INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

NOTE TO USERS

This reproduction is the best copy available.

Aot ofelofel el e Sl ettt ofel Jel e et el el e e e o el el

el

}
ol

iokel el e ot Jelale

oY

s

)

{afelofe e el e lofelole el ool S el el Jel e el el el el el el el e

MULTISELECTION ON SOME
INTERCONNECTION NETWORKS

BY
Adel Fadhl Noor Ahmed

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER SCIENCE

«WﬂWﬁWWWWWW%TWWﬁWWWWﬂWWW&

A P P PP PP PP P PR

UMI Number: 1406482

®

UMI

UMI Microform 1406482

Copyright 2002 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Mi 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Adel Fadhl Noor Ahmed under the direction of his thesis advisor,
and approved by his thesis committee, has been presented to and accepted by the Dean of
Graduate Studies, in partial fulfillment of the requirements for the degree of MASTER
OF SCIENCE IN COMPUTER SCIENCE

Dr. Mohammed Alsuwaiyel (Thesis Advisor)

N

Dr. Muhammad Sarfraz (Member)

I

Dr.’lrasir\A]-Darwish (Member)

Kaneson¥arse J 19/9/ 200\
Dr. Kanaan Faisal
Department Chairgan |

Dr. Osama Ahmed Jannadi
Dean of Graduate Studies

1alafreel
Date

To my parents

Acknowledgment

Acknowledgement is due to King Fahd University of Petroleum and Minerals for

supporting this research.

I would like to express my deep gratitude to my thesis committee chairman, Dr.
Muhammad Alsuwaiyel for his continuous assistance and support. I am indebted to my
thesis committee Dr. Mohammed Sarfraz and Dr. Naser Darwish for their time, guidance

and suggestions.

I am thankful to the dean of College of Computer Science and Engineering Dr. Jaralla Al-
Ghamdi and the chairman of department of Information and Computer Science, Dr.

Kanan Faisal and other faculty members for their cooperation and support.

I would also like to express my gratitude to my father Dr. Fadhl N. M. Ahmed for his
guidance to build a better future, my mother for taking pains to fulfill my academic
pursuits and building my personality, my siblings and all the members of my family for

their emotional and moral support through my academic career.
Last but not least let me mention my sincere appreciation to my friends for their help and

encouragement: Hani Al-Arifi, Mohammed Al-Sheheri, Talal Al-Bakr, Purushothaman,
and especially Mutlaq Al-Mutlaq for giving me the final push to finish this work.

iv

Table of Contents

Table of Figures ix
Abstract (English) xi
Abstract (Arabic) xii
Chapter 1 Introduction 1
11 Selection and Multiselection 2
1.1.1 The Selection Problem . .« oottt vttt et i ieeneaosnnss
1.1.2 The MultiselectionProblemottt eeeieeenenns 5

1.2 Computational Models 6
1.2.1 RandomAccessMaching civeeeeeeeeenneeens 6
1.2.2 Parallel Random Access Machinec.ccieeevune.. 7
1.2.3 Interconnection Networks cviee v i vt veneenenseen 9

13 Performance Analysis and Notations | 14
1.3.1 Space Complexityveviineeniiieniaiann 14
1.3.2 Time Complexitycceiveieeneennnnann 15
133 AsymptoticNotationo v niiee et 20

14 Literature Overview 26

1.5 Selection Problem on the RAM 30
1.5.1 The SelectionProblemoveeeeeiieeeennnons 30
1.5.2 Sequential Selectionooi ittt i 32

1.6 Summary 35

Chapter 2 Parallel Computation on PRAM 38

2.1 Introduction and Definitions 38
2.1.1 Algorithm Analysis . .+« oot i i i et it e 40
212 Rumning Timecoiiiiieinnnneeanannn 43
2.13 Speedupand Slowdownc oL 45
2.14 Cost, Work and Efficiencyccoveiaon. 50

2.2 Fundamental PRAM Algorithms 53
2.2.1 Broadcastingonthe PRAM 53
222 Prefix Computationonthe PRAM 54

23 Sorting on the PRAM 61
23.1 Finding the Median of Two Sorted Sequences 61
232 Fast Mergingon EREWPRAM 64
233 Sortingonthe PRAM 67

24 Selection on the PRAM 69
24.1 Parallel Selection cii i, 70

2.5 Multiselection on the PRAM 73
25.1 Adaptive Multiselectiont 73
252 The PRAM Parallel Algorithm 74

2.6 Summary 76

Chapter 3 Parallel Computation on the interconnection 79
Networks

3.1 Difference Between PRAM model and the Interconnection 80
Networks
3.1.1 Linear AIrayccvecenenieneeonenennenanas 87
3.12 Mesh ... ittt it i i e 88
3.13 Hypercube, 90
3.1.4 Butterfly oottt i e e e 97
3.2 Fundamental Algorithms 101
3.2.1 Broadcastingciveiiiiiinniinenennannn. 101
322 Prefix Computationevvitiieeieenennnennn. 103
323 DataConcentration . . .« « v et vevveveeeeneneecanans 109
324 Merging .« oo vttt i it et et 112
3.3 Sorting on Interconnection Network 116
3.3.1 SortingontheLinear Arraycoviivinvenaan... 117
3.3.2 Odd-Even Merge SortontheMesh 120
3.33 Sortingonthe Hypercube i, 121
3.4 Selection on Interconnection Networks 127
34.1 The Universal Selection Algorithm 127
34.2 Selectiononthe LinearArrayccoutnnn. 131
343 SelectionontheMesh 131
344 Selectiononthe Hypercubecovaal.. 132
3.5 Multiselection on the Interconnection Networks 133

3.5.1 Universal Multiselection Algorithm 133

3.5.2 Multiselection on the Linear AITay . ..o o it i i

3.5.3 Multiselectiononthe Mesh v it i it o e e eenn.

3.54 Multiselection on the Hypercube

3.6 Summary

References

Vita

135

136

145

149

153

155

Table of Figures

Figure 1.2-1 Aring (Linear Array)« oo oo oot 10
Figure 1.2-2 Mesh Networkuoieiniinnnennerenneannnnn 12
Figure 1.2-3 Hypercube Networko oo viviennieeeennnnnn. 12
Figure 1.2-4 Butterfly Networkoienunenniieeneeennnn. 13
Figure 1.5-1 Main Idea Behind Algorithm Sequential Selection 34

Figure 2.2-1 Distributing a Datum to Eight Processors Using the PRAM Broadcast

Algorithm AR 55
Figure 3.1-1 Graphical Representation of a 5-processor PRAM 82
Figure 3.1-2 Linear Array of Processors« oo vviiiiennnnnnnn. 87
Figure 3.1-316-processor Mesho oovieeeeeeninninnnnnnnnnn 90
Figure 3.1-4 Hypercubes of Dimensions 1, 2, 3, and 4 92
Figure 3.1-5 The Butterfly Netowrko oo ivieeeneaiinn o, 97
Figure 3.3-1 Implementation of the Odd-Even Merge Algorithm on a Butterfly 124
Figure 3.3-2 Implementation of the Odd-Even Merge Algorithm on a Butterfly 124
Figure 3.5-1 MultiselectionSurfacec..ceieineeieeennn. 138
Figure 3.5-2 Sorting Surface with Linearz-axis« « oo vveiieeeo.. 139
Figure 3.5-3Sorting Surface« o oo v e i inn it 139
Figure 3.5-4 Difference Surface [1<n<10"]. 140
Figure 3.5-5 Difference Surface oo eiieneniennatie... 141
Figure 3.5-6 A Cross Section of the Multiselection Mesh and the Sorting Mesh

when the Number of elementsisverysmall 143

ix

Figure 3.5-7 A Cross Section of the Multiselection Mesh and the Sorting Mesh

when the Number of elements isverylarge 143
Figure 3.5-8 Multiselection Performance Surface on the Hypercube. 147
Figure 3.5-9 Sorting Performance Surface on the Hypercube 147
Figure 3.5-10 Difference Surface Between Sorting and Multiselection 148

Thesis Abstract

NAME : ADEL FADHL NOOR AHMED

TITLE : MULTISELECTION ON SOME INTERCONNECTION
NETOWRK

MAJOR FIELD : COMPUTER SCIENCE

DATE OF DEGREE : JULY, 2001

As time passes by, more and more computers get connected to the Internet creating the
environment ancient researches in parallel and distributed applications only dreamt of.
Programmers and application developers turned to distributed processing to accomplish
tasks with greater speeds. Unlike the classic single processor machine, the
interconnection network facilitates simultaneous execution for multiple instructions. This

assisted the rapid expansion of parallel algorithms and architectures.

Several parallel algorithms are devised such that they depend on preprocessing phases to
prepare data for processing. Selection and Multiselection arise very often is such cases.
Unlike selection, the multiselection problem did not get its share in studies. Some special
case solutions were suggested but no detailed or universal solution for the problem was to
be found in the literature. In this study we present a parallel multiselection algorithm
suitable for execution on some interconnection network. After building the proper
background to pave the way for the solutions, the multiselection problem is defined.
Then the universal algorithm for multiselection is studied in detail. Compared with other
less-direct ways to accomplish the task of multiselection, our algorithm proved to

perform better than any other on a fairly large range in the problem domain.

Al Acds,

soanl jeidamigndile 1 ameee)

Alaidl el Gany e saadd) Gy Al ol g—is
sl agle 1 Al

PY~~_?3X_,3; o~ & 5

5 A3 sl ikl Jlas (b ofald s el CigEYl duaB A sl 22 L)) g
Wiiaay el seds Y o D 5 B) o gl sl g skl Asulie A de)l
e clulal GDlAy Ll A e pu el @l LA cle) Al e ke s de s
Jae ki Ao o acbe Lae Gl Jilly ot O shd 20 Jgud Aliaiall SASWEN ¢ 3aaly Ciladledll
Ayl el psaliaill 5 s)) 55
Agiatlan 0 il Sapatl & ppiant st o)il e sl e |88 pared aain
Al .ciphall Al B ek Lo Wle) Clse sl o2 (ians 3Bl e saiall JLGaY) 5 JLsaY)
el pSe Jo bl) G lgal o duasd o) A dlad) e e (o dadidl Lasd)
sl LA Jemie 5 ole Ja) daifall aal el S ¢ duals GV b dsag e - s AY)
ded L Al Sl gl el e dmll AL ssall LAY D) lss ALl oda (B (i s
A S (e g 2axiall JLEAY) Adle dpe oAl ALLS Aud j3)58 axial) JLEAY) Allisal (383 iy ya3 ollac)
Sl e asidl LgaY) Alas da il el ledaituly oSe sl cilei s ae e Al

. allaid)

Chapter 1

Introduction

The selection problem comes under a category of problems called Order Sratics. The kth
order static of a set of n elements is the kth smallest element. The multiselection problem

is to find the elements of ranks %,,k,,...k, , that is, the £, th, ,th, up to the £, th smallest

element of a set of n elements, where 1<r <n. This chapter is an introductory chapter.
In section 1.1 we present a formal introduction of the selection and the multiselection
problems. In section 1.2, a brief survey of various computation models is presented. The
analysis notations and conventions used in the literature and in this material will be
followed in section 1.3. Literature overview, section 1.4, contains a history of previous
results and solutions to the selection and multiselection problems on several computation
models and specifies the scope and goals of this material. Section 1.5 presents the
classical solution to the selection problem on the Random Access Machine (RAM) model.

See 1.2.1 for more detail on the RAM model.

1.1 SELECTION AND MULTISELECTION

1.1.1 The Selection Problem

The problem —as mentioned in [25] is:
Input: A set 4 of n (distinct) numbers and a number &k, with 1 <k < n.

Output: The element x € 4 that is larger than exactly & —1 other elements of 4.

A more general definition of the problem is found in [23] that states: Given a sequence

s ={s,,5,,...,5,} of numbers listed in arbitrary order and an integer k, where 1<k <n the

problem of selection calls for determining the 4th smallest element of S. Here we include
the situation where equal elements exist in the sequence. In this case ties between
elements are broken using their indices: If two elements of S are equal, then the one with

the smaller index is considered to be smaller (i.e. if s, =s,then s,is considered smaller

than s, ifj <*k.

The selection problem arises in many applications in computer science and statistics.
Before we look into the solution of the selection problem we establish a lower bound of
the problem. This will draw a guideline for our initial goal of devising a fast efficient
algorithm for the problem. In [14] the selection problem was shown to belong to a family
of problems known as comparison problems. These problems are usually solved by
comparing pairs of elements of an input sequence. Three special cases arise whenk=1, k

= n, and k=[n/2]. In the first two cases we are looking for the smallest and largest

elements of S, respectively. In the third case we are looking for the median. An element

s, 1s said to be the median of a set S if half of the elements of S are smaller than (or equal

to) it and the other half is larger (or equal). Putting these special cases aside, and
examining the general case it is certain that regardless of the value of k, in order to
determine the Ath smallest element, we must examine each element of § at least once [14].

This establishes a lower bound of Q(#n)on the number of sequential steps required to

solve the problem.

One simple way to solve the selection problem is by using heap sort or merge sort and

then simply extract the kth element in the output set. But this requires Q2(nlogn) time.

This approach, however, solves the problem for every value of & from 1 to n, implying

that perhaps a more efficient algorithm may exist that finds the kth smallest element only

for the given k [23]. The minimum and maximum can be found separately with n—1
3n

comparisons, and both can be found in = comparisons.

The upper bound for finding the minimum can be easily obtained: examine each element

of the set in turn and keep track of the smallest element seen so far.

Finding the minimum using Algorithm 1 will take »—1 comparisons. By modifying the
algorithm above, the maximum can also be found with »—1 comparisons. This is the
best algorithm that can be devised for the problem and Algorithm 1 is optimal with

respect to the number of comparisons performed.

Algorithm MINIMUM

1. min = A[1]

2. for i =2 to length[A] do
3. if min > A[i]

4. min = A[1]
5. end if

6. end for

7. return min

Algorithm 1.1-1 Algorithm Minimum

It is not too difficult to devise an algorithm that can find both the maximum and minimum
of n elements. One simple solution is to find the minimum and the maximum element
independently, using »—1 comparisons for each, for a total of 2n—2 comparisons. But

in fact, only 3[-—;-] comparisons are necessary to find both the minimum and the maximum.

To do this, we maintain the minimum and maximum elements seen thus far. Rather than
processing each element of the input by comparing it against the current minimum and
maximum, however, at a cost of two comparisons per element, we process elements in
pairs. We compare pairs of elements from the input first with each other, and then
compare the smaller to the current minimum and the larger to the current maximum, at a

cost of three comparisons for every two elements.

For the general selection, as mentioned above, sorting is not the optimal solution.
Instead, the idea behind selection is to find the median of the element set. The median m
is an element with the property that the number of elements smaller than m are equal to
the number of elements larger than m in the elements set. Then the element set is

partitioned into three subsets. One containing elements that are smaller than the median,

one subset containing all the elements equal to the median, and the last subset containing
elements larger than the median. Next, elements are discarded from future consideration
by counting the size of the subsets and recursively do the same procedure again with the
remaining sets. The selection problem and its solution are discussed in more details in

section 1.5

1.1.2 The Multiselection Problem

Multiselection problem is an extension to the selection problem in which, we are to find
not only one element, namely the kth smallest element, but a set of elements of ranks
k.k,,...k,. Thatis, we have to find the k,th, k,th, up to the £, th smallest element of a
set of n elements, where 1<r <n. We saw earlier that finding the minimum and the

maximum element can be done in 3|_-'21-| comparison steps, this is a case of the

multiselection problem where k, =1 and &k, =n.

A simple solution to the multiselection problem is to sort the set of element in O(nlogn)
steps and index the elements at positions k,%,,...k,. But again, this solution is not
optimal since the lower bound for selection problem, as will be established in section 1.5,
is Q(n). A divide-and-conquer approach is used to solve this problem, where the

problem space is divided into two sub problems, in which the element set and the rank set
is partitioned into two halves, then each sub problem is solved separately as two smaller

multiselection problems. The final solution is combined at the end to get the elements

required. As it was for the selection problem, the multiselection problem is bounded by

Q(nlogr) where n is the number of elements, and 7 is the number of ranks. Chapter 2

contains detailed analysis of the process.

1.2 COMPUTATIONAL MODELS

Before searching for a suitable solution for any problem the type of machine used to solve
the problem has to be determined. In the following, some of the most popular

architectures are presented.

1.2.1 Random Access Machine

The solution provided above is suitable to a model of computation called Random Access
Machine RAM, which consists of a memory with M locations, a processor operating
under a sequential algorithm, and a memory access unit (MAU) whose purpose is to
create a path from the processor to an arbitrary location in the memory. I::,ach step of the
algorithm consists of up to three phases as mentioned in [23].
1. A READ phase, in which the processor reads a datum from an arbitrary location in
memory into one of its registers
2. A COMPUTE phase, in which the processor performs a basic operation on the
contents of one or two of its registers, and

3. A WRITE phase, in which the processor writes the contents of one register into an

arbitrary memory location.

1.2.2 Parallel Random Access Machine

Another model that became very popular recently is the Paralle] Random Access Machine

(PRAM). This model consists of a number of identical processors B, B,..., P, where N is

arbitrarily large. A common memory with M locations, arbitrarily large such that
M 2=N. And a memory access unit (MAU) that allows the p%ocessors to gain access to

memory.

Each step of the algorithm for the PRAM also consists of (up to) three phases:
1. AREAD phase, in which (up to N) processors read simultaneously from (up to N)
memory locations.
2. A COMPUTE phase, in which (up to N) processors perform basic arithmetic or
logical operations on their local data
3. A WRITE phase, in which (up to N) processo%s write simultaneously into (up to

N) memory locations.

There are number of different ways for the processors to gain access to memory
a) Exclusive Read (ER): Processors gain access to memory locations for the
purpose of reading in a one-to-one fashion.
b) Concurrent Read (CR): Two or more processors can read from the same
memory location at the same time.
c) Exclusive Write (EW): Processors gain access to memory locations for purpose

of writing in a one-to-one fashion.

d) Concurrent Write (CW): Two or more processors can write into the same
memory location at the same time. Several extensions are available for the CW
instruction

a. Priority CW: The processors are assigned certain priorities. Of all the
processors attempting to write in a given memory location, only the one
with the highest priority is allowed to do so.

b. Common CW: Processors will succeed in writing to the same memory
location if they attempt to write the same value. This is further specified
as:

i. Fail Common: The content of the memory is unchanged if the
written values are not all equal.
ii. Collision Common: A “failure” label is stored in the memory
location in case the CW does not succeed
ili. Fail-Safe Common: The algorithm must be designed to overcome
a CW failure situation.

c. Arbitrary CW: Any processor can succeed in writing arbitrarily to the
memory location. The algorithm must decide how this will be done.

d. Random CW: Choose at random which processor will write to the
memory location.

e. Combining CW: All the values are combined into a single value, which
is then stored in the memory location. The following variants are

available:

i. Arithmetic functions: Using sum, product, average ...etc.
ii. Logical functions: Using the OR, XOR, NAND .. etc.

iii. Selection functions: Using Min, Max ...etc.

1.2.3 Interconnection Networks

A network can be viewed as a graph G = (N, E) where each node i€ Nrepresents a
processor, and each edge (i, j) € E represents a two-way communication link. There is no

shared memory. Instead, the M memory is distributed among N processors. Two
processors directly connected by a link are said to be neighbors. As described earlier, the
processors in the PRAM model use shared memory. A PRAM model can also be
modeled as a complete graph where each processor is connected with every other
processor by a communication link i.e. each processor is the neighbor of every other

processor. In an N processor PRAM model each processor P, has exactly N-1 neighbors.

Interconnected networks differ in various aspects; network topology, number of neighbors
for each processor, message size, transmission delay, transmission path, processors ...etc.
All of them have a major role in shaping the and designing of a suitable algorithm for a

certain problem.

There are several parameters used to evaluate the topology of a network G. Diameter,

which is the maximum distance between any pair of nodes, maximum degree of any

10

node in G, and edge connectivity of G. In describing algorithms for the network model,
we need additional construct for describing communication between processors. send/()
and receive() are used to send and receive a copy of a variable to and from a processor

respectively.

Linear Array
We now turn to a description of the various network topologies that are studied in theory
and practice. The simplest and most fundamental topology, which consists of p

processors B, P,,..., P, connected in a linear array; that is, processor 7, is connected to

!

P, and to P,

i+l?

whenever they exist. A ring is linear array of processors with an end-

round connection; that is, processor P, and Py are directly connected. See Figure 1.2-1

Figure 1.2-1 A ring (Linear Array)

Mesh

The two-dimensional mesh, Figure 1.2-2 , is a two-dimensional version of the linear
array. It consists of N =m’processors arranged into an mxm grid such that processor

P, is connected to processors P, ; and P, ;,;, whenever they exist. The mesh model can

be generalized to dimensions higher than two. In a d-dimensional mesh, each processor is

11

connected to two neighbors in each dimension, with processors on the boundary having

fewer connections

Hypercube
A hypercube consists of N =27processors interconnected into a d-dimensional
hypercube such that each processor is connected to exactly g neighbors. The d neighbor

of P, are those processors P, such that the binary representations of the indices / and j

differ in exactly one bit. Figure 1.2-3 shows a 3 dimensional hypercube.

Butterfly

A d—dimensional butterfly consists of (d +1)2° nodes and 42" connection. Each

processor is connected to at most 4 neighbors, independent of 4. This property makes
butterfly networks more desirable to work with rather than the hypercubes. In addition,
algorithms devised on the butterfly network can be easily adapted to work on the
hypercube. This makes butterfly networks a suitable candidate to develop algorithms for

the hypercubes. Figure 1.2-4 shows a butterfly network.

Column
o 1 2 3
o | po) P(0.1) P(0.2) P(0.3)
1 P(1.0) P(1.1) P(1,2) P(1.3)
Row
2 P(2,0) P(2,1) P(2,2) P(2,3)
3 P(3.0) P(3.1) P(3.2) P(3.3)

Figure 1.2-2 Mesh network

110J—

m

A
Q
-t

000

~

1

Figure 01.2-3 Hypercube network

12

(1)

001 010 011 100 101 110 111

level=0

“‘.} RO level=1

‘ level=3

Figure 01.2-4 Butterfly network

13

14

1.3 PERFORMANCE ANALYSIS AND NOTATIONS

1.3.1 Space Complexity

Definition 1.3-1 Space/Time Complexity

The space complexity of an algorithm is the mount of memory it needs to run to
completion. The time complexity of an algorithm is the amount of computer time it needs

to run to completion.

The space needed by any algorithm is seen to be the sum of the following components:

1. A fixed part that is independent of the characteristics (e.g., number, size) of the
inputs and outputs. This part typically includes the instruction space (i.e., space
for the code), space for simple variables and fixed-size component variables (also
called aggregate), space for constants, and so on.

2. A variable part that consists of space needed by component variables whose size is
dependent on the particular problem instance being solved, the space needed by
referenced variables (to the extent that this depends on instance characteristics),
and the recursion stack space (insofar as this space depends on the instance

characteristics).

15

The space requirement S(P) of any algorithm P may therefore be written as

S(P)=c+S,, where S, is the instance characteristics and ¢ is a constant.

When analyzing the space complexity of an algorithm, we concentrate solely on
estimating S, (instance characteristics). For any given problem, we need first to
determine which instance characteristics to use to measure the space requirements. This
is very problem specific, and we resort to examples to illustrate the various possibilities.
Generally speaking, our choices are limited to quantities related to the number and
magnitude of the inputs to and output from the algorithm. At times, more complex

measures of the interrelationships among the data items are used.

1.3.2 Time Complexity

The time 7'(P) taken by a program P is the sum of the compile time and the run (or

execution) time. The compile time does not depend on the instance characteristics. Also,
we may assume that the compiled program will be run several times without
recompilation. .Consequently, we concern ourselves with just the run time of a program.

This time is denoted by ¢, (instance characteristics).

Because many of the factors, z, depend on, are not known at the time a program is

conceived, it is reasonable to attempt only to estimate f,. If we knew the characteristics

16

of the compiler to be used, we could proceed to determine the number of additions,
subtractions, multiplications, divisions, compares, loads, stores, and so on, that would be

made by the code for P. So, we could obtain an expression for #,(n) of the form

t,(n) =c,ADD(n) + ¢, SUM(n) + ¢, MUL(n) + c,DIV (n) + -+

where # denotes the instance characteristics, and c,,¢,,c,, and so on, respectively, denote

the time needed for an addition, subtraction, multiplication, and so on, and ADD, SUB,
MUL, and so on, are functions whose values are the numbers of addition, subtractions,
multiplications, and so on, that are performed when the code of P is used on an instance

with characteristic ».

Obtaining such an exact formula is in itself an impossible task, since the time needed for
an addition, subtraction, multiplication, and so on, often depends on the numbers being
added, subtracted, multiplied, and so on. The value of #,(n) for any given »n can be
obtained only experimentally. The program is typed, compiled, and run on a particular
machine. In a multi-user system, the execution time depends on such factors as system
load, the number of other programs running on the computer at the time program P is run,

the characteristics of these other programs, and so on.

Given the minimal utility of determining the exact number of additions, subtractions, and

so on, that are needed to solve a problem instance with characteristics given by n, we

17

might as well lump all the operations together (provided that the time required by each is
relatively independent of the instance characteristics) and obtain a count for the total
number of operations. We can go one step further and count only the number of program

steps.

A program step is loosely defined as a syntactically or semantically meaningful segment
of a program that has an execution time that is independent of the instance characteristics.

For example, the entire statement

return a+b+b*c+(d-a)/3*b;

of an algorithm could be regarded as a step since its execution time is independent of the
instance characteristics (this statement is not strictly true, since the time for multiply and

divide generally depends on the numbers involved in the operation)

The number of steps any program statements is assigned depends on the kind of
statement. For example, comments count as zero steps; an assignment statement which
does not involve any calls to other algorithms is counted as one step; in an iterative
statement such as the for, while, and repeat-until statements, we consider the step counts
only for the control part of the statement. The control parts for for and while statements

have the following forms:

18

for i = <expr> to <expri> do

while (<expr>) do

Each execution of the control part of a while statement is given a step count equal to the
number of step counts assignable to <expr>. The step count for each execution of the
control part of a for statement is one, unless the counts attributable to <expr> and
<expr]> are functions of the instance characteristics. In this latter case, the first
execution of the control pé.rt of the for has a step count equal to the sum bf the counts for
<expr> and <exprl> (note that these expressions are computed only when the loop is

started). Remaining executions of the for statement have a step count of one; and so on.

We determine the number of steps needed by a program to solve a particular problem
instance in one of two ways. In the first method, we introduce a new variable, count, into
the program. This is a global variable with initial value 0. Statements to increment count
by the appropriate amount are introduced into the program. This is done so that each time
a statement in the original program is executed, count is incremented by the step count of

that staternent.

When analyzing a recursive program for its step count, we often obtain a recursive

formula for the step count, for example

2 if n=0
p(n)= 2+1,(n-1) ifn>0

19

These recursive formulas are referred as recurrence relations. One way to solving any
such recurrence relation is to make repeated substitutions for each occurrence of the

function ¢, on the right-hand side until all such occurrences disappear:

tpo(n) 2+t,(n-1)

= 2+2+t,(n—2)
= 22)+t,(n-2)

= n(2)+¢,(0)
= 2n+2

So the step count for the recurrence is 2n+2.

The step count is useful in that it tells us how the run time of a program changes with
changes in the instance characteristics. From the step count of the recurrence above, we
see that if » is doubled, the run time also doubles (approximately); if » increases by a
faction of 10, the run time increases by a factor of 10; and so on. So the run time grows
linearly in n. If A is an algorithm that produced the recurrence above, we say, 4 is a

linear time algorithm (the time complexity is linear in the instance characteristic »).

Definition 1.3-2 Input Size

The input size of any instance of a problem is defined to be the number of words (or the

number of elements) needed to describe that instance.

20

The input size for the problem of summing an array with » elements is n+1, n for listing
the » elements and 1 for the value of . If the input to any problem instance is a single
element, the input size is normally taken to be the number of bits needed to specify that

element.

One method to determine the step count of an algorithm is to build a table in which we
list the total number of steps contributed by each statement. This figure is often arrived at
by first determining the number of steps per execution (s/e) of the statement and the total
number of times (i.e., frequency) each statement is executed. The s/e of a statement is the
amount by which the count changes as a result of the execution of the statements. By
combining these two quantities, the total contribution of each statement is obtained. By
adding the contributions of all statements, the step count for the entire algorithm is

obtained.

1.3.3 Asymptotic Notation

The notation used to describe the asymptotic running time of an algorithm are defined in

terms of functions whose domains are the set of natural numbers N={0,1,2,...}. Such

notations are convenient for describing the worst-case running-time function (), which

is usually defined only on integer input sizes. It is sometimes convenient, however, to

abuse asymptotic notation in a variety of ways. For example, the notation is easily

21

extended to the domain or real numbers or, alternatively, restricted to a subset of the
natural numbers. It is important, however, to understand the precise meaning of the

notation so that when it is abused, it is not misused.

@-notation
Definition 1.3-3
For a given function g(n), we denote by @(g(n)) the set of functions

©(g(n)) = {f (n) : there exists positive constants c;,c, and 7, such that
0<cg(n) < f(n)sc,g(n)forallnzny}.

A function f(n) belongs to the set ©(g(n)) if there exists positive constants ¢, and ¢,
such that it can be “sandwiched” between ¢,g(n) and c,g(n), for sufficiently large .
Although ©(g(n)) is a set, we write © f (1) = ©(g(n))” to indicate that f(n) is a member
of ®(g(n)), or “ f(n)e g(n)”. This abuse of equality to denote set membership may

appear confusing, but it has advantages, as we will see later.

For all values of » to the right of #,, the value of f(n) lies at or above ¢, g(n) and at or
below c,g(n). In other words, for all n2n,, the function f(n) is equal to g(n) to

within a constant factor. We say that g(») is an asymptotically tight bound for f(n).

22

The definition of ©(g(n)) requires that every member of ©(g(n)) be asymptotically
nonnegative, that is, that f(n) be nonnegative whenever n is sufficiently large.
Consequently, the function g(n) itself must be asymptotically nonnegative, or else the set
©(g(n)) is empty. We shall therefore assume that every function used within ®@-notation

is asymptotically nonnegative.

O-notation

The ®-notation asymptotically bounds a function from above and below. When we have
only an asymptotic upper bound, we use O-notation.

Definition 1.3-4

For a given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) = { f (n) : there exist positive constants ¢ and », such that
0< f(n)<cg(n)foralln=ny}.

The O-notation is used to give an upper bound on a function, to within a constant factor.

For all values # to the right of n,, the value of the function f(r) is on or below g(n).

To indicate that a function f(n) is a member of O(g(n)), we write f(n)=0(g(n)).
Note that f(n)=©(g(n)) implies f(n)=0(g(n)), since ©-notation is a stronger

notation than O-notation. Since O-notation describes an upper bound, when we use it to

bound the worst-case running time of an algorithm, by implication we also bound the

running time of the algorithm on arbitrary inputs as well.

Q-notation

Just as O-notation provides an asymptotic upper bound on a function, Q-notation
provides an asymptotic lower bound.

Definition 1.3-5

For a given function g(#n), we denote by Q(g(n)) the set of functions

Q(g(n)) = { f(n) : there exists positive constants ¢ and #, such that
0<cg(n) < f(n)forallnny}.

(]
From the definitions 1.3-3, 1.3-4 and 1.3-5, it is easy to prove the following theorem.
Further details of the proof can be found in [25].
Theorem 1.3-1
For any two functions f(»n) and g(n), f(n)=©(g(n)) if and only if f(n)=0(g(n))
and f(n) =CQ(g(n)).
|

Asymptotic notation in equations
Asymptotic notations can be used within mathematical formulas. When the asymptotic

notation stands alone on the right-hand side of an equation, as in »n=O(n?), we have

already defined the equal sign to mean set membership: 7€ O(n*). In general, however,

24

when asymptotic notation appears in a formula, we interpret it as standing for some

anonymous function that we do not care to name. For example, the formula
2n? +3n+1=2n" +O(n) means that 2n* +3n+1=2n’+ f(n), where f(n) is some

function in the set ®(r). In this case, f(n) =3n+1, which indeed is in O(n).

Using asymptotic notation in this manner can help eliminate inessential detail and clutter
in an equation. For example, we express the running time of a recurrence as

t(n) = 21(n/2) +©(n). If we are interested only in the asymptotic behavior of #(n), there

is no point of specifying all the lower-order terms exactly; they are all understood to be

included in the anonymous function denoted by the term @(n). The number of

anonymous functions in an expression is understood to be equal to the number of times

the asymptotic notation appears.

In some cases, asymptotic notation appears on the left-hand side of an equation as in
2n* +O(n) = O(n?). We interpret such equations using the following rule: No matter
how the anonymous functions are chosen on the left of the equal sign, there is a way to
choose the anonymous functions on the right of the equal sign to make the equation valid.
Thus, the meaning of our example is that for any function f(n)e ©(n), there is some

function g(n) e ®(n*) such that 2n’ + f(n) = g(n) for all n. In other words, the right-

hand side of an equation provides coarser level of detail than the left-hand side.

25

o-notation

The asymptotic upper bound provided by the O-notation may or may not be
asymptotically tight. The bound 2n® =O(n’) is asymptotically tight, but the bound
2n=0(n") is not. We use o-notation to denote an upper bound that is not asymptotically

tight.

Definition 1.3-6
We formally define o(g(n)) (“little-oh of g of n”) as the set

o(g(n)) = {f (n) : there exist positive constants ¢ > 0 there exists a constant n, >0
such that 0 < f(n) <cg(n)foralln 2 ny}.

The definition of O-notation and o-notation are similar. The main difference is that in

f(n)=0(g(n)), the bound 0< f(n)<cg(n) holds for some constant ¢>0, but in
f(n)=o0(g(n)), the bound 0 < f(n) <cg(n) holds for all constants ¢ > 0. Intuitively, in

the o-notation, the function f(n) becomes insignificant relative to g(») as n approaches

infinity; that is, im£Z =0
n

S &M T

o~-notation

By analogy, m-notation is to Q-notation as o-notation is to O-notation, we use ®-notation

to denote a lower bound that is not asymptotically right. One way to define it is by

f(n) e w(g(n)) if and only if g(n) € o(g(»))

Definition 1.3-7
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set

w(g(n)) = { f(n) : there exist positive constants ¢ > 0, there exists a constant n, > 0
such that 0 < cg(n) < f(n) foralln = n,}.

For example, n’/2=w(n), but n*/2#w(n*). the relation of f(n)=w(g(n)) implies

that limZ2 = w0, if the limit exists. That is, f(n) becomes arbitrarily large relative to

n—se 81

g(n) as n approaches infinity.

1.4 LITERATURE OVERVIEW

The sequential selection algorithm, found in introductory literature, has a linear run time,

that is, the performance is O(x), where n denotes the number of elements —the size of the

problem.

Blum, et. al. [7] were the first to show that selection could be performed in linear time.

On parallel machines, the same selection problem can be performed in O(log nloglogn)

parallel time.

27

Richard John Cole [5] gave an optimally efficient paralle]l algorithm for selection on the
EREW PRAM. It requires a linear number of operations and O(lognlog* n) time, where
log*n is defined to be the least I such that log”? n<1. A modification of the same

algorithm runs on the CRCW PRAM that requires a linear number of operations and

O(log nlog* n/loglogn) time.

Valiant [2] introduced the parallel computation tree model for studying these tasks where
only the cost of making comparisons is considered. The extremal selection result implies

that loglogn parallel steps are necessary for the median. In the deterministic case,
Valiant gave upper and lower bounds of O(loglogn) for extermal selection and also

showed how to merge two lists of size nin O(loglogn).

Cole and Yap [4] gave a deterministic algorithm for finding the ktk smallest item in a set
of n items, running in O((loglogn)?) parallel time on O(n) processors in Valiant’s

comparison model.

Ajtai, et. al. [1] showed that in the deterministic comparison model for parallel
computation, In 7 processors can select the kt# smallest item form a set of n numbers in
O(loglogn) parallel time. With this result all comparison tasks {selection, merging,
sorting), now have upper and lower bounds of the same order in both random and

deterministic models.

28

Gereb-Graus and Krizanc 3] contains a survey of complexity results for comparison

problems.

Cole and Yap [4] provided a bound of O((loglogn)®) for sorting elements. Cole-Yap
algorithm recursively returns the jth smallest number in the problem set. Cole and Yap
agreed: they suggested that their O((loglogn)®) upper bound might be optimal because

the recursive calls are inherently sequential.

Krizanc, et. al. [6] presented a deterministic algorithm for selecting the element of rank &
among N =rn’ elements, 1<k< N, on an nxn mesh-connected processor arrya in
1.45n parallel computation steps, using constant sized queues (for large enough r), which
was a considerable improvement over the best previous deterministic algorithm that was
based upon sorting and requires 2n+o(n) steps. They mentioned that their algorithm

could be generalized to solve the problem of selection on higher-dimensional meshes.

Plaxton [8] proved an Q(Zlog p +log p) lower bound for selection on networks that

satisfy a particular low expansion property, where N is the size of the problem and p is the
number of processors in the network. The class of networks satisfying this property
includes such common network families as trees, multidimensional meshes, hypercube,

butterfly, and shuffle-exchange networks.

Plaxton [9] and Rajasekaran [10] give efficient algorithms for selection on the hypercube.

29

Selection problem is closely related to the sorting problem. The extreme case of selection
problem turns into sorting. That is, selecting the 1%, 2™ ... n™ elements. Kaufmann, et.

al. [11] have shown a 2n+ o(n)-step algorithm to sort the elements of the mesh into

block snake-like row-major order, using constant-size queues at every node. In the same

area, Knude [12] imply a lower bound of 2n—o(n) steps for selecting the median at the

meddle processor in the mesh, in a model that puts no limit on the power of the

processors but requires each processors to hold exactly one packet at all times.

Aggarwal, et. al. [13] presented a generalized selection algorithm on a two-dimensional

pyramid model. The algorithm finds the kth largest element out on N elements and has a

time complexity of O(N¢) and a cost of O(N"**), for some & between O and 1.

There exist parallel algorithms for finding the kth largest element from N elements
X;,Xy,...,%y on Shared Memory Model [14], Mesh-Connected Computers [6, 15],
Hypercube and Perfect Shuffle Computer [16]. The algorithm due to Aggarwal [17] has
time complexity of O(log? N) using O(N) processors to select the th largest element on

both tree and pyramid models.

Shen [18] presented an optimal parallel algorithm from multiselection that runs in time
O(n‘ logr) on the EREW PRAM with n'™ processors, 0 <& <1. In the special case,

when ¢ = log(lognlog* n)/logn , his algorithm runs in time O(lognlog*nlogr).

30

The lower bound for the multiselection problem on a sequential machine is ®(nlogr)

and was established by Fredman and Spencer [19] in the context of heap operations.

Alsuwaiyel [20] presented a simple optimal algorithm to solve the multiselection problem
that runs in O(n® logr) time on the EREW PRAM with »n'*® processors, 0 <& <1. In
the case when &=O(loglogn/logn), the algorithm’s running time becomes

O(logrlogr) using O(n/logn) processors.

Alsuwaiyel presented for the first time in [21] an optimally efficient algorithm to solve

the multiselection problem that runs in time O(logrlogr) on the EREW PRAM with

O(n/logn) processors.

1.5 SELECTION PROBLEM ON THE RAM

In this section, the selection problem is formally defined and an optimal solution,

algorithm, for the selection problem is presented.

1.5.1 The Selection Problem

As it is mentioned earlier, the selection problem comes under a category of problems
called Order Statics. The kth order static of a set of n elements is the kth smallest

element. The problem —as mentioned in [2] is :

31

Input: A set 4 of » (distinct) numbers and a number &, with 1<k <n.

Output: The element x € 4 that is larger than exactly k —1 other elements of 4.

Definition 1.5-1 [Selection Problem]
Given a sequence S = {s,,5,,..., 5, } of numbers listed in arbitrary order and an integer %,

where 1<k <n the problem of selection calls for determining the kth smallest element of

S.

If S were presented in sorted order, that is, S = {5;,,5)»---»5(} » then selection would be
trivial: In one step we could obtain s,,. Of course, we do not assume that this is the

case. Not do we want to sort S first and then pick the 4th element: ThlS appears to be
(and indeed is) a computationally far more demanding task than we need (particularly for
large values of n) since sorting would solve the selection problem for all values of &, not

just one.

Regardless of the value of &, one face is certain: In order to determine the kth smallest
element, we must examine each element of S at least once. This establishes a lower

bound of Q(n) on the number of steps required to solve the problem.

1.5.2 Sequential Selection

The algorithm presented as the solution for the selection problem is recursive in nature. It

uses the divide-and-conquer approach an ®(n)time algorithm was devised. At each

stage of the recursion, a number of elements of S are discarded from further consideration
as candidates for being the kth smallest elements. This continues until the kth element is
finally determined [10]. By |S] we denote the size of a sequence S. Also, let g be a small

integer constant.

SEQUENTIAL SELECTION (S, k)

if S| <g
sort S and return the kth element directly
else
subdivide S into |S//gq subsequences of g elements each with
end if
Sort each subsequence and determine its median.
Call SEQUENTIAL SELECT recursively to find m the median of the |S)/g
medians found in step 2

8. Create three subsequences S,,S,,and S; of elements of S smaller than, equal to,

and larger than m, respectively
9. if|S, |2 kthen

Nowue D =

10. {kth smallest element must be in S, }

11. else

12. if |S)|+|S,| 2 & then

13. return m

14. else

15. call SEQUENTIAL SELECT recursively to find the
(k= |S,| - ISz|)th element of S,

16. end if

17. endif

Algorithm 1.5-1 Sequential Selection on the RAM

Analysis

Lines 1-5: Since ¢ is a constant, sorting S when | S |< g takes constant time. Otherwise,
subdividing S requires ¢;n time for some constant ¢,

Line 6: Since each of the |S|/q subsets consists of g elements, it can be sorted in
constant time. Thus, ¢,n time is also needed for this step for some constant c.

Line 7: There are | S|/g medians; hence the recursion takes #(n/g) time.

Line 8: One pass through S creates S;, S,, and S; given m. therefore this step is

completed in ¢;n time for some constant c;.

Line 9-17: Since m is the median of | S|/g elements, thee are | S|/2g elements larger
than or equal to it. Each of the |S|/q elements was itself the median of a set of ¢
elements, which means that it has g/2 elements larger than or equal to it. It follows that
elements of S are guaranteed to be larger than or equal to m. Consequently,
|S,[<3|S|/4. By similar reasoning, |S;|<3|S|/4. A recursive call in this step to

SEQUENTIAL SELECTION therefore requires #(32).

From the preceding analysis we have

t(n)=cn+1(2)+1(3), where ¢, =¢, +¢, +¢;.

If we choose ¢ so that

n 3n
—+—<n

q
then the two recursive calls in the procedure are performed on ever-decreasing sequence

Any value of g 25 will do. Take ¢ =5 thus

t(n)=cn+t(E)+1(3).

This recurrence can be solved by assuming that

t(n)<csn for some constant c;.

<r |SVq subsets)

)

Smallest element

Median element

q elements per subset in sorted order
3

Largest element

&

Figure 1.5-1 Main idea behind algorithm Sequential Selection

Substituting, we get
tn)<cn+c(@+c.C)=cn+c,(3).
Finally, taking ¢, = 20c, yields
H(n) Scs(F)+es(3)=csn.
thus confirming our assumption. In other words, #(n) = O(n), WMCh is optimal in view of

the lower bound derived earlier.

1.6 SUMMARY

The selection problem deals with finding the kth smallest element from a set § containing
n elements. In the multiselection problem, however, instead of searching for one element,

we have to search for a set of elements having the ranks %,,%,,...,k,.

Random Access Machine (RAM) consist of a memory with M locations, A processor
operating under a sequential algorithm, and a memory access unit (MAU) whose purpose

is to create a path from the processor to an arbitrary location in the memory.

Parallel Random Access Machine (PRAM) consist of a number of identical processors

B.B,...,P, where p is arbitrarily large. A common memory with M locations,

arbitrarily large such that M > p. And a memory access unit (MAU) that allows the

processors to gain access to memory.

36

A network can be viewed as a graph G = (N, E) where each node i€ N represents a
processor, and each edge (i,j)e Erepresents a two-way communication link. The
memory, M, is distributed among N processors. Interconnected networks differ in various
aspects; network topology, number of neighbors for each processor, message size,
transmission delay, transmission path, processors ...etc. The topologies of interest to this

material are the Linear array, the Mesh, the Hypercube, and the Butterfly.

The space complexity of an algorithm is the mount of memory it needs to run to
completion. The time complexity of an algorithm is the amount of computer time it needs

to run to completion.

The notation used to describe the asymptotic running time of an algorithm are defined in

terms of functions whose domains are the set of natural numbers N={0,1,2,...} .

The ®-notation bounds a function from above and below.

©(g(n)) = {f (n) : there exists positive constants c,, ¢, and », such that
0<cqgn)< f(n)<c,g(n)foralln=ny}.

The O-notation bounds the function from above.

O(g(n)) = {f (n) : there exists positive constants ¢ and n, such that
0< f(n)<cg(n)forallnzn,}.

LV
~

The Q-notation bounds a function from below.

Q(g(n)) = { f (n) : there exists positive constants ¢ and », such that
0<cg(n) < f(n)foralln2n,}.

Selection on the RAM machine (sequential machine) can be solved using the divide-and-
conquer approach. The original element set S is divided into subsets. The median of each
subset is found, then the median of medians is found. The element set is partitioned into

three subsets S;, S,, and S;. Two of the three sets are discarded from further

consideration, and the same process continues with the remaining elements. All this can

be done in #(r) = O(n) time.

Chapter 2

Parallel Computation on PRAM

In the previous chapter, in éection 1.2, some computational models were presented. The
Parallel Random Access Machine (PRAM) was the first parallel model introduced. In
this chapter, this model will be presented in more details, and some PRAM algorithms
will be studied. In section 2.1 some definitions and algorithm analysis and notations are
presented. In section 2.2, five fundamental PRAM algorithms are presented, namely, the
Prefix Computation, Broadcasting, List Ranking, Data Concentration,_ and Packet
Routiné. Sorting on the PRAM is followed in section 2.3. The selection problem and its
solution are presented in section 2.4. The multiselection problem is tackled in section 2.3.

And finally a summary of this chapter is presented in section 2.6.

2.1 INTRODUCTION AND DEFINITIONS

Parallel computers are used primarily to speed up computations. A parallel algorithm can
be significantly faster than the best possible sequential solution. This is true in the

majority of computational problems. But are such fast solutions truly needed? Indeed,

38

39

they are. There is a growing number of applications —for example, in science,
engineering, business, and medicine- requiring computing speeds that cannot be
delivered by any current or future conventional computer. These applications involve
processing huge amount of data, or performing a large number of iterations, or both, thus
leading to inordinate running times. Parallel computation is the only approach known

today that would make these computations feasible.

There is, however, a second less well understood, reason for using parallel computers

whose importance has been recently recognized. Consider the following situation:

In a real-time application, a computer needs certain data from the outside world in order
to solve a computational problem. It receives s independent data streams at the same time
sent by s sources). The data within each stream arrive at a rate that makes it impossible
for a sequential computer (even one which operates at the speed of light!) to process more
than one stream at a time. Furthermore, it is not feasible to store data arriving from the
other s—1 streams for later processing, as the data become meaningless if not used
immediately. Suppose that precisely one stream contains data useful in solving the
current instance of the computational problem, all other streams containing spurious data.
The “good” stream is not known in advance and can only be recognized at the end of the

computation ~that is, when the data it contains leads to a solution.

40

Clearly a sequential computer has a probability 4 of choosing the good data stream and

hence succeeding in solving the problem. In the other hand, a parallel computer with s

processors, each dedicated to monitoring one stream always succeeds.

The foregoing example is representative of a host of situations in which the probability of
success in performing a computational task is increased through the use of parallel
computer. In some extreme cases, a parallel approach can make the difference between
guaranteed success and guaranteed failure. It these situations, tackling a problem through
parallel computation are not simply the best approach, but rather the only way to obtain a

solution.

2.1.1 Algorithm Analysis

A number of criteria are commonly used in evaluation the goodness of an algorithm. The
most important of these are the algorithm’s running time, how many processors it uses,
and the total number of steps it performs. A less widely used, but no less important,
criterion is the algorithm’s probability of success in completing the task. In those
situations were such a criterion is meaningful. These four criteria and the techniques
employed in measuring them and interpreting the results of such evaluations are referred

to collectively as algorithm analysis.

41

As used in the study of sequential algorithms (RAM algorithms), deriving and expressing
measures of an algorithm’s behavior are greatly simplified if certain notations are used.
Let f(n) and g(n) be functions from the positive integers to the positive real numbers.

Then

e The function g(n) is said to be of order at least f(n), denoted Q(f(n)), if there
are positive constants k and », such that g(n) = kf(n) forall n2n,.
o The function g(n) is said to be of order at most f(n), denoted O(f(n)), if there

are positive constants k and n, such that g(n) < &f(n) forall n=>n,.

A parallel algorithm typically uses two kinds of elementary steps:

e Computational steps: A computational step is a basic arithmetic or logical
operation performed on one or two data within a processor. Examples include
adding, comparing, and swapping two numbers.

o Routing steps: A routing step is used by an algorithm to move a datum of constant
size from one processor to another, via the shared memory through the links

connecting the processors.

In general, a computational step requires a constant number of time units, where as a

routing step depends on the distance between the processors. Exactly how long does a

42

routing step take? The answer depends on whether the processors share a common

memory or communicate via direct links.

We first consider the case where the processors communicate through a shared memory.

If processor P, wishes to send a datum d to processor P, it-writes d in some memory

i
location, which is then read by. This involves two memory accesses. IN uniform
analysis, a memory access is assumed to require a constant number of time units, and
consequently, so does a routing step. This assumption, through unrealistic, often
simplifies the analysis and is most widely used. In non-uniform or discriminating
analysis, by contrast, a memory access is assumed to require O(logM) time units, where
M is the number of memory locations in the shared memory. This assumption is justified

by the way memory access mechanisms are actually built.

Let us not turn to the case where processors communicate by sending data across the links

joining them. If two processors P, and P, are directly connected by a link, then a routing
step from B, to P, is assumed to take a constant number of time units. If, on the other
hand, the two processors are not directly connected, then routing a datum from F, to 7,
require a number of time units linear in the number of links on the shortest path from F,

to P..

J

2.1.2 Running Time

The running time of a parallel algorithm is defined as the time required by the algorithm
to solve a computations problem. More precisely, it is the time elapsed between the
moment the first processor on the parallel computer to begin operating on the input starts
and the moment the last processor to end producing the output terminates. We are
interested in the worst case running time —that is, the time needed by the algorithm when
applied to the most difficult instance of the problem (the one which takes most time to

solve).

Running time is measured by counting the number of consecutive elementary steps
performed by the algorithm (in the worst case), from the beginning to the end of the

computation.

Since each step (computational or routing) is assumed to take a constant number of time
units, the number of steps is a good theoretical estimate of the actual amount of time that
the algorithm will take to solve the problem on a real parallel computer. The number of
steps, and hence the running time, of a parallel algorithm is a function of the size of the
input and the number of processors used. Moreover, the number of processors is often
itself a function of the size of the input. Therefore, for a problem of size », the worst case

running time of a parallel algorithm is denoted by #(»). Henceforth, when we say that an
algorithm has a running time of #(n), or takes #(n) time, we mean that #(r)is the number

of time units required by the algorithm.

44

In some cases, we denote by ¢, the running time of an algorithm that uses p processors.

This is particularly useful when comparing algorithms that solve the same problem with
different number of processors. In these cases, the size » of the problem is usually
omitted to simplify the notation. Once the running time of an algorithm for a given
problem has been derived, it is instructive to compare it to existing lower and upper

bounds for the problem.

A lower bound on a certain problem gives the minimum number of steps required by an
algorithm to solve the problem in the worst case. In parallel computation, a lower bound
usually depends on the size and nature of the problem, the type of parallel computer used,
and the number of processors involved. The best algorithm known to solve the problem —
that is, the algorithm using the fewest number of steps in the worst case, on the other

hand, establishes an upper bound.

When the upper and lower bounds for a problem coincide (up to a constant multiplicative
factor), the algorithm setting the upper bound is said to be asymptotically time optimal for
the problem, on that particular parallel computer. Otherwise, a faster algorithm may have

to be found, or a lower bound of higher value needs to be derived.

45

2.1.3 Speedup and Slowdown

The primary reason for using parallel algorithms is to speed up sequential computations.
It is therefore quite natural to compare the running time of a parallel algorithm designed
for a certain problem to that of the best available sequential algorithm for the same

problem. Computing a ratio known as the speedup usually does this.

Definition2.1-1 [Speedup]
Let ¢, denote the worst case running time of the fastest known sequential algorithm for
the problem, and let ¢, denote the worst case running time of the parallel algorithm using

p processors. Then the speedup provided by the parallel algorithm is

t

=-L
I,

S, p)

A good parallel algorithm is one for which this ratio is large.

For example, suppose that we wish to add » numbers stored in memory. In a sequential
computer, a number can be read from memory and added to 2 running sum in one time
unit. Therefore, the sum of the » numbers can be computed in » time units. this is

optimal, since 7 access to memory and »—1 additions are required.

46

On a binary tree of processors with 2 leaves, and hence and total number of processors

equal to ;2% —1, the parallel algorithm consists of two phases. In the first phase, with all

ogn
leaves operation in parallel, each leaf sequentially reads logn numbers from the input
and computes their sum. This takes logn time units. In the second phase, partial results
are sent up the tree: Each node receives two sums from its children, adds them, and sends
the result to its parent. This continues until the final sum emerges from the root. The
second phase takes log(;:2-) time units. The time required by the algorithm is therefore

kyn

Ton is therefore achieved

k,logn, for some constant k,, where 1<k <2. A speedup of

by the algorithm, for some constant k,, where 1 <k, <1.

In the preceding example, the speedup equals (up t§ a constant factor) the number of
processors used. for many computational problems, this is the largest speedup possible;
that is, the speedup is at most equal to the number of processors used by the parallel
computer. Because this condition is satisfied by so many traditional problems, it has
become part of the folklore of parallel computation and is usually formulated as a

theorem:

Theorem 2.1-1 [Speedup Folklore Theorem]
For a given computational problem, the speedup provided by a parallel algorithm using p
processors, over the fastest possible sequential algorithm for the problem, is at most equal

to p; thatis, S(Lp)< p. [

47

Proof:

Let the fastest sequential algorithm for the problem require time #,, and let the parallel
algorithm require time 7,. Proceeding by contradiction, assume that ,’—; > p. Since any

parallel algorithm can be simulated on a sequential computer by having the single

processor execute the parallel steps serially, the simulation requires px?, time. Because
pxt, <t by assumption, the simulation yields a faster sequential algorithm, thus leading

to a contradiction.

The speedup folklore theorem is true, and its “proof” holds, for the majority of standard
problems in computer science. These problems typically obey very restrictive constraints
on input, computation, and output. Examples of such problems are provided by
operations on a list of numbers stored in memory, such as adding the numbers, searching
for a particular number, sorting the numbers, and so on. In fact, for many of these
problems, the speedup provided by a parallel algorithm using p processors is much

smaller than p either

e because the problem cannot be decomposed into an appropriate number of
independent computations to be executed simultaneously, while keeping all
processors sufficiently busy, or

e Dbecause the structure of the parallel computer used imposes restrictions that render

~ the desired running time unattainable. Specifically, the communications required

48

amount the processors within a given model of computation may unduly delay the

completion of the task.

For many nontraditional problems, however, the speedup folklore theorem does not hold.
In other words, there are situations in which a speedup larger than the number of
processors used can be obtained. In order to see this, we must look beyond the narrow
perspective provided by conventional computations. There is evidence today that the
nature of computing is changing and must be viewed in a context much broader than
before. With increasing frequency, computers are being asked to process data in
applications not conceived of until recently, wherein they interact with their environment,
affect it, and often move about it freely and autonomously. In these situations,
computation can no longer be regarded solely as the process of evaluating a function of a
given input, the traditional definition. For example, it may be the case that each input
arrives in real time or varies with time, or it may be that each output affects the next input
or has to meet a certain deadline. In these conditions, it is obvious that the speedup

folklore theorem fails simply because it no longer makes sense.

Another concept that is useful in studying the running time of parallel algorithms is what
we call slowdown (by contrast with speedup). Slowdown measures the effect on running
time of reducing the number of processors on a parallel computer. Naturally, one would
expect the running time of an algorithm to increase as the number of processors

decreases. The question is, how much slower is a parallel algorithm solving a problem

49

with fewer processors? The traditional answer to this question has given rise to a second

folklore theorem:

Theorem 2.1-2 [Slowdown Folklore Theorem]

If a certain computation can be performed with p processors in time 7, and with ¢

. . pt
processors in time 7, , where g < p,then ¢, <7, <f,+—".

Proof:

Let W, denote the number of elementary steps performed simuitaneously during the ith

time unit by the p-processor algorithm such that

In other words, W is the total number of elementary steps performed collectively by the p
processors to complete the computation in time #,. Since not all p processors are
necessarily busy at the time, it follows that # < pt,. On a smaller computer with only ¢
processors, we can simulate the ith time unit of the p-processor algorithm by distributing
the W, elementary steps among the g processors, so that each executes |% l such steps.

The simulation of the entire algorithm requires ¢, time units, where

t

P IP
LA Y PR 4 PR
1, < l_q _zl = |+1)st, s, + 2
I=

i=]

This completes the “proof”.

50

The slowdown folklore theorem essentially puts an upper bound on the running time of

the machine with fewer processors. It says that the running time of the machine with p
processors increases at worst by a factor of 1+% when the number of processors is
reduced to g. As with the speedup folklore theorem, evidence from standard

computations supports the slowdown folklore theorem: For most conventional problems,

the theorem holds.

2.1.4 Cost, Work and Efficiency

Suppose that a parallel algorithm runs in time #(n) in the worst case and uses p(rn)

processors to solve a problem of size n. An upper bound on the total number of

elementary steps executded by this algorithm is given by its cost ¢(n), which is defined
as c(n)=p(n)xt(n). In other words, the cost of a parallel algorithm is equal to the

product of its running time and the number of processors it uses. We say that the cost is

an upper bound on the number of steps, since it may be the case that not all p(n)
processors are active throughout the #() time units. If they are, then of course, ¢(n)

equals the total number of steps executed.

Sometimes the total number of steps performed by the processors of a parallel algorithm
can be obtained exactly. This is known as the work of the parallel algorithm and is equal

to the sum of the steps executed individually by the various processors.

51

The cost of a parallel algorithm can be used to assess the performance of the algorithm.

Consider first those problems to which the speedup folklore theorem applies. In other

words, we restrict our attention to those problems for which a p-processor parallel

algorithm running in time #, can be simulated on a sequential computer in time px?,.

Assume that a lower bound of Q(f(n)) is known on the number of steps required

in the worst case to solve one such problem of size n. If the cost of a parallel
algorithm for that problem is O(f(n)), then the algorithm is said to be

asymptotically cost optimal. This is due to the fact that the parallel algorithm can
be simulated on a sequential computer. If the total number of steps executed
during the simulation matches the lower bound (to within a constant multiplicative
factor), then when it comes to cost, this parallel algorithm cannot be improved
upon: It executes the minimum number of steps possible. One can, of course, use
more processors in order to reduce the running time of a cost-optimal parallel
algorithm.b Alternatively, one can use fewer processors, while retaining cost
optimality, if the resulting higher running time is acceptable.

A parallel algorithm is not cost optimal if a sequential algorithm exists for solving
the same problem, whose worst case running time is smaller than the parallel
algorithm’s cost. Note that this is true regardless of whether the speedup folklore
theorem holds or not.

Sometimes it is not know whether a parallel algorithm is cost optimal. Let the

. cost of a parallel algorithm for a given problem match the running time of the

52

fastest existing sequential algorithm for the same problem. Furthermore, assume
that it is not known whether the sequential algorithm is time optimal. In this case,

the status of the parallel algorithm with respect to cost optimality is unknown.

A simple way to measure the goodness of a paralle] algorithm’s cost is to compute a

quantity called the efficiency. Let ¢, be the worst case running time of the fastest known
sequential algorithm for a given problem. Similarly, let #, be the worse case running

time of a p-processor parallel algorithm for the same problem. Then the latter algorithm

has a cost of pt,, and its efficiency is

EQ,p)=—-
pt p

For the problems under consideration —that is, those or which the speedup folklore

theorem holds —efficiency is usually at most equal to 1:

e If E(l, p) <1, then the parallel algorithm is not cost optimal
e If E(1, p) =1, then the parallel algorithm is cost optimal
e If E(1, p) >1, them a faster sequential algorithm can be obtained by simulating the

parallel one.

Note that if a sequential algorithm is discovered which is faster than the one used to

compute E(1, p), then this quantity must be recomputed for all parallel algorithms for the

same problem. Suppose that this faster sequential algorithm is obtained by simulating a

parallel algorithm. In this special case, the recomputed E(1,p) is 1 for the parallel
algorithm that was simulated. However, the later is cost optimal only if the sequential

algorithm that it yields is time optimal. When p'l—'p =0(Q), we take E(l,p) asequal to 1,

for simplicity.

2.2 FUNDAMENTAL PRAM ALGORITHMS

A formal description of the PRAM model of computation was presented in sub-section
1.2.2 in the previous chapter. In the following, Prefix Computation and Broadcasting

algorithms on the PRAM are presented.

2.2.1 Broadcasting on the PRAM

Let D be a location in memory holding a datum that all p processors need at a given
moment during the execution of an algorithm. The broadcasting algorithm assumes the
presence of an array 4 of length p in memory. The array is initially empty and is used by
the algorithm as a working space to distribute the contents of D to the processors. Its ith

position is denoted by A(7).

Algorithm BROADCAST (D, N, 4)

Processor P, reads the value in D stores in its own memory and writes it in 4(1)
for i=0to (logp-1) do
for j=2'+1 to 2"*! do in parallel
Processor P, reads the value in A(j —-2'), stores it in its own

el

54

memory and writes it in 4(7)
5. end for
6. end for

Algorithm 2.2-1 Broadcasting on the PRAM

The working of the broadcasting algorithm is illustrated in Figure 2.2-1. The analysis of
Algorithm 2.2-1 is as follows; since the number of processors having read D doubles with

every iteration, the algorithm terminates in O(logn) time.

2.2.2 Prefix Computation on the PRAM

We will first formally define the prefix problem, then we present two prefix algorithms,

the later one is a cost-optimal algorithm on the PRAM.

Prefix Problem Definition

A set ¥ is given, together with an operation @ defined on the elements of ¥ such that:
o The operation @ is binary; thatis, @ applies to pairs of elements of ¥ .

e The set ¥ is closed under the operation @ ; that is, if x; and x; are elements of
¥, thensois x, D x;.
e The operation ® is associative; that is, if x;, x;, and x, are elements of ¥, then

(x,®x)0x,=x0(x;®x,)=x0x,Ox,

55

Step 1

6

3 4 6§

2

N

Step 2
= O)

(i

6

2 3 4 6

1

(i=1)

Step 3

[

3

Figure 2.2-1 Distributing a datum to eight processors using the PRAM broadcast algorithm

56

Definition 2.2-1 [Prefix Computation]

Let X ={x,,x,...,X,.,} be aset of n different elements. And let

So = X

55 = X%9x

55 = %®x0x

S,y = %@®x®--Ox,_

The process of obtaining S = {s,5,,.--,S,;} from X ={x,,x,...,x,,} is known as prefix

computation.

A computation symmetric to prefix computation and referred to as suffix computation is

defined similarly. Here, a sequence {4,,4,,...,4,_,}, is computed, where

an-l = xn-l
an-z = xn-l @ xn-2
ao = xh—l @xn_z @'“@Xo

Unless otherwise stated, we assume in what follows that @ takes constant time to be

executed. Since computing s,_, involves combining all the x,, a lower bound on the

number of operations required for prefix computation is Q(n) .

57

Prefix Computation Algorithm
The prefix computation problem can be solved in O(n) time sequentially. Fortunately,

work-optimal algorithms are known for the prefix computation problem on many models

of parallel computing. We present a CREW PRAM algorithm that uses

Togn Processors
and runs in O(logn) time. Let n processors P, R,...,F,_, be available on the PRAM,
where n is a power of 2. Initially, the sequence X is stored in shared memory by having
P read x, from the input, for 0<i<n-1, and store it in memory. Processor F, also sets
s, equal to x, for i=0,1,2,...,n—1. This takes constant time. The algorithm consists of

logn iterations; during each step, the binary operation @ is performed by pairs of

processors whose indices are separated by a distance twice that in the previous iteration.

Thus, in the first iteration we compute

5, 5,D5),5, < 5D5,,,5,,¢<5,,Ds, .
In the second iteration we compute

S, ¢ 5, D 5,,5 « 5,9 55,,5,,¢5,;Ds,,.
In the final iteration we compute

5, ¢~ 5, ®5,,5,,, <8 @5, S <85, @5, .
2 2 2 2 2

58

Algorithm PREFIX COMPUTATION

1 for j=0 to (logn)-1 do

2 for i=2’ to n—1 do in parallel
3. 5,5 _, @5,

4 end for

5 end for

Algorithm 2.2-2 Prefix Computation on the PRAM
It is easy to see that each iteration yields twice as many final values s, as the previous

one. The algorithm therefore runs in O(logn) time. Since p(n) = n, the algorithm’s cost

is

¢(n) p(n)xt(n)
nx O(logn)

O(nlogn)

The cost is not optimal, in view of the O(n) operations that are sufficient to solve the

problem on the RAM model.

Cost-Optimal Prefix Computation Algorithm

Now we will present a cost optimal prefix computation algorithm. Let k=logn and
m=2, where k and m are rounded appropriately. We use a PRAM with m processors
B,,P,...,P,_, and think of input set {x,,x,,...,%,_;} as being split into m subsets, each of

n-1

size k, namely,

59

Y, = XpXpeenX
5

= X Kparsee 9 X

= Xk o Xpokals- -3 Xp
Processor P, first reads the sequence Y, for 0 <i<m-1, stores it in memory, and then
applies to it the sequential prefix computation algorithm to obtain
SiksSikars+ 3 S(i+lk-1
where

sik+j

=x;, ©x, D Ox,,

for j=0,,...,k~1. This step is executed simultaneously by all processors. Since each

processor executes k iterations, the step requires O(k) time.

< n-]

The parallel algorithm for prefix computation is now applied by processors £, f...., £,
to the éet {.sk_,,sz,‘_l,. ..»S,_,}- When this step is completed, s,_, will be replaced by

5, D85, @D,
for i=1,2,...,m. The time required is O(logm). Finally, P, for 1<i<m-1, performs
the step s,,,; < Sy ©5,,,; for j=012,...k—2. This step is executed sequentially by

all processors operating in parallel (except £,) and takes O(k) time. The algorithm is

given next.

60

Algorithm COST-OPTIMAL PREFIX

1. for j=0 to m-1 doin parallel

2 S € Xy

3 for j=1to k-1 do

4. Sikaj € Siks j1 ® Xikw j
5. end for

6. end for

7. for j=0 to (logm)—-1 do

8 for i =2’ +1 to m do in parallel
9. Sig-1 <« s(,-_zl -1 ® Sik-1
10. end for

11. end for

12. for i=1 to m—1 do in parallel

13. for j=0to k-2 do

14. Sikaej € Sig- D Siuj
15. end for

16. end for

Algorithm 2.2-3 Cost Optimal Prefix Computation Algorithm on the PRAM

The analysis of the algorithm follows; Lines 1-5 and 12-16 require O(k) time, while lines

7-10 runs in O(logm) time. Since k =logn and 2, we have

t(n) O(logn) + O(log (7))

logn
O(logn)

It

In other words, the reduction in the number of processors from » to T does not affect

the running time. This is due to the associative property of the @ operation, which
allows the computation to be divided among the processors in the manner described. The

cost is

61

c(n) = p(n)xt(n)
= 2-xO(logn)

logn

= 0(n)

which is optimal in the view of the Q(#n) lower bound derived earlier.

2.3 SORTING ON THE PRAM

First we will present an optimal merging algorithm, then an optimal sorting algorithm is

followed, which makes use of the merging algorithm.

2.3.1 Finding the Median of Two Sorted Sequences

Given two sorted sets 4={a,,a,,...a,} and B={b,b,,...b}, where r,s=1 let A.B

denote the set of length m =r + s resulting from merging 4 and B. It is required to find

the median, that is, the I-%-|th element, of 4.B. Without actually forming A4.B, the
algorithm we are about to describe returns a pair (q,.b,) that satisfies the following
properties:
o Either a, or b, is the median of 4.B, that is, either a, or b, is larger than
precisely [%-I—l elements and smaller than precisely L—’;—J elements
e If a isthe median, then b, is either:
o the largest element in B smaller than or equalto a or

o the smallest element in B larger than or equal to a .

62

Alternatively, if b, is the median, then a is either
o the largest element in 4 smaller than or equal to 5, or
o the smallest element in 4 larger than or equal to b, .

e If more than one pair satisfies 1 and 2, then the algorithm returns the pair for

which x + y is smallest.

We shall refer to (a,,b,) as the median pair of 4.B. Thus x and y are the indices of the
median pair. Notthat a is the median of 4. B if either

* a>b, and x+y—1=l-%-|—l or

e a<bandm-(x+y-1) =|_%_|

otherwise by is the median of 4.B.

The algorithm, described in algorithm 2.3-1, proceeds in stages. At the end of each stage,

some elements are removed from consideration from both 4 and B. We denote by », and

ng the number of elements of 4 and B, respectively, still under consideration at the

beginning of a stage and by w the smaller of I_%‘—_' and |_"7”_| Each stage is as follows: The

medians a and & of the elements still under consideration in 4 and B, respectively are

compared. If a=b, then the largest (smallest) w element of 4(B) are removed from

consideration. Otherwise, that is, if a < b, then the smallest (largest) w elements of 4B)

are removed from consideration. This process is repeated until there is only one element

63

left still under consideration in one or both of the two sets. The median pair is then
determined from a small set of candidate pairs. The procedure keeps track of the elements

still under consideration by using two pointers to each set: low, and high, in A and

low, and highy in B.

Algorithm TWO-SEQUENCE MEDIAN (4, B, x, y)

L low, «1

2. low, «1

3. high, <1

4. highy«s

5. nyer

6. nyes

7. while n,>1 and n,; >1 do

8. u < low, +[(high, —low, -1)/2]
9. v < low, + [(high, —low, —1/2]
10. W < min fzi_ll_fzi

11. n,<-n,—w

12. n, < n,—w

13. if a, 25,

14. high, < high, —w

15. lowy «lowy +w

16. else

17. low, «low, +w

18. highy < highy —w

19. end if

20. end while

21. return as x and y the indices of the pair from {a,_,,q,.a,.,,} x{b,_;,b,,b,,,}
satisfying the properties of the median pair mentioned above.

Algorithm 2.3-1 Two-Sequence Median

64

The analysis of algorithm 2.3-1 is as follows. Lines 1-6 and line 21 require constant time.

For the while loop, each iteration reduces the smaller of the two sequences by half. For
constants ¢, and ¢, the algorithm thus requires ¢, + ¢, log(min{r,s}) time, which is

O(logn) in the worst case.

2.3.2 Fast Merging on EREW PRAM

We now make use of the algorithm presented in section 2.3.2 to construct a parallel
merging algorithm for the EREW mode. The algorithm presented in what follows has the
following properties:
e It requires a number of processors that is sub-linear in the size of the input and
adapts to the actual number of processors available on the EREW computer.
o Its running time is small and varies inversely with the number of processors used.

Given two sorted sets 4= {a,,a,,...a,} and B={b,,b,,...b}, the algorithm assumes the
existence of p processors R,P,,...,P, where p is a power of 2 and 1sp<r+s. It

merges 4 and B into a sorted set C = {c,,¢,.,...,C,,,} in two stages as follows:

Stage 1: Each of the two sets 4 and B is partitioned into p (possibly empty)

subsets 4,,4,,...,4, and B,B,,....B, such that

o |4|+|Bl=E2 forigi<p

65

e All elements in A4,.B, are smaller than or equal to all elements in 4,,,.B

i+]1° 141

for1<i<p.

Stage 2: All pairs 4, and B,, 1<i< p, are merged simultaneously and placed in

C.

The first stage can be implemented efficiently with the help of algorithm 2.3-1. Stage 2 is

carried out using a sequential merging algorithm. In what follows, A[i,;] is used to
denote the subset {a;,a,,,,....a;} of 4 if i< j; otherwise A[i,j] is empty. We define

B[i, j] similarly.

Algorithm PRAM MERGE(4, B, C)

. Processor P, obtains the quadruple (1,7, 1, s)
2. for j=1to logp do

3. for i=1 to 2’7" do in parallel

// Processor P, having received the quadruple (e, f,g,54)

// Finds the median pair of two sets
4. Two-Sequence Median (A4[e, 1, Blg.h], x,y)

// Computes four pointers p,, p,.q,,and g, as follows

5 if a_ is the median

6 D <X

7. q, < x+1

8 if b,<a,

9. P, <Yy
10. g, < y+1
11. else

12. D,e<y-1

13. g, <)y

66

14. end if

15. else

16. D<)y

17. g, < y+1

18. if a, <b,

19. D <X

20. g < x+1

21. else

22. p < x-1

23. g, < x

24. end if

25. end if

26. Communicate the quadruple (e, p,,g,p,) to B,
27. Communicate the quadruple (g,,f.9,.%) to P,
28. end for

29. end for

30. for i=1 to p do in parallel
// Processor P, having received the quadruple (a, b, ¢, d)

31 wel+(({-Dr+s)/p

32. z <« min{i(r +s)/ p,(r +5)}

33. Call Sequential Merge(4[a,b], Blc,d], C[w,z])
34. end for

Algorithm 2.3-2 PRAM Merging Algorithm

It should be clear that at any time during the execution of algorithm 2.3-2, the subsets on
which processors are working are all disjoint. The analysis of the algorithm goes as
follows: In line 1, processor Plreads from memory in constant time. During the jth
iteration of the for loop in line 2, each processor involved has to find the indices of the

median pair of L% elements. This is done using algorithm Two-Sequence Medina

(algorithm 2-3) in O(log[£2£]) time, which is O(log(r +5)). The two other operations in

27

lines 26 and 27 take constant time as they involve communications among processors

67

through the shared memory. Since there are log p iterations of the for loop in line 2,

lines 1-29 are completed in O(log p x log(» + 5)) time.

In lines 30-34, each processor merges at most == elements. This is done using a
sequential merge algorithm, which takes O(%%). Altogether, the algorithm takes
O(=+ log pxlog(r +5)) time. In the worst case, when r = s = n, the time required can

be expressed as #(2n) = O(%+log” n), yielding a cost of ¢(2n) = O(n + plog® n), which

is optimal when p < —4-.

log* n

2.3.3 Sorting on the PRAM

In sequential computation, a very efficient approach to sorting is based on the idea of
merging successively longer subsets of sorted elements. This approach is more attractive
in parallel computation. Algorithm 2.3-3 uses the parallel merging algorithm to sort n
number of elements. The idea is simple. Assume that we have a PRAM with p

processors R, B,...,P, is used to sort a set S ={s,,S,,...,5,}, where p<n. We begin by

distributing the elements of S evenly among the p processors. Each processor sorts its
allocated subsequence sequentially using a sequential sorting algorithm, like quicksort.
The p sorted subsets are now merged pair-wise, simultaneously, using the PRAM Merge
algorithm for each pair. The resulting subsets are again merged pair-wise and the process

continues until one sorted set of length » is obtained. In what follows, we denote the

68

initial subsets of S allocated to processor P, by S,. Subsequently, S, is used to denote

!

the subset obtained by merging two subsets and Pj" the set of processors that performed

the merging.

Algorithm PRAM SORT

1. fori=1to p doin parallel
// Processor P,

2. Reads a distinct subset of S, of S of size £
3. Performs quicksort on S,
4. S «8,
> P (P}
6. end for
7. u<el
8. vep
9. while v>1do
10. for m=1 to || do in paraliel
11. Pmu+l (_‘szuuplmu
12. The processors in the set P*' perform PRAM
Merge(S,,_,",S,",S. ")
13. end for
14. if vis odd
u+l u
15. RV/Z] “— })V
16. Sf”v;;] S}
17. end if
18. ue—u+l
19. Ve l-{l

20. end while
Algorithm 2.3-3 PRAM Sort

69

The dominating operation is the call to quicksort in line 3, which requires O(%log%)
time. During each iteration of the while loop in line 9, I_-;-_] pairs of subsets with n/l_%_]
elements per pair are to be merged simultaneously using p/]_—;—_] Processors per pair.
Thus, the merging step requires O([n/ |_§J/ r/ l_-;-J] + log(n/'_%_b) , that is, O(% +logn) time.
Since the while loop in line 9 iterates I_log p_l times, the total running time of algorithm 2-

51is

tn) = O(—;—log%) + O(%log p+lognlog p)
O(£logn +log® n)

n
logn *

The cost is given by c(n) = O(rnlogn + plog? n) which is optimal for p <

2.4 SELECTION ON THE PRAM

We are now ready to study an algorithm for parallel selection on an EREW PRAM
model. The algorithm makes the following assumptions
e A sequence of integers S ={s,,5,,...5,} and integer k, 1 <k <n, are given, and it
is required to determine the kth smallest element of S.

o The parallel computer consists of p processors A, 5,,...,FP,.

e Each processor has received # and computed & from p=r'"*, where 0<e<1.

70

e Each of the n'™* processors is capable of sorting a set of »° elements in its local
memory.

e Each processor can execute the sequential selection algorithm as well as the
broadcasting and the prefix algorithms.

e M is an array in shared memory of length p whose ith position is M(J).

2.4.1 Parallel Selection

The parallel selection algorithm is sifnilar to the sequential one. As in the sequential
algorithm, the elements are divided among the processors. The basic idea is to distribute
the problem set over all the processors in the machine and try to obtain partial solutions
and then compose the final solution from the sub-solutions. Assuming that the problem

size is n, that is the input set S ={s,,s,,...,s,} contains » elements. On a PRAM with
O(n) processors, S can be sorted in O(logn) time [1]. This means that the cost of finding

the kth smallest element is O(nlogn) which is not optimal in view of the O(n) running

time of the sequential selection algorittm. The following algorithm uses O(-)

logn

processors that runs in O(logrnloglogn) time.

The elements of S are distributed among % processors, by dividing S into

n
T - subsets

lo,

finds

A, 4,,....,A, each subset contains logrn elements. Each processor £, 1<i<2

Togn logn

the median m,of 4;. Then the median m of medians {m,,m,,...,m_, }is found and the

71

whole set S is partitioned into three subsets S,,S,,and S, and depending on the value of £,

two of the sets will be ignored and the same process is repeated.

Algorithm PRAM SELECT (S, £, a)

1. found <« false

2. while(|S| > {Z; and not found)do

3. Divide S into subsequences 4,,i =1,2,..., 75 €ach consisting of log|S|
elements of S.

4. for i =1 to ;2 do in parallel

5. Find the median m, of 4,

6. end for

7. Find the median m of {m,,m,,....m_, }

8. Create the subsequences §,,S,,and S,

9. if k=[S, |+l then

10. a<—m

11. Jfound < true

12. else

13. if £ <S,| then

14. S« S,

15. else

16. S« S,

17. ke k-|S|-1

18. end if

19. end if

20. end while
21. if not found then

22. (3.1) Sort the sequence S
23. (3.2) a < kth element of S
24. endif

Algorithm 2.4-1 Parallel Selection PRAM SELECT(S, %,)

72

The analysis of the algorithm follows: Steps in lines 1, 3 and 9-19 take constant time.

ST isi . : :
The for loop in line 4 uses ;g processors each executing the sequential selection

algorithm on a subset of length log|S| and runs in O(log|S|) time. For finding the

median of medians in line 7 we must sort a set of T%T elements using the PRAM Sorting
algorithm using O(:5) processors. This requires O(log(rgy)) = Olog|S|) time.

Creating each of S, and S, by means of array packing is a prefix computation requiring

O(-5) processors to complete in O(log|S|) time. Therefore, each iteration of the

while loop in line 2 uses O(—ss—) processors and runs in O(log|S[) time.

Since | S |< n, it follows that the processor and time requirements of one iteration of the
while loop in line 2 are O(%;) and O(logn) respectively. Because the while loop in line
2is iterated O(loglogn) times, its total running time is O(lognloglogn). ASimilarly, the
number of elementary steps (operations) executed during one iteration of the while loop is
Ol)< 00og | 5D =0(S
Therefore, the total number of operations executed over all iterations of the while loop is
O+ @+ GFn+ G ns-+ G 4"n)= 00

Lines 21-24 require O(logn) time and O(:Z-) processors and executes a total of O(n)

logn

elementary steps. To sum up, algorithm 2 has a running time of #(n) = O(log nloglogn)

and uses O(;%;) processors with a total cost of O(nloglogn) .

73

2.5 MULTISELECTION ON THE PRAM

Let S be a set of » elements drawn from a linearly ordered set, and let X = {k,,k,....,, } be
a set of positive integers between 1 and », that is a set of ranks. We aim to select the k;th

smallest element for all values of i,1<i<r. Itis clear that multiselection problem is an
extension to the classical selection problem. By sefting » =1 in the multiselection
problem we obtain the classical selection problem. If r=#n, then the problem is
tantamount to the problem of sorting. It is not difficult to see that Q(nlogr) is the
lower bound for the sequential multiselection problem. From the previous section it is

clear that an optimal parallel algorithm for multiselection that runs in time O(»°logr)on

the EREW PRAM with n'™° processors where 0<&<1. A slight modification or the
parallel quick-sort algorithm results in an optimal algorithm for the multiselection

problem.

2.5.1 Adaptive Multiselection

In the following select(S, w) refers to the sequential selection algorithm presented in

section 1.5.

Algorithm MSELECT(S, K)

if X is not empty
if X ={k} then
return select(S, k)
else

N

r=|K]

74

6. w= kr/z

7. SELECT(S, w)

8. S, ={xeS|x <S[w]}

9. S, ={xeS|x>S[w]}

10. K, = {k, kyy.rk,,)}

1. K, ={k =Wk jpyy = Wik, — W}
12. MSELECT(S,,X,)

13. MSELECT(S,,X,)

14. end if

15. endif

Algorithm 2.5-1 Multiselection Algorithm MSELECT(S, KX)

2.5.2 The PRAM Parallel Algorithm

The PRAM algorithm for multiselection we will discuss now makes use of the parallel
selection algorithm found in [18] which runs in time O(n°) using p=n'"° processors.
We first start with a set of elements S ={x,,x,,.,x,} and a set of ranks
K ={k,,k,,....,k,}. Let g be an appropriately chosen small positive integer greater than 1.
Both the set of elements S and the set of ranks K are divided into g parts then the

algorithm is recursively called in parallel on the g pairs (S,,K ;) where 1< j<gq.

Algorithm PRAM MULTISELECT(S, X, N)

1 If | K |< gthen

2. for j«<1to| K| do

3. SELECT (S,%;, p)
4 output S[k,]

75

5 end for

6. else

7. u—|Kl|/q

8 w <k,

9. for j«<1to g-1do

10. SELECT (S,k,,,p)

11. output S[k]

12. S, ={xeS|Slk,.i,) <x<S[k,]}
13. Kj = {k(j-l)u+l - w’k(j-l)u+2 - w’""kju-l - w}
14. end for

15. S, ={xeS{x>S[k,,1}

16. K, = ki = Wikgoyusz = Waenk, =W}
17. for j <1 to g do in parallel

18. MSELECT(S,K,,p|S;1/|S1])
19. end for

20. end if

Algorithm 2.5-2 Parallel Multiselection on the PRAM

It is not hard to see that the algorithm above works correctly. We now analyze its time
complexity. Each call to Algorithm select() in lines 3 and 10 take O(»n) time using n'™*

processors. After each call select(S,k,,p), 1<j<g, in line 10, we extract S , by

marking those elements between (and not including) S{k,_;,] and S[k,], and extracting

J=Nu
them using the parallel prefix and compaction using all allocated processors. That is,

each processor works on n° elements and marks those elements between S[k, and
p (

J=Du

S[k,]. Applying parallel prefix and compaction follows this. hence, the time required to

construct all §;’s is O(g(n® + logn'=¢))=O(gn®). Since K is sorted, K ; 1s constructed

76

by extracting those elements greater than j, , and less than j, in O(g) time. For each

recursive call, the number of processors is

pIS,|_n~*1s,1_|s,1

n n n®

Hence, the ratio of the number of elements to the number of processors is

J

S, 1/n

nt.

Each call to the sequential selection algorithm takes O(»°) time. It follows that the
overall running time of the multiselection algorithm is governed by the recurrence:
t(r,n) =t(%,n)+O(gn’) + O(qlogn)
The solution to the recurrence is
t(r,n) =0(gn’ log,r) = O(n’ logr)

and hence the cost of the algorithm is O(rlogr).

2.6 SUMMARY

Parallel computers are used primarily to speed up computations. A parallel algorithm can
be significantly faster than the best possible sequential solution. A number of criteria are
commonly used in evaluation the goodness of an algorithm. The most imponapt of these
are the algorithm’s running time, how many processors it uses, and the total number of

steps it performs.

77

The running time of a parallel algorithm is defined as the time elapsed between the
moment the first processor on the parallel computer to begin operating on the input starts

and the moment the last processor to end producing the output terminates.

A lower bound on a certain problem gives the minimum number of steps required by an
algorithm to solve the problem in the worst case. In parallel computation, a lower bound
usually depends on the size and nature of the problem, the type of parallel computer used,

and the number of processors involved.

Speedup of an algorithm is provided by

z
S(l,p)=t—'

p

where #, denotes the worst case running time of the fastest known sequential algorithm
for the problem, and let 7, denotes the worst case running time of the parallel algorithm

using p processors.

The cost of a parallel algorithm is equal to the product of its running time and the number

of processors it uses. In other words, ¢(n)= p(n)xt(n). The total number of steps

performed by the processors of a parallel algorithm is known as the work of the parallel

algorithm. The efficiency of a parallel algorithm is given by E(1,p) = t—; .
p

p

78

Broadcasting a datum on a PRAM machine requires O(logn) time. Prefix computation
on the PRAM machine can also be done in O(logn) time with a cost of O(n). Finding

the median of two sorted sets requires O(logr) time in the worst case. Merging on a
PRAM machine can be done in 0(—;-+log2 n) time with a cost of O(n+ plog®n).

Whereas, merge sorting a set S on the PRAM can be performed in O(logn) time.

Selection on the PRAM machine with 2~ processors requires O(lognloglogn) time

with a cost of O(nloglogn). Multiselection on the other hand requires O(n* logr) with

cost O(nlogr).

Chapter 3

Parallel Computation on the

Interconnection Networks

A detailed study of the PRAM model was presented in Chapter 2. This chapter covers
another kind of parallel computers, which are fairly different from the PRAM. The
models pfesented in this chapter are known as Interconnection networks. Section 3.1
presents the basic difference between the PRAM model of computation and
Interconnection Network model of computation. The various different topologies of
interconnection networks along with their properties are also presented in Section 3.1.
The three main topologies of our interest are the Linear Array, the Mesh, the Butterfly
and the Hypercube. Section 3.2 presents a detailed study of some fundamental
algorithms on the interconnection networks, namely the prefix computation,
broadcasting, data concentration and merging algorithms. A study of optimal sorting
algorithms on the three topologies is presented in Section 3.3. Once the necessary

background is built up, the reader can proceed to Section 3.4, which presents a universal
79

80

selection algorithm for the interconnection network. The universal multiselection
algorithm on the three types of interconnection networks follows in Section 3.5 (the main
goal of this study). The chapter is concluded with a brief summary of the chapter in

Section 3.6

3.1 DIFFERENCE BETWEEN PRAM MODEL AND THE
INTERCONNECTION NETWORKS

As described in chapter 2, in the PRAM model of computation, a number (say p) of
processors work synchronously. They communicate with each other using the common
block of global memory that is accessible by all. This global memory is also called
common or shared memory. Communication is performed by writing to and/or reading
from the common memory. Any two processors i and j can communicate in two steps.
In the first step, processor i writes its message into memory cell j, and in the second step,
processor j reads from this cell. In contrast, in a fixed connection machine, or the
interconnection networks, the communication time depends on the length of the paths
connecting the communicating processors. A PRAM model with p processors can be
graphically represented as a complete graph as illustrated in the Figure 3.1-1. Each
processor is connected to every other processor in the graph. Whereas, in the
interconnection networks, a processor is connected to g other processors in the network

where g < p. In interconnection networks, there are no longer a shared memory; instead,

the M locations

81

A network can be viewed as a graph G = (N, E) where each node ie Nrepresents a
processor, and each edge (i, j)e E represents a two-way communication link. In the
PRAM, all exchanges of data among processors take place through the shared memory.
Another way for processors to communicate is via direct links connecting them. There is
no longer a shared memory; instead, the M locations of memory are distributed among

the p processors. The local memory of each processor now consists of - locations.

When a processor P, in an interconnection network wishes to send a datum to processor

'

P,, it uses the network to route the datum from its memory to that of P,. The analogy

here is a network of roads connecting cities: A datum sent from one processor to another
follows a path through the network in the same way that a car travels from one city to

another.

Two processors directly connected by a link are said to be neighbors. The links used in
an interconnection networks two-way communication lines: Two processors connected by

a link can exchange data simultaneously. In other words, in reality, the link between P,
and P, in an interconnection network represents two links, namely, one from £, to P,

and one from P, to F.

The most obvious, and most general, way to connect p processors is to connect each pair

by a iwo-way link, as shown in Figure 3.1-1 for p=5. Each processor has p-1

P3

Figure 3.1-1 Graphical Representation of a 5-processor PRAM

neighbors and can send a datum directly to, or receive a datum directly from, any of its
neighbors. The complete graph in Figure 3.1-1 simulates a PRAM model with 5
processors, that is, the PRAM model can be viewed as an interconnection network that
represents a complete graph. Figure 3.1-1 is known as a complete network. While
convenient, such a network is costly and unrealistic for all but the small values of p.
Indeed, there are ﬂ%?'—) links in the network, rendering it infeasible in practice for two
reasons, namely, the expense associated with the total number of links and the limit on
the number of links that can be physically connected to a processor. As a consequence,

more reasonable networks are sought. Fortunately, a small subset of all pair wise

connections usually suffices to obtain efficient algorithms in most applications. In some

83

models the number of processor’s neighbors is constant, while in other it is a function of

D

Whether the number of neighbors of a processor is constant of function of p, we assume
that a processor can send and/or receive data to and from a constant number of neighbors
in one time unit. Every message that a processor wishes to transmit is considered a
datum of fixed size. If m data are to be sent from one processor to another, then m
transmissions are required. Suppose that a processor has x neighbors (where x is either a
constant of a function of p). In order to select one of its neighbors for a transmission, the

processor needs time that is a function of x. For example, an address of logx bits

requires O(logx) time to be decoded.

If the link connection two processors has length %, then the time to traverse the link is a
function of /. Again, for simplicity, we assume that the datum can travel form one
processor to any of its neighbors in constant time. If a processor has x neighbors (where
x is either a constant or a function of p), then it needs time that is a function of x to select
a neighbor from which to receive data. We take this time to be constant. Each processor

has a memory of size . We assume this time to be constant too. When processor 7,
wishes to send a datum d to processor P, which it is not directly connected, the

following scheme is used: First P, sends d to one of its neighbors —for example, 7, .

!

Now B, receives and stores d and then relays it to one of its own neighbors —for example,

84

F,. This continues until d reaches P,. Since each datum is of constant size, it makes no

difference whether this scheme is used or another whereby a path is first established from

P to Pj and then d is sent.

Unless otherwise stated, we assume that the paths are predefined. In other words, the
address of the destination processor is used to find a shortest path from the source
processor. This is the responsibility of the algorithm designer. Specifically, the

algorithm defines the required path when a processor P is to send a datum to another
processor P, at any given step. Thus, a path from P to P, is fully specified from

beginning to end, prior to that step. When the step is executed, each processor on the

path from P to P, upon receipt of a datum d, simply forwards d to that specific neighbor

indicated by the algorithm. All processors are assumed to “know” p, the total number of
processors, as well as the topology of the network. Furthermore, no processor is isolated:

There is always at least one path from a source processor to a destination processor.

While handshaking may be a useful feature in practice, it serves no purpose to explicitly

include it in the model and allow time for it. We assume that handshaking is done
implicitly as part of the communication between P and P,. In fact, the messages
involved in a handshake can themselves be viewed as data, and communicating them

involves the same routing mechanisms and requires the same amount of time as sending a

regular datum.

85

We assume that all processors operate synchronously. In one step, requiring constant
time, a processor can receive data from a constant number of neighbors, perform a
computation, and send data to a constant number of neighbors. Each processor holds a
copy of the common algorithm, and all processors execute this algorithm in lockstep
fashion. This algorithm may indicate that only a subset of the processors is active, using

the indices of the processors. Active processors execute the same step at the same time.

Each processor in the network may be viewed as a RAM: It can perform a number of
basic arithmetic or logical operations and has access to a random access memory. Each
basic operation requires constant time to be preformed. In addition to a RAM, however,
each processor has a number of special registers (called ports) that allow it to
communicate with its neighbors. Each port is physically connected by a link to a port in

another processor.

A number of criteria are used to help determine which topology is best suited for a certain

application.

e The degree of a processor in a given network topology is defined as the number of
neighbors of that processor. The degree of the network is the maximum of all
processors degrees in that network. For example, the degree of a binary tree of

processors is 3. Degree is an important criterion for assessing a topology and

86

must be considered carefully. In the one hand, a large degree is interesting from a
theoretical point of view, since many processors are one step away from any
given processor. In the other hand, a small degree is preferable to a large one
from a practical point of view, for the reasons given earlier: Having many
neighbors is not only expensive, but many also be infeasible.

o The distance between two processors P and P, in a given network topology is

the number of links on the shortest path from P to P,. The diameter of the

network is the length of the longest distance among all distances between pairs of
processors in that network. Since processors need to communicate among
themselves, and since the time for a message to go from one processor to another
depends on the distance separating them, a network with a small diameter is better
than one with a large diameter.

e Although the models that we will study are abstract objects, some of them may
represent parallel computers to be implemented. In this light, one network
topology is more desirable than another if it is more efficient, more convenient,
and more extendable than the other. One particular criterion is the length of the
longest link in the network. A network whose links have constant length is

usually easier and more efficient to implement.

Next we will study four topologies of networks and their properties. The selection
algorithm will be later studies on these topologies, and suitable efficient multiselection

algorithm will be developed on them.

87

3.1.1 Linear Array

In a linear array, each interior processor in a liner array is connected with bi-directional
links to its left-neighbor and its right-neighbor. The outermost processors may have just

one connection each, and may serve as input/output points for the entire network.

A linear array, shown in figure 3.1-2, is the simplest example for a fixed-connection
network. Each processor in the array has a local program control and local storage. The
complexity of the local program control and the size of the local storage may vary,
although we will usually assume that the local control is simple. (i.e., that it consists of a
few operations) and that the local storage is small (i.e., that it can hold a few words of

data). At each step, each processor

P1 P2 Ps m——————=- Pp

Figure 3.1-2 Linear Array of Processors

e receives input from its neighbors,
e inspect its local storage,
o performs the computation indicated by its local control,

e generates output for its neighbors, and

88

e updates its local store.

Time is partitioned into steps by a global clock, so that the entire array operates
synchronously. Computation in this fashion is commonly know as systolic computation,
because data pulses through the network in a manner analogous to the way blood pulses

through the body. An array used in this fashion is called a systolic.array.

The degree of each internal processor in a linear array is 2. While the degree of the two

outer most processors is 1. The diameter of a p-processor linear array network is p—1 or
O(p) , because in the worst case, a packet originated from processor F destined to 7,

will traverse p —1 links.

3.1.2Mesh

A mesh is an axb grid in which there is a processor at each grid point. The edges
correspond to the communication links and are bi-directional. Each processor of the

mesh can be labeled with a tuple (7, j), where 1<i<qa and 1< j<b. Every processor of

the mesh is a RAM with some local memory. Hence each processor can perform any of
the basic operations such as addition, subtraction, multiplication, comparison, local
memory access, and son on, in one unit of time. The computation here is also assumed to
be synchronous; that is, there is a global clock and in every time unit each processor

completes its intended task. This arrangement can be obtained by arranging the p

89

arranging the p processors 1"0,}’1,...,Pp_l into an m x m array, where m = p§ , as shown in
Figure (XXX). The processors in row j and column k are denoted by P(j,k), where
0<j<m-1 and 0<k<m-1. A two-way communication line links P(j,k) to. its
neighbors P(j+1k), P(j-1k), P(j,k+1), and P(j,k-1). Processors on the

boundary rows and columns have fewer that four neighbors and, hence, fewer

connections.

A number of indexing schemes are used for the processors in a mesh. For example, in

row-major order, processor P, is placed in row j and column £ of the two-dimensional
array, where i=jm+k for 0<i<p-1, 0<j<m-1,and 0<k<m-1. In snakelike
row-major order, processor P, is placed in row j and column k of the processor array such

that i = jm+k whenj is even, and i = jm+m—k —1 when is odd, where i, j, and k are

as before.

Like the linear array, the model is simple from a theoretical point of view, as well as
being appealing in practice. In it, the maximum degree of processor is four. The
topology is regular, as all rows and columns are connected to their successors in exactly

the same way. The topology is also modular, in the sense that any of its regions can be

implemented with the same basic components. The diameter of the mesh is 2 p% -2

or O(J’p_) (i.e., the number of links on the shortest path from the processor in the top left

90

Column
0 1 2 3
0 P(0.,0) P(0,1) P(0,2) P(0,3)
1 P(1,0) P(1,1) P(1.2) P(1,3)
Row
2 P(2,0) P(2.1) P(2.2) P(2,3)
3 P(3.0) P(3.,1) P(3.2) P(3,3)

Figure 3.1-3 16-processor Mesh

corner to the processor in the bottom right corner). Another configure of the mesh

arranges the processors into m rows and » columns, where m#n and p=mxn.

3.1.3 Hypercube

The d-dimensional hypercube has p=2° nodes (processors) and d2°' edges
(communication links, or simply, links). In what follows, when the graph of a hypercube
is discussed, the words nodes and edges are used to describe its components; on the other

hand, if the object of discussion is the hypercube network, the words processors and links

91

are used instead. Each processor in the hypercube can be labeled with a d-bit binary
number, and two processors are linked with an edge if and only if their binary number
differ in precisely one bit. A hypercube of dimension d = 1, 2, 3, and 4 are shown in
figure (3.1-3). If vis a d-bit binary number, then the first bit of v is the most significant
bit of v. The second bit of v is the net-most significant bit. And so on. The dth bit of v is
its least significant bit. Let v\ stand for the binary number that differs from v only in the

(3)

ith bit. For example, if vis 1011, then v is 1001. In the same manner, the edges of the

hypercube can be naturally partitioned according to the dimensions that they traverse. In
particular, an edge is called a dimension i edge if it links two nodes that differ in the ith

bit position. Any processor v in a hypercube of dimension d is connected only to the
processors v for i=12,...,d. In a hypercube of dimension 3, for example, the
processor 110 is connected to the processors 010, 100, and 111, see figure 3.1-3. The
link (or edge) (v,v) is called a level i link. The edges of any dimension i in a
hypercube form a perfect matching for each 7, 1<i <log p. Note that 4 =logp. Recall
that a perfect matching for any p-node graph is a set of p/2 edges that do not share any

node. Moreover, removal of the dimension i edges for any i <log p leaves two disjoint
copies of a £ -node hypercube. Conversely, a p-node hypercube can be constructed from
two £ -node hypercubes by simply connecting the jth node of one £ -node hypercube to

the jth node of the other for 0< j<£.

Since each processor in the hypercube of dimension d is connected to exactly 4 other, the
degree of such hypercube is d. The hamming distance between two binary numbers u

and v is defined to be the number of bit positions in which they differ.

010 011

° 10 11

110

001

00 01
100

Figure 3.1-4 Hypercubes of dimensions 1, 2, 3, and 4

101

93

For any two processors # and v in a hypercube, there is a path between them of length
equal to the Hamming distance between u and v. For example, there is a path of length 4
between the processors 10110 and 01101 in a five-dimensional hypercube: 10110, 00110,
01110, 01100, 01101. In general, if ¥ and v are any two processors, a path between them
(of length equal to their Hamming distance) can be determined in the following way. Let

Ji»Jas+--Ji be the bit positions (in increasing order) in which # and v differ. Then, the
following path exists between v and v: u,w; , W, ,...,w, ,V, where w, has the same bit as

v in position 1 through j, and the rest of the bits are the same as those of u (for 1</ <k).

In other words, for each step in the path, one bit of u is “corrected” to coincide with the

corresponding bit of v.

In addition to a simple recursive structure, the hypercube also has many of the other nice
prosperities that we would like a network to have. In particular, it has low diameter
(logp) and high bisection width (£). The diameter of a network is the maximum

distance between any pair of processors. Recall that the distance between any pair of
processors is the smallest number of links that have to be traversed in order to get from
one processor to the other. The bisection width of a network is defined as the minimum
number of links that have to be removed in order to disconnect the network into two

halves with identical (within one) numbers of processors. An interesting aside, it is worth
noting that a hypercube can be bisected by removing far fewer than £ edges are required

to bisect the p-node hypercube. For example, consider the partition formed by removing

94

all nodes with size 5’5—”_| and I_"’#J (The size, or weight, of a processor in the hypercube

is the number of 1s contained in its binary string.) A simple calculation reveals that

removal of these nodes forms a bisection with ©(,/I:ﬁ) processors, which is the best

possible. It is also worth noting that the hypercube possesses much symmetry. For
example, it is node and edge symmetric. IN other words, by just re-labeling nodes, we
can map any node onto any other node, and any edge onto any other edge. More
precisely, for any pair of edges (#, v) and (¢',v') in a p-node hypercube H, there is an
automorphism o of H such that c(u) =#' and o(v) =Vv'. An automorphism of a graph

is a one-to-one mapping of the nodes to the nodes such that edges are mapped to edges.

Every processor of the hypercube is a RAM with some local memory and can perform
any of the basic operations such as addition, subtraction, multiplication, comparison,
local memory access, and so on, in one unit of time. Inter-process communication
happens with the help of communication links in a hypercube. If there is no link
connecting two given processors that desire to communicate, then communication is
enabled using any of the paths connecting them and hence the time for communication
depends on the path length. There are two variants of the hypercube. In the first version,
know as the sequential hypercube or single-port hypercube, it is assumed that in one unit
of time a processor can communicate with only one of its neighbors. In contrast, the
second version, known as the parallel hypercube or multi-port hypercube, assumes that in

one unit of time a processor can communicate with all its d neighbors. Both these

95

versions assume synchronous computations that is, in every time unit, each processor

completes its intended task.

Containment (Embedding) of other graphs

One of the most interesting properties of the p-node hypercube network is that it contains
p-node linear array as a subgraph. This result holds true even for high-dimensional arrays
(meshes) and even wraparound edges are allowed. For example, the embedding of a
4 x4 mesh in a 16-node hypercube is shown in Figure (mesh-in-hypercube). Note that p
should be a power of 2. As a consequence, the p-node hypercube contains a p-cell linear

array (with wraparound) as a subgraph for p>4.

The sequence of nodes traversed by a Hamiltonian cycle of a hypercube forms what is
known as a Gray code. Formally, an r-bit Gray code is an ordering of all r-bit numbers
so that consecutive numbers differ in precisely on bit position. A Hamiltonian cycle of
an r-dimensional hypercube forms a Gray code since it visits every r-bit binary number in
sequence, and since consecutive numbers are linked by an edge of the hypercube
(implying that they differ in just one bit). For example, a Hamiltonian cycle of an 8-node

hypercube and the associated Gray code are shown in Figure (3-6 black book).

Going back to the embedding of a p-node mesh it is noticeable that not all p-node meshes

are subgraphs of rlog p-| -dimensional hypercubes, it is still possible to find an embedding

of any p-node mesh in a |_log p-| -dimensional hypercube provided that we are allowed to

96

“stretch” the edges of the mesh. The maximum amount that we must stretch any edge to
achieve the embedding is called the dilation of the embedding. For example, a 3x5
mesh can be embedded in a 16-node hypercube provided that we allow some edges in the
mesh to be stretched across two edges of the hypercube. Hence, the mesh can be
embedded with dilation 2 in the 16-node hypercube. See Figure (3-7,3-8 black book). In

fact, any p-node mesh can be embedded in a I-log p-l-dimensional hypercube with

dilation 2.

Embedding of a binary tree

There are many ways in which a binary tree can be embedded into a hypercube. A g-leaf
full binary tree T (where g=2° for some integer d) can be embedded into a d-
dimensional hypercube. Note that a g-leaf full binary tree has a total of 2¢-1
processors. Hence the mapping cannot be one-to-one. More than one processor of 7 may
have to be mapped into the same processor of the d-dimensional hypercube. If the tree
leaves are 0.1,...,p -1, then leaf i is mapped to the ith processor of the d-dimensional
hypercube. Each internal processor of T is mapped to the same processor of the 4-
dimensional hypercube as its leftmost descendant leaf. See figure (15.7 red book). This
embedding could be used to simulate tree algorithms efficiently on a sequential
hypercube. If any step of computation involves only one level of the tree, then this step
can be simulated in on step on the hypercube [26]. Next we will use this embedding to

explain how we can efficiently broadcast on the d-dimensional hypercube.

97

3.1.4 Butterfly

Although the hypercube is quiet powerful from a computation point of view, there are
some disadvantages to its use as and architecture for parallel computation. One of the
most obvious disadvantages is that the node degree of the hyperéube grows with its size.
Several variations of the hypercube have been devised that have similar computational
properties but bounded degree. The butterfly network is closely related to the hypercube.
Algorithms designed for the butterfly can easily be adapted for the hypercube and vice-
versa. In fact, for several problems it is easier to develop algorithms for the butterfly and

then adapt them to the hypercube. Which is the case with sorting on the hypercube.

level=0

straight edge' cross edge

Figure 3.1-5 The Butterfly Network

98

The d-dimensional butterfly has (d +1)2¢ nodes and d2°*' edges, see Figure 3.1-4. The

nodes correspond to pairs (w,i) where i is the level or dimension of the node (0<i<d)
and w is a d-bit binary number that denotes the row of the node. Two nodes (w,i) and

(W, i) are linked by an edge if and only if i’ =i +1 and either:

1. wand w' are identical, or

2. wand w' differ in precisely the i th bit.

If wand w' are identical, the edge is said to be a straight edge. Otherwise, the edge is a
cross edge. The butterfly and the hypercube are quite similar in structure. In particular,
the ith node of the d-dimensional hypercube corresponds naturally to the ith row of the r-
dimensional butterfly, and an ith dimension edge (u, v) of the hypercube corresponds to
cross edges ({u,i—1), (v,i)) and ({v,i—1),(u,i)) in level i of the butterfly. In effect, the
hypercube is just a folded up butterfly (i.e., we can obtain a hypercube from a butterfly by
merging all butterfly nodes that are in the same row and then removing the extra copy of
each edge). Hence, any single step of p-node hypercube calculation can be simulated in
logp steps on a p(log p+1)-node butterfly by having the ith row of the butterfly
simulate the operation of the ith node of the hypercube for each i. A butterfly can be

converted into the hypercube by collapsing each row into a single processor and

preserving all the links.

99

The butterfly has a simple recursive structure. A d-dimensional butterfly contains two
(r —1)-dimensional butterflies as subgraphs. In figure (3-19 black book), just by
removing the level 0 nodes of the d-dimensional butterfly we realize that the resulting

graph is simply two (r —1)-dimensional butterflies.

The following two properties are important in the analysis of an algorithm in section

3.2.3.2.

Property 1: If the level d processors and incident links are eliminated from the d-
dimensional butterfly, two copies of (d —1)-dimensional butterfly result. One of these
butterflies consists of only even rows and the other consists of only odd rows. We call

them even subbutterfly and odd subbutterfly respectively.

Property 2: All processors at level d are connected by a full binary tree. For example, if
we trace all the descendants of the processor 00...0 of level zero, the result is a full
binary tree with the processors of level d as its leaves. In fact this is true for each

processor at level zero.

Another useful property of the d-dimensional butterfly is that the level 0 node in any row
w is linked to the level d node in any row w' by a unique path of length d. The path
traverses each level exactly once, using the cross edge from level i to level i+1 if and

only if w and w' differ in the (i +1)st bit.

100

Like the hypercube, the butterfly also has a large bisection width. In particular, the

bisection width of the p-node butterfly is ©(3%>). To construct a bisection of this size,

simply remove the cross edges from a single level. As a result, we get the following

lemma.

Lemma 3.1-1

Each step of a d-dimensional butterfly can be simulated in one step on the parallel version
of the d-dimensional hypercube. Also, each step of a d-dimensional butterfly can be
simulated in d steps on the sequential version of the d-dimensional hypercube.

Any algorithm that runs on a d-dimensional butterfly is said to be a normal butterfly
algorithm if at any given time, processors in only one level participate in the

computation.

Lemma 3.1-2

A single step of any normal algorithm on a d-dimensional butterfly can be simulated in

one step on the sequential d-dimensional hypercube.

101

3.2 FUNDAMENTAL ALGORITHMS

In this section we will present four fundamental algorithms on the three interconnection
network topologies. These algorithms will be will simplify the analysis of the discussion

selection and the multiselection algorithms presented later.

3.2.1 Broadcasting

Broadcasting on the Linear Array and the Mesh

The problem of broadcasting in an interconnection network is to send a copy of a
message that originates from a particular processor to a specified subset of other
processors. Unless otherwise specified, this subset is assumed to consist of every other
processor. Broadcasting is a primitive form of inter-processor communication and is
widely used in the design of several algorithms. Let I” be a linear array with processors
R,B,...,P,. Also let M be a message that originates from processor F. Message M can
be broadcast to every other processor as follows. Processor £, sends a copy of M to
processor P,, which in turn forwards a copy to processor 7, and so on. This algorithm
takes p—1 steps and this run time is the best possible. If the processor of message origin
is different from processor P, a similar strategy could be employed. If processor P, is
the origin, P, could start by making two copies of M and sending a copy in each direction

to each of it neighbors. From the above analysis we get the following lemma.

Lemma 3.2-1 [Broadcasting on the Linear Array]
Broadcasting on a p-processor linear array requires p—1= O(p) steps.

|
In the case of a J; xJ; mesh broadcasting can be done in two phases. If F, ;» 1s the
processor of message origin, in phase 1, M could be broadcast to all processors in tow i.
IN phase 2, broadcasting of M is done in each column. This algorithm takes < 2(\/; -1)

steps. This can be expressed in the following theorem.

Theorem 3.2-1 [Broadcasting on the Linear Array and the Mesh]

Broadcasting on a p-processor linear array can be completed in O(p)p steps. In a

\/; X J; mesh the same can be performed in < Z(J; -= O(\/;) time.

Broadcasting on the Hypercube

To perform broadcasting on a d-dimensional hypercube, we employ the binary tree
embedding. In a binary tree network, assume that the message M to be broadcast is at the
root of the tree (i.e., at the processor 00...0). The root makes two copies of M and sends
a copy to each of its two children in the tree. Each internal processor, on receipt of a
message from its parent, makes two copies and sends a copy to each of its children. This
proceeds until all the leaves have a copy of M. Note that the height of this tree is
d=logp. Thus in O(logp) steps, each leaf processor has a copy of M. In this

algorithm, computation happens only at one level of the tree at any given time. Thus

103

each step of this algorithm can be run in one time unit on the sequential d-dimensional

hypercube. This can be expressed in.the following theorem

Theorem 3.2-2 [Broadcasting on the Hypercube]

Broadcasting on a p-processor d-dimensional hypercube can be performed in O(log p)

steps, where d =logp .

3.2.2 Prefix Computation

Prefix computation on the Linear array

Prefix computation is a very useful tool that can be used for studying algorithms on

parallel topologies. Recall that if we have a set S ={s,,5,.,...,5,} a set of elements and a

binary associative unit time computable operator ©. Then the prefix computation

problem on S has as input » elements. The problem is to compute the » elements

X%, @%,50x,0x,.,,0x,0x®---Ox,

In the case of the linear array with p processors, assume there is an element x; at

processor i (for i=1,2,...,p). We have to compute the prefix of x,x,,...,x,. After this
computation, processor i should have the value Z;=lx ;- One way of performing this

computation is as follows. In step 1, processor 1 sends x, to the right. In step 2,

104

processor 2 computes X, @ x, , stores this answer and sends a copy to its right neighbor,

and so on, see algorithm 3.2-1.

Linear-Array-Prefix

1. for i=1 to p do in parallel

2. ifi=1

3. Processor P, sends x, to the right in step 1
4, elseif i=n

5.

Processor P, receives an element (call it z,_,) in step » from
processor P, ,, computes and stores z,_, @ z,.

6. else

7. Processor P receives an element (call it z,_,) in step i from processor
P_,, computes and stores z; =z, , ® x,, and sends z, to processor
i+1

8. end if

9. end for

Algorithm 3.2-1 Prefix Computation on the Linear Array

In general step i, processor i adds the element received from its left neighbor to x,, stores

the answer, and sends a copy to the right. This will take p steps to compute all prefixes.

Thus prefix computation on linear array takes O(p) time.

Lemma 3.2-2 [Prefix Computation on the Linear Array]

Prefix computation on a p-processor linear array can be performed in O(p) time

105

Prefix computation on the Mesh
An algorithm similar to the one that computes the prefix sum on the linear array can be
adopted on the mesh. Consider a J; X J; mesh in which there is an element of S at

each processor. Since the mesh is a two-dimensional structure, there is no natural linear
ordering of the processors. We could come up with many possible orderings. Any such
orderings of the processors is called an indexing scheme like the row-major, column-

major, snakelike row-major, etc.

The problem of prefix computing on the mesh can be reduced to three phases in each of

which the computation is local to the individual rows or columns.

Phase1 Row i (for i=1,2,. ..,J—E) computes the prefixes of its \/}; elements. At
the end, the processors (i, /) has y; , = Z;ﬂ Xiia)
Phase 2 Only column J; computes prefixes of sums computed in phase 1. Thus

at the end, processor (i,ﬁ) has Z, = ZM Va7 - After the
computation of prefixes shift them down by one processor; i.e,, have
processor (i,J;) send 2, /7 to processor (i+1,\/—1;) (for

i=12,...\[p-1).

Phase 3 Broadcast 2, 15 in row i+1 (for i = 1,2,...\/; —1). Node; in row i+1
finally updates its result to z, 77 D Va1

Algorithm 3.2-2 Prefix computation on the Mesh

The algorithm assumes the row-major indexing scheme. From lemma 3.2-2, the prefix

computation in phases 1 and 2 take J; steps each, which is clear if we look at each row

106

as a linear array. The shifting in phase 2 takes one step, and the broadcasting in phase 3
takes J; steps. The final update of the answers needs an additional step. A slight

modification to the above algorithm yields prefix computation in snakelike row major

order, or any other indexing scheme.

Theorem 3.2-3 [Prefix Computation on the Mesh]

Prefix computation on a \/; xﬁ mesh in row major order can be performed in

3yp+2= O(J;) steps.

Prefix Computation on the Hypercube
For a hypercube model of computation with p processors F, B,..., P, and a number x;

at each processor P, 0<i< p-1. The following algorithm uses a technique called

i

recursive doubling to compute the prefix computation. Each processor P has two
registers 4, and B,. Initially, both 4, and B; contain x;, 0<i< p-1. When the
algorithm terminates, A4, contains x,®x, ®...®x,. Leti and i be two integers of

log p bits each that differ in the jth bit, where 0< j <(log p) -1, the ith bit being the

least significant bit. Algorithm [3.2-3] consists of log p iterations.

107

Algorithm HYPERCUBE PREFIX COMPUTATION

1. Stepl:for j=0 to (logp)-1 do

2 for all i <i*” do in parallel
3 A,n <« A,-(;) + B,'

4. B,»m « Bim + Bi

5 Bi <« B,-U)

6 end for

7 end for

Algorithm 3.2-3 Prefix computation on the hypercube

Theorem 3.2-4 [Prefix Computation on the Hypercube]

Prefix computation on the p-processor hypercube can be performed in O(log p) time.

When p =n, the cost of the algorithm is ¢(n) = O(nlogn).

Prefix Computation Using Binary Tree Embedding on the -
Hypercube

Now we make use of the binary tree embedding to perform prefix computation on the d-
dimensional hypercube. Let x, be input at the ith leaf of a 27 -leaf binary tree. There are

two phases in the algorithm, namely, the forward phase and the reverse phase. In the
forward (reverse) phase, data items flow from bottom to top (top to bottom). In each step
of the algorithm only on level of the tree is active. In the forward phase of the algorithm,
each internal processor computes the sum of all the data in its subtree. Let v be an

internal processor and v' be the leftmost leaf in the subtree rooted at v. Then, in the

108

reverse phase of the algorithm, the datum g received by v can be seen to be Zf:olx, .

That is, g is the sum of all input data items to the left of V'.

Algorithm: PREFIX COMPUTATION ON A BINARY TREE

Let © be a binary operation

Forward phase

The leaves start by sending their data up to their parents. Each internal processor
on receipt of two items (say y from its left child and z from its right child)
computes w=y @ z, stores a copy of y and w, and sends w to its parent. At the
end of d steps, each processor in the tree has stored in its memory the sum of all
the data items in the subtree rooted at this processor. In particular, the root has
the sum of all the elements in the tree.

Reverse phase

The root starts by sending zero to its left child and its y to its right child. Each
internal processor on receipt of a datum (say ¢) from its parent sends g to its left
child and ¢ @ y to its right child. When the ith leaf gets a datum ¢ from its

parent, it computes g ® x, and stores it as the final result.

Algorithm 3.2-4 Prefix Computation on a Binary Tree (as well as on a Hypercube)

The correctness of the algorithm follows. Also both the forward phase and the reverse
phase take d steps each. Moreover, at any given time unit, only one level of the tree is
active. Thus each step of the algorithm can be simulated in one step on the d-dimensional
hypercube. This result agrees with Theorem 3.2-4. Therefore, the prefix computation on
a 27-leaf binary tree as well as the d-dimensional hypercube can be performed in

0(d)=0O(log p) time.

109

3.2.3 Data Concentration

In a p-processor interconnection network assume that there are d < p data items

distributed arbitrarily with at most one data item per processor. The problem of data
concentration is to move the data into the first d processors of the network one data item

per pfocessor. This problem is also known as packing.

In the case of a p-processor linear array, we have to move the data into the processors

R,PB;....F;. On a mesh, we might require the data items to move according to any

indexing scheme of our choice. For example, the data could be moved into the first l'j?]

TOWS.

Data Concentration on the Linear Array and the Mesh

First performing a prefix computation to determine the destination of each packet and
then routing the packet using an appropriate packet routing algorithm achieve data

concentration on any network. Note, broadcasting is a special case of packet routing.

Let I" be a p-processor linear array with d data items. To find the destination of each data

item, we make use of a variable x. If processor P, has a data item, then it sets x, =1;
otherwise it sets x, =0. Let the prefixes of the sequence X3 XyseeX, D€ Y3 Y55y, If

processor F, has a data item, then the destination of this item is y,. The destinations for

110

the data items having been determined, they are routed. Prefix computation from lemma
3.2-2 takes p time. Also, from lemma 3.2-1, broadcasting requires p time steps. Thus the

total runtime for data concentration on the linear is 2p .

On the mesh, the same strategy of computing prefixes followed by packet routing can be
employed. Prefix computation and packet broadcasting can be done in O(J;) steps (c.f.

Theorem 3.2-1 and Theorem 3.2-3).

Theorem 3.2-5 [Data Concentration on the Linear Array and the Mesh]
Data concentration (packing) on a p-processor array takes O(p) time. On a \/; x\/;

mesh, it takes O(;/p) time.

Data Concentration on the Hypercube

In a d-dimensional hypercube, assume that there are k< p data items distributed
arbitrarily with at most one datum per processor. The problem of data concentration is to
move the data into the processors P, R,...,F,_, of the d-dimensional hypercube one data
item per processor. We will present a normal butterfly algorithm then invoke lemma 3.1-

2. The two properties for the butterfly network, mentioned in 3.1.5, wiis be useful in the

analysis of the algorithm.

111

Assume that the k<2 data items are arbitrarily distributed in level d of the d-
dimensional butterfly. At the end, these data items have to be moved to successive rows

of level zero. For example, if there are five items in level 3, row 001 — a (this notation

means that the processor (001,3) has the item a)., row 010 b, row 100 — ¢, row

101 > d, and row 111 — e, then at the end, these items will be at level zero and row
000 > a,row 001 > b, row 010 » ¢, row 011 > d, and row 100 - e. There are two
phases in the algorithm. In the first phase a prefix sums operation is performed to
compute the destination address of each data item. In the second phase each packet is

routed to its destination using the greedy path from its origin to its destination.

From Theorem 3.2-4, the prefix computation takes O(d) time. During this process the

prefix sums are computed on a sequence, X, X,,.- S of zeros and ones. The leaf

processor P, sets x, to one if it has a datum, otherwise to zero.

In the second phase packets are routed using the greedy paths. The claim is that no
packet gets to meet any other and hence there is not possibility of link contentions.
Consider the first step in which the packet travel from level d to level d-1. If two
packets meet at level d —1, it could be only because they originated from two successive
processors of level d. If two packets originate from two successive processors, then they
are also destined for two successive processors. In particular, one has an odd row as its
destination and the other has an even row. That is, one belongs to the odd subbutterfly

and the other belongs to the even subbutterfly. Without the loss of generality assume that

112

the packets that meet at level d —1 meet at a processor of the odd subbutterfly. Thenitis
impossible for one of these two to reach any processor of the even subbutterfly. In

summary, no two packets can meet at level d -1.

After the first step, the problem of concentration reduces to two sub-problems:
concentrating the packets in the odd subbutterfly and concentrating the items in the even
subbutterfly. But these subbutterflies are of dimension d—1. Thus by induction it

follows that there is no possibility of any two packets meeting in the whole algorithm.

The first phase as well as the second phase of this algorithm takes ©(d) =©(log p) time

each. Also note that the whole algorithm is normal. We get this lemma.

Lemma 3.2-3 [Data Concentration on the Hypercube]

Data concentration can be performed on a d-dimensional butterfly as well as the

sequential d-dimensional hypercube in ©(d) = ©(log p) time.

3.2.4 Merging

The problem of merging is to take two sorted subsets as input and produce a sorted set of
all elements. To merge two sorted lists 4 =a,,aq,,...,a,,, and B=4,,b,,...,b,,_, into a

single list L (where M is a power of 2), we first partition 4 and B into odd and even index

sublists. In particular we set

even(d) = a,,a,,....a,,_,, 0dd(4) = a,,a,,...,a,,,

even(B) = b,,b,,...,b,,_ ,and odd(B) = b,,b,,...,b,,_,

Note that because 4 and B are sorted, so are the odd and even index sublists. We next use
recursion to merge even(4) with odd(B) to form a sorted list C, and odd(4) with even(B)
to form another sorted list D. To form L we still have to merge C and D. At first glance,
it appears that the formation of C and D does not make any progress at all since we will
still have to merge these two M-element lists to form L. The task of merging C and D is

much easier than the task of merging 4 and B, however. In particular,
C =c¢y¢p..¢yy and D=d,,d,,...,d,,_,
can be merged by first interleaving the lists to form

L' =¢y,dy,¢,5dys. . sChp 158y
and then comparing each ¢; with the following d,, and switching the values if they are

out of order. The resulting list is sorted.

Odd-Even Merge on the Linear Array

The odd-even merge algorithm is described in algorithm 3.2-5. On a (p = 2m)-processor
linear array assume that X, is input in the first m processors and X, is input in the next
m processors. In line 1 of algorithm 3.2-5, X and X, are separated into odd and even

parts (call them O,, E,, O,,and E,). This takes Z steps of data movement.

114

Algorithm: ODD-EVEN MERGE

—

If m =1, merge the sequence with one comparison.
2. Partition X and X, into their odd and even parts. That is, partition X into

X0“ = {k,ks,....k,,} and X" ={k,,k,,...,k,}. Similarly, partition X, into
ngd and X2

3. Recursively merge X, with X, using m processors. Let L, ={/,,L,,...],,} bethe
result. Atthe same time merge X, with X, using the other m processors to get
Ly = {p1slmezseeoshom} -

4. Form the sequence L ={,] . 1,0rs0,015e--slm>lam} - compare every pair (/,,,,
interchange them if they are out of order.

Algorithm 3.2-5 Odd-Even Merge

ll+l) and

Next, E\and O, are interchanged. This also takes Z steps. In line 2, O is merged

recursively with O, to get O. At the same time E is merged with E, to get E. In line 3,

O and E are shuffled in a total of <m data movement steps. Finally, adjacent elements

are compared and interchanged if out of order. If #(m) is the run time of this algorithm
on two sequences of length m each, then we have #(m)<#(%)+2m+1 which solves to
t(m)=O0(m). That is for a linear array of p-processors, odd-even merge requires O(p)

time.

Lemma 3.2-4 [Odd-Even Merge on the Linear Array]

Two sorted sequences of length m each can be merged on a p-processor linear array in

O(p) time, where p=2m.

115

Odd-Even Merge on the Mesh
Consider a \/; X J; mesh. Assume that the two sequences to be merged are input in the

first and second halves of the mesh in snakelike row major order where each snake S,

and S, has —’/,z columns and ./p rows. Algorithm 3.2-6 merges two snakes with /
2 2

columns each. In what follows we will § denotes the set of elements, S and S, denotes

two snake-like subsets of the element set S.

Odd-Even Merge on the Mesh

—

If I =1, merge the two snakes using linear array merge.

2. Partition S into its odd and even parts, O, and E,, respectively. Similarly
partition S, into O, and E,. Parts O, E , O,, and E, are snakes with £
columns each.

Interchange O, with E

4. Recursively merge O with O, to get the snake O. At the same time merge E
with E, to get the snake E.

5. Shuffle O with E. compare adjacent elements and interchange them if they are
out of order.

Algorithm 3.2-6 Odd-Even Merge on the Mesh

W

Let ¢(/) be the run time of the algorithm on two sorted snakes with 1 columns each. In
step 0, we have to merge two sorted columns. Since data can be moved from one column

to the other in one step, which takes O(J;) [25]. Steps 1,2, and 4 take <i, £, and/

steps of data movement, respectively. Step 3 takes #(%) time. Thus, #(J) satisfies

t(l)<t($)+2], which on solution implies ¢(/)<4l+1(1); that is t(‘/—;';-) = O(J;).

116

Therefore, two sorted snakes of size \/_;; x‘/—f- each can be merged in time O(J;) ona

ﬁ X J; mesh.

Theorem 3.2-6 [Odd-Even Merge on the Mesh]

Two sorted snakes of size /p x# each can be merged in time O(J;) ona J; X J;

mesh.

3.3 SORTING ON INTERCONNECTION NETWORK

We are slowly paving our way to simplify the analysis of the selection and multiselection
algorithms presented at the end of this chapter. In this section, we present sorting
algorithms on the three interconnection network topologies. The main sorting technique
that we will study is the Odd-Even Merge sort. Algorithms for this sorting technique are
given for the Linear Array, the Mesh, and the Hypercube. First we start by explaining

how odd-even merge sort works.

Odd-Even Merge Sort works by recursively merging larger and larger sorted lists. Given
an unsorted list of » items, the algorithm starts by partitioning the items into » sublists of

length 1. Next, we merge pairs of the unit-length lists in parallel to form 4 sorted lists of
length 2. These lists are then merged into £ sorted lists of length 4, and so on. At the

end we merge two sorted lists of length % into the final sorted list of length ».

117

Next we present methods for performing sorting on different topologies.

3.3.1Sorting on the Linear Array

Odd-Even Transposition Sort
The Odd-Even Transposition Sort Algorithm consists of two steps that are performed
repeatedly. In the first step, all odd-numbered processors F, obtain s, from P, If

s, >s,,,,then P and P, exchange the elements they held at the beginning of this step.

i+1?
In the second step, all even-numbered processors perform the same operations as did the

odd-numbered ones in the first step. We need [1/2] repetitions of these two steps in this

order. Hence the algorithm terminates with s, <s,,, forall 1<i<n-1.

Algorithm ODD-EVEN TRANSPOSITION SORT (S, k)

1. Stepl:for j«1to [n/2] do

2 for i < 1,3,...,2|n/2]|~1 do in parallel
3 if x, >x,,, then

4. (1.1.1.)x, © x,,,

S. end if

6 end for

7 for i =2,4,..,2|(n~1)/2] do in parallel
8. if x, > x,,, then

9. 12.1.1) x;, & x;,y

10. end if

11. end for

12, end for

Algorithni 3.3-1 ODD-EVEN Transposition Sort

118

Steps (1.1) and (1.2) require constant time, and they are executed I-n/2_| times. The
running time of the Algorithm is #(#) = O(n) with a very high cost of

c(n) = p(n)xt(n)= O(n*)

which is not optimal.

The Odd-Even Transposition Sort Algorithm is not attractive because of many reasons.
Mainly because it uses a number of processors equal to the size of the input, which is
unreasonable. Also, because its cost is too high with a very huge running time when

compared with quick sort 'algorithm.

Merge-Split Sort on Linear Array

Now let us consider the case where p <n, that is, the number of processors is less than

the problem size. For the linear array topology of processors the MERGE-SPLIT
algorithm can achieve better performance than the Odd-Even Transposition Sorting

algorithm. In the MERGE-SPLIT algorithm, algorithm 3.3-2, each two neighboring

processors P, and P,

i i+l?

initially holding sorted subsequences S, and S§,,, -where

|S, = S,.; =%, merge their subsequences to produce a sorted sequence

S’ ={s,5},...,5.,} . Processor P, keeps the first Z elements and processor P, keeps the
P

rest.

119

In the first step, each processor P, sorts S, using quicksort(). In the next step, each odd-
numbered processors P, merges the two subsequences S, and S,,, into a sorted sequence

S! ={s|,53,...,55,} - It retains the first half of S; and assigns its neighbor P, the second

1+1

half. The even-numbered processors in the next step perform the same process. These

two steps are preformed alternately | p/2] times.

Algorithm MERGE SPLIT SORT (S, X, N)

1. for i « 1 to p do in parallel

2 quicksort (S,)

3. end for

4. for j«1to[p/2]do

5. for i= 1,3,...,2|_p/2J—1 do in parallel

6 SEQUENTIAL MERGE (S,,S,,,,S;)
7 S; € {8],855000s S0y, }

8. Sit € Slofpya>Sosppas>Samip}

0. end for :

10. for i=2,4,..,2| (p-1)/2] do in paraliel

11. SEQUENTIAL MERGE (S,,S,,,,S/)
12. S; € {8],5350557),}

13. Siat € {S(oypy1>S(ujp)ezrSamip }

14, end for

15. end for

Algorithm 3.3-2 Merge-Split Sort

The analysis of algorithm 3.3-2 is as follows: Lines 1-3, quicksort requires

O((n/ p)log(n/ p)) steps. Sequential Merge and data transformation in Step 2 requires

O(n/p). Thus the total running time is

H(n) = O((n/ p)log(n/ p)) +[/2 |x O(r/ p)
Since p <n the total running time is #(r) = O((n/ p)log(n/ p)) + O(n) and thus the cost is

c(n) = (nlogn) + O(np) which is optimal when p <logn

Lemma 3.3-1 [Odd-Even Transpesition Sort on the Linear Array]

The odd-even transposition sort runs in O(p) time on a p-processor linear array.

Lemma 3.3-2 [Merge-Split Sort on the Linear Array]

The merge-split sort runs in O(p) time on a p-processor linear array.

3.3.20dd-Even Merge Sort on the Mesh

Let S ={x,,x,,...,x,} a given set of » elements. In brief, odd-even merge sort partitions

S into two subsets S| = x,,%,,...,Xx, and S; =x,_.X, ,,...,X, of equal length. Subsets S,

F+17 T3+
and S; are sorted recursively assigning n/2 processors to each, and them finally merge

‘using the odd-even merge algorithm given in the previous subsection.

Initially the elements x, are distributed on the \/-; xJ; mesh, where p=n. We can

partition the mesh into four equal parts of size #x%—f’- each. Then we sort each part

recursively into snakelike row major order. Then we merge the top two snakes using

4

merge sort at the same time we merge the bottom two snakes using the same algorithm.
These merges take O(\/;). Finally merge these two snakes. This also takes O(\/—p;). If
t() is the time needed to sort an /x! mesh using the above divided-and-conquer

algorithm then we have #(!) = #(£) + O(l) which solvesto S(/) =0(0).

Theorem 3.3-1 [Odd-Even Merge Sort on the Mesh]

Sorting p elements can be done in O(J;) time on a J; X J; into snakelike row major

order.

3.3.3 Sorting on the Hypercube

It is easier to implement the Odd-Even merge sort on a butterfly than on a hypercube.
Once the technique is developed on the butterfly, using lemma 3.1-2 we can adapt the

same algorithm to work on the hypercube.

Odd-Even Merge Sort on the Butterfly

Although it is a bit surprising at first glance, there is a very simple implementation of
Odd-Even Merge Sort on a butterfly. To see how the implementation works, we will first

show how to merge two % -element lists 4 = g5 dy5ees Ay and B= bl,bz,...,b,_\,i_l ona

log M -dimensional butterfly.

We start by inputting g, into node (0]bin(z'),logM) of the butterfly and 5, into node
(l | bin(i),log M) of the butterfly for 0<i <% . Next we pass the value of @ along the
straight edge to level logM —1, and the value of b along the cross edge to level
logM -1, see Figure 3.3-2. It is now time for the recursive part of the algorithm —i.e.,
merging even(4) with odd(B) to form C, and merging odd(4) with even(B) to form D. A
quick look at Figure 3.1-5 reveals that the even rows of our logM -dimensional butterfly
contain a (logM —1)-dimeénsional butterfly, as do the odd rows. Moreover, we have
already entered the data to the level logM —1 nodes so that the subbutterfly in the even

rows can merge even(4) with odd(B) to form C and so that the subbutterfly in the odd

rows can merge odd(4) with even(B) to form D, see Figure 3.3-1, 3.3-2.

Once the lists C and D are formed, it only remains to interleave them, and then switch the

¢ , d; pairs that are out of order. As can be seen in Figure 3.3-2, these tasks are easily

accomplished in a single step on the butterfly. The reason is that the C and D lists are

already interleaved, and so we only need to have each even-row (log M)-level node pick
the minimum of the values output by its (log A/ —1)-level neighbors, and each odd-row
(log M)-level node picks the maximum of the values output by its (logM —1)-level

neighbors.

If we unwind the recursion, we find that the entire merge takes just 2logM steps. In the

first logM steps, the data makes one pass through the butterfly, using the straight and

cross edges in a preordained way. In particular, we always use straight edges in the top
half of the butterfly and cross edges in the bottom half of the butterfly (except when
crossing level 1 edges, where we use only straight edges). Thus the net effect of the first

logM steps of the algorithm is to reverse the order of the items in the B list. During the
last logM steps, the items make a second pass back through the butterfly, always

switching across cross edges whenever adjacent pairs are out of order.

It is straightforward to adapt the previous algorithm so that = M-elements lists using

2logM steps on a (log p)-dimensional butterfly. The reason is that the first logM +1

levels of a (log p)-dimensional butterfly (i.e., levels log p —log M through logN form a

collection of £ M-dimensional butterflies, so we can assign one merge to each logM -
dimensional butterfly. Bu recursively merging the lists into larger and larger lists, we can
thereby sort p numbers in

2log2 +2log4+2log8+-+-+2log p =log p(1 +log p) =log’ p+log p

steps overall on a log p-dimensional butterfly.

124

Figure 3.3-2 Implementation of the Odd-Even Merge algorithm on a butterfly

125

The algorithm just described uses only one level of butterfly edges at any step, and it uses

consecutive steps, and thus the algorithm is normal. Thus it can be implemented to run in
O(log’ p) steps on any p-node hypercube network. For several decades, this algorithm

was the fastest algorithm known for sorting on a hypercube network. Next we describe a

faster algorithm.

A Deterministic O(logp loglogp)-Step Sorting on the Hypercube

This algorithm is based on an algorithm for merging \/; lists of J; items in
O(log ploglog p) steps on a p-node hypercube. In particular, we start by partitioning the
p items to be sorted into J; groups with J; items each. We then recursively sort the
items within each group to form J; sorted list of leng}h J; , and finish by merging the
\/; lists. If t(p) denotes the time needed to sort p items on a p-node hypercube

network, and 7, (J;,J;) denotes the time needed to merge J; sorted lists of length

\f;, then ts(p)StS(\/‘—p-)HM(\/;,\/;). We are assuming that p is a power of two

(without loss of generality). We also assume that p is a perfect square, which is not the

case always. So in the case when p is not a perfect square (i.e., when log p is an odd

integer), we partition the p items into 1/2 p groups of size \/—57— . We then recursively sort
the items within each group in ¢ (\/g) steps to form ,/ 2p sorted lists of length ‘/g . We

also partition the hypercube into two (£)-node subcubes, each containing \/-—‘Z’T of the

126

lists. Each subcube can merge the \/— lists (of length \/g) that it contains in

Wl

ty (\/g’\/'_gt) steps. After the merge, we are left with two sorted lists of length \/g ,

which can be merged in 2log p steps using the Odd-Even Merge algorithm. Hence, in

the case when log p is an odd integer,

t(p) S t5(2) + 1, (/2.4/5) + 2l0g p
we will rely on the fact that merging x sorted lists of length x each can be done in
O(log xloglog2x) steps on an x’-node hypercube for any x>1 that is a power of two,
provided that we are allowed to perform some off-line pre-computation. Proof of this
fact is given in appendix A. As a consequence, we will find that the time needed to sort p

items is at most
ts(p) <152 + 0(og ploglog p)

solving the recurrence we find that

loglog p - .
ts(p) = O] Y. logp® loglogp’)

logTogp)
= 0 ZZ"log ploglog p
i=0

= O(log ploglog p)

127

If the pre-computation is not allowed, then the time needed to merge is
O(log ploglog® p), which results in an O(log ploglog? p)-step bound on the time

needed to sort. The proof of the following theorem can be found in [27].

Theorem 3.3-2 [Sorting on the Hypercube]

Sorting p items on a p-processor hypercube can be performed in O(log ploglog p) time

if some offline pre-computation is allowed.

3.4 SELECTION ON INTERCONNECTION NETWORKS

3.4.1 The Universal Selection Algorithm

The algorithm presented by Rajasekaran, Chen, and Yooseph is an efficient deterministic
algorithm for selection on any interconnection network when the number of input keys »

s greater than the number of processors p.

The basic idea behind the algorithm is same as the sequential selection algorithm. The
sequential algorithm partitions the input into groups (of say 5), finds the median of each
group, and computes recursively the median (call it M) of these group medians. Then the
rank r,, of M in the input is computed and as a result, all the elements from the input
which are either <M or > M are dropped, depending on whether i>M or i<M

respectively. Finally, an appropriate selection is performed from out of the remaining

128

keys recursively. Call M the splitter key and the process of finding M, partitioning the
remaining keys around M, and deleting unwanted keys a phase of the algorithm. In

section 1.5.2 we saw that the running time of the algorithm is O(n).

The same algorithm can be used in parallel, for instance on a PRAM, to obtain an optimal
algorithm. If one must employ this algorithm on a network, it seems like one must
perform periodic load balancing (i.e., distribute remaining keys uniformly among the
processors). Load balancing is a costly operation to perform. The algorithm that we will
describe now employs the same sequential selection algorithm with a twist. To begin

with each node has exactly 2 keys. As the algorithm proceeds, keys get dropped from

future consideration. The algorithm never performs any load balancing. The remaining
keys from each node will form the groups. The algorithm identifies the median of each
group. If one attempts to use the median of these medians as the splitter key, not enough
keys might get deleted in every phase and hence the algorithm might take a very long
time to terminate. The objective is to eliminate constant fraction of the remaining keys in
each phase of the algorithm. So instead of picking the median of medians as the splitter
key M, the algorithm chooses a weighted median of medians. Each group median is
weighted with the number of remaining keys in that node. This modification suffices to

ensure that a constant fraction of keys get eliminated in each phase.

Algorithm WSELECT(S, k)

1. NeneS|

2. if log(%) is <loglogp then

3. Sort the elements at each node

4,

5. Partition the keys at each node into nearly log p approximately equal
parts such that keys in one part will be < keys in the parts to the right

6.

7. (2.1) for i «<-1 to p do in parallel

8. (2.1.1) Find the median M, and their weights N,

9. end for

10. (2.2) Find the weighted median M of M|, M,,...,M, medians

11. (2.3) Count the rank of M. Let this rank be 7,

12. (2.4)if k<r, then

13. (2.4.1) Eliminate all remaining keys that are > M

14. else

15. (2.4.2) Eliminate all remaining keys that are < M

16. end if

17. (2.5) Compute E, the number of eliminated keys

18. (2.6) if k >r, then

19. 26.1) k«<k-E

20. (26.2) N« N-F

21. end if _

22. until N <c, ¢ being a constant

Algorithm 3.4-1 Universal Selection Algorithm

The analysis of algorithm 3.4.1 follows; lines 1-5 take (%) min{log(%),loglog p}. At the

end of line 5, the keys in any node have been partitioned into nearly log p approximately

equal parts. Call each such part a block.

130

Line 7, we could find the median at any node in O(log p +(~os7)) time. This can be

done by first identifying the group that has the median and then performing an
appropriate selection in this group. In line 10, we could sort the median and thereby

compute the weighted median. If M|,M,,.... M

» is the sorted order of the medians, then

we need to identify j such that ZL]N . 24 and Zi: N, <4 . Such aj can be computed

with an additional prefix computation. Thus M, the weighted median, can be identified in
time O(T,"" +T, p""ﬁ") » where T,°" is the time needed to perform a prefix computation on

a p-node network. Line 11 requires a scan through the locally remaining keys followed

by a prefix sums computation. Thus this step takes O(5—+7, p”""f”‘) time. Lines 12-16

also take O(5&-+7T, P”"’f") time. Lines 18-21 take O(Tp”’”ﬂ") since they involve just a

prefix computation. Thus each run of the repeat loop takes O(55—+7, p”’ef"‘ +T°).

To determine the number of keys getting eliminated in each run assume that i >7,, ina

given run. (The other case is argued similarly.) The number of keys eliminated is at least

/{=1 [%-l which is 24. Therefore, it follows that the repeat loop is executed O(logn)

times. Thus we get (assuming that logn is asymptotically the same as log p).

131

Theorem 3.4-1 [Universal Selection Algorithm]

-

Selection on any p-node interconnection network can be performed in time

O(tloglog p + [T/ + T, Jlogn). If T/ <T;”" then this time bound is

O(%loglog p+T,”" logn).

3.4.2 Selection on the Linear Array

For the linear array, from lemma 3.2-1 we know that prefix computation can be
performed in O(p) time. And from lemma 3.3-1 and 3.3-2 we know that sorting p keys
on a p-node linear array also requires O(p) time. Thus T,,”’”ﬁ" =T, =0(p) for the

linear array, and we get

Theorem 3.4-2 [Selection on the Linear Array]

Selection on a p-node linear array can be performed in time O(%loglog p + plogn).

3.4.3 Selection on the Mesh

For the mesh interconnection network, from theorem 3.2-3 clearly shows that prefix

computation can be performed in O(J;). And according to theorem 3.3-1, sorting p

keys on a p-node mesh also requires O(J;). Therefore, for the mesh,

T p"’”f"‘ =T = O(J;). Thus we get the following theorem.

Theorem 3.4-3 [Selection on the Mesh]

Selection on a p-node square mesh can be performed in time O(%loglog p + \/; logn).

3.4.4 Selection on the Hypercube

As presented in section 3.3.3.2, the fastest known value for 7,”" on a hypercube is

O(log ploglog p). Thus we have the following theorem (assuming that » = p° for some

positive constant ¢ then logrn is asymptotically the same as log p).

Theorem 3.4-4 [Selection on the Hypercube]

Selection on a p-node hypercube can be performed in time

O(£loglog p+log’ ploglog p) = O((%+1log® p)loglog p) .

133

3.5 MULTISELECTION ON INTERCONNECTION NETWORKS

Recall that in the multiselection problem, a set S ={x,,x,,...,x,} of elements and a set

K ={k,.k,,....k,} of ranks are given, where r <n. The objective is to find the elements

in S of ranks k;, 1<i<r. In other words, find the %, th smallest elements of S.

In section 2.5.1, an adaptive multiselection algorithm is given, which uses the divide-and-
conquer approach, which splits the problem into two subproblems by partitioning both S

and X into two sub sets, then recursively solving the subproblems.

In this section we will combine algorithm 2.5-1 and algorithm 3.4-1 to devise a universal

multiselection algorithm.

3.5.1 Universal Multiselection Algorithm

The idea behind our algorithm is same as of algorithm 3.4-1. We make use of the
weighted median to avoid load balancing and eliminate almost equal amount of keys

from each processor. We assume that X is sorted, if not, X can be sorted in O(rlogr)

time using quicksort(). Initially, each processor F, has a subset S, of S, where | S, |=2

and a copy of K.

134

Algorithm: UMSELECT(S, K)

1. if Kis not empty then

2 if K ={k} then

3 return WSELECT(S, k)

4. else

5. r=fK|

6 W= kr/Z

7 WSELECT(S, w)

8 for i =1 to p do in parallel

9 S ={xeS,|x<Swl}
10. S?={xeS |x>S[w]}
11. K\ ={k,ky,k,_;}
12. K’ = {kopp = Wikypp i = Wy k, — W}
13. end for

14. UMSELECT(S; K"

1S. UMSELECT (S%,K%)

16. end if

17. end if

Algorithm 3.5-1 Universal Multiselection UMSELECT(S, K)

The analysis of Algoﬁthm 3.5-1 is similar to the MSELECT algorithm given in algorithm

2.5-1.Inline 7 WSELECT takes O(%loglog p+[Tp”"'f"‘ +7,”"]logn). Lines 9 and 10 both
can be performed using prefix computation in T, p”"f”‘ time. In lines 14 and 15the depth of
the recursion is l_log r1 thus the running time of the algorithm is

O((%loglog p + [T/ + T,;”]log p)logr).

135

Theorem 3.5-1 [Universal Multiselection]

Multiselection on a p-node interconnection network can be performed in

O((&loglog p + [T +T,;*"]log p)logr) .

where Tp”"ﬁ" is the time required to do prefix computation and 7,*" is the time required

to sort p keys on the p-node interconnection network.

3.5.2 Multiselection on the Linear Array

From theorem 3.5-1 it is clear that if we determine 7" and T,”" for any network, then

we can determine the running time of multiselection algorithm for that network. From

lemma 3.2-1 we know that Tp”"’f”‘ =0(p). T, =0(p), (cf. lemma 3.3-1 and 3.3-2).

Thus multiselection on the linear array can be performed in

O((%loglog p + plogn)logr)

It appears that the multiselection is not suitable for the interconnection array when # is

comparable in size to the number of processors p, e.g. p=y%;. For this reason, when n

136

is large, say p=n®, the running time of the algorithm reduces to O(n* lognlogr), which
is more efficient than sorting. But for extreme cases when r — n, the algorithm reduces
to O(n’log’n). In this case we are using the multiselection as a sorting algorithm, that

is, we are selecting 1¥ smallest, 2" smallest... n™ smallest elements. For such extreme

cases, the Merge-Split Sorting algorithm (algorithm 3.3-2) is more suitable.

3.5.3 Multiselection on the Mesh

From the previous discussions we get that T p””f”‘ and T,°" are both equal to O(J;).
Therefore, from the universal multiselection theorem, multiselection on a p-processor

mesh interconnection network can be preformed in O((Zloglog p ++/p logn)logr) time.
p

It is apparent that the multiselection algorithm is not suitable for cases where number of
elements 7 is far less than the number of processors p. For such a cases, one can use a
sub-mesh of the original mesh to solve the problem. In addition, if », the number of
elements, is equal to the number of processors p, that is, if n= p then the running time of
the algorithm will reduce to

O((loglogn++/nlogn)logr) or O((loglog p +/p log p)logr)
which is not suitable because multiselection can be done in an indirect way —in this case,

by simply sorting the elements using Odd-Even merge sort on the mesh in 0(\/;) time

and letting the processors P, where j € K publish their elements.

137

Now let us consider the case where we have n elements and we want to do multiselection
on a p processor mesh such that n>> p. For sorting the elements on the mesh and
publishing the kth elements it will require 0(-;’;log%+%\/};) steps. Simply because
initially each processor will start by sorting £ elements in O(%log%) time then, using
Odd-Even merge on the mesh will require O(—"p—\/;) = O(ﬁ) tirpe, of total sorting time

being

In the multiselection algorithm, if » =n, the problem turns in to the sorting problem,
which also resembles the extreme (worst) case for the multiselection problem. Now we
will compare the extreme case of multiselection on the mesh with the upper-limit average

case of sorting on the mesh to establish our result.
Take p =n® where 0 <& <1. By substituting in (1) and (2) we get

Multiselection: O((n'~* loglogn® + n“* log n)logn)

Let f(n,&)=(n"*loglogn® + n*logn)logn...... 3)
Sorting: O(n'~¢logn'* + n'=?)
Let g(n,e)=(1-¢&)n"*logn+n"="............ O

fand g are both are function in two variables » and £ where ne(c,») and ¢ € (0,])

where ¢ is a positive constant. Figure 3.5-1 shows the actual surface of . The z-axis

138

represents the number of steps #(n) against the number of processors p on the x-axis and

the number of elements » on the y-axis. The number of processors is a function of £ and
n. Figure 3.5-2 shows the actual surface of g, while Figure 3.5-3 shows the same surface

of g with logarithmic z-axis.

Multiselection

Number of steps

Number of processors

Figure 3.5-1 Multiselection surface

139

Sorting

210"

25+
24

7
wn

-
sdajs Jo JaqunN

7 A
0 oo
S =

Number of processors

Number of elements

mmear z2-axis

Figure 3.5-2 Sorting surface with 1

X N //,//
\ ./Mz//“”ﬂﬂ//(%

¥
K
X

°
”

Number of elemerts

"Number of

Figure 3.5-3 Sorting surface

140

Taking c a large positive integer, it is clear from the figures that f'is less than g in most of
the region R={(¢,n)|0<e<landc<n<ow}. This is clearer from the difference
surface d in Figure 3.5-4. The multiselection algorithm performs better than the sorting
algorithm in the area where the surface d is non-zero. By closely examining Figure 3.5-4
we see that the multiselection algorithm performs better than the sorting algorithm in two

regions.

-
%

\‘__nl:nltlll‘l#nnl

-
Q.
&

Number of steps
]

-
o

Y
ovv
o

Number of ele

Number of processors

Figure 3.5-4 Difference surface. [1< 7 <10")

141]

Difference surface [10%° < n <10%] Difference surface [10*° < n <10%®]

Figure 3.5--5 Difference surfaces

A small region for small values of £, and a large region as ¢ grows larger. This region
grows larger when the numbers of elements grow signjﬁéantly. The multiselection
algorithm proves to show better performance than the sorting algorithm for very large

number of elements ».

Furthermore, if we study a cross section of both fand g at different values of », it appears
that our multiselection algorithm shows a very good performance across a large area of

& ’s interval.

In fact, the multiselection algorithm shows a very good performance in the middle of &°’s
interval for very values of n. This can be established by analyzing the behavior of the
multiselection surface cross section with the behavior of the sorting surface cross section

in Figures 3.5-6 and 3.5-7. Figure 3.5-6 is a plot of a cross section of f and g when the

142

number of elements is small, and Figure 3.5-7 shows two plots of the cross sections of f

and g.

When the number of processors is small, i.e. £ is small compared to the number of
elements, the multiselection and sorting takes almost the same time for sorting » number

of elements for any n. The sudden drop in the graph of fis due to the change of definition

of f from (%log%+J;log n)logn to (4loglog p +J;logn) logn.
This later definition of f shows a drop in the number of steps for sorting using
multiselection then rises up again as ¢ approaches to 1. The point of intersection of f

with g at large values of ¢ is logical because as the number of processors grows larger

and larger, fewer elements will be assigned to individual processors and as ¢ —>1,

p —> n. So for the multiselection we get

lim(Zloglog p + J; logn)logn = (loglogn + \/}; logn)logn
p—n

143

¢ Multiselection (red) : Sorting {blue)
1 T . T T T T T T T

a
°A

Number of steps

ey
(=]
W

10°

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1
Number of processors

Figure 3.5-6 A cross section of ti:e Multiselection mesh and the Sorting mesh when the number of

elements is very small

10" Musiselection (red) . Sorting (Dive o Mutrselection ired) Sormng (blue)
\\
w°F N, 4
wl i R
~. 3
-
W ! " - - i
. H
| 16 . :
R ~ ~.. 1
o} ! o s !
3 , k3 '\\. i
gw. i gw" . -
10"
1L N
1% :
w0
10" :
i« . N w0 " " i
o ot 02 03 04 05 08 o7 08 0% 1 oy o3 o3 04 8s 08 ©07 08 09 1
Number of processors Nuroer of processars.
Small n. : Large n

Figure 3.5-7 A cross section of the Multiselection mesh and the Sorting mesh when the number of

elements is large

144

Whereas for sorting we get

lim(zlog +5) = ¢, +/n

It is clear that +/n is far less than (loglogn+\/:; logn)logn. Which means, that if the

number of processors is equal to the number of elements, it is better to sort all the

elements and pick the ;th element by letting processor P, publish element it has.

Summarizing the result, it appears from the discussion given above that multiselection is

not suitable when the number of processors p is comparable to the number of elements 7.

On the other hand, when n is large, say p = n°, the running time of the algorithm reduces

to O(n lognlogr), which is more efficient than sorting. For optimized performance

consider the running time of the multiselection algorithm in terms of p and »n. That is,
O((%loglog p + J; logn)logr)

By taking p= n* the algorithm’s running time reduces to O(n% lognlogr).

145

3.5.4 Multiselection on the Hypercube

From theorem 3.3-2 we get that sorting p elements on a p-node hypercube can be

performed in O(log ploglog p) time. Thus, 7,*" = O(log ploglog p). From theorem

3.2-4 prefix computation can be performed on the same setup in O(log p). Thus
T + T2 = O(log ploglog p) +O(log p) = O(log ploglog p)

Therefore, the running time for the multiselection algorithm on the hypercube will reduce

to
O((%loglog p +log® ploglog p)logr) = O((% +log® p)loglog plogr)

In the following, we will compare the worst case of multiselection, when r =n, with the

sorting algorithm on the hypercube.

From [22], we know that the selection on the hypercube is nearly matches that of [8]. But
if we use the same comparison technique as we did with the analysis of the multiselection
on the mesh, that is, we take the worse case of the multiselection when r =#» and use the

multiselection algorithm for sorting. The running time of the algorithm turns to

146

f :0((%+1og® p)loglog plogn).

A plot of the performance surface of the multiselection algorithm can be seen in Figure

3.2-1.

Sorting » keys on a p-processor hypercube when n > p would take on the average

g :O(%logZ +2log ploglog p).

A plot of the performance surface of the sorting algorithm can be seen in Figure 3.2-2.
The difference surface (g — f) is shown in Figure 3.2-3. Form the difference surface it is
clear that the multiselection algorithm shows the same performance as the sorting
algorithm in the worse case. That is, when the multiselection algorithm is used for
sorting. Looking at the general case we find that when n>>p and r<n, for

multiselection:

O((% +log® p)loglog plogr) — O(nlogr)

147

5

2,

Lo

7%
% @@N«\%
G

Mutisalectior: on the Hypercube

SMNNUIOPDA

20

-

2,

-

iy
o
-
»”

Number of glament

Figure 3.5-8 Multiselection performance surface on the Hypercube

Serting on the Hypercude

Number of elements

03

Numbsr of procassors

Figure 3.5-9 Sorting performance surface on the Hypercube

148

Difference Surface for the multisalection on the Hypercube

L
Ao

Numbar of sleps
L & b
DY SUO S AN

dh
P2

e

_ ~os 0.9
06

<" o4 05
. 02 0.3

Number of slaments n Q.1

Number of procassers &

Figure 3.5-10 Difference surface between

while for sorting:

O(%log% +2log ploglog p) — O(nlogn)

Thus the multiselection algorithm gives better performance on the hypercube in the

average case. Therefore we conclude that the multiselection algorithm we produced is

149

good when the number of elements is far larger than the number of processors in a

hypercube.

3.6 SUMMARY

A network can be viewed as a graph G = (N, E) where each node ie N represents a
processor, and each edge (i, /)€ £ represents a two-way communication link. In an
interconnection network, memory is distributed among the p processors. Communication

is done through links between processors. When a processor P, in an interconnection

H

network wishes to send a datum to processor P, it uses the network to route the datum

from its memory to that of 7,.

Two processors, in an interconnection network, directly connected by a link are said to be
neighbors. The degree of a processor in a given network topology is defined as the

number of neighbors of that processor. The distance between two processors F, and P,

in a given network topology is the number of links on the shortest path from 7, to P,.

The diameter of the network is the length of the longest distance among all distances

between pairs of processors in that network.

In a linear array, each interior processor in a liner array is connected with bi-directional
links to its left-neighbor and its right-neighbor. The outermost processors may have just

one connection each, and may serve as input/ouiput points for the entire network.

150

A mesh is an axb grid in which there is a processor at each grid point. The edges

correspond to the communication links and are bi-directional. Whereas a d-dimensional
hypercube has p=2? nodes (processors) and d2°"' edges (communication links, or

simply, links).

'

The d-dimensional butterfly has (d +1)2¢ nodes and d2°*' edges. The nodes correspond
to pairs (w, i) where i is the level or dimension of the node (0<i<d) and w is a d-bit
binary number that denotes the row of the node. Two nodes (w,i) and (w',i') are linked

by an edge if and only if /' =i +1 and either:

e wand w are identical, or

e wand w differ in precisely the /' th bit.

If wand w' are identical, the edge is said to be a straight edge. Otherwise, the edge is a

cross edge.

Broadcasting on a p-processor linear array can be completed in O(p)p steps. In a

J; xJ; mesh the same can be performed in S2(J; —l)=0(1/:;) time. While
broadcasting on a p-processor d-dimensional hypercube can be performed in O(log p)

steps, where d =logp .

151

Prefix computation on a p-processor linear array can be performed in O(p) time. On the

p-processor mesh it requires O(J:;) time. While on the p-processor hypercube, it

requires O(log p) time.

Data concentration (packing) on a p-processor array takes O(p) time. On a J; x J;

mesh, it takes O(J;) time. On the hypercube, it can be performed in O(log p) time.

Two sorted sequences of length m each can be merged on a p-processor linear array in

O(p) time, where p=2m. Two sorted snakes of size J; x@ each can be merged in

time O(J;) ona J; x\/; mesh.

The merge-split sort runs in O(p) time on a p-processor linear array. Sorting p elements
can be done in 0(\/;) time on a J; xJ; into snakelike row major order. Merge

sorting can be implemented to run in O(log? p) steps on any p-node hypercube network.
Sorting p items on a p-processor hypercube can be performed in O(log ploglog p) time

if some offline pre-computation is allowed.

Selection on any p-node interconnection network can be performed in time

O(Zloglog p+ [T/ +T;" Jlogn). If T/ <T;" then this time bound is

152

O(%loglog p+T,”" logn). Selection on a p-node linear array can be performed in time

O(%loglog p+ plogn). Selection on a p-node square mesh can be performed in
O(%loglog p+J; logn) time. Selection on a p-node hypercube can be performed in

time O(2loglog p+log® ploglog p) = O((% +log’ p)loglog p).
Multiselection on a p-node interconnection network can be performed in

O((%loglog p + [T +T,"log p)logr).

where Tp”’eﬁ‘ is the time required to do prefix computation and 7, is the time required

to sort p keys on the p-node interconnection network. Therefore, on the linear array, it

can be performed in O((%loglog p+ plogn)logr) time. While on a p-processor mesh it

requires O((%loglog p+J; logn)logr) time, and on a p-processor hypercube the

running time for the multiselection algorithm is
O((%loglog p + log® ploglog p)logr) = O((%+ log® p)loglog plogr)

For the cases when the number of elements is far larger than the number of processors in

the hypercube, that is n >> p, our algorithm is more suitable for multiselection.

10.

11.

References:

. Miklos Ajtai, Janos Komlos, W.L. Steiger, Endre Szemerdi, Deterministic

Selection in O(loglogn) Parallel Time, ACM, 188-195, 1986.

Valiant, L., Parallel in Comparison Problems, SIAM J. Computing, 4, 348-355,
1975.

Gereb-Graus, Mihaly and Krizanc, Danny. A Lower Bound of Q(loglogn) for
Randomized Parallel Merging (draft). Harvard University, 1985.

Cole, Richard and Yap, Chee K. A Parallel Median algorithm. Inf. Proc. Letters
20, 137-139, 1985.

Cole, Richard J., An Optimally Efficient Selection Algorithm, Information
Processing Letters 26, pp.295-299, 1987/1988

D. Krizanc, L. Narayanan, and R. Raman, Deterministic Selection on Mesh-
Connected Processor Arrays, Algorithmica 15: 319-332, 1996

M. Blum, R. Floyd, V. R. Prat, R. Rivest, and R. Tarajan, Time Bounds for
Selection. Journal of Computer and System Science, 7(4):488-461, 1972

. G. Plaxton. On the Network Complexity of Selection. Proceedings of the

Symposium on the Foundations of Computer Science, pp. 396-401, 1989.

G. Plaxton. Load Balancing, Selection and Sorting on the Hypercube.
Proceedings of the Symposium on Parallel Algorithms and Architecture, pp. 64-
73, 1990.

S. Rajasekaran. Randomized Parallel Selection. Ir Foundations of Sofiware
Technology and Theoretical Computer Science, pp. 176-184. Lecture Notes in
Computer Science, Vol 472. Springer-Verlag, Berlin. 1990.

M. Kaufmann, J. Sibeyn, and T. Suel. Derandomizing Algorithms for Routing
and Sorting on Meshes. Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 669-679, 1994.

153

12

13.

14.

15.

16.

17.

18.

19

20

21.

25.

26

154

. M. Kunde.]-Selection and Related Problems on Grids of Processors. Journal of

New Generation Computer Systems, 2:129-143, 1989. ‘

C. C. Aggarwal, N. Jain, P. Gupta, An Efficient Selection Algorithm on the
Pyramid, Information Processing Letters 53:37-47, 1995.

S. G. Akl, Design and Analysis of Parallel Algorithms, Printice Hall, Englewook
Cliffs, NJ, 1989.

C. D. Thompson and H. T. Kung, Sorting on a Mesh Connected Parallel

Computer, Comm. ACM, 20, 1997

R. Cypher and G. Plaxton, Deterministic Sorting in Nearly Logarithmic Time on

the Hypercube and Related Computers, Proc. STOC, 1990.

A. Aggarwal, A Comparative Study of X-tree, Pyramid and Related Machines,

Proc. 25" Ann. IEEE Symp. On Foundations of Computer Science, 1984.

H. Shen, Optimal Parallel Multiselection on EREW PRAM, Parallel Computing,

23 (1997), 1987-1992.

.M. L. Fredman and T. H, Spencer, Refined Complexity Analysis for Heap
Operations, Journal of Computer and System Sciences, 269-284, 1987.

. M. H. Alsuwaiyel, An Optimal Parallel Algorithm for the Multiselection Problem,

Parallel Computing, to appear.

M. H. Alsuwaiyel, On the Multiselection Problem, Proc. of the Int'l Conf. on

Parallel and Distributed Processing Techniques and Applications, 2000, 1439-
1441.

. S. Rajasekaran, W Chen, and S. Yooseph, Unifying Themes for Selection on Any
Network, Journal of Parallel and Distributed Computing, 46, 1997, 105-111.

. S. G. AKl, Parallel Computation Models and Methods, Prentice-Hall, Inc. 1997

.J. Jaja, An Introduction to Parallel Algorithms, Addison-Wesely Publishing

Company, 1992.

Cormen T., Leiserson C. and Rivest R., Introduction to Algorithms, MIT Press

McGraw Hill, 1994,

.F. Thomson Leighton, Introdction to Parallel Algorithms and Architectures:
Arrays — Trees — Hypercubes, Morgan Kaufmann Publishers Inc., 1992

Name:

Vita

Adel Fadhl Noor Ahmed.

Date of Birth: April 6, 1973.

Place of Birth: Riyadh, Saudi Arabia.

Nationality: Saudi.

Received Bachelor of Science (B.Sc.) degree in Mathematics from King Saud

University (KSU), Riyadh Saudi Arabia in 1995.

Joined the Department of Information and Computer Science at King Fahd
University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia as a

Graduate Assistant in 1996.

Received Master of Science (M.Sc.) degree in Computer Science from King Fahd

University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia in 2001.

155

