prediction of possible quality changes in the

future.

1.1.1 Advection Dispersion Model for the Solute Transport

The equation most widely used to describe one-dimensional displacement through
a non-sorbing medium is
oc _ _o*C  _.oC

where

C = Solute Concentration, (ML)

D = Dispersion Coffecient, (L*T™%)

V= Pore water velocity, (LT™})
t = time, (T)
z = distance, (L)

The dispersion coefficient D characterizes the dispersion of the solute during its
movement and includes the effect of both molecular diffusion and mechanical dis-

persion. When chemical adsorption is considered, an additional term must be added



ot

to equation {1.1) to account for the interaction between the chemical and the solid
phase. This is accomplished by redefining equation (1.1) as;

9C  pds _ _8C _8C

= =Do— -

ot ' 88t 012 EX
where

s = absorbed Concentration, (MM ™)

6 = Volumetric water content, (L3L™%)
p = bulk density, (ML™?)

The solution of equation (1.2) will depend upon the relationship between the ab-

sorbed concentration s, and the solution concentration C.

Advection

Advection is the mass transport due to the flow of water in which the solute is
dissolved. The direction and rate of transport coincides with the groundwater. The

velocity of advective transport is described by the Darcy equation

K Oh
V o= o (1.3)
ne Ol (1:3)
where
V= average linear velocity, (L/T)

K = hydraulic conductivity, (L/T)
ne = effective porosity

dh/dl = hydraulic gradient, (L/L)



Hydrodynamic Dispersion
Dispersion occurs in porous medium because of two processes

1. Molecular Diffusion

2. Mechanical Disperison

Dy = aV,+ D (1.4)
Dr = arVi+ D (1.3)
where
D; = Longitudinal Hydrodvnamic dispersion coefficient
Dp = Transverse Hydrodynamic dispersion coefficient
o = Longitudinal dynamic dispersivity
apr = Transverse dynamic dispersivity

A solute in water will move from an area of higher concentration to an area of
lower concentration. This process is known as molecular diffusion. Diffusive flux is
related to the concentration gradient as predicted by Fick’s law which is expressed

for a simple aqueous nonporous system as:
J = =Dg V(C) (1.6)

moles
LT
2

D, = Diffusion Cofﬁcient,%—

moles

13

J = Chemical mass flux,

C = Concentration,



=1

In porous media, diffusion cannot proceed as fast as it can in water because the
ions must follow long pathways as they travel around grains. To account for this an

effective diffusion coefficient, D* must be used
D = wDy (1.7)
where
w = Coeflicient relateds to tortuosity

Mechanical Dispersion is mixing caused by local variation in velocity around some

mean velocity of flow. There are three basic causes of this phenomena

1. As fluid moves thfough the pores it will move faster in the center than along

the edges

2. Some fluid particles will travel along longer flow paths in the porous media

than other particles to go the same linear distance

3. Some pores are larger than others, which allows the fluid flowing through these

pores to move faster.

1.1.2 Linear equilibrium Model

The relationship between the sorbed and solution concentration is described by a

linear (or linearized) isotherm of the form

s = ch (18)



Where,
K; = empirical distribution coefficient(M ~*L?)

Subsitution of equation (1.8) into equation (1.2) gives the transport equation

oC oCc _oC

Where,
R = 1+-2 (1.10)

If there is no interaction between the chemical and the solid phase, k in equa-
tion (1.10) becomes zero and R reduces to one. In some cases R may be become
less than one, indicating that only a fraction of the liquid phase participates in
the transport process. This occurs when the chemical is subject to anion exclu-
sion (e.g, chloride movement in many fine textured soils), or when immobile liquid
regions are present which do not contribute to advective solute transport (e.g, wa-
ter inside dense aggregates or away from liquid-filled macro pores). In this case
anion exclusion (1-R) can be viewed as the relative anion exclusion volume, and (-
kq)inequationl.10asthespeci ficanionezclusionvolume(e.g, expressedincm?® water per

gram of soil).

The Linear Equilibrium model including the effects for the degradation and zero
order production is given by Van Genuchten[28]. The soil system for the linear

equilibrium model is shown in figure 1.1

oC *C oC
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Figure 1.1: Schematic of the one-site equilibrium and kinetic sorption transport
models with degradation
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1.1.3 Physical Non-equilibrium Model

Equations (1.1) and (1.9) imply that all soil-water participates freely in the con-
vective transport of chemicals, and that all adsorption sites are equally accessible
for the solute if adsorption takes Place. Both equations furthermore, predict eflu-
ent curves which are characteristically sigmoidal or symmetrical in shape, at least
for not too small values of P. Numerous experiments, both in field conditions and
in laboratory, have shown serious deviations from these type of symmetrical dis-
tributions. Experimental curves frequently show a much earlier appearance of the
chemical in the effluent than can be accounted for with solutions based on equation
(1.1) or (1.9), while at the same time considerable more water is needed before the
displacement is complete. Nielsen and Biggar {22], Desmedt and Wierenga [8) have
shown that several experimental conditions seems to favor this accelerated transport
followed by tailing, notable solu'pe movement in unsaturated soils. According to Van
Genuchten and Wierenga [29] solute movement through aggregated and undisturbed
soils results in extreme tailing. Extreme tailing is also expected when cracked soils,
or soils containing macropores, are leached under saturated conditions. Even in uni-
form, saturated soils, however, tailing may occur, especially when there is a strong
interaction between the chemical and the solid phase.

Several attempts have been made to account for the observed asymmetry and tail-

ing. Coats and Smith [7], Skopp and Warrick [25] have given one such approach,

which involves the concept of solute transfer between mobile and immobile soil-water
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phases. In this approach convective-dispersive solute transport is assumed to be con-
fined only to mobile water phase. solute transfer between the mobile (dynamic) and
immobile (stagnant) soil-water regions, furthermore, is assumed to be diffused con-
trolled. The model discussed here is essentially is that of Coats and Smith [7], but
using the notation of Genuchten and Wierenga [29]. The governing equtions for the

mobile and immobile water phases, in the absence of solute adsorption, are

0Cn o0C; ?Crm- 0Cn,
9’"_—875 + Him———at = ng——aﬁ - Himew——aI (1.12)
8Cim .
gim“‘é?— = CY(C,—,« C,m) (110)

Where the subscript m and im refer to mobile and immobile liquid regions, and

where 17, is the average pore water velocity in the mobile liquid phase:

- q
Vi, = —
m gm
. V
Vi = —
z@TH
In equation (1.14), q is the volumetric flux and ¢, the fraction mobile water:

; Or:
Oy, = '-5* (116)

0 = O+ bim (1.17)

The mass transfer coefficient, ¢, in equation (1.13) determines the rate of exchange
between the two liquid phases. The transport model assumes that this rate is pro-
portional to the differences in concentrations between mobile and immobile soil-

water phases. Equations (1.12) and (1.13) assumes that no adsorption occurs. Van
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Genuchten and Wierenga [29] modified the equations to include the effects of chem-

ical adsorption. They suggested the following set of differential equations:

aC, O08m Cim O0Sim O?Cry - ‘ , OCnm
I TPy Yl T De =D — eV (118)
BCi , Bsim _ )
gz‘m*—é-t—— - (1 - f)p"-é-t*- = O!(Cm C,m) (119)

Where s,, and s;, are the absorbed concentrations in the dynamic and stagnant
regions of the soil, both expressed per unit mass of soil assigned to these two soil
regions, and where f defines the mass fraction of soild phase assigned to the dynamic

region.

Figure 1.2 shows schemetically the important fluxes in a “two region” soil system
with decay. Equations (1.18) and (1.19) were derived with the assumption that
adsorption around the larger liquid-filled pores is not necessarily the same as ad-
sorption around the micropores in the stagnant region of the soil. When chemical
moves through an unsaturated and/or aggregated soil, only part of the sorption site
may be readily accessible for the chemical in the moving fluid. These sites may be
located around the larger pores and in immediate contact with the mobile liquid.
When an immobile liquid liquid phase is present, adsorption on the remaining part
of the sorption sites can only occur after the chemical has diffused into this immobile
liquid. The division of the sorption site into two fractions i.e., one fraction in close
contact with the mo{/ing liquid, and one fraction away from the larger pores and in

contact only with immobile (non-moving) water is characterized by the parameter
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f. Total adsoption, s, is now given by

For equilibrium adsorption and assuming that the same linear equation (1.8) holds
for both the dynamic and stagnant soil regions, Van Genuchten [32] gives the fol-
lowing set of equations:

9¢, Cim _ , 0Cp . 9Chy,

; - m I m — '!____1__ - — g /m .2

(6 + pFK) " + [bim + (1= fpK] = = 0 D= = On V=2 (1.21)
0 i ’ . ) .

[im + (1= f)pK] gt = &(Crp = Cim) (1.22)

The two region solute model! including the effect of decay and production is given

by Genuchten and Wagnet [33]

2
0Cm 6. D ac_Jwacm
Oz

(6m + fPK)
(Ormptr -+ fpl‘f/is,m)cm -+ Hm')'i,m(z) + f/)“,‘",s,m(x)

8Cim

67f Q(Cm - Cz'm) - [gim,ul,im + (1 - f)/)A’,us,im}

[bim + (1 — f)pK]

Cim -+ gimn/l,im(x) + (1 - f)p’)/s.,im(x) (124)
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1.1.4 Physical Non-equilibrium Model and Anion Exclusion

Instead of being adsorbed, certain anions may interact with the solid phase of soil
by being excluded from liquid zones adjacent to negatively charged soil particle
surfaces (anion exclusion or negative adsorption). The anion exclusion model con-
sidered here differs from the physical non-equilibrium model in that the effects of
anion exclusion rather than chemical adsorption are included in the governing trans-
port equations. The soil water phase is again divided into mobile and immobile zones
and anion exclusion is assumed to be restricted to the immobile water phase only
i.e., to smaller-sized pores inside dense aggregates, or to immobile water along pore
wall analogous to the situation described by Krupp et al. [14] Double layer theorv
suggests that the anion concentration within an individual pore increase roughly
exponentially with the distance from the pore wall, at least for a freely extended
diffuse double layer. Van Genuchten {32] assumed here that such a nonlinear con-
centration can be replaced by an equivalent step function which has a value of zero
in the anion excluded part of the liquid phase adjacent to the pore walls, and a value
equal to that of the bulk solution near the centre of the pore. This assumption leads
to an equivalent exclusion distance, d.., near the pore walls in which concentration
effectively remains zero as presented by Krupp et al.[14] The specific volume 1, is
then simply

Ve = dez Ao (125)
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where

V' = specific volume

2

. cm
A, = specific surface area, .
‘ g

The anion exclusion volume can also be expressed in terms of equivalent volumetric

content, ¢.;, by multiplying (1.24) with the soil bulk density, i.e:
ez = exf (1-26\)

Assuming f.; < 6;,, and that anion exclusion takes place only in the immobile soil

water phase, then the following transport equations can be applied

oC,, 0C, 0*C, . 0Cy, -
g Ty =D ~Onimg (1.27)
oC,
sl — 9
b2 = a(Cp — Cu) (1.28)

Where the subscript a refers to that part of the immobile liquid phase that is not
affected by anion exclusion:

O = iy — bz (1.29)
equations (1.27) and (1.28) are very similar to (1.12) and (1.13) for the physical
equlibrium model without adsorption, except that the immobile sink is reduced

from 6;,, to 8,.

The anion exclusion model described above is slighty different from the one given by
Krupp et al. The model of Krupp et al. [14] was formulated by Van Genuchten[32]

using their notations and it is given as;

aC, oC; o*C oC.
Tem g ZZm g m_g v, =m 30
5T 7 py D (1.30)

Om 012 oz



S = Ko (Cm — ¥Cim) (1.31)

Where
K, = rate constant

¥ —— (1.32)

The difference between the equation (1.27) and (1.28) and equation (1.30)and equa-
tion (1.31) is due to the fact that in the latter equations the concentrations Cj,
is applied entire immobile region liquid phase, although still corrected for anion

exclusion through the introduction of the parameter +.

K = — (1.33)

H'im
E‘g
8

Cim - (134)

The anion exclusion models given in this section assume that 6., is always smaller
than 6, and that anion exclusion is restricted to the immobile liquid phase. Be-
cause convective transport takes place only in the mobile liquid phase which, at
least in the present example, is not affected by anion exclusion, it follows that the
mobile concentration, C,,, in the soil will never exceed the input concentration, C,,.
This situation, however, becomes different when 6., also includes part of the mobile
liquid. In that case the concentration of the non-excluded part of the liquid phase,
whether it is mobile'or immobile water, is likely to exceed at times C, inside the

column, but not in the effluent.
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1.1.5 Two-Site Kinetic Non-Equilibrium Model

The two site kinetic adsorption model described by Van Genuchten and Wierengaet
[29] is the same model as discussed by Selim et al. [24] and Cameron and Klute [5].
Basic to the two site adsorption model is the idea that the solid phase of the soil
is made up of different constituents (soil minerals, organic matter, aluminium and
iron oxides), and that a chemical is likely to react with these different constituents
at different rates and with different intensities. Figurel.3 shows schemitically a soil
made up of the liquid pahse and solid phase. The two-site model assumes that
the sorption sites can be divided into two fractions; adsorption on the one fraction
(type-1 sites) is assumed to be instantaneous, while adsorption on the other fraction
(type-2 sites) is thought to be time-dependent. At-equilibrium, adsorption on both

types of sorption sites is described by liner equations:

s = (1— f)KC (1.36)

Where the subscript 1 and 2 refer to type-1 and type-2 sites,respectively, and where
f is the fraction of sites occupied by type-1 sorption sites. Total adsorption, s, is
simply

§ = §1+ 89 (1.37)

because type-1 sites are always at equilibrium it follows from (1.35) that

681 _ oC
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The adsorption rate for the kinetic non-equilibrium (type-2) sites is given by a linear,

reversible, first order rate equation of the form

0
--;—f = &(KQ - 32) (139)

Where « is a first order rate coefficient. Combining equation (1.2)with the equation
above leads to the transport model.

2
fpKa\0C  p9s _ [,0°C . 0c

)% 5 Par Ve (1.40)
332 . ) .
'—8-{ = a[(l - f)KdC - 82) (141)

The two-site non equilibrium model makes a distinction between type-1 (equilib-
rium) and type-2 (first order kinetic) adsorption as shown by Van Genuchten and
Wagnet [33]. For a steady-state flow in a homogeneous soil, transport of linearly

adsorbed solute with the effect of degradation and zero order production is given

by,
fpK.8C  _BC8C  ap . ,
L+ L2 = D - Vol - (1 - )KL - sl (1.42)
Kaps 1 C Vs,
652
5 = ol = NKC = 2] = pspsz + (1 = f)ys2(2) (1.43)

1.1.6 One-Site Kinetic Non-Equilibrium Model

The one site kinetic non-equilibrium adsorption model is a special case of the two-site

adsorption model! in that now all sorption sites are assumed to be time dependent
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(type-2) sites . The parameter f in the previous section is hence zero, and transport

equation reduces to

oC  pdsy, _&C dc
2 e P Ve

0 . -
.(?Etz = a(K,;C — s) (1.45)

(1.44)
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Figure 1.3: Schematic of the two-site partial equilibrium, partial kinetic sorption
transport model with degradation
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1.2 Objective of The Study

As is evident from the literature review the transport of contaminant in a sub-
surface is a complex phenomena which involves se{reral extremely difficult to quantify
parameters. The objective of this work is to replace and relate the parameters of a
complex transport model to a single parameter which will be called the Equivalent
Dispersion coefficient (EDC). Once an EDC is obtained, one can simulate the actual
field transport process using the EDC in the traditional two parameter transport
model, instead of using the more complex models.

The main objectives of this work are as follows:

1. Relate the various parameters of the complex transport model to an equivalent

dispersion coefficient.

2. Make use of Artificial Intelligence to come up with a model which is able to

predict the values of EDC.

3. Prepare a numerical code based on the linear equilibrium model to simulate

the solute transport using the EDC.

1.3 Approach of the Study

At the first stage of work, models/softwares will be used to generate data using the
non-equilibrium contaminant transport model. The generated data will be fitted to

the traditional contaminant transport model. Based on the fitted data, Equivalent
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Dispersion Coefficient (EDC) for different data set will be found out. On the basis
of this information, a model will be developed using Non-Linear Fitting parameter
estimation procedure. The Neural Network techniques BackPropagation algorithm
and Levenberg Marquardt lgorithm are used for non-linear fitting. Models will be
developed in matlab, Which are capable of finding the equivalent dispersion coeffi-
cient. The developed models will be verified using numerical as well as experimental
data. A numerical code is also developed to simulate the solute transport based on

linear equilibrium model using EDC.



Chapter 2

MODEL DEVELOPMENT

This chapter presents the theoretical basis on which models based on Neural Network
are developed. In the first section, the development of extensive tailing caused by
solute moving through a non-sorbing porous media is discussed. This tailing is due
to three main factors; Un-saturated flow, Aggregated Media, Pore Water Velocity.
Later in this chapter, the complex contaminant transport models are divided into
two groups, these models are introduced to better predict solute transport. One
group explain tailing on the basis of physical processes whereas the other group
describes it on the basis of chemical processes. Complex model parameters are
introduced along with each complex contaminant transport model. These complex
transport model parameters are described in dimensional and dimensionless form. In
the end, a numerical model/technique is developed to simulate the solute transport

using linear equilibrium model .



2.1 Solute Transport Through a Porous Media

2.1.1 Non-Sorbing Porous Media

The equation most widely used to describe one-dimensional displacement through
a non-sorbing medium is [15]

oc _8*C _8C

where

C = Solute Concentration, (ML™?)

D = Dispersion Coffecient, (L*T™})

V = Pore water velocity, (LT ™)
t = time, (T)
z = distance, (L)

Although analytical as well as numerical solutions of equation (2.1) predict svin-
metrical Breakthorugh curves (BTC). Many experimental studies have shown that
the BTC will have some degree of skewness. Tailing has been observed under one

or more of the following conditions:

1. Un-saturated Flow:
Nielsen and Biggar [1] noted considerable tailing with decreasing water content

at approximately the same flow velocity. They argued that under unsaturated
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conditions the larger pores are eliminated for transport and the proportion of
water, which does not readily move within soil, is increased. This water has
been identified as dead, stagnant or immobile water as suggested by Coats
and Smith [7]. Decreasing the water content increases the amount of air filled
macro-pores which are dependent upon side wards diffusion in order to become
saturated with the displacing solution. The more dead or stagnant water that
is created, more tailing will occur. The idea of dead spaces, or “pockets”,
distributed uniformly along the flowing channels, has lead to Turner’s model
[27]. This model assumes that no advection occurs in the pockets and that
soulte transfer in and out of these dead spaces occur by molecular diffusion
only. In order to explain tailing during unsaturated flow, Biggar and Nielsen
[3] suggested diffusion in and out of the immobile water films covering the
porous material. They reasoned that since the transfer of the chemical into
these films was by diffusion, it is slow and likely to cause tailing. This effect
is called stagnant film effect. Since the relative amount of film water increases
with decreasing water content. However, Coats and Smith [7] calculated that
even for high flow velocities, diffusion into film covering the porous medium
would be an instantaneous type of process, incapable of vielding significant

tailing.

. Aggregated Media:

Soils are composed of slowly and rapidly conducting pore sequences. Ag-
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gregates have many micro-pores in which displacement is dependent upon
diffusion, while advection in the smaller pores is usually negligible. This re-
sult in slow and incomplete mixing and hence tailing, even under saturated

conditions.

3. Pore-Water Velocity:
The pore-water velocity also appears to influence the amount of tailing. Some
experiments indicate that tailing efiects become more pronounced with de-
creasing velocity. Biggar and Nielsen [2] observed a small effect of pore water

velocity on the degree of tailing with both glass beads and Aiken clay loam,

using choloride tracer.

From the discussion above it is evident that for more soils the simple advective dis-
persive equation (2.1), vielding nearly sigmoid or symmetrial breakthrough curves,

will not give an accurate description of the experimental data.

2.1.2 Sorbing Porous Media

When a sorbing porous media is considered, an additional term must be added to
left hand side of equation {2.1) in order to account for the interaction between the

chemical and the medium.

oC  pOs 8*C ,oC

i — 9
5% Tt T om (2.2)

Equation (2.2) is an extension of equation (2.1) in which only a sorption term is

added and as such it may be expected to have limitations when describing the
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solute movement through an un-saturated, aggregated sorbing porous medium as

equation.

Asg discussed in the previous chapter, most of the studies on the solute transport,
especially when applied to pesticide movement, were based on linear equilibrium
equations as given by Kay and Elrick [13]. In nearly all of these studies, serious
deviations were observed between calculated and experimental effluent curves. It
was often not possible to predict the early arrival of the applied chemical in the
effluent as well as the generally skewed shape of the observed curves. The introduc-
tion of experimentally determined nonlinear equilibrium adsorption relation did, at
least in some cases lead to better predictions, especially when observed hysteresis
phenomena in the adsorption-desorption isotherms were taken into account by Van
Genuchten et al. [30]. In general, however, predictions based on equilibrium adsorp-

tion models were found to be inadequate.

In attempts to improve the predictions, equilibrium and kinetic non-equilibrium
models were introduced. Although the kinetic non-equilibrium models resulted in
some improvement in predictive capabilities at relatively low pore-water velocity.
In the last few vears, several studies have focused on the description of asymimet-
rical (skewed) and non-sigmoidal concentration distribution as explained by Van
Genuchten and Wierenga [29]. At least two groups of models have been proposed

to explain and predict tailing.

In one group of models, Van Genuchten and Wierenga [29], Skopp and Warrick



[25] explained tailing on the basis of physical processes such as the presence of dis-
tinct mobile and immobile water soil-water region. Convective solute transport in
these models is assumed to occur only in mobile soil-water phase, while adsorp-
tion in a stagnant region of the soil is controlled by diffusion through the immobile
(non-moving) fraction of the soil-water phase. This situation is primarily a physical
problem insofar as the physical make-up of the soil is responsible for the presence
of the relatively immobile water. Nielsen and Biggar [22] explained that the phys-
ical non-equilibrium situation can also occur in systems where the chemical is not
subject to adsorption, notable in highly aggregated soils or soils that contain many
liquid-filled macropores. In other group of models, Selim et al. [24], Cameron and
Klute [5] explained tailing in effluent curves on basis of chemical processes by assum-
ing the presence of a two-site adsorption mechanism. In this approach adsorption on
one fraction of the sorption sites is assumed to be instantaneous, while adsorption

on the remaining sites is thought to be time-dependent.

2.2 Complex Model Parameters

With the introduction of more complex models, aimed to better simulate the trans-
port process, a new problem arises which is the estimation of various new parame-
ters which now appear in the governing transport equation. For example, the more
involved physical non-equilibrium and two-site adsorption models each contain pa-

rameters i.e. mobile water content (fy,), immobile water content (6;,), fraction of
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a site (f) and mass transfer coefficient («) which must be quantified before the
transport equations can be used to simulate solute movement. The complex model
parameters are shown in table 2.1. They are usually presented in a dimensionless
form in the complex models and are shown in table 2.2. Peclet number (P) can be
viewed approximately as the ratio of the residence times for diffusive (L°/Dm or
L?/D) and advective transport (L/Vy, or L/V). The retardation factor (R) reflects
the effects of adsorption during the transport through the soil. The parameter (5)
describes the maximum degree of non-equilibrium in the system, either in a physical
or chemical-kinetic sense. Finally, the mass transport coefficient (w) describes the
rate at which equilibrium is obtained from the initial non-equilibrium situation. [23].

As was indicated earlier the purpose of this work is to present a technique/model

Parameter | Two-Site Model Two Region Model
D VL/P VL/P

Kp 6(rR-1)l/ps [B(R—1)]/ps

G = O /0 SR — f(R—1)

f (ﬁR - Gﬁm)/(R - 1) (BR - ¢m)/l(R - 1)
o (wo)/[1=B)RL] | wq/L

Table 2.1: Expression for the original parameters in terms of the dimensionless
parameters P,.R .8, w

such that the parameters of complex contaminant transport model are related to a
single parameter called the equivalent dispersion coefficient (EDC). A neural net-
work approach to this problem seems very natural since the neural networks are an
ideal tool for solving problems where we know that a certain set of starting data

produces particular results, but we have no knowledge of the actual relations (i.e. a
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Parameter | Two-Site Model Two Region Model

T Vt/L Vi/L

Z z/L z/L

P VI/D VoL/Dm = VLD
R 1+pKp/0 1+pKp/0

8 6+ fpKa/0+ pKa | Om + [K4/6 + pKy
o ol - BEL)V | aLjov

Table 2.2: Expression for the dimensionless parameters P,R,5, w for the non-
equilibrium ADE

detailed physical model) that connect them.

2.3 Numerical Modeling

The Linear Equilibrium Model for a solute transport in soil is given by equation
2.1. Which assumes steady state water flux, a constant soil water content, and no
interaction between the chemical and the solid phase. When chemical adsorpticn
is considered an additional term must be added as shown in equation 2.2, Which
account for interaction between the chemical and solid phase. The initial condition
for this study is

C(z,0) = C; (2.3)
For the upper Boundary of the soil column (x = 0): a third type, constant flux

boundary condition of the form is applied

aC
(~DZZ +VC) o= VCo (2.4)
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Where Cy is the concentration of the input solution. For the lower boundary, the

following condition can be applied

oC

[
ot
g

The condition assumes the presence of a semi-infinite column.

2.3.1 Numerical Technique

A preliminary idea about the task of a numerical method can be obtained by con-
sidering a flow situation. A grid is drawn to cover the flow domain as shown in
figure 2.1. With a sufficiently fine grid, the complete distribution of the relevant
variables can be expressed in terms of their values at the grid points. Thus, the
task of a numerical method is to evaluate concentration, velocity, etc. at the chosen
grid points. From the differential equations algebraic equations are derived for the

grid-point values of the variables.

2.3.2 Control Volume Approach

The particular practice that was chosen here for the derivation of the discretiza-
tion equaticns is the control volume approach. The calculation domain is divided
into sub-domains or control volumes such that there is one control volume around
a grid point. The differential equation is integrated over a control volume to yield
the discretization equation. Thus, the discretization equation represents the same

conservation principle over a finite region as the differential equation over an in-
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Figure 2.1: Computational grid

finitesimal region. This direct interpretation of the discretization equation makes
the method easy to understand in physical terms; the coefficients in the equation can
be identified even when they appear in the computer program, as familiar quantities

such as concentration, mass fraction etc[34].

2.3.3 Discretization

The partial differential equation is integrated over the control volume, with the aid
of assumptions about the relations between the nodal values at P and the rates of
production/decay of this entity within the cells and its transport by advection and
dispersion across the cell boundaries. For the purpose of solution the flow domain

is overlaid with a grid whose centre points or nodes denote the location at which all



34

variables are calculated. The nodes of a typical grid are labeled as P, (e;w) which

lies on boundary of constant y or x.

2.3.4 Steady Advection Dispersion Equation

The general partial advection dispersion equation governing the solute transport is

presented by the following advective dispersive equation:

d 0
[ A — e (T 9

Formal integration over a control volume gives

——~
O]
=t

[ nlmoaa= [ n(030da+ [ Soar

The equation represents flux balance in a control volume. The left hand side gives
the net advective flux and the right hand side contains the net dispersive flux and

the production or decay of the property ¢ within the control volume.

2.3.5 Transient Advection Dispersion Equation

The conservation law for the transport of a unsteady advective dispersive flow has

the general form:

o, . 8. . 3, 06
E(P@)T%(W@-;ﬂ(raﬂ: + 5S¢ (

%)
o0
S

The first term of the equation represents the rate of change and is zero for steady
flows. The finite volume integration of equation 2.8 over a control volume (CV) must

be augmented with a further integration over a finite time step (6¢). By replacing
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the volume integrals of the advective and dispersive terms with surface integrals and
changing the order of integration in the rate of change term, the equation is written

in this form:

f‘\

/m /:-L& (po)di)dV + !/ &(/ n{pug)dA)de (2.9)

-+t 1+t
/ /n 9%y q4ydt + / / SydVdt
t A

It can be written in this form:

t+At 3 +At ,
/CV( /; R (po)dt)dl” + / ( /4 n(pug)dA)dt (2.10)

t+AL I & AL
=([ T 0 Dands [T [ suava
t A Oz t cy

The fully implicit discretisation equation is

ApOp = Ay Oy + GeBe + Aydy + Sy (2.11)
where
Ay = Qu+ayta+AF -5 (2.12)
o = Rp;fv (2.13)
SAV = S5, + Sdy (2.14)

In our case we have the equation in the from of Mass fraction “m”, and the equation
is written as
om 0 om om
R— = Daip—) — pu— 2.15
12 a1 az(P AB 8:1:) ou oz ( )

A central differencing scheme is used to fully discretized the equation 2.15. It is

convenient to define variables “F” and “D” to represent the advective mass flux per
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unit area and dispersive conductance at cell faces:

F=puand D=T/iz (2.16)
Fy = (pu)y and F, = (pu)e (2.17)
D, =T,/0zy, and D, =T,/0zy (2.18)

The integrated advection-dispersion equation can be written as;

Rp(mp — m%)AV

7 + Fome — Fymy, = De(me — myp) — Dy(mp — my,)  (2.19)

For the first Node;
leg + ap + (Fo — Fu) = {~ (Do + Fu) Ymp = ae0e + ay@y + (Do + Fo)m,  (2.20)

For the Last Node;

(0w + ap + (Fe — Fy) = (Fe = Fy) Hmy = aw6u + a8y, + Famy, (2.21)
Iy !
. Node aw . ap Sp SU
First | 0 D, = F./2 | -(2D=+F) (2D+F)m, .
Internal | (Dy, + Fu)/2 { (De+ Fe)/2 | 0 0
Last (Du+Fw)/2 ; 0 ( e—’Fw) =01 Fymy

Table 2.3: The coeflicients at the first, internal and last node determined using
method of central difference

2.3.6 Solute Transport Numerical Algorithm

To simulate the solute transport, the following steps are followed and a program was
developed whose flow chart is shown in fig 2.2. The program code was attached in

appendix D.
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. Define the Variables

. Determine the grid points

. All the grid points of discretized advection dispersion equation 2.11 are calcu-

lated using the control volume approach.

4. Using discretized advection dispersion equation 2.11 initial and boundary con-

ditions mass fraction is calculated at each node for next time step.

. In this manner we can keep advancing and can calculate mass fraction history.
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Figure 2.2: Flow chart for solute transport algorithm
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Chapter 3

NEURAL NETWORKS

Artificial intelligence in general and neural networks specifically can be used to
solve problems in civil engineering. The key in using artificial neural networks in
civil engineering, or in any other discipline for that matter, is to observe, recognize
and define problems in a away that they will be addressable by neural nets. It is
obvious that the neural network is not magic-potion for the civil and environmental
engineers, but it very well may help solve problems that conventional computing

has not been successful in solving.

3.1 Short History of Neural Networks

The history of artificial neural networks is filled with colorful, creative individuals
from many different fields, many of whom struggled for decades to develop concepts

that we now take for granted. Neural Networks research can be tracked back to a

39
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1940s paper by McCulloch and Pitts [21]. They showed that networks of artificial
neurons could, in principle, compute any arithmetic or logical function. Their work
is often acknowledged as the origin of the neural net-work field. In 1957, Rossen-
blatt [21] invented the perceptron. The perceptron is the simplest form of a neural
network used for the classification of a special type of patterns said to be lineraly

seprable. The single-layer perceptron shown in figure 3.1 has a single neuron. Such

[ X3
*2
Output
Inputs < L y
Xp Threshold
\ 8

Figure 3.1: Single layer perceptron

a perceptron is limited to performing pattern classification with only two classes. He
proved that, given linearly separable classes, a perceptron would, in a finite number
of training trials, devgzlop a weight vector that separates the classes (a pattern classi-
fication task). He also showed that starting values weight does not affect his proof.

At approximately the same time, widrow [21] developed a similar network called
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adeline. Minskey and Papert [21] pointed out that the perceptron theorem obvi-
ously applies to those problems that the structure is capable of computing. They
showed that elementary calculation, such as exclusive or problems, cannot be solved
by single-layer perceptrons. Rosenblatt [21] also studied structures with more layers
and believed that they could overcome the limitations of simple perceptrons. How-
ever, no learning algorithm was known that could determine the weights necessary
to implement a given calculation.Minskey and Papert [21] doubted that one could
be found, and recommend that other approaches to artificial intelligence should be

pursued.

Following this discussion, most of the computer science community left the neural-
network paradigm for twenty (20} vears. In the early 1980s Hopfield [21] revived
neural network research. His efforts coincided with the development of new learn-
ing algorithms, such as backpropagation. The growth in neural-network research
and applications has been phenomenal since the revival. Many of the advances in
neural networks have had to do with new concepts, such as innovative architecture
and training rules. Just as important has been the availability of powerful new

computers on which to test these new concepts.

3.2 Applications

Neural networks have been applied in many fields since they were first invented.

In the aerospace industry their application encompasses high performance aircraft
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auto-pilots, flight path simulations, aircraft control systems, auto-pilot enhance-
ments, aircraft component fault detectors. In the banking systems neural nets have
been extensively used to read checks, documents, and use for credit application eval-
uation. The neural network application in the defense system has been phenomenal
especially in weapon steering, target tracking, and object discrimination. In oil and
gas industry it has been applied in the exploration field. The money that has been
invested in neural network software and hardware, and the depth and breadth of

interest in these devices have been growing rapidly.

3.2.1 Neural Network Application in Civil Engineering

The usual civil engineering tasks are: analysis, design, system identification, diag-
nosis, prediction/estimation, control, planning and scheduling. However all these

problems appear to be one of two more abstract types of problem:
1. Casual modeling {mapping from cause to effect for estimation and prediction).
2. Inverse mapping from effects to possible causes.

Engineers have in the past used variety of tools for performing both casual modeling
and inverse mapping. This set of tools incindes statistics, regression, probabilities,
optimization, rules of thumb and knowledge-based systems, and others. The very
nature of neural network is to map from one space patterns (i.e., input patterns) to
a space of output patterns (i.e., the output patterns). As such, an artificial neural

network is thus another tool that can be used for determining such casual models
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and inverse mappings.

3.3 Methodology

This section covers the historical background of technology, provides definitions of
virtual intelligence and artificial neural networks, and offer more general informa-
tion on the nature and mechanism of the artificial neural network and its relation

to biological networks.

Virtual intelligence has been referred to bv different names. Among these are arti-
ficial intelligence, computational intelligence, and soft computing. There seems to
be no uniformly acceptable name for this collection of analytic tools among the re-
searchers and practitioners of the technology. Of these, artificial intelligence is used
the least as an umbrella term because artificial intelligence has historically been re-
ferred to as rule-based expert syvstems and today is used synonvmously with expert
systems. Expert systems made many promises of delivering intelligent computers
and programs but did not fulfill these promises. Many believe that soft computing
is the most appropriate term to use and that virtual intelligence is a subset of soft

computing. [21].

Virtual intelligence may be defined as a collection of new analvtic tools that attempt
to imitate life [21]. Virtual intelligence techniques exhibit an ability to learn and
deal with new situations. Artificial neural networks, evolutionary programming, and

fuzzy logic are among the paradigms that are classified as virtual intelligence. These



techniques possess one or more attribute of reason such as generalization, discovery,
association, and abstraction [21]. In the last decade, virtual intelligence has ma-
tured to a set of analytic tools that facilitate solving problems that were previously
difﬁcuit or impossible to solve. The trend now seems to be the integration of these
tools with each other as well as with conventional tools, such as statistical analysis,

to build sophisticated systems that can solve chalienging problems.

An artificial neural network is an information processing svstem that has certain
performance characteristics in common with biological neural networks. Therefore
at first biological neural network is described before offering a detailed definition of

neural networks.

3.3.1 Biological Inspiration

This section briefly describes those characteristics of brain function that have in-
spired the development of artificial neural networks. The brain consists of a large
number (approximately 10'!) of highly connected elements (approximately 10% per
element) called neurons. For our purposes these neurons have three principle com-

ponents;
1. The dendrites
2. cell body

3. axon
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The dendrites are tree-like receptive networks of nerve fibers that carry electrical
signals into cell body. The cell body effectively sums and threshold these incoming
signals. The axon is a single long fiber that carries the signal from the cell body
out to other neuron. The point of contact between axon of one cell and dendrite of
another cell is called a synapse. It is the arrangement of neurons and the strengths
of the individual synapses, determined by a complex chemical process, that establish
the function of neural network. Figure 3.2 is a simplified schematic diagram of two
biological neurons. Some of the neural structure is defined at birth. Other parts are
developed through learning. as new connections are made and others waste away.
This development is most noticeable in the early stages of life. For example it has
been shown that if a young cat is denied use of one eyve during a critical window of
time, it will never develop normal vision in that eye. Neural structure continue to
change throughout life. These later changes tend to consist mainly of strengthening
or weakening of synaptic junctions. Fof instance, it is believed that new memories
are formed by modification of these synaptic strengths. Thus, the process of learning
a new friends face consists of altering various synapses. Artificial neural networks do
not approach the complexity of the brain. There are, however, two key similarities

betw=en biological and artificial neural networks.

1. The building blocks of both networks are simple computational devices (al-
though artificial neural networks are much simpler than biological neurons)

that are highly interconnected.
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Figure 3.2: Diagram of two biological neurons
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2. The connections between neurons determine the function of the network.

It is worth noting that even though biological neurons are very slow when com-
pared to electrical circuits (107% compared to 107 %sec), the brain is able to perform
many tasks much faster than any conventional computer. This is in part because
of massively parallel structure of biological neural networks; all of the neurons are
operating at the same time. Artificial neural networks share this parallel struc-
ture. Even though most artificial neural networks are currently implemented on
conventional digital computers, their parallel structure makes them ideally suited to
implementation using Very large scale integration chips (VLSI), optical devices and

parallel processes.

Artificial neural networks are information-processing systems that are a rough ap-
proximations and simplified simulation of this biological process and have perfor-
mance characteristics similar to those of biological neural networks. They have been
developed as generalizations of mathematical models of human cognition or neural

biologyv based on the following assumptions:

1. Information processing occurs in many simple elements that are called neurons

(processing elements).
2. Signal are passed between neurons over connecting links.

3. Each connecting link has an associated weight, which , in a typical neural

network, multiplies the signal being transmitted.
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4. Each neuron applies an activation function (usually nonlinear) to its net input

to determine its output.

Figure 3.3 is a schematic of a typical neuron (processing element) in an artificial

neural network.

3.4 Mechanics of Neural Network Operation

An artificial neural network is a collection of neurons that are arranged in specific
formations. Neurons are grouped into lavers. A multi-layer network usually consists
of an input laver, one or more hidden layers, and an output laver. The number of
neurons in the input layer corresponds to the number of parameters that are being
presented to the network as input. The same is true for the output layer. Neural-
network analysis is not limited to a single output and that neural nets can be trained
to build neuron-models with multiple outputs. The neurons in the hidden layer
or layers are responsible primarily for feature extraction. They provide increased
dimensionality and accommodate such tasks as classification and prediction. Figure
3.3 is a schematic diagram of a fully connected, three layer neural network. Neural-
network scientists and practitioners have classified the many kinds of neural networks
that exist. One of the most popular classifications is based on training methods:
supervised and un-supervised. Un-supervised neural networks, also known as self
organizing maps, are mainly clustering and classification algorithms. Supervised

learning requires training data which has been labeled with the desired outcome for
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Figure 3.3: Topology of a multi-layer feed forward neural network. The topology
of the network is commonly designated as (n-j-k) where n, j, and k represent the
number of elements in the first, second and third layer in the network respectively
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each pattern of inputs. Unlike traditional statistical classification techniques, such
as discriminant analysis, neural networks can output both discrete and continuous

data.

3.5 Learning Algorithm

3.5.1 Backpropagation Algorithm

The backpropagation (BP) algorithm is the most widely used learning procedure for
supervised neural nets. Before beginning training, some small random numbers are
usually used to initialize each weight on each connection. BP requires preexisting
training patterns, and involves a forward-propagation step followed by a backward-
propagation step. The forward-propagation step begins by sending the input signals
through the nodes of each laver. A nonlinear activation function, called the sigmoid
function, is usually used at each node for the transformation of the incoming signals
to an output signal. This process repeats until the signals reach the output laver
and an output vector is calculated. The backward-propagation step calculates the
error vector by comparing the calculated and target outputs. New sets of weights
are iteratively calculated. by modifying the existing weights, based on these error
values until a minimum overall error, or global error, is obtained. The mean-square

error (MSE) is usually used as a measure of the global error [11] which can he defined



as

Ny

MSE =Y (d - w) (3.1)

i=1

where N,, is the number of output nodes, y and d are the output and target signals

respectively.

w™(K +1) = w"™{(K) +vw™(K) = w™ (K - 1) +(1 = 7) aS™a™ )T . (3.2)
O — | — | —
New weights Old weights Old change in weights Sensitivity

Performance of the trained network can be evaluated by some simple statistical
functions such as recognition rate (i.e., percentage of the total number of correctly
classified outcomes over the number of sample points, or simply %Reco} and mean-
square-error (MSE). If the error value on the test data set begins to increase, training
is halted and the results are examined to determine whether they are acceptable.
If the results are unacceptable, then it is possible to retrain the network, by either
modifving some network parameters (e.g., the seed value for the random number
generator, and the number of nodes in the middle layer), or increasing or decreasing
the variations present in the training patterns. Once an acceptable error value is
obtained during the test stage, the network is ready for solving real problems, such
as prediction or classification problems. Figure 3.4 shows the steps involved in the

applicaticn of backpropagation algorithm.

3.5.2 Levenberg Marquardt Algorithm

The Levenberg-Marquardt algorithm is a variation of Newton’s method that was

designed for minimizing functions that are sum of squares of other nonlinear func-
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tions.

In case of Levenberg-Marquardt algorithm the sum square error (SSQ) is usually

the measure of the global error which can be defined as

Q r Q T Q sM )
Flz)=3 (ty—a) (tg—ag) = _ele, =3 > (e;4)° (3.3)
g=1 g=1 g=1j=1

where e 4 is the jth element of the error for the qth input/target pair. The levenberg-

Marquardt algorithm is described as
Xy = Xg = [JHUXT(XR) + pI) T (X )v(Xe) (3.4)
LXg = —-EJT(_X;:‘;‘](X"-;) - ﬂfj—l‘]T(*Yk)U(‘Xit) (3-53

This algorithm has a very useful feature that as y; is increase it approaches the

steepest descent algorithm with small learning rate:

1 1
Xpa1 = Xi — —(Xp)v(X)) = Xg — =—VF(z) (3.6)
M 2,U'k

While as py is decreased to zero the algorithm becomes Gauss-Newton. Figure 3.5

shows the steps of levenberg-marquardt algorithm.

3.6 Activation Functions

An Activation function is used to transform the activation level of a unit (neuron)
into an output signal. Typically, activation functions have a “squashing” effect i.e.

it limits the permissible output range to some finite values[11].
m
Zk = Z Wi T4 (37)
j=1

Y = ¢(Zg) = ¢lwi;z;] (3.8)
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where 17, Z9,... are the input signals; wy;, wis, ... are synaptic weights of neuron &

and ¢ is the activation function.

; . 1 - e—)\z +
@(z, )\) = tan51g(z, /\) = m‘ AE LT
N : 1 JE—
QD(Z,)\) = IOgSIg(Z, )\) = i—;’_—é‘:\; AEZLT.

‘ AT

s

-1 if z< -1,

6(z) = piecewise(z) = i o—1<z<l,

(3]

1 if z>1.

\

o(z,a, A) = sinmul{z, ¢, \} =z + 2 sin{Arz), A€Z7, 0<a<l.

Activation function for the hidden units are needed to introduce nonlinearity into the

networks. Nonlinearity make the multilayer networks more powerful. For backprop-

agation learning the activation function must be differentiable. The more common

activation functions are sigmoidals (log and tangent), piecewise-linear and sinusoidal

functions, as depicted in Fig. 3.6. For hidden units, sigmoidal functions are usu-

ally preferable. With sigmoid units,a very small ':change in the weights will usually

produce a change in the outputs, which makes it possible to tell that whether that

change in weights 1s good or bad.

3.7 Data Generation

A data generation program is designed to generate data for the training of neural

network models as shown in the figure 3.7.
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Figure 3.6: Commonly used activation functions.



Data Generation Programme

T=0.5~3.0
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Figure 3.7: Flow chart of data generation programme
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3.7.1 Data Range

In the first stage of the work, different ranges of data are selected for which the
models are going to be trained. The selection of the data range depends upon

different factors which include;
1. The model is prepared for lab scale studies

2. The values are chosen such that they cover both conservative and non-conservative

tracers
3. Availability of experimental data

For pore volume (T') data ranged from 0.5 to 3.1. In case of retardation factor (R)
three values are selected which are 1.026, 2.2 and 3.1. Pore water velocity (V) has
its range of values from 3 to 12 cm/day. Data range for dispersion coefficient is from
1 to 10 em?/day for 5 0.01 to 0.99 and for w it is from 0.05 to 2.8. Table 3.1 shows
the complete data set. The procedure for the selection of data for a particular model
is shown in figure 3.8. In table 3.2 a particular model for a pore water velocity (17)
is shown. A complete data set for a particular value of pore volume (T) is shown in

the appendix D.

3.7.2 Generating Breakthrough Curves

Table 3.3 shows few values of particular data set which are used to generate break-

through curves. Breakthrough curves are generated using CXTFIT 2.1 [26]. The



No. | T'=40.5, 1.0, 1.8, 2.2, 3.1

1. |R=1026) V=3 D=1,51710
V=7 | Beta=0.0-0.99
V=10 | Omega=0.0-2.8

o

R=22 V=3 D=1,5710
V=7 | Beta=0.0-0.99
V=10 | Omega = 0.0 — 2.8

3. R=3.0 V=3 = 1,5,7,10
V=T Beta = 0.0 — 0.99
7 =10 | Omega =0.0~-2.8

Table 3.1: Complete data set for the generation of data

No. | T =0.5,R=1.026 and V = 3 em/day

1. 1R=10261V =3 D=1

Beta = 0.0 — 0.99

Omega = 0.0 — 2.8
D=5

Beta = 0.0 — 0.99

Omega = 0.0 — 2.8

3. |R=1.026|V =3 D=7

Beta = 0.0 - 0.99

Omega = 0.0 — 2.8
D =10

Beta = 0.0 — 0.99

Omega = 0.0 — 2.8

o
uy!
i
b=
o
[N}
o
il
[N}

il
wo

4. |R=1.026 |V

Table 3.2: Complete data set for a particular value of pore water velocity
associated with retardation factor and pore volume
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T=0.5
4
For a Paniicular Value of —
R =102 R=1.0~30
¥
¥
For a Particular Value of . 5
| V=30 V=3~12
V=3~12
7
For 2 Particular Valug of | _ .
D=10 o D=i~10 1
i
!
: D=1~10

Beta=001~099 |
Omega=0.05~28
I

Beta=0.01 ~0.99
Omega = 0.05~2.8

Figure 3.8: Flow chart for the selection data range for different variables
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CXTFIT 2.1 code has its limitation and it can not run more than twelve 12 data
files at a time. To prepare a data input file for CXTFIT 2.1, a programme was
written in java language and a batch file is prepared for running the programme.

These input data files are used to generate the breakthrough curves.

3.7.3 Solving Inverse Problem

The generated breakthrough curves are used to come up with the input files for
solving the inverse problem. Another programme is written in java language which
reads the breakthrough curves from output file from the direct problem and converts
the data into an input file for the inverse problem. The inverse problem is solved
considering linear equilibrium model to determine the value of equivalent dispersion
coefficient (EDC). Table 3.4 shows the few values of final data set for a particular
model for which the neural network models are trained. A complete data set is

shown in appendix D.
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Chapter 4

TRAINING

4.1 Training Set Development

A major aspect of the neural net approach is the phase of convergence. Convergence
in the Backpropagation (BP)} and Levenberg Marquardt (LM) algorithm means
that the global minimum (smallest error) of the error function is obtained in a
reasonable amount of iterations. The iterative process may require long training
times of the order of several hundreds of thousands of iterations. Sometimes the
network may get stuck in a local minimum during training which means that the
network has failed to learn acceptably and gives large errors {10]. The development
of faster learning algorithms, local minimum detection and avoidance methods are
active areas of research on neural nets [35]. Careful examination of the data is
crucial before the training process starts. Sets of training patterns which do not

adequately distinguish between different facies groups will invariably result in either

64
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slow convergence or non-convergence|[36] . Devéyloping training data usually includes
the choice of training variables and their respective sample and data. In this work,
the numerically generated data is used to train the neural network model. The
training data does not contain any outliers. The neural network training can be made
more efficient if certain preprocessing steps are performed on the network inputs and
targets{37]. This can be done by normalizing the whole data set with respect to mean
and standard deviation. For this purpose, each data set is normalized in two steps;
first the mean of the data is subtracted from all the data points in the set and then
this set is divided by the standard deviation of the data set in this way the inputs

and targets will have zero means and unity standard deviation.

4.2 Training

The final development step is training and testing the network. Training is the stage
when the net learns the recognition task by adjusting the weights in the links between
the nodes created by processing representative examples (input and output pairs).
Each pass through the training data is called an epoch, and the neural network learns
through the overall change in weights accumulating over many epochs. Training
continues until the values of the weights cause the network to map the input patterns
to appropriate results [35]. All the programs for normalization input data and for
the training of the neural networks was written in MATLAB. The program listings

are given in Appendix B.
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4.2.1 BackPropagation Neural Network Training

In this approach, the neural network design consists of only one net. The input
layer consists of 60 nodes the middle layer contains 2.0 nodes and the output layer
contains a single node as there is only one output. In this approach the whole net
was trained using the pattern Mode*. It is also known as online training where
a single example {Z', D'} is chosen (e.g. randomly) from the training set at each
iteration t. An estimate of the true gradient is then computed based on the error

{E*} of that example. and then the weights are updated:

w™ (K +1) = w™(K) +yw'™(K) — w™(K - 1) +(1 - v) aS™(a™ )7 .
eV s e’ ~— Nt e m——
New weights Old weights Old change in weights Sensitivity

Each neural network model was trained for 60,000 iterations for which they took
about 12 minutes each, and the maximum error was found to be less than 1072 at

the output laver.

4.2.2 Levenberg Marquardt Neural Network Training

The levenberg marquardt algorithm is applied using the batch mode, where the
weights are updated after a complete sweep through a training set. The levenberg
marquardt algorithm use the jacobi approximation and most important they work
only for mean square error loss functions. In this approach, the neural network
design consists of only one net. The input layer consists of 20 nodes the middle

layer contains 10 nodes and the output layer contains a single node as there is only

In Pattern Mode learning, weight are updated after the presentation of each data point
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one output. Neural network model training was stopped after the sum square error

is less than a predefined value.

4.2.3 Training of Networks

Based on the data range one hundred and sixty neural networks models are trained.
Both Backpropagation (BP) and Levenberg Marquardt (LM) algorithms are used
for the training of neural networks. The neural networks training for specific values
of pore volume are presented. There are four data sets for pore volume 7" = 0.5
and retardation factor R = 1.026. Each data set has a different value of pore warter
velocity and has been trained using both algorithms. The network training for both
algorithms are shown in Figure 4.1 - 4.15. The continuous line as shown in these
figure represents the data used to train the network and the dotted line is the network
prediction for each output. Figure 4.2 - 4.16 shows an enlarge view of training for
‘both above mentioned algorithms. Similarly for pore volume 7" = 1.0,1.8,2.2,3.1
and retardation factor R = 1.026 neural networks training for both algorithms are

shown in Figure 4.17- 4.48.
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Figure 4.1: Neural network model training using Backpropagation algorithm
for T=0.5, R=1.026, V=3 cm/day
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Figure 4.2: Enlarge view of neural network model training using Backprop-

agation algorithm for T=0.5, R=1.026, V=3 c¢m/day



Training Data Profile without Dencrmalization of Data
T

& o P N
N ot s N

Equivatent Dispersion Coefficlent

'
o

— Predicted
Lo Actust

Training Data Profile with Denormalization of Data

[
ot
<

g

s
w
O

-
Q
Q

g

Equivalent Dispersion Coefficient

!

g&

"

’W\“ '\?\r;\

;Z

—— Predicted
Lo Actual |

i

..,... e

It } i ’
. W ;\m

L

(=]
(=)

100

300 800
Data Values

Figure 4.3: Neural network model training using Levenberg Marquardt al-
gorithm for T=0.5, R=1.026, V=3 cm/day
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Figure 4.18: Neural network model training using Levenberg Marquardt
algorithm for T=1.0, R=1.026, V=3 cm/day
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Figure 4.22: Neural network model training using Levenberg Marquardt
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Figure 4.30: Neural network model training using Levenberg Marquardt
algorithm for T=1.8, R=1.026, V=10 cm/day
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Figure 4.38: Neural network model training using Levenberg Marquardt
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Figure 4.41: Neural network model training using Backpropagation algo-
rithm for T=3.1, R=1.026. V=3 cm/day
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Figure 4.42: Neural network model training using Levenberg Marquardt
algorithm for T=3.1, R=1.026, V=3 cm/day
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Figure 4.43: Neural network model training using Backpropagation algo-
rithm for T=3.1, R=1.026. V=7 cm/day
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Figure 4.44: Neural network model training using Levenberg Marquardt
algorithm for T=3.1, R=1.026, V=7 cm/day
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Figure 4.45: Neural network model training using Backpropagation algo-
rithm for T=3.1, R=1.026, V=10 cm/day
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Figure 4.46: Neural network model training using Levenberg Marquardt
algorithm for T=3.1, R=1.026, V=10 cm/day
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Figure 4.47: Neural network model training using Backpropagation algo-

rithm for T=3.1, R=1.026, V=12 cm/day
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Figure 4.48: Neural network model training using Levenberg Marquardt
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Chapter 5

VALIDATION

To test how well artificial neural networks (ANNs) models were trained, it was
important to perform validation. Validation is a process by which the performance
of a trained network is tested against examples that were not included in the training

set.

5.1 Validation Using Synthetic Data

Both models are validated using both algorithms and using data which has not been
seen by the ANNs. The validation of ANNs for both algorithms are shown in Figure
5.1 - 5.40 for particular values of pore volume. The EDC values predicted by ANNs
are found to be within the tolerance limits. It is obserevd that LM ANNs performs

much better as compared to the BP ANNs.
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Figure 5.1: Validation of neural network model using Backpropagation al-
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Figure 5.2: Validation of neural network model using Levenberg Marquardt
algorithm for T=0.5, R = 1.026, V=3 cm/day
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Figure 5.3: Validation of neural network model using Backpropagation al-
gorithm for T=0.5, R = 1.026, V=7 cm/day
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Figure 5.4: Validation of neural network model using Levenberg Marquardt
algorithm for T=0.5, R = 1.026, V=7 cm/day
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Figure 5.5: Validation of neural network model using Backpropagation al-
gorithm for T=0.5. R=1.026. V=10 cm/day
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Figure 5.6: Validation of neural network model using Levenberg Marquardt
algorithm for T=0.5, R=1.026, V=10 cm/day
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Figure 5.7: Neural neural network model Training using Backpropagation
algorithm for T=0.5, R=1.026, V=12 cm/day
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Figure 5.8: Validation of neural network model using Levenberg Marquardt
algorithm for T=0.5, R=1.026, V=12 cm/day :
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Figure 5.9: Validation of neural network model using Backpropagation al-
gorithm for T=1.0, R=1.026, \'=3 cm/day
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Figure 5.10: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.0, R=1.026, V=3 cm/day
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Figure 5.11: Validation of neural network model using Backpropagation
algorithm for T=1.0. R=1.026, V=7 cm/day
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Figure 5.12: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.0, R=1.026, V=7 cm/day
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Figure 5.13: Validation of neural network model using Backpropagation
algorithm for T=1.0, R=1.026, V=10 cm/day
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Figure 5.14: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.0, R=1.026, V=10 cm/day
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Figure 5.15: Validation of neural network model using Backpropagation
algorithm for T=1.0, R=1.026, V=12 cm/day
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Figure 5.16: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.0, R=1.026, V=12 cm/day
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Figure 5.17: Validation of neural network model using Backpropagation
algorithm for T=1.8. R=1.026, V=3 cm/day
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Figure 5.18: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.8, R=1.026, V=3 cm/day
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Testing data profile
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Figure 5.19: Validation of neural network model using Backpropagation
algorithm for T=1.8. R=1.026, \'=7 cm/day
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Figure 5.20: Validation of neural network model using Levenberg Marquardt
algorithm for T=1.8, R=1.026, V=7 cm/day
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Figure 5.21: Validation of neural network model using Backpropagation

algorithm for T=1.8, R=1.026, V=10 cm/day
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Figure 5.22: Validation of neural network model using Levenberg Marquardt

algorithm for T=1.8, R=1.026, V=10 cm/day
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Testing deta profile
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Figure 5.23: Validation of neural network model using Backpropagation
algorithm for T=1.8, R=1.026, V=12 cm/day
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Figure 5.24: Validation of neural network mode! using Levenberg Marquardt
algorithm for T=1.8, R=1.026, V=12 cm/day
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Figure 5.25: Validation of neural network model using Backpropagation

algorithm for T=2.2, R=1.026, V=3 cm/day
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Figure 5.26: Validation of neural network model using Levenberg Marquardt

algorithm for T=2.2, R=1.026, V=3 cm/day
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Figure 5.27: Validation of neural network model
algorithm for T=2.2, R=1.026. V=7 cm/day

using Backpropagation
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Figure 5.28: Validation of neural network model using Levenberg Marquardt

algorithm for T=2.2, R=1.026, V=7 cm/day
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Figure 5.29: Validation of neural network model using Backpropagation

algorithm for T=2.2, R=1.026, V=10 cm/day
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Figure 5.30: Validation of neural network model using Levenberg Marquardt

algorithm for T=2.2, R=1.026, V=10 cm/day
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Testing data profile
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Figure 5.31: Validation of neural network model using Backpropagation
algorithm for T=2.2, R=1.026, \'=12 cm/day
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Figure 5.32: Validation of neural network model using Levenberg Marquardt
algorithm for T=2.2, R=1.026, V=12 cm/day
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Figure 5.33: Validation of neural network model using Backpropagation
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Figure 5.34: Validation of neural network model using Levenberg Marquardt

algorithm for T=3.1, R=1.026, V=3 cm/day
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Figure 5.35: Validation of neural network model
algorithm for T=3.1, R=1.026. V=7 cm/day
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Testing data profile
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Figure 5.37: Validation of neural network model using Backpropagation
algorithm for T=3.1, R=1.026, V=10 cm/day
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Figure 5.38: Validation of neural network model using Levenberg Marquardt
algorithm for T=3.1, R=1.026, V=10 cm/day
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Figure 5.39: Validation of neural network model using Backpropagation
algorithm for T=3.1, R=1.026, V=12 cm/day
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Figure 5.40: Validation of neural network model using Levenberg Marquardt
algorithm for T=3.1, R=1.026, V=12 cm/day
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5.2 Validation using Experimental data

The trained ANNs models are also validated using experimental data.

5.3 Experimental Data 1

A column study was conducted by Van Genuchten [31] to understand the move-
ment of contaminants within porous media. These experiments are used here for

validation.

5.3.1 Glendale clay Loam Soil

Glendale clay loam soil was used in that study. It is a sub sample of the calcareous
Glendale series, a fine-silty, mixed thermic type torrifiuvent. The Tables 5.1 and 5.2

summarize some physical and chemical properties of the Glendale clay loam.

Analysis Amount
Sand (percentage) 38.8
Silt (percentage) 29.8
Clay (percentage) 31.4
CEC meq/100g 31.1

pH 7.7
CaCos equivalent (percentage) | 7.0
Gypsum (percentage) 0.0

Table 5.1: Physical and chemical properties of Glendale clay loam Soil

5.3.2 Tracers and their analyis

The following tracer was used in this study:



Analysis | Amount
Ca 22.0

Mg 3.6

Na 0.8

K 1.5

NH, 1.2
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Table 5.2: Ex-changeable {meq/100g) ions of Glendale clay loam Soil
Tritium
Ten milli curie (mC} of tritiated water was added to each liter of 0.01 N CaCl; to

obtain a final activity of 23.000 cpm.

2.4,5-Trichlorophenoxyacetic acid

Ten ppm herbicide solutions were used in the column experiments. Radioactive
2.4,5,—T with a specific activity of 4.93 uCi/mg, labelled at the carboxyl carbon
position was added to unlabelled solution making up the 10 ppm, to aid in the

herbicide analysis.

5.2.3 Column Studies

Soil columns were prepared by carefully packing air-dried Glendale clay loam soil
material into plexiglass cylinders of 5.4 ¢m inner diameter. Before introducing the
first tracer, the columns were leached with deliberate amount of 0.01 N CaCl; to
assure a physical equilibrium and as much as possible a chemical equilibrium. After
establishing steady state flow conditions, the leaching solution was replaced with a

solution containing one of the two tracers used in the study. The soil physical data
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for the different experiments are given in table 5.3. In table 5.4 the various tritium

experiments are summarized together with the values of different parameters.

The trained ANNs models are used for validation. The LM ANNs proved to be more
effective than the BP ANNs. The EDC values obtained from these ANNs model are
then used in the linear equilibrium model to simulate the solute transport. Figure
5.41 - 5.50 show the comparison of breakthrough curves obtained from both ANNs,

inverse problem and two region model. The validation results are given in table 5.5.
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Figure 5.41: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.42: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.43: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.44: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.45: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.46: Breakthrough curves showing comparison of EDC values obtained from:
both ANNs model and inverse problem
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Figure 5.47: Breakthrough curves showing compariscn of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.48: Breakthrough curves showing comparison »f EDC values obtained from
both ANNs model and inverse problem
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Figure 5.49: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.50: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem



5.4 Experimental Data 2

Nkeddi-Kizza et al. [23] conducted a series of experiments to study the contaminant
transport. The second set of breakthrough curves is taken from there study for

validation purposes.

5.4.1 Aggregated Oxisol

Aggregated Oxisol material was used in that study. It has kaolinite as the predom-
inant clay mineral. Tables 5.6 summarizes some physical and chemical properties

aggregated Oxisol.

Analysis Amount

aggregates (fractions) | 0.5-4.0
Fe,Os( Percentage) 6.5

CEC meq/100g 2
pH 3.7 |

Table 5.6: Physical and chemical properties of Ione Oxisol

5.4.2 'Tracers and their analysis

The following tracers ware used in this study:

4$Ca,*Cl,and*H,0

The pulse solutions of CaCl, were given spiked with *3Ca,® Cl, and 3H,0, each

giving about 5 nCi/ml.
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5.4.3 Column Studies

Breakthrough curves (BTC) of #*Ca,*Cl,and®H,0 applied together as a pulse to soil
columns packed with an aggregated oxisol, were measured under water-saturated
conditions. The soil within the column was adjusted to a pH of 4 to 7 and sep-
arated into aggregates fractions of 0.5 ~ 1.0 and 2.0 — 4.0 mm in diameter. Each
aggregate fraction was first saturated with 0.1 N CaCl, and then packed separately
into plexiglas cylinders, 45 ¢cm® in cross-sectional area and 5 cm long. Table 5.7
summarizes column data for various experiments. Table 5.8 shows the different col-
umn experiments and tabie 5.9 gives the comparisons of EDC values as determined

by both algorithms and by solving inverse problem. Figure 5.51 - 5.54 show the

Breakthrough curves obtained from using the EDC values.
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Figure 5.51: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.52: Breakthrough curves showing comparison of EDC values obtained from

both ANNs model and inverse problem
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Figur« 5.53: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem
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Figure 5.54: Breakthrough curves showing comparison of EDC values obtained from
both ANNs model and inverse problem



Chapter 6

SUMMARY AND

CONCLUSIONS

Groundwater, which is a major source of drinking water around the world is of-
ten the most significant water resource in manv countries. Quality deterioration of
this source reduces its ability to furnish communities with the water needed for the
daily activities. The continuous rise in population, expanding agricultural, indus-
trialization and higher living standards create an added demand on good ‘qualit«y
water but contamination limit ity availability. Sub-surface contamination can be
caused by leakage from ponds and lagoons which are widely used as components of
large waste-disposal systems, and by leaching of animal wastes, fertilizers and pesti-
cides from agricultural soils. Contaminants that have entered the groundwater can
move horizontally or vertically, depending on contaminant density and the natural

flow pattern of the water in the aguifer. A conmtaminant on an average spreads as

138
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plume, contamination concentration could be reduced with time and distance due to
mechanisms like adsorption, ion exchange, dispersion, and decay. The rate of atten-
uation or reduction in concentration is a function of the type of contaminant and of
the local hvdrogeologic framework, but decades and even centuries are required for
the process to become completely effective. Under the right conditions. and given
enough time, contaminating fluids invading a natural body of groundwater can move
great distances, hidden from view but still toxic. The eventual point of discharge of
the contaminated groundwater may be a drinking water well or surface water body.
Often by the time sub-surface contamination is conclusively identified it is too late
to applv remedial measures that would be of much benefit. The results of the study
will contribute to a great extent in providing automated reliable system which can
be used by scientists and engineers involved in the planning and management of
groundwater resources, in predicting the fate of contaminant that enter groundwa-
ter flow systems. The results will heip them to come up with reliable predictions of
the transport of contaminants within the flow system. It also gives them some in-
sight into the physical and chemical factors that influence the sub-surface migration
of dissolved contaminants.

Models that solve both flow and contaminant transport equaticns are frequently
used to evaluate groundwater quality changes with space and time. Traditionally a
two parameter partial differential equation has been used to describe contaminant
transport. However some inadequacies were observed in this transport mode] when

comparing model predictions with the experimental data. Due to these inadequacies
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more complex conceptual models have been introduced in order to represent the real
world systems. These models are based on the assumption that for either physical
or chemical reasons, adsorption does not proceed at an equal rate in all parts of
the soil medium. The resulting transport equations for these models contain several
parameters.

In this study the parameters of a complex contaminant transport model were re-
lated to a single parameter named as Equivalent Dispersion Coeflicient (EDC). Two
different algorithms i.e. backpropagation algorithm and Levenberg Marquardt al-
gorithm were used to come up with neural network based models. A total of one
hundred and sixty {160} neural network models were trained. These models were
trained on numerically generated data. The data was generated using CXTFIT 2.1.
For this purpose a data generation program was designed. First the direct problem
was solved using complex model parameters to generate breakthrough curves. Next
inverse problem was solved considering linear equilibrium model to come up with
the values of EDC for corresponding values of complex model parameters. Train-
ing was a process by which the network learns the recognition task by adjusting
the weights in the links between the nodes created by processing input and output
pairs. Training was continued until the values of weights cause the network to map
the input patterns on an appropriate degree. Before training starts certain prepro-
cessing steps were performed on the networks inputs and targets to make the neural
network trairﬁng more efficient. For this purpose the whole data set was normalized

with respect to mean and standard deviation. In this way the inputs and targets
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will have zero mean and unity standard deviation. After the training was complete
neural network models were validated using numerically generated data which were
not seen by the artificial neural network models before. The models predict the
values of EDC when they receive the values of complex model parameters as an
input. Once the validation process was complete the models were tested using the
experimental data.

In the second part of this study, the EDC values obtained from ﬁhe experimental
data were then used in linear equilibrium advective despersive model. The linear
equilibrium advective despersive model is numerically solved to predict the solute
concentration. The breakthrough curves obtained from this approach and the ones
obtained from the complex mode! were compared and found to be within tolerable
limits. When EDC was used in linear equilibrium model the solute transport was
successfullv simulated.

Based on the results of the study the following conclusions can be drawn

1. For each data set the value of EDC moves from a maximum to a value equal to
the dispersion coefficient as the model moves from a non-equilibrium two region
model to the linear equilibrium model at the same time the value of mobile
water content (f,,) vary from minimum to a value equal to water content
(f). The value of fraction of adsorption site (f) changes from a minimum to
a value of one (1) and the value of alpha (&) moves from zero (0) towards
infinity (co) as the model moves from physical non equilibrium model to a

linear equilibrium model .



2. For a particular value of pore volume (T) the EDC value increases as the
value of retardation factor (R) increases. Similarly for a particular value of
pore volume (T) and retardation factor (R) the value of EDC shows an increase

as the value of velocity increases.

3. Both algorithms i.e. backpropagation algorithm and Levenberg Marquardt

algorithm are able to predict the values within tolerable limits.

4. For conservative contaminant both algorithm performs reasonably well how-
ever for non-conservative contaminant Levenberg Marquardt Algorithm gives

better results.

5. The developed mode! works on the specific range of data however this range

is flexible and can be increased.

6. Neural nets have the potential to be developed into more sensitive prediction

tools. They obviate the need to specify the forms of correlations.

~1

The neural network based models can be tanght to identify patterns between
input and target values and can subsequently predict out comes from fresh

input conditions.
Based on the study following recommendation are made:

1. Extension of the current work is suggested in future by extending the data

range.
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2. The current model must be converted in the form of a software to make it easy

to use by engineers and operators in the lab.

3. The ANNs models developed must be coupled with the numerical solution of
linear equilibrium advective dispersive model to make a more comprehensive
software. This software will give the breakthrough curve for the given value

of parameters after calculating the value of EDC.

4. Mathematical relationships can be developed between the parameters of a

contaminant transport model and EDC.



Appendix A
MATLAB Code

A.1 BackPropagation Algorithm Code

A Program to determine the equivalent dispersion coefficient for contaminant traus-
port model using backpropagation approach

function [Result,SEl=bpnnvalidi(fn)
cle;
global Total DATA slopel slope2 nl N M L K LR MOM alphal beta

if nargin < 1
fn="file.txt’; % file to read data from.
end

DATA = readdata(fn);

[DATA ,mean_stdl= datanormalize (DATA);

mean_std Total=max(size(DATA)); ITER = 60000; Testlo =
ceil (0.05#size(DATA,1));

Initialization 0K=0;

while DK==0
Test=setdiff (ceil (rand{i,TestNo)*Total) ,0);
if

length(Test)==TestNo

0K=1;

end

end

Train=setdiff ([1:Totall, Test);

Testdata=DATA(Test, ) ;
DATA=DATA(Train,:);
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Network parameters

N=size(DATA,2)-1; % Nos of data nodes in imput layer
M=60; % Neurons in first hidden layer
L=30; % Neurons in second hidden layer
K=1; % Neurons in output layer

LE=0.01; %» Learning rate

MOM=0.5; % Momentum constant

Activation function parameters

alphal=0.9; % Slope parameters of AF in first hidden layer
ni=10; % Nos of levels in AF of first hidden layer
slopel=0.5;

slope2=2;

beta=1;

Weights

p=10; % Fixing the variance of the weights
Wi=randn(M,N+1)/sqrt (p*N);

W2=randn (L,M+1) /sqrt (p*M) ;

W3=randn(K,L+1) /sqrt (p*L);

Weights for momentum

MWi=randn(M,N+1)/sqrt (p*N);

MW2=randn(L,M+1)/sqrt(pxM);

MiW3=randn(K,L+1)/sqrt(p*L);

Training Starts

Result=[}; SE=[];

for iter=1:ITER

disp([’Running iteration = ’ num2str(iter)])
k=ceil (rand=*(Total-TestNo));
{Y1,Y2,%X1,%2,Y3,E]=findSSE(W1,W2,W3,k);

Error and its gradients

S3=E;

f2=diag([ourdtansig(slope2,Y2(1:end-1));1]1);

S2=£2%W3’%53;

fi=diag([beta+alphal*cos(ni*pi*X1)+...
((ourlogsig(slopel,X1)-ourlogsig(slopel,X1) . 2)*slopel) ;1]);
S1=f1*W2’*S52(1:end-1,1);

BWi=W1;

BW2=W2;

BW3=W3;



Weight Update

W1=W1+MOM*MW1+(1-MOM) *LR*S1(1:end-1,1)*[DATA(k,1:N) 1l;
W2=W2+MOM+MW2+ (1-MOM) *LR*52(1:end~1,1)*¥Y1’;
W3=W3+MOM*MW3+ (1-MOM) *LR*S3%Y2" ;

MWi=W1-BW1;

MW2=W2-BW2;

MW3=W3-BW3;

SE=[SE E."2];

end

save tempv? Wi W2 W3 N M L K slopel slopeZ nl alphal SE beta

Plotting Data Before Denormalization
for kk=1:Total-TestNo
[¥1,Y2,X1,X2,Y3,E]=findSSE{W1,W2,W3,kk) ;
Result={Result; Y3 DATA(kk,end)];

end

figure;semilogy(SE);grid on;

Sum Square Error Plot

SE=[SE zeros(1,abs(ITER-floor(ITER/Total)*Total-Totall)];
SSE=reshape (SE,length(SE)/Total,Total); SSE=sum(SSE);
figure;plot(SSE);grid on; title(’Sum Square Error’)

Plotting Data After Denormalization

Result(:,1) = denormalize{Result(:,1), mean_std(:,end));
Result(:,2) = denormalize(Result(:,2), mean_std(:,end));
figure;plot(Result);grid on;

title{’Training data profile with denormalization’)
legend (’Predicted’, "Actual’);

Histogram
[hp,xpl=hist(Result(:,2),30};
gg=find (hp==0) ;

hp(gg)=0];

xplgg)=01;

xxp = min(xp) :min{xp)/5:max(xp);
bhp = spline(xp,hp,xxp);
figure;plot (xxp,hhp) [hn]=hist(Result(:,1),xp);
hhn = spline(xp,hn,xxp);

hold on;

plot(zxp,hhn, 'k’);

title(’BP’);
legend(’Actual’,’Predicted’);
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For Validation

Result=[]; DATA=Testdata; for kk=1:Testlo
{Y1,Y2,X1,X2,Y3,E]=findSSE(W1,W2,W3,kk) ; Result=[Result; Y3
DATA(kk,end)]; end figure;plot{(Result);grid on;
title(’Testing data profile without demormalizatiomn’)
Result(:,1)= denormalize{Result{(:,1), mean_std(:,end));
Result(:,2) =denormalize(Result(:,2), mean_std(:,end));
figure;plot(Result);grid on; title{’Testing data profile with
denormalization’); legend{(’Predicted’,’Actual’);
figure;bar(Result);grid on; title(’Testing data profile with
denormalization’); colormap(cool); legend(’Predicted’,’Actual’);
return

function [Y1,Y2,%1,X2,Y3,E]=findSSE(W1,W2,W3,k)

giobal DATA slopel slope2 ni N alphal beta
X1=W1x[DATA(k,1:N) 1]7;
Y1=0.5xXi+alphal*1/(nl*pi)*sin(ni*pi*X1)+. ..
ourlogsig(slopel, Xl);

Yi={Y1 ;1]; X2=W2*Y1l; Y2=ourtansig(slope2,X2); Y2=[Y2 ;1];
X3=W3*Y2; Y3=X3; E=DATA(k,end)-Y3;

return

function y = ourlogsig(slope,x)

y =1 ./ (1 + exp(-slopexx)); i = find("finite(y)); y(i) =
sign(x(i));

% derivative of the above is (x-x."2)*slope

return

function y = ourtansig(slope,x)

y = 2./(1 + exp(~x*slope)) - 1; i = find("finite(y)); y(i) =
sign{x(i));

% derivative of the above is (1-x.72)*slope/2

return

function y = sinmul(beta,alpha,n,x)
y=beta*x+alpha*1/(n¥pi)*sin(n*pix*x);

% derivative of the above is betatalpha*cos(n¥pi*x)
return :

function y = ourdtansig(slope,x)
y=(1-x."2)*slope/2; return



function y = dsinmul(beta,alpha,n,x)
y=beta+alpha*cos (n*pi*x); return

function [data,mean_std] = datanormalize(data)
mean_std=[]; for h=1:size(data,?2)
MEAN=mean(data(:,h));

STD=std(data(:,h));

data(:,h)=(data(: ,h)-MEAK)/STD;
mean_std=Imean_std [MEAN; STDI]:

end

data(:,end)=abs(data(:,end)). (1/2) .*sign(data(:,end));
return

function [datal = denormalize(data,mean_std)
data(:,end)=(abs(data(:,end)). 2).*sign(data(:,end));
for h=1:size(data,2)

MEAN = mean_std{l,h):

STD = mean_std(2,h);

data(:,h)=data(:,h)*STD+MEAN;

end return

Read Data From Text File function DATA = readdata(fn)
fid=fopen(fn,’r’); % open disk file with read-only access
DATA=[];

tart reading the proper data
while 1
lineread=fgetl(fid) ; yA
if findstr("EOF’,lineread); ¥ Read lines until EOF encountered
reak; end

dataline=deblank(lineread); % Remove trailing blanks
DATA=[DATA ;str2num(dataline)];
end

fclose(fid) return
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A.2 Levenberg Marquardt Algorithm Code

A program to determine the equivalent dispersion coefficient for the contaminat
transport mode] using Levenberg Marquardt Approach

function [Result,SSEF]=Lmbg_final(fn)

clc;

global Total DATA slopel slope2 nl N M L K v alphal beta
if margin < 1

fr='3.txt’; ¥ file to read data from.

end

DATA = readdata(fn); [DATA mean_std]l= datanormalize(DATA);

mean_std; Total=max{size(DATA)); TestNo=ceil((.0b*size(DATA,1));

Initialization

0K=0; while 0K==0
Test=setdiff{ceil(rand(l,TestNo)*Total),0};

if length(Test)==Testlo

0K=1;

end

end

Train=setdiff([1:Totall,Test); Testdata=DATA(Test,:);
DATA=DATA(Train,:);

Network parameters

N=size(DATA,2)~1; %Nos of data nodes in input layer
M=20; #Neurons in first hidden layer
L=10; %Neurons in second hidden layer
K=1; %Neurons in output layer

mu=1;

v=10;

T=1;

Activation function parameters

alphal=0.8; % Slope parameters of AF in first hidden layer
beta=1;

nl=10; % Nos of levels in AF of first hidden layer
slopel=0.05;

slope2=2;

Sther=2;

Weights
p=10; % Fixing the variance of the weights

Wi=randn(M,N+1)/sqrt (p*N);
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W2=randn(L,M+1)/sqrt (p*M) ;
W3=randn(K,L+1) /sqrt (p*L);

raining Starts

cond_err=1; SSEF =[];

while cond_err ==

J=[1;

v={1;

for k=1:Total-Testlc
[tempo,Y1,Y2,X1,%2,E,Y3]=findSSE(W1,W2,W3,k);
SE(k)=temps;

[vi=[v;E];

[J]=findJACOB(X1,X2,Y1,Y2,W2,W3,k,J);

end

SSE=sum(SE) ;

SWi=W1; SW2=W2Z2; SW3=W3;

cond_mu = I;

while cond_mu == 1 % 2nd while
Dx=~inv([J’*J+mu*eye(size(J,2))1)*J *V;
Wi=SWi+reshape (Dx (1 :M* (N+T)) ,N+T,M)’;
W2=SW2+reshape (Dx (M* (N+T) +1 :Mx (N+T)+L* (M+T) ) ,M+T,L) 7;
W3=SW3+reshape (Dx (M# (H+T) +Lx* (M+T) +1 : Mk (B+T) +L# (M+T) +K*+(L+T) ) ,L+T,K) 7 ;

for kk=1:Total-TestNo
[tempol=findSSE(W1,W2,W3 kk) ;
SEnew (kk)=tempo;

end

SSEnew=sum{SEnew) ;

if SSEnew > SSE

my = muky

else

mu = mu/v

cond_mu = 0;

end

end % 2nd while ends

SSEF = [SSEF SSEnew] save tempb3 Wi W2 W3 N M L K mu v slopel
slope2 nl alphal SSEF beta
if SSEnew < Sther

cond_err = 0;

end

end % 1st while ends

figure;plot(SSEF);grid on;title(’Sum Square Error’)



Plotting Data Before Denormalization

Result=[]; for kk=1:Total-TestNo
[SE,¥1,Y2,X1,X2,E,¥3]=findSSE(W1,W2,W3,kk) ;

Result=[Result; Y3 DATA(kk,end)];

end figure;plot(Result);grid on;title(’Training Data Profile
without Denormalization’)

Plotting Data After Denormalization
Result{:,1) = denormalize(Result{(:,1i), mean_std(:,end));
Result(:,2) = denormalize(Result(:,2), mean_std{:,end});

figure;plot(Result);grid on;title(’Training data profile with
denormalization’)

HISTOGRAM

[hp,xpl=hist(Result(:,2),30); gg=find(hp==0); hp(ggi=[]1;
xp(gg)=[]; zxp = min(xp):min{xp)/5:max(xp); hhp =
spline(xp,hp,xxp); figure;plot(xxp,hhp) [hnl=hist(Result(:,1),xp);
bhn = spline(xp,hn,xxp); hold on;plot(xxp,hhn,’k’);
title{’Levenberg Marquardt Neural Network’);
legend(’Actual’,’Predicted’);

FOR VALIDATION

Result=[]; DATA=Testdata; for kk=1:TestNo
[SE,Y1,Y2,X1,X2,E,Y3]=FfindSSE(W1,W2,W3,kk) ;
Result=[Result; Y3 DATA(kk,end)];

end

figure;plot(Result);grid on;title(’Testing data profile without
denormalization’)

Result(:,1) = denormalize(Result(:,1), mean_std(:,end));
Result{:,2) = denormalize(Result(:,2), mean_std(:,end));

figure;plot(Result);grid on;title(’Testing data profile with
denormalization’) figure;bar(Result);grid on;

title(’Testing data profile with denormalization’);
colormap(bone);

legend(’Predicted’, ’Actual’); return

function [SE,Y1,Y2,X1,X2,E,¥3}=findSSE(W1,W2,W3,k)

global DATA slopel slope2 nl N alphal beta

X1=W1*[DATA(k,1:N) 1]’;
Yi=[beta*X1+alphal*1/(ni*pi)*sin(nl*pi*X1)]; Yi=[Y¥1 ;1]; X2=W2xY1;



[y
ot
[N}

Y2=[ourtansig(slope2,X2)]; Y2=[Y2 ;1]; X3=W3xY2; Y3=X3;
E=DATA(k,end)-Y¥3; SE=E."2;
return

function a = ourtansig{(slope,n) a = 2 ./ (1 + exp(-n*slope)) - 1;
% derivative of the above is (1-a~2)*slope/2
return

function [JI1=findJACOB(X1,X2,Y1,Y2,W2,W3,k, 1)

global DATA slopel slopeZ nl alphal N beta

S3=-1;

f2=diag([(1—Y2(1:end-i).“2)*Slope2/2; 11); S2=f2%W37x53;
fi=diag([beta+alphal*cos(ni*pi*X1); 11); Si=f1xW2’%52(1:end-1,1);
G1=S1(1:end-1,1)*[DATA(k,1:N) 1];Gi=0G1";G1=G1(:)’;
G2=S2(1:end-1,1)*Y1’;G2=G27;62=62(:)’; G3=53*Y2’;G3=63’;G3=63(:)’;
J=[J;G1 G2 G3]; return

function [data,mean_std] = datanormalize{data)
mean_std=[]; for h=l:size(data,?2)
MEAN=mean{data(: ,h));

STD=std(data(:,h));
data(:,h)=(data{:,h)-MEAN)/STD;
mean_std=[mean_std [MEAN; STDI];

end

data(:,end)=abs(data(:,end)) . (1/2) .*sign(data{:,end)); return

function [datal = denormalize{(data,mean_std)
data(:,end)=(abs(data(:,end))."2) .*sign(data(:,end)); for
h=1:size(data,?2) MEAN = mean_std(i,h); STD = mean_std{2,h);
data(:,h)=data(:,h)*STD+MEAN; end return

Read Data from Text File

function DATA = readdata(fn)

fid=fopen(fn,’r’); % open disk file with read-only access
DATA=[];

Start reading the proper data while 1

lineread=fgetl(fid);

if findstr(’EQOF’,lineread); % Read lines until EOF encountered
break; yA

end

dataline=deblank (lineread) ; % Remove trailing blanks
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DATA=[DATA ;str2num(dataline)];
end

fclose(fid)

return



Appendix B
FOTRAN Code

A Finite Difference scheme to simulate the solute transport in the porous media

DIMENSION DXP(0:200),AE(0:200),AW(0:200),AP(0:200),
*C0(C:2003,CN(0:200),C(0:200) ,5U(0:200) ,SP(0:200) ,APD(0:200)
OPEN(1,FILE="DATAL’)

OPEN(2,FILE="DATA2’)

DL=0.3
DX=.01
TTIME=432000
DT=30
DAB=3.4722e-9
NC=30

R=1
V=3.4722e-7
RHO=1126
F=RHO*V
D=DAB=*RHO/DX
DF=F~-F

DV=DX

C LENGTH OF CELLS
DXP(0)=0.0
DXP(1)=0.005
D0 05 I=2,KC
DXP(I)=DXP(I-1)+DX

05 CONTINUE

C LENGTH OF THE LAST CELL
DXP(NC+1)=0.3
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C INITIALIZATION OF VALUES FOR THE SIMULATION

10

DO 10 I=1,NC
IF(I.EQ.1)THEN
AW(I)=0.0
ELSEIF(I.EQ.NC)THEN
AW(I)=D + F/2

ELSE

AW(I)=D + F/2
ENDIF

IF(I.EQ.1)THEN

AE(I)=D - F/2
ELSEIF(I.EQ.10)THEN
AE(I)=0.0

ELSE

AE(I)=D- F/2

ENDIF

IF(I.EQ.1)THEN
SP(I)=-(2*D+F)
ELSEIF(I.EQ.10)THEN
SP(I)=0.0

ELSE

Sp(I)=0.0

ENDIF

IF((I.GT.1).AND.(I.LT.10))THEN
SU(I)=0.0

ENDIF

APO(I)=(R*RHO*DV)/(DT)
IF(I.EQ.1)THEN
AP(I)=AW(I)+AE(I)+APO(I)+DF-SP(I)
ELSEIF(I.EQ.10)THEN
AP(I)=AW(I)+AE(I)+APO(I)+DF-SP(I)
ELSE
AP(I)=AW(I)+AE(I)+APO(I)+DF-SP(I)
ENDIF

CONTINUE

TIME STEP
ITTIME=TTIME/DT
NIT=10000

:
<

(S}



25

45

INTTIAL CONDITION:

DO 25 I=0,NC+1
€0(1)=0.0001
CONTIRUE

INITIAL GUESS:
DO 26 I=1,RC+1
C(I)=0.5
CONTINUE

ITERATION
TIME=0.0

PO 30 I1=1,ITTIME
IF(I1.LE.8)THEN
CEN=0.0001
C(0)=CEN

ELSEIF({(I1.GT.8).AK

CEN=1.0
C(0)=CEN

ELSE
CEN=0.0001
C(0)=CEN
ENDIF

M=1

DO 35 I2=1,NIT
IF(M.NE.O)THEN
M=0

DO 40 I3=1,50
b0 45 I=1,NC
IF(I.EQ.1)THEN

SU(I)=(2%D + F)=*CEN

ENDIF
IF(I.EQ.10)THEN
SU(I)=F*C(NC+1)
ENDIF

CN(I)=(1/AP (1)) *(AW(I)*C(I-1)+AE(I)*C(I+1)+APO(I)*CO(I)+SU(I))

CONTINUE
CN (NC+1)=CN(NC)
DO 50 I=1,NC -

ERR=ABS (1-C(I)/CN(I))
IF(ERR.GT..0001) THEN

M=M+1
ENDIF

D.(I1.LE.200))THEN
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50

55

35

60

€5

30

CONTINUE

DO b5 I=1,NC+1
C(I)=CN(I)
CONTINUE
CORTINUE
ENDIF
CORTINUE

IF(M.EQ.O0)THEN

DO 60 I=0,NC+1

Co(I=C(D)

CONTINUE

ENDIF

TIME=TIME + DT

WRITE(1,*) TIME

DO 85 I=0,NC+1

WRITE(1,’ (F10.4,3%,F10.4)7)DXP(I),C(I)
CONTINUE

WRITE(2,’(E10.4,3%,F10.4,3X,F10.8)”) TIME,C(10),DXP(10)

CONTINUE
STOP
END

. |



Appendix C

Data Generation Tables

C.1 One complete Data set used to generate Break-
thorugh curevs for T=0.5, R=1.026, V=3cm /day

Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient L

0.5 3 1.026 1 0.1 1 0.2
0.5 3 1.026 1 0.2 1 0.2
0.5 3 1.026 1 0.3 0.2
0.5 3 1.026 1 0.4 1 0.2
0.5 3 1.026 1 0.5 P 0.2
0.5 3 1.026 1 0.6 0.2
0.5 3 1.026 1 0.7 1 0.2
0.5 3 1.026 1 0.8 0.2
0.5 3 1.026 1 0.9 0.2
0.5 3 1.026 1 0.99 0.2
0.5 3 1.026 1 0.1 0.4
0.5 3 1.026 1 0.2 0.4
0.5 3 1.026 1 0.3 0.4
0.5 3 1.026 1 0.4 0.4
0.5 3 1.026 1 0.5 0.4
0.5 3 1.026 1 0.6 0.4
0.5 3 1.026 1 0.7 0.4
0.5 3 1.026 1 0.8 0.4
0.5 3 1.026 1 0.9 0.4
0.5 3 1.026 1 0.99 0.4
0.5 3 1.026 1 0.1 0.6
0.5 3 1.026 1 0.2 0.6
0.5 3 1.026 1 0.3 0.6
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Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coeflicient

1056 3 1.026 1 0.4 0.6
0.5 3 1.026 1 0.5 0.6
0.5 3 1.026 1 0.6 0.6
0.5 3 1.026 1 0.7 0.6
0.5 3 1.026 1 0.8 0.6
0.5 3 1.026 1 0.9 | 0.6
0.5 3 1.026 1 099 0.6
0.5 3 1.026 1 0.1 0.8
0.5 3 1.026 1 0.2 0.8
0.5 3 1.026 1 1 0.3 0.8
0.5 3 1.026 1 0.4 0.8
0.5 3 1.026 1 0.5 0.8
0.5 3 1.026 1 0.6 1 0.8
0.5 3 1.026 Pl 0.7 0.8
0.5 3 1.026 1 0.8 0.8
0.5 3 1.026 1 0.9 1 0.8
0.5 3 1.026 1 0.9 0.8
0.5 3 1.026 1 0.1 t 1
0.5 3 1.026 1 0.2 1
0.5 3 1.026 1 0.3 1
0.5 3 1.026 1 ¢4 11
0.5 3 1.026 b 0.5 1
0.5 3 1.026 1 0.6 1
0.5 3 1.026 1 0.7 1
0.5 3 1.026 1 0.8 1
0.5 3 1.026 1 0.9 1
0.5 3 1.026 1 0.99 1
0.5 3 1.026 1 0.1 1.2
0.5 3 1.026 i 0.2 1.2
0.5 3 1.026 1 0.3 11.2
0.5 3 1.026 1 4 1.2
0.5 3 1.026 1 0.5 1.2
0.5 3 1.026 1 0.8 1.2
0.5 3 1.026 1 0.9 1.2
0.5 3 1.026 1 0.99 1.2
0.5 3 1.026 1 0.1 14
0.5 3 1.026 1 0.2 1.4
0.5 3 1.026 1 0.3 1.4
0.5 3 1.026 1 0.4 1.4
0.5 3 1.026 1 0.5 1.4

ot



Pore Pore Retardation| Dispersion | Beta Omega
Volume | Velocity factor Coeflicient
0.5 3 1.026 1 0.6 1.4
0.5 3 1.026 1 0.7 1.4
0.5 3 1.026 1 0.8 1.4
0.5 3 1.026 1 0.9 1.4
0.5 3 1.026 1 0.99 1.4
0.5 3 1.026 1 0.1 1.6
0.5 3 1.026 1 0.2 1.6
0.5 3 1.026 1 0.3 1.6
0.5 3 1.026 1 0.4 1.6
0.5 3 1.026 1 0.5 1.6
0.5 3 1.026 1 0.6 1.6
0.5 3 1.026 1 0.7 1.6
0.5 3 1.026 1 0.8 1.6
0.5 3 1.026 1 0.9 1.6
0.5 3 1.026 1 0.99 1.6
0.5 3 1.026 1 0.1 1.8
0.5 |3 1.026 1 2 1.
0.5 3 1.026 1 0.3 1.8
0.5 3 1.026 1 0.4 1.8
| 0.5 3 1.026 1 0.5 1.8
0.5 3 1.026 1 0.6 1.8
0.5 3 1.026 1 0.7 1.8
0.5 3 1.026 1 0.8 1.8
0.5 3 1.026 1 0.9 1.8
0.5 3 1.026 1 0.99 1.8
0.5 3 1.026 1 0.1 2
0.5 3 1.026 1 0.2 2
0.5 I3 1.026 1 0.3 2
0.5 3 1.026 1 0.4 2
0.2 3 1.026 1 0.5 2
0.5 3 1.026 1 0.6 2
0.5 3 1.026 1 0.7 2
0.5 3 1.026 1 0.8 2
0.5 3 1.026 1 0.9 2
0.5 3 1.026 1 0.99 2
0.5 3 1.026 1 0.1 2.2
0.5 3 1.026 1 0.2 2.2
0.5 3 1.026 1 0.3 2.2
0.5 3 1.026 1 0.4 2.2
0.5 3 1.026 1 0.5 2.2
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Pore Pore Retardation| Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 1 0.6 2.2
0.5 3 1.026 1 0.7 2.2
0.5 3 1.026 1 0.8 2.2
0.5 3 1.026 1 0.9 2.2
0.5 3 1.026 1 (.99 2.2
0.5 3 1.026 1 0.1 124
0.5 3 1.026 1 0.2 124
0.5 3 1.026 1 0.3 124
0.5 3 1.026 1 0.4 1 2.4
0.5 3 1.026 1 0.5 2.4
0.5 3 1.026 1 0.6 2.4
0.5 3 1.026 1 0.7 124
05 3 1.026 1 08 24
05 3 1.026 1 0.9 54
0.5 3 1.026 1 0.99 2.4
0.5 3 1.026 1 0.1 2.6
0.5 3 1.026 1 0.2 2.6
0.5 3 1.026 1 6.3 2.6
0.5 3 1.026 1 0.4 2.5
0.5 03 1.026 1 0.5 2.6
0.5 3 1.026 1 0.6 2.6
(.5 3 1.026 1 0.7 2.6
0.5 3 1.026 1 0.8 2.6
0.5 3 1.026 1 0.9 2.6
0.5 3 1.026 1 0.99 2.6
0.5 3 1.026 1 0.1 2.8
0.5 3 1.026 1 0.2 2.8
0.5 3 1.026 1 0.3 2.8
0.5 3 1.020 1 0.4 2.8
0.5 3 1.026 1 0.5 2.8
0.5 3 1.026 1 0.6 2.8
0.5 3 1.026 1 0.7 2.8
0.5 3 1.026 1 0.8 2.8
0.5 3 1.026 1 0.9 2.8
0.5 3 1.026 1 0.99 2.8
0.5 3 1.026 5 0.1 0.2
0.5 3 1.026 5 0.2 0.2
0.5 3 1.026 5 0.3 0.2
0.5 3 1.026 5 0.4 0.2
0.5 3 1.026 3 0.5 0.2
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Pore Pore Retardation| Dispersion | Beta Omega
Volume | Velocity factor Coeflicient

0.5 3 1.026 5 0.6 0.2
0.5 3 1.026 5 0.7 0.2
0.5 3 1.026 5 0.8 0.2
0.5 3 1.026 5 0.9 0.2
0.5 3 1.026 5 1 0.99 0.2
0.5 3 1.026 5 0.1 0.4
0.5 3 1.026 5 0.2 F0.4
0.5 3 1.026 5 0.3 0.4
0.5 3 1.026 5 0.4 0.4
0.5 3 1.026 5 0.5 4
0.5 3 1.026 5 0.6 0.4
0.5 3 1.026 5 0.7 L 0.4
0.5 3 1.026 e 1 0.8 L0
0.5 3 1.026 05 1 0.8 04
0.5 3 1.026 3 099 04
0.5 3 1.026 5 0.1 0.6
0.5 3 1.026 i 5 0.2 0.6
0.5 3 1.026 5 0.3 0.6
0.5 3 1.026 5 0.4 0.6
0.5 3 1.026 5 0.0 0.6
0.5 3 1.026 5 1 0.6 1 0.6
0.5 3 11.026 5 0 06
0.5 3 1.026 5 1 0.8 0.6
0.5 3 1.026 5 0.9 0.6
0.5 3 1.026 5 | 0.99 0.6
0.5 3 1.026 5 0.1 0.8
0.5 3 1.026 5 0.2 0.8
0.5 3 1.026 5 0.3 0.8
0.5 3 1.026 5 0.4 0.8
0.5 3 1.026 15 0.5 0.8
0.5 3 1.026 5 0.6 0.8
0.5 3 1.026 5 0.7 0.8
0.5 3 1.026 5 0.8 0.8
0.5 3 1.026 5 0.9 0.8
0.5 3 1.026 5 0.99 0.8
0.5 3 1.026 5 0.1 1
0.5 3 1.026 5 0.2 1
0.5 3 1.026 5 0.3 1
0.5 3 1.026 5 0.4 1
0.5 3 1.026 5 0.5 1
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Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 5 0.6 1
0.5 3 1.026 5 0.7 1
0.5 3 1.026 3 0.8 1
0.5 3 1.026 5 0.9 1
0.5 3 1.028 5 0.9 1
0.5 3 1.026 5 0.1 1.2
0.5 3 1.026 5 0.2 1.2
0.5 3 1.026 5 0.3 1.2
0.5 3 1.026 5 0.4 1.2
0.5 3 1.026 5 0.5 1.2
0.5 3 1.026 5 0.6 1.2
0.5 3 1.026 5 0.7 11.2
0.5 3 1.026 5 0.8 1 1.2
0.5 3 1.026 5 0.9 1 1.2
0.5 3 1.026 D (.99 1.2
0.5 3 1.026 5 0.1 1.4
0.5 3 1.026 5 0.2 114
0.5 3 1.026 3 0.3 P14
0.5 3 1.026 ) 0.4 1.4
0.5 3 1.026 5 0.5 1.
0.5 3 1.026 5 0.6 1.4
0.5 3 | 1.026 5 0.7 1.4
0.5 3 1.026 5 0.8 1.4
0.5 3 1.026 5 0.9 1.4
0.5 3 1.026 5 0.99 1.4
0.5 3 1.026 5 0.1 1.6
0.5 3 1.026 5 0.2 1.6
0.5 3 1.026 5 0.3 1.6
0.5 3 1.026 5 0.4 1.6
0.5 3 1.026 5 0.5 1 1.6
0.5 3 1.026 5 0.6 1.6
0.5 3 1.026 5 0.7 1.6
0.5 3 1.026 5 0.8 1.6
0.5 3 1.026 5 0.9 1.6
0.5 3 1.026 5 0.99 1.6
0.5 3 1.026 5 0.1 1.8
0.5 3 1.026 5 0.2 1.8
0.5 3 1.026 5 0.3 1.8
0.5 3 1.026 5 0.4 1.8
0.5 3 1.026 5 0.5 1.8
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Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient
0.5 3 1.026 5 0.6 1.8
0.5 3 1.026 5 0.7 1.8
0.5 3 1.026 5 0.8 1.8
0.5 3 1.026 5 0.9 1.8
0.5 3 1 1.026 5 0.99 1.8
05 3 1.026 5 0.1 5
(05 3 1.026 5 02 2
F0.5 3 1.026 3 0.3 2
0.5 3 1.026 3 0.4 2
0.5 3 1.026 5 0.5 2
0.5 3 1.026 5 0.6 2
0.5 3 1.026 5 0.7 2
0.5 3 1.026 5 0.8 2
1 0.5 3 1.026 5 0.9 2
0.5 13 1.026 5 099 2
0.5 3 1.026 5 0.1 2.2
0.5 3 | 1.026 5 0.2 2.2
0.5 3 1.026 5 1.3 2.2
0.5 3 ; 1.026 5 04 2.2
1 0.5 3 1.026 5 0.5 2.2
0.5 3 1.026 5 0.6 2.2
0.5 3 1.026 5 0.7 2.2
0.5 3 1.026 5 0.8 122
0.5 3 1.026 5 0.6 2.2
0.5 3 1.026 5 0.99 2.2
0.5 3 1.026 5 0.1 2.4
0.5 3 1.026 5 0.2 2.4
0.5 3 1.026 5 0.3 2.4
0.5 3 1.026 5 0.4 2.4
0.5 3 1.026 5 0.5 2.4
0.5 3 1.026 5 0.6 2.4
0.5 3 1.026 5 0.7 24
0.5 3 1.026 5 0.8 2.4
0.5 3 1.026 5 0.9 2.4
0.5 3 1.026 5 0.99 2.4
0.5 3 1.026 5 0.1 2.6
0.5 3 1.026 5 0.5 2.6
0.5 3 1.026 5 0.6 2.6
0.5 3 1.026 3 0.7 2.6
0.5 3 1.026 5 0.8 2.6
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Pore Pore Retardation| Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 5 0.9 2.6
0.5 3 1.026 5 0.99 2.6
0.5 3 1.026 5 0.1 2.8
0.5 3 1.026 5 0.2 2.8
0.5 3 1.026 5 0.3 [ 2.8
0.5 3 1.026 5 0.4 L 2.8
0.5 3 1.026 5 0.5 [ 2.8
0.5 3 1.026 5 0.6 (2.8
0.5 3 1.026 5 0.7 2.8
0.5 3 1.026 5 0.8 2.8
0.5 3 1.026 5 0.9 | 2.8
0.5 3 1.026 5 099 128
0.5 3 1.026 7 6.1 | 0.2
0.5 3 1.026 7 1 0.2 L 0.2
0.5 3 1.026 7 0.3 0.2
0.5 3 1.026 7 0.4 1 0.2
0.5 3 1.026 7 [ 0.5 1 0.2
0.5 3 1.026 7 0.6 1 0.2
0.5 3 1.026 7 0.7 0.2
0.5 3 1.026 7 0.8 1 0.2
0.5 3 1.026 7 0.9 1 0.2
0.5 3 1.026 7 0.99 0.2
0.5 3 1.026 7 0.1 0.4
0.5 3 1.026 7 0.2 0.4
0.5 3 1.026 7 03 0.4
0.5 3 1.026 7 0.4 0.4
0.5 3 1.026 7 0.5 0.4
0.5 3 1.026 7 0.6 0.4
0.5 3 1.026 7 0.7 0.4
0.5 3 1.026 7 0.8 0.4
0.5 3 1.026 7 0.9 0.4
0.5 3 1.026 7 0.99 0.4
0.5 3 1.026 7 0.1 0.6
0.5 3 1.026 7 0.2 0.6
0.5 3 1.026 7 0.3 0.6
0.5 3- 1.026 7 0.4 0.6
0.5 3 1.026 7 0.5 0.6
0.5 3 1.026 7 0.6 0.6
0.5 3 1.026 7 0.7 0.6
0.5 3 1.026 7 1 0.8 0.6




Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 7 0.9 0.6
0.5 3 1.026 7 0.99 0.6
0.5 3 1.026 7 0.1 0.8
0.5 3 1.026 7 0.2 0.8
0.5 3 1.026 7 0.3 0.8
0.5 3 1.026 7 0.4 0.8
0.5 3 1.026 7 0.5 0.8
0.5 3 1.026 7 0.6 0.8
0.5 3 1.026 7 0.7 0.8
0.5 3 1.026 7 0.8 0.8
0.5 3 1.026 7 0.9 0.8
0.5 3 1.026 7 0.99 0.8
0.5 3 1.026 7 0.1 Pl
0.5 '3 1.026 7 0.2 i1
0.5 i3 1.026 7 0.3 01
0.5 3 1.026 7 0.4 1
0.5 3 : 1.026 7 0.5 1
0.5 3 1.026 7 06 1
0.5 3 1.026 7 0.7 Pl
0.5 3 1.026 7 0.8 1
0.5 3 1.026 7 0.9 1
05 3 T1.026 7 099 |1
0.2 3 1 1.026 7 0.1 1.2
0.5 3 1 1.026 7 0.2 1.2
0.5 3 | 1.026 7 0.3 1.2
0.5 3 1.026 T 0.4 1.2
0.5 3 1.026 7 0.5 1.2
0.5 3 1.026 7 0.6 1.2
0.5 3 1.026 7 0.7 1.2
0.5 3 1.026 7 0.8 1.2
0.5 3 1.026 7 0.9 1.2
0.5 3 1.026 7 0.99 1.2
0.5 3 1.026 7 0.1 14
0.5 3 1.026 7 0.2 1.4
0.5 3 1.026 7 0.3 1.4
0.5 3 1.026 7 0.4 1.4
0.5 3 1.026 7 0.5 1.4
0.5 3 1.026 7 0.6 14
0.5 3 1.026 7 7 1.4
0.5 3 1.026 7 0.8 1.4




Pore Pore Retardation; Dispersion | Beta Omega
Volume | Velocity factor Coefficient
0.5 3 1.026 7 0.9 1.4
0.5 3 1.026 7 0.99 1.4
0.5 3 1.026 7 0.1 1.6
0.5 3 1.026 7 0.2 1.6
0.5 3 1.026 7 0.3 1.6
0.5 3 1.026 7 0.4 1.6
0.5 3 1.026 7 0.5 1.6
0.5 3 1.026 7 0.6 1.6
0.5 3 1.026 7 0.7 1.6
0.5 3 1.026 7 0.8 1.6
0.5 3 1.026 7 0.9 1.6
0.5 3 1.026 7 0.99 1.6
0.5 3 1.026 7 0.1 1.8
0.5 3 1.026 7 0.2 1.8
105 3 1.026 7 0.3 1.8
0.5 3 1.026 7 0.4 1.8
0.5 3 1.026 7 0.5 1.8
0.5 3 1.026 7 0.6 1.8
0.5 3 1.026 7 0.7 1.8
0.5 3 1.026 7 0.8 1.8
0.5 3 1.026 7 0.9 1.8
0.5 3 1.026 7 0.99 1.8
0.5 3 1.026 7 0.1 2
0.5 3 1.026 7 0.2 2
0.5 3 1.026 7 0.3 2
0.5 3 1.026 7 0.4 2
0.5 3 1.026 7 0.5 2
0.5 3 1.026 7 0.6 2
0.5 3 1.026 7 0.7 2
0.5 3 1.026 7 0.8 2
0.5 3 1.026 7 0.9 2
0.5 3 1.026 7 0.99 2
0.5 3 1.026 7 0.1 2.2
0.5 3 1.026 7 0.2 2.2
0.5 3 1.026 7 0.3 2.2
0.5 3 1.026 7 0.4 2.2
0.5 3 1.026 7 0.5 2.2
0.5 3 1.026 7 0.6 2.2
0.5 3 1.026 7 0.7 2.2
0.5 3 1.026 7 0.8 2.2




Pore Pore - Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient | -

0.5 3 1.026 7 0.9 2.2
0.5 3 1.026 7 0.99 2.2
0.5 3 1.026 7 0.1 2.4
0.5 3 1.026 7 0.2 2.4
0.5 3 1.026 7 0.3 124
0.5 3 1.026 7 0.4 2.4
0.5 3 1.026 7 0.5 2.4
0.5 3 1.026 7 0.6 2.4
0.5 3 1.026 7 0.7 124
0.5 3 1.026 7 0.8 [ 2.4
0.5 3 1.026 7 06 24
0.5 3 1.026 7 0.99 124
0.5 3 1.026 7 1 1 2.6
0.5 3 1.026 T 0.7 126
0.5 3 1.026 T 0.8 F2.6
0.5 3 1.026 7 0.9 26
0.5 3 1.026 7 0.99 2.6
0.5 3 1.026 7 0.1 98
0.5 3 1.026 7 0.2 2.8
0.5 3 1.026 7 0.3 2.8
0.5 3 1.026 7 0.4 2.8
0.5 3 1.026 7 0.5 2.8
0.5 3 1.026 7 0.6 2.8
0.5 3 1.026 7 0.7 P 2.8
0.5 3 1.026 7 0.8 2.8
0.5 3 1.026 7 0.9 2.8
0.5 3 1.026 7 0.99 2.8
0.5 3 1.026 10 0.1 1 0.2
0.5 3 1.026 10 0.2 0.2
0.5 3 1.026 10 03 0.2
0.5 3 1.026 10 0.4 0.2
0.5 3 1.026 10 0.5 0.2
0.5 3 1.026 10 0.6 0.2
0.5 3 1.026 10 0.7 0.2
0.5 3 1.026 10 0.8 0.2
0.5 3 1.026 10 0.9 0.2
0.5 3 1.026 10 0.99 0.2
0.5 3 1.026 10 0.1 0.4
0.5 3 1.026 10 0.2 0.4
0.5 3 1.026 10 0.3 0.4
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Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 10 0.4 0.4
0.5 3 1.026 10 0.5 0.4
0.5 3 1.026 10 0.6 0.4
0.5 3 1.026 10 0.7 0.4
0.5 3 1.026 10 0.8 0.4
0.5 3 1.026 10 0.9 0.4
0.5 3 1.026 10 0.9 0.4
0.5 3 1.026 10 0.1 0.6
0.5 3 1.026 10 0.2 0.6
0.5 3 1.026 10 0.3 0.6
0.5 3 1.026 10 0.4 0.6
0.5 3 1.026 10 0.5 0.6
0.5 3 | 1.026 10 0.6 0.6
0.5 3 1.026 10 0.7 0.6
0.5 L3 1.02¢ 10 0.8 0.6
0.5 3 1.026 10 0.9 0.6
0.5 3 1.026 10 0.99 0.6
0.5 3 1.026 10 0.1 1 0.8
0.5 3 1.026 10 0.2 0.8
0.5 3 1.026 10 0.3 0.8
0.5 3 1.026 10 0.4 0.8
0.5 3 1.026 110 103 0.8
0.5 3 1.026 L 10 0.6 0.8
0.5 3 [ 1.026 10 0.7 0.8
0.5 3 1.026 10 0.8 0.8
0.5 3 1.026 10 0.9 0.8
0.5 3 1.026 10 0.99 0.8
0.5 3 1.026 10 0.1 1
0.5 3 1.026 10 0.2 1
0.5 3 1.026 10 0.3 1
0.5 3 1.026 10 0.4 1
0.5 3 1.026 10 0.5 1
0.5 3 1.026 10 0.6 1
0.5 3 1.026 10 0.7 1
0.5 3 1.026 10 0.8 1
0.5 3 1.026 10 0.9 1
0.5 3 1.026 10 0.99 1
0.5 3 1.026 10 0.1 1.2
0.5 3 1.026 10 0.2 1.2
0.5 3 1.026 10 0.3 1.2
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Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient
0.5 3 1.026 10 0.4 1.2
0.5 3 1.026 10 0.5 1.2
0.5 3 1.026 10 0.6 1.2
0.5 3 1.026 10 0.7 1.2
0.5 3 1.026 10 0.8 1.2
0.5 3 1.026 10 0.9 1.2
0.5 3 1.026 10 0.99 1.2
0.5 3 1.026 10 0.1 1.4
0.5 3 1.026 10 0.2 1.4
0.5 3 1.026 10 0.3 1.4
0.5 3 1.026 10 0.4 1.4
0.5 3 1.026 10 0.5 1.4
0.5 3 1.026 10 0.6 1.4
0.5 3 1.026 10 0.7 1.4
0.5 3 1.026 10 0.8 1.4
0.5 3 1.026 10 0.9 1.4
0.5 3 1.026 10 0.99 1.4
0.5 L3 1.026 10 0.1 1.6
0.5 3 1.026 10 0.2 1.6
0.5 3 1.026 10 0.3 1.6
0.5 3 1.026 10 0.4 1.6
L 0.5 3 1.026 10 0.5 1.6
05 3 1.026 10 0.6 1.6
P05 3 1.026 10 0.7 1.6
0.5 3 1.026 10 0.8 1.6
0.5 3 1.026 110 0.9 1.6
0.5 3 1.026 10 0.99 1.6
[ 0.5 3 1.026 10 0.1 1.8
0.5 3 1.026 10 0.2 1.8
0.5 3 1.026 10 3 1.8
0.5 3 1.026 10 0.4 1.8
0.5 3 1.026 10 0.5 1.8
0.5 3 1.026 10 0.6 1.8
0.5 3 1.026 10 0.7 1.8
0.5 3 1.026 10 0.8 1.8
0.5 3 1.026 10 0.9 1.8
0.5 3 1.026 10 0.99 1.8
0.5 3 1.026 10 0.1 2
0.5 3 1.026 10 0.2 2
0.5 3 1.026 10 0.3 2
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Pore Pore Retardation| Dispersion | Beta Omega
Volume | Velocity factor Coeflicient

0.5 3 1.026 10 0.4 2
0.5 3 1.026 10 0.5 2
0.5 3 1.026 10 0.6 2
0.5 3 1.026 10 0.7 2
0.5 3 1.026 10 0.8 2
0.5 3 1.026 10 1 0.9 )
0.5 3 1.026 10 099 12
0.5 3 1.026 10 0.1 2.2
0.5 3 1.026 10 0.2 12.2
0.5 3 1.026 10 0.3 122
0.5 3 1.026 10 0.4 2.2
0.5 3 1.026 10 0.5 2.2
0.5 3 1.026 10 0.6 1 2.2
0.5 3 1.026 10 0.7 2.2
0.5 3 1.026 10 0.8 2.2
0.5 3 1.026 10 0.9 1 2.2
0.5 3 1.026 10 0.99 122
0.5 3 1.026 10 ! 124
0.5 3 1.026 10 0.2 P24
0.5 3 1.026 10 0.3 2.4
0.5 3 1.026 10 0.4 2.4
0.5 3 1.026 10 [ 0.5 024
0.5 3 1.026 10 0.6 2.4
0.5 3 1.026 10 0.7 104
0.5 3 1.026 10 0.8 2.4
0.5 3 1.026 10 0.9 2.4
0.5 3 1.026 10 0.99 2.4
0.5 3 1.026 10 0.1 2.6
0.5 3 1.026 10 0.7 2.6
0.5 3 1.026 10 0.8 2.6
0.5 3 1.026 10 0.9 2.6
0.5 3 1.026 10 0.99 2.6
0.5 3 1.026 10 0.1 2.8
0.5 3 1.026 10 0.2 2.8
0.5 3 1.026 10 0.3 2.8
0.5 3 1.026 10 04 2.8
0.5 3 1.026 10 0.5 2.8
0.5 3 1.026 10 0.6 2.8
0.5 3 1.026 10 0.7 2.8
0.5 3 1.026 10 0.8 2.8




Pore Pore Retardation Dispersion | Beta Omega
Volume | Velocity factor Coefficient

0.5 3 1.026 10 0.9 2.8

0.5 3 1.026 10 0.99 2.8
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C.2 Data Used for Training the Neural Network
Algorithms for T=0.5, R=1.026, V=3cm/day

Dispersion Beta Omega Equivalent  Dispersion |
Coeflicient Coefficient
1 0.1 0.2 221.12
1 0.2 0.2 198.47
1 0.3 0.2 178.40
1 0.4 0. 160.56
1 0.5 0.2 163.21
1 0.6 0.2 91.99
1 0.7 0.2 55.08
1 0.8 0.2 28.38
1 0.9 02 12.25
1 L 0.99 £0.2 1.08

1 R j.4 133.76
1 0.9 4 130.10
1 0.3 1 0.4 126.48
1 0.4 0.4 119.23
1 0.5 0.4 91.36
1 0.6 0.4 47.23
1 0.7 0.4 27.44
1 0.8 0.4 15.13
1 0.9 0.4 6.38

1 .99 0.4 0.84

1 P 0.1 0.6 126.45
1 0.2 0.6 123.07
1 0.3 0.6 116.21
1 0.4 0.6 86.38
1 0.5 0.6 46.39
1 0.6 0.6 28.65
1 0.7 0.6 17.79
1 0.8 0.6 4.52

1 0.9 0.6 2.72

1 0.99 0.6 1.04

1 0.1 0.8 121.59
1 0.2 0.8 115.20
1 0.3 0.8 86.06
1 0.4 0.8 47.98
1 0.5 0.8 30.85
1 0.6 0.8 20.45




Dispersion Beta Omega Equivalent Dispersion
Coefficient Coefficient
1 0.7 0.8 13.12
1 0.8 0.8 7.58
1 0.9 0.8 2.40
1 0.99 0.8 1.03
1 0.1 1 114.67
1 0.2 1 89.67
1 0.3 1 51.32
1 0.4 1 33.71
1 0.5 1 23.24
1 0.6 1 15.92
1 0.7 1 10.41
1 0.8 1 4.37
1 0.9 1 2.14
1 0.99 1 1.03
1 | 0.1 P 1.2 95.26
1 0.2 112 33.47
i 03 1.2 27.65
1 0.4 1.2 22.52
1 0.5 1.2 18.47
1 0.8 1.2 4.05
1 0.9 1.2 1.95
1 0.99 1.2 0.90
1 0.1 1.4 62.98
1 0.2 1.4 41.39
1 0.3 1.4 29.51
1 0.4 1.4 21.56
1 0.5 1.4 15.67
1 0.6 1.4 11.09
1 0.7 1.4 7.41
1 0.8 1.4 3.74
1 0.9 1.4 1.81
1 0.99 14 1.03
1 0.1 1.6 46.48
1 0.2 1.6 33.18
1 0.3 1.6 24.58
1 0.4 1.6 18.34
1 0.5 1.6 12.42
1 0.6 1.6 10.72
1 0.7 1.6 5.98
1 0.8 1.6 3.85
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Dispersion Beta Omega Equivalent  Dispersion
Coeflicient Coefficient
1 0.9 1.6 1.65
1 0.99 1.6 1.03
1 0.1 1.8 20.70
1 0.2 1.8 16.55
1 0.3 1.8 13.56
1 0.4 1.8 12.58
1 0.5 1. 12.16
1 0.6 1.8 16.28
1 0.7 1.8 2.61
1 0.8 1.8 3.22
1 0.9 1.8 1.61
1 0.99 1.8 1.03
1 0.1 2 16.98
1 0.2 2 13.93
1 0.3 2 112,74
1 0.4 2 12.33
1 0.5 2 12.10
1 0.6 2 9.60
1 0.7 2 3.25
1 0.8 2 3.01
1 0.9 2 1.42
1 0.99 2 0.82
1 0.1 2.2 14.22
1 0:2 2.2 12.97
1 0.3 2.2 12.46
1 0.4 2.2 12.20
1 0.5 2.2 12.02
1 0.6 2.2 8.80
1 0.7 2.2 4.74
1 0.8 2.2 3.04
1 0.9 2.2 1.34
1 0.99 2.2 0.82
1 0.1 2.4 13.30
1 0.2 2.4 12.64
1 0.3 2.4 12.31
1 0.4 24 12.12
1 0.5 24 11.97
1 0.6 2.4 8.09
1 0.7 2.4 4.63
1 0.8 2.4 2.83

(&)



Dispersion Beta Omega Equivalent  Dispersion
Coeflicient Coefficient
1 0.9 24 1.28

1 0.99 2.4 (.82

1 0.1 2.6 12.83
1 0.2 2.6 43.42
1 0.3 2.6 30.95
1 0.4 2.6 19.89
1 0.5 2.6 9.80

1 0.6 2.6 5.61

1 0.7 2.6 4.25

1 0.8 2.6 2.35

1 0.9 2.6 1.27

1 (.99 2.6 10.90

1 0.1 2.8 12.57
1 0.2 2.8 12.35
1 0.3 2.8 12.19
1 0.4 2.8 12.08
1 0.5 2.8 11.90
1 0.6 2.8 6.97

1 0.7 2.8 4.13

1 0.8 2.8 2.49

1 0.9 2.8 1.18

1 (.99 2.8 (.90

5 0.1 0.2 224.97
5 0.2 0.2 201.22
5 0.3 0.2 179.94
5 0.4 0.2 161.14
) 0.5 0.2 170.94
5 0.6 0.2 95.28
5 0.7 0.2 56.93
d 0.8 0.2 30.29
5 0.5 0.2 13.51
5 0.99 0.2 5.22

5 0.1 0.4 134.30
5 0.2 0.4 130.53
5) 0.3 0.4 127.13
) 0.4 0.4 120.95
5 0.5 0.4 99.83
5 0.6 0.4 52.03
5 0.7 0.4 30.03
5 0.8 0.4 16.91
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Dispersion Beta Omega Equivalent  Dispersion
Coeflicient Coeflicient
5 0.9 0.4 7.98

5 0.99 0.4 5.32

5 0.1 0.6 126.81
5 0.2 0.6 123.55
5 0.3 0.6 118.38
5 0.4 0.6 96.87
5 0.5 0.6 52.14
3 0.6 0.6 31.85
5 0.7 0.6 20.03
3 0.8 0.6 6.86

3 0.9 0.6 6.70

5 0.99 0.6 5.18
' 0.1 0.8 122.16
9 0.2 0.8 117.34
5 0.3 0.8 1 97.66
5 0.4 0.8 54.88
5 0.5 0.8 34.7

5 0.6 0.8 23.18
) 0.7 0.8 15.28
5 0.8 0.8 9.54

3 0.9 0.8 6.55

5 0.99 0.8 5.18

D 0.1 1 117.21
5 0.2 1 100.99
5 0.3 1 59.78
5 0.4 1 38.39
5 0.5 1 26.50
5 0.6 1 18.48
L5 0.7 1 12.59
5 0.8 1 9.42

5 0.9 1 6.35

) 0.99 1 2.18

5 0.1 1.2 104.92
5 0.2 1.2 36.36
5 0.3 1.2 29.98
5 0.4 1.2 24.05
5 0.5 1.2 18.54
5 0.6 1.2 13.54
5 0.7 1.2 12.04
5 0.8 1.2 9.57
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Dispersion Beta Omega Equivalent Dispersion
Coefficient Coefficient
5 0.9 1.2 6.17"
5) 0.99 1.2 4.91
5 0.1 1.4 76.36
5 0.2 14 48.35
5 0.3 1.4 34.10
5 0.4 14 25.03
5 0.5 1.4 18.52
5 0.6 14 13.57
5 0.7 1.4 9.73
5 0.8 1.4 9.26
5 0.9 14 6.03
5 0.99 14 5.17
5 0.1 1.6 55.20
3 0.2 | 1.6 38.66
5 0.3 1.6 28.62
5 0.4 1.6 21.60
5 0.5 1.6 12.66
5] 0.6 1.6 12.16
5 0.7 1.6 11.91
5 0.8 1.6 8.22
5 0.9 1.6 5.51
5 0.99 1.6 5.17
5 0.1 1.8 23.90
5 0.2 | 1.8 19.52
5 0.3 1.8 15.39
D 0.4 1.8 13.00
5 0.5 1.8 12.35
5 0.6 1.8 12.13
5 0.7 1.8 11.90
5 0.8 1.8 8.41
5 0.9 1.8 5.84
5 0.99 1.8 5.17
5 0.1 2 20.24
5 0.2 2 16.28
5 0.3 2 13.49
5 0.4 2 12.59
5 0.5 2 12.26
5 0.6 2 12.09
5 0.7 2 11.86
5 0.8 2 8.06

7
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Dispersion Beta Omega Equivalent Dispersion
Coefficient Coefficient
5 0.9 2 6.40
5 0.99 2 5.28
5 0.1 2.2 17.25
5 0.2 2.2 14.16
5 0.3 2.2 12.86
5 0.4 2.2 12.41
5 0.5 2.2 12.20
5 (0.6 2.2 12.05
3 D07 2.2 10.59
5 0.8 2.2 8.31
5 0.9 2.2 6.33
5 (.99 2.2 5.28
13 (0.1 24 14.98
L5 (.2 2.4 13.22
B 03 2.4 12,59
3 0.4 24 12.31
3 (0.5 2.4 12.16
5] L6 2.4 12.03
) 0.7 2.4 11.77
5 0.8 2.4 8.28
5 1 0.9 2.4 6.26
LD 1 (.98 2.4 5.28
5 0 26 13.72
5 F0.5 2.6 19.79
5 0.6 2.6 13.99
15 0.7 2.6 8.09
3 0.8 2.6 6.27
5 1 0.9 2.6 5.22
5 (.99 2.6 4.90
5 101 2.8 13.18
5 1 0.2 2.8 12.61
3 (.3 2.8 12.36
5 04 2.8 12.19
5 0.5 2.8 12.08
5 0.6 2.8 11.99
5 0.7 2.8 11.58
5 0.8 2.8 8.18
5 0.9 2.8 6.14
5 0.99 2.8 4.90
7 0.1 0.2 226.97

©w



Dispersion Beta Omega Equivalent Dispersion

Coefficient Coefficient

7 0.2 0.2 202.51

7 0.3 0.2 180.76

7 0.4 0.2 161.24

7 0.5 0.2 175.16

7 0.6 0.2 97.05 |

7 0.7 0.2 57.95 f

7 0.8 0.2 31.40

7 0.9 0.2 14.41 i

7 0.99 0.2 7.42

7 0.1 0.4 134.57

7 0.2 0.4 130.75

7 0.3 0.4 127.39

7 0.4 0.4 121.47

7 0.5 0.4 103.18

T 0.6 0.4 54.83

7 0.7 0.4 31.56
P 7 0.8 0.4 18.05 |
P 7 0.9 0.4 9.38

7 0.99 0.4 7.48

7 0.1 0.6 126.98

7 0.2 0.6 123.79

7 0.3 0.6 119.07

7 0.4 0.6 101.24

7 0.5 0.6 55.52

7 0.6 0.6 33.73

7 0.7 0.6 21.42

7 0.8 0.6 8.23

7 0.9 0.6 9.93

7 0.99 0.6 7.36

7 0.1 0.8 122.49

7 0.2 0.8 118.09

7 0.3 0.8 102.01

7 0.4 0.8 58.97

7 0.5 0.8 36.98

7 0.6 0.8 24.82

7 0.7 0.8 16.69

7 0.8 0.8 10.99

7 0.9 0.8 9.78

7 0.99 0.8 7.36

7 0.1 1 117.93
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Dispersion Beta Omega Equivalent  Dispersion
Coefficient Coefficient
7 0.2 1 104.80
7 0.3 1 64.83
7 0.4 1 41.11
7 0.5 1 28.41
7 0.6 1 20.05
7 0.7 1 14.05
T 0.8 ! 11.92
7 0.9 1 9.37
7 0.99 1 7.35
7 0.1 1.2 108.33
7 0.2 1.2 37.92
7 0.3 1.2 31.35
7 0.4 1.2 25.18
7 0.5 1.2 19.37
7 0.6 1.2 13.88
7 PO 1.2 12.23
7 0.8 1.2 11.91
7 0.9 1.2 [9.03
7 0.99 1.2 | 6.80
7 0.1 1.4 | 83.83
7 0.2 1.4 | 52.45
7 0.3 1.4 36.74
7 0.4 1.4 27.05
7 0.5 1.4 20.25
7 0.6 1.4 15.16
7 T 1.4 11.35
7 0.8 1.4 11.86
7 0.9 1.4 8.76
7 0.99 1.4 7.35
7 0.1 1.6 60.41
7 0.2 1.6 41.82
7 0.3 1.6 30.95
7 0.4 1.6 23.51
7 0.5 1.6 12.98
7 0.6 1.6 12.29
7 0.7 1.6 12.05
7 0.8 1.6 10.96
7 0.9 1.6 7.66
7 0.99 1.6 7.35
7 0.1 1.8 25.56
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Dispersion Beta Omega Equivalent Dispersion
Coefficient Coefficient
7 0.2 1.8 21.14
7 0.3 1.8 16.86
7 04 1.8 13.57
7 0.5 1.8 12.55
7 0.6 1.8 12.21
7 0.7 1.8 12.06
7 0.8 1.8 11.78
7 0.9 1.8 8.41
7 0.99 1.8 7.35
7 0.1 2 21.96
i 0.2 2 17.91
7 0.3 2 14.41
7 3.4 2 12.86
T 0.5 2 12.36
T 0.6 2 12.17
7 0.7 2 12.03
7 1.8 2 11.69
7 0.9 P2 8.60
7 1 0.99 2 7.4
T 0.1 2.2 18.99
7 4.2 2.2 15.44
T (.3 2.2 13.30
n L04 2.2 12.59
7 P05 2.2 12.26
7 | 0.6 2.2 12.10
7 0.7 2.2 13.62
7 0.8 2.2 10.69
7 0.9 2.2 8.53
7 0.99 2.3 749
7 0.1 2.4 16.58
7 0.2 2.4 13.94
7 0.3 2.4 12.85
7 0.4 24 12.43
7 0.5 2.4 12.23
7 0.6 2.4 12.11
7 0.7 2.4 11.99
7 0.8 24 10.58
7 0.9 2.4 8.47
7 0.99 2.4 7.42
7 0.1 2.6 14.80




Dispersion Beta Omega Equivalent Dispersion
Coeflicient Coeflicient
7 0.7 2.6 9.94

7 0.8 2.6 8.20

7 0.9 2.6 7.18
7 0.99 2.6 6.88

7 0.1 2.8 13.80
7 0.2 2.8 1 12.88
7 0.3 2.8 | 12.46
7 0.4 2.8 12.29
7 0.5 2.8 12.14
7 0.6 2.8 12.08
7 0.7 2.8 11.94
7 0.8 2.8 10.36
7 0.9 2.8 8.36

7 0.99 2.8 6.88
10 P 0.1 0.2 225.97
10 0.2 0.2 204.62
10 0.3 0.2 181.86
10 0.4 0.2 161.77
10 0.5 0.2 181.66
10 0.6 0.2 99.85
10 0.7 0.2 59.60
10 0.8 0.2 33.30
10 0.9 0.2 16.18
10 0.99 0.2 11.32
10 0.1 0.4 134.73
10 0.2 0.4 131.09
10 0.3 0.4 127.50
10 0.4 0.4 122.34
10 0.5 0.4 107.44 |
10 0.6 104 59.58 ‘
10 0.7 0.4 34.17
10 0.8 0.4 20.13
10 0.9 0.4 11.97
10 0.99 0.4 10.31
10 0.1 0.6 127.46
10 0.2 0.6 124.20
10 0.3 0.6 120.01
10 0.4 0.6 106.26
10 0.5 0.6 61.29
10 0.6 0.6 36.89
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Dispersion Beta Omega Equivalent = Dispersion
Coefficient Coefficient
10 0.7 0.6 23.82
10 0.8 0.6 9.96
10 0.9 0.6 12.00
10 0.99 0.6 11.21
10 0.1 0.8 123.39
10 0.2 0.8 119.08
10 0.3 0.8 107.14
10 0.4 0.8 65.99
10 0.5 0.8 40.77
10 0.6 0.8 27.58
10 0.7 0.8 19.13
10 0.8 0.8 13.59
10 0.9 0.8 11.97
10 0.99 0.8 T11.20
10 g.1 1 1 119.13
10 0.2 t1 | 109.33
10 0.3 1 | 73.49
10 0.4 1 i 45.66
10 0.5 1 31.61
10 0.6 1 22.72
10 0.7 1 16.61
10 1 0.8 1 12.20
10 0.9 L] 11.92
10 0.9% 1 11.18
10 0.1 1.2 111.59
10 0.2 (1.2 40.36
10 0.3 1.2 33.55
10 0.4 1.2 27.16
10 0.5 1.2 21.15
10 0.6 1.2 15.38
10 0.7 11.2 12.54
10 0.8 1.2 12.16
10 0.9 1.2 11.93
10 0.99 1.2 9.85
10 0.1 1.4 94.22
10 0.2 1.4 59.44
10 0.3 1.4 41.13
10 0.4 1.4 30.41
10 0.5 1.4 23.13
10 0.6 1.4 17.87
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Dispersion Beta Omega Equivalent Dispersion
Coefficient Coefficient
10 0.7 1.4 14.10
10 0.8 1.4 12.09
10 0.9 1.4 11.89
10 0.99 1.4 11.19
10 0.1 1.6 69.33
10 0.2 1.6 47.10
10 0.3 1.6 34.79
10 0.4 1.6 26.69
10 0.5 1.6 14.10
10 0.6 1.6 12.61
10 0.7 1.6 12.24
10 0.8 1.6 14.62
10 0.9 1.6 10.81
10 | 0.99 1.6 11.19
10 0.1 1.8 28.05
10 0.2 1.8 23.63
10 0.3 1.8 16.38
10 A 1.8 15.39
10 0.5 1.8 13.07
10 0.6 1.8 12.41
10 0.7 1.8 12.18
10 0.8 1.8 12.05
10 0.9 1.8 11.86
10 (.99 1.8 11.19
10 0.1 2 24.51
10 0.2 2 20.53
10 0.3 2 16.71
10 0.4 2 13.76
10 0.5 2 12.71
10 0.6 2 12.31
10 0.7 2 12.18
10 0.8 2 12.07
10 0.9 2 11.48
10 0.99 2 10.26
10 0.1 2.2 89.99
10 0.2 2.2 72.06
10 0.3 2.2 55.99
10 0.4 2.2 41.94
10 0.5 2.2 30.86
10 0.6 2.2 22.98




Dispersion Beta Omega Equivalent  Dispersion
Coefficient Coefficient
10 0.7 2.2 17.64
10 0.8 2.2 13.97
10 0.5 2.2 11.39
10 0.99 2.2 10.26
10 0.1 2.4 19.27
10 0.2 2.4 16.00
10 0.3 2.4 13.71
19 0.4 24 12.79
10 0.5 24 12.39
10 0.6 2.4 12.25
10 0.7 2.4 12.16
10 0.8 2.4 13.77
10 0.9 2.4 11.31
10 0.99 2.4 10.26
10 0.1 26 17.29.
10 0.7 2.6 12.56
10 0.8 2.6 11.00
10 0.9 2.6 10.09
10 0.99 2.6 9.85
10 0.1 2.8 15.69
10 0.2 2.8 13.75
10 0.3 2.8 [12.90
10 0.4 2.8 12.48
10 0.5 28 12.34
10 0.6 2.8 12.20
10 0.7 2.8 12.08
10 0.8 2.8 13.43
10 0.9 2.8 11.19
10 .99 2.8 8.85
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