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INTRODUCTION

Consider a formally self-adjoint differential expression
L] 2) \(#) = A= (n-1)
1) =(1"(py™®)” +1(py*™")" - tpy

in the interval a < x <b, where each coefficient p_,(x) is real and has a
derivative up to the kth order inclusive. The expression I(y) is said to be
regular if the interval (a,b) is finite and the functions
1/ py(x), p,(x),:++, p,(x) are absolutely integrable in the whole interval
(a,b); otherwise I(y) is called singular.

In this dissertation, we will consider the second order formally self-adjoint
singular differential operator /(y) defined by

I(y)=(p(x)y’) - p(x)q(x)y, 0<x<],

where p~'(x) e L3,.(0,1] but p~'(x) e L'[0,5] for any 6>0. We will use
the available results on the existence and uniqueness of a solution for the
self-adjoint singular boundary value problem

Iy)=p(x)f(x), 0<x<l,
0.1) lim _, p(x)y’=0

y1)=0
and then use finite difference methods to provide O(hz) numerical

approximation to its solution and approximate its eigenvalues and

eigenfunctions in appropriate function spaces.

Jdovs



Problems of this type arise when Poisson operator —Au = f is considered
on a domain in R* with spherical symmetry. If the data depends only on
the radial coordinate, then using polar coordinates reduces the problem to a
one dimensional problem of the type above. Moreover, second order
differential operators which are self-adjoint and non-positive are also used
in statistics in connection with strings in the study of the relation between

the past and the future of a real, one-dimensional Gausian process [8].

There is a significant amount of literature concerning the numerical solution
of singular two point boundary value problems. Methods used by authors
in the last two decades include finite differences (e.g. Chawla [4], Jamet
[12] and Nassif [17]), collocation (e.g. Doedel and Reddien [7], Russell
and Shampine [20] and Ritz-Galerkin methods (e.g. Ciarlet, Natterer and
Varga [6], Erricsson and Thome ‘e [10], Jespersen [13]). Chapter 1 of this
dissertation is devoted to the literature review of numerical solutions of

second order singular boundary value problems.

Chapter 2 includes three sections. Section 2.1 provides a review of the
existing theory on self-adjoint extensions of differential operators as
illustrated by Naimark [16]. Section 2.2 includes a review of the general
theory on the convergence of eigenvalues and eigenvectors that is assembled

and discussed by Chatelin [3]. Section 2.3 is a brief discussion on

J0vg



irreducible matrices, partial ordering and M-matrices. This material is based
on Ortega and Rheinboldt [18]. This chapter contains the background that
is needed for our work in Chapters 3 and 4.

Most published work in this subject treat the special case in which
p(x)=x%,06>0. An exception is Jamet [12] who considered a more
general function p(x) and obtained O(h““) numerical approximation using
standard finite difference methods. Chawla [4] used another difference
scheme with p(x)=x%,a 21 and obtained O(h’) convergence. In Chapter
3, we will apply Chawla’s difference scheme to the above problem with a

wider class of functions p(x) and with less restrictions on the data of the

problem. We will prove that the difference scheme used provides O(hz)

convergence.

In this dissertation we let *(0,1) denote the Hilbert space of all complex

valued functions which are square integrable on (0,1). If y € I?(0,1) then
)

bl, = (J:[ylzdt) . We also let C[0,1] denote the normed space of

continuous functions on [0,1] with the infinity norm [[J_. If ye C[0,1],

ten bl = b0}

Under certain conditions set on the coefficient functions p(x) and g(x), the

differential expression I(y) induces differential operators in the spaces

Jdorg



I*(0,1) and C[0,1] which have discrete eigenvalues. In Chapter 4 we
present an analysis of such operators, showing compactness of their
inverses and therefore discreteness of their spectrum. The finite difference
scheme introduced in Chapter 3 will be used to approximate the eigenvalues

and eigenfunctions for these operators.

In Chapter 5, we illustrate the theoretical results obtained in Chapter 3

through numerical examples where p(x) is one of the following functions

sm(-’zix). w/;(w/; + 1) Ln(w/; + 1), (2x—x2)%.

The eigenvalue problem treated in Chapter 4 will be illustrated numerically
in Chapter 5 with p(x)= sin(gx).

Q0vs



CHAPTER 1

LITERATURE REVIEW

In this chapter we give an overview of the literature on the numerical
analysis of second order singular boundary value problems. We will
consider numerical treatments of problems which are similar to the problem
considered in this dissertation. In each of the cases discussed below, we
will state the boundary value problem, the numerical method used in
approximating its solution and the error estimates established for the

obtained numerical solution.

In his study of numerical methods for generalized axially symmetric

potentials in a rectangle, Parter [19] was led to the differential operator

(1.1) Ly=y"+%y’—qy, loj<1, ¢>0, 0<x<1

He used the following finite difference operator to approximate L

w1 — 2t Y, , &
(Lsul)y),-=y+l h}; 2 l+2ih2 ()’m_)'i-l)_‘Ii)’i-

Upon writing (1.1) as

Ly=xi.,(x Y) —a

J0vs



Parter also used the following finite difference operator to approximate L

(1) - ((i + %)h)‘x (Vi —Zz)(l-hgf —%)h)c i =) .

Contrary to our definition of singular problems, some authors, e.g. Parter
[19] and Jamet [12], consider problems like (1.1) with |a] <1 as singular.
For completeness of presentation, we include reference to their work in this

chapter.

Jamet [12] considered convergence of finite difference approximations to
two special singular boundary-value problems. Depending on the nature of
the singularity, he considered a two-point or a one-point boundary-value
problem. He discussed results regarding existence, uniqueness and
convergence of solutions. He also provided results on error analysis for

certain special cases. In particular, Jamet considered the following ordinary

differential equation

(1.2) Ly=y"+ f(x)y' - g(x)y=h(x), x€(0,1).
Or written differently,

(1.3) Ly=—i—(p(x)y')'—g(x)y=h(x),

p(x)

Jovs
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where

(1.4) p(x)=exp —I:f (t)dt)
He assumed that
f(x)eC(0,1}
(1.5) J(x)—>ecasx—0
‘ g(x), h(x)eC]0,]]
g(x)20.

In the case in which f(x) satisfies the condition

(1.6) f(x)<%, for x small enough, and

O<ax<l,

he considered the following two-point boundary value problem:

Ly(x)=h(x), 0<x<1

¥(0)=a
(1.7) y)=b

yeC¥0,DN cfo,1}
For a¢=1and f(x) satisfying the condition

(1.8) f(x)>-Jl;—c for x small enough and ¢20

Jovg



he considered the problem

Ly(x)=h(x), 0<x<1
1.9) y)=b
y € C*(0,1) " C(0,11n B(0,1),

where B(0,1) is the set of bounded functions on (0,1).

With a uniform partition 0<x, <x, <-<xy,<l, A=1/N, Jamet

considered the following finite difference approximation of the operator L.

(1.10) ( L(*I)Y)i = sy ~ i)z'. Yo f; y.'ﬂz_hyn'-l -g;

11(, Y=Y Y=Y, )
1.11 YY) = P = _Ji_p Zi Jitl| gy
( ) ( h )i p‘h\ i+t h i-% h 8.

where y; = y(ih) and Y = (¥y,**,Yx)-

Jamet then considered the difference scheme

(L,.Y)'. =h, 1SiSN-1
(1.12) Y,=a
Yy=b
where the difference operator L, is either (1.10) or (1.11) if condition (1.6)
is satisfied or the operator (1.11) if condition (1.6) is not satisfied. He

showed that problem (1.7) satisfying condition (1.6) has a unique solution
¥(x) and that problem (1.12) has a unique solution Y which converges

uniformly to y(x) as A— 0.

d0vg



He further showed that problem (1.9) satisfying condition (1.8) has a
unique solution y(x) and that problem (1.12) has a unique solution Y

which converges uniformly to y(x) as & — 0 on any compact subinterval

[.1], 0<pB<L

On the other hand, Jamet discussed uniform error estimates for the two-

point boundary value problem

Ly=y"+gy’—qy=0, q>0, O<a<l
x

(1.13) y(0)=1
y1)=0

using the finite difference scheme

(LY),=0, 1<isN-1
(1.14) Yo =1
yn=0

where the operator L, is given by

Yir =2Yi Yy | O Vi1 = Vi
1.15 Y) == + - qy..
(1.15) (L), X el

He showed that if y(x) is a solution for problem (1.13) and ¥ = (yo,---, y,,,)

is a solution for problem (1.14), then

(1.16) Y -yx), <ch

where ¢ is a constant. Finally, Jamet considered the boundary value

90ps



10

problem
Ly=y"+ f(x)y"—qy=h(x), 0<x<1
q is a nonnegative constant
¥ (©0)=0
(1.17) y)=b
J(x) is positive, decreasing and belongs to C(0,1)
h(x) e C[0,1]

together with the finite difference scheme
(LY),=h, 1<isSN-1
(1.18) Yo—2 =0
yn=b
where L, is the difference operator (1.10). Jamet showed that (1.18) has,

for each A, a unique solution which converges uniformly in the interval
(0,1) to a function y(x) which satisfies (1.17). In particular if fx)
satisfies (1.8), then the limit function y(x) is the unique solution for

problem (1.9).

Ciarlet, Natterer and Varga [6] considered the following two-point
boundary value problem

(1.19) Ly=(p(®)y) = f(xy®), 0<x<1
(1.20) ¥0)=y1)=0

where they assumed that the function p(x) satisfies

90vs
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@ p(x)>0in(0,1)
(1.21) (i) peC'(0,1),and

I
—eL[0,1)
@) —eLoy

Ciarlet, et al, [6] used the Rayleigh - Ritz - Galerkin method with problem
(1.19) - (1.20) to approximate its solution in a weighted Sobolev space S.
The space S is defined as the linear space of all real valued functions
y€C"[0,1] satisfying the boundary condition (1.20), such that y is

absolutely continuous on [0,1], and such that

(1.22) Vp(x)y'(x) € £’{0,1]

It is assumed that the real valued function f(x,y) given in (1.19) is
continuous in [0,1] xR, and continuously differentiable with respect to y
for all 0<Sx<l,andallrealy. It is also assumed that there exists a

constant ¥ such that

(1.23) R

for all 0<x <1 and all real y, where A is a positive constant that is
determined by the fraction p(x) and the space S. The approximating finite
dimensional subspace that Ciarlet, et al, used in the application of Rayleigh -
Ritz - Galerkin method is defined as follows:

d0ps
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Let I:0=x, <x, <x, <--<xy,, =1 be any partition II of [0,1]. Define
the space S™ as the subspace of § whose functions y satisfy

(1.24) (p(x)y’(x))’ =0 x;, <x<x,, forall 0<i<N.

The basis for S" is defined in terms of the function h(x)=r(x)-r(x,)
where

r(x)= :;(l?)dt.

The basis functions w;(x), 1<i<N are defined as follows:

0, 0<sx=<x_,,

by (X)/h_y(x;) X SXSX,
(1.25) w,(x)=

1-[h )/ hxy,y )] x<xsx,,

0 X, <x<L

Ciarlet, et al, proved that if @is the solution of (1.19) - (1.20) and ¥ is the
Galerkin solution over the subspace S, then there exists a constant c,

independent of the partition IT, such that
(1.26) Ilj" - ¢||,_.[M] < c{(IT)

where

(1.27) Z(H)=max{(x,.+,—x,.) o _L dt}.

0sisN % p(t)

Jobs
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In the special case of a uniform partition IT* with mesh size

h=1/(N+1) and with p(x)=x°, 0< o<1, then,

(1.28) 15~ #l,- .,y S c€(T1*) = 1>

This result in (1.28) is an improvement of Jamet’s result who used finite
differences with a linear problem and obtained convergence of order 4'°.
In fact, Jamet’s results could be obtained via the above Galerkin method if
the approximating subspace S is chosen to be the space of all continuous
piecewise linear functions with a uniform partition IT* of mesh size 4. In

this case, the analog of (1.28) when p(x)=x°, 0<o<1 will be

(1.29) 17~ -0y < 2.

It is worth noting here that the computation of Jamet’s solution and Ciarlet’s

Galerkin appromation J in the linear case are comparable in the sense that

they both require the solution of a triadiagonal matrix system.

Jespersen [13] also used Ritz - Galerkin methods with linear and non-linear

singular boundary-value problems. He considered the linear problem
(1.30) YO-ZY@= ), xeOD, a2l

(1.31) y(0)=0, y1)=0

J0vg
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This equation arises, with @=n-1, when a change of variables is
employed in a radially symmetric Poisson’s equation in R*. After writing

(1.30) in the form

(1.32) -(x%y'Y =x%f, xe€(0,)).

Jespersen seeks to approximate a Galerkin solution y for problem (1.31) -

(1.32) in the space H :x (0,)=H,(0,DN{yeC(O,1}:y(1)= 0}

where

H\(0,1) = {y € L) [ x°(* + (¥ P)dx < oo}.

The approximating finite dimensional subspace that Jespersen used in the

application of the Ritz - Galerkin method is defined as follows:

Let O0=x,<x;<-<xy=1 be any partition of the interval
I1=[0,1). I,=(x.,,x,), h=x,,~x, h=max k. For J an interval, let
I1,(J) denote the set of polynomials of order k (degree <k) on J. Let

0 < v<k-—1be integers. Define
St=§t, = {y eH"(Iy)|,e (), 1<is< N},

where H"(I) is the space of all function y € C*"'(I) such that y*" is

absolutely continuous and y* € L,(/). The approximating subspace in

which a Galerkin solution y, is determined is

d0bg
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.S"), = {ye St y() = 0}.

ol
Jespersen indicates the existence of a unique solution ye He(I) for

problem (1.31) - (1.32) and a unique Galerkin solution Y, € :S";.. With the

assumption of a quisi-uniform partition of I, i.e. there are constants M >0

and y 21 independent of A such that

X;/x, <M(j/i) for 1Si<j<N.

Jespersen establishes the following error estimate

(1.33) -k, <crly’-¥l, .

He further proves that if ye H/(I) where 1< Jj<k,
then

(1.34) b=, scry?], .

Through more refined analysis, Jespersen derives the following uniform

error estimate
1+ ..
b=l <cany W],

where j=1if j=2 and j=0 if j>2.

Q0ps
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Further, Jespersen considered the following nonlinear problem

(1.35) ~{x%y) =x°f(xy), x€©))

(1.36) Y(0)=0, y1)=0

He assumed that f(x,y) is smooth as a function of x and differentiable as a

function of ¥, and

(1.37) I, (x0)f<k
and
(1.38) f,xy) SA-0)4;

where ¢>0 and A2 is the smallest positive eigenvalue of the problem
(1.39) —(x%y’Y = A2x%y, xe(0,1)

(1.40) Y(0)=0, y(1)=0.

Finally, Jespersen provided the following error estimate for the nonlinear
problem (1.35) - (1.36) provided that y € H*(I) and f, (x,y) S K.

(1.41) b-wnl, +#p -], <cru®],

Eriksson and Thome’e [10] also used Galerkin methods to approximate
solutions of singular boundary value problems. They considered Galerkin

piecewise polynomial approximation methods for the following singular

oovg
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two-point boundary value problem:
(1.42) Ly(x)=-y"(x)— %y'(x) +y'(x) +q(x)y(x) = f(x), xel=(0,1),

(1.43) Y (0)=0, y1)=0.

Eriksson, et al, considered approximating a solution y for (1.42) - (1.43) in
the space H' ofall yeC(0,1] which vanish at x=1 and for which
x*?y’ € L,[0,1]. The approximating finite dimensional subspace S, that
Eriksson, et al, used in the application of the Galerkin method consists of

continuous functions which vanish at x=1 and which reduce to

polynomials of degree at most k —1 on each subinterval /; = (x;,x,,,) of the

partition of I defined by 0=x,<x, <-<x, =1 Using variational

methods, Eriksson, et al, proved the following weighted norm error

estimate which was established earlier by Jespersen [13]

20y, _ |02,
(1.44) [, - y) | SCH[xPyY ,1
where 1< j <k, y is the unique solution of (1.42) - (1.43) in H' and Y, is

the unique Galerkin solution in .

Eriksson, et al, also proved (1.44) in the uniform norm for the case o > 1,

i.e. for o > 1, the following uniform norm error estimate holds

(1.45) 12, )| N scmﬂx“ﬂy"’]]L_.
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Doedel and Reddien [7] used finite difference methods with a class of

Jovsg

singular two-point boundary value problems. They considered the

following classes of problems that were also considered by Jamet [12].

Ly= y”+5;-y’- qx)y=f(x), 0 <x< 1,
q(x), f(x)eC[0,1]

(1.46)

According to the value of & they considered the two-point problem (1.46)
with 0 < & <1 and the conditions

y0)=a, y1)=b

(1.47) ye C*0,11n C[0,1],

or the one point problem (1.46) with & >1 and the conditions

y)=b

(1.48) y € C*0,11n C[0,1].

The finite difference scheme they used may be described as follows:

Consider a partition 0<x <x,---<x,=1 with hi=x;-x;,, and

h=max h;. Let y; be an approximation for ¥(x;), j=0,1,---,N. The
J .

finite difference approximation at the point x ; 1s given by

1 m

(1.49) LA)’,'E‘.Z:‘:I d;y.i=2 €; (z;,)-

=t 7

The points z;; need not coincide with the mesh points. m is a positive
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integer that could vary with j or may be kept fixed. The coefficients

d;; and e;; in (1.49) may be determined as follows:

+2 . . . .
Let {¢. " be a basis for a certain function space on the interval
JdJ =1

[xj_l, xm], J=12,---,N -1 where the basis functions ¢;, are chosen

consecutively from the list

1-a 2-a 2 3-a 3
Lx™% x¥%, x%, x7%, x°,

The criteria for their selection is that their span can approximate the behavior
of the solution well. Since the basis functions depend on j, a different

choice may be made near 0. The coefficients d ;i and e;; are determined

from the following m + 3 equations

1 m
24 0.0 = X 0, L (2,), 1S£<m+2
aso =

Zei-i =1

i=1

The finite difference scheme is given by (1.49) with the appropriate

boundary conditions. For problem (1.47) the boundary conditions are

Y% =0 and y,=b. For problem (1.48) the continuous boundary
conditions y’(0)=0 and y(1)=b are used which yield the discrete

approximations

d0ovg
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yy=b and Zﬁiyj =0.

i=0

They proved that the finite difference scheme (1.49) is equivalent to the

following collocation scheme:

Find { p; (x)}:: where

m+2
p;(0) =Y a;,9;,(x),
=1
such that there exist numbers v,, i=0,---,N, so that
(.51) () Lpi(z,)=f(z;,), 1<i<m, 1<j<N-1
(3) p;'s satisfy the appropriate boundary conditions.

For boundary conditions (1.47), the collocation method uses boundary

conditions p,(0)=a and py_,(1)=b while for boundary conditions

(1.48), the collocation method uses the boundary conditions

Y. Bv;=0and p,_(1)=b.

i=0

Doedel and Reddien under certain conditions provide stability and
convergence results for the two cases 0<a <1 and @ =1 as outlined

below. For the case 0 <z <1. Let

90v¢
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Ly=(x"y) and X = ['C10,1]

where the inversion is with respect to the boundary conditions (1.47). For

y € X, define the norm

(1.52)

bl =Dl + =y, + =5,

The results for the case 0 < & <1, may be summarized as follows:

1)

(1.53)

@

(1.54)

3

(1.55)

If the homogeneous problem associated with (1.46) - (1.47)
has only the trivial solution, then (1.46) - (1.47) has a

unique solution y and

bl < i1,

Under certain conditions [7] and for % sufficiently small,
(1.51) has a unique solution P, ={P,} and

[Pl <c I£1...

If the solution y of (1.46) - (1.47) satisfies the following
expansion

(x*y’Y = A(x) + x*B(x) where A(x),B(x) e C*[0,1]
and under the conditions of (2) above, then the following

error estimate holds
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(1.56) ly-pil,. scr.

Stability results for the case @ 21 may be summarized as follows:

(1)  If the boundary value problem

4

% _
x

(1.57) Y+ gqx)y=f O<x<l, a1

where ¢(x) € C[0,1] has only the trivial solution when

f=0, then there exists a unique solution y for every

f €Cl0,1] and
(1.58) 'yl + . < el
(2)  Under certain conditions [7] and for 4 small enough, there
exists a unique solution p, for (1.51) and
(1.59) Il <.

where

lealy =lpil,. + 2], + P31,

Chawla, et al, [4] considered the following class of singular nonlinear iwo-

point boundary value problems

(1.60) y"+%y’+f(x.y)=o, xe(0,1]

dovg
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(1.61) y(0")=0, yh)=a

where a@21,a is a constant, f(x,y) is continuous for

(x,y) € {[0,]]x R}, -gfy- exists and is continuous and % <0.

They used the following finite difference scheme to approximate the
solution of (1.60) - (1.61). For N 22, consider a uniform mesh over [0,1]

and let

h=l/N’ xk=kh’ yk=y(xk)andfk=f(xk9yk)fork=0’1"."'N-

Chawla, et al, [4] established the following identity for k 2 2:

(1.62) Vst = Ve - Ye =y =£+i;__
i Jeao e J

?

where

1 LT - - @
I = L X2 N f(6) dt

(1.63) “1‘1 "
I = po 4 @ -x " f(t)dt, and
(1.64) =060 -5/ (- a).

For k =1, the following identify is used:

1 X3
(1-a)J; L

(1.65) 2R =t f ()t (5™ - W) dt
1

205
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where

(1.66) J=(x"-x)/ (1~ a).

The finite difference scheme (1.62) & (1.65) is used to obtain order (h?)
approximation for the solution y of (1.60) - (1.61) with the following

assumptions

(1.67) If1<C, and Af"|<C, for 0<x<1

for suitable positive constants C, and C,. Taylor series expansion of @

about x =x, is used in the above scheme. An approximation for the value
of y at x=0 is computed from the following equation
2

h
(1.68) )’o—)’1+2(a+1)f1

_ a+4
6(a+1)a+2)

hsf'(‘fo)v 0<§<x.

In another work [5], Chawla, et al, used the same finite difference scheme
(1.62) & (1.65) with problem (1.60) - (1.61) and obtained order (h*)
convergence by replacing f(r) by the cubic polynomial which interpolates

to f at x,,, X, X, and to f’atx,. The following additional

restrictions on f were made

(1.69) IF"<C, and Af®|<c,, 0<x<1.

More recently, Fink, et al, [11] and Baxley [2] considered singular
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nonlinear boundary value problems that include the following problem:

(1.70) y"+1';—1y'+ fx,y)=0, xe(0,1)
(1.71) y(0)=0, y1)=0.

In particular, the case when f(x,y) is singular at y = 0 is included in their
analysis. The special case f(x,y)=a(x)y™®, p>0 and a(x) is
continuous is also included in the results. Iu both papers [11] and [2],
general existence and uniqueness results for positive solutions are given. In

particular, Fink, et at, [11], prove that if

(1) f:[0,1) x (0,00) = (0,c0) is continuous, and

2) f(x,y) is strictly decreasing in y for xe(0,1), and
integrable over [0,1] for each fixed y> 0,

then problem (1.70)-(1.71) has exactly one positive solution belonging to

C'[0,1)nC?(0,1). The proof of the above result also provides a tool for

approximating the solution.

Nassif [17] considered eigenvalue - eigenfunction finite difference
approximations for regular and singular Sturm - Liouville problems. He
obtained error estimates for eigenvalue - eigenfunction approximations by
using two difference schemes: Numerov scheme to solve the Schrédinger

singular equation and the central difference formula for Sturm - Liouville

dovg
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problems. In particular, Nassif considered the Schrédinger operator

(1.72) Ly=-y"+q(x)y, 0<x<eo §
with boundary conditions

(1.73) Blyl=cy'(0)+dy(0)=0

(1.74) y(x) bounded on (0,<s).

Let x; =ih,0<i<N,x,=0,X =x, =Nh,lim,_, X =lim,_,, N = oo

The Numerov difference scheme determines a vector ¥ = {Y,-}0 <y and

approximate eigenvalue A, € R such that
(1.75) ("Yi-x +2Y; - Ym) I B+ (qi—lY i1 +10gY; +q,,Y ) /12
=2,(Y,_, +10Y; +Y,,,) /12

(1.76) B,[Y]=0 and Y, =0

where B, is the difference approximation to B. Nassif proved that under

the following assumptions

(1) qeC"(0,9)NC[0,2), g—>0asx—
@  a=infq(x)<0, M=swp lg(x),

3) q is Lipschitz continuous on (0, )

@  q.q9".q9".q" are bounded on (0,)

(5) ¢=0 and d=1 in (1.73),
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then for every isolated eigenvalue 4,, k21, with multiplicity 1 of the

agys

operator L in (1.72) - (1.74), the Numerov scheme gives a sequence of

operators L,: X" — K", and a sequence of isolated eigenvalues A 44 OF
L,, with the same multiplicity as A,, such that for some choice of

{h, X(h)} the following error estimate holds

(1.77) A=A, < cht.
Further,
(1.78) 8(riEy, Fp,)<ch®

where E, and F,, are the invariant subspaces corresponding to A, and
A, Tespectively and
r,:L}(0,00) - R

such that

nf={fex)}, 1<isN-L

6(X,Y) is the aperture or gap between the subspaces X and Y. He used the
L, norm in his definition of the gap between subspaces. Nassif also
considered the Regular Sturm - Liouville problem.

(1.79) =(px)y') +q(x)y=Af(x)y, a<x<b

(1.80) ¥@)=y(b)=0
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where p, ¢ and s are continuous and positive on [a, b]. Further, he

required sufficient regularity on p, ¢ and f sothat y e C*(a, b); that is

(1.81) peC(a,b),q, f € C*(a,b).

With a partition x=a+ih, 0<i<N where h=(b—a)/N, and a

discretization of (1.79) - (1.80) by using the central difference formula

B Y1) = y(x+h/2);y(x—h/2)
he obtained the finite difference scheme
(1.82) 04y (P, 0,, Y)+q, Y, =4, f.Y,, 0<i<N
(1.83) Yo=Y, =0.

The operators L and L, are defined in L*(a,b) and R"~* respectively by

_ Z(=p(x)y ) +q(x)y

f(x)
X ALY o
fi

Ly

,O0<i<N

(L,,Y)‘. =

where Y e RV,

Nassif showed that under the assumption (1.81), and for every isolated

eigenvalue A, of the operator L with associated invariant subspace E, the

finite difference scheme (1.82) - (1.83) gives a sequence of operators

d0vg
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L:RY™ - R and a sequence of isolated eigenvalues 4, 4 Wwith

corresponding eigenspaces E, , 9i"f' such that for all & the following
error estimates hold
A, = Ayy| S ch?
and
8.(r.E,, Fy,)Sch?

where J, and r, are as defined in Nassif’s first problem.

. 20bg



CHAPTER 2

BACKGROUND

This chapter includes the necessary background from the literature that is
needed in subsequent chapters. It contains three sections. Section 1
includes existing results on self-adjoint extensions of a closed symmetric
operator in a Hilbert space. This material is based on the treatment provided
by Naimark [15] and [16]. Section 2 includes a review of the necessary
results on the spectral approximation of a closed linear operator and is based
on the treatment discussed by Chatelin [3]. Section 3 is a brief discussion
that includes results relating to irreducible matrices, partial ordering of
matrices and non-negative matrices. This section is based on the treatment

provided by Ortega and Rheinboldt [18].

2.1 SELF-ADJOINT EXTENSIONS OF CLOSED
SYMMETRIC OPERATORS IN A HILBERT SPACE

2.1.1 Projection and Isometric Operators

Let H be a separable Hilbert space and M a closed subspace in H. Then
any vector x can be expressed uniquely as x = x, +x, where x, € M and

X, L M. An orthogonal projection P on H is defined by

P(x)=1x,.

d0vs
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A linear operator U is called an isometry if (U(x),U(y))=(x,y) for all

20bg

x,y € Domain U where (.,.) denotes the inner product in H.

2.1.2 The Direct Sum of Hilbert Spaces and the Graph of an

Operator

Let H,,H,,--,H, be Hilbert spaces. Let H be the set of all vectors
(x1,Xp:++,x,) such that x, € H,,x, € H,,--,x, € H.. We define scalar
multiplication and addition in H by

a(xl,xz,...,x") = (axl,axz,...,axl)

(% %00+, x,) + (%250, x0) = (X, + X0y, + X500+, %, +x7).

We also define inner product in H by

((xl,xz,---,x_),(x{,x;,---,x;)) = (%, x)+ (xz,x;)+---+(x,,,x,',).

With these operations, H becomes a Hilbert space. It is called the direct
sumof H,,H,,:--,H, and is denoted by
H OH,®--®H,.

Let L be an operator in a Hilbert space H . The set of all ordered pairs
(x,Lx), xe Domain L in the direct sum H @ H is called the graph of the

operator L and is denoted by G,. It is easily verified that an operator L is

linear if and only if its graph is a subspace of H @ H.
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2.1.3 Closed Operators; Closure of an Operator

An operator L is said to be closed if its graph G, is closed in H® H, i.e.
an operator is closed if and only if the following condition holds:
If

X, € Domain L, x, - x and Lx, -y
then
x€ Domain L and Lx=1y.

If the closure of the graph G, of an operator L is the graph of a certain
operator, then we say the operator L admits a closure L. Such an operator
L, if it exists, is the minimal closed extension of the operator L. An
operator L admits a closure if and only if

x, € Domain L, x, = 0 and Lx, — y, then y=0.

A vector x will be in the domain of L if there exists a sequence of vectors

x, € Domain L such that x, - x and Lx, converges as n—> . Lx is
defined as lim Lx,.

R—dee

2.1.4 The Adjoint of an Operator; Hermitian, Symmetric and

Self-Adjoint Operators

Let L be a linear operator whose domain is dense in H. The adjoint

L' of L is an operator in H whose domain is the set of all yYe€H such

20ps
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(Lx,y)=(x,2)
for some ze H and for all x € Domain L. We define

Ly=z forall ye Domain L.

The vector z in the above equation is unique for a given y, for else, assume
(Lx,y)=(x.2")

then (x,z—z’)=0 Vx € Domain L. This means that domain L is not

dense in H which is a contradiction.

Let L be a linear operator whose domain is dense in H, then L' is a closed
linear operator. To see this, we consider the operator U/ in H® H defined
by
U(x,y)= (iy,~ix).
Let A=U (GL), the ifnage of the graph of L under U. Define Bc H®H
by
B=H®H-A,
then B is the graphof L'in H® H. To see this, let (7.z) € B, then
((iLx,~ix), (y,2))=0 Vxe Domain L.
The above equation is equivalent to

(Lx,y)=(x,2),

d0ps
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therefore, ye Domain L' and z=L'y. Since B is an orthogonal o

complement in a Hilbert space, then it is closed and hence L' is closed. o

An operator L is called Hermitian if Vx,y € Domain L, we have

(Lx,y) = (x,Ly).

A symmetric operator is a Hermitian operator whose domain is dense in H .
We conclude that an operator L whose domain is dense in H is symmetric

if and only if

Lcl.

We further conclude that a symmetric operator always admits a closure.

An operator L is called self-adjoint if its domain is dense in H and L=1L'.

Therefore a self-adjoint operator is necessarily closed.
2.1.5 Spectrum of a Self-Adjoint Operator

Let L be any operator in a Hilbert space H. A complex number A is called

aregular point of the operator L if R, =(L—-AI )'l exists, is bounded and
has domain the whole space H. The operator R, is called the resolvent of
L with respect to 4. All points other than the regular points belong to the

spectrum. In particular the eigenvalues belong to the spectrum. The set of
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all eigenvalues is called the discrete (or point) spectrum of the operator. The
spectrum and resolvent of an operator will be discussed in more detail in

Section 2.2.

For a self-adjoint operator, two eigenvectors that belong to two distinct
eigenvalues are orthogonal. Thereforc, any set of eigenvectors that
correspond to distinct eigenvalues must be a finite or countable orthogonal
system in H. We conclude that the discrete spectrum of a self-adjoint
operator is a finite or countable set of real numbers. For a self-adjoint

operator, any non-real number is a regular point.
2.1.6 Compact Operators

An operator L in a complete normed space A is said to be compact if it
maps a bounded set into a relatively compact set. Following are some

properties of compact operators that will be of use to us later in this work.

1. Every compact operator is bounded.

2. If L is compact and M is bounded and defined everywhere
in A, then the operators LM and ML are compact.

3. If an operator L is compact, then its adjoint L is also

compact.

4, If {L,,} is a sequence of compact operators such that
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IL-L]J—>0 as n— e

then L is compact.
S. The non-zero points of the spectrum of a Hermitian, compact
operator are all real eigenvalues with finite multiplicities and

can only accumulate at A =0.

A complex valued function U(x, 1), a<x,T <b, of two real variables that

satisfies the following condition

[[lweofdcde<e

is called a Hilbert-Schmidt kemel. The integral operator in the Hilbert space
[*(a,b) defined by

s)=] "K(x,7)f(7)d7, f(x)e X(a,b),

is a compact operator. The integral operators with Hilbert-Schmidt kernel

make an important class of compact operators.
2.1.7 Extension of a Symmetric Operator
The main objective of the remaining subsections is to discuss symmetric

extensions of a given symmetric operator. In particular, the problem of

constructing self-adjoint extensions for a given symmetric operator is the

Jovs
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one that interests us. Let M be a symmetric extension of the symmetric
operator L, then L c M. It can be easily shown that M* c L'. Since M is

a symmetric operator we must have M c M* and hence

LcM cM cL.

We conclude that every symmetric extension of the operator L, is a
restriction of the adjoint operator L'. Self-adjoint extensions will be

obtained in subsection 2.1.11.

2.1.8 Deficiency Spaces of a Symmetric Operator

Let L, be a symmetric operator and A an arbitrary non-real number. Let
R, and R;. denote the ranges of the operators (L—Al) and (L—)-fl)

respectively. Further, let

N,=H-R,, and
N;=H-R;.

Since N, and N; are orthogonal complements in H for the subspaces
R, and R;, they are subspaces by themselves (in fact closed subspaces).

N, and N; will be called the deficiency spaces of the operator L, with

respect to A. Deficiency spaces will prove to be instrumental in

constructing self-adjoint extensions for a given symmetric operator.
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Lemma 2.1

The deficiency spaces N, and N; are the eigenspaces of the operator L'

which belong to the eigenvalues A and A respectively.

Proof

Let xe N,, andy € Domain L, then
(Ly-2y,x)=0.

Hence,

(Ly,x)= (y, Ix).

Therefore, x € Domain L' and L'x = Ax. Conversely, assume L'x = Ax,

then for each y € Domain L we have

(Ly,x)= (y,)Tx) = (Ly-2Ay,x)=0=>x€eN,.

2.1.9 The Domain of the Adjoint Operator

The subspaces H,,H,,--,H, are called linearly independent if any set of n

vectors {x,}" , x, e H, is linearly independentin H. If

i=1
xeH ©H,®---®H,
then x has a unique representation

x=x+X++x,, x;€H,, i=12,---,n.
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In what follows we will find out that the domain of the adjoint of a closed
symmetric operator can be expressed as the direct sum of the domain of the

operator and two of its deficiency spaces.

Theorem 2.1

Let L be a closed symmetric operator, then the subspaces Domain L,
N, and Ny are linearly independent and

2.1) Domain L' = Domain L®N, ®N;.

Proof
First we show linear independence. Let x, € Domain L, x, €N, and

X3 € N;- such that
(2.2) ' x+x,+x,=0,
then

(L - Al)(x +x,+x)=0
(L-An)x, +(L -Al)x, +0=0
(L-20)x, +(/7f-l)x2=0.

Since R, and N, are linearly independent subspaces we conclude that

(L-A)x, =0 and (I—)L)x2=0.

Since L is a symmetric operator and A # 1 we must have x, =0 and

dobg
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x, =0. Substituting in (2.2) we obtain x, =0.

To prove (2.1) we note that Domain L, N, and N; are subspaces of
Domain L’ and hence

Domain L® N, ®N; < Domain L.

To prove the converse of the above statement, let x € Domain L', we need

to show that x can be represented as

X=X +x,+x, where x, € Domain L,x,eN,,x, € N:.

Since the operator L is closed, R, is a closed subspace of H ([16]

Theorem 3, page 28). Therefore, H can be written as the direct sum of

R, and N,. Hence the vector (L' — Af)x can be written as

2.3) (L‘—/’Ll)x=yl +y, where y R, and y, e N,.

(2.3) can be rewritten as
(L' = Ar)x =(L-AI)x, +( - A)x, where x, € Domain Landx, € N,,
hence
(L=A)x=(L - An)x, +(L - Al)x,,
and

(L -Al)(x- x, —x,)=0.

Jors
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Therefore,

T

Jobg

and

X=X, +X,+Xx, where x, € Domain L, x, €N, and x, €N;.

The following corollary is a direct consequence of Theorem 2.1.

Corollary 2.1
A closed symmetric operator L is self-adjoint if and only if

N, =N, ={0} for each 1.

Theorem 2.2

Let L be a symmetric operator and A any complex number with

Im(A)>0. Then

dim N, =dim N; and dim N; =dim N_,.

2.1.10 Deficiency Indices

Let m=dimN, and n=dimN;, Im{(A)>0. The numbers mand n are

called the deficiency indices of the operator L. We note that the deficiency
indices are well defined in view of Theorem 2.2 above. Corollary 2.1 could

therefore be restated as follows:

A closed symmetric operator L is self-adjoint if and only if its deficiency
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indicesare m=0 and n=0.

The following useful result is also discussed in [16], page 33.

Theorem 2.3
Let L be a closed symmetric operator and M a bounded, self-adjoint
operator whose domain is the whole space H. The operators L and

L + M have the same deficiency indices.

2.1.11 Construction of a Symmetric Extension for a Given

Symmetric Operator

In this subsection we give the main result which provides the mechanism
for constructing a closed symmetric extension of a given symmetric

operator.

Theorem 2.4
Let L be a closed symmetric operator with deficiency spaces N, and
N;where Im A >0. The operator L has a closed symmetric extension L’

if and only if there exists an isometric operator S whose domain D is a
closed subspace of Ny and whose range R is a closed subspace of N,.

The operator L’ has domain all vectors x’ of the form

(2.4) x’=x+x-Sx;, xe€ Domain L, x, €D,
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and is defined by

(2.5) L'(x’)= Lx + Ax, — A5x,.

The following theorem can easily be concluded from Theorem 2.4.

Theorem 2.5
An operator L has a self-adjoint extension if and only if its deficiency

indices are equal.
2.1.12 Singular Self-Adjoint Differential Expressions

Any formally self-adjoint differential expression with real, sufficiently
differentiable functions in the interval @ < x < b is necessarily of even order

and can be expressed in the form
(2.6) ‘e(y) = (_l)u( poy(n))(') + (_l)n—l (( ply(n-l))(""l) foee +p.y

([15], page 8). The expression £(y) is said to be regular if the interval

(a,b) is finite and the functions

2.7 Ypy(x), p(x), -, p,(x)

are absolutely integrable in the whole interval (a,b). Otherwise £() is said

to be singular. The end-point x = a is regular if @ > —co and the functions

(2.7) are absolutely integrable in every interval [a,6] where &<b.
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Otherwise the end-point a is called singular. Therefore, the end-point a is

singular if a=-oco or if at least one of the functions in (2.7) is not

absolutely integrable in an interval [q,6] for some & <b. Regularity and |

singularity of the right end-point x = b is defined similarly.

In chapters 3 and 4 we will consider a certain class of second order sin gular
differential operators on an interval [a,b] where the end-point a is singular
and the end-point b is regular. We will provide numerical approximation
for the solution of a certain class of boundary value problems involving
these operators. We will also provide numerical approximations for the

eigenvalues and eigenvectors for these operators.

2.2 SPECTRAL APPROXIMATION OF A CLOSED
LINEAR OPERATOR

In this section, we will be concerned with approximation of the
eigenelements of a closed linear operator. We will discuss sufficient
conditions under which we obtain convergence of numerical approximations
of eigenvalues and eigenvectors. Throughout this section we let X denote a

complex Banach space and H a complex Hilbert space.
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2.2.1 Basic Definitions of the Resolvent Set and Spectrum of

an Operator

Let L be a closed operator in X, and z any complex number. We observe

the following definitions:

the resolvent set p(L) is the set of all complex numbers z such that
(L—z)" exists, has domain X, and is bounded. We let

R(L,z)=(L-2)™;

the spectrum o(L) of L is the complementary set of p(L) in the

complex plane. (L) is divided into three mutually exclusive parts:

point spectrum Po(L) is the set of all ze o(L) such that

L - z has no inverse;

continuous spectrum C o(L) is the set of all ze o(L) such
that (L —z) has an unbounded inverses with domain dense

in X; and

residual spectrum Ro(L) is the set of all ze o(L) such that
(L - z) has an inverse (bounded or unbounded) with domain

not dense in X.
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A nonzero vector x€ Domain L such that Lx=Ax is called an
eigenvector of L corresponding to the eigenvalue 4. Therefore, the point

spectrum of L consists of all the eigenvalues A of L. The kernel of
(L—AI) is the eigenspace of L corresponding to 4. Its dimension g is

called the geometric multiplicity of A.

The resolvent operator R(L,z), zep(L) satisfies the following two

identities which are needed later.

The first resolvent equation (Hilbert)
R(L,z)-R(L,z,)=(z, —z,)R(L,z)R(L,2,)

(2.8) =(z,~2,)R(L,z,)R(L, ).

Proof

(2, - 2,)R(L,2)R(L,2,) = R(L,z \(L - z,) - (L — 2, ))R(L.2,)
= R(L’ zx)"' R(L’zz)'

The other part of (2.8) may be proved similarly.

The second resolvent equation (Hilbert)

R(L1,2)~ R(L;,2)= R(L,,2)(L, - L)R(L;,2)

29) = R(L,,z)(L, ~ L)R(Ly,2)

J0vg
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Proof

R(L,2)L, ~ L,)R(L;,2) = R(Ly, 2)(Ly — 2~ (L, - 2))R(L,.2)
= R(L,,2)- R(L,,z).

The other part of (2.9) may be proved similarly.
2.2.2 Separation of the Spectrum

Let L be a closed operator in X, with domain domain L. A subspace

M of X is called invariant under L if

L{(Domain L)NM]c M.

Let L, denote the restriction of L to the subspace Domain LAM. Let
X=M®N where M and N are closed subspaces and each is invariant
under L. Let P denote the projection on M along N. The operator L is

said to be completely reduced by the invariant subspaces M and N if
P(Domain L) c Domain L.

The following theorem includes results that will be used extensively in

subsequent chapters.

Theorem 2.6

Let o(L)= 0, U G, where 0, is bounded and separated from 0, in such a
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way that a closed Jordan curve T can be drawn in p(L) around 0, leaving

O, in its exterior. Then
1. The operator
1
2.10 P=——1R(2)d;
(2.10) 2%4 (2)dz
is a projection on X.

2. Let M=PX and N=(1-P)X, then X=M®N and L is
completely reduced by M and N.

3. Let Ly, and Ly, be defined as before, the spectra of L, and L, are

0, and O, respectively and L,, is bounded.
2.2.3 Isolated Eigenvalues

In the sequel we will be interested in the cases when the spectrum of a
closed operator has an isolated point A. The spectrum o(L) can then be
written as 6(L)={1}uU0,, where 6,=0—{A}. If T is any closed

Jordan curve enclosing A but no other points in &(L), then the projection

1
P= —Z—TL’i ‘I[R(z)dz

depends on A only, because 4 is the only singularity of R(z) inside T.

dovs
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The projection P is called the spectral projection associated with . For
x € X, Px is defined by

1
Px=———| R(z)xdz.
X 27:1'1 (z)xdz

The subspace M = PX is called the invariant subspace associated with 1.
We assume that the dimension of M =m <, then {1} is the spectrum of

the finite rank operator L,, of algebraic multiplicity m. Therefore, A is an
eigenvalue of L of algebraic multiplicity m. We let g = dimension E=
Kemel (L-A), i.e., we assume A has geometric multiplicity g. We will
also assume that 4 has ascent £. Let L, n=1,2,-- be a sequence of
closed operators such that Domain L, = Domain L. If T lies in p(L, ),

then we may define the resolvent R, (z)= (L,, - z)_l forany zeI'. We may

also define the projection

1
P, = ~3 i[ R, (2)d:.

Let A denote the domain enclosed by I. The set o(L,)NA is the

spectrum of L, inside A. We also define the invariant subspace

M, =P X of L, that is associated with o(L,) N A.

The sequence {L,,}, n=1,2,---, is said to be an approximation of L if

2.11) Lx— Lx as n— o, forall xe Domain L.

L eoemian
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ie. L, converges to L pointwise, and we write L —Z L,

The remainder of this section will be concerned with the analysis of the

convergence of 6{L,)NA to {1} and the convergence of the invariant

subspaces M, to M.

2.2.4 Convergence of the Spectrum o(L,)NA

Let E and E,, ne N,be subsets of the complex plane.

Definition
E=Tim E, iffor any x € E, 3 an infinite subset N, < N, where N is the
set of natural numbers, such that for any ne N, and x_ e E,, we have

I, —x|—0.

Definition
E=lim E, ifforany xeE, 3 x, €E, suchthat [x,—x]-0, neN.

Definition

If im E, =lim E, = E, then we define E =lim E,.

Let, as before, A4 be an isolated eigenvalue of L, T" a closed Jordan curve
in p(L) isolating 4,A be the domain enclosed by T and o(L)nA ={1}.
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The spectrumof L, in A converges to 4 if

(2.12) lim(a(L,)n4)={4}.

We note that condition (2.12) demonstrates the continuity of 6(L) when L
is perturbed by L~L,. i.e. L, =L—(L—L,). This is equivalent to the

union of the lower semicontinuity
{A}c lm(o(L,)na)

and the upper semicontinuity

{A}oTm (ofL,)NA).

The lower semicontinuity is equivalent to the condition that given £> 0,

there is 4, € 6(L,)N A such that [A ~ 4| < &. The upper semicontinuity is

equivalent to the condition that no point other than 4 could be the limit of

any subsequence of points in o(L,)NA.

We note have that condition (2.11) is not sufficient to imply convergence of
the spectrum (2.12). To see examples that support this statement, the reader

may refer to [3], page 230.
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2.2.5 Sufficient Conditions for the Convergence of o{L,)NA

J0¥s

¢

Definition

Let z € p(L), we define stable convergence at z, L ~z—— L~z if the

Jollowing conditions are satisfied
1. L—-z2—f5L-;

2. 3N(2) such that Vn>N(z), zep(L,) and |R,(z)] < M(z) where
M(2) is a positive constant depending possibly on z.

Lemma 2.2

The following are equivalent for all z € p(L)

@) L -z—>L-2z and

@ R,(2)—>R(z) and L —£>1.

Proof

By the Second Resolvent Equation (2.9), we have

R.(2)-R(z)=R,(2)(L~L,)R(z).

Since R,(z) and R(z) are bounded, it is easy to see that (i) and (ii) are

equivalent.
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Lemma 2.3

If L,—z——L~z, then the function z— R,(z) is continuous in p(L).

This continuity is uniform in n for n large enough.

Proof
If z, € p(L), then

2.13)  L-z=L -z +z~z=(L,~2)[1-(z-2,) R,(z,)}

R_(zo)" <1, we conclude from (2.13) that

For z such that |z - z,|

2.14) R.(z)=(i[(z—zo)ku(zo)]i) R.(z)

i=0

Since L, —z—2 L~ z, we have

R,(zo)n <M(z,) for n>N(z,). Given
£
M(z,)’

€, 0< <1, thenfor n> N(z,) and any z such that [z— z,| <

we may conclude from (2.14) that

R,,(zo)Hgs‘ <M(z,) £

1-¢

IR.(2)- R.(2,)] <

Hence the function z— R,(z) is continuous for z e p(L), uniformly in n

for n large enough.
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Lemma 2.4 o
T

If L—z—5L—z forall ze K, K is a compact subset of p(L), then &

(2.15) P, (K)llR,(z)ﬂ < M(K).

Proof

Since K is compact, it may be covered by a finite family of sets of diameter

less than &. Then for any z € K, 3 z, such that |z - zol < & and hence

[R.(2)] < IIRn(z) -R,(z, )" + "R,(zom.

Since K is compact, the numbers z, can be chosen to make a finite set.

Following the outline of the proof for Lemma 2.3, we may conclude (2.15)

Lemma 2.5

Let L, —z—S5 31—z Jor all zeT, where T is a closed Jordan curve

isolating A, where A is an eigenvalue of L, then for n> N(),

I cp(L,)

Proof

Since I" is compact, the result follows directly from Lemma 2.4.

Lemma 2.6

Let L ~z—2>L—zforall zeT, then P,x - Px forall xe X.
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Proof

By the Second Resolvent Equation (2.9) we have

R(z)~R(z)=R, (z)(L-L)R(z).

Integrating both sides on I, we get

2.16) (P.-P) =—2Lm, [R()L—L)R(z)xdz.

Since (L—L,)R(z) is bounded, then for a fixed x e X, the function
z—> (L—L,)R(z)x is continuous for ze p(L). Therefore for any xeX,

and n> N(I") we obtain from (2.16)

meas ™
2n

[(P=P)af < === M) max](L - L, )Rz}

Lemma 2.7
Let L —z—23L—z for all zeT, then dim P,X 2dim PX for n large

enough.

Proof

From Lemma 2.6 we conclude that P.x — Px for all xeX. Since
dimPX =m, let {x,},i=1-,m be a basis for M=PX. Further, let
{x}i=1->m be the .adjoint basis in M such that
(x,.,x;)=8,.j,i,j=1,---,m. Since Px—> Px VxeX, we must have

(P.x,.,.x;.) - 5,.,.. Therefore for n large enough, the vectors P.x.,i=1,---,m

A"
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are linearly independent and have dim P, X > dim PX.

We are now ready to state the main result on the convergence of the

- spectrum o{L,)NA.

Theorem 2.7
Let L,—z—L-zforall ze A—{A}, then
(2.17) lim(o(L,)nA)={2}.

Proof

We prove (2.17) by showing lower semicontinuity and upper semi-
continuity. Let £>0. Let A, =A—{z|z—-A|<¢&} and T, ={z|z-1|= &}
A, is a compact subset of p(L) and T, is a circle isolating A and lies also

in p(L).

We define

-1
P = 37 f-[ R(z)dz

and

_ -1
P, =— IR (2)dz
=t | RV

€

It is easy to see that P.=P. By Lemma 2.7 we have

dim P_X 2dim P.X =m for n>N(T',). This means that o(L,)NA is

o0vs
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not empty for n large enough and that for any £€>0,3 a point

A, € 0(L,)N A such that |A — 4| <. This is the lower semicontinuity of
o(L). Now, by Lemma 2.4, we have

xeAjgg(A ) “R" (Z)II < M(As )

and therefore, A, cp(L,) for n>N(A,). This means that no point other

than A can be the limit of any subsequence of points in G(L, N A). ie.
{A}>Iim(a(L,)nA).
Therefore,

lim(a(L,)nA)={A}.

The condition L, — z—=— L~ z is a sufficient condition but not necessary

for the convergence of the o(L,)nA. Moreover, convergence of the
eigenvalues as complex numbers is not sufficient for the convergence of the
associated eigenvectors. To ensure convergence of the eigenvectors we
need convergence of the eigenvalues and preservation of the algebraic
multiplicities as we shall see below. The reader is referred to [3], pages

233-234, for examples that illustrate the above statements.
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2.2.6 Convergence of the Eigenvalues and Preservation of

the Multiplicities

In this subsection we establish a sufficient condition for the convergence of

the eigenvalues and the associated eigenvectors.

Definition _
Let A be an isolated eigenvalue of L with finite algebraic multiplicity, we
say that {L,}, is a strongly stable approximation of L, L, — 2—=— L2,
in A if the following conditions are satisfied A
) L-z—5L-zinA-{A},
2) dim P X =dim PX=m for n large enough where P and
P, are the spectral projections associated with {1} and

o(L,,) NA réspectively. Strongly stable convergence on T’

is defined similarly but condition 1) is satisfied for z€T.

Lemma 2.8 ‘
Let L —z—= L -z in A, then for n large enough o(L,)NA consists

of m eigenvalues, counting their multiplicities.

Proof

Since L, —z—=>L—-zin A,T'e p(L,) for n large enough by Lemma 5.
Therefore, by Theorem 2.5, o(L,)N A is the spectrum of P,L_P, when
restricted to M, = P_X. Since dim M, = m, this operator is of rank m and

Dovg



540¢C

59

hence has m eigenvalues counting their multiplicities.

2.2.7 Gap Convergence of the Invariant Subspaces M, and

M and Convergence of the Eigenvectors

A natural measure of the accuracy of approximation of the eigenvectors is

the gap (or aperture) of the subspaces M, and M. We start by the

following definition.

Definition

Let M and N be closed subspaces of X. Let
6(M,N)= sup dist (x,N).
Ixl=l
The gap between the subspaces M and N, (M,N) is defined by

6(M,N)=max (6(M,N), (N, M)).

We note that 6(M,N)<1.

The following results will lead us to the conclusion that the strong stability
in A of an approximation L, will guarantee the gap convergence of the
invariant subspaces M, and M. We will also establish for any sequence of

eigenvalues {4, , that converges to 4, the convergence of a subsequence
nfn g g €q

of the associated normalized eigenvectors.
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Theorem 2.8
IfL—z—53L-zon T, then 6(M,.M)— 0 as n— oo,

Theorem 2.9
Let L,—z—= L—z in A, then for any sequence of eigenvalues A€M,

converging to A€M and for any sequence of associated normalized
eigenvectors {x,},,, there exists a subsequence {'x"}N,c y converging to an

eigenvector x associated with A and
dim Ker (L, - 4,) < dim Ker (L 1).

2.2.8 Theoretical Error Bounds

Let

t.=|(L-L,)P|

Y. is well defined since (L—L,,)P is bounded by the closed graph

theorem. Moreover since P has finite rank ¥, — 0 as n — oo,

Theorem 2.10
Let Lz—=L~z in A, then for n large enough we have 6(M,M,) and

A -2, are at least of order 7y, where A, is the arithmetic mean of the m

eigenvalues A, in o(L,) A counting their multiplicities.
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The following theorem provides a sufficient condition for strongly stable

convergence when T and T, are compact ([3], page 351).

Theorem 2.11

Let A be an isolated eigenvalue of the compact operator L with finite
algebraic multiplicity. Let L, be a sequence of compact operators that
converges uniformly to L, then L —z—=3—L~z in A, where A is as

defined in 2.2.3.

2.3 IRREDUCIBLE MATRICES, PARTIAL ORDERING
OF MATRICES AND NON-NEGATIVE MATRICES

This brief section includes results on irreducible matrices, partial ordering
and non-negative matrices. These results will be needed later in Chapter 3
to establish error estimates of numerical solutions for a certain class of

singular boundary value problems.

2.3.1 Irreducible Matrices

Definition
An nXxn real or complex matrix H = (h,,) is reducible if there exists a
permutation matrix P such that

PAPT= Hll HIZ
0 Hy,l
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where H,, and H,, are square matrices. H is called irreducible if it is not

reducible.

Lemma 2.9
A matrix H is reducible if and only if there is a nonempty subset

J c{1,---,n} such that

hij=0forallieJ,jeJ.

Lemma 2.10
A matrix H is irreducible if and only if for any two indices 1<i < J<n,
there exists a sequence of nonzero elements of H of the form

h

(N

Iy

As an application of Lemma 2.10 we consider the matrix

by By O]
hay

s-1,n
O h,, b, |

where [5,[>0, |h,,|>0 and Jr_, |>0.

The matrix above is irreducible because given any 1<i< j<n, a sequence
of nonzero elements of H may be provided as follows:

h

ii+]? hi+l.i+2’ ) hj-l'j‘
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Definition
An nxn real matrix H = (h,,) is diagonally dominant if

lh|<

Jj=linj

Bl Vi=1:-,n.

H is strictly diagonally dominant if the above inequality is strict for all
i=1,--,n, and is irreducibly diagonally dominant if it is irreducible,
diagonally dominant and the above inequality is strict Jfor at least one value

of i=1,--,n.

Theorem 2,12

If an nx n matrix is strictly or irreducibly diagonally dominant, then it is

invertible.

2.3.2 Partial ordering of Matrices and Non-negative Matrices

Later on in this work, we will need to compare matrices entry by entry. We
may do this by defining a partial ordering, on the space of m x n matrices as
follows.

Let A,,, and B, ,, be real matrices, then

A<B if a,.i Sb‘! Vi=l,°--,m, Vj:l’---,n'
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The above ordering relation < is reflexive, symmetric and transitive.

Moreover, it satisfies the following two properties

if ASB,then cA<aB Va0,

and
if A<B,then A+C<B+C,

where A, B, and C are any m X n matrices.

If A 20, then it is called non-negative.

Definition

An nXxn real matrix H is called an M —matrix if it is invertible, H™ >0
and b <0 forall i,j =1, i ].

Lemma 2.11

If H is an irreducibly diagonally dominant real mx n matrix such that

a;<0,i#jand a;>0 Vi=1,-,n, thenitisan M —matrix.

Lemma 2.12

Let H bean M —matrixand A an nx n nonnegative diagonal matrix, then

H+ A isan M —matrix and

(H+A) ' <sH™,
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CHAPTER 3

A FINITE DIFFERENCE METHOD
FOR APPROXIMATING THE
SOLUTION

3.1 INTRODUCTION

In this chapter we state the specific assumptions on the boundary value
problem (0.1) and introduce the finite difference scheme that will be used to
approximate its solution. This chapter is organized as follows. In Section
3.1 we define the problem and set the conditions on its coefficient
functions. Section 3.2 includes the preliminaries in which we relate the
problem to the work done in [9] and prove that the spectrum of the
differential operator involved lies in the negative part of the real axis. In
Section 3.3 we prove the existence and uniqueness of the solution to our
problem and that this solution is continuously differentiable on [0, 1]
Section 3.4 provides the finite difference scheme that is used to approximate
the solution to the problem. Convergence of the finite difference scheme

and the rate of convergence is treated in Section 3.5.

Consider the self-adjoint singular boundary value problem

3.1) ——(p)y) ~q@y=F®) xeO.)
p(x)
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3.2)
(3.3)
(3.4)
(3.5)

(3.6)
3.7

(3.8)

lim p(x)y’=0
y1)=0
p(x)20,p(0)=0
p (0 eL,©1]
q(x), f(x)€ C[0,1] and |p’(x)| <M, <

q(x) 20,

j U ;G;dt) dx <o and p(x) is

increasing in a neighborhood of 0.

66

We will discuss a finite difference approximation to the solution of the

above problem.

In [4], Chawla considers the special case with

p(x)=x%, a21, however, f(x) in the right hand side of (3.1) is non-

linear. In this chapter, we extend the work in [4] by applying Chawla’s

finite difference scheme to a self-adjoint boundary value problem. We

prove O(h®) convergence under less differentiability conditions on

q(x) and f(x).

3.2 PRELIMINARIES

In this section we establish the self-adjointness of the problem (3.1) - (3.3)

in I2(0,1).
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Lemma 3.1
Iflp’(x)|sM,, M,>0and p(x)20 Vxe[0,1], then

Proof

(1)

(1) p(x)>0 for xe(0,1).

11
o0

(2) omdx= .

@ [ ﬂ;’(l—t)drdx«o.

Assume p(x,) =0 for some x, € (0,1), then

(3.9) |p(x)=]x - xo|[p"(£)| < |x — xo|M, (where x, < & S1), therefore

(3.10)

@

3

11 1pg 1
X 2| T——dx= oo,
vLo |p(x)| Ml Ix, lx_xol
This contradicts condition (3.5) above.
The case x, =1 can be treated similarly.

This is easily seen in view of (3.4) and (1) above.

This is a direct application of the Cauchy-Schwartz inequality.

Let L’(O,l) denote the Hilbert space of all complex-valued measurable

functions y which are square integrable on (0,1). Inner product for
¥,z € L*(0,1) is defined by (y,z)= j;y(x)mdx. Let £ be the formally
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self-adjoint differential expression defined by £(y) = (Y'Y, Letx=0bea

singular point for £ and x=1 be a regular point. We also define the so

called maximal and minimal operators L, and L, by
(3.11) D(LM)={yeL2(O,1):£(y)eL’(O,l)}
(3.12) Lyy=1{(y)

D(Ly)={ye DL, 2y =y 1)=0, [yz],. =0
forall ze D(L,)}

(3.14) Liy=1{(y)

where for y,z € D(L,;) we have

(3.13)

(3.15) [v.2], = PO - p)y (O

It is indicated in [9] that D(L,) is dense in I?(0,1) and that L, is a closed
symmetric operator with Ij = L,, where L; denotes the adjoint of L,. Any
self-adjoint extension L of L, is such that L, < L < L,. Itis also shown in
[9] that under our assumptions on p(x) the operator L, has deficiency

indices (2,2) and that the operator L: L20,1) - [ (0,1) defined by
(316 DW={ye DLy lim p(x)y'(x) =0, y(i)= o}

3.17) Ly=1(y)=(py"y

is a self-adjoint extension of L.

In the remainder of this chapter, ¢ will denote a generic constant,
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Lemma 3.2

If ye D(L), then
1
(3.18) (L. s =i}
and hence the spectrum of L lies in the negative part of the real axis.

Proof

(3.19) (L)=[ oy Yyde=~[ plyfas.

Moreover,

(3.20) y(x)=—j:y'(:)d:=—j:%y'd:.

So

1] 1, 1] 1,
(3.21) ) < L;d: [ pyfaes L;dtjo plyfd,
and therefore,

1 1p1 1,
b= Jptef s [ Laro s
< -c(Ly,y)

1pt ]
where c= Jo J;;dt dx. Therefore

1
(3.22) (Ly,y)S—-c-I!yllz.

2
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3.3 EXISTENCE, UNIQUENESS AND REGULARITY OF
THE SOLUTION

In this section we establish existence and uniqueness of the solution to our

problem and that this solution is continuously differentiable on [0,1].

Theorem 3.1

The equation

(3.23) Ly- pqy = pf

where q(x) and p(x) satisfy conditions (3.7) and (3.8) respectively, has a

unique solution which belongs to C'[0,1].

Proof

From (3.22), we have

(Ly.y)S—%(y,y) VyeD(L).

Since
(3.24) (pgy,y) 2 (3,y) inf pq,
we have
. 1
(3.25) ((pg-L)y,y)2 (mf pq+;)(y,y)

= ¢(y,y) where ¢>0.
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Therefore, the operator (pg—-L) is coercive (i.e.

((pq -—L)y,y) 2 c||y|2Vy €D(L) and ¢>0) and hence onto (see [1],

corollary on page 48). This proves existence of a solution. To show

uniqueness, let

(L= pq)y,=pf and (L~ pq)y, = pf, ¥,,y, € D(L),

then
(L= pg)(y,~y,)=0,
and
(pg— L)y, -y,)=0.
But
(3.26) ((Pa— D)0 =301 = y)) 2 dp =y,

So 02y, ~y,[; and hence y, =y,

It remains to show that y € C'[0,1]. Let y be a solution of

(oYY = pqy=pf
then

21 1r
3.27) y -p_[opqy dt+pfopfdt.

Therefore, y € C'(0,1] and

1
IY'IS;

J:pqy dtl + %I I:pf dtl
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Now,
x 2
1““,‘.7[! pqydtl hrg—;j P’q dtj b ar
(3.28)
Sclim —7_[ PPl
(3.29) =0 by assumption (3.8).

A similar argument may be used to prove that

L1
(3.30) lim > jopfd:_ 0.

Therefore lim y*(x)=0 and hence ye c'[o,1].

3.4 THE FINITE DIFFERENCE SCHEME
Rewrite (3.23) in the form

(3.31) (py'Y =p(gy+f)
and integrating and applying conditions (3.2) and (3.3) we get

(332) y=~ = ey + fhar

72
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Interchanging the order of integration in (3.32) we get

y=- j ( —dt) ()q@)y+ f(t))dt
(3.33)

- I( -—df)p(t) q(O)y + f(2))dr.

Written differently, (3.33) becomes

(3.34) y==[K@OpeXay+ FO)de

where K(x,1?) is the kernel and is given by

ﬂ——dr t1<x
(3.35) K(x,t)= (1 )
—d‘t 1>x.

' p(7)

Now for N'22 we consider a uniform mesh over the interval [0,1]. Let
X, =kh, k=0, N, h=1/N. Let ¥, =y(x,). For ease of notation, let
g()=q()y+ f(t). Using (3.34) and (3.35) we obtain for x=x, and

X=X, k21

Yen =¥ = j“ pretid WOLOL
(3.36)

+ j[ - —(—)dt) p(g() dt.
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Similarly, for k22 we have

A== e WCTOL

—f’ ( — d‘t)p(t)g(t) dt.

=1 p(7)

(3.37)

In order to simplify notation, we let

(3.38) TAGESR "'——dr, k21,

Eliminating jo p()g(t) dt from (3.36) and (3.37) we obtain for k> 2

Ay, = - b/ +( 1 + 1 ) ¥, - Vi
(3.39) Vi) \vilx) v (x) Vi (%)

== pe,(8() e

where

1=y, () Wi (x) i x,, StSx
(3.40) U,,(t):{ Via(0)/ v, 1(15; 1) 1 - \
V’k(t)/ lllk(x,‘) if b SISX,M,

74

At this point we will assume that the functions g(x) and f(x) are

differentiable on [0,1] and that |f*(x)| <o and |f’(x)|< e Vxe[0,1]. This

condition will enable us to approximate integrals involving ¢ and f by

functional values without sacrificing O(hz) convergence. However, we

will lift these additional restrictions on ¢ and f later in this chapter and
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maintain O(k*) convergence.

Now, expanding g(f) in Taylor series in the interval [x,_,,x,,,] around x,

we may rewrite (3.39) as follows:

(3.41) Ay, = ‘.[:'P(‘)Uk(t){& +(t-x,)g'(§,)} at.

Xy SE S xpye
Therefore,

(3.42) Ay, =-g, J‘ p(OU, () dt - j POUL ) -x,)g'(E,) dt,
or,

(3.43) Ay, =-g,A, - B, for k22

where
A = j p(OU (1) dt and B, = j:_’l'p(t)U,,(t)(r-x,, )8'(5,) dt.

We note that A, >0 for k22.

The discretization at £ =1 may be obtained from (3.36) as follows:

G4 w-yn=wm) [0 dr+ [T vopege a,

or

3.45 R I AT LOY
(3.45) ey [} P 0g) e
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where

(346 0 {1 if 0<r<y
. t)= .
! w,(t)/llfl(x,) if x <t<x,

By expanding g(t) in the interval [0,x,] about ¢t=1x,, we may rewrite

(3.45) as

(3.47) w)?x ) .,,y(’x ) joz PO () {8, + (e - x,)8°(&))} dt,
) 11 1\
0<§ <z,
or
3.48 yl - )’2 = _ B
( ) W] (xl ) W] (xl ) glAl 1
where

(3.49) 4 =" pOU,(¢) dt and B, = [ p(1)U,(e)e - )g'(E,) at.

We note that A >0. The discretization (3.43) for k22 and (3.48) for

k =1 may be expressed in matrix notation by the equation

(3.50) HY + AY = B(h)+ F
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where H =(h,) is a tridiagonal matrix whose elements are

=y hy=— a L iog N
vi(x,) Via(xy)  wilx)
1
S L i=2()N -1
hl.l 1 %—l (x,-_l) ! ( )
1 . _
h,-'m = —m, i=1(1)N-2.

And
Y= Yya)
A=(a;) denotes the diagonal matrix with
a,=Ag, i=1-N-1
B(h)=(-B,,",~By_,)"
F=(=Af—Ayifya .

The method that we consider here determines an approximation ¥ for ¥ by

solving the (N —1) by (N -1) linear system

(3.51) HY +AY =F.

To approximate y, we proceed as follows:

Y= [pOaOy+ fo) ds.
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Integrating both sides from x=0to x = x, we get
= [ rp) 1
n=n=['[ o f@ drar= [1f P80 .
Expanding g(t) in the interval [0,x,] about ¢ = x,, we get
n=%= [ p® f —&rde+ [ o j - ng Gy ar

where 05§, <x,.

Since ye C'[O,l] by Theorem 3.1 and using condition (3.6), there exists
M, >0 such that g’(x) <M, for x€[0,1. By applying Taylor’s series
and Holder’s inequality to the second term in the above equation we get

()j e s [ 1p (ro)j — = x)dtty, 0S 7,

j" j -——dxdtM sup P'()

< hzcleMl

where ¢ —I j dxdt and ¢, < oo by (3.8). Therefore, the equation

(3.52) Jo= {j o) [* —"—dth}gl

may be used to compute an O(h?) approximation ¥, for y,.

l
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3.5 CONVERGENCE OF THE FINITE DIFFERENCE
SCHEME AND RATE OF CONVERGENCE

Theorem 3.2
The finite difference scheme represented by (3.51) is convergent of O(h?).

Proof
Let E=(e,ey,)’ =Y -¥. From (3.50) and (3.51) we get the error
equation

(3.53) (H+ A)E = B(h).

It can be easily checked that H is irreducible and irreducibly diagonally
dominant. Moreover, since the diagonal elements of H are positive and the
off diagonal elements are negative, H is an M-matrix by Lemma 2.11, i.c.,
H is invertible and H™ 20. Now, since A is a nonnegative diagonal
matrix and H is an M-matrix, then H+A is also an M-matrix and

(H+A)" < H™ by Lemma 2.12. Now from (3.53) we have

(3.54) | < |1 |Bw)|

in the uniform norm, where

BN = (BB

Since H is symmetric and tridiagonal, it can be checked that H™ = (h,-,"- ’) is
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given by

—-dr, i<j
(3.55) B = L’ p (T)
¢ U]

L i
L p(7) /

Now, we obtain bounds for the local truncation error.

For, k22, we have

B, = [PV, ()¢~ )86 ),

and
|B.|<|Dy|p,
where
D,= J’ PO, (O —x,)dt
(3.56) = [ p(:)[l-"’*-—‘("](x-xgdt
i1 k-1 (%)

+* ploy 2 YO e
V(%)

80
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Using integration by parts in (3.56) we obtain

ad Vs ® -2
D =~ —_— 1- di
k L.-. dt {p(t)[ Via (X¢-1):| | 2 t
_ xmi \ V’g(t) l(t_xk)z
I.. dt{p(" vi(x)] 2 a
n ., Via (t) (t—xk)z
= - 1) 1- dt
'['A-lp ( )[ Wk—l(xk-l)] 2
_ ‘rn 1 (t — X )2
Y, (X)) 2

I Wk(t) (t—xk)zd Xan 1 (t—x,‘)zd
L P(t)[%(xk)] > t+L o

3.57)

dt

Therefore,

n V(1) (t ~* )2
D,|< 1- a
ID| I'L,_.p (t)[ vf,,_l(xk-x)] 2 "

na V. (f) -I(t - X )2
3.58 - d
(3.58) L p (t)[ .5 _| 2 d

Zxat - 2 B - 2
NS WG P W %
A W) 2 B Y () 2

dil.

3
The first term in (3.58) is bounded by %—Ml because

u’k(t) ’
0s——<1Vk22 and |p'(t)|< M,.
v.(x,) lP()l 1
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The second term is equal to

Ihva( 1 1 }= h_af'lft-l ()= Wk(xk))
6 \vi(x) v (x) 6\ Vi)V, (x.,)
(1 1

h- h
h_3 p&)  p&)
6 1 h 1

\ P(&) p(§)

- o(e)- ()

L X0 606, SXy

h2

<=
6

(-6

< %h’M,.
Therefore, for k22, we have
1.,
(3.59) |B,| < S PMM,.
Now, for k=1 we have from (3.49)

B = [ p(YU ()t - x,)g" (&, )de

and

[B|<IDij,
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D = J': ’ p()U,(e)(z — x,)dt

(3.60)

= [ p)e—x)dr + j: p() 2Dt 2 3at.

¥i(x)

Using integration by parts in (3.60) and the fact that p(0) =0, we obtain

D, = —j:' 1 p'()e—x ) de— f

52 WI( )

and we have

'L' 2 yy(x)

We then conclude

22 ro 2. ":‘(‘ ’)(r Xt

—_—t xl) dt £ -

6

pr(n) 2t v, (f)

vz l)(t x,)2dt

(t—x,)%de

' 1 p’(t)(t -x) dtl < -é—Mlhs

<Imp (note that "’—‘((')-)-51,xl s:sz)

Vil
h3
——dz'
5 p(7)
lp(a,) 3
—4h,
6 h
1 hp (Bl h3

6 h
1

6

x <o <x,

0B <q

—6-h3M,.

1
ID, ()< -2—h’M,
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and
1
(3.61) |B,(h) sih’M,Mz.
Therefore,
(3.62) |B,(h)|s%M,M2h3 forall k=1(1)N -1.

Now, from (3.55) we see that the first element in each column of the matrix

H is the greatest. Therefore, using (3.54), (3.55) and (3.62) we obtain

12l <

5 [ty
——dt| =M,M,h
;Lp(r) !

MM 'ﬁ i) ——de
2 j=1 % p('t)

—MMzhz Z [

e

—MMhzzj

x“

j L i
% p(7)

j mdtd:

M, M, A j j —-—dxdt

< %M,Mzchz

where ¢ = ‘”

d‘r dt. This proves that the above finite difference

method is O(h?) - convergent.
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The finite difference scheme developed in Section 3.4 could also be applied
to problems (3.1) - (3.3) if the functions ¢(x) and f(x) belong to C[o,1].

To see this we expand y(f) in Equation (3.39) in Taylor series in the

interval [x,_,,x,,,] around x, to obtain
(3.43Y Ay, =—Aly,-B,-C, for k22

where

A= [ P O)ate)e,
B, = [ pOU, a0t~ 1) Y(Et, %,y SE, S 3y
G = [P )f e,

and U,(z) is given by (3.40).

Similarly, the discretization for k =1 can be shown to be given by

3.48) ! -
( wi(x ) W (xl) sion

where
A= [ oYU (e)g(e)dr

B/= [ (U, (Da(e)e—x) (€ )dr, 0<E <x,

j PO, () f(t)dt.
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In matrix notation, (3.43)" and (3.48)’" be expressed as
HY +A’Y =B'(h)+C
where H and Y are the same as in (3.50) and

A= (a,.;) denotes the diagonal matrix with
a;=4/, i=1--,N-1,

B'(h)=(~B, B}, )
C=(~Cp=Cy.y)'.

As in (3.51), the method we consider determines an approkimation Y for Y
by solving the (N ~1) by (N -1) linear system
(3.51y HY +AY =C.

To approximate y, we proceed in a fashion similar to what we did in

Section 3.4 to obtain

(3.52) Fo=5-~] p(t)q(r)j S 5o+ [ e @) —dxdt

Following the outline of the proof of Theorem 3.2 we can show that the

difference scheme represented by (3.51)’ is convergent of O(hz) in the

uniform norm.
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CHAPTER 4

NUMERICAL APPROXIMATION OF

EIGENVALUES AND EIGENVECTORS

FOR SINGULAR BOUNDARY VALUE
PROBLEMS

4.1. INTRODUCTION

In Chapter 3 we discussed approximations for the solution of (3.1) - (3.3)
from a numerical analysis point of view. There was no need to formally
define discrete operators and discuss their convergence. In this chapter,
however, and in order to make use of the existing theory on convergence of

eigenelements we approach the problem from an operator theory point of

view.

In this chapter we study the approximation of the eigenpairs of the singular
two point boundary value problem

@D Sy ) e =D, xe (D,
with boundary conditions (3.2) and (3.3).

Under certain conditions set on the coefficient functions p(x) and g(x),

(4.1) induces differential operators in the spaces L*(0,1) and C[0,1] which
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have discrete eigenvalues. In this chapter we present an analysis of such
operators showing compactness of their inverses and therefore discreteness
of their spectrum. The finite difference method introduced in Chapter 3 will
be used to approximate the eigenpairs of the problem. It will be shown that

the method is O(h’) under minimal assumptions on the smoothness of the

coefficient functions. The error analysis will be carried out in both the

energy norm and the uniform norm.

Eigenvalue problems of this type were considered by Nassif [17] and Mills
[14] where the analysis was done in the energy norm for general operators
and then the eigenvalue problem was given as a special case. This work is
more general in the sense that the analysis is done for a class of singular

boundary value problems rather than a specific problem.

The content of this chapter is as follows. In Section 2 we state the problem
and the assumptions on the coefficient functions. The operators involved
are then defined and the discreteness of the spectrum is proved. In section 3
we study the convergence of the approximate operators arising from the
difference scheme to the exact operators. Finally the convergence of the

eigenpairs is studied in section 4.

4.2 THE EIGENVALUE PROBLEM

We consider here the eigenvalue problem
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4D —GeYE) =) e
with boundary conditions
(4.3) lim (p(x)y’)=0,
4.4) 1)=0,

where we make the following assumptions:

A p0)=0, pi(x)e L‘,,,(O, 1}, p(x)20 and xse?ogll p'(x)l =M <oo,

(B) q(x)20and g(x) e C[0,1].

_I (J' -R—)-dr) dx<eo, p is increasing in a neighborhood

[0,8] of 0 and ZZ) -o( )
plx) \x
We will show in this section that, under assumptions (A) - (C), problem
4.2)- (4.4) has a discrete set of eigenvalues. It should be noted that, from
the theory of differential equations, each eigenvalue can have at most two
distinct eigenfunctions. To carry out the analysis we introduce the
following operators. The operator L defined by

D(L)= {y e (Ol Lye (0,1), lLim p(x)y =y(I)= 0},
( 4.5) x50

Ly=(py).
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The operator K is defined by

D(K)=D(L)
(4.6)

Ky=(py’) - pqy.
Then (4.2) can be written as

1

—Ky =2y,

D

i.e. problem (4.2) - (4.4) reduces to one of investigating the spectrum of the

operator -I-K .
p

Before we proceed any further, we need the following Lemma.

Lemma 4.1

Under assumption (A), p(x) is bounded away from zero on any compact
subinterval [8,1] of (0,1}, i.e. 3c> 0 such that p(x)2c Vxe [6.1]
Proof

By Lemma 3.1, we have p(x) >0 for x (0,1 Now assume that p(x) is
not bounded from below on some interval [5,1], §> 0. Then 3 a sequence

{x}, c[8.1] such that p(x)—0 as i—co. But then there exists a

subsequence {x.}, such that x, —x, €[8,1] Thus p(x,)=0 which is
not possible by Lemma 3.1.

Theorem 4.1
Under assumptions (A) - (C), the operator
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K:I2(0,1) = *(0,1)
is self adjoint and has a compact inverse.

Proof

In [9] it was shown by investigating the deficiency indices of the so called
minimal operator for L that L is self adjoint with compact resolvent. Since
K is obtained from L by addition of a bounded self adjoint operator;
namely multiplication by —pg; which does not affect the deficiency indices,
it follows from Theorem 2.3 that K is self adjoint with compact resolvent.
It thus remains to show that O is in the resolvent set of K. For this it
suffices to show that 0 is in the domain of regularity of K since self adjoint
operators do not have residual spectrum. Note first that for y e D(L) we
have py” e AC[0,1], the space of absolutely continuous functions on [0,1].
Then by Lemma 4.1 we deduce that y’ is continuous on any compact

subinterval of [0,1). Thus for any x & (0,1] we have
1
yx)=| yde
and, recalling condition (C),
1 et , . \2 1 e11 1,
(O y) = Io ydx =jo(Ly dt) dx < jo(L—p-dt) J; py’dt dx

< J:(_[:—;—dt)dx j; py*dt<c(py’,y’)

=—c(Ly,y)=-c(Ky,y)- c(pqy,y) S —c(Ky,y).
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Therefore, [(Ky,y)|2 ':Tﬂ)’": By the Cauchy-Schwartz inequality we have

ok, 2 2ok,

Corollary 4.1
The operator ;l’-K has a discrete spectrum.

Proof

Since multiplication by p is a continuous operator, and K™ is compact,
p i p

then K™'p is compact and hence has a discrete spectrum and so does -II;K .

We turn next to the study of the operator ;l,-K on the space C[0,1]. In this

case we restrict the domain of the operator to those functions in C[0,1]

which are mapped into C[0,1]. We can state the following theorem.

Theorem 4.2
The operator K™ p:C[0,1] - C[0,1] is compact. Consequently %K has a

discrete spectrum.
Proof

Consider first the operator -!-L. We can write L™ p as an integral operator
p

with kernel
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(D) j ——d‘t tSx
K(x,t)=
p(t)I —dr t>x.

We will show that K is uniformly bounded and that J:IK,(x,t)ldt is

uniformly bounded in x. It then follows from Arzela-Ascoli’s theorem that

Lp is compact.

Now K(x,t)Sp(t)I dr p(t ){I ()dr+_[ ()d‘t‘} With the

second part of the last parenthesis bounded by Lemma 4.1. As for the first

part we have

p()J oSO jdr (8-1).

Therefore, the right hand side of the above inequality is bounded on [0,5].
Thus K(x,£) is uniformly bounded on [0,1}. Also since

j p(e)dt + [ p(e)de
p(x)

[ K. Cxopfde = j ”(')d -

a similar argument shows that I;]K‘(x,t)ldt is uniformly bounded in x.
Thus L p is compact. Now the operator K~'p = (l— L pq)-lL"p will be

compact once we show that (l—L"pq)-l is bounded. Since the
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multiplication by ¢ is a continuous operator (see assumption (B)), the
operator L™ pq is compact. Hence it suffices to show that 1 is not an

eigenvalue for L' pq. Solet L pgy =y, then (L~ pq)y=0. Therefore,
— (7 — N L S L
=((L~pa)y.y) == py"dx- [ pay’ax

and thus py”=0. Thus y’=0 (see Lemma 4.1). Since yeD(L) we
must also have y(1)=0. Therefore y=0. This completes the proof of the

theorem.
The following Lemma provides some “reverse” inequalities, i.e. bounds on
the norms of y’, y" for solutions of the pioblem -Il-,-Ky = f in terms of the

data f of the problem. These estimates will be needed later in this chapter.

Lemma 4.2
Let ye D(K) solve %Ky= f, where f eC[0,1], then

bl sdfl, m=012 s=2,e.

Proof
For m=0, the result follows from theorems 4.1 and 4.2 since K7'p is

compact in both the energy and the uniform norms.

For m=1, we write

@7 '(x)-—— J Py e)de+—< Jp(r)f(r)d:
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then
() sp—§5 [ p@r(lal bA. +i11.)

(4.8)
< c;’% Kp(t)dt“ fl. (by using the first part of this proof).

Since p(x) is increasing in the neighborhood of zero, then using Lemma

4.1 we can show that % j:pd: —0 as x— 0" and that it is bounded on

[0,1). Hence we get

bl <drl..

Returning to (4.7) and using the Cauchy-Schwartz inequality we have the

following estimates
1 ‘(1 ’
’ 2 X X
' (x) < c{(—; Jo pqy dt) + (; Io of dt) }
1
< c(.; jopzd,) (bl +1)
1 ¢x
< c(;—z- jo p’dt) IrE.
We can again show that —l; rpzdt is a bounded function on [0,1] Hence
D 0

we get

1, <lr1.-
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For m =2, write
y=f+q-Ly.
p

Then

IIY"ILSC(IIfIL+IIYI.+"%y‘n‘)56(ﬂfﬂ.+“%y1|~} .

Hence we need to estimate

S i'w,

y"[ in terms of |£],.
For s =00, we have
p,_p P =
=Y == | pqydt+=| pf dt.
p pz -[0 pz Iop

Then

v | 2 i ar) oL +1)

96

Using condition (C) and Lemma 4.1 we can show that Ipa;lj:pdt is

bounded in [0,1].

Thus

p <dil. .
I’;yﬂ- cr.
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and therefore,
bl sdrl..
For s =2, write
p',_p (=
i P8 dt

where g= f+qy.

Then, for & small enough,
Ipq " J( ) [(pg d) dx
- B (Goeaf s {2 (Fre af

Since p(x) is bounded away from zero on [8,1] and p’(x) is bounded, the

second summand is bounded by c|g|;. Using assumption (C) we estimate

the first summand as follows

j:(-g-;-)z (j:pg dt)zdx < j:(f,—)z(jo Plgldt)zdx
sefy (L g

Recalling Hardy’s Lemma we have

j: G? ﬂgldt)zdx < "% j:]gldt": < 2||g||§.
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p

b1, <drl.

2

<df +qy||:.
2

This implies that

4.3 APPROXIMATION OF THE OPERATOR K7'p AND
ORDER OF CONVERGENCE

In this section we investigate the convergence properties of the difference
scheme (3.51)" and (3.52)". We prove in Theorem 4.3 below the uniform
convergence of the approximate operators to the operator K™ p. This in

turn will give us optimal order of convergence of the eigenvalues and

eigenfunctions which will be studied in Section 4.4.

Since it follows from Theorem 4.1 that D(K) < C[0,1) < I*(0,1) where
C’[O, 1] is the space of continuous functions that vanish at x = 1, we may
start by defining the subspaces H, = {0,, €C[0,1}:8, is linear on
(%-10%,) i =1,-+-,N} and the projections 1,:C[0,1] - H, which interpolate
at the mesh points x,,:+,x,, by peicewise linear polynomials, Furthermore,
we define the operators J, on L*(0,1)(C[0,1]) into H, as follows. For a
given f € L*(0,1)(C[0,1]) we assign the function &, € H, whose values at
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the mesh points are the components of the solution vector ¥ of the matrix

equation (3.51)" for k21 and =¥, given by (3.52)’ at k=0. (The

solution exists since H is an M —matrix, i.e. H is invertible and H™ 2 0.
Also H+A is an M —matrix and (H+A)™ SH™.) We now have the

following theorem.

Theorem 4.3

The operators J, converge uniformly to K™ p as h— 0 in the energy norm

and the uniform norm. The order of convergence is h*.

Proof
Let f e *(0,1)(C[0,1]). Let y=K"'pf and y, =J,f.

Then for s € {2,0}, IIK"pf —J,,f"' =ly=nl, sly-1], +jLy -l

Using the standard approximation properties of L*(0,1) and C[0,1] spaces

we get

=15, s ch*ly™..
Lemma 4.2 now yields
4.9) =151, s k|1,

The theorem will then be proved once we show a similar estimate for

l6,y-y.],. Since H, is isomorphic to Rt* and since all norms on RY are

equivalent we can write
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(4.10) oy, < C(Iyo —iol+ﬂ1"7i-)

where y, =)(0), 7, is given by (3.52)’, ¥=(y,-yy) and ¥ is given
by (3.51)".

Now from Section 3.5 we have

4.11) [r-1] scrlyl..
Also, using (3.52)" we get

b=l bt =5+ POy -5+ [ pdatXe - w0 L.

From (4.11) we have
4.12) Iyl - i,] < ch’lly'"_.

On the other hand

[ 2300 o sl [} o0 e oy condiion €

Finally we note that since p(t) I —(Sd't vanishes at 0 and is bounded on

,E.‘{,"lzjo pe)e-x) [ 'p(l—r)df 4’]

—j p(t)f -——drdt <ec.

[0,#] we have

ll—bo‘
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This means that J:' p()(t—x) wo()dt is O(h*) as h—> 0. This together

with (4.12) yields

(4.13) o = 5ol S ch?ly...

From (4.10), (4.11) and (4.13), we get

(4.14) [y = l, <ch’lyl..

But from Lemma 4.2, we obtain

(4.15) bl <.
(4.14) and (4.15) establish the required estimate.

4.4 APPROXIMATION OF EIGENELEMENTS

We now consider the problem of approximating the eigenvalues and
eigenfunctions of the problem (4.2) - (4.4), or, equivalently, approximating
the eigenvalues and eigenfunctions of the operator K™'p by the scheme
(3.51)’ and (3.52). By the analysis of Section 4.2, the operator K~'p
has real isolated eigenvalues with ascent 1 and multiplicity at most 2. In the
sequel X denotes either 17(0,1) or C[0,1}, 4, denotes an eigenvalue of
K”'p and T a closed Jordan curve around A, such that the domain A
enclosed by I contains no other eigenvalues of K~'p. P, will denote the

spectral projection associated with 4, i.e.,
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P, =——1_IR(Z)dz
YT 2my

where R(z) is the resolvent of the operator K™'p. The invariant space

associated with K™'p and A, will be denoted by M, ;

M, =P.X.

With J, defined as in Section 4.3 we may define the resolvent
R,(z)=(J,—z2)" for each z €T provided that I lies in the resolvent set

p(J,) of the operator J,. The spectral projection

w__ 1
P = [ e

projects on to the invariant subspace associated with J, and its eigenvalues

inside T. The latter set is denoted by o(J,)NA. The invariant space

PYX associated with J, and 6{J,)A will be denoted by M.

With the foregoing definitions at hand we can now use Theorem 4.3 and the
results in Section 2.2 to state the rate of approximation of the eigenvalues

and eigenfunctions of the problem (4.2) - (4.4) in the following theorem.

Theorem 4.4
Let A, be an eigenvalue of the operator K™ D isolated by the Jordan curve
I'. Then for h small enough, T" will enclose at most two eigenvalues of J,

and
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IA, - ﬂ")l <ch?,
o(M,. M) < ch?,

where A1*) denotes the average of the two eigenvalues of J, inside T.

103
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CHAPTER 5

NUMERICAL RESULTS

In this chapter we provide numerical examples which verify O(h’)

convergence of the finite difference scheme employed in Chapters 3 and 4.
The computer application program “Mathematica” was used to execute the

algorithms that were used with the numerical examples.

5.1 NUMERICAL APPROXIMATION OF THE SOLUTION
OF THE SINGULAR BOUNDARY VALUE PROBLEM

Three examples were used with three different functions p(x). Uniform
mesh was used with N =16,32 and 64. Following are the examples and

the numerical results obtained.

Example 1

T ' (.« n
in—x vy | =—=—|sin—= =— , 0Sx<1
((smzx)y) 2(smzx)y 5 sintx, 0sSx
O AW
5.1) xll’r‘r)l.(sm-z-x)y =0,
¥(1)=0.

It is easily checked that y(x)= cos%x is an exact solution for the above

problem. Table I below shows O(hz) convergence of the finite difference
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used. In this table, the vectors Y and ¥ are the exact and approximate
solutions as defined by (3.50) and (3.51) respectively. Figure 5.1 shows
the graphs for Y and ¥ in the same plane for N=32 and Figure 5.2 shows
the graph for the error Y - ¥.
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TABLEL: Numerical Results for Example 1
N Jr-1], K
16 7.8 (-4)* 39 (-3)
32 20(-4) 9.8 (-4)
64 5.0 (-5) 24 (-4)

*The numbers in parenthesis are powers of 10, e.g. 7.8(-4)=7.8 x 10-4.
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Fig. 5.1. Graph for the exact and approximate
solutions of Example 1
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Mesh Points
5 10 15. 20,  25. 30.
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Fig. 5.2 Errors for Example 1
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Example 2

5.2)
((2x —x’)%y’) ~(2x —x’)%y =(2-6x-x +x’)(2x—x2)%
+6 —15x+9x2)x%(2—x)}5, 0<x<1
lim (2x -5 )% y'=0,
y1)=0.

The exact solution for (5.2) is y(x)=x*(1-x). Numerical results showing

O(hz) convergence are given in TABLE II. Figure 5.3 shows the graphs

for Y and ¥ in the same plane for N=32 and Figure 5.4 shows the error
Y-¥.

Example 3
(p(x)y')' ~q(x)p(x)y = p(x)f(x), 0sx<1
(5.3) lim p(x)y’ =0,
¥(1)=0,
where

p(x)= */J—c(w/;H) In (\/3c_+1)
q(x)=1

f(X)=3-1—25-x—x2+x’+ﬁ(2_3x)(1+ 1 }

2(«/E+1$ Ini«/:?+1§

The exact solution for (5.3) is y(x)=x*(1-x).
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N -1, #

16 2.2 (-3) 39(3)
32 6.1 (-4) 9.8 (-4)
64 1.6 (-4) 24 (-4)
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Numerical results for Example 3 are given in TABLE III. Figure 5.5 shows
the graphs for ¥ and ¥ in the same plane for N=32 and Figure 5.6 shows

the error Y - Y.



TABLE II: Numerical Results for Exanple 3
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-7

N K

16 2.1 (-3) 3.9 (-3)
32 5.8 (4) 9.8 (-4)
64 1.5 (4) 2.4 (-4)
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5.2 APPROXIMATION OF THE EIGENELEMENTS

Example 4
Consider the eigenvalue value problem

4

N VAR of AR 20 WNPY AR |
((smix)y) 2(smzx)y—l(smzx , 0<x<1

(5.1) lim (sin-’zfx)y'=o,

It can easily be verified that 4 =~z is an isolated eigenvalue for the above
problem and that y = cos-’zfx is the associated eigenfunction.

Let AA denote lﬂz —ANI where 4, is the numerically obtained eigenvalue
with a mesh size N. Let 6(A,B) denote the gap between A, the

eigenspace associated with 4 = 7%, and B, the eigenspace associated with

Ay. Table IV shows O(hz) convergence for both the eigenvalues and

eigenfunctions.

We list below the computer program that was run by Mathematica to

approximate the eigenelements of Example 4.
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N AA 0(A,B) h?

16 7.9 (-3) 1.6 (-5) 39 (-3)
32 2,0 (-3) 3.9 (-6) 9.8 (-4)
64 49 (-4) 5.6 (-6) 24 (-9




APPENDIX

Sample Mathematica Program Used to Approximate the

Solution for Example 3

Qlx_] := 2Log{Log[x*.5+1]]

P[x_]: = xA.5(xA.5+1)Log[xA.5+1]

Flx_]: = 3-7.5x-x"2+xA3+.5(2-3x)/(xA.5+1)(xA.5+x".5/Log[xA.5+1]
Y[x_]: = xA2(1-x)

y=N [Table[Y[27(-5)i], {i,31}], 10}

Do A[i] := NIntegrate[P[x)(Q[x]-Q[2*(-5)(- DI/(QI2(-5)i]-
QIRAG5)GE-DD,{(x, 2/4-5)(-1), 2M-5)i} 1+
Nintegrate[P[x}(-Q[x]+QI2A-5)(i+ DI/(-QRA-5)+QI2M-5)G+1)]),
{x, 27(-5)(@), 2M-5)(+1)}], (i, 2, 31, 1))

A[1] := Nintegrate[P[x], {x, 0, 2/(-5)}]+ NIntegrate[P[x]}(-Q[x]+
QRAGS)IN/-QI2AC-5)HQUM-5)2)D), (%, 24-5), 2M(-5)(2)}]

All]

Table[A[i}, {i, 2, 31}]

v= N [Table[-A[i](F[27(-5)i]), {i, 1, 31, 1}], 10]
h[1]=1/QI2(2A-5))1-Q[2*(-5)])

Dofh[i] := 1/QI2X-5))i]-QI2*(-5)- ))+1/-QI(2A-5))il+
QI2A-5)G+1)D), (i, 2, 31, 1}]

119
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Do[hl[i] := -1/(QIA(-5))i]-QI2*(-5)G-1)D), (i, 2, 31, 1)]

Dofhuli] := -1/(-QIA-5)IH+QI2A(-5)+1)D), {i, 1, 30, 1)]
Table[hui], {i, 1, 30}]

Table[hl[i}, {i, 2, 31}]

m = N [ Table[Switch[i-j, -l,hu[i], O,h[i]+Alil, 1,hl[i], _,0], {i, 31},
{3, 31)11

LinearSolve[m, v]

y-%

yo: = N [.000362658-NIntegratefP[x](Q[2(-5)]-Q[x])(.000362658+F[x]),
{x, 0, 2M(-5)}1]

yo
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Sample Mathematica Program Used to Approximate the

Solution for Example 4

Y([x_] := N [Cos[x(Pi/2)]]

QIx_] := N [ (2/Pi)Log[Abs[Csc[x(Pi/2)]-Cot[x(Pi/2)]1]]

P[x_] := N [Sin[x(Pi/2)]]

y = N [Table[Y[2/(-4)i], (i, 15}]]

Do[A[i] := (Pi*2/2)(NIntegrate[P[x}(Q{x]-Q[2(-4)(i- DD/(QL2"(-4)i}-
Q2A¢-4)(-DD\{x, 22(-4)(i-1), 2M(-4)i} 1+ NIntegrate[P[x](-Q[x]+
QI2A(-4)(i+1D/-QIA-DIHQL2M-4)(+1)D), {x, 2M-4)(0), 2A(-4)G+1)}]),
{i, 2,15, 1}]

A[1] := (Pi*2/2)(NIntegrate[P[x],{x, 0 24(-4)} ]+ NIntegrate[P[x](-Q[x]+
QRA-DDI-QI2M-DIHQRA-)(2)D, (x, 27(-4), 2M-4)(2)}])

All]

Table[Ali], {i, 2, 15}]

h[1]=1/(Q[2*(-4))]-Q[2*-4)])

Dohfi] := 1/(QIN-4)i]-Q2A(-4)(i- DD+1/(-QI2M-4))i]+Q[2(-4)
G+nh, (i, 2, 15,111

Dofhlfi] := -1/(Q[24(-4))i]-Q[2*(-4)G-DD), {i, 2, 15, 1}]

Dofhuli] := -1/(-Q2A(-)i+QI2M-A)G+D)D), (i, 1, 14, 1}]

Tablefhu[i], {i, 1, 14}]

Table[hl[i], {i, 2, 15}]
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m = N [ Table[Switch(i-j, -1,-huliJ(A[i]/(Pi*2/2)), 0,-h[il/(A[LY/(Pir2/2))-
Pir2/2, 1,-hlli)/(ALi(Pi*2/2)),_0}, (i, 15}, {j, 15}1]

Eigenvalues[m]

Eigenvectors[m]

me = N [ Table[Switch[i-j, -1,-hu[i}/(A[i)/(Pi*2/2)), 0,9.86175-
h[iJ/(ALY/(Pi*2/2), 1,-hI[)/(AL]/(Pi*2/2)),_,0], i, 15}, {j, 15}]]

z=N [Table[0, (i, 15}]]

LinearSolve[me, z]

(-.363385/.995185)y
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