Concurrency in Interpolation
Based Grid Files

by

Jalal Mohammad Abdul Ghaffar

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

INFORMATION AND COMPUTER SCIENCE

June, 1988

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9° black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfiims International
A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. M1 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1355690

Concurrency in interpolation based grid files

Abdul Ghaffar, Jalal Mohammad, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1988

U-M'1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

R i R AR R AR AR AR AR e s
S S S
e
7 CONCURRENCY IN INTERPOLATION Ko
K BASED GRID FILES 2
o K
R BY &,
L O
% SN
SO JALAL MOHAMMAD ABDUL GHAFFAR 5
<, N
e A Thesis Presented fo the e
\\ ¥
=@ FACULIY OF THE COLLEGE OF GRADUATE STUDIES e
<, S
MG KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Lo
- DHAHRAN, SAUDI ARABIA Yo
xS v,
o | W,
] In Partial Fulfiliment of the L
;ﬁ _‘ Requirements for the Degree of %
, 7,
0 %o
& %

Y

¥INLY g Y s v Ny

Ry
s MASTER OF SCIENCE
Ky ' %
e n)
. e
KI® 4
. COMPUTER SCIENCE N
0o He
e 9
@ JUNE 1988 Ko
&’ Y
\\h’ :!/.
‘i’f . LIBRAKY o
Mo EING FARD UNIVERSITY OF PETHOLEUM & MINERALS Lo
rd > -
3 Dhshran - 31261, SAUDI ABABIA o
. o
e X
A I IESC e S SESE S S R e A e QP IE SESE SEE N

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by JALAL MOHAMMAD ABDUL GHAFFAR
under the direction of his Thesis Advisor and approved by
his Thesis Committee, has been presented to and accepted by
the Dean of the College of Graduate studies, in partial

fulfillment of the requirements for the degree of MASTER OF
SCIENCE in COMPUTER SCIENCE.

THESIS COMMITTEE ;

Thesis Advisor

A
=V

" Member
PRSI S S
NPZ7 " e
Member
Department Chairman
N

an, College of Gr

6[n)i11es”

Date

e Studies

- ii -

to my mother, father, brothers and sisters.

- iii -

ACKNOWLEDGMENT

Acknowledgment is due to the King Fahd University of

Petroleum and Minerals for providing the opportunity to

carry out this research work.

I would like to express my appreciation to Dr. Mohammad
Ouksel who served as my major advisor and whose guidance and
support encouraged me to complete this research. 1 wish to
thank the other members of my Thesis Committee, Dr.

Mohammad G. Khayat and Dr. Mohammad Al-Suwaiyel.

- iv -

THESIS ABSTRACT

NAME OF STUDENT: JALAL MOHAMMAD ABDUL GHAFFAR

TITLE OF STUDY : CONCURRENCY IN INTERPOLATION BASED GRID FILES

MAJOR FIELD : COMPUTER SCIENCE AND ENGINEERING
DATE OF DEGREE

JUNE 1988

Concurrency control is the activity of preventing harmful
interference among asynchronous parallel processes. In this
research work, the problem of supporting concurrent
operations in the interpolation based grid files is studied.
A systematic approach that demonstrates an effective method
for detecting conflict between processes 1is defined. A
scheduling system that exploits the numbering property of
the structure and employs the conflict detecting method is
presented. The scheduler achieves a higher degree of
concurrency than concurrency mechanisms developed for
B-trees on the average case and the same degree of
concurrency in the worst case. Efficient algorithms for
concurrent operations in two ' structures; namely
Multi-dimensional Linear Hashing and Interpolation-Based
Index Maintenance are presented. Both of these structures
are extensions of Linear hashing to the multi-dimensional
case. The concurrent scheme presented is an adaptation of
the one proposed for linear hashing. The algorithms include
searching for, inserting, and deleting data elements. These
algorithms support a high degree of concurrency and are

shown to be correct based on the restrictions imposed by the
comaptibility scheme.

MASTER OF SCIENCE DEGREE

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Dhahran, Saudi Arabia

June 1988

Yl J LM

.,Li.i.!l.x._.n.\.a.-d)t? :‘,._JU:JIF...I

 d Lo ezl | LKt UMD S a5 LN plgie
ﬁ'wlL'er,b Y- ST |

cp VAAA (ol) s s Baleddl o,

22 Ll Slladdl oy sl i JlasYl pe (3 DS Dgs palially (Kol ol

LS adoall e ftazall LK UM G5 Sldaall pal A8 Gl Gl b pdy . a2t

Gl GUss Coedl puiyg ¢ 2alit] lbanll oy i hactl SltaS 32 b s Calls Gyas iy

o oaliall dys of piamy + o laall GRS Tab plasiialy Bpud) S pailia 48 Op

Rl VUL (5 (B ol) anadl a0 5kt ells o ST il Jptad ! gl
C SN gl 3 Tyl ity 55

Ll 5 2adl oS5 Lob ST 0 55 (6 pal;d) Oldad Dlad Slay s> ool pla
LA e slazel Les GueS 2 cpdi o Gl . bl Bbo slazely ad gzl oS5y slas¥l sdaze
A 15 20 5 Maazd] @llsd 1,10 G0 il el S b iy o slas¥] sdaze D> I Lldd
Sleaiylodl 1db Gowo ooy o5 U5y . WYy JEoYly Coudl Olajyles ¢ Sleaisld] gaiazss
- BT (3 5,mall 050l e sleze Wl gl o ST 3ys o5 A

oolally Jozll 4 el Zaals
Tossmad] Zeall ZSLLl = ol ekt
ALYV S

TABLE OF CONTENTS

THESIS ABSTRACT . . .

Chapter I: THE PROBLEM

Chapter II: CONCURRENCY
Introduction . .
Semaphores
Monitors
Locking

Lock-coupling .

Two-phase locking .

Compatibility and convertlblllty graph (CCG)

Locking Granularity .

Time-stamping . . .
Deadlock
Types of processes .

Concurrency in B-trees .

Introduction .
Preliminaries .
Basic solutions .

Concurrent operations on B trees w1th 51de

branchlng .

Concurrency in linear hashlng

Introduction .

-

Concurrent solutlon .
Concurrency in Grid file

The grid file .

Concurrency control .

The concurrent search process
Insertion without overflow

Insertion with overflow .

Deletion . . .
Merging areas .
Removing slices .

- vi -

-

Chapter III: INTERPOLATION BASED GRID FILE 45

Introduction 45
The data file 47
The Directory « . . 53
Search Algorithm 56
Insertion and Deletion 57

Chapter IV: A PRELIMINARY APPROACH TO CONCURRENCY IN
IBGF . . LY -
Uniform Data Distribution 65
Preliminary solution 67
An improved solution 78
Discussion 100
Chapter V: A CONCURRENCY SCHEME FOR THE IBGF 102
Nonuniform data distribution B X 0)4
Preliminaries 104
A B-tree solution _ . . - . . 104
Locking scheme 104
Concurrent behavior o ¥/
An optimistic concurrency control scheme <« - . . . 115
Detecting conflict among Processes 118
The model of computation . . B 2
Scheduling of concurrent processes <« <« . <« . . 130
Concurrent behavior of processes 135
Search algorithm sketch 135
The insert algorithm sketch 139
The delete algorithm sketch 140
Improved throughput . . e K-
Further improvement 146
Freedom from deadlock . . . - ¥4
Correctness of file mod1f1cat10n S %
Chapter VI: CONCLUSION AND FUTURE WORK 151
References « . . 1B4

- vii -

10.
11.
12.

13.

14.

15.
16.
17.
18.
19.
20.
21.
22.

23.

LIST OF FIGURES

A's update is lost at time t4.

B is forced to wait for A's update.
Compatibility and convertibility graph (CCG) . .
A deadlock involving two processes.
An example of a B-tree structure.
A nonleaf and a leave node.

Scope of an updater U.

Locks compatibility. .

Sequential linear hashing file.
Locks compatibility graph.

Grid file structure.

- . - - - - . - . - . - - -

Interpolation based grid file Insertion Process.
Cyclic

Partitioning the search space into regions.

Partitioning the search space into regions.
Dotted lines . . .

EXACT-MATCH algorithm.
DECOMPOSE function.

INSERT algorithm. . .
Function MERGE algorithm.

Function BUDDY algorithm.

DELETE algorithm. - .

An interpolation based grid file structure.
The compatibility of lock types.

Algorithm for the FIND operation.

- viii -~

10
12
14
18
21
24
25
28
32
35

38

49
51

55
59
60
61
62
63
64
68
70

73

24,
25.
26.
27.
28.
29.
30.
31.
32.

33.

34.
35.
36.

37.

38..

39.
40.
41.
42.
43.
44.
45.
46.
47.

48.

Algorithm for the INSERT operation.
Algorithm for the DELETE operation.
Algorithm for the SPLIT operation.
Algorithm for the MERGE operation.
An interpolation based grid file structure.
A modified IBGF structure with LOCALL field.
Algorithm for search phase.

Algorithm for the FIND operation.
Algorithm for the INSERT operation.
Algorithm for the DELETE operation.
Algorithm for the SPLIT operation.
Algorithm for the MERGE operation.
Example of parallel computation I.
Progressive states of the IBGF : stage 1I.
Progressiﬁe states of the IBGF : stage II.
Example of parallel computation II.
An initial state of an IBGF.
Progressive states of theAIBGF. “
An IBGF with two directory levels.
Algorithm for Locate phase.

SEARCH algorithm.

Locate and lock an updater scope.
INSERT algorithm.
DELETE algorithm.

A block diagram for an IBGF.

- ix -

74
75
76
77
79
83
86
87
88
89
90
91
93
94
95
97
98
99
103
110
111
112
113
114

117

49.
'50.

51.

52.
53.
54.
55.
56.

57.

Conflictingly overlapping paths.

System model. .

An Ada-like definition of the scheduler data
structure. . . . e e . . .

A modified bucket structure.
Scheduler algorithm.

SEARCH algorithm.

INSERT algorithm.

DELETE algorithm.

A modified version of the scheduler's table.

121

125

127
129
133
138
141
143

145

Chapter |

THE PROBLEM

A database system is a collection of five components that
- interact to satisfy information needs of an enterprise.
| These five components are hardware, programs, data, people,

and procedures. Database technology allows an organization's
data to be processed as an integrated whole. It reduces
artificiality imposed by separate files for separate
applications and permits users to access data more
naturally. Data integration offers several important
advantages [5,14] :

1. Databasé processipg enables more information to be

produced from a gi:sren amount of data.

2. Elimination or reduction of data duplication.
3. Creation of program/data independence.
4. The data can be shared.

Restricting large databases to sequential operation is
unnatural and inefficient. But if concurrent processes are
allowed, then all the wusual problems associated with

parallel processing will arise. These include for example,

2
concurrency control, the danger of deadlock, and complexity
of verification.

Process synchronization is one of the problems which are
not very well understood in the field of database systems
although parallel Process systems have been investigated
intensively in the operating system area [7,8]. When two or
more processes execute concurrently, their database
operations execute in an interleaved fashion. That is,
operations from one process may execute in between two
operations from another process. This interleaving may cause
processes to behave incorrectly, or interfere, thereby
leading to an inconsistent database. This interference is
entirely due to the interleaving [6,29]. That is, it can
occur even if each process is coded correctly (e.g. the lost
update problem).

The term integrity is used in database contexts with the
meaning of accuracy, correctness, or validity. The problem
of integrity is the problem of énsuring that the data in the
database is accurate, that is the problem of guarding the
database against invalid updates. Another term that is
sometimes used for integrity is consistency. Consistency
preservation captures the concept of producing database
states that are meaningful. If each process is correct, then

an isolated execution of Processes will preserve database

3

consistency. On the other hand, an interleaved execution of
these correct processes may produce an inconsistent database
state.

Concurrency control is the activity of coordinating the
actions of processes that operate in parallel and access
shared data in order to safeguard the consistency of the

- database [6]. The goal of concurrency control is to ensure
that processes execute atomically, meaning that, each
brocess accesses shared data without interfering with other
processes. Processes will produce a correct view of the
database if they are executed in isolation (i.e. processes
are executed serially). It is the responsibility of the
concurrency control scheme to ensure that the interleaved
execution of such processes looks like some serial execution
of the same processes. Many téchniques have been developed
for solving the problen, including locks, semaphores,
monitors and time-stamping [7,8,61.

Concurrency control protocéls may lead to problems of
their own when they are not designed properly, in particular
the problem of deadlock. Deadlock is a situation in which
two or more processes are in a simultaneous and mutual wait
state. In addition, the synchronization policies used should
allow a high degree of concurrency. Hence, the problems of

how best to introduce concurrency and to what extent and at

4

~what cost should the degree of concurrency be maximized are
;challenging and interesting topics for investigation.
Concurrency control schemes have been developed for
- databases that are stored in terms of some popular data
- structures such as B-trees [1,17,18,28,26], cartesian
~Product files [23], binary search trees [15,20], dynamic
f linear hashing files [10], and grid files [27]. In this
- research work, we investigate how appropriate are these
~existing concurrency control mechanisms when applied to a
- structure such as Interpolation Based Grid File (IBGF). Then
the properties of IBGF are exploited to devise a specific
concurrency control scheme which substantially improves the
degree of parallelism.

The remainder of this thesis is organized as follows.
Chapter II contains a literature survey on concurrency,
particularly, on concurrency control algorithms developed
for some popular data structures. In chapter III we present
the structural properties of fhe interpolation based grid
file. The discussion of designing a concurrency scheme for
IBGF is‘divided into two main parts. The first part, in
chapter IV, deals with the file structure when the data is
uniformly distributed over the search space. In this part
two schemes are presented. The first scheme is discussed

here solely for the purpose of identifying the major

5

problems posed by multiple accesses and updates. We then
.address these shortcomings in the second scheme. This latter
scheme is an adaptation of the concurrency schemes .designed
for linear and extendible hashing files. It eliminates some
of the problems caused in the first one by the restructuring
operations, which result in degradation in the degree of
concurrency achievable. The second part , in chapter V,
discusses the nonuniform data distribution case, in which it
was found that the IBGF simulates some of the operational
properties of B-trees. The IBGF structure has been shown to
work smoothly when some of the concurrency protocols, which
were developed for B-trees, are applied. The interpolation
based grid file partitions the space embedding the data
records until the number of records (or tuples in a
partition) does not exceed the size of.a page. Eéch subspace
is assigned dynamically a unique number that s$tands as a
surrogate for each subspace and its properties.
Unfortunately, B-tree concurreﬁcy protocols do not possess
such a numbering property. A new concurrency scheme is
developed to exploit this dynamic mapping which results in a
performance similar to the B-tree solution in the worst case
and a better degree of concurrency in the average case.

Finally, chapter VI summarizes the work.

Chapter Il

CONCURRENCY

2.1 Introduction

 Processes are concurrent if they exist at the same time [8].
Asynchronous concurrent processes require occasional
synchronization and cooperation. Given a correct state of
the database as input, an individually correct procesé will
produce a correct state of the database as output if
executed in isolation. Even if all processes are
individually correct in this sense, however, it is still
possible in a shared (multi-user) system for processes that
execute concurrently to interfere with one another in such a
way as to producé an overall result that is not correct. As
a result, access to shared data should be controlled to get
rid of the intérference between processes. Processes should
mutually exclude each other from accessing shared data
simultaneously. Such interference can take many forms. One
of which is the "lost update" problem [6]. Enforcing mutual
exclusion is one of the key problems in concurrent
environment. Many solutions have been devised [8,7,6], some

software solutions and some hardware solutions; some rather

7

low-level and some high-level; some requiring voluntary
cooperation among processes, and some demanding rigid
adherence to strict protocols.

It is clear then that in a multi-user environment some
sort of concurrency control mechanism is needed in order to
avoid interference problens. Such mechanisms can be
implemented by wusing semaphores, monitors, 1locking and
time-stamping. These techniques will be discussed below. The
usage of locking as a synchronization construct to control
concurrent access to data records which are organized in
terms of some data structures such as B-trees and Grid files

... etc, will be discussed also.

2.2 Semaphores

A semaphore is a primitive concurrency control construct.
[7,8]. It is a. protected variable whose value can be
accessed and altered only by the indivisible operations P
and V and an initialization opération. Binary semaphores can
assume . only the value O or the value 1. Counting semaphores
can assume nonnegative integer values. Semaphores may be
used to implement a block/wakeup synchronization mechanism
or allocation of resources from a pool of identical

resources, as in the case of counting semaphores [7].

2.3 Monitors

A monitor (scheduler) is a concurrency construct that
contains both the data and procedures needed to perform
allocation of a particular shared resource or dgroup of
- shared resources [7]. To accomplish a resource allocation
'function, a process must call a particular monitor entry.
“Many processes may want to enter the monitor at various
times. But mutual exclusion is rigidly enforced at the
monitor boundary. Only one process at a time is allowed to
- enter:. Processes desiring to enter the monitor when it is
~already in use must wait. This waiting is automatically
managed by the monitor. The data inside the monitor may be
global to all procedures within the monitor or local to a
specific procedure. If the process calling the monitor entry
finds the resource already is allocated, the monitor
procedure calls WAIT. The process calling wait is made to
wait outside the monitor for the resource to be released.
Eventually, the process that ﬁas the resource will call a
monitor entry to return the resource to the system. There
may be processes waiting for thé resource, so the monitor
entry calls SIGNAL to allow one of the waiting processes to
acquire the resource. To ensure that a process waiting for
a resource eventually does get it, the monitor gives
priority to the waiting process over a new requesting

process attempting to enter the monitor. Processes may need

9

to wait for many different reasons. So, a separate condition
;variable is associated with each distinct reason that a
process might need to wait. When a condition variable is
‘defined, a queue is established. A process calling wait is
?inserted into the queue; a process calling signal causes a
fwaiting process to be removed from the queue. Different
gpriority schemes can be used to regulate insertions into and

removing processes from the queue.

24 Locking

jLocking is a concurrency technique by which concurrent
~access to shared objects is regulated [6,29,5]. Locking can
'be used at the level of records, blocks(pages), files and

~the entire database. Let us consider the example shown in

Figure 1, the essential problem is ~that process A and.

‘process B are both updating R on the basis of its initial
!value, that is, neither one is seeing the output of the
other. To prevent this situafion, a typical concurrency
control mechanism might do the following :
;1. It could prevent B from reading R on the ground that A

already has seen R and may therefore be going to

update it. Process B is forced to see the updated

value.

10

Process A

Find R:
Copy R.F into ATEMP

LI

UPD R:
Replace R.F by
ATEMP+1

Figure 1:

Time

(o]

N

(2]

— e e avmn (P —— v—] — (] — G- o] e oo = c—
) »

Process B

Find R:
Copvy R.F into BTEMP

LI)

" UPD R:

Replace R.F by
2%¥BTEMP

A's update is lost at time t4.

11
2. It could prevent the process A from updating R on the
ground that process B already has seen R before the

update.

The above two cases can be handled by locking as illustrated

in Figure 2.

241 Lock-coupling

It is a locking scheme that is very useful in controlling
concurrency in tree structures. In this scheme, a process
which has locked a set of nodes = should not unlock all
nodes in =« until its request to lock a set of other nodes
a is granted. Usually a consists of either the ancestores

or the descendants of = depending on the direction in which

the process is advancing.

242 Two-phase locking

Definition : A given interleaved execution of some set of
processes is said to be serializable if and only if it

produces the same result as some serial execution of these

processes.

Definition : A process is said to obey two-phase locking if
it can not acquire more locks if it has released a lock on

some objects.

Processes which obey two-phase locking protocol proved to be

serializable [6,12].

12

Process A

e o o

Find and LOCK R:
Copv R.F into ATEMP

¢ o e

UPD R:

Replace R.F by
ATEMP+1

Release R

Figure 2: B is forced to

Time Process B

| oo

i e e

| oo

| oo

tl e

| eee

| o

| cee

t2 Find and LOCK R:
| wait

] wait

t3 wait

| wait

| wait

t4 (resume)

t5 .Copy R.F into BTEMP
té UPD R:

| Replace R.F by

] 2%BTEMP

Release R

—
.
*
*

wait for A's update.

13
243 Compatibility and convertibility graph (CCG)

In order to regulate concurrent access we need a concurrency
control which specifies the type of locks to be used by
processes operating on some objects. A Compatibility and
Convertibility Graph (CCG) [1] specifies relations which
must hold among the various types of locks on an object. The
CCG, which is shown in Figure 3, is a directed graph whose
vertices are labeled with lock types and edges are used to
represent the compatibility and convertibility relations
among the locks. For any two vertices a and’ B a solid edge
directed from « to meané that a process with f-lock on
an object would permit another process to put an a-lock on
that object. A broken edge from a to B indicates that a
process holding an a-lock on an object may convert it into
B~lock. Two isolated vertices indicate that a process
holding a lock of the first vertex type on an object would
not permit another process to put a lock of the second
vertex type on that object.

Processes can manipulate the locks via three types of
indivisible operations, Lock, Unlock and Convert. When a
process requests an a-~Ilock on an object B it must execute a
lock operation Lock(a,B). If the granting of such a request
does not violate the compatibility relation defined by CCG

then the process is allowed to continue, otherwise, it is

14

Figure 3:

Compatibility and
(CCG)

convertibility

graph

15
put to sleep in a queue associated with B. To release an
a-lock on an object B a process must execute an Unlock
operation, Unlock(a,B), which relinquishes the 1lock and
wakes up some sleeping processes in the queue according to
the CCG and some fair scheduling discipline. In addition, a

process may convert a lock it is holding on an object B from

one type into another. This action can be denoted by
Convert_lock(a,fB,B) which converts an a~Iock on B into
B-lock . If the conversion is granted then the process

continues, "otherwise the operation is undefined.

244 Locking Granularity

Two general options for lécking appear feasible : physical
locks on records, pages, segments, files, etc; and predicate
locks (logical locks) can be set on the exact portion of the
database required which is determined by a predicate or
qualification [25]. As usual, there is a trade off : the
finer the granularity, the greater is the concurrency; the
coarser, the fewer ére the locks to be set and tested and
the lower the overhead [6]. It has been shown that a large
number of granules, corresponding to locking a page or
record is extremely costly ([25]. While in the case of
predicate locking, only a small number of locks must be
maintained which is proportional to the number of active

processes and not to the size of the database. As a result,

16
any advantages due to additional parallelism are outweighted

by such cost introduced by large number of granules.

2.5 Time-stamping

The basic idea behind time-stamp technique is to assign a
unique identifier to a process to distinguish it from other
processes. A fundamental difference between time-stamping
and locking techniques in general is that, locking
synchronizes the interleaved execution of a set of processes
~in such a way that it is equivalent to some serial execution
of those processes, where as, time-stamping synchronizes
that interleaved execution in such a way that it is
equivalent to a specific serial execution [6]. A process is
restarted (rolled back) if it asks to see a record that has
already been updated by a younger process, or it aéks to
update a record that has already been seen or updated by a
younger process. The system should keep information on every
record about the youngest procéss that has successfully set
addressability on and the Yyoungest process that has

successfully updated the record.

17
2.6 Deadlock

A process is said to be in a state of deadlock, if it is
waiting for a particular event that will not occur. Consider
Figure 4, which shows a deadlock involving two processes.
The problem of deadlock has been extensively studied, and
various deadlock detection algorithms and deadlock avoidance
protocols have been developed [7,8,6]. The four necessary
conditions for a deadlock to exist are

1. Mutual exclusion : processes claim exclusive control

of their resources.
2. Wait for : processes may hold resources while waiting

for additional requested resources to be allocated.

3. No-preemption : resources may not be removed from
processes.
4. Circular wait : means that a chain of processes exists

in which each process holds a, resource being requested
by another process that holds a resource being

requested by another process, etc.

Deadlock detection is the process of actually determining
that a deadlock exists, and of identifying the processes and
resources involved in the deadlock. To facilitate the
detection of deadlocks, a popular notation is used in which

a directed graph indicates resource allocations and requests

18

Figure 4:

PROCESS

RESOURCE
R1
PROCESS
A
RESOURCE
R2

A deadlock involving two processes.

19
[7,8]. One technique useful for detecting deadlock involves
graph reductions in which the process that may complete and
the processes that will remain deadlocked are determined.
Deadlock prevention is the process of removing any
possibility of deadlock occurring. It has been shown, that
if any of the four hecessary conditions is denied, it is
impossible for a deadlock to occur. As a result, different

strategies for denying wvarious necessary conditions have

been proposed ’[7].

2.7 Types of processes

A process P is an application that initiates some actions on
the records in the file. An action can be a READ, INSERT, or
DELETE operation. We shall use terms FIND, SEARCH, and READ
interchangeably. Similarly, we shall use terms proceés and
operation interchangeably. A READ action is as follows

determine if a record K is in the file; if it is then report
success, otherwise report fail.ure. An INSERT action is as

follows : insert the record K= (kn'k1' . 'kd-1) into the

file if it is not already there, which will cause an access
to only one single data page since all values are specified.

A DELETE action is as follows : retrieve the record K and

then delete it if it exists. A process P is implemented as a

Sequence of actions. Theses actions map the structure from

20
one state to another. An INSERT or DELETE operation is

called an update process. An updater usually goes through
the following two phases :
1. Searching phase : locate the appropriate place for
adding or removing a record.
2. Restructuring phase : add or remove the record and
then rebalance the file structure.
Of course, the second phase may not be necessary in some
cases, when an INSERT (a DELETE) process finds that the
record is already present (absent).
In permiting an arbitrary number of processes to operate
concurrently on a database, we assume that processes are

asynchronous, and each of which is progressing at a finite,

but undetermined rate.

2.8 Concurrency in B-trees

2.8.1 Introduction

The B-tree, shown in Figure 5, and its variants have been
widely used in recent years as a data structure for storing
large files of information. Methods for concurrent
operations on B-trees have been discussed in [26,18,1,17].
Concurrent operations on B-trees pose the problem of

insuring that each operation can be carried out without

interfering with other operations

21

Figure 5:

An example of a B-tree structure.

22

Accessing schemes which achieve a reasonably high degree
of concurrency in using B-trees are presented. The schemes
are deadlock free. This is achieved by providing a set of

strict locking protocols which must be followed by each pro-

- cess accessing B-trees.

2.8.2 Preliminaries

Definition : A B'-tree of order m is a tree which has the

following properties :

1. Every node has at most m sons.

2. E§ery node, except for the root and the leaves, has at
least (m/2) sons.

3. The root has at least two sons.

4. A nonleaf node with j+1 sons contains j separators and
can be rébresented as shown in part(a) Figure 6, where

the P;s are pointers to its sons and K;s are

separators such that all keys in the subtree pointed

by Pi_l(EE) are less than or equal to (greater than)

Kis for 1<i<j.

5. All leaves appear at the same level. The keys appear
in the leaves in ascending order when read from left
to right. They are the same as nonleaf nodes except
that instead of pointers, they contain the data

D;., associated with each key K as shown in

i '

part(b) Figqure 6.

(A)
D KDKD,. D
<:::::;:;~1 2 2 -1 94
(8)

Figure 6: A nonleaf and a leave node.

24

The path from the root to a leaf determined by a process
on its passage to a leaf is called the access path of a
process. In many of the tree structures, the following
simple observation has been made. For an updater U operating
'in a sequential environment there exists a node which is the
root of a subtree beyond which all changes in the data and
structure due to U cannot propagate. It is called a safe
node for U. To ensure that the sub-tree affected by U is as
small as possible the safe node which is deepest in the
access path of U is of particular importance. The portion of
the acess path from the deepest safe node for U to a leaf is

called the scope of U, which is shown in Figure 7.

Definition : A node in a B-tree is insertion-safe if it is
unsaturated, (i.e. it has less than m-1 keys), and it is

deletion-safe if it is not minimal (i;e. it has more than

(m/2) -1 keys).

Concurrent control schemes proposed for B-trees can be

classified into the following two categories :

1. Type 1 solutions : the scope for an updater remains
invariant during restructuring, which implies that an

updater must lock its scope so that no other updater

can be in it.

25

Figure 7:

DEEPEST SAFE
NODE

SCOPE OF AN UPDATER

Scope of an updater U.

26

2. Type 2 solutions : the scope for an updater may change
during restructuring. Only the nodes affected by an
updater at each restructuring step are locked and made

off-limits to other updaters.

| 2.8.3 Basic solutions

The scope of an updater must be locked before any necessary
:restructuring can begin. The locking is often done in such a
way that no other updaters can be in the scope once it is
. locked, not even waiting in the queues associated with the
nodes other than the deepest safe node. However, readers may
- or may not be allowed in the scope, depending on the
particular proposed solution.

The earliest solution was proposed by Samadi [28] in
1976, based on node search B-trees. In this solution one
type of lock is used By both readers and updaters and no two
processes can lock a node simultaneously. Locking and
unlocking are simply P and . V operations on a binary
semaphore. Two important policies for locking are stated :
1. Scope locking by updaters : an updater first locks the

root and on its passage to the leaves 1level the
appropriate nodes are locked and examined. When a safe
node is found all its ancestores are unlocked.

2. Node locking by readers : A reader first locks the

root and on its passage to the leaves level it unlocks

a node only after it has locked its son.

27
It should be noted that when these locking protocols are
"employed, a total ordering is imposed on the processes
sharing a common path on their passage to the leaves level.
Three solutions were proposed by Bayer and Schkolnick [1]
for leaf search B-trees. Their first solution is very
‘similar to that of Samadi except that there are two types of
locks, read-locks and exclusive-locks whose compatibility is
given by part (a) Figure 8. Clearly, more than one reader
may be reading a node simultaneously and no ordering is
imposed on readers. The second solution is based on the
observation that restructuring by wupdaters is seldom
necessary-about once every m/2 updaters. They propose that
updaters should behave just like readers on their passage to
the leaves level. On reaching a leaf the updater exclusively
locks the leaf and if it is unsafe, the updater releases its
lock and repéats the updating with the first solution. Their
third solution requires the concurrency control to support
three types of locks, read, write and exclusive locks whose
compatibility is given by part (b) Figure 8. Readers and
updaters in their searching phase use read and write locks
respectively. Note that once an updater has write-locked its
scope no other updaters can be in it, but readers may be
present because read and write locks are fully compatible.

However, before an updater begins its restructuring phase,

28

Figure 8: Locks compatibility.

29

jit converts all write-locks into exclusive-locks starting at
i the deepest safe node. Since exclusive-locks are
‘incompatible with read-locks this ensures that all readers
in the scope are drained away.

Iwo solutions were proposed by Ellis [11]. The first
solution is based on the third solution of Bayer and
:Schkolnick. In the second solution, readers are allowed to
‘be in most of the scope during restructuring. At each
restructuring step, the writer exclusively locks only its
local scope which consists of two nodes in order to drive
off readers. To continue with the next step of
restructuring, the local scope is then shifted upward using

a lock-coupling technique until the deepest safe node is

reached.

284 Concurrent operations on B-trees with side branching

The new side branching that was proposed by Kwong and Wood
{17] is based on the notion of making extra copies of keys
and pointers while ieaving nodes in the scope of a writer
intact until the very last moment. In all proposed solutions
in the literature, a key and a pointer are always added to a
node at each restructuring step, starting at the leaf of the
scope where the pointer is actually the data associated with
the key. If a node is not insertion safe it becomes

oversaturated and is split into two "halves" which consists

30
of (m/2)-1 and m-(m/2) keys respectively. This leads to a
‘key and a pointer being pushed upwards to be added to the
father. After reaching its deepest safe node the writer will
have completed its restructuring phase. It is noticed that
;this approach of actually adding a key and a pointer to
jevery node in the scope requires two additional fields per
node for the extra key and pointer since a node can become
~oversaturated. Moreover, in adding a key and a pointer to a
saturated node, keys and pointers must be shifted to make
' space for the new entries. Such shifting is often redundant
because "half" of the nodes has to be copied into a new node
~and deleted soon afterwards. Instead of éctually adding a
key and a pointer to a node at each restructuring step, a
writer in this solution uses the key to determine whether
they should be added to the left or the right "half". It
then copies into the appropriate "half" into a newly created
node where the key and pointer are added, and pushes a key
and a pointer upwards while léaving the node in its scope
intact. The writer continues restructuring upwards in this
way until the leading node of its scope is reached. It then
converts its write-lock on the deepest safe node into an
exclusive-lock and adds a key and a pointer. In 'other words,
the writer is simply reading keys and pointers from the

nodes of its scope and building a side-branch which is

31
?inaccessible to other processes. A DELETE process in this
:solution make use also of a side branch to avoid the actual

removal of a key and a pointer from a node during node

‘merge.

29 Concurrency in linear hashing

2.91 Introduction

iRecently, a number of techniques for dynamic hashing have
Eappeared. A solution that allows concurrency in linear
;hashfiles based on locking protocols and minor modification
in the data structure was proposed by Carla Ellis [10]. The
j‘linear hashfile represenfs a different type of data
structure from those of earlier concurrency studies. 1In
particu],ar, it is not a linked structure. It is assumed that
the file occupies a contiguous logical address space of
‘primary'buckets each capable of holding some number b of
records. Collisions (i.e. attempt to insert into a full
primary bucket) are handled by creai:ing a chain of overflow
buckets associated with that particular bucket address, as
illustrated in Figure 9.

The hash function to be applied changes as the file grows
or shrinks. Each new hash function assigns new bucket
| addresses to some records previously placed using the old
function. This new hash function is applied to one bucket

chain at a time in linear ordering. The resulting

32

NEXT LEVEL=1
0 1
16 13 26 15
20 17 30
24 38
32
Figure 9: Sequential linear hashing file.

33
hodification in the data structure is called a split and
hoves some records from the original bucket to a new primary
bucket that is appended at the current end of the hashfile.
The split operation is applied cyclically.

The function h : K- {0,1,...,N-1} , initially used to

load the file and a sequence of functions

| h1’ha""'bj"" such that for any key wvalue K, either
= - i-1 .

| hi(k)_hi-1(k) or hi_hi—1(k)+2 N. . A pointer NEXT

indicates which bucket that is next in line to be split. For

‘each pass with a new hash function hj’ the NEXT pointer

‘travels from bucket O to 27 !'¥. A variable LEVEL is used to
determine the appropriate hash function for FIND, INSERT or

DELETE operations using the following procedure :

bucket = hlevel(keY)

if bucket < next then bgcket = hleve1+1(keY)

Splitting causes these variables to be updated as follows :

next = (next+l) mod (N * 21eve1)

if next = 0 then level = level + 1

The next bucket in the cycle is split whenever any bucket
overflows. This policy is called uncontrolled split.

Deletion of records may result in merging buckets, moving

34
next back, and readjusting level. Merging is performed when

‘an individual primary bucket underflows.

2.9.2 Concurrent solution

Processes can execute FIND, INSERT and DELETE operations
on a shared linear hashfile. Processes executing the INSERT
.and DELETE actions may operate in parallel if +they are
working on different bucket chains. Processes may not access
‘the two buckets being merged and may not read the value of
level and next while the merging process is using them.

Locks are used to control access to the shared variables
‘level and next and to the bucket chains. The primary bucket
‘and all its overflow buckets are locked as a unit. The
compatibility of lock types is given by Figure 10. Processes
apply lock-coupling technique in which the next component is
locked before releasing the lock of the current component.
- The procedures Split and Merge are concerned with the
restructuring of the hashfile. The procedure INSERT and
DELETE read-lock next and level and selective-lock buckets
with lock coupling. The split operation uses
selective~-locks. Exclusive-locks are used for merging chains
and deallocating old overflow buckets.

Concurrency is enhanced by allowing a searching process
to operate in parallel with a split operation, but there

must be some means for it to reorient itself when the wrong

35

Figure 10:

. EXCLUSIVE

Locks compatibility graph.

36

;;chain is reached because of out-of-date root values. In this
'scheme, each chain includes an additional field locallevel
;that specifies the hash function appropriate to that bucket
;chain. This field captures the fact that in the most recent
}split affecting this bucket (not inverted by a subsequent

fmerge), it was the hash function hlocalleve.l that was used

jto divide up the keys. Basically, the locallevel value
jcharacterizes the set of key values that can belong in this
chain.

A process executing in its searching phase behaves as
ffollows : the root variables are read, and the values seen
determine which hash function is to be used initially. Upon
' gaining access to a bucket, the process checks whether
values read from root variables matches the bucket's
locallevel, and. if not, it increments the value of level
- that was read into a private buffer and then recalculates
the address until a match is found. The calculated address
- at each iteration of the rehashing loop will always be less
than or equal to the address of the eventual destination.
'Thus, the bucket chain in‘ which the desired key belongs
- should be reachable using this rehashing strategy as long as
each address calculated is within the valid address space at
the time of access. A process responsible for merge, holds

exclusive locks on root and both partners of the merge,

37

‘while it makes its changes. The read lock on root held by
,fsearching processes prevents a merge from decreasing the

5size of the address space during the initial bucket access.

During the searching phase of FIND, INSERT and DELETE,

ilocks are placed according to a well-defined ordering.

EMerges and splits also respect the ordering in requesting

their locks. Thus, deadlock cannot occur. Selective locks

Eare placed on the chains during searching phase to serialize
éwriters of the same individual buckets so that only
Sup-to—date information is seen. So, there is no interference
gbetween concurrent execution of INSERT and DELETE. Merges
fand splits are completely serialized with respect to one
ganother by incompatible locks on the root. All affected

' chains are also locked by a restructuring process for the

duration of the step.

2.10 Concurrency in Grid file

2.10.1 The grid file

The grid file is a data structure for partial match or

i"multikey" retrieval on a file, recently proposed by

Nievergelt et al [22]. The grid file, shown in Figure 11,

~concept consists of a grid directory, which is a

multidimensional array kept on disk, linear scales, which

~are kept in memory, and the actual pages of data records

| kept on disk

38

e LONDON

SPARIS

\ L

<SROME A A H
A A | o]
8 |8 8
<227 8 |8 B
<1/84 <8/84 <5/85% ca/as <1/99

Figuré 11: Grid file structure.

39
The grid directory is an array of K dimensions where K is
the number of attributes in the key. Each block or cell in

-the grid directory contains one address of a page of data

- records. Several blocks may contain the same address. Each

key attribute is assigned a linear scale. The linear scales
determine an ordering of the grid directory subscripts.
These lists point out which K-1 dimensional cross section of

the grid directory contains the data pages with a given

range of values for a given attribute. There is a constraint
on what configurations of blocks in the grid directory may
contain the same data page address. They must be CONVEX or
RECTANGULAR. When a data page overflows, a.new data page is
allocated, and the blocks of the grid directory with that

~ address, if there are more than one, are split according to

values in one of the attributes, with some retaining the old

address and some acquiring the new. The linear scales; are

‘ not modified. The choice of which data records remain in the

old location and which go to fhe new is determined by the
direction in which the split was made. On the other hand, if
there is only one block in the grid directory with the
address of the overflowing data page, or if the possible
split directions do not result in space for a new record,
then a new K-1 dimensional slice must be added. In this

case, one of the linear scales gets a new entry. When a

40

ﬁdata page contains too few records, there is a possibility
ithat these records can be merged with those in a data page
whose address is adjacent in the grid directory. However,
‘this is only allowed to occur if the union of all of the
ggrid directory blocks with either one of the addresses or
fthe other forms a convex area. The removal of a K-1
E?dimensional slice is occasionally possible as well. This is
;allowed whenever two such slices, adjacent in the ordering

fimposed by one of the linear scales, are identical.

2.10.2 Concurrency control

;A solution that allows concurrent access to the grid file
fbased on locking protocols was proposed by Betty Salzberg
- [27]. This solution uses some of the principles that were
jlised. to regulate concurrent accesses in other data
- structures. One of which is the principle called "draining"
‘[27]'. The proposéd solution uses also the principle of

‘delaying restructuring when it does not inhibit correctness

to do so.

2.10.3 The concurrent search process

 The searcher finds the correct positions in each linear
scale. This will be a collection of subscripts for each
dimension. All of the addresses of data pages in the grid

directory whose subscripts are in the collection must be

41
finvestigated" No locks are placed by searchers. Certain
;changes are not made in the grid directory until processes
gwhich have old information are drained from the system. A
%searcher may be aborted if it does not leave the system
;within a given time, and restarted when changes in the
gdirectory are to be made. The locks placed by inserters and
?deleters do not affect the searchers. Inserters and deleters

%are considered searchers until a data page lock is

érequested.

| 2104 Insertion without overflow

}Insertion implies that all values of all the attributes in
" the key are known, so that exactly one grid block is
:accessed and exactly one data page is found. If there is
.enough space in the data page, and the record is not already
~in the data base, the data page is locked, the record

inserted, and the data page unlocked. No locks are placed on

- the grid directory.

. 210.5 Insertion with overflow

:If there is no room for the new record, an overflow
- procedure is called while the data page remains locked to
‘other updaters. In order to change the grid directory by
‘splitting a collection "A" of blocks with the same address

- into two such collections, all blocks of A are locked. It is

42

?alled a grid area lock. This is to prevent unsafe
Enteractions with processes which are creating new slices or
deléting slices. Processes which do not create or delete
slices only lock grid areas whose corresponding data pages
‘they have already locked. After a grid area is locked, if
éthere is more than one block in it, it may be split into two
jareas. The split should be chosen so that the records in the
gdata page are actually distributed into two distinct
non-empty collections. If this is not possible, a new slice
émust be created. If the grid directory area consists of only
one block, or all the values were those of one block, before
;a split can occur, the overflow process muét call a process
jto insert a K-1 dimensional slice. This process copies a K-1
dimensional slice containing the data block in question and
inserts it by adding one'cell to one of the linear scales.
:The K-1 dimensional slice must be 1locked before being
copied, so that no changes are made in the original slice
‘while the new one is being cfeated. The new cell in the
%linear scale must come after the cell representing the slice
.to be duplicated, so that other processes waiting to lock an
area which intersects the old slice may pick up the blocks
in the new slice after they are added. The grid area must be
unlocked before the slice is locked in order to prevent

-deadlock. After the new slice is added, and the linear scale

| 43
i

;changed, which does not affect searchers, the old slice is
gunlocked and the new grid area, including both the old and
hew blocks, and any blocks added by other processes can be

locked, and the overflow procedure attempted once again.

2.10.6 Deletion

iIn order to delete a record, a process simply searches for
fthe correct page, and locks that page, and deletes the
%record if it is there, and unlocks the page. If the page
isparse, the deletion process puts the key of the record

jdeleted on a queue for asynchronous restructuring.

210.7 Merging areas

jAn asynchronous restructuring process may look at the grid
blocks areas whose key values have been put on the merge
gqueue by a deleter process. The data page can be checked to
isee if it is still sparse, and the neighbor areas can be
checked to see if they form a rectangular or convex area
‘with a given area, and also c'orresponding data pages have
few enough records to allow merging. The process then locks
‘the two data pages in question, and the smallest grid area
‘block. Then all the data is transfered to one of the data

‘Pages and the grid directory is changed.

44
2.10.8 Removing slices
When a long series of deletions and area merges has produced
a great deal of redundancy in the grid file directory, slice
@eletion may be performed to increase efficiency of range
éueries, or partial match queries. In this process, a search
ﬁs made in each linear scale comparing slices corresponding
to neighboring pairs of entries. If any duplicate slices are
found, they are locked lexicographically and one of them is
removed. No data pages are locked. The locking is necessary

to insure exact duplication at the time of removal.

Chapter il

INTERPOLATION BASED GRID FILE

; 3.1 Introduction

1“:E‘iles consist of large collections of individual records
fusually stored on external memory devices such as tapes,
?disks or drums. Files are often too large to be brought
‘into the main memory of 'a computer all at once, and
itherefore operations on them must be performed through a
:succession of piece-wise accesses to groups of modest size
(i.e. pages or data buckets).

A wide selection of file structures is available for
managing a collection of records identified by a single key
: sequentially ailocated files, tree-structured files of
many kinds, and hash files. They allow execution of common
files operatioris such as FIND, INSERT and DELETE, with
various degree of efficiency. Older file structures such as
sequential files or conventional forms of hash files were
optimized for handling static files, where insertions and
deletions are considered to be less important than look-up

or modification of existing records.

- 45 -

46
The advent of new file structures [4,21,19,22] which
édynamically adapt to the varying collection of data they
jmust store without any degradation of performance and allow
efficient access to records, and which allow access based on
;the value of any one of several attributes or a combination
?thereof, was a major advance in the study of file
fstructures.
All known file structure techniques appear to fall into

gone of two categories : those that organize the specific set

of data to be stored and those that organize the embedding -

space from which the data is drawn. The Interpolation Based
' Grid File (IBGF) not only organizes the set of data records

"but also the embedding space {24]. The IBGF satisfies the

‘following structural properties :

1. it is symmetric (i.e. multi-key access to records)

2. it 1is order-preserving. The set of records is

partitioned into subsets such that these subsets are
totally ordered.

3. it is dynamic (i.e. the structure adapts gracefully to
addition and deletion operations without performance
degradation).

4. it is clustering (i.e. each bucket contains all the
records in a region of the search space that can be
decomposed into a maximal set of uniquely identifiable

adjacent convex partitions).

47

| 3.2 The data file

1

A data record is a d-dimensional tuple

' d-dimensional space ©9=10,1)?. Let K=(kS,k), ... k"

} record K

K= (kn ,k1 PR 'kd—l) of value which correspond to attributes

Ao'Ax""'Ad-1 respectively. Each component of the record

is scaled and mapped to a rational number in the half open

~interval [0,1) , a record is thus viewed as a point in the

d-1) be

i1:he result of the mapping. As an example consider the

J'I;wo-dimensional case vwhere Dn=|0,5000) and Dl=|0,80), a

(37500, 10) will be mapped to

K’ = (37500,/5000,10/80) or (0.110,0.001) in binary of
2

U =[0,1)x(0,1) .

The constructlon of an 1nterpolat10n based grid file is

best illustrated by an example. To 51mp11fy the discussion
only the two-dimensional case is presented. Thus, the data
search space is viewed as a- rectangle delimited by the

cartesian product D.)XD1 of attributes Ao and z‘l1 domains.

The vector K= (k:,k:) which is the mapping of the original

. record refers to the coordinates of this search space. The

IBGF initially consists of a single partition which embeds
the whole search space. An insertion of a record to the

database will be represeﬁted by exhibiting a dot in the

48

'graph, see part(a) Figure 12. We shall assume that the data

file bucket capacity bn=2 and each partition may thus

contain at most 2 dots. When two more records are inserted
an overflow will occur. Splitting the search space is

necessary to maintain the data file bucket limit. Different

fapproaches can be used to split an overflowing partition.

" number of partitions in the search space is 21

'One of them is a cyclic splitting in half along the various

saxes, as shown in part(b) Figure 12, which we adopt here for

isimplicity.

‘Definition : Given a set of intervals along the i-th axis

d

?of U define d as follows :

1. 1.
I(1)) = {T,(R)IT (k) = [k/2 to(keely2z

1.,
where 0<k<2 1

then li is calle@ the interval partition level along axis

~i. Note Io(O) = [0,1) and the number of intervals in

1.
. 1
I(1,) is 2 *.

" Definition : The search space partition level 1 is defined

as the summation of interval partition levels along the d

d-1
axes forming the search space (i.e., 1 = z:li). The
1=

49

Figure 12:

Py [}
< - D
. P
o ! =
C =2 >
- =
[} -1 o
C < >

Interpolation based grid file 1Insertion
Process. Cyclic splitting (2-dimensional
case), bucket size b = 2.

50

An additional insertion to partition #1 will cause a

ésplit along axis #l. A partition can simply be represented

‘by its coordinates (i,j). So in the example, see part(c)
;Figure 12 on page 49, the possible pairs are

- (0,0),(0,1),(1,0),(1,1). a pair of coordinates represents

%the leading binary digits of the fraction part of K: and

K: respectively. In other words, coordinates are simply

éprefixes of elements located in the subspace they determine.
%The length of these prefixes is exactly the interval
Epartition level along the corresponding axis. For example,
;if we assumed the partition level along akis zero and axis

~one are 2 and 1 respectively, then the search space will

- look like Figure 13.

It is possible to deduce a simple one-to-one storage

" mapping, if partitions are split in a linear order. Let

C=(c°,c°,...,co) denote the coordinates of the partition
0’ "1 d-1 .

- where K is contained. Each c;j indicates the j-th binary

: digit of c; starting from right, and assuming a cyclic

splitting policy. Then the number of the partition in which
a record K=(kh,k1,...,kd_1)nmy be contained is given. by :
a-1 ; Tit (115

M(k,1) = Zzl Y 2 i
i=o J=o

51

-

Figure 13:

) J]
4 2 6]
. D0
00 01 10 11
Partitioning the search space

regions.

into

i

52

While this function provides a simple search mechanism in a
dynamic environment, it may, if applied as is, result in
poor storage utilization. Indeed, this could happen if a
split along a given axis caused both the overflowing parti-~
tion and nonoverflowing partitions to split. As a result of
such splitting, the number of empty buckets will increase
exponentially with each round of splitting. Another
approach is thus necessary while still taking advantage of
the mapping function.

Clearly, a better approgch, is to split only the over-
flowing partition and merge several of those emerging empty
partitions into the largest possible region of the search
space as long as the number of records does not exceed the
bucket size and the search cost does not degrade. The rules

governing the'formation of regions can be stated as follows

Rule 1 : Let = be the initial partition forming a region.

Then the region can be expanded by adding any partition

obtainable through a split of n o, (i.e. partitions

(n+2])): where |logn|<j<l or 0<j<l if n=0 and as long as

the number of records in the region does not exceed the

bucket size.

53
Rule 2 : If a partition = is merged into the same region

‘as n , then all partitions n obtained from n through

splits must also merged into the same region.

Rule 3 : If a partition =n is removed from region = , then

: all partitions obtainable from =« through splits must be

removed from =x.

Definition : Regions = and = are buddies if the regions

can be merged together without violating the region forma-

tion rules.

Rule 4 : Region =& can be merged with its buddy (if it

exists), say region =« , to form a single region identified
by the smaller of #nor a , if the combined number of

records does not exceed the bucket size.

3.3 The Directory

Splitting overflowing partitiébns only, as illustrated in
part(a) Figure 14, is a more natural partitioning of the
search space. Several partitions coalesce to form a single
region. For instance, partitions 0,2, and 6 have coalesced
to form region 0. The major problem now is the fact that
region numbers are no longer consecutive. Therefore, a
directory is necessary to hold the mapping of these regions

into physical storage. Different data structures such as

54
B-trees can be utilized to hold the index. It is proposed
instead to organize the directory in a manner identical to
the data file because of the following two reasons : (i)
Tries are inadequate structures for associative searching.
(ii) Using B-~trees to hold the index will wviolate the

clustering property that is required from the structure.
Let K=(k:,k:,...,ké_0 be the vector obtained from & by

0

truncation or from C° as follows :

-1,
g =¢ 2 1 rfor o0<i<d
z 2

The directory may now be regarded as one storing records

k' whose components are directly obtainable from the
coordinated of the data file partitions, see part(b) Figure
14. As a pesult, -the’ directory growth is only a linear
function of the number of data bucketé. On the other hand,
in grid files,. each time a bucket is split a
(d-1l)-dimensional array is added to the directory thereby
increasing its size exponentially and making its maintenance
problematic.

The methodology used to build the directory suggests that
it is possible to systematically build a hierarchy of
directories. For example, if the partition numbers in the
level #1 directory are not consecutive, a second level might

be necessary. It would consist of storing records

T T e

55

Figure 14:

[3] 10 "

(A)

X(11.,1)

X(01.0) x(io.i}

X(00,0) x(10,0)

] 1

(9)

Partitioning the search space into
regions. Dotted lines indicate nonexisting
boundaries. The directory, indexes of x
represents the bucket logical numbers.

i

56
R=(k2, K2 5 h h k2 i btained f k% b
=(k,. y¢---+Rq.,) where eac ; is obtaine rom i by

trancation.

3.4 Search Algorithm

To search for a given record K, we have to obtain the
partition number using the storage mapping M in which the
record may be contained. If the partition does not exist, we
are able to determine the embedding partition into which it
is merged as follows : Given a partition number =z , then

all numbers of the possible embedding partitions are given

by :
n,n=2%...,n— 2 217:. where a = |log n|
i L
1=0
and MsT 4w oeTy is the binary representation of =.
Given the coordinates cC= (c: ,c: PR ,c:i_I)of the partition

in which the record K may exist, we are able to compute

h h h

(CosCive--, C4-1) Wwhere Os<h<maxh which denote the

coordinates of the h-level directory partition. Each c?. can

be constructed from c_I;.-i where O0<j<d by using the interval

partition 1level along the ith axis of the h-th level

h

directory 1 i An exact-match query

57
e=(4, = k

!

[

‘ ki is a key belonging to Di' A partial-match query is an

oedy = Koo A, = k4) is a query where

‘exact-match query except that a range of values may be
gspecified. In the case where an exact-match query is used,
‘searching for a given record located in a page is

Eaccomplished by using the algorithm shown in Figure 15.

3.5 Insertion and Deletion

The insertion and deletion procedures are straight-forward
when the target data page exists and there is no overflow or
underflow. Basically, they consist of searching for the
relevant data page where the record must be inserted or
deleted. The overflow problem may be solved by splitting the
current set of partitions forming the overflowing region.
However, this split must be performed in such a way as not
to violate the reéion formation rules mentioned previously.
Splitting is performed in such a way that one of the two
regions obtained through a split contains some records from
the initial set. The insertion algorithm is presented in
Figure 16 and Figure 17.

The deletion procedure uses the EXACT-MATCH algorithm to
determine the data page where the deletion must be
performed. An attempt is then made to combine the region

where deletion occured with other regions. The merging must

'be done with the region formation rules
jdeletion algorithm is presented in Figure 18,

' Figure 20.

58
in mind. The

Figure 19, and

/% Given a record K =(kn'k1”"’kd-1)
the algorithm returns a the physical

address of the page where record K
may be located x/

1. Compute K;- = [k — min Dj / A].] for OsJ<d
where : Aj=|max Dj — min Djl
and Dj is the domain of attribute Aj
0 0 I .
2. Compute cj = [k} . 2 7] for 0<j<d where 1; is
the interval partition level along the j-axis.
3. Compute C? = p(C?TI,I?) where p denotes the
prefix of length 1? of binary string
cg-l and 1? is the interval partition 1level

along the j-th axis of the h-th level directory
for 0<j<d and Os<h<maxh where maxh is the number
_of directory levels.

4. Search directories starting at top level

Foq 3 ¢t= maxh - 1 to 1 do

Search bucket aj for the physical address

associated with partition M(&77',17°') or the
one embedding it. Let this address be aj_l.

If it does not exist, search is unsuccessful,

exit. We assume that amaxb-1 is stored in
main memory and corresponds to page
M(Kmaxh—1 1maxh-1)

End;

End EXACT-MATCH.

Figure 15: EXACT-MATCH algorithm.

60

Function DECOMPOSE (Mj,m’j):boolean;

/7% This procedure attempts to decompose region

into two regions Mj and M} *x/

If Mj can be decomposed into two

(almost even) regions Mj and M .

J
using RULE 3 then DECDOMPOSE := true;

End DECOMPOSE;

Figure 16: DECOMPOSE function.

[/

J

61

/7% Given a record K=(ko’k1""'kd-1)

the algorithm inserts record K into the file
if the record is not already there x/

1. Use algorithm EXACT-MATCH to find the relevant
data page. Keep track of the access path leading
to this page. It consists of the following
triplets : (ah,Mb,Sh)‘for O<h<maxh where a, is

a physical address of a page at the (h-1)-th
level directory, Mb its logical address, and

Sb the number of elements it contains.

2. Insert R into (al,Ml,Sl);
J = 1;
While J<maxh
begin
If OVERFLOW in aj then
begin
=t = pj-1_q,
Repeat .
I=t = Iy
Apply M(Kj,Lj'l) to all records in Mj
“Until DECOMPOSE(M},M));
Sj :-= Sj—sj
Modify Sj of triplet (aj,Mj,Sj);
Insert triplet (aj,Mk,S3)

into ((xJ+1,MJ+1,SJ+1) using Apyys
End.
J :=J + 1;
End
End INSERT

Figure 17: INSERT algorithm.

62

Function MERGE (uj,Q]+1,Mj,Sj,Sj+l,Flag) : boolean;

/7% This procedure merges the partition Mj

with its buddy M} and then deletes from

aj+1 either partition Mj

or M} depending on which is smaller %/

1) Mj := Buddy mj+1’”j)
2) Case M. < M. :
J J

Begin
Merge a_. and o, into o.;
g€ oy and a; %7
S, :=8S_+8 .;
J J J

Delete (a ,,M ,,S)) from o, ;
J 77 Jt1

Sj+1:_ Sj+1_1;

Flag := true;

Merge L. .,M.,5.,S. ,Flag);
g€ ©@jityyyH5:5;05 5., Flag)
End;
Case O<M <M. :
J 7
Begin
Merge a_. and o, into o .;
Sr9S. 0y and y dnto u;
S, :=S_.+5.;
DJJ t ; é S £.
elete (n.,M_,S. rom a., ;
@585 j+1

Sj+1:= Sj+1_1;

Flag := true;

Merge m},u
End;

3) Merge := flag;
4) Return;

j+1,Mj,Sj,Sj+1,F1ag);

End MERGE:;

Figure 18: Function MERGE algorithm.

63

Function BUDDY mj+1’”j): integer;

/7% This function returns the identifier of the buddy
of region Mj. Note that this function is performed
within page aj+1°

The "if™ checks whether region M} Iin aj+1 is the

buddy of M. ? £ (m) = 2% for

(logn] <i<1? or 0s<i<zt? if n = 0 */

{ buddy := -1 }

if (S, + S, < b, and ¥ _=M_+f (M Jl then
J J J J J 37

{buddy := ”j ; return;}

if (S +S_<b. and M =M +f (M)| then
J JJ J 7 iV 7
{buddy := ”j ; return;}

End BUDDY:

Figure 19: Function BUDDY algorithm.

64

7%

Given a record K=(kn’k1”"’kd—1)

the algorithm deletes record K into the file
if it exists. The deletion may then cause the
merging of several partitions %/

1. Use algorithm EXACT~MATCH +to find the relevant
data page. Keep track of the access path leading
to this page. It consists of the following
triplets : (ah,Mb,Sﬁ)tbr O<h<maxh where a, is
a physical address of a page at the (h-1)-th
level directory, Mh its logical address, and

Sh the number of elements it contains.

2. If K is in o then delete K else return;

3. S’l:= 1

4. For j:=1 to maxh-1 do
Begin
Flag := false;
If Merge (aj,aj+1,Mj,Sj,Sj+1,F1ag)= false then
exit; .

' end;

End DELETE

Figure 20: DELETE algorithm.

Chapter IV

A PRELIMINARY APPROACH TO CONCURRENCY IN IBGF

4.1 Uniform Data Distribution

In this part, we discuss the design of concurrency control
schemes based on locking protocols and a minor modification
in the data structure that will regulate the access of
concurrent processes to shared data stored in the IBGF. It
is assumed that, the data is uniformly distributed over the
search space. When the data is wuniformly distributed,

partition numbers are consecutive in the range

(0,...,21 — 1) where 1 is the search partition level,
Therefore, a directory is not necessafy to hold the mapping
of these partitions into physical storage, since physical
addresses can be computed directly using the storage mapping
(M) discussed previously.

Two types of solutions are presented. We will introduce
these solutions in sequence to show improvement achieved in
the degree of concurrency with no major modification of the
data structure.

The file is assumed to reside on a direct access device

such as magnetic disk. The storage space is divided into a

- 65 -

66
g contiguous logical address space of fixed size blocks called
| primary buckets or pages. Each bucket is capable of holding

some number b of records. A bucket is the unit of transfer
i between secondary and primary memory. Collisions (i.e.
‘ attempts to insert into a full primary bucket) are handled
by creating a chain of overflow buckets associated with that
particular bucket address.

There are a couple of rules that can be used to decide
when and how to split in this modified interpolation based
grid file. One possibility is to maintain an approximately
constant storage utilization. In this approach, a split is
performed only when the load factor excee&s some threshold.
A split operation can be performed either by splitting every
data page in the file in order to maintain a one to one
mapping . between search space partitions and physical data
pages, or split one bucket at a time in a linear order. We
assume that splitting the search space as a result of an
insertion of a new recora will not produce empty
partition(s) (i.e. newly created partition(s) as a result of
such splitting will contain at least one data record, which
will preserve our initial assumption that the data is
uniformly distributed). Unlike splitting, a merge is done
only when the space utilization falls below some threshold.

Similarly, a merge operation is performed either on the

whole file, or only on two buckets.

67

In type I solution, splitting is done on every bucket in
fthe file, whereas in type II solution, splitting is done on
;one bucket chain at a time in a linear order fashion.
'Similarly, if a merge is called for, in both solutions, it
1s accomplished by undoing the last split operation
}performed. That is, the address space is reduced by half in

- solution I, whereas in solution II it is reduced by one

bucket only.

4.2 . Preliminary solution

A solution which allows concurrency among processes
executing FIND, INSERT, 'and DELETE operations on a shared
interpolation based grid file ,shown in Figure 21, is
presented. The operations SPLIT and MERGE are maintenance
pProcesses concerned with restructuring of the interpolation
based grid file. We will discuss the parallel behavior of
this preliminary solution in terms of its five major
operations. '

The restructuring phase of a splitting process is

triggered when the load factor which is defined as follows :

.

LOADFACTOR = RECCOT/(ZL X Bucket_size),
where RECCOT is the number of records in the file, exceeds
some threshold. On the other hand, the restructuring phase

for a merging process is triggered when the 1load factor

68

o,
x x
1| x x
2 3
ol X x x
o-X 1
° 1
RECCOT
10

t(10000,10)
(20000,10)
(10000,11)

(37000,11)
(37888,10)

(10000, 40)
(20081, 40)

(37080,40)
(37980,80)
(37300,80)

Figure 21:

ture.

An interpolation based grid file

struc-

69

ffalls below some threshold. These two restructuring
joperations can be viewed as separate background processes in
‘spite of the fact that they are called from the procedures
. insert and delete. That is, when the need for a split or a
émerge is determined by an INSERT or DELETE process
:respectively, a separate asynchronous split or merge process
; is activated accordingly and associated with the calling
| process.

In this solution, the FIND operation can be performed
concurrently with other processes executing FIND, INSERT,
and DELETE. Processes executing the INSERT and DELETE
operations may operate in parallel only if they are working
on different bucket chains. At most, one restructuring
operation (split or merge) can be executed at any time.

Locks are used to control access to the shared variables
L and RECCOT, and to the bucket chains. The primary bucket
and all its overflow buckets are locked as a unit. The
compatibility of lock types is.given in Figure 22.

The FIND operation places read-locks on L and bucket
chains, whereas, the operations INSERT and DELETE place
read-lock on L and selective-locks on buckets and RECCOT.
The split and merge operations use exclusive-locks on L to
prevent new coming processes from accessing the whole file

until it is restructured, and on buckets chains to drain off

70

Figure 22:

The compatibility of lock types.

71
already existing processes which are using the old file

structure. This means that the whole data file is locked

- during the restructuring phase.

The manner in which the records are organized within a

- ¢hain becomes important when the occurrences of insertion
- and deletion with search is considered. When multiple disk

: pages make up the chain, reading the chain is not an indivi-

sible step. If records are kept ordered according to some

- keys, within a chain, one insertion can affect every page,

and thus, care must be taken that intermediate states are
not visible while the chain is being rewritten. This can be
implemented by building a new chain of buckets whose content

is copied from the original chain. The designated record is

~then inserted into or deleted from the appropriate place

within the new chain. The process then replaces the primary
bucket in the original chain with new contents including a
pointer to the new chain. This last disk write makes the new
chain available. '

If a FIND process reads the chain before the new record
is added, it is as if the FIND process occurred before the
inserter process. Otherwise, it is as if +the inserter
occurred first. Similarly, if a FIND process reads the chain
before the target record being deleted, it is as if the FIND
operation occurred before the DELETE process. Otherwise it

is as if the DELETE process occurred first.

72
During the restructuring phase, the load factor is ini-
- tially computed to determine if a split or a merge is still
jnecessary. Indeed it may happen that another restructuring
:operation has just taken place and thereby preempting the
- need for another such phase. Since restructuring phase is
| delayed and active processes are allowed to finish, the load
factor is recomputed again to prevent restructuring of the
file if those processes have caused the load factor to be
changed due to successive insertions or deletions.
The pseudocode procedures for FIND, INSERT, DELETE,
SPLIT, and MERGE are presented in Figure 23, Figure 24, Fig-

ure 25, Figure 26, and Figure 27.

73

Procedure FIND(K);

Var
LL : Integer;
Bucket_chain : Integer;
Begin
Lock(Read,L);
Get_value(L,LL) /% LL <~ L %/

Bucket_chain := M(K,LL);
Lock(Read,Bucket_chain);
Unlock(Read,L);

7% Read the primary bucket of the chain
from disk into primary buffer.
search for K in the primary bucket and
in subsequent overflow buckets x/

If (found) then
report success
else
report failure;

Unlock(Read.Bucket_chain);
end;

Figure 23: Algorithm for the FIND operation.

Procedure INSERT(K):

Var
LL ¢t Integer;
Lfactor ¢t Integer;
Bucket_chain : Integer;
Reccount ¢t Integer;
begin

Lock(Read,L);

Get_value(L,LL)

Bucket_chain := M(K,LL);
Lock(Selective,Bucket_chain);
Unlock(Read,L);

7% Build a new chain copied from the
original chain and insert the new
record if it does not exist.

Replace the old chain by the -new one %/

If (inserted) then
begin
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount);
Reccount := Reccount + 13
Lfactor := Reccount / (2%xLL x Bucket_size);
Put_value(Reccount,RECCOT);
Unlock(Selective,RECCOT);
end;
Unlock(Selective,Bucket_chain);
If (overflow) +then SPLIT:
end;

Figure 24: Algorithm for the INSERT operation.

Procedure DELETE(K);

Var '

LL ¢t Integer;
Lfactor ¢ Integer;
Bucket_chain : Integer;
Reccount t Integer;
begin

Lock(Read,L);

Get_value(L,LL)

Bucket_chain := M(K,LL);
Lock(Selective,Bucket_chain);
Unlock(Read,L);

/% Build a new chain copied from the
original chain and delete the record
if it is there.
Replace the old chain by the new one %/

If (deleted) then
begin
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount)};
Reccount := Reccount - 13
Lfactor := Reccount / (2%xLL x Bucket_size);
Put_value(Reccount,RECCOT);
Unlock(Selective,RECCOT);
end;
Unlock(Selective,Bucket_chain);

if (underflow) then MERGE ;
end;

Figure 25: Algorithm for the DELETE operation.

76

Procedure SPLIT;

Var
LL ¢ Integer;
Lfactor ¢t Integer:
Reccount ¢ Integer;
begin

Lock(Exclusive,L);
Get_value(L,LL)
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount);

Lfactor := Reccount - (2x%LL * Bucket_size):;
Unlock(Selective,RECCOT)3

7% if split is not necessary then Unlock L
and terminate. otherwise, continue on
splitting. Drive off active processes
from the system x/

For I := 1 to 2%xLL :
Lock(Exclusive,ith Bucket_chain);

Lock (Read,RECCOT);
Get_value(RECCDT,Reccount);

Lfactor := Reccount - (2x%LL * Bucket_size);
Unlock(Read,RECCOT);

7% if split is not necessary then Unlock L
and terminate, otherwise, continue on
splitting. Start the task by createing
new bucket chains and appending them to
the end of the file and move some of the
records into new locations x/

For I := 1 to 2%xLL
Unlock(Exclusive,ith Bucket_chain);

LL = LL + 1;
Put_value(LL,L);

Unlock(exclusive,L);
end;

Figure 26: Algorithm for the SPLIT operation.

77

Procedure MERGE;

Var
LL ¢ Integer;
Lfactor ¢ Integer;
Reccount : Integer:
begin

Lock (Exclusive,L);
Get_value(L,LL);
Lock(Selective,RECCCOT);
Get_value(RECCOT,Reccount);

Lfactor := Reccount / (2%xLL % Bucket_size);s
Unlock(Selective,RECCOT);

7% if merge is not necessary then Unlock L
and terminate, otherwise, continue on merging.
Drive off active processes from the system %/

for I := 1 to 2%xLL
Lock(Exclusive,ith Bucket_chain);

Lock(Read,RECCOT);
Get_value(RECCOT,Reccount):

Lfactor := Reccount / (2%%LL x Bucket_size);
Unlock(Read,RECCOT);

7% if merge is not necessary then Unlock L
and terminate, otherwise, continue on merging.
Start the task by undoing the last split and,
then deallocate unused bucket chains x/

For I := 1 to 2%xLL
Unlock(Exclusive,ith Bucket_chain);

LL = LL - 13
Put_value(LL,L);

Unlock(exclusive,L);
end;

Figure 27: Algorithm for the MERGE operation.

78

4.3 An improved solution

The main drawback of the preliminary solution presented

;previously is that the whole data space is locked during

restructuring. In addition, on the average 50 percent of the
frecords are deleted from some of the buckets and inserted
into new ones. As a result, the restructuring operation is

not only very costly but imposes stringent limits on the

~ degree of concurrency achievable.

The restructuring operation is inavoidable, but it is
desirable to localize it to a minimum number of buckets in
the file at a time. Obviously, such a strategy will yield a
higher degree of concurrency among précesses than the
previous approach. The solution described below is an
adaptation of the approaches presented in [9,10] for

concurrency in extendible and linear hashing files

. respectively. It is based on locking protocols and a minor

modification in the data structure. The modified data
structure is shown in Figure Zé.

Rather +than 1locking +the data space globally, the
restructuring operation is now restricted to a single bucket
chain at a time. The split operation is applied to each
chain in linear order and cyclically. A split is performed
on the bucket that is next in line to be split. A wvariable

NEXT is used as a pointer to indicate the chain that should

79

a| te.amy
1
2 3
[]
o s (e.1000)
(]} []] 10 ” ’
NEXY L RECCOT
1 2 21
(100,10) {(850.10) (100,850) (855,.80) (340.10)
(110.11) (v00,14) {150,87) (830,86) (400,12)
(111.11) (850,14) (811,78) (402,12)
0 1 2 3 4
(v12,10) { {(sov.10) (ess,e8)
(112,11) (8s0,55)
(t100,1 3)
(117,12)

Figure 28: An interpolation based grid file

ture.

struc-

80
gbe split. The resulting modification in the data structure
gis movement of some records from the original bucket chain
fbeing split to a new primary bucket that is appended at the
. current end of the file. The variables NEXT and L are then
? updated as follows :

If L = 0 then

Begin
L =L + 1;
NEXT := O;
End
Else
begin

Next := (NEXT + 1) mod 2**L;
If NEXT = O then L, := L + 1;

Unlike a split operatioh, a merge operétion is performed
on the bucket chain which is at the current end of the file
and the bucket chain from which that particular bucket
chain was generated due to a split. That is, undo the lést

split operation performed on the file. The variables NEXT

and L are then updated as follows :

If NEXT = O and L not = 0 then

Begin
NEXT := (2*%*L - 1) = (2**(L - 1));
L :=L - 1;
End
Else

NEXT := (NEXT - 1) mod 2%*L;

In this solution, the FIND operation can be performed
concurrently with other processes executing the procedures

FIND, INSERT, DELETE, and SPLIT. Processes executing the

81

- INSERT and DELETE procedures may operate in parallel if they

éare accessing different bucket chains. A split may be

performed in parallel with INSERT and DELETE operations that

. are not accessing the particular chain being split. The

finteraction between a MERGE and FIND, INSERT, or DELETE
i processes is more complicated. Those processes may not
access the two buckets being merged and may not read the
- value of NEXT and L while the merging process is using them.

- At most, one restructuring operation can be executing at any

time.

The FIND algorithm calls for the use of lock-coupled read
locks on L, NEXT, and the bucket chains. The procedures
INSERT and DELETE read-lock L, NEXT and selective-lock
bucket chains. The SPLIT operation uses selective locks. The
MERGE operation places exciusive locks on L, NEXT and both
of the partner bucket chains being merged. After the values
of the variables L and NEXT have been changed to reflect the
smaller data space that will. result from the merge, the
locks on these variables are converted to selective locks,
and processes entering their searching rhase may then
concurrently access the variables L and NEXT. The

compatibility graph of lock types is given in Figure 22 on
page 70.

82
Clearly, concurrency is enhanced by allowing a searching
gprocess to operate in parallel with a split operation, but
there must be some means for it to reorient itself when the
‘wrong chain is reached because of an out-of-date L value.
;The current value of L always reflects a smaller search
:space for new coming processes. Assume that a FIND process
‘is operating in parallel on the file structure shown in
‘Figure 28 on page 79, with a SPLIT operation. If the FIND
process decided, using the current value of L, that the
record being searched for.is located in bucket number 1
which is also subject to a split operation as indicated by
the variable NEXT, then that particular process may not find
the designated record if the SPLIT process was able to split
the bucket into two buckets before the FIND process can gain
access to it. In this scheme, each chain includes an
additional field LOCALL that specifies the most recent split
affecting this bucket. Storing LOCALL in the primary bucket
ensures that the searching proc‘:ess can decide if it has the
right chain without requiring the accuracy of the shared
variable L. The modified data structure is shown in
Figure 29.
A process executing in its searching phase behaves as
follows : the value of L is read and the value seen

determines which bucket should be accessed initially. Let

83

Figure 29:

NEXT RECCOT
1 21
3 2 2 2 3
(100,10) | f(850,10) | I(100,60) | [(855.60) | [(340,10)
(110,11) (s00,14) (150,87) (830,66) (400,12)
{111,11) (850,14) (811,76) {402,12)
[] 1 2 3 4
(112;10) {500,10) (855,66)
(112,11) (850,55)
(100,15) .
|
(117,12)
A modified IBGF structure with

field.

LOCALL

84

fthe private variable PRL record the value of I at the time
éit was read. Upon gaining access to a bucket, the process
fchecks whether PRL matches that bucket's LOCALL, and if not,
it increments its PRL value and recalculates the address
jM(K,PRL) until a match is found. The calculated address at
feach iteration will always be less than or equal to the
~address of the eventual destination. This is a direct
consequence of Rule 0l discussed previously (i.e. records

moved from a bucket during a split go to the higher address

chain n+21. Thus the bucket chain in which the desired
record belongs should be reachable using this strategy as
long as each address calculated is within the valid address
space at the time of access. The two new chains resulting
from a split appear atomically to other processes because of
the order in which they are written to disk. Specifically,
the chain at the new bucket address is written before the
new version replaces the chain at the target bucket address.
At this point, no information contained in the IBGF points
to the existence of this new bucket. Once the primary bucket
at the head of the chain at the target address has been
written, its LOCALL value indicates that the bucket has
split and a new bucket has been incorporated into the file.
After the reorganized chains are safely in place, the value

of L and NEXT are changed to allow direct calculation of

85
%the address of the new chain. A process responsible for
?merging two buckets, holds exclusive-locks on both partners
of the merge while it makes its changes. The read-lock held
gby the searching process prevents a merge from decreasing
‘the size of the address space during the initial bucket
access. The pseudocode procedures for FIND, INSERT, DELETE,
SPLIT, and MERGE are presented in Figure 30, Figure 31,

Figure 32, Figure 33, Figure 34, and Figure 35.

86

Procedure LDCATE_BUCKET(K,Locktype.Bucket_chain);
Var

PRL ¢ Integer;
Previous : Integer;

Begin
Lock(Read,L);
Get_value(L,PRL); /% PRL <——— L %/
Bucket_chain := M(K,PRL);

Lock(Locktype,Bucket_chain);
Unlock(Read,L);

/% read the primary bucket of the chain from
disk into primary buffer x/

While LOCALL not = PRL do /x wrong bucket *x/
begin
PRL := PRL + 13;°
Previous := Bucket_chain;
Bucket_chain t= M(K,PRL);
Lock(Locktype,Bucket_chain);
Unlock(Locktype,Previous);

/% read the primary bucket of the chain from
disk into primary buffer x/

end;
end;

Figure 30: Afgorithm for search phase.

87

Procedure FIND(K);
var
Bucket_chain : Integer;
begin
LOCATE_BUCKET(K.Read,Bucket_chain);

7% read the primary bucket of the chain from
disk into primary buffer, search buffer
and subsequent buckets of chain for K %/

if (found) then report success
else report failure;
Unlock(Read.Bucket_chain);
end;

Figure 31: Algorithm for the FIND operation.

88

Procedure INSERT(K);

Var
LL ¢ Integer:
Pntr ¢t Integer;
Bucket_chain : Integer;
Lfactor ¢ Integer;
Reccount ¢ Integer:
Begin

LOCATE_BUCKET(K.Selective.Bucket_chain);

/% Build a new chain and insert the new record
if it does not exist %/

If (inserted) then

begin

Lock(Read,L);
Get_value(L,LL);
Lock(Read,NEXT);
Get_value(NEXT,Pntr);
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount);
Reccount := Reccount + 13
Lfactor := Reccount/((2**LL+Pntr)*Bucket_size);
Put_value(Reccount,RECCOT);
Unlock(Read,L};
Unlock(Read,NEXT);
Unlock(Selective,RECCOT);

, end;

7% Replace the old chain by the new one x/
Unlock(Selective.Bucketﬁchain);
if (Overflow) then SPLIT;

end;

Figure 32: Algorithm for the INSERT operation.

89

Procedure DELETE(K);

Var
LL t Integer;
Pntr ¢t Integer;
Bucket_chain : Integer;
Lfactor ¢ Integer;
Reccount : Integer;
Begin

LOCATE_BUCKET(KpSelective.Bucket_chain);

/7% Build a new chain and delete the record
if it is there x/

If (deleted) then
begin

Lock (Read,L);
Get_value(L,LL); "
Lock(Read,NEXT):;
Get_value(NEXT,Pntr);
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount);
Reccount := Reccount - 1;

Lfactor := Reccount/((2%xLL+Pntr)*Bucket_size);

Put_value(Reccount,RECCOT);
Unlock(Read,L);
Unlock(Read,NEXT);
Unlock(Selective,RECCOT);

end;
/% Replace the o0ld chain by the new one %/
Unlock(Selective.Bucket_chain);
If (underflow) then MERGE ;
end;

Figure 33: Algorithm for the DELETE operation.

90

Procedure SPLIT:;

Var
Target_bucket_chain
Lfactor, LL, Pntr
Reccount

Begin
Lock(Selective,L); Get

Integer;
Integer;
Integer;

_value(L,LL);

Figure 34:

Lock(Selective,NEXT); Get_value(NEXT,Pntr);
Lock(Selective,RECCOT);
Get_value(RECCOT,Reccount)};
Lfactor := Reccount/((2**L+Pntr)*bucket_size);
If (split is not necessary) then
begin
Unlock(Selective,L); Unlock(Selective,NEXT);
Unlock(Selective,RECCOT); Terminates
end
else
begin

Unlock(Selective,RECCOT);

Target_bucket_chain := Pntr;

/7% Allocate newchain and append it at the
current end of the file. Move some of
records in the target bucket chain
pointed by NEXT to newchain. Write the
primary bucket of the target chain with
the new value of LOCALL x/

if LL = 0 then
begin

LL $= LL + 13 Pntr := 03
end

else

begin
Pntr :=
if Pntr

end; ;

Put_value(Pntr,NEXT); /% NEXT <~—-— Pntr %/

Put_value(LL,L); Unlock(Selective,L);

Unlock(Selective,NEXT);

Unlock(Selective,Target_bucket_chain);

end;

(Pntr+1) mod 2%xLL;
= 0 then LL := LL + 1

end;

Algorithm for the SPLIT operation.

91

Procedure MERGE;

Var
Fpartner, Spartner, Lfactor ¢t Integer;
LL, Reccount, Pntr ¢ Integer;
Begin

Lock(Exclusive,L); Get_value(L,LL);
Lock(Exclusive,NEXT); Get_value(NEXT,Pntr);
Lock(Selective ,RECCOT); Get_value(RECCOT,Reccount);
Lfactor := Reccount/((2**LL+Pntr)*bucket_size);
If (Merge is not necessary) then
begin
Unlock (Exclusive,L); Unlock(Exclusive,NEXT);

Unlock(Selective,RECCOT); Terminate; end
else

begin
Unlock(Selective,RECCOT);
if Pntr -= 0 then

begin
Fpartner := Pntr - 1;
Spartner := (2%%(LL+1)-1) ~ Pntr; end
else '
begin

Fpartner:=(2%%LL-1)-(2%%x(LL-1));
Spartner:=2%xLL; end;
If Pntr = 0 and LL -= 0 then
begin
Pntr:=(2%%LL-1)-(2%%(LL~1)); LL:= LL-1;
end
else .

Pntr := (Pntr-1) mod 2%xLL;
Put_value(Pntr,NEXT); Put_value(LL,L);
Convert_lock(Exclusive,Selective,L);
Convert_lock(Exclusive,Selective,NEXT);
Lock(Exclusive,Fpartner);
Lock(Exclusive,Spartner);

/% Merge partners and deallocate Spartner.
Decrement LOCALL for Fpartner. %/

Unlock(Selective,L); Unlock(Selective,NEXT);

Unlock(Exclusive,Fpartner);

Unlock(Exclusive,Spartner);

end; end;

Figure 35: Algorithm for the MERGE operation.

92
An example of parallel computation involving two requests
;is given in Figure 36. The vertical columns of the text give
%the steps executed by each of the two processes. The
fhorizontal alignment of these steps indicates when
jconcurrent execution is assumed. Gaps show when deléys
‘occur. The IBGF shown in Figure 29 on page 83, is assumed to
5be the initial state. Figure 37 and Figure 38, show the
gupdated data structure at designated points in the
écomputation. This example illustrates some of the important
. interactions between processes.
At the begining of the computation, the process
5 attempting to insert +the record (850,11), succeeded to
locate the bucket chain where that particular record will be
inserted in. Process I then manages to acquire its selective
lock on bucket chain 1, and to insért the record. Such an
- update, triggered a restructuring phase. Meanwhile, process
F starts executing the FIND operation in parallel with the
split and involving the same Bucket. This demonstrates the
recomputation strategy that is fundamental in the locate
phase when the wrong chain is reached because of incorrect
value of L. The first address calculated usiné the wvalue of
L (2) read by the process F is for bucket chain 1. Process F

reads the primary bucket after the newly split version has

been written by process I. Seeing a LOCALL value of 3,

93

Process I:INSERT(850,11)

Process F:FIND(850,10)

—.——_-—_.—_.—_—_——.—————_-—._——-——._—_—_—.___._..__—.__-.__.__._._—__——-

Locate and lock chain

Lock(read,L)
read L ¢« PRL = 2
Bucket-chain = 1

Lock(Selective,1)
Unlock(read,L)

Read chain(1l)

LOCALL = PRL, quit

Insert the record into chain
(Figure 37)

Lock(Read,L); Lock(Read,NEXT)
Lock(selective,RECCOT)
Compute load factor
Unlock(selective,RECCOT)
Unlock(Selective,1)

Overflow : SPLIT
Lock(Selective,L)
Lock(Selective,NEXT)
Lock(Selective,RECCOT)
Compute load factor
Unlock(Selective,RECCOT)
Target_bucket_chain = 1
Lock(Selective,1)

Construct new chain and split
records

Write new chain

Rewrite bucket 1

Increment NEXT

(Figure 38)
Unlock(selective,L)
Unlock(selective,NEXT)
Unlock(selective,1)

Figure 36: Example of parallel

Locate and lock chain

Lock(Read,L)
Read L : PRL
Bucket—-chain
Lock(read,1)
Unlock(Read,L)

Read chain(l)
LOCALL -= PRL
Recompute with
Bucket-chain =
Lock(Read,5)
Unlock(Read,1)
Read chain(5s)
LOCALL = PRL,

PRL =
5

quit

Search for (850,10)

Found
Unlock(read,5)

computation I.

3

Figure 37:

NEXT RECCOT

1 21

3 2 2 z' 3
(100,10) | {(850,10) | |(100,60) | [(855,60) | |(340,10)
(110,11) | I(s00,14) | [{150,67) | [(830,66) | |(400,12)
(111,11) | 1(950,14) (811,76) | [(402,12)
0 1 2 3 4
(112,10) | [(500,10) (855, 66)
(112,11) | |(850,11) (850,55)
(100,15) |

I
(117,12)

Progressive states of the IBGF :

stage I.

95

NEXT L RECCOT

2 22

i 3 7 2 3 3
{100,10) | |(500,10) | [(100,50) (855,80) | |(340,10) | |{850,10)
{t10,11) (150,67} | |(830,86) | [(400,12) | |(850,11)
{111,11) (811,78) | [(402,12) | }(950,14)
0 1 2 3 4 5
{112,10) (855, 66) (900,14)
(112,11) (850,55)
(100,15)
(117,17}

Figure 38: Progressive states of the IBGF : stage II.

96

gprocess F recomputes the address 5. It places a read lock on
j bucket chain 5 and releases the lock on bucket chain 1
}(lock-coupling). Eventually, the target record is found in
 bucket chain 5.

g Another example of parallel computation involving two
jrequests is given in Figure 39. The IBGF shown in Figure
; 40, is assumed to be the initial state. Figure 41, shows the
?updated data structure at designated points in the
; computation. This example illustrates the interaction
' between a DELETE and consequently a MERGE operation from one
| side and a FIND operation from the other. At the begining of
the computation, the process attempting to delete the record
(20051,40), succeeded to locate and the bucket chain where
that particular record will be deleted from. Process D then
manages to acquire its selective lock on bucket chain, and
to delete the . record. Such an update, triggered a
restructuring phase. Meanwhile, pProcess F starts executing
the FIND operation in parallél with the merge operation.
Process D places an exclusive lock on L and NEXT first to
decrement their values while process F is blocked. In the
final part of the computation, process D has finished
updating the values of I. and NEXT, allowing process F to get
its lock on those variables which will enable process F to
operate in parallel with the actual merge operation since it

is working on a different bucket chain.

97

Process D:DELETE(20051,40)

Locate an lock chain
Lock(Read,L)
Read L : PRL
Bucket chain
Lock(selective,2)
Unlock(Read,L)

Read chain(2)

LOCALL = PRL, quit

Delete the record

(Part(a) Figure 41)
Lock(selective,RECCOT)
Compute load factor
Unlock(Selective,RECCOT)
Unlock(Selective,2)
Underflow : MERGE
Lock(Exclusive,L)
Lock(Exclusive,NEXT)
Lock(Selective ,RECCOT)
Compute load factor
Unlock(Selective,RECCOT)
Decrement L and NEXT
Downgrade lock on L and NEXT
(Part(b) Figure 41)

Fpartner = 3

Spartner = 1
Lock(Exclusive,Fpartner)
Lock(Exclusive,Spartner)
Merge partners
Unlock(Exclusive, 1)
Unlock(Exclusive,3)

nu
N

Process F:FIND(10000,10)

Locate and lock chain
Lock(Read,L) --- wait

Succeed :
Read L : PRL
Bucket chain
Lock(read,0)
Unlock(read,L)

Read chain(0)

LOCALL = PRL , quit
Search for (10000,10)
Found

Unlock(Read,0)

n u
N

Figure 39: Example of parallel computation II.

98

NEXT L RECCOT
0 2 6
7 7 7 7
(10000,10) [(37000,10) |(10000,40) [c37058, 40)
(10000,11) (20051, 40)
0 { 2 3

Figure 40:

An initial state of an IBGF.

99

NEXT

RECCOT

5

2

2

2

2

(10000,10]
(10000.1 1)

(37000, 10)

(10000, 40}

CXI7TRER, 40

] 1 2 3
(A)
NEXT L RECCOT
] 1 s
2 L]) 2

(10000,10) (37000,10) (10000,40)
(10000,.11) (37050,10)
] 1 2

Figure 41:

(B)

Progressive states of the IBGF.

100
4.4 Discussion
EDuring the searching phase of FIND, INSERT, and DELETE,
locks are placed according to a well-defined ordering.
Merges and Splits also respect the ordering in requesting
?their locks. Thus, deadlock can not occur. Searching for
fthe record as part of a deletion, or for the place to insert
fas part of insertion, requires that the effect of previous
:'updates (even those still active) be seen. Selective-locks
%are placed on the chains during the searching phase to
'serialize writers of the same individual buckets so that
‘only up-to-date information is seen. This guarantees that
'there is no interference between concurrént executions of
‘ INSERT and DELETE.

Merges and Splits are completely serialized with respect
to one another by incompatible locks on L and NEXT. All
affected bucket chains are also locked by a restructuring
process for the duration of the step. The SPLIT procedure
allows, because of its seléctive-locks, only processes
executing the FIND routine to concurrently access the chain
being split. The exclusive-locks held during a merging
process do not permit any concurrent use of the partner
buckets of the merge. Processes executing FIND, INSERT, and
DELETE are allowed to operate in parallel with a MERGE if

they are working on a different bucket chain than the ones

101
‘being merged. When the variables L and NEXT are updated to

'reflect smaller address space, the 1locks on them are

converted to Selective~locks, and processes entering their

searching phase may then access L and NEXT values.

Chapter V
A CONCURRENCY SCHEME FOR THE IBGF

5.1 Nonuniform data distribution

In this part, we will investigate the problem of supporting
an arbitrary number of processes to operate concurrently on
the IBGF with the directory option being used as shown in
Figure 42. Two solutions are presented. The first solution
is based on the approaches proposed to handle concurrent
operations in B-trees [17,18,26,28,1]. It was suggested
there that they may also be applicable in other tree
structures. We will investigate this solution when it is
applied on the IBGF. The second solution is a new one which
exploits some of the structural properties of the IBGF and

achieves the following results. :

1. A higher degree of concurrency than the first solution
on the average case is achieved and the same degree of
concurrency in the worst case.

2. No major modifications of the data structure are

involved.

- 102 -

103

Figure 42:

ROOT
0 3
L
0
0 s| 3
—
4
—
0 1
11
N—_ |
3 7
]
0 4 1

LEVEL 2

LEVEL O

An IBGF with two directory levels.

, 104
‘ 5.2 Preliminaries

In the IBGF a path from the top level directory to a data
bucket determined by a process on its passage is denoted by

the triplets (ah,Mb,Sh) Lfor O<h<maxh, where - a, is a

physical address of a page at the (h-1)-level directory,

Mh its logical address, and Sh the number of elements it

contains.

. Definition : A bucket B at the h-th level directory of an
IBGF is insertion-safe , if it is unsaturated, (it has records

less than the bucket size), (i.e. (Sh<bh, where bh is the

bucket capacity at the h-th level directory), and it is

deletion-safe , if it is not minimal (it has more than b,/2)

(i.e. Sp2b,/2),

5.3 A B-tree solution

5.3.1 Locking scheme

In this solution, the SEARCH operation can be performed
concurrently with other processes executing the same
operation. In addition, SEARCH processes may be working
concurrently with other processes executing the INSERT and
DELETE operations when they are at the phase of establishing

their access paths. Processes executing the INSERT and

105
gDELETE operations may operate in parallel if they are
éworking on different access paths.
| The scope for an updater must remain invariant during
:restructuring. This implies that the scope of an updater
‘must be locked before any necessary restructuring can begin.
The locking is often done in such a way that no other
;updater can be in the scope once it is locked, not even
;waltlng in the queues associated with the buckets other than
ithe deepest safe bucket. On the other hand, searchers may be
fpresent in the scope of an updater during its searching
jphase. However, before the restructuring phase can begin the
;updater should drive away all searchers from its scope.

A process waiting at the deepest safe bucket for an
updater to terminate may reach an incorrect data bucket if
an attempt was made prior to the actual access to compute
its access path only once. A searcher or an updater in its
searching phase must continuously examine the value of L in
order to determine the next .move from the h-th to (h-1)
level directory correctly. It turns out that such processes

are required only to examine the value of LO (the interval

partition level at the level 0 directory) to determine the
next move in their access paths no matter what directory
level they are at. The following Lemma provides the number

of the region which should be accessed next in the access

path.

106
Lemma : Given a partition number n at the O0-th level
directory, then the region number containing = at the h-th
level directory is identified by the greatest logical parti-

tion number inferior or equal to =n without violating Rule

02.

During restructuring of the h-th level directory, an
updater is allowed to hold an exclusive lock on the parti-
tion level at the h-th level directory only just for the
duration needed to restru;ture ‘that particular directory

h

level. This means that an updater should lock L“ just

' before restructuring and unlock it immediately before the

. actual restructuring can begin at the h+1l directory level.

- Clearly, such a strategy will enhance the degree of concur-

; rency achievable than if L was locked for the whole duration

 of the restructuring phase.

Two important schemes for locking +the buckets are

- enforced :

1. Bucket locking by searchers : A searcher first locks
the root and on its pPassage to the target bucket at
the data level(i.e. level O directory) it unlocks a
bucket at the h-th level directory only after it has

locked the bucket at the (h-1) level directory.

107
2. Scope locking by updaters : An updater first locks the
{ root and on its passage to the frontier the
5 appropriate buckets are locked and examined. When a

safe bucket is fbund all its ancestors are unlocked.

gThe compatibility of lock types to be used by different
:processes is given in part (b) Figure 8 on page 28. A search
. Process adopts the usage of read-locks with lock coupling
ftechnique. An updater uses write-locks to lock its scope
;from other wupdaters during ‘the searching phase, but
;searchers may be present because read-~locks and write-locks
éare fully compatible. However, before restructuring can
- begin the updater converts all write-locks into
:exclusive-locks starting at the deepest safe bucket of the
.scope. Since exclusive-locks are incompatible with

- read-locks this ensures that all searchers in the scope are

'driven off.

 5.3.2 Concurrent behavior
To search for a record K, the SEARCH process begins at the
root and proceeds by computing the next move in the path
rdown to the appropriate data bucket. When the target bucket
‘is reached, the process simply scans the bucket and reports

success if the record exists otherwise it reports failure.

108

To insert a record K, the INSERT process begins at the

; root and proceeds by locking its access path, from other

;updaters, down to the appropriate data bucket where K should

_ be contained. When the deepest safe bucket in the path is

determined, the process unlocks all ancestors of the safe
bucket which will allow another updater if any to proceed if
it is accessing a different path. The insertion of the
record K into the target data bucket may necessitate
splitting that particular bucket. The original region M is
decomposed into two regions ., M and M, in such a way that
some of the records from the initial set will map to the new
one and the region formation rules are not violated. The new
region identifier along with its corresponding physical
address and capacity is then inserted into .the region
containing M in the first level directory:. In turn, fhis may
cause an overflow. Clearly, this will have a ripple effect
on all levels of the directory, all the way to the deepest
safe bucket. |

To delete a record K, the DELETE process performs
operations similar to that for INSERT during its searching
phase. The deletion of the record K may require the process
to combine the region where the deletion occurred with other
regions. The merging must be done with the region formation
rules in mind. The identifier of the region being merged is

then deleted from the first level directory. In turn, this

109

may cause an underflow that will propagate all the way up to

the deepest safe bucket. It should be noticed that merging

jls not performed on the whole search space; rather, it is

i

gconstrained to the set of regions determined by the access

gpath.

i
i
i

The pseudocode for the procedures SEARCH, INSERT, and

 DELETE are presented in Figure 43, Figure 44, Figure 45,

;Figure 46, and Figure 47, respectively. The reader can

frefer to chapter III for the definition of the functions

MERGE and DECOMPOSE.

111

Procedure SEARCH(K);

1)

2)

3)

4)

5)

Lock(Read, a(Root));
Current := Root;
COMPUTE_NEXT_MOVE;

Far j := maxh-1 to 1 do
begin

Lock(Read, o(NEXT));

Unlock(Read, a(Current));

Current := NEXT;
COMPUTE_NEXT_MOVE;
End;
Search for the record in

report success if found,

End SEARCH;

Figure 44: SEARCH algorithm.

the current bucket and

otherwise report failure.

112

Procedure UPDATER_SEARCH_PHASE;
1) Lock(Write, a(root));
2) Current := Root;
3) COMPUTE_NEXT_MOVE;

%) For J := maxh-1 to 1 do
Begin

Lock(Write, a(NEXT));

7% Locate the deepest safe bucket x/

If (NEXT is safe) then
Unlock(Write,Current);

Endif

Current := NEXT;

COMPUTE_NEXT_MOVE;

End;

5) Convert write locks placed on the scope
exclusive locks.

End UPDATER_SEARCH_PHASE;

Figure 45: Lécate and lock an updater scope.

into

113

Procedure INSERT(K);
1) UPDATER_SEARCH_PHASE;

2) Insert K into ml,Ml,Sl);

J = 1;
While Js(level deepest safe bucket) do
begin

Lock(EXclusive,LJ_i);
If OVERFLOW in aj then

begin
LJ-l .= LJ-I—l;
Repeat

77t = e,

Apply M(KJ,LJ-I) to all records in M _;

Until DECOMPOSE (M]. M P);

S. :=8.-5.
Jd f :]f tripl M.,S

M 3 S. o ri t ..M_.,5.);
odity S, plet (a;.M;.5;)

Insert triplet (u,,M_.,5.)
J 7T

into mu41,M&+1,Sb+1) using @eq7
Sﬁ+1':= SJ+1+1;
End

Unlock(Em:lus;ive,Z',J-1

J :=J + 1;
End

);

3) Unlock(Exclusive, (updater scope)):

Figure 46: INSERT algorithm.

J

114

Procedure DELETE(K);
1) UPDATER_SEARCH_PHASE;

2) If K is in al then delete K else return;

3) Sl:=Sl—l;

4) For J := 1 to (level of deepest safe bucket) do
Begin

Lock(Exclusive, I’ ');

If Merge (aj,aj+1,M.,Sj,Sj+1,F1ag) = false then
exit;

Unlock(Exclusive, LJ—I);

End;

End DELETE;

Figure 47: DELETE algorithm.

115

‘ 5.3 An optimistic concurrency control scheme
jA concurrency control mechanism performance is measured by
jthe set of operations "fixpoint" [15,13] it can authorize
. for execution in parallel without any delay. In general, the
Emore information available to the mechanism the higher is
’ the degree of parallelism (or performance) achieved. The
ginformation used in this context is typically either
}syntactic information about the process (i.e. the names of
?data base entities accessed and updated at each step), or
gsemantic information about‘the meaning of the data and the
goperations performed, or the integrity constraints that the
i database must satisfy. Our goal is to devise a concurrency
Scontrol mechanism which enhances the degree of concurrency
- without introducing any additional overhead in terms of the

famount of information needed.

In a tree structure such as B-trees processes are forced
to follow very strict locking protocols in order to
- safeguard their access paths; This 1is basically due to
jinsufficient a priori information about access paths since
:they are only constructed during the actual access of the
j structure. As a result, the root of the tree structure
j becomes a bottleneck. For instance, an updater with its

- deepest safe bucket being the root itself will block, for

the whole duration of the searching and restructuring phase,

i 116
iother updaters even if their safe buckets are located beyond
gthe root in totally divergent paths as illustrated in the

'discussion below.

Let Pi and P} be updaters and specifically inserters

i
1

foperating on the IBGF structure shown in Figure 48. Assume

;that 11 is the target bucket for Pi and 4 is the target

fbucket for Pj . Furthermore, assume the deepest safe
gbuckets for Pj and Pj are the root and 4 respectively. Also

gassume, for a moment, that the bucket numbering is

meaningless. If Pj occurred first then the root and all
' other elements in the acdess path of P, will be locked.
%Process Pj will thus be blocked at the root for the whole

" duration of the searching and the restructuring phase of

Pi - But as one can easily observe both processes can

foperate in parallel since the modifications to the structure
:resulting from these operatibns have no effect on each
- other. A scheduler can allow this to happen only if such
iindependence can be detected prior to access. Clearly, this
| is not possible in the case of B-trees and other tree
Estructures.

On the other hand, in the IBGF, given a record K, we can
- determine the access path leading to that particular record

before accessing the structure. As a result, we shall show

117

L
2|0
| DEEPEST SAFE BUCKET
112 0o . FOR P,
ol4
0 1 3
4 1 3 7 11

Figure 48:

DEEPEST SAFE BUCKET FOR I-;

A block diagram for an IBGF.

118

that a concurrency control scheme using this additional

. information will not only be sufficient to handle

successfully the case discussed above (and other cases) but
also allow the design of a systematic method for detecting
independence between processes and hence provide a basis for

enhancing the degree of concurrency.

5.3.1 Detecting conflict among processes

Definition : The Access Path for process Pi , from the top
level directory (root) to a data bucket, denoted by APi ‘

is defined as the ordered set

AP; = Wiipa1y Mi(n-2y M0

where (h-1) is the level of the root directory and ij is

the logical address of a partition at the j~-th difectory

level where Osj<h.

.

The data bucket for process Pi is referred to as the Target

Bucket for process Pi and denoted TBi.

Definition : The portion of the access path APi from the
deepest safe bucket to TBi at the data level is called the
Scope Access Path for process Pi and denoted SAPi . It is

defined as the ordered set :

SAP; = My g1y M i(go2) M) for Osk<h

119

where M.i(k—l) is the deepest safe bucket Ds; for P, .

Note that it is sufficient to know only the last element

of the access path APl. . that is MiO' to determine the

other logical numbers at higher levels. Indeed, let the

string bl _1b1 _2...b0 be the binary representation of
o o)

the logical number M.iO and 10 is the search partition

level at directory level O (data level), then the logical

number M.ij in the access path APl. at the j-th directory

of length 1z

level is identified by the suffix of M.ij j

where 1]. is the search partition level at the j-th level.

For example, in the IBGF structure shown in Figure 48 on
page 117, the search partition levels for diréctory levels

;2,1, and O are 0,2, and 4 respectively. Let TBi=11 in

decimal, its binary representation is (1011), then the
access path leading to this particular bucket is (0 3 11)
which corresponds to the binary suffixes (0 11 1011).

Similarly, the access path leading to TBi=3(0011) is (0 3

3) which corresponds to the binary suffixes (O 11 0011).
Clearly, as long as we have only readers no scheduling is
necessary. But when updaters are involved it is easy to

show that not every schedule of concurrent processes is

120
correct. An updater may make changes in some subtree (access
path) and if another Process should access the same path ,
the two processes have to be scheduled somehow since they
may interfere with each other. The discussion below presents

a systematic approach for detecting conflict among processes

and hence scheduling of concurrent processes.
Definition : Let the two processes Pi and Pj be updaters
having the diverging paths SAPi and SAPj respectively,

then SﬂPi and SAPj are said to be conflictingly overlapping

if they overlap from the root to at least one level beyond

the lowest of their deepest safe buckets DSi and DSj, as

 illustrated in part(a) Figure 49.

: Definition : Let Pi be a reader and ‘Pj be an updater then

| the diverging - paths APi and SAPj are said to be

- conflictingly overlapping if they overlap from the root to

at least one level beyond the deepest safe bucket DSj, as

- shown in part(b) Figure 49.

Two processes Pi and Pj are said to conflict on an

; access path if one of the following conditions occurred -

121

S =
~t
Ds'
'T'Blo O—FB:
< -~ D
D =
o~
_'-B'O 'D—I_B:
< =B D>

Figure 49: Conflictingly overlapping paths.

' c3.

122

cl. : APi and APj are identical and at least one of the
pProcesses is an updater.
f c2. : Both processes are updaters and SAPi and SAP_. are
conflictingly overlapping.

Pi is a read process, Pj is an wupdater and

APi and SAPj are conflictingly overlapping.

The first condition considers the case in which both
processes access the same bucket at the data level (i.e.

TBi = TBj). In such a case, the interference between the

two processes can take many forms. For instance, an inserter
causing an overflow (or a deleter causing an underflow) may
lead a searcher to go to a wrong path. If both processes are
updaters then it is possible that one process may cancel the
effect of the other if the two changes being performed in
private buffers are based on the same version (content) of
the bucket.

The second condition deals with the case in which the two
processes access two different data buckets but they are
conflictingly overlapping. The interference here can occur

during the propagation of splits and merges being performed

by the two processes.

123

Finally, the third condition addresses the problem where
§ the paths of a reader and an updater are conflictingly
foverlapping. In this case, the reader may be led to a wrong
:path due to a split or a merge operation caused by the
§ updater.
| The above discussion has shown that there are two types
. of possible interaction that are of interest whenever two
j processes must execute concurrently. The first type is the

interaction in which an UPDATE and a SEARCH processes are
involved. The second type involves the interaction between
two UPDATE processes. In the next sections we shall see that
in a system of concurrent pProcesses, the interaction between
inserters and inserters or inserters and searchers is
essentially resolved by using techniques devised for B-trees
such as the. "LINK" téchnique and local scope locking
[10,18], whereas. the interaction between a delete process
and other types of processes is more complicated and would
require additional treatment from the concurrency control

component because of the possible occurrence of a merge

operation.

124
532 The model of computation

fThe various modules forming .- the system controlling
concurrent processing are shown in Figure 50. It is made up

of a set of concurrent pProcesses P = LPl,Pz,...,Pn)
‘'where n is a nonnegative integer. Each new process Pi

jcomes into the system with the request Search(K), Insert(K),
;or Delete(K). The new Process submits its initial access
vpath to a local scheduler which uses it to detect conflict
'between +the new process and the other processes. The
’scheduler then stores the new process access path in the
associated data structure.l As mentioned previously, it is
sufficient to store only the last element of the access path
(i.e. the logical address of the target bucket at the data
level). Similarly, when a process completes execution, the
scheduler deletes that process access péth from the system.

The layout of the scheduler data structure is shown in
Figure 51. An entry in the table corresponds to a process.
The definition of most of the fields of an entry is self
explanatory. The scheduler also uses part of its data
structure to implement a block/wakeup system. For each
process, the scheduler maintains a list of processes, if
any, that are blocked by that process. It also keeps track
of the count (Blocking_count) of other processes which are

blocking that process. This count is used as a

125

........

SCHEDULER

e

SCHEDULER :
DIRECTORY

Figure 50: System model.

126

fsynchronization variable to signal a process at the time
fwhen no other process is blocking it. We shall see later,
‘:how the scheduler manipulates information in its data
- structure. Clearly the number of entries in the table at any
given time is exactly the same as the number of the existing

pProcesses in the system at that particular time. 1Its

- worst-case space complexity is of O(na), where n is the
- number of processes in the system.

The interaction described below involves the concurrency
allowed between the split operation and that phase of the
3 search, insert, and delete operations in which the target
bucket is being located. Concurrency is enhanced by
allowing a process in its searching phase to operate in
parallel with a split operation, but there must be some
means for it to reorient itself when the wrong bucket is
reached. In this' scheme the IBGF is modified by adding a
single "LINK", pointer field, and a field (PARTVAL) which
designates the logical number of the bucket being pointed by
LINK, to each bucket as shown in part(a) Figure 52, in a
similar fashion as used in B-trees [18]. The purpose of the
link pointer is to provide an additional method for reaching
a new bucket created as a result of a split operation. When
a bucket is split because of data overflow, the set of

records is divided into two subsets. The first subset is

127

Type Process_Identifier : Integer;

Tvpe
Tvpe
Type

Buffer;
Waiting_List is acce
Buffer is

Record

Process_ident
Index
Next

End

Tvpe
Type
Type
Tvype

Type

Integer

record;

Process_Type is (Search,Insert,Delete);

Deepest_Safe_Bucket
Target_Bucket
Directory_level

Scheduler_Directory_

Record

Process_id
Process_ty
Process_AP
Process_DSF,
DSF_DL

Pro

Blocking_Count Int
Blocked_Processes Wai
End record;

Type SchDir is array(l..n) of Scheduler_Directory_Entry;

Figure 51:

data structure

ss Buffer:

Process_Identifier;

.
4

Waiting_List;

Integer;
Integer:
Integer;

Entry is

Process_Identifier;

cess_Type;

Target_Bucket;
Deepest_Safe_Bucket;
Directory_Level;

eger;
ting_tist;

An Ada-~like definition of the scheduler

128

Ewritten back into the original bucket, whereas the second

fset is stored in a newly inserted bucket. The link pointer

of the original bucket is then set to point to the new

‘bucket, while the link pointer of the new bucket is assigned

the link pointer in the original one, as illustrated in

part(b) Figure 52.

The split procedure consists of the following steps :

1. Request a new bucket on the disk.

2. Copy some of the records from the original bucket into
the new bucket if the split dictates that these
records are to reside in the new bucket. Note that at
this point, the data is redundant since all the
records are still in the original bucket.

3. Set the pointer of the new bucket to point to the
bucket pointed by the original one.

4. Replace the original bucket with the new contents

including a pointer to the new bucket.

Reading or writing a single bucket is assumed to be
inherently atomic. As a result, only the last disk write in
the split procedure will make the new bucket available tq
other processes.

The intent in the scheme is to consider the two buckets
resulting from the split, since they are joined by a link,

to be functionally the same as a single bucket until the

129

15 |

Figure 52:

15

A modified bucket structure.

130

fproper pointer from the father bucket, at the next higher

;directory level, can be added. We shall see in the next

 section that link pointers have the advantage that they

enhance the degree of concurrency by allowing a searching

process to operate in parallel with a split operation.

5.3.3 Scheduling of concurrent processes

The scheduler coordinates access to the file structure.
Hence each new process must submit its initial access path
.~ to the scheduler, which first stores the access path in its
associated directory then tries to detect conflict. A
gprocess must also signal the completion of 1its searching
phase to the scheduler which then decides whether to grant

' it the permission to start its restructuring phase in the

case of an updater.

The rules governing process scheduling taking into
cclansideration thé conflict detection conditions discussed

previously can be stated as follows :

Rule 01 : Let P.i be a reader, then Pi will be blocked if

Pj is a deleter in its restructuring phase and €1 or c¢3

occurred d DS_.=M...
curred an %0

Rule 02 : Let Pj be an inserter intending to start its

searching phase, then P.i will be blocked if Pj is a

reader and €3 occurred and DSi==M1.

fits restructuring phase and €3 occurred and DSJ.:‘M 2 .

131

fdeleter in its searching phase and €1 occurred or P]. is in

Jo

"Rule 03 : Let P.i be a deleter intending to start its

searching ‘phase, then P.z' will be blocked if Pj is a

deleter in its searching phase and €1 occurred or P]. is in

its restructuring pPhase and €3 occurred and Mjovf-‘DS]..

fRule 04 : Let ‘Pl. be a deleter intending to start its

restructuring phase, then 'Pi will be blocked if P]. is a

0°

The pseudocode of the scheduler algorithm is shown in

"Figure 53. The algorithm is written in Ada like notation.

The scheduler serves requests through three entry points. A

request can be : either start searching phase, or start

- restructuring phase, opr terminate execution. In order to see
how this works, we consider a system in which i > 0

- pProcesses are already running and a new process P. is

J
requesting to access a path. The scheduler must perform the

following steps :

1. If : PJ. is in its searching pPhase then

132

Task body Scheduler is

n ¢t Integer := 0; ~-number of processes.
Directory : SchDir;
Begin
Loop
Select

Accept Receive_Initial_Access_Path
(Process_id : in Process_Identifier;
Process_ty : in Process_Type;
Process_AP : in Target_Bucket) do

n :=n + 13

Directory(n).Process_id := Process_id;

Directory(n).Process_ty := Process_ty;

Directory(n).Process_AP := Process_AP;

noconf := 03

for I in 1..(n-1)

Loop ' ,

-= Apply conflict detecting rules on the new

~— process and the i-th process.
If conflict then

noconf := noconf + 1;
~—— Allocate a new cell in the waiting list of
—-— the i-th process.

Insert the new process identifier and index
into the waiting list of the i-th process.
Increment the count of processes blocking
—-— the new process.

End if;
End loop;;

If noconf > 0 then

—— BLOCK the new process;
Else

End if
End Receive_Initial_Access_Path;

SIGNAL the process to start executing;

Accept Receive_Deepest_Safe_Bucket

(Process_id in Process_Identifier;
Process_DSF in Deepest_Safe_Bucket;

DSF_DL ¢t in Directory_Level) do
—— Search for the Process_id in the

-— directory and get its index
Directory(index).Process_DSF
Directory(index).Process_DL
noconf := 03

for I in 1..n

Loop

If Directory(I).Process_id <> Process_id then

Process_DSF;
DSF_DL;

133

—-— Apply conflict detecting rules on the current
—~ Pprocess and the i-th process.
If conflict then
noconf := noconf + 1;
—- Allocate a new cell in the waiting list of
-~ the i-th process.
Insert the new process identifier and index
=— into the waiting list of the i-th process.
-= Increment the count of processes blocking
-~ the new process.
End if;
End if;
End loop;
If noconf > 0 then
—= BLOCK the new process;
Else .
== SIGNAL the process to start executing;
End if

End Receive_Deepest_Safe_Bucket;

Accept Terminate_Execution
(Process_id : in Process_Identifier) do

~-= Search for the process_id in the
~— directory and get its index.
~~ Search through the waiting list of the
current process and determine the position
of the processes that are blocked by this
~= Pprocess.
—-— For each process decrement the Blocking_Count
Directory(position).Blocking_Count e =

) Directory(position).Blocking_Count - 13
If Directory(position).Blocking_Count = 0 then

~— SIGNAL the process.- to start execution.
Endif

n := n - 13

End Terminate_Execution;
End Select;
End loop;

End Scheduler;

Figure 53: Scheduler algorithm.

134
-store the process id, process type and its

access path.

Else : Pj is in its restructuring phase

-store the deepest safe bucket of Pj along

with the directory 1level at which it

was found.

2. Apply the conflict detecting rules mentioned
previously for Pj against each process Pi in the
system.

;3. If Pj conflicts with process P, then insert the

process Pj into the 1list of processes that are
blocked by P;. Increment the counter of processes

that are blocking Pj' This means that P, must

access the path before Pj

4, If Pj does not conflict, the scheduler signals Pj to

start with its current phase.

Once a process completes execution, it informs the
scheduler. In turn the scheduler deletes the entry
corresponding to this process from the table, and decrements
the counter of each pProcess that was blocked by this

brocess. If decrementing the counter of a process makes it

135
'zero then the scheduler must inform the process being

fblocked about the availability of the access path. Note that~

if a process, say Pj . conflicts with other processes on a

/particular path, the block/wakeup queue associated with

Pj will only contain pProcess identifiers of those

iconflicting processes that were already scheduled to access

‘that path. This is because we have chosen, for simplicity,

'to have a FIFO discipline.
- 5.3.4 Concurrent behavior of processes

- 5.3.41 Search algorithm sketch

To search for a record K in the file, the search process
begins at the root directory and proceeds by examining the
content of the current bucket to determine the next move in
the path down the structure. In each level a pointer will be
followed from that level, either to the néxf level or to a
bucket on the same level using the LINK pointer. At each
directory level (not including the data level), the process
should search the current bucket for the logical number of
the target bucket or the logical number of +the bucket
embedding that one. If the target bucket was found then the
process should follow its associated pointer down to the
next lower directory level. On the other hand, if an

embedding partition was found instead and the link field in

| 136
;the current bucket is not nil then the process must examine
;the logical number (PARTVAL) of the bucket pointed by the
::current bucket. If that number is a possible embedding
5partit:ion higher than the current one then the process
éshould assume this number to be the current embedding

Epartition. The search process then rectifies the error in

;its position by following the 1link pointer to the right

|
!

;instead of following a son pointer as it would ordinarily
%do. This would mean that the changes that have taken place
in the current bucket had not been indicated in the father
- at the time the father was examined by the search. As a
' result, the pointer field can be used by a process as a
detour to adjust its position.

The search process eventually reaches the data bucket in
~which K may reside if. it exists; If the logical number of
the data bucket reached is exactly the same as the logical
number of the target bucket computed initially then the
- search process must start looking for the record inside this -
bucket. On the other hand, if the two logical numbers are
not identical then searching now must begin with the next
bucket down the list. In the case the record was not found
the search process then moves to the next bucket down the
linked list if that one has been created from the current
bucket as a result of a split operation to check whether it

is an possible embedding partition of the target bucket

137

;higher than the previous one. This procedure is repeated
funtil the record is found or no other embedding partition
‘can be located.

| Note that the search process behaves just as a
fnonconcurrent search and it also does no locking of any
jtype. In the 1IBGF as mentioned previously, several
- partitions may be combined to form one region which in turn
~is mapped into one pPage in physical storage. A search
'process working in parallel with an inserter process on such
a configuration can assume two possibilities. The first
possibility deals with the case in which the actions of the
two processes are logically performed in two different
partitions. In this case, the reader is not supposed to see
the record being inserted. The other possibility addresses
the case in which both actions are performed on the same
partition. In such a case, 1if the searcher reads the data
page before the new record is added, it is as if the
searcher process occurred béfore the inserter process.
Otherwise it is as if the inserter occurred first. This is
similar to the assumptions made in [27]. The same argument
can be used to analyze the case in which a search process is
working in parallel with a delete pProcess that has its
deepest safe bucket at the data level. The pseudocode of the

search algorithm is shown in Figure 54.

138

Procedure SEARCH(K);
1} /% Compute the logical number of the target
bucket (TB) x/
2) /% start searching %/
Scheduler.Receive_lnitia1_Access_Path
(process_id,process_ty,TB);
3) Current := root;
4) While (Current is not a data bucket) do
begin
7% search the current bucket for TB or
the one embedding it. Let this bucket
be CUREMB. x/
While (TB <> CUREMB and Current.Link <> nil) do
begin
If (Current.PARTVAL is a possible embedding
partition higher than CUREMB) then
CUREMB := Current.PARTVAL:
Current := Current.Link; /% move right x/
endif;
end;
/7% move to the next lower level %/
Current := (Physical address of CUREMB);
5) /% now we have reached to the data level x/
/7% Adjust position if necessary %/
5.1 If (TB <> CUREMB) then .
5.2 If (Current.Link <> nil) then
/7% move to the right bucket if it has been
created from the current bucket as a
result of a split and it is a possible
embedding partition of TB higher
than CUREMB. x/

If (TB is embedded-in Current.PARTVAL) then
O0ldbucket := Current: Current:=Current.Link;
Lock(Current); Unlock(Oldbucket);

Goto step #5.2;

endif;
/%Search for K in the embedding bucketx/

endif

else

7%Start searching for K in the current bucketx/
If (not found) Goto step #5.2; endif;

5.3 If (found) report success else report failures;

6) Scheduler.Terminate_Execution(process_id);
End SEARCH:;

Figure 54: SEARCH algorithm.

139
5.3.4.2 The insert algorithm sketch

jTo insert a record K, the insert process, in its searching
;phase, performs operations similar to that for search
;process. Unlike the search pProcess, the inserter must keep
;track of the access path during the descent through the
%structure.

The insertion of the record K into a data bucket may
%necessitate splitting the bucket (in the case where it was
funsafe). In this case, the process splits the bucket as
~explained previously. The process then backs up the
~structure (using the "remembered" list of addresses) to
insert the identifier of the new bucket into its parent.
This parent bucket, too, may need a split. If so, the
process backtracks up the structure, splitting buckets and
inserting new pointers into their parents or adjacents,
stopping when the Process reaches a safe bucket. In all
cases, the insert process must lock a node before modifying
it. '

Note the possibility that as the process backtracks up
the structure, due to bucket splitting, the bucket into
which the process must insert the new pointer may not be the
same as that through which it passed on the way down to the
data bucket. The old bucket may have been split, as a

result, the correct position for insertion is now some

140
jadjacent bucket down the list to the right of the one where
git expected to insert the pointer. This new bucket is
reachable using the link field. The pseudocode of the insert

‘algorithm is shown in Figure 55.

'5.3.4.3 The delete algorithm sketch

To delete a record K, the delete process, in its searching
phase, performs operations similar to that for an insert
process. The scheduler gives the delete process an exclusive
access to its access path during the restructuring phase of
the process. This means that no reader or another updater
can exist within the scope once the decisive phase of the
delete process has been triggered.

The deletion of the record K from a data bucket may
necessitate merging the bucket (in the case where it was
unsafe) with the bucket that satisfies‘the region formation
rules. The proceés then backs up the structure (using the
"remembered" list of addresses) to delete the identifier of
the bucket being merged from its parent. This parent bucket,
too, may need a merge. If so, the process backtracks up the
structure, merging buckets and deleting pointers from their
parents and adjusting pointers of adjacents buckets,
stopping when the process reaches a safe bucket.

Note the possibility that as the process backtracks up

the structure, due to bucket previous splitting, the bucket

141

Procedure INSERT(K):

|)

2)

3)

G)

5)

6)

7% Use the search algorithm to find the initial
relevant data page. Keep track of the access
path leading to this page in (STACK). %/

Scheduler.Receive_Deepest_Safe_Bucket

(process_id,process_DSF,DSF_DL);

7% We have a candidate data bucket %/

i = 03

Lock(Current);

/7% Adjust position by moving to the right if
necessary Recompute TB using Lj; X/

If (Current.Link <> nil) then
If (TB is embedded in Current PARTVAL) then
Oldbucket := Current;
Current :t= Current.lLink;
Lock(Current);
Unlock(Oldbucket);
Goto step #3
endif;
endif
7% Insert the record K x/
If (Current is safe) then
Insert K;
Unlock(Current);
else .
/7% Perform the split procedure x/ '
K := (coordinates of new created bucket);
Oldbucket := Current;
Current := Pop(STACK); /% Backtrack x/
Lock(Current);
Unlock(Dldbucket);
j =3 + 1;
Goto step #3;
endif;

7) Scheduler.Terminate _Execution(process_id);
End INSERT:;

Figure 55: INSERT algorithm.

142

gfrom which the process must delete the pointer may not be
;the same as that through which it passed on the way down to
f;the data bucket. The old bucket may have been split, and
‘hence, the correct position for deletion is now some bucket
fdown the list to the right of the one where it expected to
?delete the pointer. This new bucket is reachable also using

' the link field. The pseudocode of the deléte algorithm is

shown in Figure 56.

. 5.3.5 Improved throughput

- A search process simply reads the buckets along a path from
vthe root directory to some particular target bucket. It
- makes no changes whatsoever to the data or the structure of
the file. Unlike the insert and delete processes, the search
process does not need to remember the physical address of
each element in its path. Consequently, if we can provide
the physical address of the target bucket for a searcher
without having to access the structure then it can directly
access its target bucket. This would mean that the search
process would skip the descent through the structure, and
thus, searching processes would execute faster than would
have been possible otherwise. As a result, the number of
processes executing within one quantum of time will increase

and thus throughput will greatly improve.

143

Procedure DELETE(K);
1) /% Use the search algorithm to find the initial
relevant data page. Keep track of the access
Path leading to this page in (STACK). %/
2) Scheduler.Receive_Deepest_Safe_Bucket
(process_id,process_DSF,DSF_DL);
3) /% We have a candidate data bucket %/
Lock(Current);
G) /% Adjust position if necessary »/
4.1 If (TB <> CUREMB) then
4.2 If (Current.Link <> nil) then
If (TB is embedded in Current.PARTVAL) then
Oldbucket := Current;
Current t= Current.Link;
Lock(Current);
Unlock(0ldbucket);
Goto step #4.2
endif;
7% Search for K in the embedding bucket %/
endif
else
/%Start searching for K in the current bucketx/
If (not found) Goto step #6.2
endif
5) If (found) then
7% Delete the record K %/
If (Current is safe) then
Delete K3
Unlock(Current);
else
7% Perform the merge procedure %/
K := (Identifier of -the deleted bucket);
Oldbucket := Current;
Current := Pop(STACK); /% Backtrack x/
Lock(Current);
Unlock(0Oldbucket):
7% Adjust position by moving to the
right if necessary %/
Goto step #5;
endif;
endif;
6) Scheduler.Terminate_Execution(process_id);
End DELETE;

Figure 56: DELETE algorithm.

144
To achieve the above goal, a minor modification of the
gdata structure used by the scheduler is needed. The modified
jversion of the structure is shown in Figure 57. This
imodification includes the addition of two fields to each
ientry in the table. These two new fields are assigned wvalues
fat the time when updaters complete their searching phase.
;E'I'he first field represents the logical number of the
ifembedding partition of the target bucket, whereas the second
;one indicates its physical address. Clearly, the embedding
| partition and the target buc;ket may be identical.

As mentioned previously, the physical addresses of data
buckets in the access path of updaters will be available to
the scheduler only at the time when these processes complete
their searching phase. This means that the only search
process'es which can benefit from this feature are those
processes that come at the time updaters are about to start
their decisive phase. Moreover, the only type of processes
that a search process can oiaerate in parallel with are
inserters. Therefore, this feature is limited also to the
information provided by inserters.

The intent of using an embedding partition field is to
incorporate some of the region formation rules into the

logic of the scheduler which in turn will be used to improve

the decision making process. The two examples discussed

145

Tvpe Process_Ident

Type Buffer:
Type Waiting_List
Tvpe Buffer is
Record
Process_ident
Index
Next
End record;

Tvpe Process_Type is (Search,Insert,Delete);
Type Deepest_Safe_

Tvpe Target_Bucket
Type Directory_Lev
Tvpe Physical_Addr

Tvype Scheduler_Dir

Record
Process_id
Process_ty
Process_AP
Embed_Part
Targ_Phys_Addrs
Process_DSF
DSF_DL
Blocking_Count
Blocked_Processe
End record;

Type SchDir is array(l..n) of Scheduler_Directory_Entry;

ifier : Integer;

is access Buffer;

Process_lIdentifier;
Integer:;
Waiting_List;

Bucket : Integer;

¢ Integer;
el ¢t Integer;
ess ¢t Integer;

ectory_Entry is

Process_Identifier;
Process_Type;
Target_Bucket;
Target_Bucket;
Physical_Address;
Deepest_Safe_Bucket;
Directory_Level;
Integer:
Waiting_Lists;

S

Figure 57: A modified version of the

table.

scheduler's

146
fbelow show how the knowledge embodied by the region

;formation rules can be exploited to improve performance.

JExample 1l : Let the target bucket for an update process
| P.i' already stored in the scheduler data structure, be
| TB.i = 3. Then a process Pj with TBJ.=3 should be given

the physical address of partition #3 because the two target

. buckets are identical.

| Example 2 : Let the target bucket for the update process

P.i be TBi = 7. If the target bucket of process P.i is
gembeded in partition #3 then a search process P_. with
.TBJ. = 15 should be given the physical address of partition

- #3 because 15 must be embeded in 3 since 7 does not exist.

5.3.6 Further improvement

The previous so]:ution can‘ be generalized to handle also
inserters and deleters. This would mean that the scheduler
must provide the physical address of each element in the
path of an updater since the updater will wuse these
addresses to backtrack up the structure during 1its
restructuring phase. The scheme can be used not only with
identical paths but also with paths that have some elements
in common. In this case the scheduler will submit only the

physical address of each element in that common part. A

147
fprocess can use this partial information to continue its
Edescent through the structure.
| It can be easily observed that the amount of information
needed is dependent on the number of directory levels. As a
result, an additional overhead will be incured. It has been
shown in [24] that the average number of levels in an IBGF
is :

Boyg = Hog(N/b .1n2))/1og(b_.1n2)

thus the number of directory levels will be small even with
large number of records (N). This result shows that the
improvement discussed above is achievable with a small

information overhead.

54 Freedom from deadlock

Deadlock freedom is guaranteed by the order that the locking
schemes enforce on the processes. The updater process places
locks on the buckets following one direction. This means
that, once it places a lock on a bucket, it never places a
lock on any bucket below it nor on any bucket to the left on

the same level. The full proof of freedom from deadlock is

given in [18,1].

148

5.5 Correctness of file modification

‘The notation of serializability is a great aid to measure
‘correctness of an interleaved execution of some processes. A
given interleaved execution of some set of processes is said
to be serializable (key set computation [30]) if and only if
it produces the same result as some serial execution of
those processes. This means that, given an arbitrary initial
database state as input, the interleaved execution produces
the same output as some serial execution operating on the
same initial database state.

It is in this context, we want to show that given a
correct initial state of the IBGF then any interleaved
exXecution of some processes adopting the solutions presented
previously is serializable and therefore correct. Shasha
{30] described an abstract search structure (dictionary)
model and has characterized serializable computations on
that model. The IBGF can be transformed to capture the
characteristics of such a étructure. Records are the
elements that can be inserted and deleted from a structure.
A data record | is a d-dimensional tuple

K= (ko ,k1 s o 'kd-l) of value which correspond to attributes
Ao ,A1 oo ,Ad_1 respectively. We assume these records come

from a possibly infinite set identified by the cartesian

product D°XD1x. . .de_1 of attributes

149
; Ao'Ax""'Ad-t domains. This set is called Record-Space. A

;state of the structure consists of a five-tuple
f(B,E,root,contents,edgeset), where B is a set of buckets, E
is a set of directed edges, and root is a distinguished
gmember of B. Contents is a function from buckets to subsets
‘of Record-Space. Intuitively, edgeset(b, b) is the set of
values x such that a process searching for x that arrives at
‘bucket b would continue to b. As a result, this section
takes advantage of that model to show correctness of these
concurrency algorithms.

A process is implemented as a sequence of operations. An
operation O is guaranteed to be atomic in a process P if no
operation outside P can modify any data accessed by O while
it executes. Operations are classified into decisive and
nondecisive operations. The decisive operations change the
global contents " of the structure. On the other hand,
nondecisive operations do not change the global contents of
the structure.

In all the algorithms presented previously, a process
must hold a lock on all the buckets accesses before the
process issues the operation and must hold the locks until
the operation completes. If the operation modifies a bucket,

the 1lock the process holds on that bucket must be an

exclusive lock.

150

To support the model, the concurrency algorithms are
gbased on lock-coupling and 1link techniques. Lock-coupling
gensures that the searching phase of each process never
;deviates from the most direct path. Link technique
jestablishes a reachability relationship from a wrong bucket
to a right bucket. According to the key set computation
theory [30], if the structure begins in a good‘state and the

processes use the lock-coupling or the link techniques then

they are serializable.

AN MO Y

Chapter VI

CONCLUSION AND FUTURE WORK

The IBGF exhibits structural properties and performance
characteristics which makes it highly suitable for
organizing relations in relational database systems and for
the efficient execution of relational operators.

In this research, we have presented some algorithms which
performs correct concurrent processes on the IBGF. A survey
of other solutions develbped for some popular data
structures has been presented. The discussion of concurrent
operations in an IBGF has been divided into two main parts.
The first part dealt with the case of uniform data
distribution, whereas +the second part investigated the
nonuniform case.

The solution presented for uniform data distribution was
an adaptation of the solution developed for linear hashing
files. In the second part, one version of B-tree solutions
was used to investigate the problem of supporting concurrent
Processes in the IBGF. The solution proved to work

successfully because of the similar operational properties

between the two structures.

- 151 -

152

The major concern of this research was to design a
concurrency scheme which exploited and incorporated the
properties of the IBGF to—."maximize the degree of
concurrency. A new concurrency scheme was developed which
exploited the numbering property of the structure. This
solution resulted in a performance similar to the B-tree
solution in the worst case and a better degree of
concurrency in the average case.

In the new solution, we have defined a systematic
approach which demonstrat.es an effective method ' for
detecting conflict between processes. This approach was
expressed in terms of conditions and rules. A scheduling
system was designed to employ these rules in a concurrent
environment. It has been shown that this system uses the
minimum amount of information to achieve higher degreé of
concurrency. Finally, the numbering mechanism has been
investigated also to insure more improvement in the
throughput. |

As in other cases of concurrency in data structures,
making modifications to the data structure has proved to be
a useful technique for achieving greater concurrency. In the
solutions presented, the modifications were relatively minor
(i.e. the addition of a locallevel field to each bucket

chain as in the first part and the addition of the 1link

153

field to each bucket as in the second part), yet sufficient
to detect the effects of concurrent updates and allow the
search to resume from that point along an alternative path.
These solutions also demonstrated that lock=~coupling
protocols, found to be useful in other structures, carry
over to the IBGF structure.

Immediate future work is to implement these algorithms on
a database stored in terms of an IBGF. The scheduler system
can be generalized to include predicate 1locking. The
methodology used to construpt the scheduler system suggests
that it is possible to realize such system in a distributed
environment. The scheduler represents the allocater (server)
while the buckets in the file represents the resources. The
function of allocation can be centralized in one dedicated
site or distributed on remote ones. Similarly, the IBGF
structure can be centralized or duplicated on different
sites. As distributed configurations become widespread, it
is worth investigating how to.manage concurrent processing

in IBGF which in turn may be an important contribution to

performance of database systems.

REFERENCES

Bayer, R., and Schkolnick, M. Concurrency of Operations
on B-Trees. Acta Informatica. 9(1977), Pages 1-21.
Bernstein,P.A., Hadzilacos,V., and Goodman,N. Concur-
rency Control and Recovery in Databases Systems. Addi-
son wesley, 1987.

Bernstein,Philip A., and Goodman,Nathan. Multiversion
Concurrency Control Theory and Algorithms. ACM Trans-
actions on Database Systems 8(4), December 1983, Pages
465-483.

Burkhard,Walter A. Interpolation-Based Index Mainte-
nance. Proc Second ACHM-SIGACT-SIGMOD Symp on Pfinci-
ples of Database System. 1983, Pages 76-85.

Date,C.J. An Introduction to Database Systems volume I
Fourth edition. Addison Wesley, 1986.

Date,C.J. An Introduction to Data Base Systems volume
II. Addison wesley, 1986.

Deitel,Harvey M. An Introduction to Operating Systems.
Addison wesley, 1984.

Coffman Edward G., and Denning, Peter J. Operating Sys-

tem Theory. Prentice-Hall, N.J., 1973.

- 154 -

10.

11.

12.

13.

14.

15.

16.

Ellis,Carla Schlatter. Extendible Hashing for Concur-

rent Operations and Distributed Data. In Proceeding of ;
the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database systems (Atlanta, Ga. ,Mar.21-23).ACM, New
York, 1983, Pages 106-116.

Ellis,Carla Schlatter. Concurrency in Linear Hashing.
ACM Transactions on Databases Systems 12(2), June 1987,
Pages 195-217.

Ellis,Carla Schlatter. Concurrent Search and Insert in
2~3 Trees. Acta Informatica. 14(1), 1980, Pages 63-86.
Hsu,Meichun, and Chan,Arvala. Partitioned Two~Phase
Locking. ACM Transactions on Database Systems. 11(4),
December 1986, Pages 431-446.

Khayat,Mohammad G. A Concurrency Measure. IEEE Trans-
actions on Software Engineering, SE-10(6), November
1984, Pages 804-810.

Kroenke,David. Database Processing. Science Research
associate, Inc, 1983. '

Kung,H.T., and Papadimitriou,C.H. An Optimality Theory
of Concurrency Control for Databases. Acta Informati-
ca. 19(1983), Pages 1-11.

Kung,H.T., and Lehman,Philip.L. Concurrent Manipulation
of Binary Search Trees. ACM Transactions on Database

Systems. 5(3), September 1980, Pages 354-382.

- 155 -

17.

18.

19.

20.

21.

22.

23.

24.

Kwong,Yat-Sang, and Wood,Derick. A new Method for Con-
currency in B-Trees. IEEE Transactions on Software
Engineering, SE-8(3), May 1982, pages 211-222. :
Lehman,Philip L., and Yao,S.Bing. Efficient Locking for %
Concurrent Operations on B-Trees. ACM Transactions on ‘
Database Systems. 6(4), December 1981, Pages 650-670. |
Litwin,Witold. Linear Hashing : A New Tool for File and

Table Addressing. In Proceedings, 6th Conf on very

Large Databases. 1980, Pages 212-223.

Manber,U., and Ladner,R.E. Concurrency Control in A

Dynamic Search Structure. Aacw Transactions on Database
Systems. 9(3), September 1984, Pages 439-455.

Michael, Freeston. The BANG File : a New Kind of Grid

File. In Proc ACM-SIGMOD Conf.,1987, Pages 260-269.
Nievergelt,J., Hinterberger,H., and Sevcik,K.C. The

Grid File : An Adaptable, Symmetric Multikey File

Structure. Acw Transactions on Database Systems. 9(1),

March 1984, Pages 38-~71. .

Onuegbe,E.O0., and Du,H.C. A Locking Scheme for Associa-

tive Retrieval, Unpublished Paper.

Ouksel,M. The Interpolation-Based Grid File. In Proc

of Symposium on Principles of Database Systems. 1985,

Pages 20-27.

- 156 -

25.

26.

27.

28.

29.

30.

Ries,Daniel.R., and Stonebraker,Michael. Effects of
Locking Granularity In Database Management System. AcCM
Transactions on Database Systems. 2(3), September 1977,
Pages 233-246.

Sagiv, Yehashua. Concurrent operations on B-trees with
overtaking. In proc of the 4th ACM-SIGACT~SIGMOD Sym-
posium on Principles of Database Systems. 1985, Pages
28-37.

Salzberg,Betty. Grid File Concurrency. Inform Systems.
11(3), 1986, Pages 235-244.

Samadi,B.S. B-Trees in A System With Multiple Users.
Inform Process Lett., 5(4), 1976, Pages 107-112.
Schlageter,Gunter. Process Synchronization in Database
Systems. ACM Transactions on Database Systems. 3(3)
September 1978, Pages 248-271.

Shasha, Dennis and Goodman, Nathan. Concurrent Search
Structure Algorithms. AcCwM Transactions on Database

Systems. 13(1) March 1988, Pages 53-90.

- 157 -

