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Chapter 1

Introduction

1.1 System Identification

In system identification, the main objective is to find a mathematical relationship
between the inputs and outputs, taking into consideration the internal and external
disturbance effect. This relationship is called a model. Inputs, outputs and if pos-
sible, the disturbances in the system are measured and an estimate of the system is
found. The identified models can be used in many applications, such as experimental
simulations of a systems and controller design of a plant.

To estimate a system, the first step is to build a model structure. A model
structure is an idea about the system and the relationship between the input and
the output. Real life systems are nonlinear in nature. So in order to identify them.

it is suggested to find an operating region where the system acts as linear. However.



(3]

the linearization does not model the actual system completely for all operating
points. And, thus, due to loss of information by ignoring the nonlinearities of the
system, the control system designed based on the linear model, maybe unstable or
poorly performing.

A significant amount of research has been done on nonlinear system identification
and modeling over the years. The study of nonlinear functionals began way back in
1887 by Volterra [1]. The functionals introduced by Volterra were named after him
as Volterra kernels and the series was named, Volterra series. Similar to Volterra,
Wiener kernels were used by Wiener [2] to identify nonlinear systems. The algorithm
adopted by Wiener was used and modified by numerous authors [3]. French and
Butz [4] developed a frequency domain method of measuring the Wiener kernels to
be used for nonlinear system identification. Identification of nonlinear systems was
also performed by the correlation of input signals. Parametric estimation methods
of nonlinear systems identification are presented in [5]. In addition to the above
mentioned techniques, few others are also discussed in a comprehensive survey done
by Billings [6].

In recent years, new techniques have been used to identify the nonlinear systems
e.g. neural networks (7], genetic algorithms [8]. fuzzy logic [9], Extended Kalman
filters [10], set membership technique [11]. adaptive filters [12], [13], wavelet networks
(14]. neuro-fuzzy networks [15].

Block-oriented models are one of the major classes of nonlinear systems. which



are the main scope of this thesis. The block-oriented approach consists of linear mod-
els followed by, or preceded by a static nonlinearity and is classified as Hammerstein
and Wiener models depending on the order of the blocks. Block-oriented models
provide simple architecture. Moreover, complex structures can be constructed from
simple blocks via parallel-series approach [16].

The next section gives an introduction to Hammerstein and Wiener models fol-

lowed by the literature review.

1.2 Hammerstein and Wiener Models

The behavior of many systems can be approximated by a static nonlinearity cascaded
with a linear part or vice versa. These models are known as Hammerstein and
Wiener models. respectively, as shown in Fig. 1.1 and Fig. 1.2, where. u(t) is the
input to the system. y(t) is the output and r(t) is the intermediate nonmeasureable

quantity.

u(t) x(t) ()

| Static Dynamic
Nonlinearity Linear Part

Figure 1.1: Structure of Hammerstein Model.

The Hammerstein and Wiener models are used to model several classes of non-

linear systems. Their flexibility lies in having the nonlinearity entirely separated
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ut Dynamic *) Static v

Linear Part Nonlinearity

Figure 1.2: Structure of Wiener Model.

from the well known and easily realizable linear parts. This identification gives
more insight into the system and simplifies the controller design.

Examples of application of the Hammerstein are, nonlinear filters [17], nonlinear
networks [18], detection of signals in non-Gaussian noise [19], nonlinear prediction
[20]. heat exchangers (21}, nonlinear data transmission channels [22]. control valves
[23], identification of nonlinear systems [24], biological systems [25] like electrically
simulated muscle [26], and many others.

The Wiener model has been used in many important applications including pH
control [27]. fluid control flow [28]. identification of biological systems [26]. control

systems [29] and identification of linear systems with nonlinear sensors [30].

1.3 Literature Review

This thesis mainly considers the identification of Hammerstein and Wiener models
and proposes a new identification technique. Therefore, the literature review is also

classified according to the type of models.



1.3.1 Literature on Hammerstein Model Identification

Many identification techniques have been used in the past to identify the linear and
nonlinear parts in the Hammerstein model. In 1966, Narendra and Gallman [31], for
the first time, identified a nonlinear system by decomposing the nonlinear system
into its linear dynamics and static nonlinear blocks. They used an iterative method
that gave estimates for the linear and nonlinear parts separately.

Chang and Luus [32] used a non-iterative technique for the identification of
nonlinear systems and adopted a batch method.

Billings and Fakhouri [33] identified the nonlinearity using the correlation anal-
ysis with pseudo-random inputs. The correlation between the input and output
signals was measured and the impulse responses were estimated and updated to
minimize the output error.

Greblicki and Pawlak [34]. identified the Hammerstein model by a nonparametric
technique, using Kernel regressions estimate.

Hwang and Shyu [35] used finite series expansion method. The system coefficients
were expanded in discrete Legendre orthogonal polynomials to identify the system
parameters.

Greblicki [36] presented trigonometric as well as Hermite orthogonal series ap-
proach to identify the Hammerstein model. Hermite series expansions are found

advantageous over the Kernel regressions estimate. Unlike Kernel regressions. the



memory requirement in Hermite series is much smaller. The Kernel estimates require
as many coefficients as the number of patterns, while the Hermite series expansion
requires only a small number of coefficients.

A system comprising of parallel Hammerstein models was identified using poly-
nomial technique by Falkner [37]. This system can accommodate multi-input as well
as multiple nonlinearities at the input.

Lang Zi-quang [38] proposed a nonparametric method to identify the Hammer-
stein model. By using a nonparametric estimation method, a best approximation
polynomial of the nonlinear static element was obtained.

Nonparametric deconvolution was used by Greblicki and Pawlak [39] to find the
inverse of nonlinearity in frequency domain.

A Kalman filter based recursive algorithm for online identification of the model
was put forward by Boutayeb and Darouch [40]. This paper dealt with both the
single-input single-output (SISO) and the multi-input single-output (MIMO) Ham-
merstein systems.

Sundeep et al. [411] concluded that iterative procedure is always preferable to
the correlation method. Proposing the impulse response method, the authors guar-
anteed convergence and concluded that correlation based approaches are essentially
unnecessary for the Hammerstein systems.

Jonathan and Zoubir [42] used the Kernels, which replaced the Volterra series.

providing a computationally efficient technique. Furthermore. they also used non-



Gaussian input for the identification.

Verhaegen and David [43] used the idea of state space variables. The linear and
nonlinear blocks were decomposed into subspaces. They also proposed a subspace
model identification for the MIMO Hammerstein systems.

Krzyak and Sasiadek [44] proposed a universal identification method for dynamic
nonlinear systems removing the limitations on the class of nonlinearities.

Sequare and Heinz [45] used Hartley modulating functions (HMF). This approach
converts the nonlinear differential equations describing the nonlinear system into a
Hartley spectrum and finds the estimates in frequency domain.

Zhu [46] revisited the least squares method and modified it for the Hammerstein
model. The method was simplified further by model reduction.

Li [47] used Genetic Algorithms (GAs) to identify the Hammerstein model. The
GAs are a better approach for a complex system with a large number of parameters.
Their solution was based on converting the estimation problem to an optimization
problem and minimizing the objective function e.g. error at the output. However,
there are a number of other parameters that need to be tuned in GAs. like mutation
probability, crossover probability, population size, number of generations, etc.

Hammerstein Model was identified using set membership technique by Gustavo
and Paolo {11]. The parameters were given a bound within a set, thus they can have
any particular value for a value of measurement error. which is also characterized

by a set membership context. They suggested to use of any algorithm for the set



membership technique. In this paper, the only constraint put on was that the
parameters are identifiable if the transfer functions of the linear part are linearly
independent.

Gomez and Baeyens [48] identified the Hammerstein systems using rational or-
thonormal bases. They claimed that their algorithm is numerically robust. The key
issue was the representation of the linear part of the system using the orthonor-
mal basis functions which makes it possible allows to write the output equation in
linear regressor form. Additionally, the use of rational orthonormal bases allows a
priori information to be incorporated in the identification process. to improve the
estimation accuracy.

Al-Duwaish [21] and Hatanaka et al. [49] identified general linear dynamic sys-
tems with static non-linearity in particular the Hammerstein model using GAs.

Hammerstein models were identified using MFNN by Duwaish et al. [50]. The
MFNN identified the nonlinearity and the linear dvnamic part was identified using
an ARMA model. A recursive identification algorithm combining recursive least

squares(RLS) and back-propagation to identify the Hammerstein model.

1.3.2 Literature on Wiener Model Identification

Westwick and Kearney (51] identified the multiple input Wiener system by using
a simple cross correlation technique. The estimate of all the linear parts of the

system were achieved by using cross correlation technique and the outputs with this



estimate were generated for all the systems. The output error was used to update
the estimate and then it was iterated until the desired outputs were generated.

Hu and Wang [52] used a three level pseudo-random sequence to estimate the im-
pulse responses of the linear part and the polynomial coefficients of the nonlinearity
of the discrete Wiener model.

Duwaish et al. {29] presented a neural network approach towards the identifi-
cation of the Wiener model. The linear part was modelled by an ARMA, where
the coefficients were updated using the RLS, and the nonlinearity was estimated by
MFNN. The MFNN is updated using the back-propagation algorithm.

A recursive subspace identification algorithm was proposed by Lovera and Ver-
haegen [53]. The method was found as a by product of the MOESP (multivariable
output error state-space model identification) class algorithm.

Chou and Verhaegen [54] used the pre-filtering of both input and output data.
This technique is reported to have good results for LTI systems. The authors showed
that correlation method can be used for the nonlinear systems to apply data pre-
filtering.

Similar to Hammerstein systems, the Wiener model was also identified using
the maximum likelihood with a linear regression initialization by Hagenblad and
Ljung [55]. The idea is to first parameterize the model. and then parameters are
transformed in the form of original system. The inverse of the nonlinear system is

parameterized with linear B-splines. Now the estimate of the intermediate signal
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from the parameters and the B-splines are equated and solved for the parameters.

Rodriguez and Fleming [56] used a multi-objective approach in the genetic pro-
gramming to identify the nonlinearity in the Wiener model. This method gives a
tradeoff Between the complexity and the performance of the system.

Greblicki [57] used orthogonal series expansion for the identification. The author
also used Kernels regressions in (58] to identify the Wiener model. Greblicki also
identified continuous time Hammerstein system [59] and continuous time Wiener
system [60].

Hagenblad used the prediction error and expectation maximization method to
identify the Wiener model in {23].

Chou and Verhaegen [61] adopted a three step algorithm to identify the Wiener
model with process noise. The algorithm was based on cross-correlation and sub-
space identification. The subspace matrices are estimated first which are used in
the estimation of the intermediate signal and together with the output the inverse
of the static nonlinearity is estimated. And finally the consistent estimates of the
subspace variables are approached.

Yong and Chow [14] presented a hybrid model of wavelets and neural networks
as an identification scheme for the Wiener model. The orthogonal scaling and the
mother wavelets were combined to obtain the activation functions. The neural
network is used to avoid the need of any apriori information. The wavelets capture

the modes of the nonlinearity by passing the nonlinearity through a time-frequency
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plane window. The liner part was identified by an ARMA.

A comprehensive analysis of stochastic gradient identification of Wiener systems
was done by Celka et al. [62].

Anders and Lars [63] identified the time varying Wiener Hammerstein system.
They made the use of the extended Kalman filter. Furthermore, to ensure stability,
the paper reformulated the algorithm in terms of a nonlinear minimization problem
with a quadratic inequality constraint.

Lacy et al. [64] identified the Wiener model by minimizing a cost function for
standard least squares depending upon the vector of unknown system parameters

and the intermediate signal.

1.4 Motivation for Present Work

The algorithm presented in [50] and [29] used MFNN to identify the static nonlin-
earities in the Hammerstein and Wiener models. The back-propagation algorithm
is used to update the weights of the MFNN. It is well known in the literature that
the convergence of the back-propagation algorithm is very slow compared to LMS
when used for training radial basis functions neural networks (RBFNN) [65]. [66].
[67]. [68]. Moreover, the RBFNN has the same universal approximation capabilities
as the MFNN [65]. This motivated the use of RBFNN instead of MFNN to model

the static nonlinearity. The linear part is modelled by an ARMA model.



1.5 Thesis Contributions

This thesis presents a new identification algorithm for the Hammerstein and Wiener
models. This work can be stated as an extension of the contributions presented in
[50] and [29]. RBFNN are successfully implemented instead of MFNN to identify the
static nonlinearities in the Hammerstein and Wiener models. RBFNN appeared as
a better choice than MFNN due to faster convergence. The network is also simpler
as only one layer is involved for the computations. Simulation shows that lesser
number of neurons are required with RBFNN.
The new identification structure for the Hammerstein model consists of an RBFNN

followed by an ARMA model. For the Wiener model. the structure consists of an
ARMA model followed by an RBFNN. The contributions an be enumerated as fol-

lows:

e Training algorithms are derived based on LMS principles to obtain the update

equations for SISO Hammerstein and SISO Wiener systems.

e Training algorithms are derived for the MIMO Hammerstein and MIMO Wiener
systems with separate nonlinearities i.e. each nonlinearity is independent of

the other nonlinearities in the system.

¢ Training algorithms are derived for the MIMO Hammerstein and MIMO Wiener

systems with combined nonlinearities i.e. there is only one MIMO nonlinear
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block in the system and the inputs and outputs of the nonlinear part are all

coupled with each other.

e The proposed algorithms identify the Hammerstein and Wiener models in

single step, i.e. the linear and nonlinear parts are identified simultaneously.

To validate the derived equations, simulations are done for several SISO and
MIMO examples. Simulations are also performed for noisy environments and promis-

ing results are obtained.

1.6 Thesis Organization

This thesis is organized as follows:

Chapter 2, presents the introduction and mathematical representation to the
Hammerstein and Wiener models. This chapter also includes the proposed iden-
tification structure. The main components of the identification structure i.e. the
RBFNN and the ARMA model are described.

The contributions begin from Chapter 3. where the proposed training algorithm
is developed. In this chapter, the derivation for SISO cases for both the Hammerstein
and Wiener models are presented.

Follows Chapter 4, where the proposed algorithm is validated by simulations.
Examples for Hammerstein and Wiener models are considered and simulation results

with discussions are included in the chapter.
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Chapter 5 comprises the derivations for the MIMO cases of Hammerstein and
Wiener models. Training algorithms for a general M-input N-output model are
developed.

Chapter 6 includes the example study for MIMO cases and simulation results
for each case is briefed.

Chapter 7 presents the conclusions and avenues for future work.



Chapter 2

Proposed Identification Structure

This chapter presents the proposed identification structure. Before describing the
structure and its components. a brief introduction to the Hammerstein and Wiener
models is given, with their mathematical representation. Introduction to the com-
ponents of the identification structure i.e. RBFNN and ARMA is presented towards

the end of the chapter.

2.1 Hammerstein Model

Hammerstein Model comprises of nonlinear block in cascade with a linear block as
shown in Fig. 1.1. The Hammerstein model is used to model several classes of non-
linear systems. Its flexibility lies in having the nonlinearity entirely separated from

the common and easily realizable linear parts. The static nonlinear element scales

15
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the input u(t) and transforms it to z(t), and the dynamics are modeled by a linear
transfer function, whose output is y(¢). The Hammerstein model models the nonlin-
ear effects as an input-dependent nonlinear gain. The slope of the nonlinearity at a
certain operating point is the instantaneous gain of the system. The Hammerstein

model can be described by the following set equations [24].

y(t) = D aylt—i)+ Y bz(t - j). (2.1)
i=0

i=]

() = f(u(t).p). (22)

Where u(t) is the input to the system and y(t) is the output of the system. r(t)
is the nonlinear function of the input and the parameters p (p corresponds to the
weights for the RBFNN). The integers m and n are the order of poles and zeros of
the linear system. The quantity, z(¢) cannot be measured. but it can be eliminated
from the equations. Thus, Eq. 2.1 can be written in the following form in which the

intermediate variable r(¢) has been removed.

_ B¢
y(t) = mf(t).
B(q~!
v = 2.0, (23)

where ¢g~! is the delay operator and the polynomial A(¢~!) and B(q~!) are.



A(g™)

B(g™")

l+a1g7 4+ - +a.q™",

g7+ -+ bag™.

Now, the Hammerstein system can be modelled entirely in terms of the inputs and

the outputs of the system.

2.2 Wiener Model

The Wiener model of a nonlinear system is constructed by a nonlinear gain cascaded

after a linear subsystem. Similar to the Hammerstein model, Wiener model is also

used to model many nonlinear systems. The structure of Wiener model of a nonlinear

system has been shown in Fig. 1.2. Mathematically it can be represented by the

following equations,

or

f(x(t).p)). (2.6)
D au(t—i)+ D bu(t - ). (2.7)
=l Jj=0

~1
ﬁé;’_l ))u(t). (2.8)

Where u(t) is the input to the system, z(t) is the intermediate nonmeasureable

variable. y(t) is the output and A(q~'). B(¢™') have been defined in Eq. 2.4 and

Eq. 2.5.
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The intermediate variable z(t) can be eliminated from observed output y(t) of

the system as,

-1
y(t) = f (%_,;ua),p)) . (2.9)

Therefore, the system is now completely modelled in terms of the input and the

output of the system.

2.3 Problem Statement

Thus, the problem of the Hammerstein and Wiener model identification is to esti-
mate the coefficients of the linear part a),....a,. b,,...,b, and the weights p for
the nonlinearity. Training algorithm for single input single output (SISO) systems
will be developed first, and then will be generalized for multi-input multi-output
(MIMO) systems.

A recursive algorithm is to be developed that updates the weights of the RBFNN
and the coefficients of the ARMA with each pair of the input-output data. such that
the output error is minimized. This makes it an optimization problem to achieve a
predefined performance index. Therefore, to minimize the error a gradient descent
algorithm can be selected. Literature depicts LMS algorithm to be a simple and

easy to implement algorithm for the above said problem.
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2.4 Proposed Identification Structure

The proposed identification algorithm is also block-oriented and comprises of corre-
sponding linear and nonlinear blocks. The proposed identification structure makes
use of the universal approximating capabilities of RBFNN for the static nonlinear
block and an ARMA for the linear block.

Identification structure for the Hammerstein model consists of an RBFNN in
series with an ARMA model, as shown in Fig. 2.1, and an ARMA model in series

with RBFNN for Wiener systems as shown in Fig. 2.2.

u(t) x(t) y()

——» RBFNN |————» ARMA | —»

Figure 2.1: RBFNN/ARMA identification structure for Hammerstein model.

u(t) x(t) y(t)

—— ARMA RBFNN —»

y

Figure 2.2: ARMA/RBFNN identification structure for Wiener model.

2.4.1 Radial Basis Function Neural Networks

RBFNN is a type of feed forward network. They are used in a wide variety of con-

texts such as function approximation. pattern recognition and time series prediction.
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Networks of this type have the universal approximation property. In these networks
the learning involves only one layer with lesser computations. This results in re-
duction in the training time in comparison with MFNN, that uses back propagation
algorithm to update the weights of all the layers. These features make RBFNN
attractive in many practical problems.

A SISO RBFNN is shown in Fig. 2.3. It consists of an input node u(t), a hidden

layer with n, neurons and an output node z(t).

Figure 2.3: A general RBFNN network

Each of the input node is connected to all the nodes in the hidden laver through
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unity weights (direct connection). While each of the hidden layer nodes is con-
nected to the output node through some weights w;,...,w,,. Each neuron finds
the distance, normally applying Euclidean norm, between the input and its cen-
tre and passes the resulting scalar through a non-linearity. So the output of the
hidden neuron is given by ¢(||u(t) — c;||), where n, is the number of hidden layer
nodes (neuron), u(t) is the input, c; is the centre of i** hidden layer node where
t=12,...,n,, and ¢(-) is the nonlinear basis function. Normally this function is
taken as a Gaussian function of width 3. The output (z(t)) is a weighted sum of

the outputs of the hidden layer, given by
z(t) = Wo(e),
z(t) = D wie(llu(t) - cl).
=1
where W = [ww ... wa].

and  ®(t) = {Jlu(t) —all ult) —call ... u(t) - ca,ll]”-

£(t) is the output, w; is the weight corresponding to the i hidden neuron.



N
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2.4.2 ARMA Model

The linear part of the Hammerstein/Wiener model is modeled by an ARMA model,

whose output is given by

y(t) = _ay(t—i)+ > bju(t — j) (2.10)

i=] Jj=0

or in terms of ¢~! operator

-1
() = %_lgq-du(t) 2.11)



Chapter 3

Development of Training

Algorithms for SISO Systems

In this chapter the training algorithms for the SISO systems of the Hammerstein and
Wiener models are considered. Considering Fig. 2.1 and Fig. 2.2, the objective is to
develop a recursive algorithm by which the weights of the RBFNN and coefficients of
the ARMA model can be adjusted, such that the set of inputs produces the desired
set of outputs. This problem is solved by developing a new parameter estimation

algorithm which will be based on the well known LMS principles.
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3.1 Training Algorithm for Hammerstein Model

The training algorithm is developed based on LMS principle. The proposed identi-

fication structure runs in parallel to the actual system as shown in Fig.3.1.

u(t)

Actual Hammerstein System

Static

nonlinearity

Linear
Dynamics

vy

Identification Structure

u(t)

x(1)

RBFNN

ARMA

Figure 3.1: Identification of Hammerstein system.

The parameters (weights of RBFNN and the coefficients of ARMA) are updated

by minimizing the performance index I given by,

e(t)

y(t) — g(¢). 3.1)

where y(t) is the actual output of the system and j(t) is the estimated output

of the Hammerstein Model. The coefficients of the ARMA model and the weights

of the RBFNN should be updated in the negative direction of the gradient as.



25

oI

and

W(K +1) = W(K) — ar“;’(ﬂ{-), (3.3)

where 6 = [a; ... an bo ... bm] is the parameter vector , W = [wy ws ... w,,] is
the weight vector for RBFNN and « is the learning parameter. The variable K is
used to show the iteration number of training. This must not be confused with the
time variable ¢, as the parameters and the weights are independent of time, once
the training process is completed.

Keeping the regressions of the variables in the system in a regression vector ¢ as

(t) = [g(t~1) ... y(t—n) i(t—d) ... £(t — m —d)| and finding partial derivatives.

ol 19t

a8 ~ 2 98
= ()2 (y(t) - §(1)).

08

-1
= <tz (s - FPi0).

— 0200 — @+ ang) 400

= (b + b1g7" + - - - + bmg™™) ¢74i(2)),
= —e(t)-;)—e(alg(t - +ay(t-2)+---+a,j(t —n) +

boi(t — d) + by E(t = 1 —d) + -+ + bpi(t — m — d)).
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= —e®)[Ft-1)g(t-2) ... §(t—n)

i(t—d) i(t—1-d) ... i(t —m —d)],

%é —e(t)U(t). (3.4)

Now, the gradient in Eq. 3.4 is used to find the updated parameters at (K + 1)t*
instant along with Eq. 3.2. The final parameter update equation will be,

0(K + 1) = 0(K) + a e(t)y(t). (3.5)

The partial derivatives for the weights are derived as follows,

ar _ loe
oW T 2 9

_ ema—‘} (u(t) = §(1)) .

-1
= el (s00 - e 0)

9 _ -
= et/ (u(t) — (g™ + -+ aug™) §(1)
—(bo+b1g7" + -+ + bg™™) ¢ TUWD(L)),

= —e(t) (b + b1g™" + - -+ + bmg™™) g7IB(t),

oI

57 = —eOB@ ().

This gradient is used to find the weight update equation, along with Eq. 3.3,

V(K +1) = IW(K) + ae(t)B(q~")q~®(2). (3.6)
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3.2 Training Algorithm for Wiener Model

Considering Fig. 2.2, the objective is to develop a recursive algorithm that adjusts
the parameters of the ARMA model and the weights of the RBFNN in such a way,
that the set of inputs produces the desired set of outputs. This goal is achieved by
developing a new parameter estimation algorithm based on the LMS approach. The
proposed identification structure runs in parallel with the actual Wiener system as

shown in Fig. 3.2.

Actual Wiener System

u(t) | Linear Static ; y ('{
;| Dynamics nonlinearity ! ‘ v

Identification Structure

y(t)
x(t)

R .
‘ )
ARMA RBFNN | - >
u(t) —'Q—_?m

l
|
i
!
t
|

Figure 3.2: Identification of Wiener system.

The parameters (weights of RBFNN and the coefficients of the ARMA) are

updated by minimizing the performance index I given by,

12
I=§e (t)

where. e(t) = y(t) — §(t) and g(t) is the estimated output of the Wiener model.
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The coefficients of the ARMA model and the weights of the RBFNN should be
updated in the negative direction of the gradient. Keeping the coefficients in a
parameter vector § as @ =[a; ... an b, ... by and the regressions of the quan-
tities £(t) and u(t) in regression vector ¥(t) as ¥(t) = [#(t —1) ... #(t — n) a(t -

d) ... 4(t — m — d)] and finding partial derivative. The derivation goes as follows:

I 18€X(t)
9 2 ao '

= e(t) 5 (y(t) —3(t)),

= e(t) g (y(t) = We(t)),

= e(t)— (y(t) - Zo:w,-(p(]li(t) - C:“)) '

= —elt)z5 (wno IE() = erll) + - - + wa, (|l E(2) — cnsll)),

= —e(t)%(wl exp(~ M);ﬂ) oot exp(- 1O~ c,,.,n ),

= e (wep(-EOZaY) | (- (W

= —e(t)55 (wle*(p(—a_;cl)g)+...+u,n°exp(_ r(t)gzcn,) ))'

= —e()zg (u;e\cp(——-—;cl—)z)+...+wnoexp(_(-i'(t);zcnu)g)). o
Let Qi = w; exv(—w). where i = [1. 2. ... n,]. Considering the partial

32

derivative of Q; term w.r.t. any a,,



-~ - . 2
aia,-w’ exp(_(ﬂr(t)a2 ) ),
( (I(t)—CJ)z) 0 (J.‘(t)—CJ)2
ﬂ’ Ja; g’
t) - 8 B(q™!
Y ep(-EE 20, 0 Ag; ai(t)

—2(x(t)—c,)ﬁ2exp( %_ 6 (Za,z(t—l +Ebkut—k
(-7-'() c;)?

—w; exp

-2(z(t) - c,)

~2(£(2) ~ ) 5 exp(~ )(t - i),
~23(t - )(3(0) - &) exp(~ (’(—‘)B;—))

Putting the % term from Eq. 3.8 in Eq. 3.7 for a;,

i

aI (Z(t) = c1)?

. = =2e(t)z(t — i)(z(t) - cl)—e‘ip( 32 )
2e(t)z(t — i) (z(t) — c«y)—e‘cp( %—) -
-i'(t) - Cn.,)2

— 2e(t)&(t — i)(E(t) — cn,) ['3'; exp(— ),

or, in closed form.

oo, (t—z)z:(x(t - &y exp( - LGV

aﬂ,'

= t—z)Zu(t ) = &uso(llé(e) ~ g1,

]
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d)),

(3.8)
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Similarly for any b;,

g—,i = -'e(t) u(t —i—d) Z(z(t) - cj)w;é(]|2(t) - ¢;ll),

Jj=1

and finally stacking the derivatives in Eq. 3.7 again,

{‘;% = -e(t)(- w(t)Z(z(t)—c,)w,¢(||z(t)-c,u))
Jj=1
%'{- = -e(t) (t)Z( Z(t) — c;)w;o(|£(t) — c;)).

Now, this gradient is used in finding the updated parameters using Eq. 3.2.

-ae(t)

8(K +1) = §(K) - Y(t) Z(x(t) — ¢ wi(llE(t) — c;ll).|  (3.9)

The partial derivatives for the weights are derived as follows,

ar _ _l_ae"'(t)
aw 2 W
- e(t);%(y(t)—y(t»,
= e(t)z0 (u(t) - We(0)).
% = —e(t)d(t). (3.10)

The gradient in Eq. 3.10 is used to find the updated weights using Eq. 3.3. The

final weight update equation will take the form,

(K + 1) = IF(R) + ae(t)®(). (3.11)




Chapter 4

Simulation Results for SISO

Systems

This section comprises of the validation of the proposed training algorithm for the
identification of the SISO Hammerstein and Wiener models. The proposed train-
ing algorithms are applied on several practical examples for both Hammerstein and
Wiener models including heat exchanger [21]. control valve [23] and saturation non-
linearity [69].

To inspect the effect of noise on the accuracy of identification scheme, simulations

are also performed in noisy environment for both Hammerstein and Wiener models.

31
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4.1 Simulation Results for SISO Hammerstein Model

Example 1: Saturation Nonlinearity

The process used in this example is a second-order system with a saturation non-

linearity at the input. The plant is given by the following difference equation:

y(t) = 0.4y(t — 1) + 0.35y(t — 2) + 0.8z(t), (4.1)

where z(t) is a nonlinear function of the input u(t) and its characteristics are

given by,
¢
0.5, for u(t) > 0.5
(t) = u(e). for —0.5< u(t) <05 (4.2)
\ -0.5, for u(t) < —-0.5

Using random inputs u(t) uniformly distributed in the interval [—2.2], the desired
outputs are generated by means of the process model given by Eq. 4.1.

The structure of the identification model comprised of an RBFNN in series with
an ARMA model. The centers of the RBFNN are evenly distributed in input space.

The ARMA model employed is given by:

y(t) = a1y(t — 1) + aay(t — 2) + box(t). (4.3)
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For this example, after few trials, the width of the basis functions and the learning
rate are optimized to 0.41 and 0.04, respectively.

The proposed algorithm is applied to update the weights of the RBFNN and the
coefficients of the ARMA. The RBFNN identified the nonlinearity in the model. The
actual and identified saturation nonlinearities shown in Fig. 4.2, reflect excellent
approximation. The square error plot is shown in Fig. 4.3, and it depicts that
the square error is minimized to 0.1 after 30 iterations. The estimated parameters
d,, a; and b, are converged to values 0.6026, 0.3521 and 0.6889, respectively. The
behaviour of parameter convergence is shown in Fig. 4.4.

The values of the coefficients are very close to the true values, except for the
b,. To study the variation in the value of b,, it must be made clear that b, can he
considered as a linear gain that can be factored out from the linear subsystem as

shown in Fig. 4.1.

x(t) — y(t)
Modified
» bo linear block >

Figure 4.1: Modified linear block in the Hammerstein model with b, factored out.
The modified linear block can be written as.

1+ 2971+ 2q2+... 4 fag
l+aig ' +aq2+--- +ang™™

y(t) = bor(t). (4.4)
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This implies that b, appears as a product term with z(t), i.e. the output of the
nonlinearity, so the intermediate variable is b, x Z(t). It is in effect evident that the
values constituting a product cannot be distinguished out from the product itself.
Therefore, the identification in the simulations are done over the actual b, x z(t)
and the estimated b, x Z(t). The rest of the parameters of the numerator i.e., b,
ba, ..., b, are also identified as a ratio between the estimate of the parameter itself
and b,. Similarly, the nonlinearities are also plotted as a product of actual b, and
the output of the actual nonlinearity; and, the product of the estimated b, and the

output of the estimated nonlinearity, .
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osF -

0.2 -

Figure 4.2: Actual and identified saturation nonlinearities for example 1 of Ham-
merstein model.

Figure 4.3: Square error plot for example 1 of Hammerstein model.
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Convergence of Parameters
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Figure 1.4: Convergence of parameters for example 1 of Hammerstein model.
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Example 2: Exponential Cosine

In this example, a third order system is considered as

y(t) = 0.4y(t — 1) + 0.35y(t — 2) + 0.1y(t — 3) + 0.8z(t) — 0.2z(t — 1). (4.5)

The static nonlinearity z(t) is an exponential cosine function of the input u(t)
and is expressed as,

z(t) = cos(3u(t)) + exp(—|u(t)]). (4.6)
The linear part is modelled by a third order ARMA.

y(t) = ary(t — 1) + aay(t — 2) + asy(t — 3) + b,x(t) + byr(t - 1).

The input signal used for the simulation is a set of uniformly distributed random
number in the range [—2.2]. The desired output are generated using the process
model given by Eq. 1.5. The centers of the basis functions are located evenly in the
input space.

The width of the basis function is set to 0.5 and the learning rate 0.04. These
values are selected after few trial runs.

The developed algorithm is employed to update the weights of RBFNN and coef-
ficients of ARMA. The RBFNN identified the nonlinearity and the ARMA identified

the linear part. The actual and identified nonlinearities shown in Fig. 4.5. show the
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accuracy of the identification algorithm. The square error plot is shown in Fig. 4.6,
where the square error is minimized to 0.1 after approximately 20 iterations. The
parameters a;, a2, a3, b, and b, are converged to 0.4008, 0.3492, 0.1024, 0.6219 and
—0.2162, respectively. The convergence of parameters is shown in Fig. 4.7. It is
noted that the value of b, is different from the true value. The variation in the value

of b, is discussed in example 1.
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-—— Estimated Nonlinearity
—— Actusl Nonlinearity
-1 o i 1 L e 1 -

-2 -1.5 -1 -05 0 0s 1 15 2

Figure 4.5: Actual and identified exponential cosine nonlinearity for example 2 of
Hammerstein model.

Square Error plot
3 L ¥ Al L T Ll LS T ot
20 25 30 35 40 45 50
Reration

Figure 4.6: Square error plot for example 2 of Hammerstein model.



40

Convergence of Parameters
1 LJ T T L] L L3 14 L) Ll
oS -,'~\ .
1 T~ T T e e e e e e .
o L L L V| rl e A — —
S 10 15 20 25 30 35 40 45 50
0.4 N r’-—o-——-t___I____I___r T T T
7/ "
[
e.2H 4
!
!
o A )
5 10
04 - -
/7~ -
g / -
®o2r’ M _- i
!
o 1 1 1 1 L 1 1 1 L
5 10 15 20 30 35 40 45 50
1 T T T L4 L T T L ¥
/.\
g0tk S~—o__ ___ 4
-1 1 I i i 1 —t 1 - I3
S 10 15 20 25 30 3s 40 45 50
1 1 8 T T L] Lo 14 T Ll T
, ___________________________________
8%s5 ) i
/
4
0 1 L 1 —r L 1 1 1 L
S 10 15 20 25 30 3as 40 45 50

Rerations

Figure 4.7: Convergence of parameters for example 2 of Hammerstein model.
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Example 3: Heat Exchanger

In this example, a heat exchanger, which is modeled as a Hammerstein model [24],
is considered with the same linear third order dynamics as used in example 2 given

by,

y(t) = 0.4y(t — 1) + 0.35y(t — 2) + 0.1y(t — 3) + 0.8z(t) — 0.2z(t — 1).  (4.7)

where z(t) is a function of input u(t), given by,

£(t) = —31.549u(t) + 41.732u*(t) — 24.201u3(t) + 68.634u’(t). (4.8)

The input signal is a set of uniformly distributed random number in the range
[=2,2]. These inputs are employed to produce the desired outputs using the process
model given by Eq. 4.7. The identification structure is composed of an RBFNN
in series with an ARMA model. The centers of the basis functions are located in
the input space. After carrying out few trials, the width of the basis function is
set to 0.6 and the learning rate is set to 0.05. The ARMA model was given by the

following difference equation:

y(t) = ary(t — 1) + axy(t — 2) + asy(t — 3) + box(t) + brr(t — 1).
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The identification algorithm is implemented to identify the nonlinearity and the
coefficients of the linear part. The actual and identified nonlinearities for the given
(normalized) heat exchanger are shown in Fig. 4.8, reflecting impressive identifica-
tion behaviour. The square error plot is shown in Fig. 4.9, where a value of 0.22
is achieved after approximately 20 iterations. The parameters a,;, a2, a3, b, and
by are converged to 0.3989, 0.3519, 0.1058, 0.5275 and —0.1994, respectively. The
convergence of parameters are shown in Fig. 4.10. Similar to example 1 and 2,
the value of b, is not accurately estimated but the variation in the estimation in

discussed in example 1 in detail.
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Figure 4.8: Actual and identified heat exchanger for example 3 of Hammerstein
model.
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Figure 4.9: Square error plot for example 3 of Hammerstein model.
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Example 4: Heat Exchanger in a Noisy Environment

To study the effect of noise on the accuracy of the identification scheme, the heat
exchanger example is considered in noisy environment. The disturbance considered
in this example is zero mean white Gaussian noise. The noise n(t) is additive in
nature and adding at the output y(t) of the Hammerstein model. The Hammerstein
model in the noisy environment is shown in Fig. 4.11, where y,(t) is the available

noisy output. ()

s
ut) Static " Dynamic "
—_— . . . +
Nonlinearity Linear Part y.(0)
L

Figure 4.11: Hammerstein model with output additive noise.

Two cases with different noise powers are considered, such that the signal to noise
ratios (SNRs) are 30 dB and 20 dB. The process model is the same as considered in

example 3 with the static nonlinearity at the input given by.

r(t) = —31.549u(t) + 41.732u%(t) — 24.201:3(t) + 68.634u’(t). (4.9)

The linear dynamics of the model are given by the following difference equation.

y(t) = 0dy(t — 1) +0.35y(t — 2) + 0.1y(t — 3) + 0.8z(t) — 0.2z(¢t — 1).  (4.10)

The measured or observed output is given by.

yn(t) = y(t) + n(t) (4.11)
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Using random inputs u(t) uniformly distributed in the interval [~2.2], the out-
puts are generated by means of the process model given by Egs. 4.9, 4.10 and 4.11.
The identification structure composed of an RBFNN in series with an ARMA.
The basis functions are centered evenly in the range [~2,2]. The width of the basis
function and the learning rate is selected as 0.6 and 0.05, respectively, after few trial

runs. The ARMA model used in the identification is of the following form:

y(t) = a1y(t — 1) + a2y(t — 2) + azy(t — 3) + b,x(t) + bz(t — 1).

The proposed algorithm is applied to update the weights of the RBFNN and
coefficients of the ARMA. The nonlinearities in both the cases are identified shown
in Fig. 1.1 and Fig. 4.1. revealing the competence and reliability of the identification
scheme even in the noisy environment. The parameters of the linear part are also
converged to values very close to the true values except for b, due to the reason

explained in example 1. The estimates of parameters are shown in table 4.1.

Table 4.1: Parameter estimates of Hammerstein model in noisy environment.

b, a, a;
True value 1.8 0.51 -0.35
SNR b, a as
30dB -1.319 | 0.491 -0.343
20dB -1.104 | 0.470 | -0.324
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Heat exchanger identification in Hammerstein model with SNR 30dB

Nonlinearity in the Hammerstein Mode! in noisy envolrmment SNR = 2008
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Figure 4.13: Actual and identified heat exchanger in Hammerstein model with SNR

20dB
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4.2 Simulation Results for SISO Wiener Model

Example 1: Saturation Nonlinearity

The process used in this example is a second-order system with a saturation non-

linearity at the output. The characteristics of the saturation nonlinearity are given

by,

r 0.5, for z(t) > 0.5

y(t) = J z(t), for —0.5<z(t) <0.5 (4.12)

-0.5. for z(t) < -0.5.

\

The linear part is taken as:

z(t) = 0.4z(t — 1) — 0.55x(t — 2) + 0.8u(t). (4.13)

The structure of the identification model comprised of an ARMA model in series

with an RBFNN. The linear part is modeled by the ARMA model described by.

I(t) = ayr(t — 1) + asx(t — 2) + bou(t),

The nonlinearity is identified by the RBFNN. The centers of the RBFNN are

located evenly in the range [—2.2]. The width and the learning rate are selected after
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few trial runs as, 0.41 and 0.5, respectively. Using random inputs u(t) uniformly
distributed in the interval [—2,2], the desired outputs are generated by employing
the process model given by Eq. 4.12 and Eq. 4.13.

The proposed learning algorithm is used to update the weights of the RBFNN
and the parameters of the ARMA model. The actual and identified nonlinearity of
the identified model after training are shown in Fig. 4.15 and reveal the accuracy
of the identification algorithm. The square error plot is sown in Fig. 4.16 where the
square error is minimized to a value less than 0.1 after 80 iterations and achieved
steady state value after 140 iterations.

The parameters a,, a2 and b, are converged to values 0.3994. -0.5512 and 0.7316,
respectively. The convergence of parameters is shown in Fig. 4.17. From the
estimated values and the Fig. 4.17 it is clear that b, is not converged to its true
value. This phenomenon was also observed in the Hammerstein model simulation
examples. Similar to Hammerstein model, the b, can be factored out of the linear

block, as shown in Fig. 4.14.

"& Moditied b X
0

linear block

Figure 4.14: Modified linear block in the Wiener model with b, factored out.
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The modified linear block can be written as,

1+ 2q7 '+ Bg2+ ... 4 bagm

t = b" bD * .
x(t l+hq-l+l-’zq-2+...+ég—n
or ( ) = by — by — bo - U(t) (4.15)
bo l+a1q + asxq +-..+a’nqm

This means that b, is with z(t), i.e. the output of the nonlinearity, so the in-

-

t .
x.( ). It is commonly known that the values constituting a

o

termediate variable is
fraction cannot be distinguished from the quotient of the fraction itself. Therefore,

. . . . . . z(t
the identification in the simulations are done over the actual ( )-

b, ’
I.( t), each of the z(t) and b, cannot be solely identified. Similarly, the parameters

o

bi, ba. ... b, are also identified as a ratio between the estimated parameter itself

the estimated

and I;o.

In the identification of the static nonlinearity. it is observed that the magnitude
of the estimated I;o did not effect the nonlinearity, but had an effect on its polarity.
This means that estimated nonlinearity is the same as the actual one if the sign of
130 is taken into consideration, i.e. if the input to the nonlinearity is fed along with
the sign of b,. the resulting nonlinearity approximates the actual nonlinearity.

In the Hammerstein model, the nonlinearity is at the input. Therefore. the input
signals to the actual nonlinearity and RBFNN are same. during both the training and

testing phases. As discussed above, in the case of identification of Wiener systems.

the intermediate variable r(t) is not the same for the actual and identified model.
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This implies that the input to the actual nonlinearity and the RBFNN differs during
training, i.e., the weights of the RBFNN are updated for some different input-output
pairs as compared to the actual system. The estimated b, is dissimilar to the actual
b, and can also be the negative of the actual b,, inverting the phase of the input to
the RBFNN.

Now, during the testing phase, where a test input is used to identify and compare
the static nonlinearity entirely separate from the linear part, the inputs supplied to
both the actual nonlinearity and the RBFNN are identical. The only concern is that
the RBFNN is possibly trained with a phase inverted signal due to the sign of b,.
If the sign of b, is the same as b,, then identified static nonlinearity approximates
the actual and if the sign of b, is opposite to the actual b, the RBFNN provides an
estimate that is a negative of the actual nonlinearity.

Keeping the sign of b, with the input during the testing phase makes sure that

the RBFNN is truly identifying the actual nonlinearity in the system.
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Figure 4.15: Actual and identified saturation nonlinearities for example 1 of Wiener

model.
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Figure 4.16: Square error plot for example 1 of Wiener model.
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Figure 4.17: Convergence of parameters for example 1 of Wiener model.
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Example 2: Exponential Cosine

In this example, a third order linear system with an exponential cosine static non-

linearity at the output is considered. The linear part is given by,

z(t) = 0.4z(t — 1) + 0.35z2(t — 2) + 0.1z3(t — 3) + 0.8u(t) — 0.2bu(t — 1). (4.16)

The exponential cosine nonlinear function is expressed as,

y(t) = cos(3z(t)) + exp(—|z(t)]). (4.17)

The identification structure consisted of an RBFNN in series with an ARMA

model. The ARMA model is given by,

£(t) = apr(t — 1) + apza(t — 2) + azza(t — 3) + bou(t) + byu(t - 1).

The centers of the basis functions are located evenly in the range [-2.2]. The
width of the basis function is kept as 0.51 and the learning rate is set to 0.04. These
values are chosen after few trial runs.

The training data set is generated using random variables uniformly distributed
in the interval [-2,2]. The desired set of outputs is generated using Eq. 4.16 and

Eq. 4.17.
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The identification algorithm is applied to update the coefficients of the ARMA
and the weights of the RBFNN. The RBFNN identified the nonlinearity accurately
as shown in Fig. 4.18, where the identified nonlinearity overlaps the actual one.
The ARMA model estimated the linear part and the parameters a,, a,, az, b, and
by are converged to values 0.4097, 0.3548, 0.0989, 0.7849 and -0.2179, respectively.
The parameter b, did not converged to its true value, but is compensated with the
static nonlinearity as discussed in example 1 of Wiener model. The convergence of
parameters is shown in Fig. 4.20. The square error is minimized to a value 0.2 after

approximately 50 iterations. The square error plot is shown in Fig. 4.19.
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Figure 4.18: Actual and identified exponential cosine nonlinearities for example 2
of Wiener model.
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Figure 4.19: Square error plot for example 2 of Wiener model.
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Example 3: Control Valve

In this example, the proposed identification algorithm is applied to a model that
describes a valve for control of fluid flow described in [29] and [70]. The linear part

is described by,
Z(t) = 0.42(t ~ 1) + 0.3525(t — 2) + 0.1z(t — 3) + 0.8u(t) — 0.2b,u(t — 1). (4.18)

and the nonlinear part is given by,

z(t)

Y= o 0.902(8)

(4.19)

In this model, u(t)represents the pneumatic control signal applied to the stem of
the valve and r(t) represents the the stem position. The linear dynamics describe
the dynamic balance between the control signal, a counteractive spring force and
friction. The resulting flow through the valve is given by the nonlinear function of
the stem position r(t) reflected by y(t).

The proposed identification algorithm is applied to estimate the linear and non-
linear parts of the model. To identify the linear part, an ARMA model structure

was used given by,

L'(t) = ﬂ.l.L'(t - l) + ag.l'g(t - 2) + (13.L'3(t - 3) + boll(t) + blu(t - 1)
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The nonlinearity is modeled by an RBFNN centered at [~0.2. —0.1,0.1,2]. The
width of the basis functions and the learning rate are set to 1.1 and 0.04. The
centers, the width of the basis functions and the learning rate are selected after few
trial runs.

Using random inputs u(t) uniformly distributed in the interval [—2.2], the de-
sired outputs are generated by employing the process model given by Eq. 4.18 and
Eq. 4.19.

The proposed identification algorithm is applied to update the weights of the
RBFNN and the coefficients of the ARMA. The RBFNN identified the static non-
linearity accurately. The actual and identified nonlinearity of the identified model is
shown in Fig. 4.21. The ARMA model estimated the linear part. The parameters
ay, as, as, b, and b, converged to values 0.4161, 0. 3491, 0.0992. 0.7082 and -0.2026.
respectively. Similar to previous examples. b, is not converging to its true value.
but it is compensated in the static nonlinearity. The convergence of parameters is
shown in Fig. 4.23. The square error plot is shown in Fig. 4.22, where it is evident

that the square error is minimized to a value 0.02 after 100 iterations.



Actusl and identfied Nonlineerity in the Wiener Mode!

o'é L L ¥ Ll

——— Actual
-oA‘ L b L L 1 1 1
-2 -15 -1 -05 o 0.5 1 15 2

Figure 4.21: Actual and identified control valve for example 3.
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Example 4: Control Valve in Noisy Environment

To study the effect of noise on the accuracy of the identification scheme, the control
valve example for the Wiener model is considered in noisy environment. The dis-
turbance considered in this example is zero mean white Gaussian noise. The noise
n(t) is additive in nature and adding at the output y(t) of the Wiener model. The
Wiener model in the noisy environment is shown in Fig. 4.24, where y,(t) is the

available noisy output. n(t)

(§ ,
u(t) Dynamic * Static ey
—_— X . +
Linear Part Nonlinearity v
"

Figure 4.24: Wiener model with output additive noise.

Two cases with 30 dB SNR and 20 dB SNR are considered. The same process

model as in example 3 of Wiener model is taken. The linear dynamics are given by,
r(t) = 0.4x(t — 1) +0.35x2(t — 2) + 0.1ra(t — 3) + 0.8u(t) — 0.2byu(t — 1). (4.20)

and the static nonlinearity is given by,

) |
W= o 0.9022(f) (1:21)

The measured or observed output is ,

yn(t) = y(t) + n(t) (4.22)
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Using random inputs u(t) uniformly distributed in the interval [~2, 2], the out-
puts are generated by means of the process model given by Eq. 4.20, 4.21 and 4.22.
The identification structure is composed of an ARMA in series with an RBFNN.
The basis functions are centered at [—2. —-0.1,0.1, 2]. The width of the basis function
and the learning rate are selected as 1.1 and 0.04, respectively. The centers, the
width and the learning rate are adjusted after few trial runs. The ARMA model

used in the identification is of the following form:

y(t) = ary(t — 1) + axy(t — 2) + asy(t — 3) + box(t) + byx(t — 1).

The proposed algorithm is used to update the weights of the RBFNN and co-
efficients of the ARMA. The nonlinearities in both the cases are identified with
reasonable accuracy and are shown in Fig. 4.25 and Fig. 4.26. The parameters are
also converged to their true values, that reveal the accuracy of the proposed scheme
even in the noisy environment. The estimates of parameters are shown in table 4.2.

The estimate of b, is not true for the reason discussed in example 1 of Wiener model.

Table 4.2: Parameter estimates for Wiener model in noisy environment.

b, a, as
True value 1.5 0.40 -0.55
SNR b, a as
30dB 0.9613 | 0.4151 -0.5585
20dB 0.8057 | 0.4230 | -0.5645
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Figure 4.25: Actual and identified control valve in Wiener model with SNR 30dB.
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Figure 4.26: Actual and identified control valve in Wiener model with SNR 20dB.



Chapter 5

Development of Training

Algorithms for MIMO Systems

MIMO nonlinear systems are very common in practice for example distillation col-
umn, chemical and biological processes. In the last two chapters training algorithms
for SISO Hammerstein and Wiener systems were developed and validated by sim-
ulations. It was suggested in the beginning that the algorithm could be applied
to MIMO systems as well. This chapter comprises of the development of training
algorithms for MIMO Hammerstein and Wiener models which is the generalization

of SISO cases.
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5.1 MIMO Hammerstein System

A MIMO Hammerstein system can be classified into two classes with respect to the
type of static nonlinearities in the system. The static nonlinearities can be separate
or combined. In the following subsections training algorithm for both the cases are

developed.

5.1.1 MIMO Hammerstein System with Separate Nonlin-
earities

Consider a general MIMO Hammerstein system with M-input, AM-intermediate vari-
ables and N-output shown in Fig. 5.1. All the static nonlinearities are separate and
each can be considered as an independent SISO nonlinear block. So. for M nonlin-

earities at the input, there are M inputs and M intermediate variables.

“n NL ' o it

MxN s
ugit) N Lz )

Linear
: : : Block
ug( | . m Yell)
N L L) L]
M |

Figure 5.1: An M-input :V-output Hammerstein system with separate nonlinearities.



The M inputs given by U(t) = [u1(t) uy(t) ...
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up(t)]7 are fed to M static

nonlinearities modelled by RBFNN. The outputs of the static nonlinearities are:

X(&) = [z1(t) z2(t) ...

and z;(t) estimated by the RBFNN is given by,

The system output can be defined by:

which is

Y(t) =

L

Gu G

Gn Gn

G

G

. Gyu

-

zp ()7,

zi(t) = Wis(Jlui(t) — Cif)).

Y(t) = [1n(t) yat) ... yn(t)T.

Iar(t)

-

(5.1)

(5.2)

(5.3)

(5.4)

The estimated outputs can be written in a similar fashion shown in algebraic

form as:



68

() 21(t)Gu + 22(t)Cra + ... + Er(t)Grar,

Ga(t) = Z1(t)Gay + Z2(t)Ga2 + ... + Ev(t)Ganr,

gn(t) = 21()Gn + 22(t)Cn2 + ... + ()G war,

where the transfer function corresponding to the j** intermediate variable and it*

output is,
B(q™")

%= 260

(5.5)

The polynomials A(¢~") and B}(q~!) are defined as,

A(g™") l+ag7' +--- + a,q”".

BE(g™") = boij +buiiq™ + o + by,

where w is the order of zeros of that particular transfer function.

Now defining the error, keeping in mind that there are more than one outputs.
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so the error will be a vector instead of a single value at any instant.

ei(t) = wn(t) —n(),
ea(t) = wa(t) — dalt),
en(t) = yn(t) —gn(t),

E(t) = [et) ext) ... en(®)]T,

Et) = [(1n(t)—5(t)) (v2(t) = iu(t)) .. (yn(t) - gu(t)]"

This error will be used to update the parameters by developing the update

equations based on LMS principle. The performance index as:
1
I= -2-E(t)TE'(t). (5.6)

Following the method adopted in SISO case, the coefficients are augmented in

6. The partial derivatives w.r.t. the coefficients and weights are found as following:

% = %%(E’(t)rlj’(t)). (5.7)
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now differentiating w.r.t. a; only,

oI

= EO7 5 () = 3(®) ()~ a(®) .. (unle) — (I,

= —E)"[j(t—1i) galt —i) ... gn(t-2)". (5.8)

Keeping the coefficient in A = [a, a; ... a,] and the outputs in Y (t) as Y(t) =
[Yi(t) Ya(2) ... Yn(t)], where Yi(t) = [gi(t — ) ga(t — i) ... gn(t — i) |T is the ith

delay in the output vector. Eq. 5.8 becomes,
51 = —EOTY (1)

therefore, the update equation using Eq. 3.2 will be

A(K +1) = A(K) + aE()TY (2). (5.9)

Now differentiating Eq. 5.7 w.r.t b;;i i.e. the b; for k** intermediate variable and Jth

output.
ai.ik = ETaTa,.,; [(h1(8) = g1()) (yalt) = Ga(t)) ... (yn(t) — g ()"

azjk () dalt) ... gn(e)",

= —E(@)T

= (0500,
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31 _ Jk(q-l)

e~ g5 ab Al k)

or . .

B —e;(t)Te(t — 7). (5.10)
Keeping the coefficient in Bj; = [byjx bk ... busi] and the regressions of in-

termediate variable Z;(¢) in Xﬂ(t) = [2&(t) Zi(t — 1) ... &x(t — w) ]. Therefore,

Eq. 5.10 in stacked form will be,

ol -~
m = —ej(t)4 ;—‘,’;(t), (5.11)
p)

and the update Eq. 3.2 will take the form.

BU(K +1) = B4(K) + aE(t)TX5(2). (5.12)

Now finding the partial derivative w.r.t. weights of RBFNN. Taking Eq. 5.6.

I = l13(:)T15(z),

ol 19 _ ..
v = 3w EW E®).

Differentiating w.r.t. any IV corresponding to i** nonlinearity only.

oI 19E()TE(t)
ow, — 2 aw,



oI rOE(t)
ow; E) aw ’

= E(t)Taw [(32(8) = 51(8)) (a(t) — G2(2)) ... (yn(t) — G ()],

= -E(t)T 7 G1() da(8) - g ()] (5.13)

Just considering any y;(¢),

dyi(t) 0 [ B (g~")&4(2) +B_;'”22(q-l)‘i'2(t) et B (g7 M)z um(t)
oW, — Wi [ A@g) A(g™Y) A(g™) ’
) ’B}"J(q“)wml(t)Jr_” B=Y (™) Wardu(t)
T oW | A@@Y) A(g™?) ’
= 5?7 [B4 (g ") Wi (t) + - + B5Y (a7 YWaren(t)]

]

By (q7")¢i(t)-

Therefore, Eq. 5.13 becomes,

oI

o = —EOT aw ===[G1(t) 52(t) ... Gw(®)]",
= —E@®T[BE a7)8i(t) BEq™)eu(t) ... BEY(q et
- -E"(t B a™) Bs2a™h) ... BiN(g Tau(d),
5‘% - Ze,(z)BW(q-* Jou(2). (5.14)

Finally the update equation from Eq. 3.3 will be.

N
WK +1) =Wi(K) +a)_e;(t)Bi (g7 Mou(t). (5.15)

=1
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5.1.2 MIMO Hammerstein System with Combined Nonlin-
earities

Consider a MIMO Hammerstein system having a combined static nonlinearity at
the input, i.e., there is only one static nonlinearity having M inputs and P outputs.
Therefore, a general system of this type may have M inputs, N outputs and P

intermediate variables and is shown in Fig 5.2.

v, ; () , r;(l).
' MxP : PxN '
: Nonlinear : Linear '
. Block \ Block X
CMUR L m vy O,
: L i

Figure 5.2: An AM-input V-output Hammerstein system with combined nonlineari-
ties.

The A/ inputs given by, U(t) = [u1(t) ua(t) ... uy(t)]T are fed to a static
nonlinearity represented by RBFNN. The output of the static nonlinearity is given
by,

X(t) = [z1(t) za(t) ... rar(®)]T, (5.16)

and r;(t) estimated by the RBFNN is defined by,

£(t) = W.a(JU(t) - C|)). (5.17)



74

The vector C comprises of the centers of the basis functions. It is to be noted that
the effect of all the inputs is reflected over all the intermediate variables z;(t), as
they depend on the input vector U(t). Since, the combined static nonlinearity does
not have any effect on the linear part, The system output can be represented by
Eq. 5.3 and Eq. 5.4, where all the terms are already defined.

Now differentiating the performance index, given in Eq. 5.6, w.r.t. a;,

or g - . . T

3= = E@)Tz—[(n(t) - 51(t) () - &(t) ... (v () - v,

da; da;

The linear part in a Hammerstein model with separate or combined static nonlin-
earities remains the same. and is not effected by the type of the nonlinearity. being
at the output. Therefore. Eq. 5.9 is also true for the combined static nonlinearity

case. and updates the parameters a; as.

AR + 1) = A(K) +aE()TY (¢). (5.18)

Similarly the coefficients b, ik stacked in Bﬁ are also updated using Eq. 5.12, i.e.

BY(K +1) = B4(K) + aE@®)TY(2). (5.19)

Now finding the update equation for weights of RBFNN. Taking Eq. 5.6.
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I = 1E(t)7' E(®),

al 19 _ .
W ~ aawli®) EQ@.

Differentiating w.r.t. any W; corresponding to i** intermediate variable z;(t) only,

oI 13EMTE(®)
ow;, — 2 8w,
JE(t)

_ TZZV T

- E(t)"-a{%[(yla) = 5i(6) (a(8) = 52(8)) - (uw(®) - (T,

= —E()T 2 By, () G2(8) - gn ()T, (5.20)

Jjust differentiating any y;(t) w.r.t. W

2i,(0) _ 0 [BR@NH®  BRGE) B iy
v, W A(g™) A(qt) A(q1)

R B'”‘(fl“)‘h‘b(t) _ +B}‘j\'}’(¢7“)“"u¢(t)

oW | A A(g™) '

= o (BRI + - + BEY (" )Wad(e)]
%‘(ﬁ = B} (q7h)®(t). (5.21)

Now Eq. 5.20 using Eq. 5.21 becomes,
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s = ~EO7 (@ ) . an],
= -E@OTBE () BEGIR) - BE @B
= -ETOIBEG) BRG™ . BRI,
ar = wif -1
a—m = —Zlej(t)Bji (q )‘p(t)- (522)

Finally the weight update equation from Eq. 3.3 will be,

N
Wi(K +1) = Wi(K) + a)_e;(t)B} (q7")&(t). (5.23)

Jj=1




5.2 MIMO Wiener Systems

7

In this section training algorithm for MIMO Wiener systems will be developed.

Similar to Hammerstein systems, Wiener systems are also classified according to the

type of static nonlinearity i.e. separate and combined. Following are the development

of training algorithm and update equations for MIMO Wiener systems.

5.2.1 MIMO Wiener System with Separate Nonlinearities

Consider M-input N-output system shown in Fig. 5.3. There are V separate static

nonlinearities at the output, fed by the same number of intermediate variables. The

N intermediate variables are obtained by feeding the M inputs to the linear dynamic

block.

]

win

u

MxN

Linear
Block

nm

Yt

NL‘ '-—-—b

gy | "
—— NL, —2,
L2
w{l)
2y (W N LM Y,

Figure 5.3: An AM-input .V-output Wiener system with separate nonlinearities.

The number of intermediate variables z(t) is the same as the number of outputs
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of the system, since, there are as much nonlinearities as the number of intermediate

variables.
X(t) = [za(2) z2(t) ... zn(t)]T, (5.24)
defined by, ) ) )
Gn G2 ... Gy [ u;(t)
Gy Gy ... u2(t)
X(t) = (5.25)
Gwvi ... ... Gyu upr(t)

The system outputs are given by Y () = [y,(t) ya(t) ... y~(t)], where the esti-

mate of y;(t) is given by,

3;(t) = W0(IlX(¢) - Ci).

The partial derivatives of the performance index given by Eq. 5.7 w.rt. the

weights and coefficients are found as follows.

o= = 2 (EWTEW), (5.26)

= ET5 (00 ~ 5. (6) (&) = 2®) .. (uw(®) — dx(®)].

= —ETO5[0(0) i2(0) - in(®)]- (5.27)
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considering the derivative w.r.2.WV; only,

s = ~ET O (50 2(0) .. oo,
= —ET(O35 [Witn(t) Watnlt) .. Won(t)],

—eg(t)¢,'(t).

Defining ®(t) = [¢1(t) #2(t) ... on(t)]T. Therefore, 5.27 becomes,

W= —ET(t)®(t) (5.28)

Eq. 5.28, together with Eq. 3.3 gives the final weight update equation.

W(K +1) = W(K) + aET(t)d(t) (5.29)

Now finding the derivatives with respect to the coefficients.

a1
a6

[

d
25 (EOTE®).
= ET(055 (0~ 1(6) (l®) ~ () . (u(t) — (o],

= —ETW 55 [0(0) 8t) .. an)]"- (5.30)



80

Considering only the partial derivative w.r.t. a;,
T O a0y . T
— = -E (t)a_a,.[y‘(t) a(t) ... gn ()], (5.31)

and now differentiating only y;,

3 _ OWey(t)

aa,- 6a,- )
The above equation can be taken as the derivative for single output. The deriva-
tive for single output is derived in chapter 3. For the MIMO system for the jt*

intermediate variable and j** output, the derivative w.r.t. a; will be:

%ﬁ- = _ai;.’j"(t - l) g(i}(t) - Cj[)Wj[G(IljJ(t) _ le"). (5.32)

Stacking from Eq. 5.32 in Eq. 5.31 to obtain.

—:,;"?.i'l(t = 1) 32L (£1(8) = en)wuo(j () — cull)

or
e = ETO [ —Zae -T2 - cwao(lE ) —cd) | (533)
—srixn(t = 1) T2 (Ex(2) — ext)wmo(lix(t) — call)

4

b . -
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=1

o = 22 (e;(t) &;(t - i) Z(z,(t) — ci)wd(||12(t) — c,,u)) (5.34)

and the update equation for a; using Eq. 5.34 and Eq. 3.2 will be,

WK +1) = a(K) 20 (%‘f—’é,-(t = 1) 3_((6) — ca)uwus;(I12;() - cﬂm) :
] =1

J—

(5.35)
Similarly from the SISO case the, derivative w.r.t. biji i.e. b; for ke input and
Jun intermediate variable will be,

aI - ..e,(t)
9bjx

it — z)Z(x,m cn)wid(l|25(t) — call). (5.36)

‘ J

and the update equation using Eq. 3.2 and Eq. 5.36.

bik(K + 1) = bx(K) — '“eJ(t)

uk(t — i) Z(x,u = c)wnd(llE;(¢) - cull)-
(5.37)
5.2.2 MIMO Wiener System with Combined Nonlinearties

Consider an M-input NV-output Wiener system with a combined nonlinearity at the
output show in Fig. 5.4. This means, that there is only one nonlinearity with N
outputs fed by, say. P intermediate variables, that are the output of the M input

linear block.



u,() b= LZ{UR
ult) Y | | A
. MXP ’ PXN .
Linear : | Nonlinear |
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Figure 5.4: An M-input N-output Wiener system with combined nonlinearities.

The intermediate variables are,

X(t) = [z1(t) z2(t) ... zp(t)]T. (5.38)
defined by, _ 1r .
Gu Glg N Gl‘\[ ul(t)
Gy G ... ua(t)
X(t) = (5.39)
Gpr ... ... Gpy ] upr(t) ]

The system outputs are given by Y (¢) = (G2(2) gn(t) ... gxn(t)]. For a combined
nonlinearity case there is only be one P input NV output nonlinearity whose output

is estimated by,

gi(t) = W;e(IX(¢) - CIl).

and C = [c; ¢2 ... ¢n,] where n is the number of centers in the RBFNN.

Keeping the performance index as defined in Eq. 5.6.
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I= -21-E(t)TE'(t). (5.40)

The partial derivatives w.r.t. the weights and coefficients are found as following.

or 1 9
W = 55‘7(5@)75(0)7

= ET(t)aw [(01(8) = 1(®)) (ve(t) = §2(2)) ... (n(t) — g (t))].

= ET(t)aw [51(2) g2() ... gn(t)]. (5.41)

Considering only the derivative w.r.t. W;,

s = ~ETO50= (00 (o) . in(0).
o .
= —(- E)W-l ) —ez(t)'aﬁ,?yz(t) —e‘v(t)a—f)v—.g,v(t)),
= - (—el( P 33 Wid(t) — eg(t)%wg«p(t) o —enlt)zgm WN@(t))
i
a—?c = —e;(t)B(t). (5.42)

With the result in Eq. 5.42. Eq. 5.41 becomes,

ol

3T = —-ET(t)®(¢). (5.43)



and the update Eq. 3.3 finally becomes,

W(K + 1) = W(K) + aET(t)®(¢).

84

(5.44)

Now developing the update equations for the coefficients of the linear part. The

performance index defined in Eq. 5.7 is differentiated w.r.t. 4.

% = 3 ae(E(t)TE(t)
_ DE(t)
= E@t)T—== 55
gg = —ET(t)bﬁ[ﬂx(t) g(t) - g (t)],

and now differentiating only y,.

dy; _ OW(t)

6 9

MW,e(J| X(t) - C|l)
a9 ‘

Y IIX(t 1% —cp?
= %W e*cp( )

— Wexp (-"““L«»." cl ) 2 (_nxmd z—cu-)’

(5.45)
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- 2
- 20 L (V@EO=ar + ¥ RO —e) )
= Lgbﬁ(ﬂX(t)—cl)%X(t) + oo+ 2AX(t) - ca) = X(t))
(5.46)
Just ideri aXt
ust considering 3 (¢),
%x(t) - aio[:i'l(t) Ba(t) ... Ep(t)]T. (5.47)
Now just taking the 3 ezk(t) and differentiating w.r.t. a;,
Sq k(t) = aa (Alg™" () + Bt (@ Dwm(t) + ... + BE¥ (g Hum(t))
Sobk(t) = du(t - i), (5.48)
Stacking 33 —i(t) in aii}i'(t).
9 . N - ) . T
a—ai-X(t) = [B(t—i) Zo(t —d) ... Tp(t—12)] . (5.49)

T
Defining Vf((t — 1) as [%X(t)] and then putting in Eq. 5.46 for a;,

dy;
aa,-

99,
a(l,’

—1V;%(t)

~201®(¢)

% (2(:‘((z)-c1)V(.i'(t-i)) + .+ 2()‘((t)-c%)vx'(t—i)).

S (X =) + o+ (X)) - ) VR(E - ),

i"j—‘pﬁ (Z X - c,,) VX(t - ). (5.50)

n=1
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Now, with W = [W; W, ... Wy], the expression given by the Eq. 5.50 is stacked

in Eq. 5.45,
or -2WV; <I>(t) - :
3 = —ET(t) ( (nE—l:X(t) - )VX(t— z)) :
2 N ¢ - :
= EET(t)WjQ(t) (n§=l:X(t) - c,.) VX(t-i). (5.51)

This equation can also be written by expanding the vectors [X(t) — ¢q] and

vX(t-i),

or 2 o o P o
90 = FE OWRW) (3D () —c)(@ult-i) ),  (5.52)

da; n=1 k=1

and the final update equation becomes,

ng P
a(K +1) = a;(K) - B?';aET(t)W(b(t) (Z D " (Elt) = ea)(Ealt - i))) 1(5.53)

n=] k=1

The partial derivatives w.r.t. b;x can be found in similar fashion proceeding from

Eq. 5.46 and differentiating w.r.t. b;j. It is evident from Eq. 5.48 that,

7]
Ob; jx

Bi(t) = u;(t — ). (5.54)

Since the coefficient b;;. is only for the A** input and j** intermediate variable
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Zx(t), therefore Eq. 5.47 for by contains only one term given in Eq. 5.54.

abi.-,-k X(t) = wu(t—i) (5.55)

Now Eq. 5.46 for b;jx becomes

5?—; = Lﬁ’;;"‘—t’(zmt>-cou,-u-i) + ...+ 2(X'(t)—c,,°)uj(t-i)),

— "u’gg’(t)_ (2(,\"(t) —c) + ...+ 2X(t) - Cno)) u;(t — ),
= _—%«D(t) (,g:, X(t) - Cn> uj(t — 7).

(5.56)

The partial derivative of the performance index w.r.t. b, j& will take the form

~ -

=M 5 (X (E) — ca)uy(t — i)

ar N | -
ab"jk = 2E (t) “A;;b - Zn;l ‘Y(t) - Cn)llj(t — i) (55()

—Wyd ° e .
RO S0 (X (E) — cn)uy(t — i)



Since W = [W; W, ... Wy]T, the above expression can be written as,
ar .
2= E (t)Wd(t) Z(X(t) ~ ca)u;(t — i),
ab,'jk oy
2“J(t i)

7 ET(t)ww)Z(X(t) Cn)-

n=]

88

(5.58)

Finally Eq. 5.58 combined with the LMS parameter update Eq. 3.2 becomes,

b,‘jk(K' + 1) = bijk(K) - 62

20 uj(t -

i)

ET(()Wa() 3 (R(t) - cu)

n=1

(5.59)



Chapter 6

Simulation Results for MIMO

systems

In this chapter the results obtained for the MIMO Hammerstein and Wiener systems
are verified using simulation examples. The examples considered are 2-input 2-
output systems. However, the algorithms are valid for any number of inputs and
outputs. Practical examples of heat exchanger and control valve with the saturation

nonlinearity are used for the simulations.

89
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6.1 Simulation Results for MIMO Hammerstein

systems

A 2-input 2-output example is considered here to verify the training algorithm for
MIMO Hammerstein systems. One of the static nonlinearities is of a heat exchanger
model and the other is a saturation nonlinearity. The characteristics of the satura-

tion nonlinearity are defined in Eq. 4.2 as,

( 0.5, for u,(¢) >05
Ti(t) = ¢ wu(t). for —0.5<u(t)<05 (6.1)
-0.5, for u,(t) < —-0.5
\
The heat exchanger is defined in Eq. 1.8 as,
Ta(t) = —31.549u(t) + 41.732u,”(¢) — 24.201u,(t) + 68.634us* (¢) (6.2)

As discussed while developing the update equation for the MIMO systems. the
order of the poles is the same for all the transfer function in the linear block. this

means all the outputs have the same number of delayed regressions. In this example
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second order linear systems are considered, given by,

y;(t) = 0.62y(t-1) - 0.75y:(t - 2) + 0.81zx,(t) - 0.53z,(t), (63)

w(t) = 0.62y(t — 1) — 0.75y,(t — 2) + 0.62z, (t) — 0.22z,(t). (6.4)

Using random numbers uniformly generated in the interval [-2,2], the desired
outputs are produced by using the process model. The proposed identification
scheme comprised of two RBFNNs in series with a MIMO ARMA model. The
centers for both the RBFNNs are evenly located in the input space. The width of
the basis function for the saturation nonlinearity is kept as 0.5 and for the heat
exchanger as 0.6. The learning rate was 0.04. These values are selected after few
trial runs and observing the SISO examples. The linear part was modeled by the

following MINMO ARMA model,

nt) = aun(t —1) —aan(t - 2) + oy (t)boraza(t),

y(t) = awp(t —1) — asyp(t - 2) + boarry (2)boaaza(t).

The proposed algorithm is applied to update the parameters of the identification
scheme. The RBFNNs identified the static nonlinearities very accurately. The actual
and identified nonlinearities are shown in Fig. 6.1 and Fig. 6.2. The ARMA models

estimated the linear dynamics of the system. The values of the parameters a; and
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az were converged to 0.6199 and -0.7512, respectively, which are very close to the
actual ones. The true values for the zeros bg1;, bo12, boay and bgpo for each of the
transfer function were 0.81, 0.62, -0.53 and -0.22 that converged to 0.5333, 0.5306,
-0.3568 and -0.1842, respectively. These values differ from the true ones, as noted in
the SISO examples of Hammerstein model. The reason for this variation is described
in example 1 of Hammerstein model. The mean square error is minimized to 0.25
after around 80 iterations. The mean square error plot is shown in F ig. 6.4. The
identified static nonlinearities and truly identified poles of the linear parts reveal the

capability of the identification algorithm to be applied on MIMO systems.
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Figure 6.1: First nonlinearity in the 2-input 2-output Hammerstein system
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Figure 6.2: Second nonlinearity in the 2-input 2-output Hammerstein system
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6.2 Simulation results for MIMO Wiener Systems

To validate the update equations for MIMO Wiener system, a 2-input 2-output
example is considered. The static nonlinearities chosen are a saturation nonlinearity

and a control valve. The characteristics of the saturation nonlinearity are given by,

¢ w
0.5, for z,(t) > 0.5
wi(t) = J zy(t), for —0.5<z,(t)<0.5 ¢
-0.5, for z,(t) < -0.5
\

and the control valve is defined as,

I, (t)

ya(t) = \/WTO_W (6.5)

As discussed while developing the update equation for the MIMO systems. the
poles are the same for all the transfer functions in the linear block. this means all the
outputs have the same number of delayed regressions. A third order linear systems

is considered in this example as,

ri(t) = 0.35zy(t — 1) — 0.652,(t — 2) + 0.155,(t — 3) + 1.8Luy(#) — 0.85ua(t).

ra(t) = 0.35za(t — 1) — 0.65z2(t — 2) + 0.155(¢ — 3) + 1.62u,(t) — 1.22ua(t).

The identification scheme comprised of a MINO ARMA model and two RBFNNs
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at the output. The ARMA model is given by,

ri(t) = a1zt — 1)+ apzy(t — 2) + azz1(t —~ 3) + boyyuy (t)boraua(t),

Z,(t) a,za(t — 1) + axza(t — 2) + asza(t — 3) + bopyuy (t)bogoua(t).

The centers of the RBFNN modeling the saturation nonlinearity are located
evenly in the range [—2.5,2.5] and the width is kept as 0.75. The RBFNN modeling
the control valve is centered at [—3, -2, ~1,-0.08,0.08,1,2,3]. The width is kept
as 0.95. These values are selected after few trial runs.

The proposed identification algorithm is applied to update the coefficients of
ARMA and the weights of the RBFNNs. The values of the coefficients a,, as and
a3 converged to 0.3483, -0.6842 and -0.1612, respectively. The true values for the
zeros boy1, boi2, bo2; and bgao for each of the transfer function are 1.81, 1.62, -0.85
and -1.22 that converged to 0.5333, 0.5306. -0.3568 and -0.1842. respectively. These
values differ from the true ones. since these zeros can simply be considered as gains
and actually are compensated with the nonlinearities as discussed in example 1 of
the Wiener model. The actual and identified nonlinearities are shown in Fig. 6.5
and Fig. 6.6. reflecting the nice identification capability of the proposed scheme for
MIMO systems. This example shows the generalization capability of the training

algorithm for MIMO Wiener systems.
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Figure 6.5: First nonlinearity in the 2-input 2-output Wiener system

Second nonlinearty in the 2-input 2-output Wisner system
0‘ T L ¥ T T ¥

0.2

Actusl nonlinearity
- ----- --- Estimated nonlinearity

_0‘ i 1 1 3 L i I
-2 -t5 -1 0S5 *] [ H] 1 15 2
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Chapter 7

Conclusions and Future Work

This chapter concludes the thesis by summarizing important contributions and high-

lights some future avenues of research that can be originated from the work.

7.1 Conclusions

This thesis presents a new identification method structure for the identification of
Hammerstein and Wiener systems. The new structure is composed of RBFNN/ARMA
for Hammerstein and ARMA/RBFNN for Wiener type nonlinear systems. Training
algorithms based on LMS approach have been developed for both the models. The
update equations are derived for both SISO and MIMO cases. While considering

the MIMO. systems with separate as well as combined nonlinearities are considered.
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The proposed training algorithms are applied on several examples to validate the
update equations. The results show excellent identification behaviour with very at-
tractive rate of convergence, both in the sense of time and iterations. The hardware
implementation of the proposed scheme, is also simpler due to lesser number of neu-
rons needed, as compared to the number of neurons need in the MFNN approach.
Moreover, lesser computations per iteration are required due to just one layer, and
hence, time per iteration is also reduced. The proposed algorithm is also immune
to noise as simulations show satisfactory identification behaviour even in a noisy

environment.

7.2 Future Work

During the course of this thesis. it was found that. future research can be directed

towards the following areas:
e Convergence and stability analysis of the proposed algorithms.

e This thesis has used a uniform distribution or trial selection of centers within
the input space for the RBFNN. However. better means to locate the centers

of the basis function are cited in the literature, e.g. A'-means clustering.
e Faster convergence is expected by making the learning rate adaptive.

e This thesis considers nonlinear systems that can be modelled by Hammer-
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stein and Wiener models. However, systems of Wiener-Hammerstein type
or the Hammerstein-Wiener type can also be estimated using the same al-

gorithm by adding another corresponding linear or nonlinear block.



Nomenclature

Abbreviations

ARMA Autoregressive Moving Average

LMS Least Mean Squares

MFNN Multi-layered Feedforward Neural Network
MIMO Multi-input Multi-output

RBFNN Radial Basis Functions Neural Network
SISO Single-input Single-output

English Symbols

A(g™)

a;

B}‘L-(‘I—l)
bijk

The polynomial for the poles of the system

The i** coefficient of the polynomial A(q~!) corresponding to a delay
i in the output

The polynomial of order w for zeroes in the transfer function G,

The i** coefficient of the polynomial B}i.(g-1) corresponding to a delay
t in the input

The Centers of the basis functions

Center of the i*" basis function

The error vector for MIMO system

The error for SISO system

Transfer function for the j** input and k** output

Performance index

The iteration number

The delay operator

The time instant variable

The input vector for MIMO system

Input to the system

nt* input for MIMO system
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wy

X(t)

z(t)

Tp(t)

Y(¢t)

y(t)
variable(t)

The Weight vector

weight corresponding to i** basis function

The intermediate variable vector for MIMO system
Intermediate nonmeasurable variable

p*™* Intermediate nonmeasurable variable for a MIMO system
The output vector for MIMO system

Output of the system

nt* output for a MIMO system

Estimate of any variable

Greek Symbols

a
8
(t)
d(t)
¢(t)
6

The learning rate

Width of the basis function
The basis function

The basis function vector
The regression vector

The parameter vector
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