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DISSERTATION ABSTRACT

Osama Abdel Wahhab Ahmed

New Joint Time-Frequency Transforms with Improved Properties
Electrical Engineering

May 24, 1998

In this dissertation, the problem of the Joint Time-Frequency (JTF) transforms is ad-
dressed with the objective of developing linear critically-sampled JTF transform with op-
timal characteristics, namely being stable and having the biorthogonal function and the
analysis function both /ocalized in the time domain and in the frequency domain.

First, the non-separable sampling of the JTF plane for the real Gabor transform is in-
troduced. [t is shown that the hexagon sampling, in particular, enhances the localization of
the biorthogonal function in the frequency domain while maintaining all other properties.
Second, the stability is considered with the objective of developing an orthogonal linear
JTF transform (thus achieving the highest possible stability). The orthogonality conditions
on the analysis window function (leading to orthogonal transform) have been derived. Two
functions satisfying these conditions are presented. Third, using alternate types of kernels,
a stable linear critically-sampled JTF transform with localized biorthogonal function and
analysis function has been developed.

Since the computational requirements of all JTF transforms is an obstacle to their prac-
tical usage, practical implementation which dramatically reduces the computational require-
ments is developed for all of the above proposed transform.

To demonstrate the usefulness of the proposed transforms in real-life situation, the third
transform is applied to the traditional, yet difficult, problem of noise reduction of the nuclear
magnetic resonance signals. [t is shown that the proposed transform gives far better results
with lower computational requirements than other JTF transforms.

DOCTOR OF PHILOSOPHY DEGREE

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Dhahran, Saudi Arabia
May 24, 1998
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CHAPTER 1

INTRODUCTION

A standard goal in signal processing is to find a representation in which certain attributes
of the signal are made explicit. In principle, there is an infinite number of ways to describe
a signal. The most fundamental variables in signal processing are time and frequency. Fre-
quency representations usually have simpler patterns than the time waveforms and these
have been widely used in many applications like filter design, control, system identifica-
tion, image enhancement, .. .ctc. In Fourier transform, the signal is compared to complex
sinusoidal functions which spread into the entire time domain. As a result, the Fourier trans-
form does not explicitly indicate how a signal’s frequency content evolve in time. Even
though the phase of the Fourier transform relates to time shifting, it is difficult to extract
time information from the phase. On the other hand, the frequency contents of the majority
of signals encountered in the real world change with time. Thus, in many real applications,
it is far more useful to characterize the signal in time and frequency domain simultaneously.
This has led to the currently increasingly popular subject, joint time-frequency (JTF) analy-
sis. In Figures 1 and 2, the JTF representation obtained by Gabor transform for a two chirp

function and a non-linear chirp function are plotted. For comparison, the time representa-



tion and the frequency representation are also plotted. It is clear from the two figures that
the signal is easily characterized in the JTF representation than in the time or the frequency
representations.

JTF analysis is a powerful technique for detection and estimation of signal corrupted
by noise. Random noise tends, in general, to spread in JTF domain, while the signal itself
concentrates in a relatively small range. Thus, one can enhance the signal-to-noise ratio
significantly by JTF analysis. Foe example, Fig. 3 depicts the impulse signal received by
the U.S. Department of Energy ALEXIS/BLACKBREAD satellite plotted from [1]. After
passing through the ionosphere (dispersive media) the signal becomes a non-linear chirp
signal. The signal is severely corrupted by noise. As shown from the figure, neither time
waveform nor the power spectrum indicate the existence of the impulse signal. This im-
pulse signal is, however, very clear in the time-frequency plot. Fig. 4 shows the signal after
filtering it in the joint time-frequency domain. Figure 5 shows the signal before (gray) and
after filtering (dark).

Inimage compression, transform-based coding methods (like DCT, DFT, DST) are very
popular because they provide the best quality for the same compression ratio due to their
decorrelative properties and because of the existence of fast algorithms for computing the
coefficients that can be implemented easily in VLSI. They, however, are not localized in
the spatial domain. Therefore, they must be calculated over a number of spatial partitioned
regions (blocks). This method suffers from blocking effects especially for very low bit rate
compression. On the other hand, Gabor functions have optimal localization in the joint

spatial and frequency domain. Besides, Gabor transform achieves the lowest bound on the
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Figure 1: JTF representation of a two chirp function. Below, the time representation. On
the right, the frequency representation.

Figure 2:  JTF representation of a non-linear chirp function. Below, the time representation.
On the right, the frequency representation.
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joint entropy. This has proven to be very useful for image compression, texture analysis, and
many other applications. Also, the majority of receptive field profiles of the mammalian
visual system match quite well this function.

One major problem of the JTF analysis is its high computational requirements. How-
ever, as the computing power of recent computers rapidly increases, JTF analysis is gaining
increasing popularity in enormous number of applications such as speech processing, target
recognition, noise removal, system identification, image processing, economical studies
and many others.

JTF analysis is divided into 2 main categories: linear and nonlinear (bilinear) rep-
resentations. Bilinear JTF representations are the counterpart of the power spectrum in
Fourier analysis. Bilinear JTF representations, Fig. 6, include Choi-Williams distribution,
cone-shape distribution, and Wigner-Ville distribution. Linear JTF representation, Fig. 7,
includes wavelet, Gabor transform, and the related subject of short time Fourier transform
(STFT) or windowed Fourier transform.

Bilinear JTF transforms possess the best time-frequency resolution. However, all bi-
linear JTF transforms share the problem of not being able to adequately get back the signal
from the transformed domain. Also, they suffer from the problem of cross-term interfer-
ence. In comparison, the JTF representation of the same two-chirp function by Wigner-Ville
distribution is plotted in Fig. 8. The cross-term interference is very noticeable.

On the other hand, linear JTF transforms are free from the cross-term interference and
the inverse transform is considerably easier to get than in the case of the bilinear transforms.

Gabor in 1946 defined the characteristics of the optimal linear JTF transform. He did



Figure 6: Types of the bilinear (non-linear) JTF representations.

S

Figure 7: Types of the linear JTF representations.
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Figure 8: JTF representation of the 2-chirp function using Wigner-Ville distribution.



not, however, define a practical way to get the transform coefficients. It was no earlier
than 1981 when the first practical algorithm to calculate the transform coefficients was
introduced. Gabor transform is shown, however, to be unstable. This instability makes the
research go to the over-sampled Gabor transform which has good stability. However, over-
sampled Gabor transform has many problems like its high redundancy, its difficulty to get
back the signal from the transformed domain after filtering operation',. . .etc. In 1995, the
first implementation of the real Gabor expansion appeared but it is also unstable. Gabor
transform belongs to the wider family of "Short Time Fourier Transform” in which Gabor
transform represents the optimal among this family in the sense of resolution. The Short
time Fourier transforms family is related to the wavelet (or time-scale) transforms family.
In the Short time Fourier transforms, the "ruler” used to measure the signal’s JTF property
is made up of time-shift and frequency-modulated single prototype function. On the other
hand, the "ruler” used in the wavelet transforms is obtained by the dilation and translation
of a prototype function “mother wavelet”. Consequently, the Short time Fourier transforms
tile the JTF domain in linear fashion. However, the wavelet transforms tile the JTF domain
in logarithmic (diadic) fashion.

Thus, in JTF analysis, each of these two classes of JTF transforms (linear and bilinear)
has its own advantage and disadvantages which make it useful only in certain applications.
Therfore, there is not a "universal” JTF transform, i.e., 2 JTF transform which is accepted
in all branches of engineering, to be the counterpart of the Fourier transform in the time

frequency domain. This limits the development of the JTF analysis.

' We will later discuss these problems in detail in the next chapter after introducing some mathematical
background



Our objective in this thesis is to develop a JTF transform with such properties as to
make it applicable to practically all branches of engineering.

In the next chapter we will give some mathematical background that enables us to
define the problem and determine, mathematically, the requirements to be satisfied by a
"universal” transform. In addition, we will review the available literature addressing the
solution of this problem. In Chapter 3, we will present the mathematical framework which
will be used throughout this thesis. This format enables us to analyze quantitatively the
performance of any linear JTF transform. In particular, the localization of the biorthogo-
nal function and the stability of the transform will be examined. In Chapters 4, 5, and 6,
we will propose three different transforms which meet some or all of the optimal charac-
teristics required for the universal JTF transform. In Chapter 7, we will demonstrate the
usefulness of the developed transforms by applying it to the traditional, yet difficult, prob-
lem of noise reduction of the nuclear magnetic resonance signals. It will be shown that

the proposed transform gives far better results with lower computational requirements than

other transforms.



CHAPTER 2

PROBLEM DEFINITION

Gabor in 1946 defined the optimal joint time frequency transform. His pioneering work
will be summarized in Section 2.2. Since Gabor did not define a practical way to get the
transform coefficients, it was no earlier than 1981 for the first practical algorithm to calcu-
late the transform coefficients to appear. Since that date, tens of methods have appeared in
the literature to calculate the transform coefficients which vary, basically, in their speed. We
have chosen the biorthogonal function method (which is introduced in Section 2.3) since
it gives a clear insight regarding the characteristics of the transform and the problems ac-
companying this transform. Gabor introduced another optimal expansion for real signals
which is introduced in Section 2.4 since it is a comerstone in our work. In Section 2.1, we

summarize some mathematical background which is used throughout the thesis.

2.1 Mathematical Background

We will discuss four mathematical topics needed for this research. These are: Expan-

sion Theory, Fourier Transform, Short time Fourier Transform, and Uncertainty Principle.

10



11
2.1.1 Expansion Theory

Given any signal z from the domain G (G be of a finite or an infinite dimension in the
set of integers Z), one may write z in terms of linear combination of a set of the elementary

functions {gn},., for the G — domain, i.e,

T = Zangn (2.1)

i.e., the expansion coefficient a, is the signal projection on the elementary function g,. If
the set {gn},cz is complete for G. that is, all signals z € G can be represented as (2.1),
there will exist a dual set {§,} such that the expansion coefficients can be computed by

some regular inner product[1], such as
an 2 (.ga) = Sz [k] g5 [k) (22)
k

If {g.} is complete and linearly dependent, the representation is redundant and is named the
frame. In this case, the set {§,} is, in general, not unique. If {g,} is complete and linearly

independent, then{§,.} is unique and we say that {g,} and {§.} are biorthogonal. That is
(GnsGnr) = 6 (n — nl) (2.3)
In this case, the set {g,} is called a basis. If, in addition

(gnvgn’) =0 (n - nl) (2.4)
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i.e., {gn} is orthonormal , then {g.} is called an orthonormal basis. Under this condition,
gn = gn and g, is called self-dual , which is the case of Fourier transform, Cosine transform,
Walsh-Hadamard transform,. . .etc. Note that, (2.1) is called the inverse transform and (2.2)
is called the forward transform. Accordingly, g, is called the analysis function and g, is

called the synthesis function.

2.1.2 Fourier Transform

In 1804, Jean Baptiste Joeseph Fourier introduced the concept of presenting any time
signal by a linear weighted sum of harmonically related sinusoids or complex exponents,
i.e., expanding the signal into the elementary functions {exp (jwt)} ., . His motivation
was that the functions {exp (jwt)}_., are the eigenfunctions of any linear time-invariant
system, 1.e., if the input to any linear time-invariant system is exp (jwt) the output will be

the same function with the same frequency but with amplitude and phase determined by the

system. The transform pair is

Sw) = /s(t)exp(—jwt)dt (2.5a)

s(t) = /S(w)exp(jwt)dw (2.5b)

Since the introduction of this transform in 1804, it has become the most widely used tool
to study a signal’s frequency properties in all scientific and engineering fields like optics,

electromagnetics, control, electronics, power systems,. . .etc.

The major disadvantage of Fourier Transform is that the elementary function exp (jwt)
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has infinite duration in time. Thus, based on the Fourier transform, it is hard to tell whether

or not a signal’s frequency contents evolve in time.

2.1.3 Short Time Fourier Transform

Since the Fourier transform does not explicitly reflect the signal time-varying prop-
erties, a simple way to overcome this deficiency is to multiply the signal by a short time-
duration function 7 (t) before taking the Fourier transform. This function, v (¢) , is named

the window function. One example of this window function is the Hamming window

ey J 054 — 46cos(27t) O0<t<1
r(t) = { 0 otherwise (2:6)

The Short Time Fourler transform becomes
STFT(t,w) = /s (T) v (T — t)exp (—jwT) dT 2.7)

As shown in Fig. 9, the STFT operation is done as follows: First multiply the window func-
tion v (t) with the signal s (t) and then take the Fourier transform of the product. Second,
shift v (¢) in time and repeat the same process [2]. Thus, to have a better time resolution,
we choose a short duration window. But the shorter window implies a wider spectrum

of « (¢t) which results in broader frequency resolution. This phenomenon is illustrated in

detail in[2].
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2.1.4 Uncertainty Principle

It is known that there are some basic connections between a signal’s time and frequency
representations. The most important to us in our development is the relationship between
a signal’s time duration and frequency bandwidth. It is known that the more a signal is
concentrated in the time domain, the more spread it is in the frequency domain. We will put
this in mathematical terms for future usage.

The energy E contained in a signal s(t) is given by

E=/|s(t)]2dt = %/lS(w)lzdw (2.8)

2 2
S g 502

and frequency domains, respectively. Thus, one can use the concept of variance to measure

Then, the normalized functions are the signal energy density in the time

the signal’s spreading in time and frequency domains. Usually, 24,, 2A,, are defined for

the time duration and frequency bandwidth respectively where A,, A, are given by

A= = [ - @) Istof 2.92)
A2 = o [ IS () d (2.9b)

where (t) , (w) are the mean time and the mean frequency, respectively, and are given by

—

e
ey
ll>

1 2
) E/tls(t)l dt (2.10a)
1

w |S(w)|? dw (2.10b)

-
€

S

>

2rE
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The quantities A; and A, are related to each other The uncertainty principle theory[1]

states that

If Vts(t) — O for It} — oc. then

AW @11)
The equality holds only when s (t) is the Gaussian function, g (t)
g(t) £ aexp (—at?) (2.12)

In other words, the Gaussian function has the best localization property among all other
functions in both time and frequency domains simulitaneously. Figure 10 shows the Gaussian
function which has the best localization in both time and frequency. Here, A, = /3 = and

A, = \/%a, i.e., AA, = 3 which is the lower bound of the uncertainty inequality.

2.2 Gabor Expansion

In 1946, Gabor suggested representing a one dimensional signal, typically the time, in
two dimensions with time and frequency as coordinates [3] which he named “the informa-
tion diagram”. He pointed out that there is a certain elementary signal which occupies the
smallest possible area in the information diagram. This minimal area, which reflects the

inevitable trade-off between time resolution and frequency resolution, has a lower bound
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Figure 10: The Gaussian function, g, in both time and frequency domains
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in their product, analogous to Heisenberg’s uncertainty principle in physics. Each of these
areas can be considered as conveying exactly one quantumn of information. He selected the
modulation product of a harmonic oscillation of any frequency with a Gaussian function to
be the elementary function. He proved that this selection? is the only optimal elementary
signal concentrated in the joint time-frequency domain according to the uncertainty prin-
ciple. Namely, he expanded the signal to a time and frequency shifts of the elementary

function
S (t) = exp (=a® (t — t,)*) exp (—j27 fot) (2.13)

where ¢, is the epoch of its peak, f, is the frequency of the modulating oscillation and a
interpreted as the sharpness of the pulse. When a = 0, the elementary signal becomes
sine wave of infinite length, i.e., we come back to the frequency domain representation.
When a = oo, the elementary signal becomes delta function, i.e., we come back to the
time domain representation. These elementary functions divide the time-frequency plane
"information diagram™ as shown in Fig. 11 into rectangles. Each rectangle has sides A, and
A, and area § centering around the point (t,,w,) and represents one elementary function.

The expansion is

n=-—0oo

z(t) = z h(t — mA,) Z Qm.n €Xp(—277nt/A) (2.14)

2 Although Gabor restricted himself to Gaussian window, his signal expansion holds for rather arbitrarily
shaped signals.
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where h (t) = exp (=3 (t/ A,)z) . Unfortunately, the elementary functions are not or-
thogonal. Thus, there was no direct way to get the expansion coefficients a,, .- Gabor,
himself, did not publish any practical algorithms for computing the transform coefficients
amn. He proposed an iterative approach to compute the coefficients an , which, in gen-
eral, has been found not to converge [4]. Bastiaans in 1981 was the first one to solve the
problem for one-dimension signals by introducing the concept of biorthogonal function (we
will discuss it in detail in Section 2.3) which relates Gabor transform with STFT [5]. This
method was extended to the two-dimensional case in 1984 by Porat and Zeevi [6]. Daug-
man proposed a three-layer neural network for extracting the Gabor coefficients [7]. The
neural networks learning process was accomplished using a least mean square (LMS) type
algorithm. The convergence. however, was slow which hinders the use of the algorithm in
rcal time applications. Teuner and Hosticka [8] prescnted an algorithm that computes the
coefficients using the complex LMS. Ibrahim and Azimi-Sadjadi[9] suggested a signifi-
cantly faster algorithm using a recursive least square type algorithm. Currently, there are
several approaches to implement Gabor expansion for both continuous-time and discrete-
time signals like frame theory [10, 1], filter-bank theory [12,13], and biorthogonal function
[14,15]. We have chosen the biorthogonal function method since it gives clear insight of
the characteristics of the Gabor expansion. Note that, as will be seen later, the transform
coefficients an, n, for the critical sampling case, are unique, i.e., whatever the method is

used to get the transform coefTicients, the resulting coefficients are the same.
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2.3 The Concept of Biorthogonal Function

According to expansion theory, discussed above, since the set of the Gabor elementary
functions is complete, even though it is not orthogonal, there is a dual function v(¢) such

that the Gabor coefficients can be computed by regular inner product operation, i.e.,

Amn = /'/'(t —mT) exp (—int) s(t) dt (2.15)

and since the set of Gabor elementary functions in general does not constitute an orthogonal
basis, the dual function v(t) is not, in general, equal to h(¢). There are several theorems
addressing the relationship between h(t) and 7 (¢) [10,11,14,15]. The biorthogonal function

~(t) has to satisfy the equation

D D Tmalt) hmalt) = 8(t — £) (2.16)

m=—20 n=0

or by using the Poisson-sum formula (2.16) can be reduced to [16]

/ o2 (t) h(t) = 6(m)8(n) 2.17)

where 7v,, , = 7 (t — mA,) exp jnl ;. This is known as Wexler-Raz identity. It was shown
[16] that the Gabor elementary functions {h, »(t)} are linearly independent and the dual
function is unique and biorthogonal to A(t).

The calculation of the biorthogonal function «(¢) in an efficient way was treated in

many papers [17-19] which give us a function plotted in Fig. 12 in both time and frequency
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presentations. Equation (2.15) shows that the Gabor transform is equivalent to short time
Fourier transform (STFT) with the biorthogonal function used as the STFT-window. [t
follows from the STFT theory that to maintain time and frequency resolution, the STFT

window function (i.e., biorthogonal function in our case) has to satisfy two contradictory

requirements:

1. The window time duration A, should be small so that the spectral characteristics are
reasonably stationary over the time duration of the window, A,.

2. Since multiplication with a window in time domain is equivalent to convolution in
frequency domain, the frequency response of the window should be as close as possible
to the impulse function to maintain frequency resolution. That is, the window frequency
bandwidth A should be small which requires that the window time duration A, should

be large according to the uncertainty principle.

In other words, the biorthogonal function has to be also as localized as possible in
both frequency and time. As seen from Fig. 12, the resulting biorthogonal function of the
Gabor transform is neither localized in frequency nor in time. This leads to the conclu-
sion that the Gabor coefficients a,, , do not reflect the signal behavior in the vicinity of
[(m=1) A, (m+3)A) =< [(n=13) s, (n+ 1) Af], ie., the Gabor coefficients g n
fail to describe the signal’s local behavior. For example, take the signal z () , Fig. 13, which
consists of four intervals. Each interval has one sinusoid with different amplitude and fre-
quency. The resulting Gabor coeficients is shown in Fig. 14. Due to the non-localization
of the biorthogonal function, the coefficients do not describe the time-varying nature of the

signal z(t) even though it does lead to perfect reconstruction of the original signal.
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In addition, it was found that the resulting transform is unstable [20]. These two reasons
prohibit the practical use of Gabor transform in many applications. In image compression,
for example, a comparison between different schemes showed that the normal block DCT
gives far better results than the Gabor transform [21].

To solve this problem, one has to find a better biorthogonal function. A theorem by
Balian and Low[10, 22-24], however, asserts that a set of functions of type (2.14) can
constitute an orthonormal basis only if either [ |h(t)]?dt = oo or J |H(f)Pdf = >. As
a consequence, it is concluded that the biorthogonal function of (2.14) can not be localized

in both frequency and time simultaneously.

2.4 Real Gabor Expansion

Gabor introduced another optimal, even though less famous, real expansion:

z(t) = mzzic h{t — m.A,).rio
m=—oc n=0

n(t — 2 Lt —ma
<am,ncos2m(t mA) Ly gt el m ‘)) (2.18)

At At

in which Gabor expands the signal into two real elementary function, namely “cosine type”

and “sine type” elementary signals.

COos

Se (1)
i 27 fo (t = to) (2.19)

5. (1) = o (e’ (t - L))
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These two elementary signals are plotted in Figures 15 and 16.  Thus the time-frequency
plane “information diagram” is divided up as shown in Fig. 17 into cells of size % measuring
A, in the time and Af = 53 in the frequency. This expansion was observed in[20, 25]
to have the nice feature of not being subject to the localization restrictions of the Balian-
Low theorem, i.e., one can find a localized biorthogonal function in time and frequency
domains for this expansion. Stewart et «/. [25] proposed an implementation which leads to
a localized biorthogonal function in the time domain but not in the frequency domain. This

implementation will be modified in Chapter 4 to give a localized biorthogonal function in

both the time and the frequency domains.

2.5 Requirements for Universal Joint Time-Frequency Transform

Now we are able to summarize the basic requirements of JTF transform as follows:

Concentrated analysis function in time and in frequency to have fine resolution in the

JTF domain.
Linearity to avoid the cross-term interference and to have easy inverse transform.

Independent coefficients since dependant coefficients make retrieving the modified

signal from the modified JTF representation quite cumbersome. In addition, dependant
coefficients result in the increase of the data size. This increase in data size is
unacceptable in many applications especially in applications which involve huge amount

of data or when the task is to reduce the data size like data compression.
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4. Concentrated dual function in time and in frequency since a non-localized biorthogonal

function will make the transform unable to describe the signal’s local behavior (the most
important advantage of any JTF analysis).
5. Stability since instability, as will be seen in Section 3.5, makes the transform very

sensitive to noise, thus limiting the use of the transform in practical applications.

In addition to the above requirements, the computation involved should be tractable.
Throughout this thesis, an independent set of the modulation product of the Gaussian win-
dow with a harmonic kernel was chosen as the elementary functions (which is the optimal
elementary functions suggested by Gabor[3]). This choice ensures the MOST Concen-
trated analysis function in time and in frequency as was proved in [3]. Also, we choose
to linearly expand time signals into an independent set composed of time and frequency
shifts of this elementary function. This choice results in meeting the first three require-
ments®. Thus, we are left with the last two requirements, that is Stability and Concentrated
dual function in time and in frequency.

These two requirements, in addition to the computational requirements, have not been
met by any critically-sampled Gabor transform available in the literature. Our aim in this
study is to develop a JTF transform which maintains the first three properties and satisfies,
as close as possible, the last two, keeping in mind the computational requirements.

Throughout this thesis, we assume that the discrete signal z(k) is of length L, M rep-
resents the number of shifts of the modulated Gaussian pulse, and NV represents the number

of frequency components in each shift.

3 The critical-sampled Gabor transform also meets these three requirements.
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2.6 Existing Solutions

In the previous sections, we introduced the Gabor transform and showed the problems
encountered with the practical implementations of the transform, mainly the non localized
biorthogonal function and the instability of the resulting transform. To solve these prob-

lems, there exist in the literature two approaches: Over-sampling solution and Real Gabor

transform.

2.6.1 Over-sampling Solution

To overcome these two problems, research went to over-sampling case [16,26] in which
the sampling distances in time and frequency become denser than the case of the original
Gabor expansion, which was named later “critical sampling case”. In the over-sampled Ga-
bor transform, the dual functions are not unique. This solves the problem of non-localized
dual function by choosing a dual function closest in norm to the Gaussian window. The
price to be paid is high redundancy and linear dependency among the coefficients.

Let us rewrite the Gabor expansion for complex signals as

~x = =)

z(t) = Z h(t = maT) Z @m.n exp(—jnBQt) (2.20)

m=-—oQ n=—0oo

where the unit time shift a7 and the unit frequency shift 3€2 satisfy the relationships QT =
27. The linear expansion(2.20) can be complete only when a8 < 1. When a8 = 1, we
will come back to the critical sampling case and the a, » set can be interpreted as inde-

pendent data, i.e., degrees of freedom of the signal. If a8 < 1, the set is over-complete,
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which implies that the coefficients a., , become dependant and can no longer be identified
as degrees of freedom. Now, there are several approaches to implement over-sampling Ga-
bor transform like frame theory [10, 11], filter-bank theory [12, 13], biorthogonal function
[14,15]. As we mentioned above, the biorthogonal function in this case is not unique. Re-
searchers tried to find the best one closest in 5 norm to the Gaussian window. In Figs. 18
and 19, the best resulting biorthogonal function is plotted for different over-sampling ratio
(OVSR = 1/afB). As we see from the figures, the over-sampled Gabor transform gives
a localized biorthogonal function in both the time domain and the frequency domain and
this leads to a stable transform as we will prove in the next chapter for the discrete case.
This solves the problem but at the expense of a considerable expansion of the size of the
data. For example, If we have a two dimensional function (image) with size z and we ap-
ply over-sampling with OVSR = 4, the resulting transformed image will have size 16z.
This increase in data size is unacceptable in many applications especially in applications
which involve huge amount of data like image processing or when the task is to reduce the
data size like data compression. Also, one main disadvantage of the over-sampling Gabor
transform is the linear dependence between the coefficients. This creates many problems
in various applications like filtering, noise removal,. . .etc. This phenomenon will be dis-

cussed in detail in the next subsection.

2.6.1.1 Dependent Coefficients: One main difficulty in designing time-variant fil-
ters is that the modified over-sampled time-frequency representation usually has no phys-

ically existing signal that corresponds to it. Our explanation to this is as follows: In the
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Fourier domain, one can apply any type of filtering, like lowpass filter, Fig. 20 . This is
equivalent to setting the coefficients which correspond to the high frequency to zero (the
coefficients corresponding to the basis {e™** }wMC). This will have no effect on the other

coefficients since they are completely independent, even orthogonal to each other in case

of Fourer transform, i.e.,
/cxp (—jwnt) exp (—jwint) dt = 276 (n — m) (2.21)

In the case of over-sampling Gabor transform, however, one does not have the freedom
to set the coefficient values arbitrarily since the coefficients are dependent. This makes re-
trieving the modified signal from thc modified over-sampled time-frequency representation
quite cumbersome. The least squares error method is used in which the time-frequency rep-
resentation of the estimated signal is closest, in the mean square sense, to the noise-reduced
time-frequency representation [1]. In this method we need to calculate the pscudo-inverse
of an | x | matrix, where [ is the number of Gabor coefficients which is at least equal to
the number of samples!.

Throughout this thesis we are interested in the critically-sampled JTF transforms which

happen to be the most compact representation with linearly independent coefficients.

2.6.2 Real Gabor Transform

In [25], an implementation of Gabor expansion for real signal(2.18) was proposed. The

implementation gives a concentrated biorthogonal function in the time domain that permits
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a truncated version of the biorthogonal function to be used in near lossless signal analysis
and synthesis. This reduces the computation requirements significantly at the expense of
its frequency response which is dramatically destroyed (no localization) as shown in Fig.
21. As aresult, its frequency resolution is also destroyed. The authors assume that both the
signal and the window are periodic which is a substantial change from the natural structure
of the transform [19]. Also, as we will prove later, this transform is unstable. Below, an

outline of the derivation is given which will be related to our work.

Gabor’s expansion for real signals is

z(t)= Y h(t—md,).
m==o n=0 1 (2.22)
. S27rn(t—mA,) t b sin 2r(n + 5)(t — mA,)
mnC m.n Sl
° A, ' A,

Centering the Gaussian function on the analysis windows and reformulating (2.22) using

only cosine functions:

m=0oc n=oc
mnt

z(t)= > A(t—mA,—A/2) > amncos e (2.23)

m=-—oc n=0

Sampling this continuous-time formulation, we obtain a windowed discrete cosine trans-

form (DCT), specifically

M~-1
=S b= amo\f Zam,/_cosw) 229

where a,,,, is the expansion coefficients and h(k) is the discrete periodic version of the
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window placed at the center of the specified interval, 1.e,,

h(k) & (@)éexp <-, (k— (Ajv— 1)/2)2> (2.25)

MN N-1 MN N-1
- + k< 7t

2 2 2
Putting (2.24) in matrix notation,
Ho(CJO)" Hyo(C1OT - H(CTO)T a, X1
H(CJY)" Ho(CJY)' e Hy(CTY)T a | _ | x
Hy_(CIMNYT  Hyp(CIM-HT ... Hy(cJM-4HT an Xar
(2.26)
where a,, = (@m.1,am2, - - - ,am'N)T and the matrix C = [Cn k| y v With cq i given by
2k 7
2k + 1) 7n nk=0. . N-1

where

\/g forn=0
o =
\/% forn=1,..., N -1
J is the N x N row exchange matrix defined in (A-1),

X+l =(:z:(mN+1),1:(mN+2),...,:z:(mN+N))T
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and
h(mN) 0 e 0
R 0 h(mN+1) - 0
H, = : : . : (2.27)
0 0 <o+ h(mN + N —1)

Assuming that M is even, since J%* = [, J?**! = J and JT = J, (2.26) reduces to

Hy HyJ --- HJ cT o --- 0
H\J Hq ..o Hy 0o JCT .- 0
: : .. : : : . : a=x (2'28)
Hy1J Hy-o -+ Hy o o .- JCT
or
x=HCTa (2.29)
Since C7 is orthogonal, the inverse of the above equation is
a=CH!'x
The inverse matrix H™! is the block circulant matrix
| JOy oo Il
JCa-1 To -+ Dar-
:\1 1 :o . \.1 2 (2.30)
JIy L .- o
where
y(mN) 0 0
0 mN +1 0
I = i : ) (2.31)
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and (k) comprises the biorthogonal function. For Gaussian window, the resulting biorthog-
onal function is plotted in Fig. 21. This figure shows a concentrated biorthogonal function
in the time domain that permits a truncated version of the biorthogonal function to be used
in near lossless signal analysis and synthesis, while its frequency response, as shown in
the figure, was dramatically destroyed (no localization). As a result, its frequency resolu-
tion is also destroyed. This is one reason which illustrates our findings of the bad results
when using this algorithm in image compression. This will be put in mathematical terms
in Chapter 3.

In the following chapters, we will give our series of transforms which have better prop-
erties than the ones discussed here. As a start, we will put, in the next chapter, the available
Gabor transforms in a unified matrix formulation which will be used in the subsequent

development.
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CHAPTER 3

MATRIX FORM AND
STABILITY OF DISCRETE
GABOR TRANSFORMS

In this chapter, the discrete aperiodic real Gabor transform will be developed. In addition,
the discrete version of existing Gabor transforms in the literature will be presented in a
unified matrix form. This form enables us to analyze quantitatively the performance of
these implementations . In particular, the biorthogonal function and the stability of the

transform will be examined.

3.1 Introduction

Since the signals encountered in most applications nowadays are discrete-time, it 1s
necessary to extend the Gabor transforms to the discrete case. Discretization in time is done
by either truncating the time signal to compact support region and sample it at a rate captur-
ing their significant behavior (this is called aperiodic sampling) or by periodize the compact

support signal before sampling (this is called periodic sampling). Note that sampling the

41
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time variable leads to periodicity in the frequency domain and sampling the frequency vari-
able leads to periodicity in the time domain. Thus, the discrete-time and discrete-frequency
Gabor transform coefficients are periodic in both time and frequency. As a consequence,
the Gabor transform of any signal is reduced to a linear mapping that relates the samples
of the time signal to a periodic N x M matrix. where M and N are the number of time
and frequency cells respectively.

In Section 3.2, the discrete version of the existing Gabor transform implementations
in the literature are put in a form that enables us to analyze the performance of these im-
plementations quantitatively. As we have seen in the previous chapters, the two main prob-
lems of any linear critically-sampled Gabor transform implementation are the non-localized
biorthogonal function and the stability of the transform. These will be tested in Scction 3.4
and Section 3.6. In Section 3.3, the discrete aperiodic real Gabor transform will be devel-
oped which will be used in the next chapter.

In Section 3.5, a precisec measure of the stability of any linear discrete transform is
defined. In Section 3.6, this definition will be applied to the various Gabor transform im-
plementations to show their stability characteristics. We would like to stress the fact that
the stability is tested here in the discrete case (NOT in the continuous case as is the case

in the current literature).

3.2 Matrix Form of Discrete Gabor Transforms

For the discrete case, we assume that the discrete signal z(k) is of length L, the number
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of shifts of the modulated Gaussian pulse is M, and the number of frequency components in

each shift is N. Define N as L/ M. There are many implementations of the Gabor transform

in the literature. There are critical-sampling (the original transform) and over-sampling

cases. For critical sampling case N = N while for over sampling case N > N. The

ratio N/ N represents the over-sampling rate (OVSR). There are periodic and aperiodic

implementations for both equations (2.14) and (2.18). All of the above-mentioned cases

could be put in the matrix form

x=HETa (synthesis equation)

where a is a vectorizd form of the expansion coefficients a,, , defined by

a T T T T
a=(ag,a; ..., ay ]
with
T
am 2 (@m0, Amly - -y QN1

and x is a vector containing the discrete signal of length L defined by

T
x & [xo,xf...,xg,_l]T

with

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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The matrix H is M N x M N matrix which provides the desired windowing effect, i.e.,
localization in the time domain of the elementary function. In all cases, H is block matrix

with N x NV diagonal blocks H,, or anti-diagonal blocks H,, defined by

h(mN)
h(mN +1)
H, =
h(mN + N — 1)
£ diag (h(;nN),h(mN + 1), ... h(mN + N - 1)) (3.6)
and
h(mN)
= h(mN + 1)
H, =
/
h(mN + N - 1)

£ H.J (3.7)

where J is the N x N row exchange matrix defined in (A-1) and h(k) is the discrete
Gaussian function, or any other chosen function, centered on the analysis window, 1.e.,

h(k) £ h(t)|t=k_ﬂ§._x. For Gaussian function, k(k) is given by

h(k) & \/gexp (-%5 (k= (N =1) /2)2) (3.8)

where o is the rms pulse-width and is usually chosen to be equal N.
The matrix E7 is an M N x M N block-diagonal matrix with N x N orthogonal block.
Each block is V-point discrete Fourier-Related transform. E7 represents the linear trans-

formation, i.e., localization in the frequency domain of the elementary function. In all cases,
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ET is orthogonal, i.e., (ET) ™' = E. Thus the inverse of the synthesis equation (3.1) is

a=EH'x (analysis equation) (3.9)

It is easy to verify that the matrix H~! is M N x M N block matrix with N x N diagonal
or anti-diagonal blocks. The elements of H~! comprise the resulting discrete biorthogonal
function which is required to be concentrated in both time and frequency.

Both H and E” are different for different cases. For critical-sampling case (:V = N),
H is a square matrix which is either block-circulant (for periodic implementations) or block-

Toeplitz matrix (for aperiodic implementations), i.e.,

( HO HA\I—I Tt HI
H, Hy --- H, '
. . . . block-circulant
Hy_y Hpy2 -+ Hp
H 2
Hy H_y -+ H_p4
H H, - H_,
A block-Toeplitz
L H.’\[—l Hl‘-[—:.) HO

For the over-sampling case (N > N), however, H is a rectangular matrix. Thus, H™!
represents the Pseudo (right) inverse of H.

The details of these implementations are in Appendix C. For the complex Gabor trans-
form (2.14), the discrete periodic version (Appendix C.1) was put in matrix form by Balart
[27]. This was extended to the discrete aperiodic case (Appendix C.2) in[19,28]. In addi-
tion, the discrete over-sampling version (Appendix D) was put in matrix form in[29].

For the real Gabor transform (2.18), the discrete periodic version (Appendix C.3) was
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put in matrix form by [25]. In the next section, we will extend this to the general discrete

aperiodic case which will be used in the next chapter.

3.3 Aperiodic Real Gabor Transform

According to[19], for the Gabor transform, the assumption of periodicity is a more
radical assumption than for the Fourier transform. This is because it involves a substantial
change from the natural structure of the transform. Here, we do not assume the periodicity
of the window nor the signal. The signal z(¢) is assumed to have finite duration 7. The
analysis window function is assumed to have a duration of at least 27"

Starting by the Gabor’s expansion for real signals

z(t) = Y h(t-md). Y
m=-00 n=0
t— 2 Dt - mA
al, » cos 2mn mAt)+a2m‘nsin W(n+2)( mA) (3.10)
’ Ag At

Centering the Gaussian function on the analysis windows and reformulate the above equa-

tion using only cosine functions

o(t) = ) h(t—mA,—-—A?—‘).Z

m=—oc n=0

2mnt
((—1)" alym . coS Zn +(=1)"" a2, cos
t

2r(n + )t
A,
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which can be written as

m=oc n=oc t
z(t) = D h{t—mA, - %) > tmn COS% (3.11)
“  n=0

m=-2c

where the plus and minus signs are absorbed in the coefficient values a,, ,. Sampling this

continuous-time form, a windowed discrete cosine transform (DCT) is obtained, specifi-

cally
AM-—-1 N-1 2k
z(k) = :L;() h(k — mN) ; O nQ COS (—%)—72 (3.12)

where a,, » is the expansion coefficients, 2(k) is the discrete version of the window function

centered at the center of the specified interval, and « is defined as

\/—/Lv- forn=20
a= i (3.13)
£ forn=1....N-1
Putting (3.12) in matrix notation,
Ho(CJ)T HoC))" o Hoyaa(C)T ] T x|
H\(CJY)" Ho(CJ')' o Hoaa(CI)T | a2 | | %
Hy(CIMHT Hyo(CTM-1)T oo Ho(CT¥ 1) s 3
(3.14)

where H,,,, am, and x,, as defined in (3.6), (3.3), and (3.5), respectively. The matrix C =

[Cn k] y, v IS the N-point Discrete Cosine Transform matrix with ¢, given by

(2k+1)7n

k=0,....N — .
- nk=0,... N—-1 (3.15)

Cnk = xCOS
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Noting that J?* = [.J%**! = J and J7 = J, (3.14) reduces to

Hy H_\J --- H_y.,J ctT o --- 0
H,J H - H_, o JCT .- o
) A . . | xa=x (.16
Hyd Hyono oo Hy 0 o --- JCT
or
x=HE"a (3.17)
where
Hy H_\J -+ H_jyJ
H,J H, - H_;
Hy\J Hago --- Hy
and
cT o0 0
T
ET - o JC 0
o o --- JCT
The inverse of equation (3.17) is
a=EH 'x (3.19)

Since the matrix H is block-Toeplitz matrix, its inverse H™! is not, in general, block-
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Toeplitz matrix. Thus, H™! is defined by

[ ™ g ]
(1) (1) (1)
gar=| 7 Ij‘l F? o F“_H (3.20)
(Ar-1 M~-1 M-
| TG s - T
where T{™ is given by
A/m(l‘l'v) O e O
(m) 0 v (IN+1) -- 0
rim™ = : : . , (3.21)
0 0 oo v (N + N = 1)

and v,,(k) comprises the biorthogonal function for the m time-shift. This means that, un-
like the periodic case, the biorthogonal function is different for every time-shift and not
just a time-shifted version of the same function. However, for strong-decaying analysis
function (as the case of the Gaussian window), this implementation leads to almost the
same biorthogonal function as the periodic case except at the two ends (1.e., m = 0 or
m = M —1). In Figures 22 and 23, the resulting biorthogonal function 7,,, (k) is plotted for
M=N=8andm =0.1.....7. For comparison with the periodic case, the aperiodic

and the periodic cases for m = () are plotted in the Fig. 24.

3.4 The Biorthogonal Function of Discrete Gabor Transforms

For the critically-sampled GT'’s, the resulting discrete biorthogonal functions is shown
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in Fig. 60 on page 171 for the periodic complex GT, in Fig. 61-(a) for the aperiodic complex
GT, in Fig. 62 on page 175 for the periodic real GT, and in Figures 22 and 23 for the aperiodic
real GT. For the over-sampled GT, the resulting discrete biorthogonal functions are shown
in Fig. 63. All figures were plotted for M/ = N = 8 and & = N. The details are given
in Appendix C. It is obvious from these figures that, except for the over-sampling case,
the resulting biorthogonal functions, including the above developed implementation, are
not localized in the time domain or/and the frequency domain. This severely degrades the
performance of the transforms because the Gabor coefficients an, » will not reflect the signal
behavior in the vicinity of [(n — 1) Ay, (m + 1) Ax[(n — 3) &f. (n+ 3) L], i€, the
Gabor coefficients a,, , will fail to describe the signal’s local behavior.

In the next two sections. we will deal with another serious problem of any transform
that is its numerical stability. Numerical stability is an inherent characteristic of the spec-
ified transform which describes how perturbations in the signal in one domain affect the
signal in the transformed domain. Perturbations are due to noise, round off error, filter
operation,. . .etc. Thus, perturbations are very common in most applications and cannot be
ignored. In this work, we are interested to measure the stability in the actual discrete case,
not in the continuous case as is the case in the literature. Thus in Section 3.5, we give a de-
finition of the stability in the discrete case which will be applied, in Section 3.6, on various

types of the currently available Gabor transform implementations.
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3.5 Stability of Discrete Linear Transforms

Any discrete linear transform can be expressed in matrix notation as a transformation

matrix A multiplied by the discrete signal x. Thus, the transformed signal y is

y=Ax (3.22)

while the inverse transform is
Xx=Aly (3.23)

where A~! is the inverse of the matrix A iff A is a square matrix. If A is rectangular, A~
is the Pseudo inverse of A.
From linear systems theory [30], a precise measure of the sensitivity of this transform

to any perturbation of the original signal x can be defined by the condition number x,(A )

max (|| Axill, / Ixl,)
kp(A) = for all x;7 0 and x,# 0

min (| Ax; ], / |,

where ||x||, is the p-norm of the x. In other words, if the vectors Ax and Ay are regarded

as errors correlated by

y + Ay = A (x + Ax)



where x and y satisfy (3.22) and (3.23), then

L lax] /
A 3.24
o(A) < 1Ayl /1w, < &) (3.24)

This means that a small change Ax in x causes a change Ay in y which has a norm that

can be k,(A) times as big as the norm of Ax. When A is a square matrix, x,(A) could

be calculated by

<s(A) = A, A7,

Here, we will focus on the most common case which is p = 2 and the subscript p will
be dropped. The condition number «(A) ranges from 1, for orthogonal transformation
matrices, to oo, for singular matrices. In-between, when x(A) is very large we say that the
transformation matrix A is ill-conditioned or the transform is unstable and when x(A) is
small we say that A is well-conditioned or the transform is stable.

Note that the 2-norm is invariant under unitary transformation, i.e., for any orthogonal
square matrix Q of appropriate dimension, the condition number x(AQ) is equal to the
condition number x(A).

In the following section, we will test the stability of all the types of Gabor transform

in the discrete case.
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3.6 Stability of Discrete Gabor Transforms

In all of the Gabor transform implementations discussed in Section 3.2, we have the

synthesis equation
x=HE"a

i.e., we have the linear transformation matrix [HET] with H and E are defined according
to the JTF transform concerned. To measure the stability of the transform, we calculate the
condition number « (HET) of the transformation matrix [HE”] . As we have seen from
Section 3.2 the matrix E7 is an orthogonal matrix in all cases. Thus, « (HE") is equal
to x (H). The condition number « (H) for Gaussian window ( for ¢ = N) and typical
values of .M and N for the above mentioned Gabor transforms are listed in Table 1. As
seen from the table, Except for the over-sampling case, the condition number is very high
and increases unboundedly with increasing N and M which indicates the instability of the

various implementations of Gabor transform.



The condition number « (H)
Critical-sampling Over-sampling
Complex Real

[ (N, M) Periodic | Aperiodic | Periodic | Aperiodic | OVSR= 4
(8,32) 12.37 11.34 12.37 12.33 1.40
(16, 16) 24.63 14.42 24.63 24.30 1.47
(16, 32) 24.63 19.38 24.63 24.54 1.47
(32, 16) 49.20 18.52 49.20 48.55 1.50
(32,32) 49.20 28.77 49.20 49.02 1.50
(64, 64) 98.37 57.43 98.37 98.28 1.52
(128, 64) 196.74 73.64 196.74 196.55 1.53
(256,128) |ii 393.46 147.05 393.46 393.37 1.54

TABLE 1: Condition number of various Gabor transforms



CHAPTER 4

NON-SEPARABLE SAMPLING
OF THE REAL GABOR
TRANSFORM

As we have seen in Subsection 2.6.2, the implementation of the Real Gabor Transform
led to a concentrated biorthogonal function in time [25]. This permits a truncated version
of the biorthogonal function to be used in near lossless signal analysis and synthesis. Its
frequency response, however, is not localized. The above-mentioned implementation are
based on uniform separable sampling of the time-frequency plane to obtain discrete Real
Gabor Transform. In this chapter we propose a simple way to implement the non-separable
hexagon sampling and apply it for Real Gabor Transform. This hexagon sampling results in
a localized biorthogonal function in both time and frequency domains. The matrix structure
for the hexagon sampling set is developed and a computationally efficient algorithm to

calculate the biorthogonal function is proposed.

58
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4.1 Non-separable Sampling

For continuous time signal z (¢), The inverse Gabor Transform, or the STFT is

X (t,w) =/:c(t)'7('r— t)exp (—jwT)dr

which is called the complex spectrogram. For periodic signals with period T', we need not
to know the entire complex spectrogram. It suffices, however, to know the spectrogram
values at points (¢, = m7T. w, = n{)) where Q2 = 27" and m and n take integer values [5].
The lattice of points (mT. nf?) has been first suggested by Gabor [3] as shown in Fig. 25.
This sampling, however, was shown later that it leads to an unstable transform as well as a
non localized biorthogonal function [14]. The above implementation are based on uniform
separable sampling of the time-frequency plane to obtain discrete Gabor Transform. In 31,
32], a generalization for the Complex Gabor Transform was proposed in which the time-
frequency plane is arbitrarily sampled. One of these general sampling schemes which gives
better results, for over-sampled Complex Gabor Transform, is the quincunx-lattice.

For the Real Gabor Transform, the instability came from the fact that the elementary
functions S, ,» (2.19), in which Gabor expand the signal, are not orthogonal. The depen-
dency among these elementary functions has an inverse relation with the distance between
them in the JTF plane. We propose to make a generalization for the Real Gabor Transform in
which the time-frequency plane is arbitrarily sampled (not just into rectangular lattice or

grid) in such a way that the minimum distance in the JTF plane between any two elementary
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functions is maximized. It is well known in vector quantization literature that dividing the
2-dimensional plane into hexagon-lattice, Fig. 26, maximizes this minimum distance [33]
In this chapter, we propose a simple way to implement the non-separable hexagon-lattice

sampling and apply it for Real Gabor Transform.

4.2 Hexagonal Real Gabor Transform

In the Real Gabor Transform (2.24), the signal is expanded into windowed version of
the discrete cosine transform (DCT-II). DCT-II is a sampled version of the discrete-space

cosine transform C, (w)

C.(w)= Z2:r(n)cos (w(n+3)) 4.1)

=0
atw = "—; where k = 0,1...., N — 1. Thus, (2.24) is a uniform sampling of the time-
frequency plane at points (¢,w) = ((m + 3) N, %) wherem = 0,1,..., M — 1 as shown

in Fig. 27-(a). To implement this hexagon sampling set, shown in Fig. 27-(b), notice that,
for every other column the sampling points are shifted upwards by the amount 5%, i.e.,
the resulting discrete cosine transform is a sampled version of the discrete-space cosine

(1
transform at w = l(ij_?) This is exactly what is known as the discrete cosine transform

type IV or DCT-IV (Appendix E). Thus, expanding the signal according to the hexagon
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sampling gives

M-1 N-1
k)= Y hu(k) Y amarcos {EEL
m={) n=0
-1 N (el (4.2)
+ Z hm(k) Z am,,\/>cos———2i—22
m"'l—ogd n=0
where h,, (k) is
hm(k) = h(k —mN) = h(t - (m+3)T)|,_, (4.3)

Here, we choose to study the aperiodic discretization of the Real Gabor Transform*, and
thus neither the signal nor the window are assumed to be periodic.

To put (4.2) in matrix notation, note that

I (O) Am0 amp
(1 A=1 A Ar-1 Gm
; ) = > hu(k)CT S I N (- o2 (4.4)
: m=0 ) m=0 :
T (IV _ 1) m=even A N -1 m=odd Am N—1

where C| = [cnk]y, 1S the N-point DCT-II transform matrix defined in (3.15) and C> =
[cn.k] yx is the N-point DCT-IV transform matrix defined in (E-1).

Equation (4.4) can be written as

M-1 M-1
xo= Y hn(k)Clam+ > Am(k)Cram (4.5)
m=0 m=0
m=ecven m=odd

1 For Gabor Transform, the assumption of periodicity is a more radical assumption than for the Fourier
transform, as it involves a periodization of the window function as well as the signal [19].
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where a., and z,, are as defined in (3.3) and (3.5) respectively. Note that, based on the

DCT-1IV properties (see Appendix E), one can write

=Y hm-i(K)CT Jam ~ Z 1 (k) C2Jam (4.6)
Xy = Z Ao th_ )Coam 4.7)
=" hm_3(k)C] Jam + Z Aom—3(k)CoJam (4.8)

even

where .J is the N x N row exchange matrix defined in (A-1).

Based on (4.5), (4.6), (4.7), and (4.8), one can rewrite (4.2) in matrix form as

[ H,CT + H_C] oo +H 30 CF 7 Ta 7 [x ]
H\JCT —HyJCT coo —H_y0JCT a, X
H2C/1r —ch:»T T —H—M+3C:? ag X2
H3JCT  + HyJCT - +H_ydJCT | | a3 | T x3 (4.9)
HyCT +Hy JCT - +HoJCT J Laar ] L xXar—1 |
or
HCTa=x (4.10)

where H,,, a and x are defined in(3.6), (3.2), and (3.4), respectively with

[ Hp H_\J -+ H_pynJ ]
H\J —Hy -+ —=H_p2
H, -H\J -+ —H_p43d
H=\ HJ H - Hwu *11)
| Harnd Hyooo - Hy )




and

- C,;r T
JC

ct

JCT |
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(4.12)

Equation (4.10) is the synthesis transform in matrix notation. Its inverse, i.e., the analysis

. -1 . P . . -
transform. isa = (C”) ™ H~'x. Since the C matrix is unitary, i.e., (CT) ' = C. thus,

a=CH !x

(4.13)

The matrix H is block-Toeplitz matrix. Its inverse H-! is not, in general, block-Toeplitz

matrix. Thus, H™! can be written as

[y g Jrg
- (1) (1) (1 (1
(;\I—l) (:\!-l) iM—I) (;\.1—1)
L ']F—M-I-l _F—M+'2 —']F—M-.‘-S 1F‘—Mi—4

with NV x N diagonal blocks

Tm(LN)

m TN +1

0) 7
JUN -y

ri, (4.14)

F(()h!—].)

(4.15)

Ym(IN +N-1)

where ~,,. (k) comprises the m-time shift of the biorthogonal function. For Gaussian win-

dow, the resulting ~,,,(k) is plotted, for m = 3,in Fig. 28. This figure shows the nice con-

centration of the resulting +,,(k) in both time and frequency compared with previous work.
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Figure 28: The discrete biorthogonal function of the Hexagonal Real Gabor transform.
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As a comparison, the biorthogonal function of Stewart implementation and this implemen-

tation in the frequency domain is plotted in Fig.29.

In the next two sections, we will give a practical implementations of the hexagon sam-

pling Real Gabor Transform.

4.3 Practical Calculation of H™!

The matrix H(4.11) is an M NxM N matrix which is very costly to invert. H is a block-
Toeplitz matrix with diagonal or anti-diagonal blocks. Using row and column permutations,
H can be converted to a block-diagonal matrix with V blocks. Each block is of dimension
M x M which can be inverted separately as follows:

Define (as in Appendix A) a permutation A Nx M N matrix P whose encoding vector
plk), for k =0,..., MN — 1, 1s given by

pwﬁﬂﬂN—U+04W[%J+NMmmMM (4.16)

where n = k£ mod 2 and | z | means the integer part of z. The matrix PHP is block-diagonal
matrix given by

Do
PHP = , (4.17)
DN—I

where D,, is M x M block-Toeplitz with 2 x 2 blocks. Efficient methods for inverting
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block-Toeplitz matrices exist [34-37] which can invert this matrix in O(M?), or even in
O(M log M) as some iterative algorithms claim. Thus, the whole inversion process of

PHP takes O(N M?) or O(N M log M). Consequently, the inverse H™! is given by

H!=P (PHP)'P (4.18)

and the Gabor coefficient is given by

a=CP (PHP) 'Px (4.19)

4.4 Practical Calculation of the Hexagonal Real Gabor Transform
coefficients

Referring to (4.13), in order to compute the m** N Gabor coefficients:

e Multiply the signal z(k) by the biorthogonal function v, (k).

o [fm iseven
(a) Add the M sections of length NV after flipping’the odd numbered sections.
(b) Take the DCT transform (3.15) of the resulting vector.

e Ifm isodd

(a) Add the M sections of length N after flipping the odd numbered sections and

following the sign order as indicated in (6.49).

5 Flipping an N-dimensional vector x is performed by replacing the element z; by zv —;.
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(b) Take the DCT-IV transform (E-1) of the resulting vector.

Assuming that the V-point DCT or DCT-IV takes % log, N multiplications, this op-
eration requires NM? + ¥ log, N = L(M + 1log, N) multiplications. There is still
room for significantly reducing this number of operation by truncating the Gaussian func-
tion to a length 2NV (i.e., h (n) is zero outside the interval [—& : 3% — 1]) as illustrated
in Fig. 30. Under this proposed truncation, D,,,(the diagonal blocks of PHP) will be a

block-diagonal matrix given by

2
I
—_

forn=0,...,:

o

forn=1%4, .. N-1

Cn

where a, is [h(n)] and b, and c, are a 2 x 2 matrices defined by

s | +h(N-n-1) —h(-n-1)
b, = [ ~h(N+n)  +h(n) (4-20)
s +h(n) —h(N —n)
Cn = { —h(2N = 1) +h(N —n) (4-21)
If h(n) is symmetric as in the case of Gaussian window, b, and ¢, will be
a | +h(n) —h(-n-1)
Ba = [ ~h(-n—1) +h(n) (4.22)
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a [ +h(n) —h(N — n) ] (4.23)

Thus, the inversion of the M N x M N matrix H reduces to an /V inversions of a 2x2 matrix
which takes 5 operations and % inversions of a 1 x 1 matrix which takes 1 operation. In
this case the inversion of H takes only 5.5N which is a considerable reduction compared
to O(NM?) or O(NM log M).

Note that, since the inversion of a block-diagonal matrix is also a block-diagonal with
the same dimension, it follows that D! is also a block-diagonal matrix with 2 x 2 blocks.
Thus, [PHP]™' = PTH !PT is also a block-diagonal matrix. As a consequence, H~! has
the transpose structure of H. This illustrates why the truncation of the window to a length
of 2V will give a biorthogonal function which also has a length of exactly 2V. In this
case, the calculation of Gabor coefficients requires only L(2 + % log, N) operations which
is great reduction especially for large M. This proposed algorithm is faster than the Zak
transform based algorithm which takes L(1 + log, NV + log, L) operations and is claimed
to be the fastest algorithm currently available [17]. Table 2 shows the operational savings
of the proposed method over the Zak transform based method.

The only price to be paid is the ripples appearing in the frequency response in the
Gaussian window due to truncation. Because it is too small, the ripples do not appear in
Fig. 30. The amplitudes of these ripples, however, are far less than the amplitude of the main
lobe. The ratio is more than 45 db for any practical values of M and N (For example, for
N = 16 the ratio is 51.4 db, regardless of the value of M). Thus, for all practical purposes,

these ripples have negligible effect.
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Figure 30: Truncated discrete Gaussian window to a length of 2N. M = N = 8.

# of multiplications | Saving
N | M | Proposed Zak Ratio
8 |32 896 1,920 | 2.14
8 1256 7,168 | 21,504 | 3.0
8 512 14,336 | 47,104 | 3.29
16 I 32 2,048 4,096 | 2.0
16 | 256 16,384 | 45,056 | 2.75
16 ' 542 32,768 | 98,304 | 3.0

TABLE 2: Operational savings of the truncated hexagon sampling method over the Zak
based one
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It is worth noting that this is an exact representation of the signal and not just an

approximation like the case mentioned in [25].

Example 4.1

To compare the proposed truncated transform with the original hexagon sampling
transform, consider a test signal z (k) of length 1024 composed of a concatenation
of two sinusoids with the same length and different frequencies and amplitudes,

(fi =%, fo=13) and (a; = 10. a; = 20) respectively, i.e.,

1,...512
513,...1024

N _ ) ajcos2rfik k
z(k) = { aycos2mfok  k

This signal is plotted in the time domain in Fig.31 and in the JTF domain in Fig.
33 using the hexagon sampling transform. After coming back to the time domain,
the sum-square error between the original signal and the transformed one was 2.2e-
024 (which is the computer round off error) indicating zero error. The sanie signal
is plotted in the JTF domain in Fig.32 using the proposed truncated hexagon
sampling transform. It is obvious that both transforms gives, almost, the same JTF
representation. After coming back to the time domain from the truncated method
JTF domain, the sum-square error between the original signal and the transformed
one was 2.2e-024 (which is also the computer round off error) indicating zero error.

To compare with the truncated transform proposed in[25], the same signal
is plotted in the JTF domain in Figures34 and35 using the truncated transform
proposed in[25] for truncated window length 2N and 3N respectively. After com-
ing back to the time domain, the sum-square error between the original signal
and the transformed one was 39.19, and 10.59 respectively. Comparing Figures
34 and35 with Figures33 and32, it is obvious that the hexagon transforms (both
untruncated and truncated) give more distinctive representation (specially in the
frequency direction). This is because the biorthogonal functions of the hexagon
sampling transforms have more concentration in the frequency domain than those
of the Real Gabor Transform (see Fig.29).

4.5 Conclusion

In this chapter we have presented an implementation of the critically-sampled Real

Gabor Transform for nonseparable JTF plane sampling set. We have shown that the resulting
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Figure 31: A test signal composed of a concatenation of two sinusoids with different am-
plitudes and frequencies.
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Figure 32: JTF representation of the test signal using the trunacted hexagon real Gabor
transform with length 2.V.
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Figure 33:  JTF representation of the test signal using the hexagon real Gabor transform.
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Figure 34: JTF representation of the test signal using the trunacted real Gabor transform
with length 2/V.
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Figure 35:  JTF representation of the test signal using the truncated real Gabor transform
with length 3NV.
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biorthogonal function has better localization in frequency domain. An efficient method to
calculate the transform coefficients for any window type is presented. We have also derived
a practical implementation of the transform using a truncated version of the analysis window
to be of length 2/V. We showed that this truncation has negligible effect on the characteristics
of the transform. In addition, it requires only L {‘2 + 3 log, N} operations for computing
the transform coefficients and 5.5V operations for computing the biorthogonal function.
Thus, it is faster than any Gabor transform currently available. Unlike other methods of

truncation, this method gives exact reconstruction of the signal.



CHAPTERSS

ORTHOGONAL GABOR-DCT
TRANSFORM

In this chapter, another new linear, critical sampled, Real Gabor Transform, Gabor-DCT,
is presented. In this implementation, we focus on the stability problem. Our objective
is to get an orthogonal transform which is thus stable. In addition to orthogonality, the
resulting transform is computationally less demanding than other Gabor Transforms. We
prove that for Real Gabor Transform any window function of length 2/V will lead to a
biorthogonal function having exactly a length 2/NV. The conditions on this window function
to be a candidate of an orthogonal Real Gabor Transform is derived. Two examples of such

window function are given.

5.1 Introduction

The discrete cosine transform (DCT) is very popular in image processing. This is
due to its decorrelative properties and the existence of fast algorithms for computing the

coefficients that can be easily implemented by VLSI. It is, however, not local in the spa-
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tial domain. Therefore, it must be calculated over a number of spatial partitioned regions
(blocks). On the other hand. Gabor functions have optimal localization in the joint spatial
and frequency domain.

As we saw in Section 2.2, Gabor transform expands signals into a time and frequency
shifts of the Gabor elementary function which is the product of a window function by
Fourier kernels. In[38], an attempt to combine the advantages of both DCT and Gabor
transform was made through replacing the Fourier kemels of the Gabor elementary func-
tions by DCT kemels. This was named Gabor-DCT and an iterative algorithm was proposed
to calculate its coefficients. Another implementation of the Gabor-DCT was proposed in
[21]by maintaining the same biorthogonal function produced in the normal Gabor transform
and replacing the DFT transform by the DCT one. As we saw in Subsection 2.6.2, Stewart
et al. [25] worked out theReal Gabor Expansion(2.18) in rigorous mathematical terms and
ended up with another Gabor-DCT (Real Gabor Transform) that has a better biorthogonal
function than the original Gabor transform. This biorthogonal function is localized in the
time domain.

Unfortunately, the resulting transforms in all the above-mentioned cases are unstable,
as will be proved in Section 5.3. This means that errors (due to noise or truncation . . .etc.)
may be severely magnified during the transformation process. Thus, finding a stable Gabor-
DCT transform is extremely important. Orthogonal transforms are the best stable ones
since they do not produce any error magnification during the transformation process. An-
other advantage of orthogonal transforms is that there is no need to calculate the biorthog-

onal function since the same window is used for both analysis and synthesis operations.
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In this chapter, an orthogonal Gabor-DCT transform is proposed by modifying the
analysis window function. Here, the conditions on the analysis window to be a candi-
date of the orthogonal Gabor-DCT are developed and two members of this window family

are given.

The organization of this chapter is as follows. In Section 5.2 we will set theReal Gabor
transform in the appropriate matrix format which will be used in our analysis. In Section
5.3, the stability of various Gabor-DCT implementations is calculated. In Section 5.4, the
conditions to be satisfied by the window function so that it leads to an orthogonal transform

will be derived. Two examples of this window function are demonstrated in Section 5.5.

5.2 Real Gabor Transform: Second Visit

As we showed in Subsection 2.6.2, adiscretization and reformulation of theReal Gabor

Expansion (2.18) in matrix form led to

Ho(CJO)T Hy_ (CIYT .o H(CJO)T a X1

H(CTY Ho(CJY)" - Hy(CTYT a | _ | x

Hy_(CIM-NT  Hy_s(CIM-1H)T ... Ho(caM-H)T ap Xar
(5.1

Here, (5.1) is put in the following matrix form

H, Hy-y -+ H ctT o0 --- 0
H,J HyJ --- HyJ o CT ... 0
) . , . i . . la=x (5.2)

HM—}.J HM_QJ HQJ 0 0 CT
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where a, x, J, H., and C are as defined in (3.2), (3.4), (A-1), (3.6), and (3.15) respectively.

Equation (5.2) can be rewritten as
HCTa=x (synthesis equation) (5.3)

where the matrix H provides the desired windowing effect and is given by

HO H;W—I Hl
H,J HyJ s HoJd
H2 ! o (5.4)

Hy1J Hyad --- Hol

and C is an M'N x M N block-diagonal matrix which represents the linear transformation
and is given by

C
cs ) (55)
C

It is to be noted that H and C as defined here are different from those used in Subsection

2.6.2. Equation (5.3) is the synthesis transform. [ts inverse, i.e., the analysis transform, is
a= (CT)_1 H !'x
Since the C matrix is unitary, i.e., (C"')—l = C, then
a=CH 'x (5.6)

In the next section we will test quantitatively the stability of this Transform.
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5.3 Stability of Gabor-DCT Transforms

For the Gabor-DCT transform, we have the synthesis equation (5.3), i.e., we have the
linear transformation matrix [HCT]. As we have proved in Section 3.5, to measure the
stability of the transform, we calculate the condition number of the matrix [HCT] . The
matrix C” is orthogonal. Thus, the condition number of [HCT] is equal to the condition
number of H. The matrix H is not, in general, orthogonal and its condition number for
Gaussian window and typical values of M and NV are listed in Table 3.1t is clear from this
table that the condition number for Gabor-DCT transform is very high and increases without
bound as (/V, M) increases, thus indicating the instability of the transform. In the next
section, we will develop the orthogonal Gabor-DCT where the condition number is exactly

one. This guarantees no error magnification during the analysis or the synthesis transforms.

5.4 Orthogonal Gabor-DCT Transform

In this section, we will derive an orthogonal type of the Gabor-DCT transform re-
viewed in Section 5.2. We will show first that, unlike the normal Gabor transform, using
any analysis window of length 2.V for Gabor-DCT will lead to a biorthogonal function of
the same length. Then we will derive the necessary and sufficient conditions on h (n) to be

a candidate of the Orthogonal Gabor-DCT transform. We start by the following theorem

Theorem 5.1
For any transform that has a structure as defined in (5.3) and (5.4), any window of length
2N will lead to a biorthogonal function of the same length.



(N, M) x(HC") ref.[21] | x(HC") ref. [25]
(8, 32) 5.94 6.1025
(16,16) | 9.677 12.204
(16, 32) 11.215 12.204
(32,16) 14.4 24.408
(32, 32) 19.27 24.408
(64,64) | 38.44 48.817
(128,64) | 57.069 97.633
(256, 128) | 133.60 195.27

TABLE 3: Condition number of various implementations of Gabor-DCT transform
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Proof. As we saw in Section 5.2, the biorthogonal function can be obtained via the inversion
of the matrix H. The matrix H (5.4) is a block-Circulant matrix with diagonal or anti-
diagonal blocks. If the window function is of length 2V (i.e., h(n) is zero outside the

interval [—4 : 3¥ — 1]), H will have the structure

2
L2

= T T N

Y

AN

(5.7)

which can be transformed to a block-diagonal matrix using row and column permutations.
Define the permutation matrices P; and P, whose encoding vectors p, (k) and p2(k) are

given by

(k) = [%JJ.-N((k-é)modM) (5.8)
pa(k) = (N -1)+(=1) [%J+N((k—5)modM) (5.9)

where | = (k+ 6)mod2and § = (1 - [MILWJ ), with | z] being the integer part of z and

y mod z being the remainder. The matrix P,HP; is block-diagonal

Do

D
P,HP, = b (5.10)

DN—-l
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with M x M blocks D,,n = 0...., N — 1. Each D,, is also a block-diagonal matrix

D, = y forn=0,..., N—-1 (5.11)

where d,, are a 2 X 2 matrices given by

h(N —n-1) h(-n-1) _
[h(N+n) h(n) forn=0,...,N/2 -1
dn 2 (5.12)
h(n) h(n - N) -
[h(2N—n—1) h(N —n-1) forn=N/2,...,N -1
In this case
H = P]P,HP,P]
H = Pg‘ (dlag (DoDl, DN_),))P{ (513)
and

H'! = P, (P,HP))'P,
H™! = P,(diag(Do.D;....,Dy-1)) ' Py
H™' = P,(diag(Dg'.D{,...,DyL,)) P2

H! = (Pg((uag((Dgl)T,(D;I)T,...,(D;,I_I)T))P{)T (5.14)

Since the inverse of a block-diagonal matrix is also a block-diagonal matrix with the same

dimension, it follows that D! is, as D, a block-diagonal matrix with 2 x 2 blocks. As a
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consequence, from (5.13) and (5.14), H™! has the transpose structure of H (5.7), i.e.,
— \/ /-
/\\// (5.15)
\ d
V]

The diagonal,or anti-diagonal, elements from each block in any block-row of H=! comprise

the biorthogonal function which has only 2V non zero elements. This illustrates why the
truncation of the window to a length of 2/V gives a biorthogonal function which has also

a length of exactly 2NV B

Theorem 5.2
The necessary and sufficient conditions on the window function h(n) so that it leads to an
orthogonal transform are

((A(n)  =+£h(N-n-1)

h(N +n) = Fh(=n - 1)
4 r (5.16)
[A(n)]* =1 = [A(N +n)]?

h(n) =0 forn# [-5 [ ]
Proof. To have orthogonal transform, the transformation matrix [HC] , must be orthogonal.

e Since the matrix C (5.5) is orthogonal, then [HC] is orthogonal iff H (5.4) is orthogonal.

e Since the matrices P, (5.8) and P, (5.9) are orthogonal, then the matrix H is orthogonal
ifft [PoHP,] is orthogonal.

e Since the matrix P,HP, (5.10) is block-diagonal with M xM blocks D,,, then the matrix

P,HP, is orthogonal iff D,, is orthogonal for all n.
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e Since the matrix D,, (5.11) is also a block-diagonal matrix with blocks d,,, then the matrix
D,, is orthogonal iff d, is orthogonal.

o Now, the necessary and sufficient condition on d,, (5.12) to be orthogonal is d,xd? =1,

AMN-n-1) h(-n—1) ] [R(N=n—1) h(N+n))] _[1 0
h(N + n) h(n) h(-n—1)  h(n) J“[o 1

(n) h@N-n—U]=[10J

h
h(n — N) h(N —n—1) 01

': h(n) h(n — N) J [
h(2N-n-1) (N —-n-1)

forn=N/2,....N -1
(5.17)

These two matrix equations (5.17) are satisfied iff

h(n) = £h(N-n-1)
Ah(N +n) = Fh(-n-1)

[R(n)]? = 1—[h(N +n)]
forn =0,..., N/2 — 1. Under these conditions, H™! is given by

H' = P,(P,HP,)"'P,
= P,(P,HP,)"P,
= PlP{HTPQP’g

= HT

and thus H is orthogonal B
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According to the above theorem, if an orthogonal transform has to be obtained, we
have, foreachn,n = 0, ... N/2 — 1, three equations in the four unknowns h(n), h(N +n),
h(—n — 1), h(N —n — 1). This means that we have N/2 degrees of freedom which enable

us to tailor the window function to satisfy the required characteristics.

Under the above conditions, the coefficient can be calculated using the matrix equation
a=CH x (5.18)

The following steps are used to compute the m** N coefficients

e Multiply the signal z(k +mN) by the window function ~(k). Let the product be denoted
by hz which is of length 2/V.

e Divide hz into 4 sections {hz,, hz,, hz3, hz4} each of length —’2!

e flip® hz, and hz, and call the result IT:EI and l;4 respectively.

e Apply the N-point the DCT (3.15) to the vector (hzg + };1 thzy + f:;‘) , where

(z, : z,) denotes the concatenation of the 2 vectors z, and z3.

For this algorithm, the multiplication of the signal z(k + mN) by the window func-
tion h(k) requires 2V multiplications for each m. Assuming that the /V point DCT takes
% log, N multiplications, a total of 2NV + % log, N multiplications is required for each

m. Since there are M values of m, the calculation of transform coefficients requires only

L(2 + {log, N) multiplications.

6 Flipping an NV-dimensional vector « is performed by replacing the element a; by ay —,.
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5.5 Results

In the previous section, we derived the conditions on the analysis window to be a can-

didate of the orthogonal Gabor-DCT transform (5.16). Two example which satisfy these

conditions are plotted in Fig. 36 and 37.

We have the freedom to choose any % of the 2NV window values arbitrarily and the

rest 3—;—‘"— values will be determined according to (5.16). In the first example, the Gaussian

function
_7r N-— 2
h(n) = exp (wm (n -5 )
was chosen for the intervaln = 0.... , % — 1. Then, the conditions of (5.16) were applied

to determine the remaining window values. This gives

exp(ﬁ(n—‘vz‘l)') forn=0,...,5 -1
h(n) = <
exp (73 (n — %54)°) forn="4,.. . N-1

which is plotted in Fig. 36. In the second example, the function

- N -1\*
hln) =exp | Gagesna (P~ 3
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Figure 36: Example of a window function for the orthogonal Gabor-DCT, M = N = 16
and m = 2.
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was used for the same interval as above. Then, the conditions of (5.16) were applied to

determine the remaining window values. This gives

( AN 2
—\/1—(exp(m(n+‘v7“) >> forn=-4 ... -1

-

- N-1\1 _ N _
exp (0.56651\14 ("'_ = ) ) forn=0,...,5 -1

“

o _1n4) ) 2 ]
\/17_ (exp (0_5555‘\/4 (n_g%) )) fOI’Tl=N,...,%Y'—1
\

Accordingly, the window of Fig. 37 was obtained.

=% N-1}4 _ N _
exp (0.5665N“ (n—_n ) ) forn=3,....N-1

5.6 Conclusion

In this chapter we have developed an orthogonal Gabor Transform using the Discrete
Cosine Transform. In addition to its nice stability property, the resulting transform is proven
to be computationally attractive than any other currently available Gabor transforms. Com-
pared to the Zak Transform based method, the computational saving ratio is L‘ffgl—:é—%ﬂ.
[t is worthy to note that, this transform leads to an exact representation of the signal, i.e.,
using this transform leads to an exact reconstruction of the signal, and not just an approxima-

tion as is the case in [25]. The necessary and sufficient conditions for the analysis window

to be a candidate of this orthogonal transform are derived. Two examples of this window

are given.
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Figure 37: Another window function for the orthogonal Gabor-DCT, M = N = 16 and
m = 2.



CHAPTER 6

STABLE CRITICALLY-
SAMPLED JTF TRANSFORM
WITH LOCALIZED
BIORTHOGONAL FUNCTION

In this chapter, another new linear critical-sampling JTF transform is presented. Here, we
concentrate on how to meet all the Universal JTF transform requirements simultaneously.
The resulting transform, unlike all currently available Gabor transforms, leads to a stable
transform. In addition, the resulting biorthogonal function, which is unique in the critical
sampling case, is well localized in both time and frequency. It thus overcomes the main
problems of the previous implementations. A fast algorithm to compute the biorthogonal
function and the transform coefficients is presented. Also, an inherent characteristic of this
implementation is that a truncated version of the modulating window of length 2V, leads
to a biorthogonal function with the same length. This biorthcgonal function is proved to
take, at most, 5N operations in its calculation irrespective of the signal length. Using this

truncation results in an algorithm which gives an exact reconstruction of the signal.
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6.1 Introduction

To solve the two problems of the critical-sampled Gabor transform, namely the insta-
bility and the nonlocalization of the biorthogonal function, many efforts have been made to
replace the Gaussian window function by another suboptimal one to enhance the stability
of the transform and/or enhance the biorthogonal function [20, 39], see also Chapter 5. Our
objective in this chapter is to maintain the optimal Gaussian window function and choose
other harmonic oscillation kernels to achieve better transform properties. We will show how
adequate choice of the kernel can lead to a stable transform as well as a localized biorthog-
onal function in both time and frequency domains. Thus, our proposed technique solves the
two major problems associated with Gabor transform.

The organization of the chapter is as follows. In Section 6.2, we develop the new
transform and show that it gives a stable transform and that it is a good competitor, without
any redundancy, to the over sampling solution. In Section 6.3, the resulting biorthogonal
function is shown to be localized in both time and frequency domains. In Section 6.4, a
fast method is given to calculate the biorthogonal function and the transform coefficients
for the developed implementation. A practical implementation of the proposed transform
based on a truncated version of the Gaussian function is given which is faster than any

other implementation in the literature.
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6.2 The Proposed Transform

Basically, Gabor transform expands time signals into a time and frequency shifts of
an elementary function which is the modulation product of a window function by a har-
monic oscillation like Fourier kemels. The aim of multiplying the harmonic oscillation by
a window is to make the elementary function concentrated in time in addition to being al-
ready concentrated in frequency. Gabor defined two expansions. In the Complex Gabor

expansion (2.14), Gabor chose the elementary functions to be

2int

T (6.1)

hin = h(t — mT) exp

i.e., he chose the harmonic oscillation to be the well-known Fourier kernels. Consequently,
the time-frequency plane is divided in the way illustrated in Fig. 11 where a,, , represents
the projection of the signal on h,, , which is a shifted version of & (¢) in time by mT and
in frequency by #. This expansion leads to the matrix H as defined in (C-2) and (C-5)
for periodic and nonperiodic case respectively. In the Real Gabor expansion (2.18), Gabor

expanded the real signal into two real elementary functions

t
he,, = h(t—mT)cos 2’,}” (6.2)
27 D
R = h(t—mT)sin ot 2)! (6.3)

T

in which he used the cosine and sine kernels to be the harmonic oscillation. Consequently,

the time-frequency plane is divided in the way illustrated in Fig. 17 where a,, , and b, »
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Head (n'=0 |n'=1 n =2

m =0 1 0 .043214
m' =11 .45594 | —.20788 | .019703
m' =2|.043214 0 .001 8674

TABLE 4: Correlation between h,, ,, and A, m’ n+n in the Real Gabor transform
represent the projection of the signal on A¢, | and h;, , respectively. The implementation of

[25] expands the real signal into a one real elementary function

hon = h(t — mT) cos ? (6.4)
and the time-frequency plane is divided as illustrated in Fig. 38 which leads to the matrix
H as defined in (C-8). It is to be noted that in all the above mentioned transforms, the
elementary functions are correlated. The maximum correlation occurs between any two
neighbor elementary functions in the time direction due to the tail of the window function
outside the period T'.

As an example, we calculated the correlation between the elementary functions for the
last transform with h(t) is a Gaussian window with T/ = 1. The correlation between
any two neighbor elementary functions in the time direction i.e., between h,, , and R, 1 n
is equal to 0.4559 while the correlation between h,,, , and hm.2, reduces to 0.0432 since
the tails of the Gaussian function approaches zero outside the period 2T". In the frequency
direction the correlation between A, ,, and A, . is zero. This is summarized in Table 4

It wi‘ll be shown in what follows that by almost eliminating the correlation between the
elementary function, the instability and the non-localization problems are solved.

In an effort to reduce the correlation, we exploit the orthogonality between Sine and
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Figure 38: Expansion of a signal in cosine-type elementary signals.
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Head |n'=0 |{n'=1|n" =2
m =0 1 0 .043214
m=1 0 0 0
m=2 {.043214 0 .001 8674

TABLE 5: Correlation between h,, ,, and A4’ nene in the new transform
Cosine function of the same frequency as follows. In the TF plane, we use alternate rows
of two real elementary functions. One is the modulation product of the Gaussian function

with the cosine kernel and the other is the modulation product of the Gaussian function

with the sine kernel

hods cos m(n+3)t
pivin = h(t—mT) 7 —— 2 (6.5)

for odd and even m consequently as shown in Fig. 39. The correlations between these
elementary functions, for Gaussian window with 7/o = 1. is indicated in Table 5.As shown
in this table, the maximum correlation occurs between A, , and h., 4., Which is equal to
.04 3214. This means that we resolve the signal into an elementary functions that has a
maximum correlation of 0.0432. which indicates that the elementary functions are almost
orthogonal.

Yet, these two elementary functions are optimal in the sense that they occupy the min-
imal area in the JTF plane, that is % As we will show, expanding the signal z(t) into the

above two elementary functions leads to a more stable transform.
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Figure 39: The new JTF distribution. anm belongs to hZ? (¢) and b,m belongs to
ho (2)-
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Expanding z(t) into {h2% | hever macz leads to
m=2 n=oco T (Tl + )t
z(t) = m;x h(t-— gamncos T
+ Z h(t—(m mensm
meodd "

Let z(k) be the periodized and sampled version of the continuous signal z(¢) with period
L. The Transform coefficients of z(k) will be periodic in time with period M and peri-
odic in frequency with period V. Thus, the transform is reduced to discrete linear mapping

that relates the periodic L samples of z (k) to a periodic M x N array of transform coef-

ficients. Thus,

M-1 N-1 ;1 )
N : 2. ﬂ'(k-r-§)(n+§)
z(k) = ,; hm(k)moam,nﬁ(.os( s
m=cuven (6'6)
M-l N-1
‘ (n+ ))
+ Bon(k)Y " @pmn sm( 2
3 el o4
m=odd
where h,(k) is
hm(k) = h(k =mN) = h (t — (m+ 1) T)|,_, (6.7)
To put (6.6) in matrix notation, note that
z(0) am,o Q0
z(1 M-1 o, Ar—1 G,
f bl - S ok T+ Y hak)s | (6.8)

m= ° m=0
m=odd am,l\'—l



where C = [cn x|y, 1S the N point DCT-IV transform matrix with ¢, x given by

[2 a(n+i)(k+3
Cnk = NCOST(n 223],( 2) nk=0,...,N~-1

and S = [Sn k] yyn 1S the N point DST-IV matrix with s, x given by

9 - 1 1
sn,k=\/ﬁsinr(n+2)(k+2) nk=0,...,N-1

N

Both C and S are orthogonal and symmetric i.e.,

Equation. (6.8) can be written as

A-1 Ar—-1

X0 = ) hm(k)(Cam)+ D hm(k)(Sam)

m= m=0
m=even m=odd

where a,, and z,, are as defined in (3.3) and (3.5), respectively. Fork =0, 1, ...

Af-1

z(k+N)= D hmoi(k Zamn[cos(W((k-%N);%)(n‘*'%))

m=0 n=0
m=even

M-1

N-1 1 n 1
+ Z hm—l(k)zam,n\/%sin(ﬂ((k+1v); 2)( +2))

m=0 n=0
m=odd
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(6.9)

(6.10)

(6.11)

SN -1

(6.12)



Noting that, forn,k = 0,...,N — 1
cos [(m((k+N)+3)(n+3)
sin N

— cos
~ +sin
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a((N=1—k)+ L) (n+3)
( N 2 2) (6.13)

Equation. (6.12) can be put in matrix notation as

AM-—1

Z hm-1(k) (JCTam) +

m=0
m=even

Noting, also, that forn k& = 0.... . N — 1

sin

cos (ﬁ((k + 2N) +

Thus, the equation

M-1

Z hm_o(k Z Am,n

m:=0
m=ecven

z(k +2N) =

Ar-1

M-1

> hmr(k) (JSTam)

m=0
m=odd

(6.14)

(6.15)

\/—-cos (w((k + ‘.ZN)A-;- 3)(n+ %))

(6.16)

- Z hm-2(k) Zamn\/—sm<”((k+2N)A':' %)(n+%))

m=0dd

can be rewritten as

M-1

Z hm—2(k) (CTam

m=0
m=even

M-1

= Y hmoa(k) (STam)

m=0
m=odd

(6.17)
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Similarly, one can show that

M-1 M-1

N 2% hm—a(k) (JCTam 2:0 Am-3(k) (JSTam) (6.18)
mr;le—ven m";;dd

Based on (6.11), (6.14), (6.17) and (6.18), rewriting (6.6) in matrix form gives

B T [ +HC +Hpy S - +HS 7 [ ag ]
Xi —H1]C' +HOJS s +H2JS a;
X2 -H,C -H,S - —H3S a,
X3 = +H3]C —HQJS s —H4JS ’ as

| Xar-1 | +Hax1JC —Hy o JS -+ —HoJS | | aar-1 |

where H,, is as defined in (3.6). The above equation can be written as
x=HEa (6.19)

where a and x are as defined in (3.2) and (3.4), respectively, with

E= =5 (6.20)

S ]




104

and
[ +Ho +Hyy  —Hy-2 - +Hp ]
—-HyJ +HoJ +HpyyJ - +Hald
—-H, -H, +Hp - —Hj ,
H=|  gJ -HJ -H - —HJ 6.21)
| +Ha1J —HyoJ —Hpy3J -+ —HoJ |

[f we ignore the J matrix, the matrix H is block-circulant matrix. Thus, we call the matrix
H the generalized block-circulant. Equation (6.19) is the synthesis transform in matrix

notation. Its inverse, i.e., the analysis transform, is

a=E'H!x
Since the matrix E is orthogonal and symmetric, i.e., E™! = E, then
a=EH !x (6.22)

To show the stability of this implementation compared with other critical-sampling imple-
mentations, we calculate the condition number « (HE) for typical values of A and V. The
results are in Table 6. It is worth noting that while the condition number increases un-
boundedly with increasing /V in all previous methods it converges to 1.19 in the proposed
transform for very large values of NV and M. This indicates that the proposed transform is
stable and is very close to be orthogonal. Note that orthogonal matrices have condition num-
ber equal to one exactly. Table 7 gives a comparison between the proposed transform and

the over-sampling solution. The proposed implementation outperforms the over-sampling
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Complex Real
(N, M) Periodic | Aperiodic | Periodic | Aperiodic | Proposed
(8,32) 12.37 11.34 12.37 12.33 1.18
(16, 16) 24.63 14.42 24.63 24.30 1.19
(16,32) 24.63 19.38 24.63 24.54 1.19
(32, 16) 49.20 18.52 49.20 48.55 1.19
(32,32) 49.20 28.77 49.20 49.02 1.19
(64,64) 98.37 57.43 98.37 98.28 1.19
(128,64) | 196.74 | 73.64 196.74 196.55 1.19
(256, 128) | 393.46 147.05 393.46 | 393.37 1.19

TABLE 6: Condition number of the proposed method compared to critically-sampled Ga-
bor Transforms

(N, M) | OVSR=4 | Proposed
(8,32) 1.4 1.18
(16, 16) 1.47 1.19
(32,32) 1.50 1.19
(64, 64) 1.52 1.19
(256, 128) 1.54 1.19

TABLE 7: Condition number of the proposed transform compared to the over-sampled ga-
bor Transform
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solution regarding stability without any of the redundancies of the over-sampling solution.

In the next section, the resulting biorthogonal function will be studied in detail.

6.3 The Resulting Biorthogonal Function

If the set of the elementary functions {Am n},, .. iS linearly independent and com-
plete, there will exist a dual (biorthogonal) set {'ym n} such that the expansion coef-

ficients can be computed by some regular inner product [1], such as

n 2 (K V) =) T (k] Vs K] (6.23)

In the proposed transform, a,,, will be

(& r(k+1)(n+d
Z,/ 7 m (k) COS (ﬁzl\)T(iL)) m even

a—m,an

L-1
> /3 (k) vm(R)sin (D) modd

\ k=0

where v,.(k) = v(k — mN).

For even m,
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4

2

-1
B (k) 7a(k) cos ezl

s 1M

-1
Ly(nal
+ \/T%:z (k) v (k) cos (——2-—2-”(’”' 1\)1( * ))

k=N
G = { 3N et (6.24)

+ Z ﬁz(k) Y (k) cos (—(—21‘),—(—-2—))
k=2N
AN ~1 (kL) (mt 1)

+ Z \/%z (k) v (k) cos (—ZV—-"—)
k=3N

L+

The above equation can be written as

( N-1
S /35 (k) p (k) cos ezl
k=0

N-1

9 7 + 4 1
+ Z 7T (k+ N) v, (k) cos (7((k+N)N2)("+2))
k=0

N-—1

a‘m.n—_-< . . N ) (na k (625)
+ Z V ¥ (k +2N)7v,n_s(k) cos ( ((k+2v)~2)( ‘*’JJ)
k=0

N-—1

9 T 1 n 1
+ Z ﬁx (k +3N) v _3(k) cos ( ((k”N);Z)( "'JJ)
k=0

L+

Similar to the above steps of Section 6.2 and depending on the DCT properties (6.13) and

(6.15), the above equation can be put in matrix formulation, forn =0,1,...,N -1, as

am = C (Toxo — JT 1% = Toxg + JTax3z + ... + Jlp—1Xar—1)
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where ', = diag (7,,(0), Y (1), - .., Tm(N — 1)). Similarly, for odd m,and depending on

the DST properties (6.13) and (6.15)

am = S(FQXO + J01x; — Doxy — JT3x3 + ...

Thus, form =0,1...., M -1

[ a; ] [ CTy ~-CJr, —-CTy, CJTs
ag SFM_I S]Fo —SFI —SJFZ
| aar | | SF1 S]FQ —SF;; —SJF4

which can be rewritten as

a=FI'x

— Jl a1 xpr-1)
CJTp-r 7 [ x1 ]
—SJT 4
: M2 -Xz (6.26)
—SJF() 4 L Xar ]

(6.27)

where a, E, and x are as defined in (3.2), (6.20), and (3.4), respectively. The matrix T’

is given by

[ +Tg -JI -y +JI;3
+lar—1 +JT - -JI,
T=| —Ta-2 +JTy-1 +Io -JI

a3 —JTa0 4Ty +JT0

=T —JI, +I; +JIy

+JFA{_1
—JFM—2
—JTp-3 (6.28)

+J -4

+JTo |

Noting the similarity between (6.22) and (6.27), the relation between H™! and T" is what
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remains to be established. The matrix H (6.21) has the special structure to be referred to
as "zigzag structure”. In the following theorem, we prove that its inverse has also another
special structure which is the transpose of this zigzag structure.

Theorem 6.1

Let A be an M NxM N block matrix with each block being NxN diagonal or anti-diagonal
matrix according to the zigzag structure

Fo-—

The inverse matrix, A~', has a structure which is the transpose of zigzag structure of, A,
Le.,

Proof. The zigzag structured matrix A can be transformed into block-diagonal matrix via

row column permutation. To do so, define a permutation M N x M N matrices P, and P,
whose M N encoding vector p; and p, are given by

pi(k) = [%J + N (kmod M) (6.29)

pa(k) = (N —1)+(=1) [%J + N (kmod M) (6.30)
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where

e k=0,...,MN -1,

o | = kmod2,

’j—J is the integer part of z/y

(y mod z) is the remainder of z/y.

The matrix [P;AP,]| is a block-diagonal matrix
PQAP[ =diag(D0,D1,...,DN_1) (631)
where D,, is M'xM matrix which is, in general, full matrix. Since P, and P, are orthogonal,

A = PIP,APPT

= P7 (diag (Do, Dy,...,Dy_1))PT (6.32)
In this case the inverse, A~!, is given by

A"' = P, (P.AP)'P,
A~' = P, (diag(D¢,Di,...,Dy_1))"' P,
A-' = P, (diag(Dg'.Dj',....D7',)) P2

A7 = (PT(disg ((Dg‘)T,(D{l)T,...,(D;,‘_l)T))PIT)T (6.33)

Comparing (6.33) with (6.32) and since (D l)T is also M x M full matnx, the inverse

matrix A ™! has the transpose structure of A W
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From (6.21), the matrix H, in addition to having a zigzag structure, is generalized

block-circulant

Corollary 6.1
The inverse of the generalized block-circulant matrix H is also generalized block-circulant.

Proof. From (6.32),

H = P (diag (Do, Dy,....Dy_1)) PT (6.34)

D,, in case of generalized block-circulant matrices, H, is a block-circulant matrix with 2x2
blocks. Hence, its inverse, D!, is also block-circulant matrix with 2x 2 blocks [40]. Thus
from (6.33), H™! is also generalized block-circulant B

Thus by Theorem 6.1 and its corollary, we have proved that the inverse of H has the

structure
Ao JAy Ay JAs - JAum
Ay JAo Ay JAy - JAp-
H-! — :.u 1 | 0 .1 ' 2 o M2 (6.35)
A1 JAQ A3 JA4 Tt JAO
where A,, is diagonal N x /N matrix given by
A, =diag (A(mN), A(mN +1),...,A(mN + N — 1)) (6.36)

Comparing (6.35) and (6.28), it follows that

[ = (-] AL (6.37)
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Thus, the biorthogonal function y(k) is

v(k) = (=1)° - M) (6.38)

where

o [Lk/NJ + 1 j

= 2
For the Gaussian window, the resulting biorthogonal function is plotted in Fig. 40 for M =
N = 8.and o = N. This figure shows the good concentration of the resulting biorthogonal
function in both time and frequency. The following example is given to illustrate the effects
of this biorthogonal function on the performance of the transform.

Example 6.1
The same signal of example 4.1 was plotted in the JTF domain in Fig.41 using

the above JTF transform. Comparing Fig.41 with Figures 33,32,33, and32, it is
obvious that the above transform gives the most distinctive representation (specially
in the frequency direction).

6.4 Practical Calculation of the Transform Coefficients

Using equations (6.22) and (6.19) directly to calculate the transform coefficients is
impractical. equations (6.22) and (6.19) involves inversion of the L x L matrix H which
takes O(L®) and a multiplication of an Lx L matrix H, or H™!, by a vector of length L which
takes O(L?). In the following subsections, we show how to perform these operations with

considerable computational saving by exploiting the special structure of these matrices.
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Figure 41: JTF representation of the test signal using the proposed transform.
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6.4.1 Calculation of H™!

The matrix H is an M N x M N matrix (6.21) which is very costly to invert. H can be
transformed into block-diagonal matrix via row column permutation as has been shown in
Theorem 6.1. The matrix P,HP, = diag (Dg, Dy, ....Dy_;) is a block-diagonal matrix.
Therefore, each D,, can be inverted separately. D,, is M x M block-circulant matrix with

2x2 blocks Dy s, form’ = 0,1,..., 4 — 1. That is,

Dn Dnarjo-1 -+ Dny
Du.l Dn,O T Dn.2

D, = : : .. : (6.39)
Daarja=1 Dnarjz-2 -+ Dnp

D, can be converted to block-diagonal matrices B, by

B, = (Eyp®05L) Do (Bup@h)’ (6.40)

= diag (Bno, Bn1s---» Bnarja-1)

where

® B, v is a2x2 matrix
e R is the Kronecker tensor product
e [, is the identity matrix of size 2x 2

e Ey is the N-point Discrete Fourier Transform matrix defined in (B-1a).

This is a simplified form of Theorem 5.6.4 of [40], in which we discarded the unnecessary

operations. Since B,, is a block-diagonal matrix with 2 x 2 blocks, its inversion reduces to
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an % inversions of 2 x 2 matrices B, .. Therefore, the inverse of D,, is given by

D;' = (Eun?® fz)T Bl (Engp2 ® 1)

- T n,l1
D' = (Exp3 D) N (Emp®L) (6.41)
Br:}l!/2—l
There is more efficient way to calculate the inverse of D, than using (6.40) and (6.41)

to calculate B,, and D!, Alternatively, one can calculate the {Bn,07 Bni,. .- Bn"u/g_l}

directly using

Bn.O Dn 0
B, D,
o =V (Eyp® k)| . (6.42)
Broarj2-1 Dy arj2—t
and
IDng =0
ID,, 1 T B
) ‘ = —(F R I ] 6.43
: vm' ( Mr2 ) : , ( )
IDy arj2-1 By vij2-1

D! can be directly obtained as

ID,g IDparj2-1 --- IDg;
ID, ID, ... ID,

e (6.44)
IDnarj2-1 IDnarja—2 -+ IDnp

Equation (6.42) can be more simplified as follows. The M x M matrix (Exr2 ® I3) can

be converted to block-diagonal matrix with % X % blocks using the permutation matrix P3
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whose encoding vector is given by

m
m)=|— 2 4
pa(m) [1»1/2J + 2 (mmod M/2) (6.45)
where m = 0,1,.... M — 1. Using this permutation matrix leads to
P3 (Evj2® L) P] = Emp (6.46)
Ena
Thus, (6.42) will be
Bn,O Dn,O
B, D,
N N TR LY e (6.47)
Et\[/? :
Boarja-1 Dqpary2-1
Similarly, (6.44) reduces to
ID. B;(i,
IDn, 1 ET B,
. = —P7] [ M2 } Py|." (6.48)
: \/T—T7 3 EI’I\,‘I/2 : :
IDn arj2—1 B hja

Note that the two terms /m’ and 7%— in (6.47) and (6.48) can be discarded simultaneously

without loss of generality. Thus, using (6.47) and (6.48), calculating D! reduces to

e four times of 4 -point FFT operation,
e four times of %—point inverse FFT operation,

° % times inversion of a 2 x 2 matrix.
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Assuming that NV-point FFT takes % log, N multiplications and N log, N additions and
the inversion of a 2 x 2 matrix takes 3 multiplications and 1 addition, the whole inversion
process of D,, takes 2 * 4 (# log, %) + & «3 = M (2log, M — }) multiplications and
M (4logy, M — 3) additions.

The inverse of H is given by
H!'=P, (P,HP,) ' P, (6.49)

where P,HP, = diag (Dg, D, ...,Duy_,). Thus, to save time and memory requirements,
instead of establishing the matrix P,HP,. one can, directly, get D, ,» in (6.39), for any

given window function h (k), by

hapm (n) R(2m—~1)mod ar (1)
Do = (6.50)
—homei (N =1 —=n) hom(N—-1-n)

form’=0,1,...,M/2-1andn =0,1,...,N - 1.
Using (6.50), (6.47), (6.48), (6.44) the whole inversion process of H takes L (2log, M — )

multiplications and L (4 log, M — %) additions.

6.4.2 Calculation of the Transform Coefficients

In this section, two methods to calculate the proposed transform coefficients are given

6.4.2.1 Method 1:  Referring to (6.22), one proceeds for computing the m** N

transform coefficients as follows:
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Multiply the signal z(k) by the biorthogonal function y(k — mN). Let the product be

denoted by z which is of length A N.
e Divide z into M sections {zy, z;, 22, z3, . . .} each of length V.

Flip’the odd numbered sections of z.

If m is even

(a) Add the M sectionsas z = {zg —z; — 23 + 23+ ... + Zar}.

(b) Take the N-point DCT-IV transform (5.5) of the resulting vector z.
e I[fm isodd

(a) Add the M sectionsasz = {z0+ 2, — 22— 23+ ... — Zar}-

(b) Take the N-point DST-IV transform (6.10) of the resulting vector z.

Assuming that the /V point DCT or DST takes % log, N multiplications, this operation

requires NM? + % logy N = L(M + }log, N') multiplications.

6.4.2.2 Method 2: Referring to (6.49), The transform coefficients, a, is given by

a = EP, (P,HP,)'Pyx
Dg!
D! .
a = EP, ) P, x (6.51)
Dy,

Using B !, instead of D! as in (6.41) and ignoring the multiplication of the permuta-

tion matrices P, and P, (this represents only change of row or column indices), the above

7 Flipping an V-dimensional vector x is performed by replacing the element z; by v _,.
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equation includes

1. N times of

(a) M /2 multiplication of an 2 x 2 matrix by an 2 x 1 vector and
(b) two times taking the ‘—‘21-point FFT and two times of %-point inverse FFT operation

2. M times taking the NV-point DCT-IV or DST-IV transforms.

This requires N (4% + 422 jog, M/2> +M % log, N = L(logy M+3log, N+1) =

L (log; L — 1 log, N + 1) multiplication which is, still, an expensive computation.

6.4.3 Truncated Gaussian Function

The above operation requires L(log, L — % log, N + 1) multiplications to calculate the
transform coefficients and L (2log, M — 3) to calculate H~!. There is still room for sig-
nificantly reducing this number of operation by truncating the Gaussian function to a length
2N . Following the same derivation as above, the resulting biorthogonal function (unlike

the complex case) will be exactly of length Z/V as will be seen in the following theorem.

Theorem 6.2
For any transform that has a structure as defined in (6.27), (6.28), (6.19), and (6.21), any
window of length 2N leads to a biorthogonal function of the same length.

Proof. As we have seen in Section 6.3, the biorthogonal function can be obtained via the

inversion of the matrix H. If the window function is of length 2N (i.e., A (n) is zero outside
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the interval [ : 3¥ — 1]), H of (6.21) will have the structure

(6.52)

which can be transformed to a block-diagonal matrix using the permutation matrices P,

and Ps whose encoding vectors p4 and ps are given by

pa(k) = [%J + N ((k = a) mod M) (6.53)
ps(k) = ((N=1)+(=1) [%J + N ((k — a) mod M) (6.54)

where
o | =(k+a)mod?2,
ea=(1- LAIlz/zJ)'

Note that, the previous permutation matrices P, and P, still, could be used, while we

introduce P4 and Pj to treat the edges. The matrix [P;HP,] is block-diagonal
PsHP, = diag (Dg,Dy,....Dy-1) (6.55)
D, in this case, is a block-diagonal matrix

D, =diag (d.,d,,...,d,) forn=0,...,N—-1 (6.56)
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where d,, are a 2 x 2 matrices given by

[ +h(N —=n—1) +h(-n—1) B
| —h(N +n) +h(n) } forn=0,....N/2-1

dn = (6.57)
[ +h(n) +h(n = N) B
| ~h(2N —n - 1) +h(N—n—1)J forn=N/2,...,N -1

According to Theorem 6.1, Since the inverse of a block-diagonal matrix is also a block-
diagonal with the same dimension, it follows that D! is also a block-diagonal matrix with
2x 2 blocks. Thus, [PsHP,] ™' = PTH'PT is also a block-diagonal matrix. As a conse-

quence, H™! has the transpose structure of H, i.e.,

a

(6.58)

\/\
N
NN

The diagonal,or anti-diagonal, elements from each block in any block row of H™! is the

biorthogonal function, according to (6.38), which has only 2N non zero elements. This
illustrates why the truncation of the window to a length of 2V gives a biorthogonal function

which has also a length of exactly 2N &

Corollary 6.2
For any window of length 2N, the inversion of the matrix H takes 5N operations irrespec-

tive of the length of the signal.

Proof. from the above theorem, the matrix H can be transformed via row and column
permutations into a block-diagonal matrix with 2 x 2 blocks. We have /NN distinct 2 x 2

blocks. Assuming that the inversion of 2x 2 matrix takes 5 operations. the whole inversion
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of H takes 5N operations. B

According to the above corollary, the inversion of H takes only 5/V operations which
is a great reduction compared with the standard inversion O(N3M3). In this case, the
calculation of transform coefficients requires only L(2 + %log2 N) which is great reduc-
tion especially for large M. Comparing with Gabor transform, the fastest method currently
available to calculate Gabor coefficients is the Zak-transform based method which takes
L(1 + log, N + log, M) multiplications. Table 8 shows the operational savings of the pro-
posed method over the Zak-transform based method.

It is worth noting that this is an exact representation of the signal, i.e., using this method
leads to an exact reconstruction of signal, and not just an approximation like the case men-
tioned in [25]. The only price to be paid is the ripples appearing in the frequency response
in the Gaussian window due to truncation (see Fig. 42). The amplitudes of these ripples,
however, are far less than the amplitude of the main lobe. The ratio is more than 43 db
for any practical values of M and N. Thus, for all practical purposes, these ripples have

negligible effect.

6.5 Conclusion

In this chapter we have presented a new linear critically-sampled JTF transform and
showed that the resulting biorthogonal function is well localized in both time and frequency.
In addition the resulting transform is stable which overcomes the main problem of the other

implementations. An efficient method to calculate the biorthogonal function for any type of



TABLE 8: Operational savings of the proposed method over the Zak based one.

# of multiplications

N | M | Proposed | Zak Saving Ratio
8 132 896 1,920 2.14

8 | 256 7,168 | 21,504 3.0

8 | 512 14,336 | 47,104 3.29

16 | 32 2,048 4,096 2.0

16 | 256 16,384 | 45,056 2.75

16 | 542 32,768 | 98,304 3.0
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Effect of truncating the Gaussian window into a length of 2/V in the frequency
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window is presented. An inherent characteristic of this implementation is that a truncated
version of the modulating window to a length of 2V leads to a biorthogonal function with
the same length. Using this truncated Gaussian window and its biorthogonal function results
in an algorithm which requires L(2 + % log, V) operations for computing transform coeffi-
cients and 5V operations for computing the biorthogonal function. This is faster than any
other algorithm currently available in the literature. The effect of this truncation on the trans-
form coefficients has been studied. It is worthy to note that, this truncated window function
transform leads to an exact representation of the signal, i.e., using this transform leads to an

exact reconstruction of the signal, and not just an approximation as is the case in [25].



CHAPTER 7

APPLICATION: NOISE
REDUCTION FOR NUCLEAR
MAGNETIC RESONANCE
FREE INDUCTION DECAY
SIGNALS

In this chapter we will demonstrate the usefulness of the developed transforms in practical
life. Here, it will be applied to the traditional, yet difficult, problem of noise reduction of
the nuclear magnetic resonance signals. It will be shown that the proposed transform gives

far better results with lower computational requirements than other transforms.

7.1 Introduction

Nuclear Magnetic Resonance (NMR) Free Induction Decay (FID) signals are very pop-
ular in chemical and biomedical applications and research. In medicine, NMR is the physi-
cal basis of magnetic resonance imaging (MRI) which plays to everyone’s fascination with

the expanding capabilities of medical imaging technology. Another important use of NMR
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is spectroscopy, a technique that can determine a material’s chemical decomposition.

The main obstacle of the NMR is its very low signal to noise ratio (SNR). Increasing

the SNR can be achieved by any of the following:

e Increasing the magnetic flux which will increase the signal energy, or
¢ Taking large number of repetitive signals, or

e Decreasing the noise energy, or

e Applying an Intelligent Discrete Signal Processing (I-DSP) technique to reduce the noise.

Increasing the magnetic flux means a bigger magnet which is the most expensive part
of any NMR device (about $1 million per tesla). Besides, a bigger magnet needs bigger
weight (1.5-tesla magnet weighs 15,000 kg), high shielding,. . .etc. On the other hand, tak-
ing large number of signals lengthens imaging time. Decreasing the noise energy is done
by enhancing the receiver coil since most of the noise is thermal noise coming from the
receiver coil. In some expensive NMR devices, conventional copper receiver coil is re-
placed by a superconductor one. The area of applying [-DSP technique to NMR signals is
attractive because of the rapid drop in the prices of the hardware. Besides, the noise and
the signal have special characteristics (to be discussed below) which can be advantageously
exploited using I-DSP.

For automatic processing of NMR data, various model-fitting techniques are used to
estimate the model parameters[41]. It is, however, a difficult job because the model is
nonlinear. and the noise is relatively high. Thus, it is extremely beneficial to reduce the

noise either as preprocessing step before the model-fitting technique or to visualize the data



in a form easy to be interpreted by the experts.

The importance of joint Time-Frequency domain methods in NMR was proved earlier
via the use of Wigner Distribution [42], Zak Transform [43], and Gabor Transform {44].
In this work, we propose to use our JTF transform proposed in Chapter 6 to reduce the
noise in the NMR-FID signal. [n[44], a Generalized Gabor Transform (GGT) was used to
do the same job and good results were reported. Since our goal in this chapter is to show
the advantage of the proposed transform, we follow exactly the same method used in [44]
except that the GGT is replaced by our transform. Moreover, we use the same data which
was used in [44] for fair comparison. Other simulated data which has been extensively used
as test data in the NMR literature [42, 43] was also tested.

The organization of the chapter is as follows. In section II, a brief introduction to
the physics behind the NMR-FID signals is given. In section III, the technique used to
reduce the noise is discussed. In section [V, we mathematically analyze the behavior of the

transform on the NMR-FID signals. Section V&VI give results on NMR-FID signals.

7.2 Basic Theory of NMR

The theory of NMR has been extensively discussed in the literature [45]. A brief dis-
cussion of the basic theory which is sufficient for our purpose is given here.

The basis for nuclear magnetic resonance is that protons precess when placed in a
magnetic.ﬁeld B. Nuclear precession occurs with a frequency directly proportional to the

strength of the magnetic field, with a proportionality constant called the gyromagnetic ratio
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7, of about 42.6 megahertz per tesla.

AFE = j—hB
2T

Typical frequencies range from 300 to 800 MHz for magnetic field B of about 4 tesla.

The precessional axis lies along the direction of the magnetic field. If an oscillating
magnetic field at the precessional frequency is applied perpendicular to the static field, the
protons will precess about the axis of the oscillating field, as well as that of the static field.
The condition is known as nutation. The oscillating field is generated by a tuned RF coil
which usually surrounds the sample. The magnetic field of the precessing protons induces,
in turn, an oscillating voltage in the RF coil, which is detected when the RF field is gated
off. This voltage, after gating the RF coil off, has exponential decay with time. Therefore, it
is named free induction decay. This voltage is then amplified and demodulated to baseband,
as in a normal superheterodyne receiver, and digitized using an analog-to-digital converter.
The oscillating RF pulse is repeated and the FID’s are added coherently.

To factor out the signal’s dependence on the static magnetic field, NMR measurements
are often given in a unitless quantity called the chemical shift, §, which is typically measured
in parts per million. It is the difference between the precession frequency of protons that are

part of a particular molecular group and that of protons in a reference compound, divided

by the latter, that is

& = fsample - frefcrcnce x 106

ppm

f reference
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This application of magnetic resonance is generally referred to as high-resolution NMR
spectroscopy, and is widely used in the pharmaceutical and chemical industries.

In MR, it is the protons in the water molecules of a patient’s tissue that are the source
of the signal. The spatial information needed to form images from magnetic resonance
is obtained by placing magnetic field gradient coils on the inside of the magnet. These
coils, constructed from copper wire, create additional magnetic fields that vary in strength
as a linear function of distance along the three spatial axes. Thus, the resonant frequencies
of the water protons within the patient’s body are now spatially encoded. The contrast in
MRI images arises from differences in the number of protons in a given volume and in their
relaxation times (the time taken for the magnetization of sample to return to equilibrium after

the RF pulse is turned off), which are related to the molecular environment of the protons.

7.3 Noise Removal of NMR-FID Signals

Any NMR-FID signal z (¢) is well modeled as a finite mixture of modulated exponen-

tial functions plus noisc [40], i.c.,

M
z(t) = Z b Tdmted (2T Imt+em) L op (1)

m=1

where b, frm, ®m, and d, is the amplitude, frequency, phase and exponent constant ( in
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NMR terminology, 7> = 2 ) of the m'® component. z (t) can be written as

M
z(t) = Z bne~mtel? ™It L (¢)
m=1

where ¢, is absorbed in b,,, i.e., b,,, is now a complex quantity. In the discrete case, z (¢} is

z(k) = i be~TImBikgiltfmbek 4 ()
m=1
where A, is the sampling period. The signal is supposed to have a positive time support,
ie, (k) = 0, k < 0. The signal z (k) is a time varying signal which means that the
frequency components of the signal are function of time. Consequently, an easily applied
JTF representation is needed for mathematically describing both the time and frequency
characteristics of the signal simultaneously. The noise term, n (k), is mainly thermal noise
due the receiver coil. Thus, it is well approximated by an additive white Gaussian noise
(AWGN) with zcro mcan and standard deviation .

By representing the NMR-FID signal in a JTF domain, the true signal energy will be
concentrated in a small area (the signal contains few frequencies in short times) while the
noise will span the entire domain. Thus, the SNR, in terms of the JTF coefficients, will
be significantly enhanced in the area where the signal’s JTF coefficients are nonzero. In
addition, there will be two distinct areas in the JTF domain: one contains noise only and
the other contains signal plus noise. Thus, separating the two areas by a suitable thresh-
olding technique would enhance the signal significantly. A linear critically-sampled JTF

transform is needed such that getting back the signal from the JTF domain is easy.
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In [44], a GGT (which is a linear critically sampled JTF Transform) was used to present
the NMR-FID signal and hence reduce the noise using a simple thresholding technique. It
is shown in Appendix G that this GGT is unstable. Also, it is very sensitive to the chosen

parameters (as was stated in [44]).

In this work, we will use the same method of[44] after replacing the GGT by the
one proposed in Chapter 6. Its good stability and its nice biorthogonal function have the
advantages that no error magnification during the transformation process occurs and that
the signal will be represented by fewer number of coefficients. The same data used in [44]
will be used in demonstrating the superiority of our transform.

Before getting into the details of our technique to reduce the noise, an explanation of

how a single modulated exponent will appear in the transformed domain is given.

7.4 Behavior of the Transform Coefficients for Modulated Exponent.

Let us take only one component of the noise-free NMR-FID signal in the discrete case

which is a modulated exponent

I (IC) - be—rrdAzkeJ2ﬂ’fAtk (71)

where z, (k) = 0, k < 0.
Referring to Fig. 43, z, (£) in the time domain (e) is composed of a cosine function (a)

multiplied by an exponential decaying function (c). The frequency response of the cosine
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Figure 43: Modulated exponent in time (e) is the multiplication of non-decaying complex
exponent (a) with the exponential decay function (c). In frequency, modulated exponent (f)
is the convolution of the non-decaying complex exponent (b) with the exponential decay

function (d).
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function is a delta function (b) and the frequency response of the exponential decaying
function is another exponential decaying function (d). In the frequency domain, z, (f) (f)
is the result of the convolution process of (b) and (d). From (f), we can determine the most

important three parameters of the modulated exponent, that is

1. the magnitude of b, which is proportional to the height of the spike.
2. the frequency f, which is the location of the spike in the frequency axis.

3. the damping rate d, which is the width of the line at half-height.

Note that determining the damping rate d from the frequency domain is not precise at all.
In the JTF domain, the transform coefficients of z; (k) , using (6.23), is plotted in Fig.
44, as an intensity plot and in Fig. 45 as a surface plot. Here, A,, b, d. f. ¢ are taken
as 166.2us, 32000, é ms, —1450 Hz, 55°, respectively. As we see from the graphs,
the modulated exponent is represented in the JTF domain by a spike centered at f in the
frequency axis and has a decaying exponent in the time axis. In the following theorem, the

relationship of this decay with the envelope of the modulated exponent in the time domain

(the e~™3 term) is determined.

Theorem 7.1
The rate of decay of the spike of the modulated exponent in the time direction in the proposed

JTF domain is equal to d-N where d is the damping rate of the modulated exponent and N
is the number of frequency components in each shift.

Proof. The transform coefficients can be calculated from the analysis equation

okt L) (nt k

L-1 " N 2 | cos ﬁz}&‘izl for even m ,

A = *(k —mN)z — ; 7.2
™ ; i )=(%) N | sin MXJ—(E& for odd m -2
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For even m, the transform coefficient a, , of z, (k) is given by

-~
|
—

= b)Y v (k—mN)e ™8k x

0
2rfAck /2 r(k+3)(n+3)
eItIAk, [ cos (TEELIED)

Am.n

-
il

while the transform coefficient a,,. 2 », Where [ is an integer, is given by

L-1
Amioln = bZ 7" (k — (m + 20) N)e ™3k x
k=0
2nfAck [ 2 w(k+3)(n+1)
e’ \/ % COS (—2—-—N
Substituting &' = k£ — 2IN
L=2IN-1
Gmettn = b Y (K = mN)eTmAK+AN)
K=-2AN
ej21rfA¢(k’+2[N)\/%COS (w(k'+21N;lL)(n+§))
L-2AN-1
— be—ml,,?lN(d-{-]Zf) Z ’7‘(1(7, _ TTLN) exp (—‘/TdAckl)
k' =—2AN
ianfak [ 2 m(k'+2N+1)(n+d)
erer + COS ( 2 2

From trigonometric identities

(k' 1 1 1yl 1
cos ( (k +21N;2)(n+2)) = (~1)" cos (w(k +213(n+2)>
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(7.3)

(7.4)

(7.5)
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Thus, (7.5) can be written as

L-2IN-1
Am+dn = (_1)’1,6-«A:21N(d+1'2f) Z 7'(k1_mN)e—1rdA¢k’
k'==2IN

; ok (K +1)(n+d)
AR [ 2 cos (AR (7.6)

Since we have periodic transformation, i.e., both the signal and the biorthogonal are as-
sumed to be periodic with period L, The summation from —2{N to L — 1 — 2]V is exactly

equal to the summation from 0 to L — 1. Thus, (7.6) can be rewritten as

L—-1
Gmsan = (=) b AN N o ()
k’'=0

j2r fAKk! [ 2 T(k'+3)(n+3)
e’ t & cos (—f\—,————z—

—TAANd—jl(AAN f+1)

= € AGmn

Thus, the magnitude of the coefficients value is given by

—7A2iNd |am

Ami2An| =€ nl

A similar proof could be done for odd m. This indicates that the transform coefficients are
exponentially decaying in the time direction, time is represented by the index m, with the
decaying constant equal to d-N. W

From the above discussion, one can directly and precisely determine the three parame-

ters of the modulated exponents from the JTF domain, that is the amplitude, frequency, and
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the damping rate. Next, to illustrate the effect of the noise on this domain, additive white
Gaussian noise with zero mean and Standard Deviation ¢ = 2000 is added to the signal.
The resulting coefTicicnts arc plotted in Fig. 46. From the figure, it is obvious that in con-
trast to the signal components which are concentrated in a very few number of the transform
coefficients, the noise is fairly distributed among all the transform coefficients. In the next

two sections, the proposed transform is applied to a real NMR signals to remove the noise.

7.5 Removing Noise from Phosphorus FID Signal.

As an example which was used in many papers as a test data[42, 43], consider a sim-
ulated phosphorus FID sequence (distorted to explore a wider range of values of the para-
meters). This simulated phosphorus FID signal composed of six peaks: a reference signal,
P:, PCr, v, a, and 3. The frequencies, damping factors, amplitudes, and phases are given
in Table 9. The dwell time (sampling period A,) is 166.2 us and the FID sequence is 1024
points long. Figures 47 and 48 show the real and imaginary parts of this signal. The cor-
responding spectrum is shown in Fig. 49. A zero mean white Gaussian noise with standard
deviation o = 2000 is added to the FID sequence which results in the spectrum shown in
Fig. 50. The resulting SNR is -1.7954 db. Here, since this is a time varying signal, the SNR
is defined as the signal energy® over the energy of the noise in the observation period. This
is exactly the same examples used in [42, 43] but with realistic noise variance. From Fig.

50, it is clear that the P, 7, a. and (3 components are totally distorted by the noise.

8  The reference signal is not included.



x 10

sl

Figure 46:

FREQUENCY (Hz)

TIME (sec)

140

The transform coefficients of the modulated exponent after adding AWGN.

Frequency | Time const. | Amplitude | Phase
| Peak (Hz) (ms) (®)
Refernce -1590 11 32,000 55
P; -600 2 10,000 83
PCr -60 20 6,000 98.5
0 240 6 9,000 107.5
o' 860 3 8,000 122.5
B 1900 5 4,000 153

TABLE 9: Parameters of Simulated Phosphorus FID
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A simple algorithm is proposed to reduce the noise as follows: Perform the Time-
Frequency transform (6.23) for the NMR_FID sequence and retain only the coefficients
which their magnitudes are above a certain threshold. Then, perform the inverse Time-
Frequency transform (2.24) on the retained coefficients to get the noise-reduced NMR-FID
sequence. Fig. 51, shows the spectrum of the noise-reduced NMR-FID signal sequence. It
is now easy to notice the six peaks: a reference signal, P;, PCr, v, a, and 3. The square
error sequence between the noise-free signal and the noisy signal is shown in Fig. 52 (a),
while the square error sequence between noise-free signal and the noise-reduced signal is
shown in Fig. 52 (b). One can notice the great reduction of the noise after removing the
noise by the proposed technique. The SNR increased from -1.7954 db to 10.3837 db. (a
gain of 12.18 db in the SNR).

As a comparison, the same procedure is applied using the GGT proposed in [44]. Fig.
53 shows the spectrum of the noise-reduced NMR-FID signal sequence. The square error
sequence between the noise-free signal and the noise-reduced signal is shown in Fig. 52
(c). The signal to noise ratio increased to 5.49 db. This indicates a gain of 4.888 db in the
SNR between this method and our method. This gain is due to the stability of our transform
which ensures no magnification of the noise during the transformation process. Another
more important difference appears in the resulting spectrums. While one can recognize
the six peaks easily in our spectrum, it is not so in the other spectrum. This is because its
biorthogonal function is not localized in the frequency domain and hence the signal energy

is distributed among more JTF coefficients. This worsen the effect of the thresholding

technique on the signal itself.
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7.6 Removing Noise from a Real-life FID Signal

A real NMR-FID signal was provided by Dr. Joel M. Morris, Chairman, Electrical
Engineering Department at University of Maryland, Baltimore County, which was used in
[44] to reduce the noise in NMR-FID signals. This signal was provided to Dr. Morris
by K. Wear of the Food and Drug Administration. The data was sampled at 2 kHz ( i.e.,
A, = 0.57ns) for a static magnetic field of 1.5T with a repetition rate of 3 sec. The FID is
512 points long. Fig. 54 shows the real part of the signal. The corresponding spectrum is
shown in Fig. 55. From the figure, it is clear that the spectrum is totally distorted by the
noise. Fig. 56 is the mesh plot of the magnitudes of the proposed transform coefficient for
N = 32. Inthe JTF plane it is obvious that the signal components are concentrated in a very
few number of the proposed transform coefficients. Thus, the magnitudes of the signal-free
coefficients are at a much lower level than the magnitudes of the coefficients containing the
pure signal. Thus, they can be easily discriminated by using thresholding techniques.

A simple thresholding technique is implemented by applying a threshold to the pro-
posed transform coefficient magnitudes and equating the coefficients which have values
lower than this threshold to zero. The retained transform coefficients define the JTF expan-
sion of the noise-reduced NMR-FID signal. Fig. 57 shows the mesh plot of the magnitude
of the proposed transform coefficients after thresholding with threshold value be 66. The
corresponding spectrum is shown in Fig. 58. In this figure, the NMR peaks become more
obvious than they are in the original spectrum.

As a comparison, the resulting JTF coefficients of the same signal using the GGT are
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plotted in Fig. 59. Comparing this figure with Fig. 56, it is clear that in the case of our
transform the coefficients which contains signal plus noise are more discriminable from the

coefficients which contain noise only than in the case of the transform proposed in [44].

7.7 Conclusion

Noise reduction of NMR-FID signals using JTF transforms is a promising area since
the nature of the signal makes a distinguished difference between the signal level and the
noise level in the JTF coefficients. In particular, using the proposed JTF transform has the

following substantial advantages like:

e The transform is linear. This means that getting back the signal from the transformed
domain is straight forward. Recall that bilinear transforms share the problem of not being
able to easily get the signal back from the transformed domain.

e The coefficients of the proposed transform are independent: This leads to the inverse
transform being only a matter of matrix multiplication. This is in contrast to the over-
sampled transforms where iterative methods are used for the inverse transform. This
phenomena is discussed in details in subsubsection 2.6.1.1.

o The transform is stable: This ensures that no amplification of noise occurs during the
forward or backward transformation. This is discussed in details in Section 3.5.

e The transform leads to a well-localized biorthogonal function, discussed in detail in

Section 2.3. Consequently, the coefficients a,,, ,, truly reflect the signal behavior in the
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vicinity of [(m — 3) &, (m + 3) & x [(n = §) &y, (n + ) &f] in the JTF domain.

This, in turn, has two implications:

(a) Signals which have few frequency components, like NMR signals, will be
represented by fewer number of coefficients and hence the energy in these
coefficients will be high. Thus, the difference between the energy of coefficients
which contains signal plus noise and the energy of coefficients which contains noise
only will be large.

(b) When concluding that certain coefficients contain only noise, removing these
coefficients will not have any effect on other coefficients which may contain a part

of the required signal.

The proposed method has noticeable improvements over the method proposed in [44]
regarding the SNR as well as the visual spectrum. Note that, using this simple thresholding
technique needs enhancement. Our goal here, however, is to demonstrate the benefits of

the proposed transform.



CHAPTER 8

CONCLUSION

A main problem of the Joint Time-Frequency (JTF) transforms is the lack of a "universal”
JTF transform, 1.e., a transform which is accepted in all branches of engineering, to be the
counterpart of the Fourier transform in the time frequency domain. In this dissertation,
our objective has been to develop JTF transforms with such properties that make them ap-
plicable to practically all branches of engineering. These properties have been summarized

as follows

Concentrated analysis function in time and in frequency
Linearity

Independent coefficients

4. Concentrated dual function in time and in frequency
Stability

Tractable computation requirements.

Throughout this thesis, the modulation product of the Gaussian window with a har-

monic kernel was chosen as the elementary function (which are the optimal elementary

158
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function suggested by Gabor [3]). This choice ensures the MOST concentrated analysis
function in time and in frequency as was proved in [3]. Also, we choose to expand time
signals into an independent set composed of a time and frequency shifts of this elementary
function. This choice results in meeting the first three requirements®. Thus, we are left with
the last 3 requirements, that is: concentrated dual function in time and in frequency, stability,
and tractable computational requirements which have not been met by any critical-sampled
Gabor transform available in the literature. Our aim in this thesis has been to develop JTF
transforms which maintain the first three properties and satisfy, as close as possible, the

last three ones.

In Chapter 4, the non-separable sampling of the JTF plane for the real Gabor transform
is introduced for the aperiodic critical-sampling case. It was shown that the hexagon sam-
pling, in particular, enhances the localization of the biorthogonal function in the frequency
domain while maintaining all other properties. An efficient method to calculate the trans-
form coefficients for any type of windows is presented. We have also derived a practical
implementation of the transform using a truncated version of the analysis window to be
of length 2N. We showed that this truncation has negligible effect on the characteristics
of the transform. In addition, it requires only L { 2+ % log, N } operations for computing
the transform coefficients and 5.5V operations for computing the biorthogonal function).
Thus, it is faster than any Gabor transform currently available. Unlike other methods of
truncation, this method gives exact reconstruction of the original signal.

In Chapter 5, the stability has been considered with the objective of developing an or-

thogonal linear JTF transform (thus achieving the highest possible stability). The necessary

9 This choice is exactly the same of the critical-sampled Gabor transform
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and sufficient orthogonality conditions on the analysis window function which will lead
to orthogonal transform has been derived. Two functions satisfying these conditions are
presented. In addition to its nice stability property, the resulting transform is proven to be

computationally attractive than any other currently available Gabor transforms. Compared

1+log M +21 log, N

2+% log, N s

to the Zak Transform bascd method, the computational saving ratio is
worthy to note that this transform leads to an exact representation of the signal, i.e., using
this transform leads to an exact reconstruction of the signal.

In Chapter 6, we have concentrated on how to meet all the requirements simultaneously.
Thus, using alternate types of kemnels, a stable, linear critically-sampled, JTF transform
with localized biorthogonal function and analysis function has been developed which over-
comes the main problem of the other implementations. An efficient method to calculate the
biorthogonal function for any type of window is presented. An inherent characteristic of this
implementation is that a truncated version of the modulating window to a length of 2V leads
to a biorthogonal function with the same length. Using this truncated Gaussian window and
its biorthogonal function results in an algorithm which requires L(2 + 3 log, N) operations
for computing transform coefficients and 5N operations for computing the biorthogonal
function. This is faster than any other algorithm currently available in the literature. The
effect of this truncation on the transform coefficients has been studied. It is worth noting
that this truncated window function transform leads to an exact representation of the signal.

The JTF transform proposed in Chapter 6 has a good balance of all the requirements.
Its analysis function is Gaussian which is the most concentrated function in the JTF domain

(this indicates the highest resolution that could ever be achieved). Its biorthogonal function
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was shown to have excellent localization in the JTF domain (this ensures that the transform
will faithfully describe the signal local behavior). Also, the transform was shown to have
excellent stability performance (the condition number is around 1.18 which is very close to
be orthogonal). In addition to these qualities, the transform is linear and have independent
coefficients. Thus, it is considered as the best one among the three and its computational
requirements were thoroughly studied.

The hexagon-sampling transform is the worst among the three. It, however, gives an
excellent example that rebuffs the widely accepted claim that the Gabor transform is the only
transform that meets the optimality conditions derived by Gabor [3]. In this transform we
maintain everything the same as the Real Gabor transform except changing the location of
the sampling points, and thus the optimality conditions have been maintained. We showed
how careful choice of the sampling point could lead to a better transform. We expect that
extending this idea to the multidimensional signals will give even better results.

To demonstrate the usefulness of the proposed transforms in real-life situation, the third
transform has been applied, in Chapter 7, to the traditional, yet difficult, problem of noise
reduction of the nuclear magnetic resonance signals. It is shown that the proposed transform

gives far better results with lower computational requirements than other JTF transforms.

8.1 Recommendations and Future Work

1. In Chapter 5, we derive the necessary and sufficient orthogonality conditions on the

analysis window function which will lead to orthogonal transform. It is still, however,
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an open area to choose the analysis window function that satisfies these requirements
and maintains other optimal characteristics.

For the proposed transform to be accepted as the natural replacement of the Fourier
transform for time variant systems, it needs a thorough study of its characteristics like,
shift properties, linear and circular convolutions,. . .etc.

It is proposed that hardware implementation for computing the proposed JTF coefficients
is to be investigated with the objective of reducing the computation time.

In this thesis, we focus on one-dimensional signals. Extending the work into two-
dimensional signals is required. Note that direct extension into two-dimensional signals
is straightforward. However, utilizing the added degree of freedom in positioning the

elementary functions in the four-dimensional JTF space needs extra work.
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APPENDIX A: Permutation Matrices

Our developments in the thesis involve certain data movements such as the interchange
of two columns or two rows. The permutation matrix [47] is used to describe this type of
operation.

Definition A.1
A permutation matrix is the identity matrix with its rows re-ordered, e.g.

OO =O
— O OO0
O~ OO0
OO O M

Permutation matrices are orthogonal, i.e., P~! = PT.

Let P be an n x n permutation matrix. If A is a n x n general matrix, then

PA 1s a row permuted version of A

AP is a column permuted versionof A

An efficient way to store or represent a general n X n permutation matrix P is by its en-

coding vector p.

Definition A.2
An encoding vector p is a n-vector whose element p (k) is the column index of the sole 1"

in the P’s k" row.

Thus p = [4, 1, 3, 2] is the encoding vector of the above P.

One famous example of the permutation matrix, which is extensively used throughout
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this thesis, is the anti-diagonal identity matrix J defined by

0 --- 01
; 0 --- 10 )
' o

1 --- 00

Let J be an n x n permutation matrix. If Aisan x n general matrix, then

JA = flip A in up/down direction (rows flipped).

AJ £ flip A in lefiright direction (columns flipped).

Example 8.1
Let

b S
I
~ =
o Uv N
O w

flipping A in up/down dircction or JA is

JA =

— =
N v 00
[Ve I e B {e]

while flipping A in left/right direction or AJ is

AJ =

O O W
o0 U N
=~ -

It can be proved that, .J?¢ = [, J%*+! = J and JT = J.
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APPENDIX B: Circulant Matrices and Toeplitz Matrices

Matrices whose entries are constant along each diagonal arise in many applications.
They have two cases.

Definition B.1
The n x n matrix A is Circulant if A is of the form

Qo Qn-i a,
ai Qo ]
A= .
Qnoi Gn_2 -+ Qg
Any circulant matrix can be represented by the n-dimensional vector {ag,a;,....an-1}-

Any circulant matrix is diagonalizable over C (i.e., semi-simple) by the Discrete Fourier

Transform, t.e.,

bp 0 --- O

0 b --- O
B AE =] . |

0 0 bn_1

where Ey = [en k] iS the N-point Discrete Fourier Transform (DFT) matrix with e, &

given by

/1 —j27nk
nk = NGXP (T) nk=01,..N-1 (B-1a)
Definition B.2

The n x n matrix A is Beplitz if A is of the form

ao Q-1 *+° G_ny4l
ai Gy - Qony2

An-1 Qp-2 --- a9
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Any Toeplitz matrix can be represented by the (2n — 1)-dimensional vector

{("—n+lv <., a_1,00,41, ... van—l}

A generalization of the above two definitions is the block-Circulant and the block-

Toeplitz matrices.

Definition B.3
The nm x nm matrix A is block-Circulant of type (m, n) if A is of the form

Ao Anr - A
Ao 41 f%o Ao
Anc1 An2 o0 Ao
where Ag, A;,..., A, IS an m x m matrices
Any block-circulant matrix can be represented by the nm x m matrices { Ag, A1, ..., An-1}

Any block-circulant matrix is diagonalizable over C (i.e., semi-simple) by the Discrete

Founer Transform, see theorem 5.6.4 of [40] page 180, i.e.,

By O 0
1o B 0
0 O B._:

where B, are arbitrary m x rn square matrices

Definition B.4
The n x n matrix A is block-Toeplitz if A is of the form

Ao A - Ao
A= A’1 40 A—'n-{—2

An—l An—2 AO
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where A_,+1,..., A0, ..., A,_| IS™ X m matrices.

Block-Toeplitz matrix can be represented by the m x (2n — 1) m matrices

{Acnsro ..., A_1,Ag, Ay, Anor)
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APPENDIX C: Discrete Critically-Sampled Gabor
Transforms

As we have seen in Section 3.2, any Gabor transform implementation can be put in

the matrix notation

x=HETa

This is called the synthesis equation. Its inverse, the analysis equation, is

a=EH'x (analysis equation)

Both H. H~! and E are different for different cases as detailed below.

C.1. Periodic Complex Gabor Transform

The discrete version of the complex Gabor expansion (2.14) is

M-1 N-1 ok
z(k) = Zh(k—mz’\/)Zamvnexp] N (C-1)
m=0 n=0

The above equation was put in matrix formulation by [27] which gave the synthesis equation

(3.1) and the analysis equation (3.9), where H is a block-circulant matrix

Ho Hpy- - H

H2 . 2o (C-2)

Hpyy Hp—z2 -+ Hy



170

Hp, is as given in (3.6)E is a block-diagonal matrix

En
E;
E = i (C-3)
EN
where En = [en k], v is the N-point Discrete Fourier Transform (DFT) matrix defined in

(B-1a). Since H is a square matrix, it has a unique inverse H™! whichisalsoa N x M N

block-circulant matrix

Fo Ty oo Tarey
Farer To -+ Tare

F—H-'2 »:1 L to ) \:I 2 (C-a)
r, I, --- Ty

with diagonal N x N blocks [',, is given by

[ =diag (y(mN),v(mN +1),....y(mN + N - 1))

The sequence «y(k) is the resulting discrete biorthogonal function which is plotted in Fig.

60forM = N =8ando = N.

C.2. Aperiodic Complex Gabor Transform

The previous implementation was named periodic implementation because it involves a
periodization of the window function as well as the analyzed signal, i.e., the signal z (k)
and h (k) have periodicity L. According to[19], for the Gabor transform, the assumption
of periodicity is a more radical assumption than for the Fourier transform, as it involves

a substantial change from the natural structure of the transform. Another implementation
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which does not assume the periodicity of the window nor the analyzed signal was proposed

in[19,28]. It gives the same equations as the above case except that H is block-Toeplitz

matrix defined by

Hy H_, - H_yq
e H, Hy -+ H_pryo
Hy_y Hy—2 ---  Hp

The matrix H™! is not, in general, block-Toeplitz. H~! can be written as

(0) (0) (0)
F?l) Iﬂ<11) - Ff”l’)_l
F:_H—lé F—I I-‘0 FM-2
(,\}—1) (A'f—l) . (A}-l)
F—M+1 I-‘-MJ.-2 e I-‘0

with T{™ is given by

T{™ = diag (Y,(IN), Ym(IN + 1), .. .. 7 (IN + N — 1))

(C-5)

(C-6)

The sequence v, (k) is the resulting biorthogonal function for m time shift. This imple-

mentation leads to almost the same biorthogonal function as the previous case except that it

is not periodic. For comparison with the periodic case, the aperiodic and the periodic cases

for M = N = 8 are plotted in the Fig. 61

C.3. Periodic Real Gabor Transform

Instead ofexpanding real signals into the modulation product of the Gaussian window with

21r(n+%)t

the orthogonal set { cos 2’}"‘ ,Sin ——¢ } , as Gabor did in his 22¢ expansion (2.18),
nez
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Figure 61: The biorthogonal function of the periodic and the aperiodic complex Gabor
Transform cenetred on the analysis window m = 3.
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Stewart er al.[25] used the complete orthogonal set {cos it ncz instead. The discrete

expansion equation is

M—1 N-1 1
/ k+ = /1
z(k) = Z h(k — mN) [Z Qm.n %cos fﬁ(%z) +amo V} (C-7)

m=0 n=0 - B -

which gives

Hy Hy.J --- HJ

H,.J H - H.
H2 ) S (C-8)
HyJ Hy_2 --- Hg
Co JI'y -+ JTy
Jlar- I R T
H-! 8 -1 Lo . -2 (C-9)
JI Iy --- Iy
and
rC .
cJ
E =
C
A CJ |

where C is defined in (3.15). The function v (k) may be thought of as the resulting biorthog-

onal function which is plotted in Fig.62 for M = N =8and ¢ = N.

C.4. Aperiodic Real Gabor Transform

This was—.deveIOped in Section 3.3 on page 46.
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APPENDIX D: Discrete Over-Sampled Gabor Transform

In the over-sampling Gabor transform [16,26], the sampling distances in time and fre-
quency become more denser than the case of the original, critical-sampling, Gabor expan-
sion. In the over-sampling case, the dual function is not unique. This solves the problem
by choosing a dual function which is closest in norm to the Gaussian window. The price
to be paid is high redundancy and linear dependance among the coefficients. For a signal
z(k) of length L = M N with M shifts of the modulated Gaussian pulse and the number of
frequency components in each shift is NV where NV > N. The ratio N/ N represents the over-
sampling rate (OVSR). Thus, there are M N sample point and M N Gabor coefficients. The
over-sampling case of the complex Gabor expansion (2.14) was put in matrix formulation

by [29] which gives, H as the M N x M N block matrix

Hypo Hoy -+ Hoar—a
e ]'[.1.0 [{.1,1 HI.A.U—I (D-1)
HA'I—l,o H.r\'!—l,l HA'!—l.M-l

where M = MN/N. Each block isa N x N diagonal matrix H,, , defined by

Hnn & diag (R(mN = nN),h(mN —nN +1),... ,h(mN —nN + N - 1)) (D-2)

where h(k) is as defined in (3.8). Here H is not a square matrix and one can define many

pseudo inverses H~!. Each one of them will result in a different biorthogonal function. H~!
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has to be a right inverse of H, i.e., HH™! = I. One solution is the least mean error solution
H'=HT (HH")™'

which is proved to give the optimal biorthogonal function in the sense of the least mean

square error [29]. H™! has the structure

Lo Foi - Doar—
N Lo i - Tipn
Carcio Tarcin oo Tayopar—

where I';, , is a N x N diagonal matrix.

The matrix E is M N x M N block-diagonal matrix

En
where Ey is the NV-point DFT matrix defined in (B-1a). The resulting discrete biorthogonal
function for OVSR = 4 is plotted in Fig.63 for M = N = 8 OVSR = 4,and ¢ =
N. The figure show the superiority of the this biorthogonal function over all critically

sampling cases.
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APPENDIX E: Discrete Cosine Transform Type [V

Discrete cosine transform type [V (DCT-IV), also referred to as even discrete cosine
transform-2 (EDCT-2), was introduced by Jain [48]. DCT-IV of an N-point real sequence

z(n),n =0,1,...,N — 1 is defined as:

X (k) = \/7 ) cos m(k+ %sz(n +3) (E-1)
z(n) = \/—ZX (k) cos ™ (k+ %]2[(”-*- %) (E-2)

DCT-IV has found several applications in signal processing [49]. Several algorithms are

available in the literature for efficient calculation of this transform [50, 51]. It is easy to

prove the following DCT-IV properties

Fhe )= \/-ZX(n ) cos (‘”*“k}%)(m%)

n=0

- \/712)((71 ) cos ((N_l‘/;)[’L%)("’L%) (E-3a)

n=0

[NSJY(n xcos( (k+%jz[(n+%)+7r(n+%)>

z(k+2N) =
= [Z){(n xcos‘(k+%N(n+% (E-3b)
z(k+3N) = [ZX(n xcos< (k+%]z[("+;)+37r(n+-§-))
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APPENDIX F: Discrete Sine Transform Type IV (DST-1V)

Discrete sine transform type [V (DST-IV), also referred to as even discrete sine transform-
3 (EDST-3), was introduced by Jain[48]. DST-IV of an N-point real sequence z (n),
n=20,1,...,N — 1 is defined as:

X (k) = \/—' sin ™ (k %]2[(’”2) (F-4)

n=0

where X (k) is the DST-IV transform of the sequence z (n). The inverse of (F-4) is

N-1 2 1 1
\/; sm (A' + 213/(71' + 2) (F-S)

DST’s has found several applications in signal and image coding [49], and in adaptive fil-

tering [52]. Several algorithms are available in the literature for efficient calculation of this

transform [50, 51]. It is easy to prove the following DST-IV properties

N-1 1 _ L 1 1
z(k+N) = /— ) sin TV -1 };\)[+2)(n+2) (F-6a)

n—O

1 1
\/; ) sin (k i 212[ (n + 2) (F-6b)

~1-k)+1
z(k+3N) = \/;ZX(n sm (V-1 l;V 2)(n+) (F-6¢)

n=0

z(k+2N)
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APPENDIX G: Generalized Gabor Transform

In [44), the authors used the periodic complex Gabor transform (C-1). They, however,

replaced the Gaussian window function by a one sided exponential function, i.e.,
h(k) £ exp (—7wd,Ak) (G-7)

where d; is the exponent constant and A, is the sampling interval. This function is plotted
in Fig. 64 This transform as the periodic complex Gabor transform (Appendix C.1) can be

expressed in matrix formulation as
x=HETa (synthesis equation) (G-8)

where H and E are as defined in (C-2) and (C-3) respectively. To measure the stability of
the transform, we calculate the condition number x (HE”) of the matrix [HE”] . x (HE")
varies widely with the parameter d,. Recalling that d is a design parameter depending on
the nature of the problem thus one can not set it on a predefined optimum value. & (HET)
for one sided exponential function and typical values of M, N and d for this transform are
listed in Table 10. As seen from the table, the condition number is very high and increases
unboundedly with increasing N and M which indicates the instability of the transtform.
The resulting biorthogonal function has nice concentration in time domain, Fig. 65.
In the frequency domain, however, the biorthogonal function has bad localization. As a

consequence, the JTF domain is expected to be distorted.
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Figure 64: The analysis window function used in GGT.

K (HEI)

L (N, M) d=33{d =10
(8,32) 24.39 | 34.46
(16, 16) 16.01 19.17
(16,32) 2447 | 34.49
(32, 16) 16.04 | 19.18
(32, 32) 2451 | 34.51
(64,64) 3252 | 57.66
(128, 64) 32,53 | 57.67
(256, 128) 37.56 | 85.46

TABLE 10: Condition number of the GGT
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