Application of Artificial Neural Networks
to Optical Character Recognition

by
Osama Abdel-Wahhab Ahmed

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

ELECTRICAL ENGINEERING

June, 1994

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:/761-4700 800,521-0600

Order Number 1360389

Application of artificial neural networks to optical character
recognition

Ahmed, Osama Abdel-Wahhab, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

e S e

o

3

KiY o o e

| Apphcation of Artificial Neural Networks
e to Optical Character Recognition

*

.

..» BY

> Osama Abdel-Wahhab Ahmed

%

7. A Thesis Presented to the

:’; FACULTY OF THE COLLEGE OF GRADUATE STUDIES
N KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
7 DHAHRAN, SAUDI ARABIA

-,

. In Partial Fulfilment of the

:»” Requirements for the Degree of

i MASTER OF SCIENCE

In

Electrical Enginecring

June 1994

S0 20 SRR AR IR

»~
-

¥y

T

[
1

S -
.

~——

CHEHEFIAE

P AT AR AP AP A A A A AP

TN

" Prsi, o b Yo, tho Mol the Comparionats, the dond

of Prophats, sun, masin, Mubamad, whom, od, Mo, and
prssnve wilh lidng and contimingy peacs andl Wesings. unt]

b By of th Faih | "

King Fahd University of Petroleum & Minerals
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by Osama Abdel-Wahhab Ahmed

under the direction of his Thesis Advisor and approved by his Thesis Committee, has
been presented to and accepted by the Dean of the college of Graduate Studies, in
partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in
ELECTRICAL ENGINEERING.

tih o."/"’:/ / _/
Prof. Maher Sid-Ahmed (Advisor)

Ll irs V“?j'ﬁ/

<Bf M. S. El-Hennawey (Member)
. /

AN o

Dr. Selim, Shokri Zaki (Member)

_,// Bﬂ’/u/éz/,-
Dr. S. Z. Al-Akhdhar (Member)
- —_—
— //—7

/ SN — Dr. Ahmed Yamani (Member)

Dean, College of Graduate Studies

4-1- 94
Date

This thesis is dedicated to

My Mother who taught me how to give.

123

ACKNOWLEDGMENT

I wish to thank my thesis advisor Professor. Maher Sid-Ahmed for his
continuos guidance and encouragement. | wish to thank all my thesis
committee Dr. Selim, Shokri Zaki, Dr. M. S. El-Hennawey, Dr. Ahmed
Yamani, and Dr. S. Z. Al-Akhdhar, for their valuable suggestions. I would like
also to thank King Fahd University of petroleum & Minerals for supporting

me during my work.

1£3

TABLE OF CONTENT

ACKNOWLEDGMENT
LIST OF TABLES
LIST OF FIGURES

ABSTRACT

- CHAPTER 1. INTRODUCTION

CHAPTER 2. LITERATURE REVIEW

CHAPTER 3. SHAPE DESCRIPTORS

CHAPTER 4. NEURAL NETWORKS

CHAPTER 5. IMPROVED TRAINING ALGORITHM

CHAPTER 6. RESULTS AND RECOMMENDATIONS
APPENDIX

REFERENCES

Page

iii

vi

vii

91
108

173

LIST OF TABLES

Table Page

Table 1: Letter & with rotation 2°, 3°, 4°, 5°, 10°, 15%..ccuueeeeeemeeeerennnn, 42
Table 2: Letter ¢ with 65x65, 5959, 45x45, 31x31, 29x29 Pixel 43
Table 3: Using Khotanzad normalization for letter #occevvuvirennnnene. 45

Table 4 : Using Simpson’s rule for 45 with rotation 2°,3°,4°,5°,10°,15°... 46

Table 5: Using Simpson’s rule for letter & with 65x65, 59%x59, 45x45.

31X31, 29X29 Pixel IMAages....ccceveveirineieieiei et 48
Table 6 : 'beginning JEHETS oottt er e s eee e v 49
Table 7 : Isolated 1EUEIS........c.ooeveveviririnirerececc e 51
Table 8: Ending IEters........ccovvvivecneiireenesieeee e 33
Table 9: Center IOTErS. .. .ccceivvieierenirinee e, 55
Table 10: Comparison between Scalero and the new algorithms............... 88
Table 11: Effect of offset removal.........cccooveveviiiiviiicceeeeen V6
Table 12: Effect of chaﬁging # of nodes in the hidden layer 05

v

Figures

Figure 1 :
Figure 2 :
Figure 3 :
Figure 4 :
Figure 5 :

Figure 6 :

‘Figure 7 :

Figure 8 :
Figure 9 :
Figure 10:

Figure 1 1:

LIST OF FIGURES

Page
O.C.R. SYStEML..cueiirieirrierieecieitirireeeiereeeeeeeseeesseeesavessssreeteesarenenes 3
Arabic letters for different shapes..........cccoeonviviiniiicnn. 40
PEICEPIION......iiiitiirieectectt et see e st beesaeees 59
Multi-layer PErceptron.oeceveiiiercieniiinienenresiese e 63
Training time for both algorithms for random data. 86
Training time for both algorithms for random data. 87
Arabic O.C.R. ClasSifiercccvcrieniirnienieeeneeneceeeceee e 90
Effect of removing offset on training time.c.ccceeieienennnne. 95
Forgetting function for various values of b.cccovvevvvviernnnn 101
Forgetting function for constant b versus variable b. 102
Training time for constant b versus variable b.c...ccove 103

Vi

123

THESIS ABSTRACT

Name : Osama Abdel-Wahhab Ahmed
Title: Application of artificial neural networks to optical characters
recognition.

Major Field: Electrical Engineering
Date of Degree: June 1994

In this work we examine shape descriptors and neural network classifiers for the
recognition of Arabic characters. There are a total of 29 characters in the Arabic
alphabet. However, since the shape of character changes depending on its position in the
word
(beginning, middle, end, and stand-alone) we end up with more than 29 shapes.

Shap. descriptors are studied in this work. In particular the moment invariant
approach due to Hu.[3], is studied and examined, with some modifications. on the Arabic
alphabet.

A new algorithm for training the feed forward neural network is developed in this
thesis. This algorithm is shown to be faster and more stable than other schemes presented
in the literature.

The thesis presents the classification of shapes through shape descriptors and feed
forward neural network classifiers. Testing on Arabic characters of different sizes and
orientation is carried out. Four separate neural networks were trained for each character
position with the seven moment invariants of Hu.[3] as an input. The output is trained to
give five bits representing the ASCII code of Arabic letters plus one bit to serve s a
parity check. Results of using the new training algorithm for the feed-forward neural

network are presented. Very high recognition rate of Arabic fonts is achicved

vii

123

Al Ladla

caal gl e L : JalSH Il

el Gpadl e AN G Jlae (Gpaall CISWED Sfastal : Al o) gie
i

Al 5eS Aaia : raeadsll

NVEYO o jas : Al)l & 05

Sl 5,88 e Al il o JSEN Clivaly plasiad G Gl 15 iy
3 Anud Ay pall elagl Gigya o) G yaall (e LT Ay jall oAVl e A G Jlae b daald
o sl G Bl 88 e g Rl S e Gl UK iy 8] i s e
RXPONIP R LI I
a1 (35 o 3 p0e ill a5l ATk Lasad 5 JSED Slialy Ly a1y o
Al g padl U 5 pita il pg el A6 50 Jaes 4 sl
28 g Al Al 3 Gnal) A 50l Bt B s el L il i 5
SRR TR (FUBU IOV W B B W I I Y BT i
el e il Gl G0l 5 Bl SIS e JRED sl 0% Qa1 el 5 3
Sy otadl e (3 Ggse @lill ol g plaa¥) 5 JCEY) Giline e o sl 5 G)
el il a0 G jall pliagd e giny IS Al 4303 3 e IS 2y
Bkl plhs g sliey SN 25W e Clsa (wnk e 5K AN 580 5 e 23
&8 A A WAVl GLES) e A 5SS 24588 S Bl Ligsh) Al By el iy jall

Al te o oanl dtes ot

ptall A pioalall 43 58
Sttaall g Jg gl et Sl daala
23 gl Dy pall ALl , oyl

‘o
-

Bl

viit

123

CHAPTER 1

INTRODUCTION

Optical character recognition, or OCR, is the branch of computer scicnce
devoted to the development of algorithms and hardware for translating images of text
into machine-readable forms. OCR can offer important improvement in computer
productivity because while data can be processed very quickly by computers. data
entry process is still very slow and tedious and has been considered as the real
bottleneck in data processing.

Optical character recognition (OCR) has been a subject of great interest to many
computer scientists, engineers, and people from other disciplines. Intensive rescarch
has made OCR an efficient means of entering data dircctly into the computer and
capturing information from data sheets, books, and other machine-printed or
handwritten materials. Such capabilitics greatly widen the applications of computers in
areas like automatic reading of texts and data, man computer communic.aiions.
language processing, and machine translation. [ndeed, present OCR machines have
been used to process very large volumes of type- and hand-written and printed Jata

generated by large corporations and government agencies, for example, bank and

postal services, credit card and insurance companies, telephone and electricity
companies, medical, taxation, and finance departments which handle millions of
accounts and payments each year. OCR has the advantages of little human intervention
and higher speed in both data entry and text processing, especially when the data
already exist in machine-readable fonts. In fact, OCR has become one of the most
successful application of modern technology in the field of applied pattern recognition
and artificial intelligence.

| Fortunately, market demand for OCR is very strong even though word
processors are prevalent. For example, a dozen leading companies sell or are
preparing to sell hand-printed character readers. So far these sophisticated machines
are not prevalent yet, but it is certain that if the price and performance meet the
requests of the users, these machines will be widely use'd in offices as a verv natural
man-machine interface. The accumulation of OCR knowledge is reducing the sap
between the users and makers, which is also helped by the rapid development of

computer technology.

({8

1£3

OCR SYSTEM

character
matrix

14

Character : | simouthing
identification Maiching &

distance

Mcasure

Figure 1 O.C.R. system

A block diagram of an OCR system is shown above in Figure 1. At the input end,
characters typed or written on documents are scanned and digitized by an ontical
scanner to produce a digitized image. Depending on the complexity of the character
shapes and the vocabulary involved, the size of the matrix, which reflects the resolution
of a digitized character, varies to achieve speed and accuracy. The OCR svitem will
start to locate the regions in which data have been entered, typed, printed. or written
on the input documents. Once these regions are found. the data blocks aie then
segmented into character images. Instead of keeping the images in multigray leveis, it
is common practice to convert them into binary matrices to save memorv ~pace and

computational effort. Then characters in the form of binary matrices go throuzh the

123

preprocessor to eliminate random noise, voids, bumps, and other spurious components
which might still be with them.

In some cases, normalization in size, orientation, position, as well as other
operations are performed to facilitate the extraction of distinctive features in the
subsequent stage. Once the characteristics of the cleaned characters have been

extracted, they are matched to a list of references and a knowledge base built during

“the learning process to classify the characters. In addition, distance measurements are

* used, as well as shape derivation, shape matching, and hierarchical feature matching in

the form of decision trees. The decision-maker is strongly influenced by the tvpes of

features detected.

Preprocessing

When patterns are scanned and digitized, the raw data may carrv a certain
amount of noise, for example, a scanner with low resolution will produce touching line
segments and smeared images. In order to eliminate unwanted noise which mav cause
severe distortions in the digital image and hence ambiguous featurcs and poor
recognition rates, a preprocessor is used to smooth the digitized characiers
Essentially, smoothing performs the functions of both filling and thinning to chnunate
noise, isolated pixels, breaks, or bumps. Normalization is applied to produce puatterns

of uniform size or linewidth, fixed boundaries along certain edges (cu . top-lefi

justification), or a preferred orientation (e.g., vertical).

123

Feature Extraction

In OCR applications, it is beét to extract those features which will enable the
system to discriminate correctly one class of characters from the others. Since
characters are formed from line segments, many different types of shape featurcs can
be extracted and used to recognize the characters. We can classify features into two

Main groups through global and structural analyses. A full review of feature extraction

‘will be found in the following chapter.

123

ArabicO.CR. :

Arabic script and font characteristics are different from English. These

differences result in that a direct implementation of the recognition techniques used for

English is not possible for Arabic.

Arabic text is written from right to left and recognition is expected to be in
the same direction to allow for connection with a speech synthesis machine or
linguistic checking of the recognized words. Whereas English characters can
appear in two shapes (upper and lower case), Arabic characters can have four
different shapes, depending on the position in the word (beginning, middle,
end or alone). Unlike English, most of the Arabic characters of a word are
connected along a base line.

Many Arabic characters have dots which are positioned at a suitable distance
above or below the letter body. Dots can be single, double, or triple. Dilferent
Arabic letters can have the same body and differ in the number of dots
identitying them. -

Some Arabic characters use special marks to modify the letter accent. such as

Hamza (¢), Mada (~), again positioned at certain distances from the letter.

L R4S }

e Arabic uses another type of special character as short vowels, which are
referred to as diacritics. Although difterent diacritics on the same characters
could lead to different words, an Arabic reader is trained to deduce the
meaning of undiacritieized text. This is why diacritics are not used in
newspapers or in office correspondence. However, when diacritics are used
they appecar above or below the characters and are viewed as isolated
characters.

* Arabic characters, as described by calligraphers, are composed of two parts,
the crown, which identifies the character in .any position (beginning, middle,
end or alone), and the connection to neighboring characters.

¢ To preserve the beauty of Arabic script, some letters are positioned to overlap
with the neighboring letters The degree of overlapping can vary according to
the typeface and the typewriter design. For character recognition this could be
a very important feature, as it is commonly used.

Objective:
In this thesis we examine two major blocks used in the building of compiete
Arabic optical character recognition solution. Namely,

1. Feature extraction.

2. Classification,

Arabic text is utilized as a test bed for these blocks. A complete Arabic Optical

character recognition requires the implementation of at least five more blocks

™
o

1.Segmentation of each page into text, lines, graphics, and images.

2.Text segmentation into paragraphs ... etc.

3.Line/character segmentation

4 Recognition and separation of diacritics

5.Recognition of ligatures.

~The last 5 blocks are not investigated in this work and are left for future

ex_'te.ﬁ.sfohs. Nonetheless, in depth study in feature extraction schemes is carried-out
with special attention to the moment shape descriptors.

Seven of these descriptors are extracted for the 108 different shapes of the

Ara'bit.:' set style (¢ Nasekh) and they are used as input data to a feed-forward neural

'netw'b_rk. An in depth investigation into efficient learning (or training) schemes for

feed-foﬁard neural network is presented. A new scheme for training the feed-forward

neural network which is order of magnitude faster than the classical delta rule .back-

propagation method will be presented. The thesis is organized into five chapters
Chapter 2: Literature survey.

In this chapter a review for the previous work in the arca o! optical
character recogni'tion was done for both English characters as well as Arabic
Chapter 3: Shape descriptors.

Shape descriptors is a function which reflects (represent) the shape of an

image mathematically and independent on other factors like position, size,

123

orientation, . . etc. We concentrate on moments as a shape descriptor which was
utilized as a feature extractor in our system.
Chapter 4: The feed-forward neural networks and training algorithms.

After extracting the required feature from an image the following step of
an OCR system is usually recognition and decision. We concentrate on artificial
neural network which was utilized as a classifier in our system. Artificial neural
network are described by two features: 1) Topology ~ 2) Training algorithm.
For topology, the multi-layer feed-forward perceptrons was used. For training, a
newly developed algorithm which is orders of magnitude faster than the ordinary
delta rule was described.

Chapter 5: New efficient training algorithms.

A new algorithm for training the multi-layer feed-forward perceptrons was
developed which overcomes the limitations and disadvantages of the algorithm
discussed in chapter 4. The new algorithm shows faster convergence rate than the

previous one.

Chapter 6: Results, conclusion and recommendations.

Partial results are presented after each chapter to verify the algorithms presented.

123

CHAPTER 2

LITERATURE REVIEW

In the early days of pattern recognition rescarch, OCR was a very popular
problem. One reason is that characters are handy and were regarded as a problem
which could be easily solved. However, against what was the expectation of many
people, great difficulty in solving this problem surfaced. Of course there are practical
demands for such a research. which are common to all pattern recognition topics.

In the 1950's and the early half of the 1960's, researchers imagined an ideal OCR. even
though they were aware of the great difficulty of the problem. So some resorted to
basic research, and engineers took a more systematic approach. Such a trend was seen
in template matching and the structure analysis method. Both methods have their own
advantages. Template matéhing is very sensitive to positional change, but it can be
very strong in the sense of global matching, While structure analysis method has the

advantage of detecting the local stroke features of characters.

Chapter 2: Literature Review

L 2%]

A-Template Matching Approach:

The template matching process is divided into two processes, superimposing an
input shape to a template and measuring the degree of coincidence between the input

shape and the template . Template matching has many types including;

1) Application of Information Theorv:

A research on automatic generation of discriminate logic tunctions began at the
IBM Watson Laboratory. Kamentsky and Liu [1], [2] gave such a scheme baszd on
information theory. They gave a measure of discriminating power of a logic fiis tion,
f, which was chosen randomly. Its configuration is f(x;, 4, ...X,) for which x.x. x,.
are randomly chosen pixels whose values are either 1 or 0. Extensive experiments wcre
done. Their scheme was elaborated by introducing the concept of distance S0 un

automatic design system for the discriminating functions was implemented.

2)Karhunen-Loeve (K-L) Expansion:

K-L Expansion is very attractive and widcly used for data compressicn s well

as for pattern recognition. When a data set of [h(x. a)] is given vectors, .o can
construct the covariance matrix and solve its eigen-vectors, which & ‘e
coordinates of the given pattern space. lijima made a feature extraction svuici = ed

on the consideration that for a given normalized pattern set denoted by

D = {h(x, o)},

i1

Chapter 2. Literarirs Roview

123

12

where o is an assigned/indexing number of the individual pattern, and he

constructed the following mapping functions to real values:

_[D w(a)h(x,a),p(x)).da
o)

Jlo(x))= (1)

Where v.{a) is the appearance probability of «

3)Series Expansion:

The most typical Series Expansion are moment and Fourier expansions.
a)Moment: Recognition of shapes, independent of position, size, and
orientation in the visual field, has been a goal of research. From a practical
point of view, in OCR in particular, orientation invariance is not as important
as position and size. However, it is a very interesting research goal and work
on it has been continuing since Hu's theoretical work [3].

Alt [4] conducted the first systematic experiment in 1962, in which one tent
of alphabet was used which was normalized in position, size, and siant.
Moments up to the second were used as the normalization factors, and the
third to sixth moments were used for classification. This was a pilot prosram
and no recognition rate was given for basic experiment; however he was

optimistic.

Chapter 2: Literature Review

123

Cash and Hatamian [5] reported a very systematic and reliable experiment on
the moment method at Bell Laboratories in 1987. They used central
moments up to the third order and so ten moments were used for
classification. They compared the performances of three typical similarity
measures: Euclidian distance, cross correlation, and Mahalanobis distance.
The results were as follows: All three similarities achieved a recognition rate
over 95% for all six fonts, and the weighted and normalized cross correlation
measure produced the best recognition rates: 99% for four of the six fonts for

the high quality data sets.

b)Fourier series: Concerning the studies of Zahn and Roskie's paper [6] .
The representation of Fourier coefficients of a boundary can be divided in two

ways The first is based on cumulative angular function which is expanded to a

Fourier series. The set { Ay, a, | k=1,2. --} 1is called the Fourier descriptor
(FD) for a curve, where Ay and a, are the amplitude and phase of the k™-

harmonic term. The other representation was proposed by Granlund {7} and

developed by Persoon and Fu [8].

4) Feature Matching:

Spinrad [9] extracted primitive stroke features, and then tried to match

simultaneously the arrangement of the strokes and their autributes also. The direction

Chapter 2: Literature Review

13

123

of a stroke was quantized into eight levels and the position of the center of a stroke
was also quantized directionwise into 16 viewing the center of gravity of the whole set
of strokes, such as N (north) and NE (north-east). Thus, an 8x16 matrix was
constructed and at cach entry of the matrix a 3 x 3 submatrix was set, in which the row
is the quantized distance from the center of gravity and the column is the quantized
stroke length. Thus the total number of the elements was 8x16x3x3 = 1152.
Therefore, 1152-dimensional vectors were constructed, and the correlation between
the unknown input vectors and each template vector, corresponding to each class, was
measured. The above operation is a somewhat' mechanical expansion of the
correlation.

Feature matching is still sensitive to stroke positions. In this sense,
considerable efforts have been made for normalization. However, so-called linear
normalization is not enough and so-called nonlinear normalization has been used. The
basic idea is to measure busyness of lines/strokes and relocate the strokes so that the

busyness become uniform based on the measurement.

5)Nonlinear Template Matching:

Assumed that a character consists of a sum/concatenation of vectors. We can

formalize such a shape as

C = {(c1,€2,-.Cxy....x). (i)},

14

Chapter 2: Litcratnre Review

123

where ¢, denotes the k™ line segment/vector and is further expressed as Cy = (dy.ly).
Here d;. and I are the direction and length of the vector respectively and (iy, ji.) denote
the coordinates of the terminal point. The above expansion is very flexible when each
ck and (ix, jx) are changed. Therefore, we need to impose some constraints on it to
represent a set of templates. The constraints are described as ranges of direction,
length, and terminal points of a vector.
To define "matching” against the template set. First an input image on the [- J
matrix is defined simply as follows:

A={a(i,j)}, i=12...0 j=12...J
wherea(i,j)is multilevel.
The similarity between A and B (set) is defined as follows:
S, B)=max. {(4,B)|B'eB}
where (4, B’) denotes inner product of vectors A and B, and /5" is the iranspose

of vector B.

The size of the set of templates is enormous, which shows its degice of

flexibility in some sense. but we face too big a problem on how to search it st 1o
find the best match. An efficient technique for solving the problem is dv:imic
programming. Kovalevsky [10] in 1967. made matching by using ivanmee

programming.

15

Chapter 2. Lateratine Roview

6) Graphical Matching:

Stroke segments and their relationships are represented by a graph in strict
mathematical sense. Therefore, graph isomorphism and subgraph isomorphism
provide a basic matching theory [11], actually they are used when the number of nodes
is small. Otherwise it still has the problem of complexity.

Strict and general formulation from a more practical point of view given by Ambler et
al. [12]. A practical method was considered, namely the relaxation method invented by

Rosenfeld et al. [13]. This was first applied to shape by Davis [14].

B. Structure Analysis Approach:

Template matching method is only appropriate for the recognition of printed

16

characters. For hand-written characters we need another consideration due to the large

variation of shape of handwritten characters. Structure analysis method has been
applied to handwritten characters recognition. In structure analysis method, there is no
mathematical principle, but it’s strategy is:

A structure can be broken into parts, it can be descried by the features of these parts
and relationships between these parts. Then the problem is how to choose features and
relationships between them so that the description gives each character clear

identification.

Chapter 2: Literature Review

1£9

There are several viewpoints to systematically see the complete structure of a
character. These are classified as follows:
- thinning line analysis,
- bulk decomposition,
- consecutive slits analysis/stream following,
- contour following analysis,
- background analysis.

Thinning line analysis has been the most intensively investigated. Certainly this is a
very important approach and many OCR systems have been made based on it. The
analysis is higher than the other analyses in terms of abstraction, except for bulk
decomposition. Bulk decomposition can be regarded as being at the same level as

thinning line analysis, except bulk decomposition is applicable to the general shape.

1)Thinning Line Analysis:

An observed line usually has a width greater than that of a pixel. So the line is
eroded from both sides keeping some constraints so that the line is not broken and
shortened (thinning). .

In 1960 Sherman [15] regarded characters as consisting of abstracted lines and
constructed a graph. In his graph he ignored a node which has two outgoing lines.
Therefore, feature nodes are endpoint, branching point, crossing point, and so on.

However, this topological view is very important, because it can absorb terrible

17

Chapter 2: Literature Review

variation of character shape. Beun [16] did an experiment on unconstrained numerals.
He used other features, such as node position relationship, to resolve the degenerated
class. The experimental results were a 91.7% correct recognition rate and a 2.6%
substitution rate. Programs to describe bubble chamber pictures were written based on
thinning by McCormick [17]. However, the first systematic and rigorous algorithm
was given by Hilditch [18] in 1969. Since then, more than 30 variations of thinning
algorithms have been proposed, some of which were compared by Tamura [19].
However, it is well known that we cannot obtain perfectly abstract lines for real lines,
which include acute corners and/or intersections. This is a basic problem which cannot
be avoided because of the local operations used. Therefore, for its actual application
some post processing is done. Since it is an iterative process, it is time consuming.
However, thinning is a basic preprocessing block in OCR technology as well as in the

recognition of drawings and is widely used in many OCR systems.

2)Bulk Decomposition:

A letter "L" can be regarded as consisting of vertical and horizontal lines, for
example. The decomposition can be regarded as a counterpart of principal component
analysis in template matching and decomposition began from run-length coding.
Consecutive black runs are analyzed and connected if certain conditions are satisfied.
Otherwise, 2 new part/segment of a character is generated.

Engineering oriented method was considered by Spinrad [9]. It consisted of eight

directed slits on a frame within which a character image was set. For example, a

18

Chapter 2: Literature Review

vertical slit is moved from the left to the right on the frame, then for a letter "D," at
some movement, the slit intersects the vertical stroke of the image of "D." Thus, we
can detect its vertical stroke.

After Spinrad, Pavlidis [20] extended his approach from the theoretical point of
view. He proposed the k™ integral projection. All the black runs for any scan can be
labeled by number, for example, from the left: 1, 2, 3, and so on. The k¥ integral
projection is just the sum of the k™ labeled black runs. The projection method is

resistance against noise, i.e., raggedness of boundaries of character images.

3) Stream Following Analysis:

This method is very simple and is very strong against variations of shape.
Perotto called the description a morpho-topological description. However, we need to
note because of the simplicity, considerably different shapes are identified as the same.
Therefore, we need another raster scanning horizontally, in order to distinguish among
"U", " " and " _". For "+" and "T," diagonal scanning is necessary. Nadler [38]
proposed such scanning. The description of stream following is based only on the
topology of each slit. However, there is no noise removing process and it only works
well for ideal patterns. Nadler [22], in 1974, gave a simple algorithm of stream
following analysis, in which he used a small window of 2 x 1. The final description is
graphlike and intuitive, being slightly redundant. The algorithm is given by the
transition table/diagram of an automaton whose number of state is eight, while the

original paper described a seven-state automaton. From the general point of view in

19

Chapter 2: Literature Review

image processing some algorithms had been developed based on the same idea and

uses run length encoding [23].

4) Contour Following Analysis:

Feature events along a contour of a closed shape is a circulant description. the
term of contour following is used in a broad sense, i.e. including both boundary tracing
and line (thin) following. Historically speaking, the first contour following mechanism
was given by using an analog device, called a flying spot scanner. This was developed
by Greanias ef. al. [25] and was fully used in the IBM 1287 OCR system. It was very
fast and flexible. Furthermore it could absorb the coarseness of the boundary. On
other hand, its computer counterpart was very slow suffered from boundary noise. The
first problem of contour following is Coarseness on the grid plane. Some smoothing
techniques have been developed. A 3x3 window averaging process is one of them.
A direct averaging technique on a contouring curve was done by Freeman [26] and
Gallus ez al. [27].

The second problem is feature selection along a contour. The third problem is
how to segment a contour. The third is the most difficult and fundamental problem, as
mentioned before.

The first reliable technique for the segmentation problem was given by
Rosenfeld and Johnston [28]. Analytically a curvature is given by a function of local
derivatives, but actually it has the global nature suggested by Freeman. This was

extensively examined by Freeman and Davis [29]. The corner feature plays a crucial

20

Chapter 2: Literature Review

el

role. For example, sometimes differentiating between "O" and "D" and between "5"
and "S." So considerable effort has been spent in this area. However, the methods
developed do not always give stable and consistent results. Therefore an alternative
approach was taken, one based on a polygonal approximation [30], which is global and
very strong against noise. Considerable work has been done on polygonal
approximation methods. The work of Pavlidis and Horowitz [31] is very general. It is
not constrained to make a connection. In this sense, it gives a global approximation
which meets human intuition. Other polygonal approximation algorithms can be found

in [32].

5)Background Analysis:

Glucksman took an approach of background analysis. Each background pixel
takes a four-digit code. This maybe a binary, ternary, or higher-order code.
Classification was done using the feature vector, each element of which is a number of
the ternary coded pixels. The histogram of the background features, ternary codes,
was used. Theoretically, the feature vector has 81 dimensions, but 30 were sufficient
in practice. An experiment on alphabetic characters of nine fonts and 52 classes of
uppercase and lowercase letters was done. The total number of samples was 26643, a
large number. The data sets were provided by Casey of the IBM Watson Research
Laboratories. The correct recognition, rejection, and misclassified rates were 96.8%,

0.3%, and 2.9% respectively.

21

Chapter 2: Literature Review

123

Munson [33] proposed an interesting method, also based on background
analysis using contour following. A character image's boundary is traced and some
points are marked as extreme points. Using these extreme points, a convex hull is
constructed and connected regions adjacent to both the boundary and convex hull are
detected as concavity regions. Enclosures are detected when tracing the boundary.
Concerning the detection of the extreme points, however, only a simple procedure was
given. That procedure involves tracing a boundary, clockwise with a right hand
system. Points turned to the right were searched and consecutive extreme points were
connected with a straight line so that they lie inside the image.

Such a procedure is local and generates many extreme points; therefore some filtering
technique must be provided to find global extreme points. No further structural
analysis was done and both concavity and enclosure were used as a part of the
components of the feature vector. An experiment on a hand-printed 46-character was
conducted, which gave a 97% correct reading rate for test data and a 3% of error rate.

The data size was not specified.

LEARNING:

Researchers have been striven to incorporate new expertise into preprocessing,
feature extraction, and classification stages of their methods, and they have
experimented new approaches such as expert system, neural networks, mathematical

morphology, or any combination of them.

22

Chapter 2: Literature Review

Mathematical morphology:

Michell and Gallies [34] use the tool bf mathematical morphology to extract
cavity features as the starting input to their specialized digit recognizer. Thirty-
three numeral model were “painstakingly crafted” with an iterative refine-and-
test methodology over several thousand digits. Classification is performed by a

symbolic model matching process.

Expert system:

For iotally unconstrained characters some expert system have been developed
by R. M. Brown, T. M. Fay, and C. L. Walker, [35]. Suen et al. introduced a
multiple-expert system [36]. They report a very encouraging results. They

combine the expertise of these experts to enforce their strengths and to

suppress their weaknesses.

Neural Networks:

Recently, the use of Neural Networks to recognize characters and different
types of patterns has resurfaced (full description is found in chapter 4).

Very good results were recently reported with neural networks. In (37]
Krzyzak et al. first extracted features from the contours of numerals: 15

complex Fourier descriptors from the outer contours and simple topological

23

Chapter 2: Literature Review

L™]

features from the inner contours. These features are then presented as a three-
layer back-propagation networks. Le Cun et al. [38] achieved excellent results

with a back-propagation networks using size-normalized images as direct input.

Arabic OCR :

Amin, et. al. [39] presented a method for the recognition of multifont Arabic

texts as follows: digitization, line separation, word separation, segmentation of a word
into characters, identification of each character, aﬁd recognition of the word, A vertical
and horizontal histogram as a classifier was used, but poor results < 85%. El-Sheikh,
Talaat et. al. [40] wused Fourier descriptors from the coordinate sequences of the
outer contour of each character. A topological classifier is used to classify the stress
mark over or under the character contour. A reject option is introduced by the
classifier so that incorrectly segmented characters are detected.
In Amin, Adnan ef al. [41] Character recognition scheme is divided into three phases:
the digitization process, segmentation of words into characters, and identification of
characters. Character recognition was achieved despite several impeding properties of
the Arabic script, especially the connectivity of characters.

El Gowely, Khaled ef al. [42] wused three interleaved phases. The
segmentation phase attempts to produce an initial set of characters from the connected

text according to a set of predefined rules. The output is then passed to a preliminary

24

Chapter 2: Literature Review

Ak

classification phase that attempts to label the unknown characters into one of ten
possible classes according to a set of rules that acquire their parameter values through
learning. The last phase contains a more elaborate set of rules that recognize
characters within each class. This recognition phase is designed to allow errors during
segmentation and/or classification to be rectified through an adaptive recognition
technique. Impedovo, et al. [43] recognized handwritten Arabic numerals using
Fourier descriptors. The classification phase is based on a new similarity definition
introduced from one of the Banach algebra of continuous and bounded plane curves.
The learning phase is developed using a man-machine interactive system in which the
role of man as character-source and the role of the machine as recognizer are partially
interchangeable. El-Khaly, et al [44] investigated the use of moment-invariant
descriptors are investigated for the purpose of recognition of individual characters. An
algorithm for separation of individual characters was developed.

Sami El-Dabi, et al. [45] involves a statistical approach for character recognition.
This approach uses 'Accumulative Invariant Moments' as an identifier, which helped in
the segmentation of connected and overlapping Arabic characters. However, Invariant
Moments proved to be very sensitive to slight changes in a character shape. The
recognition zone was defined based on the mean and standard deviation for the
moments of a large sample of each character. However, this zone was increased, using
an empirical multiplier, to improve recognition rate. In [15] the character is segmented

into primary and secondary parts (dots and zigzags). The secondary parts of the

25

Chapter 2: Literature Review

character are then isolated and identified separately, thereby reducing the number of
classes from 28 to 18. The moments of the horizontal and vertical projections of the
remaining primary characters are then calculated and normalized with respect to the
zero-order moment. Simple measures of the shape are obtained from the normalized
moments. A 9-D feature vector is obtained for each character. Classification is
accomplished using quadratic discriminate functions.

Few paper appeared for on-line character recognition: In El-Wakil, ef al. [46]
features that are found to be independent of the writer style are represented as a list
(vector) of integer values, while those that are subjected to more variations are
represented using a Freeman-like chain code. This mixing of the representation
combined with a hierarchical organization of the characters proved to be useful in
reducing recognition time. In Al-Emami, ef al. [47] the length and the slope of each
segment was found, and the slope categorized into one of four directions. In the
learning process, specifications on the strokes of each character are fed to the
computer. In the recognition process, the parameters of each stroke are found and
select the collection of strokes which best matches the features of one of the stored
characters. In Al-Yousefi, ef al. [48] a hierarchical system for the recognition of on-
line Arabic mathematical symbols is developed. A precedence grammar has also been
developed for the recognition of one-dimensional Arabic mathematical formulas. The
set of characters comprising formulas includes sixteen isolated letters, ten digits and

eleven mathematical symbols. Several features are used in the recognition process,

26

Chapter 2: Literature Review

27

where different features are utilized sequentially in different stages of the hierarchical

system.

Chapter 2: Literature Review

Dt

CHAPTER 3

SHAPE DESCRIPTORS

Moments and other shape descriptors have been utilized as pattern features in a
number of applications to achieve invariant recognition of two-dimensional image
patterns [51]-[58]. A number of techniques have been developed to extract features
which are invariant with respect to object translation, scale change, and rotation. Hu
[51] first introduced moment invariants in 1961, based on methods of algebraic invari-
ants.

Teague [59] suggested the notion of orthogonal moments to recover the image from
moments based on the theory of orthogonal polynomials, and has introduced Zernike
moments, which allow independent moment invariants to be constructed easily to an
arbitrarily high order. Other orthogonal moments are Legendre moments, making use
of Legendre polynomials. In [60] rotational moments are used to extend the definition
of moment invariants to arbitrary order in a manner which ensures that their

magnitudes do not diminish significantly with increasing order. More recently, the

28

Chapter 3: Shape Descriptor

29

notion of complex moments [61], [62] has been introduced as a simple and

straightforward way to derive moment invariants.

Types of Moments:

Assume that the real image intensity function f (x, y) is piece-wise continuous and has

bounded support.

A. Geometric Moments :

The geometric moments of order (p+¢) of f(x,) are defined as

M, = T]ixp.yq.f(x,y).dx.dy (1)

—-00—00

where p, ¢ =0, 1,2, . . ,. The above definition has the form of the projection of the

function £ (x, ¥) onto monomial x*)7,

B. Legendre Moments :

The Legendre moments of order (m+n) are defined as

Chapter 3: Shape Descriptor

30

2m+1)(2n+1
4 =02 [Tp p o) sy

—0-0

wherem, n = 0,1, 2, ... o The Legendre polynomials {P,, (x)} [64] are a

complete orthogonal basis set on the interval [-1, 1]:

2
_Il P, (x)P,(x).dx = ma"'" €))

The n™-order Legendre polynomial is

d"
2"n! dx”

B(x)=Yax =

j=0

(x*-1)")

C. Zernike Moments :

The complex Zernike moments of order » with repetition / are defined as

1? .
A, = n—;—— _rT[V,,, (r, 9)] S (r.cos8,r.sin@).r.dr.do (5)
00

Chapter 3: Shape Descriptor

31

wheren=0, 1, 2, ..., «. and / takes on positive and negative integer values subject
to the conditions

n- |l = even, {| <n. (6)

The symbol * denotes the complex conjugate. The Zernike polynomials

Va(x, y)=V,(r.cos 6, r.sin 6) =R, (r) eil6 (7)

are a complete set of complex-valued functions orthogonal on the unit disk X*+l<1:

2
”[V,,, ,0)| Vo (r,0)r.dr.do = #5,,,,, 8, ®

00

The real-valued radial polynomials {R, () } satisfy the relations

!Rn, (r).R ,(r).r.dr = m 0. 9)

and are defined as

Chapter 3: Shape Descriptor

(n-fi/2

s (n—S)! n-2s
R,(r)= 2, (-1y. r
=0 S!((n; 1) _S)!((n; 1) —9)
= Z Byt ‘.
-::ICI[VEII

(10)

D. Pseudo-Zernike Moments :

A related orthogonal set of polynomials in x, y, and r to Zernike polynomials was
derived in [67] which has properties analogous to those of Zernike polynomials. This

set of polynomials differs from that of Zernike in that the real-valued radial

polynomials are defined as

n-Ji| _
R,(r)= Z(‘l)s- 2n+1-5)

n

= S 1[l|krk

=5

sl -s)(n+][+1-s)

?
k=l

(11

wheren=0, 1, 2, ..., ®. and / takes on positive and negative integer values subject

to || <» only.

32

Chapter 3: Shape Descriptor

149

This set of pseudo-Zernike polynomials contains (n+1)® linearly independent
polynomials of degree < n, whereas the set of Zernike polynomials contains only

(n+1)(n+2)/2 linearly independent polynomials of degree < n due to the additional

condition of

n-|[l] =even.

E. Rotational Moments :

The rotational moments of order » with repetition / are defined as
2
D,= ﬁr"e""’ f(r.cos8,r.sind)r.dr.do
00
(12)
wheren=0, 1, 2, ..., ». and / takes on any positive and negative integer values.

F. Complex Moments :

The notion of complex moments was recently introduced in [61] as a simple and

straightforward way to derive moment invariants. The complex moments of order

(p+q) are defined as

33

Chapter 3: Shape Descriptor

34

Cpq = TT(x+zy)".(x-iy)q.f(x,y).dx.dy (13)

—00~C0

wherep, ¢=0,1, 2,..., . and i =V-1.

In polar coordinates, the complex moment of order (p+q) can be written as

2
C, = ﬂarme"@"’)a fir.cos8,r.s5inB)r.dr.d6 (14)

¥
00

Noise Sensitivity

Moment invariants using various schemes based on the different moment types as
defined above have been shown to provide perfect invariance properties under noise-
free condition. However, in the presence of noise, the computed invariant moments
are expected not to be strictly invariant. Cho-Huak Teh [65] show that complex and

geometric moments less affected by noise than other moments.

Chapter 3: Shape Descriptor

Invariant Moments:

Using nonlinear combinations of geometric moments, Hu[51] derived a set of invariant
moments which has the desirable properties of being invariant under image translation,
scaling, and rotation.

Getting the central geometric moments defined as

M, = TT(x-f)"(y-f)"-f(x,y)-dxdy

—0—m0

(15)

Where

X

¥=—M , =
M, Y

X

(16)

Where M, = TTxp.yq.ﬂx,y).dx.dy

-0

Central moments has the property of translation invariance
From the second- and third-order moments, a set of seven invariant moments, which is

invariant to translation and rotation has been derived by Hu[51]:

¢1 = Mzo + Moz. (17)

35

Chapter 3: Shape Descriptor

36

02 = (My-Mp;)* + aM,\’ (18)
03 = (M0 -3M)"+ (3My, - M) (19)
04 = (Mag+My,)* + (My1+Mys)*. (20)

05 = (M0-3My5) (Mig+Mip) [(Mig+ M)
-3(My, + M03)2]+(3M21 - Mo3)(Myy + M)
*[3(M50+ M, 12)2'(M21 + M). (21)

06 = (Myo - Mo,)[(Mze+ M, 12)2'(M21 + Mos)z]
+4 My (Mag+ M) (Mo + Mys). (22)

07 = (3My; - Myy)(Mag+ Myp)[(Mag+ M)

- 3(May + Mas)'] +(3My, - Mys)(My, + Mys)
*[B(Mse+ M 12)2' My, + M03)2] : (23)

Chapter 3: Shape Descriptor

37

These functions can be normalized to make them invariant under a scale change by
using the normalized central moments instead of the central moments .

The normalized central moments are defined by:

_ M va
oq a (24)
00
where
a=(p+q)2 +1 (25)

which when substituted in equations (18) to (24) gives a set of seven moments, which

is invariant to translation, scale change, and rotation.

The @°s have large dynamic ranges. Thus it was found that [68] it is more practical to

deal with the logarithm of the magnitude of the ®*s . the seven invariant moments we

shall use are :
Ol =log| my + my, | (26)
@2 =log | (my-myy)* + 4m,) B (27)

Chapter 3: Shape Descriptor

@3 = log | (M3 -3m1)*+ (3my - mo3)’ |

4 =log| (magtmy,) + (myy+mgs)° |.

@5 = log | (msg-3myz) (mygtmyy) [(msg+ myp)’
- 3(myy + ms)’] +(3myy - mos)(myy + mg3)

*¥[3(msp+ mlz)z‘(mn + mo3)2] .

D6 = log | (mag - M) [z + M2) ~(myy + me)’]

+ 4 myy(mzg+ myp)(my, + mgs) |.

@7 =log | (3my; - my;)(mso+ myp)[(m3+ my)
- 3(my; + m03)2]+(3m21 = mo3)(my; + my;3)

*[3(mag+ my)’- (g + mgs)’] |.

(28)

(29)

(30)

G

(32)

38

Chapter 3: Shape Descriptor

39

For digital images the continuos image intensity function f(x , y) is replaced by a
matrix where x and y are the discrete locations of the image pixels. The integrals in

equation (1) and equation (15) are approximated by the summations:

M, =D > x"y.f(x,y)
x=0 y=0
(34)
M, = (x-%)(y-3)".f(xy)
x=0 y=0
(35)

where m and » are the dimensions of the image.
Any Arabic font can take on different shape depending on its position in a connected
segment of a word. Four different shapes for each character arise; viz.: separated,

beginning, middle, end. For style type Naskh (¢ the fonts are shown in Figure 2.

The value @°s is tabulated for all Arabic letters found in style (7&)in the four

different cases (separated, beginning, middle, end) in Tables 6, 7, 8, 9.

Chapter 3: Shape Descriptor

40

A T | 4 4

i qd < A. %

A A @ A

{ 44 5

I S IS TR SRR SR =

-) 0) ALY, U a e o

Vv o g
4 4 {
g 4 L

DY M

o~

49

&
woeibee

i

[V - =

Figure 2 Arabic letters for different shapes

Chapter 3: Shape Descriptor

Effect of Digitization:

The moment invariants are truly invariant under image translation, scaling, and rotation
only for a continuous image function. For our application the image functions are
discrete. The set of invariant moments equations (26) to (32), because of digitization,
is still invariant under image translation, but not so for image scale or image rotation
changes.

We examine the stability of the results against rotation for letter & with rotation 2°,

3°, 4°, 5°, 10°, 15° and the result is tabulated in Table 1. We notice a big variance

although we had used double precision (64 bit precision). To avoid dealing with very
high numbers we divided the scale of x and y in equation (35) by 10 (for example if we
were to use a 256 x2 56 pixel image, and the calculated difference and My which

require that we multiply £(x y) with a number which can reach 256° i.e. 1677716

could be very large thus affecting round off error).

41

Chapter 3: Shape Descriptor

42

Table 1 Letter & with rotation 2°, 3°, 4°, 5°, 10°, 15°

letter 1 ®(1) [@(2) |®(3) [0(9) O (5) @(6) | ©(7)

* P -0.664 |-2.824 {-5336 |-6.106 -12.092 -8.483 [-11.903

Y P -0.655 |[-2.783 |-5.867 |-5.357 -12.093 -6.758 1-10.970

¥ P -0.655 |[-2.781 |-5.881 |-5.369 -12.172 -6.770 |-10.995

¢ P -0.657]-2.781 |-7.005 |-4.907 -11.555 -6.396 |-10.873

o U -0.656 |-2.775 |[-6.904 |-4.904 -11.083 -6.379 |-10.880

Ve of 1-0662 |-2.747 |-5.173 |-4.355 -9.120 -5.992 |-10.203

Yo - |-0.670 |-2.738 [-4.708 |-4.145 -8.590 -5.834 -9.106

SdDv. [0.00528 [0.02588 [0.79929 [0.61515 |1.3838703 [0.8126 0.79796

Mean |-0.65986 |-2.77557 |-5.83914 [-5.02043 |-10.957857 |-6.65886 -10.70429

Sd/M [-0.008 |-0.00932 |-0.13688 |-0.12253 |-0.1262902 -0.12203 |-0.074546

Chapter 3: Shape Descriptor

43

We examined also the stability of the results against scale change for letter ¢ , we used

images with 64x64, 60x60, 50x50, 45x45, 40x40, 32x32 and the result is

tabulated in Tables (2).

Table 2 Letter £ with 65x65, 59x59, 45x45, 31x31, 29x29 Pixel images

size (1) ®(2) D (3) D(4) @(5) P(6) @(7)
t64x64 -0.704 -4.479 -6.123 -5.641 -12.175 -7.911 -11.535
t60x60 -0.699 -3.965 -6.465 -5.563 -11.603 -7.862 -12.045
£50x50 -0.701 -4.589 -5.978 -5.860 -12.731 -8.162 -11.782
t45x45 -0.709 -4.449 -3.773 -5.529 -11.389 -7.821 -11.285
t40x40 -0.705 -5.047 -6.371 -6.013 -12.431 -8.568 -12.301
&32x32 -0.702 -4.514 -5.900 -5.647 -11.590 -7.935 -11.554
Std. Dev. 0.0032 0.31525 }{0.24799 |{0.17195 |0.491373 | 0.2585 0.339734

Mean -0.70333 | -4.50717 | -6.10167 | -5.70883 | -11.9865 | -8.04317 | -11.75033
Std. / Mn -0.06994 | -0.04064 | -0.03012 | -0.040994 | -0.03214 | -0.028913

As seen from 1 and Table 2 that the seven moments invariants are not absolute

invariant against size changes but this variances can be accepted .

Chapter 3: Shape Descriptor

44

Khotanzad [66] normalized the image width and length [-1,+1] such that equation

(34) will be

+1 +]

M, =D > %"y f(%,y) (12)

x=-]y=-1

We implemented Khotanzad algorithm but the stability worsened as shown in Table 3

with respect to Table 2, for example Standard deviation/Mean for d (1) is =-0.00455

for without normalization and = -0.14121 with normalization.

Chapter 3: Shape Descriptor

bt 4

45

Table 3 Using Khotanzad normalization for letter £ with 65¢65,

39x59, 45x45, 31x31, 29x29 Pixel images

size o(1) | ®(2) [@(3) | @) | o(5) @ (6) D(7)
¢64x64 |-1688 |-6459 |-8856 |-8459 |-17.210 |-11.925 | -16.347
£60x60 [-1622 |-6283 |-8851 |-8299 |-17.072 | -11.696 | -15.985
£50x50 |-1471 |-5874 |[-8292 |-7.840 |-17.375 | -11.469 | -14.907
¢45x45 |-1388 |-6133 |-7717 |-7213 |-16513 |-11.152 | -13.678
£40x40 [-1287 |-5692 |-7648 |-7.048 |-14748 | -10347 | -13.444
£32x32 | -1.090 |-5453 |-6791 |-6.123 |-12957 | -9.425 | -11.623
Std. Dev. | 020113 [0.34558 |0.73074 |0.80171 | 1.612029 | 0.865073 | 1.616487
Mean | -1.42433 [-598233 [-8.02583 |-7.497 |-15.97917 |-11.00233 |-14.33067
Std./Mn [-0.14121 [-0.05777 | -0.09105 |-0.10694 | -0.100883 | -0.078626 | -0.112799

Chapter 3: Shape Descriptor

123

46

An in-depth study of the effects of sampling, digitizing, and quantization noise on
moment invariants will be found in C. H. Teh and R. T. Chin. [63].

T. Chin suggests the use of Simpson’s rule as a better approximation for equations (1)
and (15) rather than the traditional double summation methods. We implement this
method and tested it for rotation for letter % with rotation 2°, 3°, 4°, 5°, 10°, 15° and
the result is tabulated in Table 4. We have examined also the stability against scale
change for letter # with scale change, we use images with @ x 65, 59x59, 45x45,

31x31,29x29 and the result is tabulated in

Table 5. Simpson’s method gives little improvement.

Chapter 3: Shape Descriptor

1£9

47

Table 4 Using Simpson’s rule for letter &% with rotation 2°, 3°, 4°, 5°,

10°, 15°
letter (1) | @2 | P03 o (4) @ (5) ©(6) ©(7)
0° 0.657 |-2779 |[-5252 |-6.415 |-12.533 -8.777 -12.317
2° 0650 |-2.738 |-5826 [-5.192 [-11.975 -6.581 -10.701
3° 0.651 |-2.741 [-5917 [-5214 |-11.275 -6.617 -10.802
4° 0.651 |-2.744 |-7.029 |-4746 | -10.983 -6.215 -10.681
5° -0.650 |-2.736 |-6.826 |-4.753 | -10.663 -6.220 -10.729
10° -0.657 |-2.707 |[-5017 |-4236 | -8.863 -5.832 -10.073
15° -0.666 |-2.697 |-4576 |-4.050 | -8.379 -5.699 -8.932
Std. 0.00547 [0.02476 |0.84393 [0.72451 |1.42186 |0.95802 | 0.93213
Mean |-0.65457 |-2.73457 | -5.77757 | -4.94371 |-10.6673 |-6.563 -10.605
Sd./M | -0.00836 |-0.00905 | -0.14607 |-0.14655 |-0.13329 |-0.14597 | -0.0879

Chapter 3: Shape Descriptor

48

Table S Using Simpson’s rule for letter & with 65x65, 59x59, 45x45,
31x31, 29x29 Pixel images

letter | (1) [@2 | ©3) | ®(4) | @5 | @(6) @(7)
£64x64| 0702 | 4532 | 5913 | -5.562 | -12.166 | -7.853 | -11.304
¢60x60| -0.698 | -4217 | -6.109 | -5.501 | -11.499 | -7.750 | -11.421
£50x50| -0.697 | -4914 | -5959 | -5929 | -12.292 | -8.389 | -11.906
£45x45| 0708 | 4239 | -5674 | -5.576 | -11.354 | -7.787 | -11.347
£40x40| -0701 | -5283 | -5862 | -5.877 | -12.267 | -8.563 | -11.767
£32x32| 0702 | -4599 | -5606 | -5.517 | -11.185 | -7.910 | -11.283
Std. Dev. | 0.003543 | 0.374406 | 0.170048 | 0.174088 | 0.458553 | 0.31498 | 0.241919
Mean |-0.70133 | -4.63067 | -5.85383 | -5.66033 | -11.7938 | -8.042 | -11.5047
Std./Mn | -0.00505 | -0.08085 | -0.02905 | -0.03076 | -0.03888 | -0.03917 | -0.02103

A Complete set of the seven moments for all Arabic characters in their four positions

are listed in tables A, B, C, D. The variances between the moments of each letter is

large enough such that it can be distinguished by the classifier.

Chapter 3: Shape Descriptor

49

Table 6 beginning letters

letter (1) ®(2) | ®3) O (4) @ (5) ® (6) @ (7)
i -0.693 -2.341 -5.649 -5.235 -10.87;7 -6.969 -10.788
o -0.632 -2.295 -4.325 -4.541 -10.348 -6.073 -8.975
& -0.650 -2.159 -3.999 -4.442 -8.663 -5.769 -9.917
& -0.667 -2.530 -4.191 -4.785 -9.281 -6.302 -10.013
z -0.612 -3.840 -4.510 -4.370 -9.048 -7.438 -8.899
' -0.590 -3.999 -4.714 -4.658 -9.382 -6.671 -9.737
& -0.656 -3.531 -4.060 -4.076 -8.224 -6.774 -8.398
3 -0.587 -2.324 -5.366 -4.577 -9.642 -5.942 -9.776
3 -0.655 -3.184 -4.696 -4.096 -9.375 -5.791 -8.495
J ;0.624 -2.518 -3.999 -4.193 -8.542 -5.704 -8.369
J -0.677 -3.868 -5.475 -5.098 -10.384 -7.374 -11.627
o -0.634 -3.635 -3.699 -3.325 -6.876 -5.287 -7.224
o -0.606 -3.401 -3.562 -3.400 -7.343 -5.225 -6.908
e -0.606 -3.035 -3.913 -3.544 -7.292 -5.459 -7.813
va -0.648 -3.726 -4.114 -4.050 -8.273 -5.926 -8.292
& -0.602 -2.266 -3.987 -3.913 -8.539 -5.300 -7.872
& -0.586 -2.223 -4.453 -4.176 -8.749 -5.361 -8.570

Chapter 3: Shape Descriptor

50

(1) ®(2) ®(3) D (4) @ (3) @ (6) @ (7)

4 -0.605 -3.488 -4.128 -4.299 -9.217 -6.043 -8.521
¢ -0.632 -3.562 -4.156 -4.138 -8.762 -6.422 -8.311
i -0.608 -2.423 -3.843 -4.159 -8.738 -5.551 -8.176

d -0.620 -2.405 -4.121 -4.402 -10.710 |-5.606 -8.664
d -0.604 -2.873 -3.756 -3.841 -8.074 -5.504 -7.671
d -0.643 <2419 -3.781 -4.368 -8.949 -5.582 -8.465
P -0.582 -2.552 -3.610 -3.672 -7.317 -4.989 -8.194
O -0.615 -2.633 -3.282 -3.995 -8.455 -5.436 -7.639
0 -0.499 -1.968 -3.242 -3.285 -6.572 -4.288 -7.040

3 -0.644 -3.513 -4.378 -4.446 -9.808 -6.240 -8.861

¢ -0.611 -2.884 -4.394 -3.720 -8.437 -5.429 -7.788

Chapter 3: Shape Descriptor

51

Table 7 Isolated letters
letter @(1) @(2) @ (3) D (4) @ (3) @ (6) D (7)
1.1 -0.672 -2.546 -6.027 -4.745 -10.732 -6.805 -10.145
2, @ -0.670 -3.747 -5.117 -4.261 -8.972 -6.663 -9.449
3.4 -0.634 -4.916 -4.638 -4.673 -9.401 -8.688 -9.602
4,4 -0.630 -3.938 -3.859 -4.122 -8.126 -6.148 -8.737
S.¢ -0.655 -3.158 -4.485 -3.912 -8.153 -5.522 -8.483
6.C -0.638 -3.134 -5.240 -4.290 -9.079 -5.959 -9.551
7.t -0.647 -2.280 -4.963 -4,938 -9.999 -6.101 -10.087
8.4 -0.616 -2.395 -4.856 -4.001 -8.456 -5.282 -8.897
9.3 -0.654 -3.026 -5.887 -4.304 -10.003 -5.867 -9.414
10. -0.654 -2.426 -4.978 -4.243 -8.919 -5.660 -9.148
1L) -0.675 -2.466 -5.773 -4.192 -9.600 -5.855 -9.208
12, -0.657 -3.500 -3.769 -3.820 -7.618 -5.720 -8.488
13, Ji -0.605 -2.351 -3.726 -4.072 -8.392 -5.330 -8.004
14, ve -0.631 -3.061 -4.170 -4.518 -9.536 -6.064 -8.873
15, va -0.661 -3.059 -4.500 -5.272 -10.159 -6.886 -11.503
16. » -0.652 -4.794 -4.833 -4.682 -9.926 -7.091 -0.464
17. & -0.607 -4.176 -4.142 -4.093 -8.211 -6.182 -9.546

Chapter 3: Shape Descriptor

52

letter | ®(1) | ®(2) | ®(3) | ©(4) @ (5) @ (6) @ (7)
18.¢ |-0678 [-3447 |-5418 |-4.447 | -9.389 -6.455 | -10.058
20, | -0671 [-3423 |-4189 |-3899 | -8.073 -5.752 -8.116
2.4 | -0662 |-2901 |-4766 |-4313 | -8.856 -5.780 -9.729
22.4 | -0588 |-2981 |-4226 |-3.605 | -7.623 -6.338 -7.734
23.d | -0.667 |-2978 |-4460 |-4430 | -9.563 -6.143 -8.885
24.0 | -0679 |-2472 |-5496 |-4.101 | -9.892 -6.152 -8.901
25.0 | -0615 |-2271 |-4565 |-4235 | -8.638 -5.422 -9.510
26,0 | -0690 |-2443 |-4885 |-4370 |-10.040 | -6.857 -8.999
27.9 | -0669 |-2415 |-5147 |-4562 | -9.598 -6.654 -9.539
28.¢ |-0572 |-2335 |-3717 |-3.690 | -7.440 -4.869 -7.752

Chapter 3: Shape Descriptor

Tdw

53

Table 8 Ending letters
letter | ®(1) |®(2) |03 | ©(4) @ (5) @ (6) @ (7)
1.1 -0.637 -2.449 -3.539 -4.254 -8.152 -5.479 -9.232
2, v -0.656 -3.477 -5.605 -4.353 -9.369 -6.159 -0.732
3.4 -0.660 -2.984 -3.456 -3.977 -7.801 -5.556 -7.898
4, & -0.645 -4.760 -3.579 -4.117 -8.004 -6.513 -8.360
S5.¢ -0.551 -2.399 -4.176 -3.720 -7.706 -5.279 -8.062
6.C -0.580 -4.058 -3.548 -3.446 -7.655 -5.635 -6.952
7.t -0.585 -2.351 -5.029 -5.043 -10.570 -6.255 -10.103
8. -0.623 -2.905 -3.275 -3.161 -6.387 -4.640 -7.086
9,3 -0.582 -1.948 -3.417 -3.278 -6.722 -4.302 -6.847
10.0 -0.582 -2.930 -4.238 -4.190 -8.409 -6.024 -9.235
11.0 -0.584 -2.392 -3.456 -3.394 -7.122 -4.963 -6.881
12,04 -0.555 -2.248 -3.433 -5.448 -9.899 -7.043 -10.549
13.0 -0.586 -3.083 -3.112 -3.678 -7.578 -5.247 -7.096
14.0a -0.554 -2.299 -3.657 -3.906 -7.688 -5.060 -8.795
15.0a -0.629 -3.207 -4.174 -4.554 -9.109 -6.223 -9.034
16 -0.627 -3.219 -3.889 -3.468 -7.165 -5.079 -7.686
17.5 -0.606 -2.563 -3.720 -3.618 -7.294 -4.900 -8.034

Chapter 3: Shape Descriptor

54

letter | ®(1) | ®(2) | ®(3) | @(4) D(5) @ (6) @ (7)

18.¢ | -0.581 |[-2413 [-4539 |-3.949 | 8471 -5.160 -8.264
19.¢ [-0590 [-2.108 |-4612 |-5010 | -9.928 -6.082 | -10.026
20 | 0665 |-2825 |-3.826 |-3.939 | -7.991 -6.178 -7.955
2.6 [-0602 |[-2379 |-3538 |-3.785 | -7.795 -5.127 -7.496
22.4 0555 |-3326 |-2908 |-3.184 | -6260 | -5.263 -6.673

23.J | -0593 |-2310 |-2.887 |[-3461 | 6675 |-4.647 | -7.022
24.p | -0559 |-2138 |-3542 |-3528 | -7.096 | -4.756 -7.486
25.0 | -0599 |-2786 |-4052 |-3.820 | -7.893 -5.213 -7.921

26.6 | -0613 |-2247 |-3563 |[-3458 | -6969 | -4582 |-10.576
27.9 | -0591 |-2733 |-3418 [-3525 | -6.998 -4.899 -8.024
28.5 [-0565 |-2551 |-3486 |-3396 | -6944 | -4.763 -7.040

Chapter 3: Shape Descriptor

55

Table 9 Center letters
letter | ©(1) | ®(2) |[®@3) | o(a) @ (5) @ (6) ®(7)
1.1 -0.665 -2.492 -4.110 -4.410 -8.986 -5.784 -8.727
2.« -0.583 -2.119 -4.323 ~3.742 -7.781 -4.804 -8.523
3.a -0.619 -2.817 -3.500 -3.824 -7.500 -5.240 -8.102
4. & -0.617 -3.105 -3.389 -3.780 -7.368 -5.333 -8.272
5.¢ -0.634 -3.835 -3.906 -3.848 ~7.737 -5.773 -8.343
6.¢ -0.648 -4.933 -3.880 -4.046 -8.177 -6.562 -8.144
7.¢ -0.598 -2.720 -3.208 -3.594 -7.217 -5.004 -7.092
8.9 -0.608 -2.502 -3.442 -3.400 -6.821 -4.652 -8.839
9.4 -0.627 -2.391 -3.893 -3.961 -7.891 -5.162 -8.843
10.0 -0.592 -2.566 -3.856 -3.965 -8.470 -6.350 -7.889
11.5 -0.626 -3.549 -4.125 -3.946 -8.837 -6.428 -7.986
12,04 -0.618 -6.421 -3.202 -3.083 -6.228 -6.354 -7.184
13.0% -0.564 -4.976 -3.197 -3.289 -7.434 -6.854 -6.536
14.0a -0.564 -2.644 -3.537 -3.328 -7.429 -4.867 -6.770
15.0a -0.637 -2.636 -3.975 -3.923 -8.276 -5.318 -7.909
16.L -0.587 -3.794 -3.562 -3.263 -7.299 -5.296 -6.688
17.5 -0.573 -4.349 -3.748 -3.386 -7.019 -6.038 -7.246

Chapter 3: Shape Descriptor

123

56

letter | ®©(1) @ (2) ®(3) O (4) D(5) @ (6) @ (7)
18.¢ | -0589 |-3814 |[-3294 |[-3327 |[-6646 | -5239 | -7.320
19. ¢ -0.590 |-5355 |-3289 |-3.541 | -7.001 6.798 | -7.320
20,4 | -0.576 |-2450 |[-3.147 |-3.444 |-6742 | -4670 |-1.714
21.3 |-0.600 |-3.150 |-3535 |-4.023 | -7.936 | -5638 | -7.969
22,4 [-0578 |-3338 |-3202 |-3.543 | -7.351 5730 | -6.948
23.4 |-0583 |-2756 |-3.093 |-3397 | -6712 | -4788 | -6.923
24, 5 -0.634 |-3868 |-359 |-3.499 | -7.049 | -5471 -7.995
25,0 |-0517 |-1842 |[-2778 |-3.191 | -6.187 | -4115 | -6.827
26, » 0479 | -1.734 |-4462 |-3969 | -8282 |-4914 | -8.406
27. 3 -0.589 |-2994 |-4075 |-4.657 | -9.468 -7.446 | -9.053
28.s | -0591 |-3390 |-4280 |[-3.756 | -7.839 | -5478 | -8.081

Chapter 3: Shape Descriptor

CHAPTER 4

NEURAL NETWORKS

Neural networks is a computational paradigm which solves problems with
massive interconnections of simple processors, and several models have been proposed
for classification problems such as discriminating between underwater sonar returns,
forming text-to-phoneme rules, and so on.

Classifiers determine which of M classes is most representative of an unknown
static input pattern containing N input elements. In an image classifier the inputs might
be the gray scale level of each pixel for a picture and the classes might represent
different objects. Unlike the traditional classifier, in which, strong assumptions are
typically made concerning underlying distributions of the input elements, the neural net
classifier makes no assumptions concerning the shape of underlying distributions but
focuses on errors that occur where distributions overlap. It may thus be more robust
than classical techniques and work well when inputs are generated by nonlinear

processes and are heavily skewed.

57

Chapter 4: Neural Networks

X1

58

Input values are fed in parallel to the first stage via N input connections. Each
connection carries an analog value. After classification is complete, only that output
corresponding to the most likely class will be "high"; other outputs will be "low". If the
correct class is provided, then this information and the classifier outputs can be fed
back to the first stage of the classifier to adapt weights using a learning algorithm.
Adaptation will make a correct response more likely for succeeding input patterns that

are similar to the current pattern.

Single Layer Perceptron:

A perceptron that decides whether an input belongs to one of two classes

(denoted A or B) is shown in Figure 3.

X2

Xn

Chapter 4: Neural Networks

123

Figure 3 Perceptron

The perceptron forms two decision regions separated by a hyperplane. In this
case inputs above the boundary line lead to class A responses and inputs below the line
lead to class B responses.

The single node computes a weighted sum of the input elements, subtracts a
threshold (8) and passes the result through a hard limiting nonlinearity such that the
output y is either +1 or -1. The decision rule is to respond class A if the output is +1
and class B if the output is -1.

Rosenblatt [77] developed the first perceptron convergence procedure for
adjusting weights. First the weights and the threshold value are initialized to small
random non-zero values. Then a new input with N continuous valued elements is
applied to the input and the output is computed. Connection weights are adapted only
when an error occurs.

Rosenblatt [77] proved that if the inputs presented from the two classes are
separable (that is they fall on opposite sides of some hyperplane), then the procedure
converges and positions the decision hyperplane between those two classes. This
decision boundary separates all samples from the A and B classes. One problem with
the perceptron convergence procedure is that decision boundaries may oscillate
continuously when inputs are not separable and distributions overlap. The least mean

square (LMS) is a modification to the perceptron convergence procedure which

59

Chapter 4: Neural Networks

minimizes the mean square error between the desired output of a perceptron-like net
and the actual output [80,81,71].

The LMS algorithm is identical to the perceptron convergence procedure except
the hard limiting nonlinearity is made linear or replaced by a threshold-logic
nonlinearity. Weights are thus corrected on every trial by an amount that depends on
the difference between the desired and the actual input. A classifier that uses the LMS
training algorithm could use desired outputs of 1 for class A and O for class B. During
operation the input would then be assigned to class A only if the output was above 0.5.

The decision regions formed by perceptrons are similar to those formed by
maximum likelihood Gaussian classifiers which assume inputs are uncorrelated and
distributions for different classes differ only in mean values. The perceptron training
algorithm makes no assumptions concerning the shape of underlying distributions but
focuses on errors that occur where distributions overlap. It may thus be more robust
than classical techniques and work well when inputs are generated by nonlinear
processes and are heavily skewed and non-Gaussian. The Gaussian classifier makes
strong assumptions concerning underlying distributions and is more appropriate when
distributions are known and match the Gaussian assumption. The adaptation algorithm
defined by the perceptron convergence procedure is simple to implement and doesn't
require storing any more information than is present in the weights and the threshold.
The Gaussian classifier can be made adaptive [73], but extra information must be

stored and the computations required are more complex.

60

Chapter 4: Neural Networks

Multi-Layer Perceptron:

When classes cannot be separated by a hyper plane, the perceptron convergence
procedure is not appropriate. Distributions for the two classes for the exclusive OR
problem are disjoint and cannot be separated by a single straight line. This problem
was used to illustrate the weakness of the perceptron by Minsky and Papert [75].
Multi-layer perceptrons overcome many of the limitations of single-layer perceptrons

Multi-layer perceptrons are feed-forward nets (No weight feed back) with one
or more layers of nodes between the input and output nodes as seen in Figure 4 These
additional layers contain hidden units or nodes that are not directly connected to both
the input and output nodes. The capabilities of multi-layer perceptrons stem from the
nonlinearities used within nodes. If nodes were linear elements, then a single-layer net
with appropriately chosen weights could exactly duplicate those calculations per-
formed by any multi-layer net. From intersections of the half-plane regions formed by
each node in the first layer of the multi-layer perceptron, a two-layer perceptron can
form any, possibly unbounded, convex region in the space spanned by the inputs. Each
node in the first layer behaves like a single-layer perceptron and has a "high" output
only for points on one side of the hyperplane formed by its weights and offset. A

logical AND operation in the output node is performed and results in a decision region

61

Chapter 4: Neural Networks

123

62

that is the intersection of all the half-plane regions formed in the first layer. These
convex regions have at the most as many sides as there are nodes in the first layer.

A three-layer perceptron can form arbitrarily complex decision regions and can
separate the meshed classes. It can form regions as complex as those formed using
mixture distributions and nearest-neighbor classifiers [71].

Kolmogorov [74] states that any continuous function of N variables can be com-
puted using only linear summations and nonlinear but continuously increasing functions
of only one variable. It effectively states that a three layer perceptron with N(2N+1)
nodes using continuously increasing nonlinearities can compute any continuous
function of N variables. A three-layer perceptron could thus be used to create any

continuous likelihood function required in a classifier.

Chapter 4: Neural Networks

63

y
o1 Wit Xpit

+
" 1 Q fl
pit
21N k11
tu
Wk12 —

Xpk3

=1 Xpk2

</
K
KRS
NN
+ (™M ’_;q.— ™M
[~ =

/ '{,"‘ “\ 4 1 Xpk3
J g'.‘,dhée

AN
(252

T

Figure 4 Multi-layer Perceptron.

where wy is the weight of layer 7 from node # at layer (i -1) to node Jj at layer i.

fis a nonlinear function .

The number of second layer nodes required in the worst case is equal to the
number of disconnected regions in input distributions. The number of nodes in the first

layer must typically be sufficient to provide three or more edges for each convex area

Chapter 4: Neural Networks

generated by every second-layer node. There should thus typically be more than three

times as many nodes in the second as in the first layer.

TRAINING

Although it cannot be proven that the training algorithms converge as with
single layer perceptrons, they have been shown to be successful for many problems
[78].

The problem of finding a set of weights for a fixed-size networks which
performs the desired mapping exactly for some training set is known as the loading
problem. It has been shown that the loading problem is NP-complete [72, 84]. So if we
have a very large problem, e.g., if the dimension of the input space is very large, then it
is unlikely that we will be able to determine if a weight solution exists in a reasonable
amount of time. Learning algorithms like back-propagation are based on a gradient
search, which is a greedy algorithm that seeks out a local minimum and thus may not
yield the exact mapping. The back-propagation algorithm is a generalization of the
LMS algorithm. It uses a gradient search technique to minimize a cost function equal
to the mean square difference between the desired and the actual net outputs. The
desired output of all nodes is typically “low” unless that node corresponds to the class
the current input is from in which case it is “high”. The net is trained by initially
selecting small random weights and internal thresholds and then presenting all training

data repeatedly. Weights are adjusted after every trial using side information

64

Chapter 4: Neural Networks

specifying the correct class until weights converge and the cost function is reduced to
an acceptable value. An essential component of the algorithm is the iterative method
that propagates error terms required to adapt weights back from nodes in the output
layer to nodes in lower layers.

It is well known that finding local weight solutions using back-propagation is
extraordinarily slow. Attempts to speed learning include variations on simple gradient
search [83,86], line search methods [82], and second-order methods[79,85].

However, they usﬁally introduce additional parameters which are difficult to

determine, must be varied form one problem to another, and if not chosen properly can

slow the rate of convergence.

Kalman Filter Algorithm:

Robert Scalero [89] reduces the problem to a system of linear equations that
relates the weight vector Wj; to the summation outputs Yok and the node inputs x,;.
1,k
The inputs to first layer nodes and outputs from output layer nodes are specified by the
training pattern and its associated desired response opy , respectively and the desired
summation outputs dyx for output layer nodes are also known through the inverse
function of the desired response oy . However, none of the node /O are known and

must be estimated.

The estimate of the desired summation outputs dyix is

65

Chapter 4: Neural Networks

Apjie= Yyt T ek)
Where is the step size and eg. Is the error signal which is for the output layer is

epric =J (Vpri) Opk = Xprk).

and for hidden layer
€k = f (prk). Z (ep,j_l,i‘ Wik)
i

When using these estimates in the system of linear equations, the solution of the
weight vector wy, at each node will not be an exact one. It is then necessary to update
the desired summation output estimates dj, with respect to the error produced at the
output of the network. As training patterns are applied to the network, these estimates
improve and consequently, so do the weight vectors.

The entire training set is run through the network and the error signals are
calculated and used to update the desired summation output estimates dz. At this
point, new weights are calculated by using the system of linear equations at each node.
The training set is then run through the network again and the process is continued
until convergence is reached.

It is not necessary to wait for the entire training set to be run through the
network before an update is performed, but that updates may be performed for each

training pattern (iteration).

66

Chapter 4: Neural Networks

67

Formulation:

The problem is to minimize, with respect to the summation outputs y,, the total

mean-squared error £ given by

M
E=Z(dp—yp)2 2)

p=l

where M is the number of training patterns.

Minimizing this error by taking partial derivatives of E with respect to each
weight and equating them to zero. The result will be a set of N+1 linear equations
where N+1 is the number of weights in the neuron. Minimizing the error £ with

respect to a weight w, produces

OFE M oy
—=23(d - 2=
awn p=1(g yp)a n (3)

for n = 0 through N. The summation output JYp is the inner product of the input vector

x, and weight vector w.

N
Yo =Zwi"xpi

i=0

Chapter 4: Ncural Networks

68

Taking the partial derivative of the summation output Jp with respect to a weight w.

Equation (3) can be written as

M M
T. _ Z T
pr,,w X, = X pu Xy W

=] p=1

for n =0 through N.

Rewrite the right-hand side of equation (4) as :

M N M N
ZZ wixpixpn = Z xpn Z wixpi
p=1i=0 =1 i=0

Then changing the right summation to a vector multiplication:

A % 1
Tx,= 2

X, WX, xp,,xpwJ
p=l p=l1

for n =0 through N.

Defining
M
R= Z xpxpT
p=1

and

(4)

()

(6)

Chapter 4: Neural Networks

69

M
p= dexpr Q)]

p=l
equation (4) can be expressed in matrix form

P=Rw. | (8)

We can solve equation (8) for w by using one of the standard techniques for solving a

system of linear equations

Instead of running all the training patterns through the network before each update is
performed, this poses no problem when the training set consists of a small number of
patterns. Scalero [89] modified the correlations in equations (6) and (7) and selected
the training patterns to the network randomly.

Redefine equations (6) & (7) as

R(t)= Zi:x(k)xr(k)

, ©)
p()= kz_:d(k)x(k)

Chapter 4: Neural Networks

t
R(t)=) x(k)x" (k)
k=1
! ©
p(1)=) d(k)x(k)
k=1
where # is the number of the present iteration starting at /=1.
Equation (9) are estimates of the correlation matrix and correlation vector, respec-
tively, and they improve with increasing time. The weight at each node can now be
updated at every iteration (training pattern) since one does not have to wait M training
patterns for these estimates to be available.
Robert Scalero [89] inserted a forgetting factor b to overcome a problem that can be
described as follows with the exception of the first layer, estimates of one layer are
based upon data that layer receives from the previous layer. Since the previous layer is
untrained at the beginning, the correlation estimates are not as good as they will be at
or near the end of the training period. These inaccurate older estimates, however, are
still strongly included in the estimation process later on when the network has gotten
smarter. This would, at best, increase the training time of the network.

then equation (9) became

R(t) = ib""x(k)xr(k)

, (10)
P(t)=> b"*d(k)x(k)
k=1

70

Chapter 4: Neural Networks

71

Where b is a constant less than 1.

The forgetting factor will allow the new information to dominate while the
correlation estimates from earlier training will have negligible effect on the current esti-
mates.

The recursive form of equation (10) is

R(H=bR(-1)+x()x'()

P& =05bP(t- 1)+ d() x(2). (11)

Specifying the system correlations this way eliminates the problem associated
with large numbers of training patterns. In fact, for very large training sets,
convergence is often achieved long before all the training patterns have been presented
to the network. To obtain a recursive equation for the inverse autocorrelation matrix
R'(t), Scalero [89] used the Kalman filter [87], [88] after making some modifications.
Thus, for the j* layer we have the following equations:

The Kalman gain vector:

R(t-Dx.,(t)
Al R"(t—-J ll)x (1) (12)
b Xt j-1

Chapter 4: Neural Networks

123

72

The update equation for the inverse matrix:
R;'(0)=[R;'(t-1)-k, (O] R 1~ 1)]/ 8, (13)
The update equation for the weight vectors in the output layer:
wi(e) = wit - 1) + k(0)(dy - ya) (14)
And the update equation for the weight vectors in the hidden layers:
Wie) = Wt - 1) + k(e (15)

where ¢ is the present iteration number, and £ is the node in the layer. Constants b;and

1 are the forgetting factor and back-propagation step size, respectively, in the j* layer.

The algorithm:
1) Initialization
eRandomize all weights in the network.

elnitialize the inverse matrix R,

Chapter 4: Neural Networks

*Equate the node offset x;., of every node to some nonzero constant for layers J

=1 through L.

2)Select training pattern,
Randomly select an input/output pair to present to the network. The input

vector is xp and desired network output vector is o.

3)Run_selected pattern through the network.

For each layer j from 1 through L, calculate the summation output

N
YVie = Z(xj—l,i‘wjla‘) (16)
i=0
and the function output

l—exp(—a.yjk) ,
1
l+exp(-a.y,) an

X i =f(yjk)=

for every node k. N is the number of inputs (not including the offset) to a node,

and constant a is the sigmoid slope.

4) Invoke Kalman filter equations.

For each layer j from 1 through L, calculate the Kalman gain

73

Chapter 4: Neural Networks

-1
__ Rix, (18)
j T p-1
b, +x, R 'x,,

and update the inverse matrix
J i1

R =|R'-kx[,R;"]/b (19)

3)Backpropagate error signals.

Compute the derivative of f(;) using

2a.exp(-a.y,)

f)=

2 (20)
[1 +exp(-a.y,)]
Calculate error signals in the output layer, where j = L, by evaluating
ere=f'Wix) (0r - X1x) 1)

for every node k.

For the hidden layers, starting at layer j =L - 1 and decrementing through j =

1, find ervor signals by solving

74

Chapter 4: Neural Networks

€ = f'(yjk)z (ej+1,iwj+l,i,k) (22)

for every node in the j* layer.
6) Find the desired summation output.

Calculate the desired summation output at the layer by using the inverse function

d, =11t

a l-o,

(23)

for every ¥ node in the output layer.

7)Update the weights.

The weight vectors in the output layer L are updated by

Wi = Wi + ki (di - yir) (24)

for every & node.

For each hidden layer j =1 through L - 1, weight vectors are updated by

Wik = Wi + k] AVE (295)

for every #* node.

75

Chapter 4: Neural Networks

¥ -

76

8)Stopping criteria

e Use the mean-square error of the network output as a convergence test or

* Run the algorithm for a fixed number of iterations .

This algorithm was tested on different sets of data using a program developed in
the C programming language (see Appendix A). The error function is defined as the
sum of the square of the error. The iterations are terminated when the sum reaches a
value smaller than 0.01. The result for Arabic letters is shown in Figure 2 for

separated, beginning, middle, and end characters, (one example for each distinct

output).

Chapter 4: Neural Networks

123

CHAPTER S

IMPROVED TRAINING ALGORITHM

Numerical experience with the Kalman algorithm, Eq. (4-13), indicates that it is
sensitive to the effects of computer roundoff and is susceptible to an accuracy
degradation due to the differencing of positive terms. For example, suppose that two
numbers that agree to four digits are differenced and if the original numbers were only
known to, say, six-digit accuracy, then the difference will have only two-digit
accuracy.

Potter [91] recognized that numerical accuracy degradation is often
accompanied by a computed covariance matrix that loses its positive definiteness
(Note: A symmetric matrix X ,with dimension n x n, is positive definite if and only if
a" X a >0 for all n vectors a with |jaf| > 0). By reformulating the Kalman algorithm in
terms of a square root covariance matrix we can preserve nonnegativity of the com-
puted covariance (which is only an implicit quantity in the algorithm). It turns out that

introduction of the covariance square root does indeed improve numeric accuracy and

77

Chapter 5: Improved Training Algorithm

T -—

78

stability. Examples illustrating the algorithm's numerical deterioration are discussed in

[92].

From matrices elementary, if matrix X can be writtenas X= ¥x Y with Yisa

square matrix, we say that ¥ is a square root of X. It was proved [92] that every positive

definite matrix has a square root

In our problem, set
R=8x§" R=8x §*
where $ isthe postriory estimate of the inverse of the covariance matrix
M
— T
R= prxp
Pl
S is the square root of the inverse of the covariance matrix R.

§ isthe square root of the postriory estimate of the inverse of the

covariance matrix R

Then the kalman equation for the estimate of the covariance matrix R:
R =R-Kx.R

Where X is the gain of the kalman filter

will become

M

Chapter 5: Improved Training Algorithm

1£9

79

R=5.8"=858"-88" x".F'.SS
2
R=S.[I-v. F.y7)8" @
where
v=(x8)" and F=vw+1 3)
From equation (2) one can define
§=85-vF)" 4)
From matrices elementary Householder [93] { I - vF'v } could be factored as
I-vF'W =(I-ow') (5)
where o is a root of the quadratic equation
V'vat-20+F! =0 (6)
From matrices elementary, The roots of equation I - vF ™ v’ = (I -aw')? are

a= :/W\/lf—i-l—)- and to avoid cancellation problems we choose

Chapter 5; Improved Training Algorithm

149

80

1
“= JFFD ®

When equation (5) is substituted into equation (4) one obtains

K’ (8)

K=Sv/F ©)

Equations (8) & (9) can be used with the update equation for the weight vectors in the

output layer:

wid®) = wit - 1) + ko(£)(dk - yik) (10)

and the update equation for the weight vectors in the hidden layers:

wie) = wit - 1) + k(e (11)

where ¢ is the present iteration number, and £ is the node in the layer.

Chapter 5: Improved Training Algorithm

VT durnd

81

correlation estimate are not as good as they will be near the end of the training. These
bad estimate are still strongly included in the estimation process later on. To overcome

this problem we have to insert a forgetting factor 5 so equations (3) & (8) will be

F=vly+b (12)

< JF

F .
S= S—WKVT b (13)
Wherebis<1.
The algorithm:

1) Initialization:
eRandomize all weights in the network.
eInitialize the matrix § by small non-zero random number.
eEquate the node offset x;.1 of every node to some nonzero constant for

layers j = 1 through L.

2)Select training pattern.

Randomly select an input/output pair to present to the network. The input

vector is xp and desired network output vector is o.

Chapter 5: Improved Training Algorithm

o

82

2)Select training pattern,

Randomly select an input/output pair to present to the network. The input

vector is Xo and desired network output vector is o.

3) Run selected pattern through the network.

For each layer j from 1 through L, calculate the summation output

Z(f=1,i° }Vﬂa (14)

and the function output

. l-exp(-ay,)
F ()= 1+exp(—a.yjk) (1)

for every node k. N is the number of inputs (not including the offset) to a node, and

constant a is the sigmoid slope.

4) Invoke filter equations.

For each layer j from 1 through L, calculate the Kalman gain
v =X.S 16
J) (16)
The predicted residual variance inverse will be

o;=1/(v'v +b) %)

Chapter 5: Improved Training Algorithm

1£9

83

Then the unweighted kalman gain will be

k=8, ()

5) Update the inverse matrix
Calculate:

__ 5
'Yj_l'l'.\/—(; (19)

Then

S =[8;- (v K) v 1 b, 20)

6)Backpropagate error signals.

Compute the derivative of f(y) using

7 ()= 2a.exp(-a.y;)

. 2 (21)
[1 +exp(-a.y,)]
Calculate error signals in the output layer, where j = L, by evaluating
eri=f'Wer) (0k - x1x) (22)

Chapter 5: Improved Training Algorithm

&

for every node k.
For the hidden layers, starting at layer j = L - 1 and decrementing through j = 1, find

error signals by solving

€y = f'(yjk)z (ej+l,iwj+1,i.k) (23)

for every node in the j” layer.

7) Find the desired summation output.

Calculate the desired summation output at the L™ layer by using the inverse

function

d, =lln1+0"'
a l-o,

(24)

for every " node in the output layer.

8)Update the weights.

The weight vectors in the output layer L are dated by

Wi=Wy+ ke (dr - yix) (25)

for every K node.

84

Chapter 5: Improved Training Algorithm

85

9)Stopping criteria :

¢ Use the mean-square error of the network output as a convergence test or

¢ Run the algorithm for a fixed number of iterations or

e Split the data into two sets: a training set which used to train the network,
and test set which is used to measure the performance of the network. If the

error in the test set is below required threshold then stop.

10)If convergence is not reached go back to step 2.

We have implemented this algorithm using the C language and carried out test
on different data sets.
To illustrate the immunity of this method against accumulation of round off error, we
tested the program on a fixed set of data (27 samples with 7 input each and used one
hidden layer with 16 nodes). The plot of the results for both algorithms as shown in

Fig 5 and 6.

Chapter 5: Improved Training Algorithm

86

10'

100

10!

MSE

102

1073

1074

v v New Algorithm
E—=8a Scalero Algorithm

250 500 750 1000

Ilterations

Figure 5§ Training time for both algorithms for random data.

Chapter 5: Improved Training Algorithm

123

87

100
——Scalero Algorithm
— New Algorithm
50
!
w
%)
p3
20
s/
VAN
10
0 1000 2000 3000

Ilterations

Figure 6 Training time for both algorithms for random data.

Chapter 5: Improved Training Algorithm

1£9

88

We noticed that when the number of iterations gets larger the accumulation of the

round-off error gets larger and the difference between the two algorithms becomes

obvious. Also, we notice that while we need to run the first algorithm several times

due to abnormal program termination: divide by zero error (instability), this never

happened in the second algorithm. Also the first algorithm goes more frequently to the

unstable case when the forgetting factor » gets smaller, while the second algorithin

does not have this problem and allows us to adjust the forgetting factor 4 to the best

value. We summarized the differences in Table 10.

Table 10 comparison between Scalero and the new algorithms

moderate and large

dynamic range

Scalero Method The New Method
Forgetting Factor Very limited change Any value

region
Effect of dynamic range Becomes unstable for Unaffected

Stability

Frequently Becomes

Unstable

Never becomes Unstable

Chapter 5: Improved Training Algorithm

89

Special configuration used for the 128 Arabic fonts:

An information about the position of the character in the word is available after word
segmentation process (position means if the character lies in the beginning, middle,
end, or separate), The easiest word segmentation process make segmentation either
from a space or a mid-line.

Our system used this available information by constructing four separate Neural-
Networks ,as shown in Figure 7 Each one is trained separately by one type of fonts
beginning, middle, end, or separate. In the recognition phase one and only one of them
are activated by the word segmentation process. If character is segmented via space
before it and mid-line after it then this character is beginning character and so on.

Each Neural-Network has 7 nodes in thg input layer and 5 or more nodes in the output
layer. We have 27 distinct output so 5 nodes in the output layer is enough but we take
more for two purposes:

¢ Correct the errors generated in the word segmentation process by considering each
segmentation failure as another character like A 4 ...etc.

o Use redundant bits for errors detection and correction.

Chapter 5: Improved Training Algorithm

a3

920

#1 Pre-separation{cpndition.

#2 Post-separation condition.

&; i® Moment Invariant.

Figure 7 Arabic O.C.R. classifier

Chapter 5: Improved Training Algorithm

91

CHAPTER 6

RESULTS AND RECOMMENDATIONS

In this chapter we will summarize the results obtained in chapters 3, 4, and 5§
We shall also provide outlines for reasons taken for the selection of the various
approaches. It is to be pointed out that the intention of this research is to study two
main blocks in OCR as pertaining to Arabic fonts; viz.:

1. Feature extraction

2. Classification
Other blocks that could be included but not limited to

1. graph and picture separation;

2. title and paragraph separation;

3. line and word separation;

4, font separation,

5. dictionary for word verification;

Chapter 6: Results and Recommendations

92

are not studied in this work. The reason is that such a project is normally handled by a
large group of researchers, each examining one aspect of the work. We opted to

examine the first two blocks and we leave the rest for future research in this area.

1) Feature Extraction:

1-1 Moment Invariants were chosen for our purpose for the following
reasons;

® Moment Invariants which are extracted from geometrical moments were
proved to be better in noise immunity than other types of moments[95].

* Moment Invariants do not require any type of preprocessing unlike Fourier
Descriptor and others,

* Moment Invariants are more flexible: Allow rotation and shift in character
image.

® Moment Invariants depend on global shape, basic shape and diacritics,
(more suitable for Arabic characters, as mentioned in El-khaly [93}).

1-2 Special modification needed for Moment Invariants are:

* Moment Invariants were made invariant to size by replacing Central
moments by Normalized moments as discussed in chapter 3.

* As was indicated in chapter 3, the Moment Invariants can have a large

dynamic range. Therefore, the logarithm of the absolute value of the

Chapter 6: Results and Recommendations

1£3

93

Moment Invariants was taken in place of the Moment itself. w(i) = log

| @)

1-3 To decrease the effect of digitization on the properties of moment
invariants (scale, shift, rotation) the following were done:

¢ To relax the computation (avoid dealing with huge numbers), the x and y
scale was divided by a scale factor (10 was chosen for our case) as

mentioned in chapter 3 (a fixed number for all sizes).

o The Simpson rule was chosen since it is a better approximation to the
double integration as suggested in [94]. Comparison results are found in

chapter 3.

1-4 To facilitate the work of Neural networks: we noticed that each
moment invariant has an offset value that is large with respect to the variations

in the numbers. This is obvious if you would examine Table 6, Table 7,

Table 8 Ending letters, and Table 9 Center letters for example shows the

following number for ® (7)
-8.727,-8.523,-8.102,-8.272,-8.343,-8.144,-7.092,-8.839,-8.843,-7.889, -

7.986,-7.184

Chapter 6: Results and Recommendations

94

for the following letters w5) 33¢ £ ¢ & © w1 If we were to normalize we

would obtain 0.987, 0.9642, 0.9166, 0.936, 0.944, 0.921, 0.8023, 1, 1,

0.8925, 0.903, 0.8128. However if an offset value of -8 is subtracted before

normalization we will obtain 0.727,-0.523,-0.102, -0.272, -0.343, -0.144,

+0.908, -0.839, -0.843, +0.111, +0.014, +0.816.

An experiment was made to test the effect of removing this offset, a Neural-
Network with 11 nodes in the hidden layer was trained by three complete
sets of Arabic alphabet for sizes 61x61, 59x59, and 55x55 and a set of
Arabic alphabet for size 57x57 was used as a recognition test (The number
of hidden nodes is intentionally small to show the effect of removing the
offset). A comparison between convergence time and correct recognition

are provided in Figure 8, Table 11 respectively. It was found that if we

eliminate these offset values an improvement in training and recognition

phases is achieved.

Chapter 6: Results and Recommendations

Error Function

50

10

95

Offset Removal

N

Offset unremoved~"--

e Offset removed
W——N

iteration Number

Figure 8 Effect of removing offset on training time.

Chapter 6: Results and Recommendations

96

ts as follows

rian

mva

The offset component was subtracted from the moment

6

®1=01+0.

DP2=Q2+2

P3I=P3+4

DI=Q4+ 4.

D5=P5+8 .

P6=06+ 6.

Results and Recommendations

.
.

Chapter 6

123

97

O7T =7+ §.

After this process it was found that almost all moment invariant have a range between

+1 and -1 for all letters.

The complete data set is found in Appendix A for all letters.

Chapter 6: Results and Recommendations

98

2) Classification:

We choose the feed-forward neural network for the following reasons:
¢ Recognition phase requires less computation time than other classifiers such as the
K-mean.

e Outperform other classifiers, especially when noise is present [96].

2-1 The Configuration of the selected Feed-Forward Neural Network is as

follows:

e Number of layers = 3: It was proved in [97] that a 3 layer feed-forward neural
networks can divide the N-dimensional input space into any arbitrary shape regions.

¢ Number of nodes in the input layer = 7 (seven moments).

e Number of nodes in the hidden layer = 21: In [98] Shih-Chi proved that m
neurons in the hidden layer can divide the N-dimensional input space into N m-
polytopes where (m+1)< N <P (m,n) where P (m , n) is the
permutation of m with n. So for N = 32 distinct output the number of
hidden layer is between 312> m 29 (31 will be, for sure, sufficient). In order to
accelerate the calculations in the recognition phase, we tried the following number
of nodes in the hidden layer: 21, 15, 11, and 9. The results are attached. Note that
Lippman [99]recommended that we should have 3 times as many nodes in the

second (hidden) layer as in the first (input) layer.

Chapter 6: Results and Recommendations

LK 1%]

99

e Number of nodes in the output layer = 6:
1 Five nodes represent the binary code of the letter from 0 to 32.
2 One node acts as a parity check that we introduced to detect any single
error in one character during the recognition phase.
e The input to the first layer was the seven moment invariants for each letter, while the
output to the last layer was forced to be +0.5 for “ 1™ or -0.5 for “ 0 ”. The reason for

such a selection is to force the values obtained from the sigmoid function to lie in the

linear region in order to accelerate the training phase

2-3 Training Phase:

As discussed in chapter 5, The improved method was implemented and used
for its superior convergence.

An extensive study about the value of the forgetting value (b) appropriate in
our character recognition system was performed. A value of &4 of 0.99, 0.98, 0.97,
0.96, 0.95, 0.94 was tested. All of these values of b gave an exponential decay as
shown in Figure 9, which has a behavior of relatively fast decay at the beginning for
the most recent values and then slow decay after that. We require a function to have a
large forgetting value at the beginning of the iteration when the layers are untrained
and the value of the weights matrix and the correlation estimate matrix are completely

random, and to have a small forgetting value at or near the end of the iteration when

Chapter 6: Results and Recommendations

100

the layers are trained and the weight matrix and the correlation estimate matrix have
good estimate. After a study, an incremental forgetting factor » was chosen starting
from 0.94 to 0.98 with step 0.00003. It exhibits the required behavior as seen in Figure
10. A comparison between this function and a usual constant value of & of 0.94, 0.98,
and our method in convergence of training of the Arabic character set was done and

the results are illustrated in Figure 10.

Chapter 6: Results and Recommendations

101

Forgetting value for differnt value of b

10

Accumulated Forgstting value

b=094

b=099

b=0.97

0 20

b=09 \
0 ——

40
-time

60 80 100

Figure 9 Forgetting function for various values of b.

Chapter 6: Results and Recommendations

102

Constant value versus increasing value of b

1.0
g 8
2
gf §e)
3 b=0.99
0w
g b=0.9-099
5 2 \
< b=0.9

; K

0 20 40 60 80 100
-time

Figure 10 Forgetting function for constant b versus variable b.

Chapter 6: Results and Recommendations

Error Function

103

A comparison study for b

New Function

250 500

750 1000

lteration number

Figure 11 Training time for constant b versus variable b.

Chapter 6: Results and Recommendations

1£9

104

The Neural-Network was trained by three complete sets of Arabic alphabet
style () for different sizes 6 1x61, 59x59, 55x55 (Size changes were chosen
because it has the most effect on the values of the moment invariants due to

digitization effect. The number of node of the hidden layer was tried as 26, 21, 15, 11,

9.

2-4 Recognition Phase:

* A program to implement the feed-forward phase and to detect any possible

occurrence of single error (per character) was developed.
o Different set of Arabic alphabet for size 57 x 5 7 (neither included in the training set
nor in the stopping criteria) was used

o The results are tabulated in Table 12.

Chapter 6; Results and Recommendations

SR
RN

105

Chapter 6: Results and Recommendations

el

106

Recommendations and Proposal for Future Work:

The process of Arabic OCR involves a number of distinct steps which are outlined in
the thesis. We examined 2 of these steps viz.:
1. Feature extraction
2. Classification using the feed-forward neural networks.
However, this does not present a complete solution to the Arabic OCR problem.
The following are recommended:
1. A study of other feature extraction methods that depend on topology of the
characters such as vectors, strokes, loops, etc. rather than some mapping scheme,.

2. An examination of other classifiers.

3. Search for solutions to the other modules that form a complete solution to the OCR

problem, such as graph and picture separationetc.

Chapter 6: Results and Recommendations

APPENDICES

TABLE (1)

108

beginning letters
letter ®(1) ®(2) ®(3) ®(4) @ (5) d(6) ®(7)
1! 0065 |-0421 |-1835 |-1.731 |[-4340 [-1.740 [-3.518
2.2 0010 |-0410 |-0.147 [-0272 |-0583 |-0.289 [-0.695
3.o -0.031 |-0.198 |0.539 -0.134 [-0.663 |0.373 0.062
4.8 0070 [-0.831]0.239 -1.059 [-1592 |-1.269 |-1.651
5.z 0.032 -1.758 | -0.183 [-0317 |-0.572 |-0279 [-1.429
6. 0.065 -1.344 [-0.161 |-1.829 |-3.267 [-2.086 | -2.855
1.¢ -0.034 |-0905 |0.2908 -0.122 |-0.115 | 0.264 -0.289
8.3 0.033 0519 [-0646 |-0766 [-1.484 |-0.181 [-2.103
9.3 0044 [-2.104 |-0264 |0.018 0401 [-0.142 |-0.170
10. 0011 [-0321 _ |0.115 0.212 0.376 0.612 -0.881
11. 0066 |-1378 |-1410 [-0581 |-1.603 |-0.551 [-2.036
12. s -0.030 |-0.757 | 0.531 0.858 1.388 1.388 1.416
13. & 0.011 -1.008 | 0.773 0.930 1.264 1.378 1.760
14.u= | 0.006 -0.879 | 0.155 0.715 0.870 0.072 1.080
15,0 [-0039 |-1.853 |0.130 0.173 0.095 0.247 0.232
16. - -0.001 |-0491 | 0.368 0.318 0.382 1.045 0.591
17. % 0.031 -0.399 |0.113 -0.026 | 0.014 0.102 -0.888
18. ¢ 0.015 -1.002 | 0.065 0.074 0.077 0.304 -0.147
19. ¢ 0014 [-1.736 | -0.006 |0.026 -0.187 [-0.118 | -0.060
20. < 0.001 -0.697 | 0.436 0.124 0.313 0.718 0.172
21. 4 0.002 |-0.640 | 0.334 -0.256 | -0.233 | 0.069 -0.791
22. 4 0.014 |-0.718 |0.703 0.210 0.368 -0.380 [0.603
23.d -0.036 | -0.609 | 0.689 0379 |-1.018 0314 -0.230
24. ¢ 0042 |-0704 |0.612 0.649 1.261 1.282 0.736
25. 0 0012 [-0277 |0.876 0.041 0.482 0.323 -0.060
26.» 0.128 -0.062 |1.089 1.145 2.144 2.015 2.074
27. s 0015 [-1.604 |-0.120 [-0.828 [-1.326 |-0.671 |-1.847
28. 0.021 -1.371 | -0.334 | 0.636 0.364 0.670 0.754

Appendix A

123

199

TABLE (2)
Center letters
letter (D @(2) @ (3) & (4) D(5) O (6) (7
1.i -0.062 -0.821 -1.142 -0.883 -1.931 -0.419 -2.307
2. -0.065 -2.140 -0.958 -0.082 -0.735 -0.408 -0.772
3. -0.012 -1.884 -0.602 -0.731 -1.402 -0.677 -2.225
4.& -0.015 -3.071 0.285 -0.104 -0.052 -0.751 -0.407
5.z -0.046 -1.872 0.144 0.170 0.291 -0.065 -0.078
6.z -0.018 -2.486 -0.180 -0.089 -0.350 -0.371 -0.401
7. ¢ -0.032 -0.370 -0.670 -1.050 -1.916 -0.257 -2.696
8. -0.017 -0.588 -0.801 0.263 -0.391 0.577 -0.047
9.3 -0.043 -1.448 -0.828 0.129 -0.290 -0.058 | -0.502
10. » -0.049 -0.586 -0.765 0.121 -0.332 0.528 -0.373
11. 5 -0.087 -0.668 -1.773 -0.072 -1.076 0.153 -1.246
12. v -0.046 -1.483 0.436 0.426 0.853 0.417 -0.069
13. & -0.004 -0.348 0.667 0.479 0.388 1.211 1.041
14. uo -0.014 -0.905 0.018 -0.021 -1.611 0.482 -0.023
15. va -0.045 -0.761 -0.485 -0.593 -1.362 -0.299 -1.225
16. b -0.031 -1.733 -0.902 -0.524 -1.452 -0.726 -1.339
17. & 0.024 -1.803 -0.125 0.403 0.155 -0.755 0.501
18. ¢ -0.052 -1.838 -0.019 0.114 0.112 0.047 -0.183
19. ¢ -0.068 -2.400 -1.115 -0.408 -1.192 -0.625 -1.672
20, < -0.057 -1.351 -0.096 0.438 0.194 0.638 0.575
21. 3 -0.052 -1.173 -1.016 -0.055 -0.600 0.299 -1.271
22. 4 0.035 -0.658 0.097 0.723 0.953 0.785 1.009
23.4 -0.065 -1.286 -0.506 -0.441 -1.509 -0.276 -0.929
24, » -0.069 -0.648 -1.836 -0.020 -1.072 -0.502 -1.129
25.0 0.004 -0.437 -0.447 -0.069 -0.442 0.338 -0.517
26. 0 -0.085 -0.600 -1.064 -0.363 -1.936 -0.362 -1.080
27. s -0.052 -0.548 -0.849 -0.539 -1.306 -0.468 -1.504
28. & 0.068 -0.381 0.540 0.320 0.746 1.130 -0.088
Appendix A

110

TABLE (3)
End letters

letter @ (1) (2) @ (3) D (4) @ (5) D (6) d(7)

1.1 -0.043 -0.661 0.625 -0.543 -0.594 0.113 -0.734
2. -0.041 -1.618 -1.427 -0.234 -1.099 -0.047 -1.484
3. -0.067 -0.651 0.610 -0.165 -0.036 0.450 -0.171
4. & -0.032 -2.375 0.530 -0.156 -0.029 -0.376 -0.279
5.¢ 0.046 -1.396 -0.355 0.255 0.204 0.386 -0.942
6. ¢ 0.020 -1.519 0.445 0.799 0.560 1.017 1.416

1. ¢ 0.016 -0.593 -0.679 -2.005 -3.382 -1.636 -3.758
8.2 -0.032 -1.287 0.635 0.772 1.300 0.564 1.346

9.3 0.011 -0.144 0.671 0.870 1.304 1.697 1.588

10., |0.039 -0.616 0.099 0.296 -0.016 0.864 0.471

1.5]0.008 -0.747 0.505 0.835 0.452 0.928 1.503

12.+ |0.085 0.078 1.011 -0.436 -0.317 0.433 -0.282
13.5 |0.020 -0.736 1.036 0.553 1.216 1.150 1.176

14. 5= | 0.067 -0.037 0.652 0.566 1.174 1.492 -0.006
15. 0= |-0.007 -0.917 -0.104 -0.121 -0.376 0.391 -0.393
16.L {.0.013 -1.585 -0.089 0.628 0.896 -0.400 -0.075
17.5 | 0.025 -0.721 0.553 0.592 1.162 1.215 0.238

18.¢ |0.022 -0.935 -1.586 -0.180 -2.084 0.348 -1.064
19.¢ |0.029 -0.205 -0.473 -0.460 -1.219 0.110 -0.992
20w |-0072 -0.565 0.119 0.093 0.168 0.509 -0.239
2. |0.012 -0.480 0.677 0.607 -0.616 1.159 1.249

22.4 |0.061 -0.550 1.148 0.932 1.593 0.328 1.930

23.J |0.007 -0.592 1.229 0.700 1.321 1.307 1.615

24 » 0.050 -0.282 0.489 0.395 0.402 0.192 0.806

25.0 |0.016 -1.302 0.074 0.526 0.710 0.875 0.634

26. 0 -0.012 -0.454 0.510 0.697 1.300 1.469 -0.051
27.5 |0.017 -1.137 0.819 0.724 1.473 1.145 0.991

28..s | 0.049 -0.636 0.626 0.885 1.637 1.540 0.737

Appendix A

TABLE (4)
Separated letters

111

d(1) D(2) ®(3) D(4) D (5) d(6) &(7)
letter
1.1 -0.076 -0.719 0.199 -0.268 -1.739 0.054 -0.303
2w 0.045 -0.176 0.079 0.677 1.054 1.589 -0.273
3. -0.014 -1.370 0.585 0.251 0.670 0.566 -1.112
4, & -0.008 -1.927 0.784 0.312 0.852 -0.088 0.144
5.z -0.022 -2.085 0.183 0.206 0.353 -0.306 0.046
6.z -0.031 -1.597 0.340 0.148 0.341 0.339 0.052
7.¢ 0.005 -1.183 1.040 0.438 0.977 0.832 1.068
8.4 -0.011 -0.743 0.503 0.638 1.169 1.230 0.820
9 3 -0.016 -0.611 0.213 0.138 0.200 0.760 0.119
10. L 0.018 -0.800 0.267 0.345 0.299 0.551 0.602
11.) -0.014 -2.677 -0.192 0.472 0.042 -0.408 0.596
12. o+ }-0.011 -2.023 0.816 0.970 1.831 0.957 1.432
13. & 0.038 -1.911 0.776 0.790 1.400 0.080 1.444
14. vo] 0.059 -0.168 0.708 1.022 1.142 1.562 1.880
15. 0= }-0.019 -0.224 0.257 0.297 0.466 0.819 0.372
16. b 0.022 -1.370 0.428 0.790 10.892 0.702 1.378
17. & 0.047 -1.270 0.470 0.526 0.660 0.048 0.978
18. ¢ 0.037 -0.779 0.982 0.899 1.834 1.507 1.026
19. ¢ 0.022 -1.649 0.763 0.518 1.155 0.693 0.246
20. 4 0.034 -0.708 0.963 0.690 1.500 1.334 0.948
21. 3 -0.002 -2.756 0.650 -0.018 0.294 -0.397 -0.574
22 & 0.040 -3.929 1.088 0.622 0.840 -1.455 1.465
23.d 0.033 -1.826 1.166 0.656 1.567 0.727 -0.263
24, » -0.021 -0.948 0.599 0.665 1.263 1.189 0.874
25. 0 0.105 0.116 1.485 1.165 2.422 2211 2.204
26. o 0.157 0.256 -0.985 -0.133 -1.181 0.742 -0.716
27. s 0.016 -1.278 0.011 -0.088 -0.868 -0.064 -0.134
28. ¢ 0.041 -1.483 -0.019 0.496 0.731 0.755 -0.150

Appendix A

112

This program calculates the weights of a Neural Network for any number
of inputs and any number of outputs and any number of layers with any

number of neurons Kalman Filter Method

© copyright: Osama Abdl-Wahhab Ahmed

#include <io.h>

#include <stdio.h>
#include <stdlib.n>
#include <math.h>

#include <conio.h>

#include<time.h>
#define a 0.2 /* segmind slope */
#define b 0.9 /* Forgetting value */

#define st_size .85

#define no_iter 100000

#define ERROR 0.0001

#define fd(i) (1.0-y[i]*y[i])*a/2 /* Define derivative.*/

float fun(float *w,float *xp,int *d); /* function to simulate the feed-forward part */

Appendix B

113

int M,*NL,*NS,L;

float *y,theta, *wi;

void main()

{

int z, m, n, Nt1, Nt2, Nt3, ii, *d, I, j, N, xd, ind, Nt, N1, N2, qq;

float *w, q, xt, error, x, xrx, sum, *R, *dd, *ki, *kL, *delta, *xp, *net, ne;
double E;

long int iter = 0;

char file_name[18].file name2[18],ch;

FILE *fptr,*fptr2;

clrscr();
printf("\nDo you wish to use previously trained weights? (y or n)-->");
while(((ch=getch())!='y")&&(ch!="n"));
putch(ch);
switch(ch)
{
case 'y".
printf{"\nEnter file name -->");

scanf{"%s" file_name});

Appendix B

114

fptr=fopen(file_name,"r");
if{(fpt=—=NULL)
{ printf{"No such file exists.");
exit(1);
}
fscanf{fptr,"%d ",&L);

if{(NL=(int *)malloc(L*sizeof(int))))

{
printf("Out of memory. NL\n");
exit(1);
}
if{I(NS=(int *)malloc((L-2)*sizeof(int))))
{
printf{"Out of memory.NS\n");
exit(1);
}

for(i=0;i<L;i++) fscanf{fptr,"%d ", &NL[i]);
NS[0]=NL[O]*NL[1};

for(i=1;i<(L-2);i++) NS[i]=NS[i-1]+NL[i]*NL[i+1],
N=NS[L-3]+NL[L-2}*NL[L-1}; /* Total of weights. */

/* Assigning memory for weights. */

Appendix B

115

if(!(w=(float *)malloc(N*sizeof(float))))
{
printf{("Out of memory.w\n");
exit(1);
}
for(i=0;i<N;i++) fscanf{fptr,"%f " &wI[i]);
fscanf{fptr,"%f ", &theta);
fclose(fptr),

break;

case 'n":

printf{"\nEnter number of hidden layers-->");
scanf ("%d", &L) ;
L +=2; /*adding input and output layers. */

if({(NL=(int *)malloc(L*sizeof{int))))

{
printf{("Out of memory.NL\n");
exit(1);
}
if{INS=(int *)malloc((L-2)*sizeof(int))))
{

printf{"Out of memory.NS\n"),

Appendix B

exit(1);
}

printf{("Enter number of nodes in input layer-->"),
scanf{"%d",&NL[0]);
for(i=1;i<=(L-2);i++)
{

printf{"Enter number of nodes in hidden layer %d-->",i);

scanf("%d",&NL[i]);
}
printf{"Enter number of nodes in output layer-->");
scanf{"%d",&NL[L-1]);
NS[O0]=NL{0]*NL{1];
for(i=1;i<(L-2);i++) NS[i}=NS[i-1]+NL[{]*NL[i+1];
N=NS[L-3]+NL[L-2]*NL[L-1]; /* Total # of weights.
/* Assigning memory for weights. */

if(!{(w=(float *)malloc(N*sizeof(float))))

{
printf{"Out of memory.w\n");
exit(1);
}
randomize();

116

Appendix B

117

for(i=0;i<N;i++)
w[i]=(float)random(N)/(float)N;
theta=0.1;
}
gotoxy(1,10);
printf{"Enter file name for storing trained weights--> "),
scanf("%s" file_name);
ind=access(file_name,0);
while(!ind)
{
gotoxy(1,12);
printf{"File exists. Wish to overwrite? (y or n)-->");
while(((ch=getch())!="y")&&(ch!="n"));
putch(ch);
switch(ch)
{
case 'y"
ind=1;
break;
case 'n"

gotoxy(1,7);

Appendix B

118

printf{" ")
gotoxy(1,10);
printf(" ")
gotoxy(1,10);

printf("Enter file name-->");
scanf{"%s" file_name),
ind=access(file_name,0);
}
}
for(i=1,Nt=0;i<L;i++) Nt+=NL][i]; /* Total number of neurals.*/
/* Assigning memory to *net, *z, *delta.*/
if(!(net=(float *)malloc(NL[L-1]*sizeof{float))))
{ printf("Out of memory.net\n");exit(1); }
if(!(y=(float *)malloc(Nt*sizeof{float))))
{
printf{"Out of memory.y\n");
exit(1);
}
if(1(delta=(float *)malloc(Nt*sizeof{float))))

{
printf{("Out of memory.delta\n");

Appendix B

exit(1);

for(i=0,Nt=0;i<L-1;i++) Nt+=NL][i];
if{!(kI=(float *)malloc(Nt*sizeof{float))))
{
printR"Out of memory.ki\n");
exit(1);
}
if{!(kL=(float *)malloc(Nt*sizeof{(float))))
{
printf{"Out of memory kL\n");
exit(1);
}
for(i=0,N1=0;i<L-1;i++) N1+=NL[i]*NL[i];
if{!(R=(float *)malloc(N1*sizeof{float))))
{
printf("Out of memory.R\n");
exit(1);
}
randomize();

119

Appendix B

120
for(i=0;i<N1;i++)
R[i]=(float)random(N1)/(float)N1;
printf{"\nEnter file name for stored Data--> ");
scanf("%s" file_name2);
fptr2=fopen(file_name2,"r");
if{fptr2=NULL)
{printf("file %s does not exist. " file_name2);exit(1);}
/* Determining the size of the data.*/
M=0; ind=1;
while(1)
{
for(i=0;i<NL[0];i-++)
{
if{ (fscanf{fptr2,"%f *,&xt))==EOF) /* input data.*/
{
ind=0;
break;
}
}
if(ind==0) break;

for(i=0;i<NL[L-1];i++)

Appendix B

121

fscanf{fptr2,"%d ",&xd); /* desired output.*/
M+,
}
printf{"\n# of data points=%d\n"M);
rewind(fptr2),
/* Assigning memory to *xp, *d */
if(!(xp=(float *)malloc((M*NL[0])*sizeof{float))))

{

printf{"Out of memory.xp\n");

exit(1);

}
if(!(d=(int *)malloc((M*NL[L-1])*sizeof(int))))

{

printf("Out of memory.d\n");

exit(1);

}
if{!(dd=(float *)malloc((M*NL[L-1])*sizeof{(float))))

{

printf{"Out of memory.dd\n");

exit(1);

}

Appendix B

122

/* Reading in the data.*/
for(i=0; i<M; i++)
{
for(j=0j<NL[0];j++) fscanf{fptr2,"%f ", &xp[j*M+1i]);
for(j=0;j<NL[L-1]};j++)
{
fscanf{fptr2,"%d " &dj*M +i]);
dd[j*M+i]=(log((0.5+d [j*M +i)/(1.5-d[j*M +i])))/a;
}

}
fclose(fptr2);

fptr=fopen(file_name,"w");
clrser();
gotoxy(1,1);

printf{"Press q to exit and save latest update for weights.\n");

while(iter<no_iter)
{
if(kbhit() !=0) { if{getch()=='q') ; break;}

iter ++;

Appendix B

for(i=0;i<M;i++)

qq=random(M);

for(z=0,N2=0;2<L-1;z++) N2+= NL[z];

/* Forward propagation. */
wi=w;
for(z=0;z<NL[1];z++) /* From input layer to first */
{ /* hidden layer. */
for(j=0,ne=thetaj<NL[0];j++) ne+=*(wi++)*xp[j*M+qq];
E=(double)exp(-(double)a*ne);
ylz]=(float)(1.0-E)/(1.0+E);
}
Nt1=NL[1]; Nt2=0;
for(m=2;n<L-1;n++) /* From layer n-1 to layer n.*/
{
for(z=0;z<NL[n];z++)
{
m=Ntl +z;
for(j=0,ne=theta;j<NL[»-1];j++) ne+= *(witH)*y[j+N2];

E=(double)exp(-(double)a*ne);

123

Appendix B

124

y{m]=(float)(1.0-E)/(1.0+E);
}
Nt1+=NL[#n];
Nt2+=NL[n-1];
}
for(z=0;z<NL[L-1];z++)
{
m=Ntl+2z;
for(j=0,net[z]=thetaj<NL[L-2];j++) net[z] += *(witH)*y[j +Nt2];
E=(double)exp(-(double)a*net[z]);
y[m]=(float)(1.0-E)/(1.0+E);
}
Nt1=0;
for(z=1;2<(L-1);z++)
Nt1+=NL[z];
for(z=0;2<NL[L-1];z++) /* delta's for output layer.*/
{
ii=Ntl+z;
error=d[qq + z *M]-0.5-y[ii];
delta[ii]=error*fd(ii);

}

Appendix B

125

for(m=0;m<(L-2);m++) /* delta's by back propagation.*/
{
Nt2=Nt1-NL[L-2-m];
for(z=0;z<NL[L-2-m];z++)
{
1i=Nt2+z;
sum=0.0;
n=NS[L-3-m]+z;
for(7=0;j<NL[L-1-m];j++)
sum+=delta[Nt1+j]*w[n+*NL[L-2-m]];
delta[ii]=fd(ii)*sum;
}
Nt1=Nt2;
}
for(z=0,xrx=b;z<NL[0];z++)
{
for(j=0,ki[z]=0.0,kL{z]=0.0;j<NL[0];j++)
{
Ki[z}+=R[j+2*NL[0]*xp[qq+*M];
KL{z}+=R[2+]*NL[0]]*xp[qq+j*M];

}

Appendix B

126

xex+=ki[z]*xp[qq+z*M];

}
for(z=0;z<NL[0];2++) kl[z]/=xrx;

for(z=0;z<NL[0];z++)
for(7=0,n=2*NL[0};<NL[0];j++)

R{j+2*NL{0]] =(R[j+n]- KL[j]*Ki[z])/b;
Nt1=NL[O]*NL[0]; Nt2=NL[0]; Nt3=0;
for(m=1;m<(L-1);m++)

{
for(z=0,xrx=b;z<NL[m];z++)
{
for(j=0,kI[z+Nt2]=0.0,kL[z+Nt2]=0.0;j<NL[m];j++)
{
kl[z+Nt2+=R[j+Nt1+z*NL[m]]*y[Nt3+];
KL[z+Nt2+=R[z+Nt1+j*NL[m]]*y[Nt3+j];
}
xrx+=kl[z+Nt2]*y[Nt3+z];
}
for(z=0;z<NL[m];z++) ki[z+Nt2] /=xrx;

for(z=0;z<NL[m]};z++)

Appendix B

127

for(7=0,n=Nt1+z*NL{m],j<NL[m];j++)
R[n+] =(R[n+j]- KL[j+Nt2]*ki[z+Nt2])/b;
Nt1+=NL[m]*NL[m];
Nt2+=NL[m];
Nt3+=NL[m];
}
wi=w;
for(z=0;2<NL[1];z++)
for(7=0,j<NL[0];j++)
*(wit+) +=ki[j]*deltaz]*st_size;
Nt1=NL[0],Nt2=NL|[1];
for(n=2;n<L-1;n++) /* From layer n-1 to layer n.*/
{
for(z=0;z<NL{[n});z++)
for(j=0;j<NL[n-1];j++)
*(wit+) +=kI[Nt1+j]*delta[z+Nt2] *st_size;
Nt1+=NL][n-1];
Nt2+=NL[n];
}
for(z=0;z<NL{L-1};z++)
for(j=0;j<NL[L-2];j++)

Appendix B

128

(wit+) +=kI[Nt1+j1(dd[qq+z*M]-net[z]);
}
g=fun(w,xp,d);
gotoxy(1,8);
printf{(" Error function= %f at iteration # %-5d",q,iter);

if{q<ERROR)break;

}

fprintf{fptr,"%d ",L);

for(i=0;i<L;i++) fprintf{fptr,"%d ",NL[i]);
for(i=0;i<N;i++) fprintf{fptr,"%f ", w[i]);

fprintf{fptr,"%f ", theta);

fclose(fptr);

printf ("\nError=%f",q);

printf{"\n File name used to store weights is %s",file_name),

printf{"\n File name for the training data is %s" file_name2);

/* Generating the function. */
float fun(float *w,float *xp,int *d)

{

float net,error,q=0.0;

Appendix B

129

double E;

int k j,i,n,m,Nt1,Nt2;

for(k=0;k<M;k++)

{

Wi=W,

for(i=0;i<NL[1];i++) /* From input layer to first */

{ /* hidden layer. */
for(j=0,net=theta j<NL[0];j++) net+=*(wi++)*xp[j*M-+k];
E=(double)exp(-(double)a*net);

ylil=(float)(1.0-E)/(1.0+E);

}

Nt1=NL{1]; Nt2=0;

for(n=2;n<L;n++) /* From layer n-1 to layer n.*/
{
for(i=0;i<NL[n];i++)
{
m=Nt1+i;
for(7=0,net=thetaj<NL{[n-1];j++) net+=*(wi++)*y[j+Nt2];
E=(double)exp(-(double)a*net);

yIm]=(float)(1.0-E)/(1.0+E);

Appendix B

130

}
Nt1+=NL{[n];
Nt2+=NL[n-1];
}
for(i=0;i<NL[L-1];i++) /* Calculating the error. */
{
error=d[k+i*M]-0.5-y[Nt2+i];
q+=error*error;
}
}/*k-loop*/
q/=2;

return q;

Appendix B

131

This program reads BMP image file and calculate the seven Moment
Invariants
Note: The BMP reader is taken from:

“Super charged bitmaped image” Steve Rimme. Wincrest/McGraw

Hill.

© copyright: Osama Abdl-Wahhab Ahmed

#include "stdio.h"
#include "dos.h"

#include "alloc.h"
#include "math.h"

#include "f.¢"

#defineGOOD_READ 0 /* return codes */
#defineBAD FILE 1
#defineBAD_READ 2

#defineMEMORY_ERROR 3

Appendix C

#defineSCREENWIDE 320

/* mode 13 screen dimensions */
#defineSCREENDEEP 200
#defineSTEP 32 /*size of a step when panning */
#defineHOME 0x4700 /* cursor control codes */
#defineCURSOR _UP 0x4800
#defineCURSOR_LEFT 0x4b00
#defineCURSOR_RIGHT 0x4d00
#defineEND 0x4f00
#defineCURSOR_DOWN 0x5000
#déﬁneRGB_RED 0
#defineRGB_GREEN |
#defineRGB_BLUE 2
#defineRGB _SIZE 3

#definepixels2bytes(n)((n+7)/8)

#definegreyvalue(r,gb) (((r*30) 100)+((g*59)/100)+((b*11)/100))

typedef struct {
int width,depth,bytes, bits;
int background;

char palette[768];

132

Appendix C

133

int (*setup)();
int (*closedown)();

} FILEINFO;

typedef struct {
char id[2];
long filesize;
int reserved[2];
long headersize,
long infoSize;
long width;
long depth;
int biPlanes;
int bits;
long biCompression;
long biSizeImage;
long biXPelsPerMeter,
long biYPelsPerMeter;
long biClrUsed,;
long biClrImportant;

} BMPHEAD;

Appendix C

134

char *farPtr(char *p,long I);

char *getline(unsigned int n);

char *mono2vga(char *p,int width);
char *ega2vga(char *p,int width);
char *rgb2vga(char *p,int width);
int dosetup(FILEINFO *£j);

int doclosedown(FILEINFO *fi);

int putline(char *p,unsigned int n);

char masktable[8]={0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01 }

FILEINFO fi;

char *buffer=NULL;
void main(argc,argv)
int argc;

char *argv[];

FILE *fp;

static char results[8]{16] = { "Ok",

Appendix C

135

"Bad file",
"Bad read",
"Memory error",
|3

char path[81];

int r;

if{arge > 1) {

strmfe(path,argv[1],"BMP"),

strupr(path);

if{(fp = fopen(path,"rb")) !=NULL) {
fi.setup=dosetup;
fi.closedown=doclosedown;
r=unpackbmp(fp,&£i),
printf{"\%s", results[r]);
fclose(fp);

} else printf{"Error opening %s",path);

} else puts("Argument: path to a BMP file");

/* unpack a BMP file */

Appendix C

136

unpackbmp(fp,fi)
FILE *fp;

FILEINFO *fi;

BMPHEAD bmp;
char *p,*pr;

int i,n;

/* set a default monochrome palette */

memcpy(fi->palette,"\000\000\000\377\377\377",6);

o get the header */

if{ffread((char *)&bmp, 1,sizcof BMPHEAD),fp)==sizeof BMPHEAD)) {

/* check the header */

if{!memcmp(bmp.id,"BM",2)) {

/* set the details */
fi->width=(int)bmp.width;
fi->depth=(int)bmp.depth;

fi->bits=bmp.bits;

Appendix C

137

/* work out the line width */

if{ffi->bits=1) fi->bytes=pixels2bytes(fi->width);

else if{fi->bits==4) fi->bytes=pixels2bytes(fi->width)<<2;
else if{fi->bits==8) fi->bytes=fi->width;

else if{fi->bits==24) fi->bytes=fi->width*3;

/* round up to an even dword boundary */
if(fi->bytes & 0x0003) {
fi->bytes |= 0x0003;

+Hi->bytes;

/* get the palette */
if(fi->bits > 1 && fi->bits <=8) {
n=1<<fi->bits;
for(i=0;i<n;++i) {
fi->palette[(i*RGB_SIZE)+RGB_BLUE]=fgetc(fp);
fi->palette[(i*RGB_SIZE)+RGB_GREEN]=fgetc(fp);
fi->palette[(i*RGB_SIZE)+RGB_RED]=fgetc(fp);

fgete(fp);

Appendix C

138

}
else if(fi->bits==24) {
for(i=0;i<256;++i)

memset(ﬁ->palette+(i*RGB_SIZE),i,RGB__SIZE);

/* allocate a line buffer */

if{ (p=malloc(fi->bytes)) = NULL) {
if{(fi->setup)(fi) I= GOOD_READ) {
free(p);

return(MEMORY_ERROR);

}

/* find the start of the image data */

fseek(fp,bmp.headersize, SEEK_SET);

/* read all the lines */
for(i=0;i<fi->depth;++i) {
if{fread(p, 1,fi->bytes,fp) = fi->bytes) {

freebuffer();

Appendix C

139

free(p);

retum(BAD_READ);,

/* translate the line types into VGA */
switch(fi->bits) {
case 1:
pr=mono2vga(p,fi->width);
if(pr I=NULL) {
putline(pr, fi->depth-1-i);
free(pr),
}
else {
freebuffer();

free(p);
return(MEMORY_ERROR),

}
break;
case 4:
pr=ega2vga(p,fi->width);

if{pr I=NULL) {

Appendix C

140

putline(pr,fi->depth-1-i);

free(pr),

else {
freebuffer();

free(p);

return(MEMORY_ERROR);
}
break;
case 8:
putline(p,fi->depth-1-i);
break;
case 24:
pr=rgb2vga(p,fi->width);
if(pr I=NULL) {

putline(pr,fi->depth-1-i);

free(pr);

}

else {
freebuffer();
free(p);

Appendix C

141

return(MEMORY_ERROR),

}
break;
}
}
(fi->closedown)(fi);
free(p);

return(GOOD_READ);
} else reurn(MEMORY_ERROR);
} else return(BAD_FILE),

} else return(BAD_READ);

/* convert a monochrome line into an eight bit line */
char *mono2vga(p,width)
char *p;

int width;

char *pr;

int i;

Appendix C

142

if{(pr=malloc(width)) = NULL) {
for(i=0;i<width;++i) {
if{p(i >> 3] & masktable[i & 0x0007])
prlil=1;
else
pril=0;
}

return(pr);

} else return(NULL);

/* convert a four bit line into an eight bit line */

char *ega2vga(p,width)
char *p;
int width;
{
char *pr;
int i,j=0,

if{(pr=malloc(width)) != NULL) {

for(i=0;i<width;) {

Appendix C

143

pr{i++]=(p[j] >> 4) & 0x0f;
prli++]=p[j] & 0x0f,
+;

}

return(pr);

} else return(NULL),

/* convert an RGB line into an eight bit line */

char *rgb2vga(p,width)
char *p;
int width;
{
char *pr;
int i;

if{(pr=malloc(width)) = NULL) {

for(i=0;i<width;++) {
pr{i]=greyvalue(p[RGB_RED],p[RGB_GREEN],p[RGB_BLUE]),
p+=RGB_SIZE;

Appendix C

144

return(pr);

} else return(NULL);

/* this function is called before an image is unpacked */

dosetup(fi)
FILEINFO *fi;
{
union REGS 1;

if{lgetbuffer((long)fi->width*(long)fi->depth, fi->width,fi->depth))

returnMMEMORY_ERROR);

r.x.ax=0x0013;

{/int86(0x10,&r,&r);

[lsetvgapalette(fi->palette, 256, fi->background);

retum(GOOD_READ);

Appendix C

145

/* This function a called after an image has been unpacked. It must

display the image and deallocate memory. */

doclosedown(fi)
FILEINFO *fi;
{
union REGS r;

int c,i,j,v,n,e ,x=0,y=0;

char *aa;

FILE *mom;

long double
m00=0,m01=0,m10=0,m11=0,m02=0,m20=0,m30=0,m03=0,m21=0,m12=0;

/*normalized central moments*/

long double f]71,jj,ii,b,ax,ay,vv; /*invarient moments*/
e=pow(2,fi->bits)-1;
n=fi->width;
for(i=0;i<SCREENDEEP; ++)
{
c=yH,
if{c>=fi->depth) break;

aa=getline(c);

Appendix C

ii=((long double)i*2.0/fi->depth)-1.0;

for(j=0; j<n jj++)

{
v=(int)aafj)/e;
vv=(long double)v;
Jji=((long double)j*2.0/n)-1.0;
m00 += vy,
m10 +=vv¥jj;
mO1 +=vv¥ii;
}
}
ax=m10/m00;
ay=m01/m00;

for(i=0,i<SCREENDEEP; ++i)
{
c=y+i,
if(c>=fi->depth) break;
aa=getline(c);
ii=((long double)i*2.0/fi->depth)-1.0-ay;
for(=0; j<n jj++)

{

146

Appendix C

v=(int)aa[j}/e;

vv=(long double)v;

ii=((long double)j*2.0/n)-1.0-ax;
m20 +=jj¥jj*vy;

m30 +=*w;

ml1 +=ii*jj*vy;

m21 +=ii*jj*jjtvy;

m02 +=iitii*vy;

ml2 +=ii*ii*jj*vv;

mO3 +=ii*ii*ii*vv;,

}
b=m00*m00;
m20=m20/b;
m02=m02/b;
mll=ml1/b,

=powl(m00,2.5);
m30=m30/b;
m12=mi2/b;
m21=m21/b;

mO03=m03/b;

147

Appendix C

148

fl0]=log10l(fabsl(m20+m02))+2;
f{1}=log101(fabsl((m20-m02)*(m20-m02)+4*m11*m11))+4;
f{2]=log10l(fabsl((m30-3.0*m12)*(m30-3.0*m12)+(3.0¥m21-m03)*(3.0*m21-
m03)))+6;
f3]1=log10l(fabsl((m30+m12)*(m3 0+m12)+(m2l-ljm03)*(m21+m03)))+6;
f{4]=log101(fabsl((m30-3.0*m12)*(m30+m12)*((m30+m12)*(m30+m12)-
3.0%(m21+m03)*(m21+m03))+(3.0*m21-m03)*(m21+m03)*
~ (3.0%(m30+m12)*(m30+m12)-(m21+m03)*(m21+mo03))))+12;
f[5]=1>g10}(fabsl((m20-m02)*((m30+m12)*(m30+m12)-(m21+m03)*(m21+mo03))
+4*m11*(m30+m12)*(m21+m03)))+8;
f[6]=lo§101(fabsl((3.0*m21-m03)*(m30+m12)*((m3 0+m12)*(m30+m12)-
3.0*(m21+m03)*6n21+m03))+(3.0*m12-m3 0)*
(m21+m03)*(3.0*(m30+m12)*(m30+m12)-(m21+m03)*(m21+m03))))+13;
for(i=0;i<7;i++) printf{"%Lf " fi]);

freebuffer();

/It x.ax=0x0003;

//int86(0x10,&r,&r);

return(GOOD_READ),

Appendix C

/* get one extended key code */

GetKey()
{
int c;
c = getch();

if{!(c & 0x00ff)) c = getch() << 8;

return(c);

/* set the VGA palette and background */
setvgapalette(p,n,b)
char *p;

int n,b;

union REGS r;

int i;

outp(0x3c6,0xff);
for(i=0;i<n;+H) {

outp(0x3c8,i);

149

Appendix C

150

outp(0x3c9,(*p++) >> 2);
outp(0x3¢9,(*p++) >> 2);
outp(0x3c9,(*p++) >> 2);
}

r.x.ax=0x1001;

r.h.bh=b;

int86(0x10,&r,&r);

/* make file name with specific extension */
strmfe(new,old,ext)

char *new, *old, *ext;

{
while(*old = 0 && *old I=") *new++=*old++;
*new+H="";
while(*ext) *new-+=*ext++;
*new=0;
}

/* if you don't use in the memory manager, these functions

will stand in for it */

Appendix C

#f IMEMMANGR

/* return a far pointer plus a long integer */

char *farPtr(p,1)
char *p;
long |,
{
uhsigned int seg,off;

seg = FP_SEG(p);

off = FP_OFF(p);

seg += (off / 16);

off &= 0x000f:

off += (unsigned int)(I & 0x000fL);
seg +=(1/16L);
p=MK_FP(seg,off);

return(p);

/* save one line to memory */

151

Appendix C

152

putline(p,n)
char *p;
unsigned int n;
{
ifin >=0 && n < fi.depth)

memcpy(farPtr(buffer,(long)n*(long)fi. width),p, fi. width);

/* get one line from memory */
char *getline(n)

unsigned int n;

return(farPtr(buffer,(long)n*(long)fi. width));

#pragma warn -par

getbuffer(n,bytes, lines)

unsigned long n;

int bytes,lines;

if{(buffer=farmalloc(n)) == NULL) return(0);

Appendix C

153

else return(1);

}

freebuffer()

{
if(buffer != NULL) farfree(buffer),
buffer=NULL;

}

#endif /* IMEMMANGR */

Appendix C

154

This program calculates the weights of a Neural Network
for any number of inputs and any number of outputs

and any number of layers with any number of neurons
Kalman Filter Method

©copyright: Osama Abdl-Wahhab Ahmed

float fun(float *w,float *xp,int *d),
#include <io.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

‘#include <conio.h>

#include<time.h>

#definea 0.2 *segmind slope */
#define b1 0.94

#define st_size 40

#define no_iter 4000

#define ERROR 0.001

#define fd(i) (1.0-y[i]*y[i])*a/2 /* Define derivative.*/

int M,*NL,*NS,L;

Appendix D

155

float *y,theta, *wi;

void main()

{

int z,m,n,Nt1,Nt2,Nt3,ii,*d,st=st_size;

float *w,q,Q=0,xt,error,x,xrx,sum, *R, *k1,*dd, *v, *delta, *xp, *net, *mx,ne,b=b1;
double E;

int i,j,N,xd,ind,Nt,N1,N2 qq;

long int iter=0;

char file_name[18],file_name2{18],file_ name3[18],ch;

FILE *fptr,*fptr2, *fptr3;

clrser();
printf{"\nDo you wish to use previously trained weights? (y or n)-->");

while(((ch=getch())!="y")&&(ch!="n"));

putch(ch);
switch(ch)
{

case 'y"

Pﬁntf("\nEnter file name __>u);

Appendix D

scanf("%s",file_name);

fptr=fopen(file_name,"r");

if{fptr==NULL)

{ print{"No such file exists."); exit(1); }
fscanf{fptr,"%d ", &L);
if{I(NL=(int *)malloc(L*sizeof{int))))

{ printf("Out of memory.NL\n");exit(1); }

if(I(NS=(int *)malloc';((IfZ)*sizeoﬂint))))

{ printf{"Out of memory NS\n");exit(1); }

for(=0;i<L;i++) fscanf{fptr,"%d ", &NLIi]);
NS[0]=NL[0]*NL[1};

for(=1;i<(L-2);i++) NS[i]=NS{-1+NL[]*NL[i+1];
N=NS[L-3}+NL[L-2]*NL[L-1], /* Total of weights. ¥/
/* Assigning memory for weights. */

if(!(w=(float *)malloc(N*sizeof{float)}))

{ printf("Out of memory.w\n"); exit(1); }
for(i=0;i<N;i++) fscanf(fptr, %€ " &wli]);
fscanf{fptr,"%f * &theta));
felose(fptr);
break;

156

Appendix D

case 'n":
printf{"\nEnter number of hidden layers-->");
scanf ("%d", &L);
L+=2; /*adding input and output layers. */
if((NL=(int *)malloc(L*sizeof{(int))))
{ printf{"Out of memory. NL\n");exit(1); }
if({(NS=(int *)malloc((L-2)*sizeof{int))))
{ printf{"Out of memory.NS\n");exit(1); }
printf{"Enter number of nodes in input layer-->");
scanf("%d",&NL[0]);
for(i=1;i<=(L-2);i++)
{
printf{"Enter number of nodes in hidden layer %d-->",i);
scanf("%d",&NL[i]);
}
printf{"Enter number of nodes in output layer-->");
scanf("%d",&NL[L-1});
NS[0]=NL[0]*NL{1};
for(i=1;i<(L-2);i++) NS[i]=NS[i-1]+NL[i]*NL[i+1];

N=NS[L-3]+NL[L-2]*NL[L-1]; /* Total # of weights.

157

Appendix D

o T

158

/* Assigning memory for weights. */
if(!{(w=(float *)malloc(N*sizeof{float))))
{ printf{"Out of memory.w\n"); exit(1); }
randomize();
for(i=0;i<N;i++)
w(i]J=(float)random(N)/(float)N;
theta=0.1;

}

gotoxy(1,10);

printf{"Enter file name for storing trained weights--> ");
scanf{("%s",file_name);

ind=access(file_name,0);

while(lind)

{

gotoxy(1,12);

printf{"File exists. Wish to overwrite? (y or n)-->");
while(((ch=getch())!='y")&&(ch!=n));

putch(ch);

switch(ch)

{

Appendix D

159

case ‘'y"
ind=1;
break;
case 'n’:
gotoxy(1,7);
printf{" ";
gotoxy(1,10);
prindt ")
gotoxy(1,10);
printf{"Enter file name-->");
scanf{"%s" file_name);

ind=access(file_name,0);

}

gotoxy(1,15);

printf{"Enter file name for storing output results--> ");
scanf{"%s" file_name3);

ind=access(file_name3,0);

while(tind)

{

gotoxy(1,17);

- ..

Appendix D

printf{"File exists. Wish to overwrite? (y or n)-->");
while(((ch=getch())!=y)&&(ch!="n));
putch(ch);
switch(ch)
{
case 'y"
ind=1;
break;
case 'n"
gotoxy(1,12);
print " "%
gotoxy(1,15);
printf{" ",
gotoxy(1,15);
printf{"Enter file name-->");
scanf("%s" file_name3);

ind=access(file_name3,0);

for(i=1, Nt=0;i<L;i++) Nt+=NL[i];, /* Total number of neurals.*/

160

Appendix D

/* Assigning memory to *net, *z, *delta.*/
if{!(net=(float *)malloc(NL[L-1]*sizeof(float))))
{ printf{"Out of memory.net\n");exit(1); }

if{!(y=(float *)malloc(Nt*sizeof{float))))
{ printf{("Out of memory.y\n")exit(1); }
if{!(delta=(float *)malloc(Nt*sizeof{float))))

{ printf{"Out of memory.delta\n");exit(1); }

for(i=0,Nt=0;i<L-1;i++) Nt+=NL[i];
if{!(kd=(float *)malloc(Nt*sizeof{float))))

{ printR"Out of memory.kl\n"); exit(1); }
if(!(v=(float *)malloc(Nt*sizeof{float))))

{ printf("Out of memory.v\n"); exit(1); }

for(i=0,N1=0;i<L-1;i++) N1 +=NL[i]*NL[i];
if(!(R=(float *)malloc(N1*sizeof{float))))

{ printf{"Out of memory.R\n"); exit(1); }
randomize();
for(i=0;i<N1;i++)

R[i]=(float)random(N1)/(float)N1;

161

Appendix D

162

printf{"\nEnter file name for stored Data--> ");

scanf{"%s" file_name2);

fptr2=fopen(file_name2,"r");
if{fptr2=NULL)

{printf{"file %s does not exist. " file_name);exit(1);}
/* Determining the size of the data.*/
if(}(mx=(float *)malloc((NL[0])*sizeof(float))))
{ printf"Out of memory.xp\n");exit(1); }

for(i=0;i<NL[0];i++) mx[i]=0.0;

M=0; ind=1;
while(1)
(:
for(i=0;i<NL[0];i++)

{

if{(fscanf(fptr2,"%f ", &xt))==EOF) /* input data.*/

{ ind=0; break; }

if(fabs(xt)>mx[i]) mx[i]=fabs(xt);

}
if(ind==0) break;
for(i=0,i<NL[L-1};i++) fscanf{fptr2,"%d ",&xd); /* desired output.*/

M+

2

Appendix D

}
printf{("\n# of data points=%d\n",M);

rewind(fptr2),
/* Assigning memory to *xp, *d */
if{!(xp=(float *)malloc((M*NL[0])*sizeof{float))))
{ printf("Out of memory.xp\n");exit(1); }
if(!(d=(int *)malloc((M*NL[L-1])*sizeof{int))))
{ printR"Out of memory.d\n");exit(1); }
if{!(dd=(float *)malloc((M*NL[L-1])*sizeof(float))))
{ printf("Out of memory.dd\n");exit(1); }
/* Reading in the data.*/
for(i=0; i<M; i++)
{
for(j=0,j<NL[0];j++)
{
fscanf(fptr2,"%f ", &xt),
xp[j*Mi]=xt,//mx([j];
}
for(j=0;j<NL[L-1];j++)

{

163

Appendix D

et

164

fscanf{fptr2,"%d " &d[j*M+i]);

dd[j*M+i]=(log((0.5+d[*MH)/(1.5-d[j*M+]))) a;

}
fclose(fptr2);

fptr=fopen(file_name,"w");
fptr3=fopen(file_name3,"w"),
clrser();

gotoxy(1,1);

printf{"Press q to exit and save latest update for weights.\n");

while(iter<no_iter)
{
if(kbhit() !=0) { if{getch()=='q") ; break;}
iter ++;
for(i=0;i<M;i++)
{

qq=random(M);

Appendix D

for(z=0,N2=0;2<L-1;z++) N2 +=NL[z];

/* Forward propagation. */

wi=w;

for(z=0;z<NL[1];z++) /* From input layer to first */

{ /* hidden layer. */
for(7=0,ne=theta;j<NL[0];j++) ne+=*(wi++)*xp[j*M+qq];
E=(double)exp(-(double)a*ne);
y[z]=(float)(1.0-E)/(1.0+E);

}

Nt1=NL{1}; Nt2=0;

for(n=2;n<L-1;n++) /* From layer n-1 to layer n.*/

{
for(z=0;z<NL[n};z++)

{
m=Ntl+z;
for(j=0,ne=theta;j<NL[n-1];j++) ne+=*(wit++)*y[j+Nt2];
E=(double)exp(-(double)a*ne);
y{m]=(float)(1.0-E)/(1.0+E);

}

Nt1+=NL[n];

165

Appendix D

166

Nt2+=NL{n-1];
}
for(z=0;z<NL[L-1];z++)
{
m=Ntl+z
for(j=0,net[z]=thetaj<NL{L-2)j++) net[z]+=*(wi++)*y[}+Nt2];
E=(double)exp(-(double)a*net[z]);
ylm]=(float)(1.0-E)/(1.0+E);
}

Nt1=0;
for(z=1;z<(L-1);z++)

Nt1+=NL[z];

for(z=0;z<NL[L-1};z++) /* delta's for output layer.*/
{
ii=Ntl+z;

error=d[qq+z*M]-0.5-y[ii];

Appendix D

167

deltafii}=error*fd(ii);

}

for(m=0;m<(L-2);m++) /* delta's by back propagation.*/
{
Nt2=Nt1-NL[L-2-m];
for(z=0;z<NL[L-2-m];z++)
{
ii=Nt2+z;
sum=0.0;
n=NS[L-3-m]+z;
for(j=0;j<NL[L-1-m];j++)
sum+=delta[Nt1+]*w[n+j*NL[L-2-m]];
delta[ii]=fd(ii)*sum;
}
Nt1=Nt2;

for(z=0,xrx=b;z<NL[0];z++)

Appendix D

168

{

for=0,v(z]=0.0j<NL[0];j++) viz]+=R[z+]*NL[0]]*xp[qq+*M];
xrx+=v[z]*v[z];

}

Xrx=1/xrx;,

xXox/=(1+sqri(xrx));

for(z=0;z<NL[0];z++)
{
for(j=0,kl[z]=0;<NL[0];j++) Ki[z] +=R[j+z*NL[0]]*v[j];
ki[z]*=xrx;
for(j=0,n=z*NL[0];j<NL{0];j++)
R[j+n] =Rfj+n]- v[j]*ki[z])b;
}
Nt1=NL[0]*NL[0]; Nt2=NL[0]; Nt3=0,
for(m=1;m<(L-1);m++)
{
for(z=0,xrx=b;z<NL[m];z++)
{
for(=0,v[z+Nt2}=0.0;j<NL[m];j++)

v{z+Nt2+=R[z+Nt 1+j*NL[m]]*y[Nt3+];

Appendix D

xrx+=v[z+Nt2]*v[z+Nt2];

}
xrx=1/xrx;

xrx/=1+sqrt(xrx);

for(z=0;z<NL[m];z++)

{

169

for(j=0,ki{z+Nt2]=0,n=Nt1+z*NL[m];}<NL{m];j++) ki[z+Nt2] +=R[n+J*v[j+Nt2];

ki[z+Nt2]*=xrx;

for(j=0,n=Nt1+z*NL[m];j<NL[m];j++)

R[n+j] =(R[n+]- v[[*N2]*ki[z+Nt2])/b;

}
Nt1+=NL[m]*NL[m];
Nt2+=NL[m};
Nt3+=NL{m];
}
wi=w;
for(z=0;z<NL[1];z++)
for(j=0j<NL[0];j++)
*(wit+) +=ki[j]*delta[z]*st;

Nt1=NL[0],Nt2=NL{[1};

Appendix D

for(n=2;n<L-1;n++) /* From layer n-1 to layer n.*/
{
for(z=0;z<NL[n];z++)
for(j=0;j<NL[n-1};j++)
*(wit+) +=kI[Nt1+]*delta[z+Nt2]*st;
Nt1+=NL{[n-1];

Nt2+=NL[n];

for(z=0;z<NL{L-1];z++)
for(7=0;j<NL[L-2];j++)
(wi+) +=kI[Nt1+j](dd[qq +z*M]-net[z]);

if(b<.98) b+=.000003;

}

q=fun(w,xp,d);

Q+=q;

iff(iter%10)==0)

{

forintf(fptr3,"%d " iter);
fprintf{fptr3,"%f\n",Q/10);

Q=0,

170

Appendix D

171

}
gotoxy(1,8);
printf{" Error function= %f at iteration # %-5d",q,iter);
if(q<ERROR)break;
}
fclose(fptr3);
fprintf{fptr,"%d "|L);
for(i=0;i<L;i++) fprintf{fptr,"%d ",NL[i]);
for(i=0;i<N;i++) fprintf{fptr,"%f ", w[i]);
fprintf{fptr,"%f " theta);
fclose(fptr);
printf ("\nError=%f",q);
printf{"\n File name used to store weights is %s" file_name);

3

printf{"\n File name for the training data is %s" file_name2);

}

/* Generating the function.*/
float fun(float *w,float *xp,int *d)

{

float net,error,q=0.0;

double E;

Appendix D

int k,j,i,n,m,Nt1)Nt2;
for(k=0;k<M;k++)
{
wi=w,
for(i=0;i<NL[1};i++) /* From input layer to first */
{ /* hidden layer. */
for(j=0,net=theta;j<NL[0];j++) net+=*(wi++)*xp[j*M+k];
E=(double)exp(-(double)a*net);
yli}=(float)(1.0-E)/(1.0+E);
}

Nt1=NL{1]; Nt2=0;

for(n=2;n<L;n++) /* From layer n-1 to layer n.*/
{

for(i=0;i<NL[n];i++)

{
m=Ntl+H;
for(j=0,net=theta;j<NL[n-1];j++) net+=*(wi++)*y[j+Nt2],
E=(double)exp(-(double)a*net),
y[m]=(float)(1.0-E)/(1.0+E),

}

172

Appendix D

173
Nt1+=NL[n];

Nt2+=NL[n-1];

for(i=0;i<NL[L-1};i++) /* Calculating the error. */
{
error=d[k+i*M]-0.5-y[Nt2+];
g+=error*error;
}
}/*k-loop*/
9/=2;
return q;

}

Appendix D

(1]

(2]

(3]

[4]

[5]

(6]

(7

174

REFERENCES

L. A Kamentsky and C. N. Liu, "Computer-automated de: of multifont print
recognition logic," IBM Journal of Research and development, 7, no. 2, pp. 2-
13, 1963.

L. A. Kamentsky and C. N. Liu, "A theoretical and experimental study of a
model for pattern recognition," in Computer and Science, J. T. Tou and R. H.

Wilcox, Eds. New York: Spa Books, 1964.

M. K. Hu, "Visual pattern recognition by moment invariants," IRE

Transactions on Information Theory, vol. IT-8, pp. 179-187, Feb. 1962.

F. L. Alt, "Digital pattern recognition by moments," in Opftical Character
Recognition, G. L. Fischer et al., Eds. Washington, DC: Mc Greger & Werner,
1962, pp. 159-179.

G. L. Cash and M. Hatamian, "Optical character recognition by the method of
moments," CVGIP, vol. 39, pp. 291-310, 1987.
C. T. Zahn and R. Z. Reskies, "Fourier descriptors for plane closed curves,"

IEEE Transactions on Computer, vol. C-21, pp. 269-281, Mar. 1972.

G. H. Granlund, "Fourier preprocessing for hand printed character
recognition,” IEEE Transactions on Computer, vol. C-21, pp. 195-201, Feb.
1972,

References

175

[8] E. Persoon and K. S. Fu, "Shape discrimination using Fourier descriptors,"
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-7, pp. 170-
179, Mar. 1977.

[91 R J. Spinrad, "Machine recognition of hand printing," Journal of Info. and
Control, vol. 8, pp. 124-142, 1965.

[10] V. A Kovalevsky, "An optimal algorithm for the recognition of some

sequences," Cybernetics, vol. 3, no. 4, 1967.

[11] J R. Ullman, "An algorithm for subgraph isomorphism," Jowrnal of
Association of Computer Machinery, vol. 23, no. 1, pp. 31-42, Jan. 1976.

[12] A. P. Ambler, H. G. Barrow, C. M. Brown, P. M. Burstall, and R. J.
Popplestone, "A versatile computer-controlled assembly system," Artificial

Intelligence, vol. 6, pp. 129-156, 1975.
[13] A. Rosenfeld, R. Hummel, and S. Zucker, "Scene labeling by relaxation
operations," /EEE Transactions on Systems, Man and, Cybernetics, vol. SMC-

6, pp. 420-433, 1976.

[14] L. Davis, "Shape matching using relaxation techniques," /EEE Transactions on

Pattern And. Machine Intell., vol. PAMI- 1, pp. 60-72, Jan. 1979,

[15] H. Sherman, "A quasi-topological method for the recognition of line patterns,"
in Info. Process., Proceedings UNESCO Conference (Paris), 1959.

References

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

176

M. Beun, "A flexible method for automatic reading of handwritten numerals,"
Philips Tech. Rev., vol. 33, no. 4, Part 1, pp. 89-101; Part 11, pp. 130-137,
1973.

R. H. McComick, "The Illinois pattern recognition computer-Iiliac Ill," IRE

Transactions on Electron. Computer, vol. EC-12, no. 5, 1963.

C. J. Hilditch, "Linear skeleton from square cupboards," in Machine
Intelligence 1V, B. Meltzer and D. Michie, Eds. Edinburgh, University Press,
1969, pp. 403-420.

H. Tamura, "A comparison of line thinning algorithms from digital computer
view point," in Proceedings of 4th Intenational Joint Conference on Pattern

Recognition, 1978, pp. 715-719.

T. Pavlidis, "Computer recognition of figures through decomposition," Journal
of Info. Control. vol. 12, pp. 526-537, 1968 .

P. G. Perotto, "A new method for automatic character recognition," IEEE

Transactions on Electron. Computer, vol. EC-12, pp. 521-526, Oct. 1963.

M. Nadler, "Sequentially-local picture operators," in Proceedings 2nd 1JCPR,
1974, pp. 131-135.

C. B. Shelman, "The application of list processing techniques to picture

processing," Pattern Recognition, vol. 4, pp. 201-210, 1972,

References

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

177

E. C. Greanias, P. E. Meagher, R. J. Norman, and P. Essinge "The recognition
of handwritten numerals by contour analysis," IBM Journal of Research and

development, vol. 7, pp. 2-13, 1963.

H. Freeman, "On the digital computer classification of geometric line patterns,"

in Proceedings of Natl. Elect. Conference, vol. 18, 1962, pp. 312-324.

G. Gallus and P. W. Nourath, "Improved computer chromosome analysis
incorporating preprocessing and boundary analysis," Physics . Med, Biol., vol.
15, pp. 435-445, 1970.

A. Rosenfeld and E. Johnston, "Angle detection on digital curves," IFEE
Transactions on Systems, Man and Cybernetics, vol. SMC-5, pp. 610-614,
Nov. 1975.

H. Freeman and L. S. Davis, "A comner finding algorithm for chain coded

curves," IEEE Transactions on Computer, vol. C-26, pp. 297-303, 1977.

T. Pavlidis and F. Ali, "Computer recognition of hand written numerals by
polygonal approximations," JEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-5, pp. 610-614, Nov. 1975.

T. Pavlidis and S. L. Horowitz, "Segmentation of plane curve," IEEE
Transactions on Computer, vol. C-23, pp. 860-870, Aug. 1974.

T. Pavlidis, Structural Pattern Recognition. New York: Springer, 1977.

M. D. Levine, "Feature extraction: A survey," Proceedings 57, pp. 1391-1419,
Aug. 1969.

References

178

[34] B. T. Mitchell and A. M. Gillies, “a model-based computer vision system for
recognizing hand written Z[P codes,” Machine Vision and Applications, vol. 2,
pp. 231-243, 1989,

[35] R M. Brown, T. M. Fay, and C. L. Walker, “Hand-printed symbol recognition
system,” Pattern Recogmition, vol. 21, no. 2, pp. 91-118. 1988.

[36] C.Y. Suen, et al “Recognition of totally unconstrained handwritten numerals
based on the concept of multiple experts” in Proceedings IEEE, June pp. 1162-
1180, 1992.

[37] A Krzyzak, W. Dai, and C. Y. Suen, “Unconstrained hand-written character
classification using modified back-propagation model,” in Proceedings of
Intenational Workshop Frontiers in Handwriting Recognition, Apr. 1990, pp.
155- 166.

[38] Y. Le Cun et al, “Constrained neural networks for unconstrained handwritten
digit recognition,” Proceedings of Intenational Workshop Frontiers in

Handwriting Recognition Apr. 1990, pp. 145- 154.

(391 Amin, Adnan; Masini, Gerald, "Machine Recognition Of Multi-Font Printed
Arabic Texts". Proceedings . International Conference on Pattern Recognition
8th. Publ by IEEE, New York, NY, USA. Available from IEEE Service Cent
(Cat n 86CH2342-4), Piscataway, NJ, USA p 392-395, 1986

[40] El-Sheikh, Talaat S.; Guindi, Ramez M. "COMPUTER RECOGNITION OF
ARABIC CURSIVE SCRIPTS" Pattern Recognition v 21 n 4 1988 p 293-302

References

179

[41] Amin, Adnan; Mari, Jean Francois " Machine recognition and correction of
printed Arabic text." JEEE Transactions on Systems, Man and Cybernetics v
19 n 5 Sep-Oct 1989 p 1300-1305

[42] E! Gowely, Khaled; El Dessouki, Ossama; Nazif Ahmed "Multi-phase
recognition of multi-font photoscript Arabic text." Proceedings . International
Conference on Pattern Recognition v 1. Publ by IEEE, IEEE Service Center,
Piscataway, NJ, USA (IEEE cat n 90CH2898-5). p 700-702 1990

[43] Impedovo, S.; Dimauro, G. "An interactive system for the selection of
handwritten numeral classes." Proceedings . International Conference on
Pattern Recognition v 1. Publ by IEEE, IEEE Service Center, Piscataway, NJ,
USA (IEEE cat n 90CH2898-5). p 563-566 1990

[44] El-Khaly, F.; Sid-Ahmed, M. A. "Machine recognition of optically captured
machine printed Arabic text.” Patfern Recognition. v 23 n 11 1990 p 1207-
1214

[45] Sami El-Dabi, Sherif. Ramsis, Refat; Kamel, Aladin" Arabic character
recognition system. A statistical approach for recognizing cursive typewritten

text." Patfern Recognitionv 23 n'5 1990 p 485-495,

[46] El-Wakil, Mohamed S.; Shoukry, Amin A " On-line recognition of handwritten
isolated Arabic characters." Pattern Recognition v 22 n 2 1989 p 97-105

References

180

[47] Al-Emami, Samir; Usher, Mike "On-line recognition of handwritten Arabic
characters." IEEE Transactions on Pattern Analysis and Machine Intelligence
v 12 n 7 July 1990 p 704-710

[48] Al-Yousefi, H.; Udpa, S. S. " Recognition of Arabic characters." IEEE
Transactions on Pattern Analysis and Machine Intelligence v 14 n 8 Aug 1992
p 853-857.

[51] M.-K. Hu, "Pattern recognition by moment invariants," Proc. IRE, vol. 49,
p. 1428, Sept. 1961.

[52] M.-K. Hu, "Visual pattern recognition by moment invariants," IRE
Transactions on Inform. Theory, vol. IT-8, pp. 179-187, Feb. 1962.

[53] F. W. Smith and M. H. Wright, "Automatic ship photo interpretation by the
method of moments," JEEE Transactions on Comput., vol. C-20, pp.
1089-1094, Sept. 1971.

[54] K. Udagawa, J. Tofiwaki, and K. Sugino, "Normalization and recognition
of two-dimensional patterns with linear distortion by moments, " Electron.

Commun. Japan, vol. 47, no. 6, pp. 34-46, 1964.

[55] R. G. Casey, "Moment normalization of handprinted characters," IBM J.
Res. Develop., vol. 14, pp. 548-557, Sept. 1970.

Refcrences

181

[56] 8. A. Dudani, K. J. Breeding, and R. B. McGhee, "Aircraft identification by
moment invariants," IEEE Transactions on Comput., vol. C-26, pp. 39-46,
Jan. 1977.

[57] S. S. Reddi, "Radial and angular moment invariants for image
identification," JEEE Transactions on Pattern Anal. Machine Intell., vol.
PAMI-3, pp. 240- 242, Mar. 1981.

[58] F. A. Sadjadi and E. L. Hall, "Three-dimensional moment invariants," IFEE
Transactions on Pattern Anal. Machine Intell., vol. PAMI-2, pp. 127-136,
Mar, 1980.

[591 M. R Teague, "Image analysis via the general theory of moments," J. Opt. Soc.
Amer., vol. 70, pp. 920-930, Aug. 1980.

[60] J. F. Boyce and W. J. Hossack, "Moment invariants for pattern recognition,"

Pattern Recognition Lett., vol. 1, no. 5-6, pp. 451-456,m July 1983.

[61] Y. S. Abu-Mostafa and D. Psaitis, "Recognitive aspects of moments
invariants," JEEE Transactions on Pattern Anal. Machine Intell., vol.

PAMI-6, pp. 698-706, Nov. 1984.
[62] Y. S. Abu-Mostafa and D. Psaitis, "Image normalization by complex
moments," J[EEE Transactions on Pattern Anal. Machine Intell., vol.

PAMI-7, pp. 46-55, Jan. 1985.

[63] C.-H. Teh and R. T. Chin, "On digital approximation of moment invariants,"
Comput. Vision, Graphics, Image Processing, vol. 33, pp. 318-326, 1986.

References

182

[64] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1 New

York: Interscience, 1953.

[65] CHO-HUAK THE, and Roland T. Chin, "On Image Analysis by the Methods
of Moments," IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 10, No. 4, July 1988.

[66] A. Khotanzad, and Jiin-Her Lu, "Classification of Invariant Image
Representations Using a Neural Network," IEEE Transactions on Acoustics,
Speach, and Signal Processing, Vol. 38, No. 6, June 1990.

[67] A. B.Bhatia and E. Wolf, Porc. Camb. Phil. Soc., vol. 50, pp. 40-48, 1954,

[68] Tien C. H, "A Note on Invariant Moments in Image Processing," IEEL

Transactions on Systems, Man, and Cybernetics, Vol. SMC-11, No. 12,
December 1981,

[71] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John
Wiley & Sons, New York (1973).

[72] A. lituivi and R.L.Rivest “Training a 3-node neural network is NP-complete" In
Proceedings of the computational learning theory (COLT) conference, pp. 9-

18. Morgan Kaufmann, 1988.

[73] F L. Lewis, Optimal Estimation, John Wiley & Sons, New York (1986).

References

129

183

[74] G.G. Lorentz, 'The 13th Problem of Hilbert," in F. E. Browder (Ed.),
Mathematical Developments Arising from Hilbert Problems, American
Mathematical Society, Providence, R.I. (1976).

[75] M. Minsky, and S. Papert, Perceptrons: An Introduction to Computational
Geometry, MIT Press (1969).

[76] T. Parsons, Voice and Speech Processing, McGraw-Hill, New York (1986).

[77] R. Rosenblatt, Principles of Neurodynamics, New York, Spartan Books (1959).

[78] D.E. Rumelhart, G.E. Hinton, and R. Williams, "Learning Internal
Representations by Error Propagation" in D. E. Rumelhart & J. L. McCielland
(Eds.), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. Vol. 1: Foundations. MIT Press (1986).

[79] S. Becker and Y. le Cun, "Improving the convergence of back-propagation

learning With second-order methods," Technical Report CRG-TR-88-5, U. of
Toronto, Toronto, Canada, 1988.

[80] B. Widrow, and M. E. Hoff, "Adaptive Switching Circuits," 1960 IR
WESCON Conv. Record, Part 4, 96-104, August 1960.

[81] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, New
Jersey (1985).

References

184

[82] D.R. Hush and J. M. Salas, "Improving the learning of back-propagation with
the gradient reuse algorithm,” In proceedings of the IEEE International
conference on Neural Networks, volume 1, pages 441-448, 1988.

[83] R.A. Jacobs, “Increased rate of convergence through learning rate adaptation,”
Neural Networks, 1(4):294-308, 1988.

[84] J.S. Jadd, Neural Network Design and the complexity of learning, MIT Press,
Cambridge, MA, 1990.

[85] R.L. Watrous, “Learning algorithms for connectional networks: applied gradient
methods of nonlinear optimization,” In Proceedings IEEE 1* International

conference on Neural Networks, volume 2, pages 619-628, 1987.

[86] D.C. Plaut, S.J. Nowlan, and G.E. Hinton, “Experiments on learning back-
propagation,” Technical Report CMU-CS-86-128, Carnegie-Mellon University,
Pittsburgh, PA, 1986.

[87] I. G. Proakis, Digital Communications. New York: McGraw-Hill, 1983.

[88] S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
1986.

[89] R. S. Scalero, and N. Tepedelenlioglu, "A Fast New Algorithm for Training
Feedforward Neural Networks,' [EEE Transactions on Signal Processing, Vol.
40, No. 1, January 1992,

References

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

185

Battin, R. H., “Astronaytical Guidance,” pp. 338-339. McGraw-Hill, NewYork
(1964).

Gerald J. Bierman, “ Factorization Methods for Discrete Sequential Estimation,”
Academic Press, (1977).

El-Khaly, F.; Sid-Ahmed, M. A. "Machine recognition of optically captured
machine printed Arabic text.” Pattern Recognition. Vol. 23, No. 11 1990 p
1207-1214

C.-H. Teh and R. T. Chin, "On digital approximation of moments
invariants," Computer. Vision, Graphics, Image Processing, vol. 3 pp. 318-
326, 1986.

Cho-Huak Teh and R. T. Chin, "On Image Analysis by moments” IEEE
Transactions on pattern analysis and Machine Intelligence, Vol. 10. No. 4,
July 1988.

Khotanzad, A. Jiin-Her Lu, “Classification of invariant Image Representations
Using a Neural Network™ IEEE Transactions on Acoustics, speech, and signal
processing, Vol. 38, No. 6, June 1990.

R. O. Duda and P. E. Hart, Pattern Classification and scene analysis, Jone wily
& Sons, New York (1973).

Shih-Chi, H. And Yih-Fang, H. “Bounds on the number of hidden neurons in

multilayer perceptrons” IEEE Transactions on Neural Networks, Vol. 2, No. 1,
January 1991.

References

186

[99] R. P. Lippmann, “An introduction to computing with neural nets” IEEE
Acoustics, Speech and Signal Processing Magazine, 4(2):4-22, April 1987.

References

