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Date of Degree:  June 1997

The use of parallel memories has been the most promising technique to bridge the gar
between high performance processors and available memories. By having N parallel
memories. we aim to have a total memory bandwidth of NB, where B is the bandwidth

of a single memory bank. However, using simple interleaving techniques. the effective

bandwidth becomes much less than that and is about vNB f21]. This is because of
serialization of memory access which happens when a number of elements that wiil be
referenced at the same time are stored into the same memory bank. Having low memory
throughput can severely affect the overall performance of vector machines and SIMD

systems.

To minimize memory conflicts, researchers have considered storage schemes for
conflict-free access of frequently used patterns like rows, columns, and power of 2
patterns and strides. In this thesis. we consider power of 2 patterns as well as arbitrary

strides. A new approach for combining different patterns into one linear bitwise storage
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scheme is proposed. We use 5 different approaches to construct combined storage

schemes: 3 coloring-based heuristics, a Neural Networks approach, and a Genetic

Algorithms approach.

In the case of power of 2 patterns, we were able to hit the lower bound on access
time for small problems. For large problems, we achieved small deviations from the lower
bound (3% -29%). In the case of arbitrary strides, access time of our schemes were 10%
less than the best known bitwise schemes [41]. In addition, our schemes work with any
power of 2 number of memories, while some other schemes work with a fixed number of

memories like [41] which works with 8 memories.

Master of Science Degree
King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
June 1997



xvii

Tl Y Los

s> o3l Saew fL.» :H‘JI
Lslgall 581000 puaiss WL Il clase
JY culadl usia t oaasndll

Saprell Ll l,S13lly oY Ldle Sladlall Gy 2ol Sand Jouoy § Ll G- b1 _3ST oo Z5lall ol SIS planid any
Sanly 3513 5ay L @ B ol tus N B 5y WS Ll Jpaslly geasall Joly Ljlgse 5,815 5ammy N plasccly
os U i [11] NB «/FB Sl Lslaill o o101 pUBSS Libodll Lo ol (95 LSl a3l G plainialy oS3
oy el Sagge iyl pu § paiied Sl SOl polis 0o 235 55 Letis Sy 3l 3 SIAH Jesall whibes Julss
3813

(SIMDj 31421y (Vector Machines; Lueadll S:ga ¥l § plall ol (lo oS JS8) 385,510 & oSS of
oi3all Gab o A gLl ek il Chaiis § Lugadll Sper Yl b S USAN 0ds JaS Sl o 5as gy 28 1
B 52ae Yl shndlS plasi Y3 oS (Patterns) Sl | Jesall wis (Memory conflicts) 5130 <ls s 215Y
(Power of 2 patterns) ¥ 54l 3ty (Strides)

Ub patiws .(Arbitrary strides) Ll el b g BT, v el 2 o3 G b Ll patie ol 132 3
255 5.k v :(Storage schemes) el bhi il Wlide 5ib 0 padid u> Saaly Gu355 1hs § dlise U gt S
el Sl dasl pasis by ¢ luaall A pasis Gyb «(Graph coloring) pew J oaals L

Bl § Ll ahaglly 5 il Sl § 23laill 33gd Jpball g S0 asil 305 of kit < ¥ 51 pw U 3
R omaS 345 e USS Glal pddl (b Ul § 14 = o g1 oY 2l o8 Jasll 28y § byl Julds bl 528 5 Sl
3l nSe Ao SLSIHN o (VS 0a) o8 ST e Jans ligb of J1 BLOYL [64] oetaldl aiias os 555 L Jil o6 /-
b33 I SI5 A pe Jary s3Iy T60]

owladly Ja 5l wgd Sl Lanl>
0 gl gy gadl AStal) — ) pgdil]

VA4Y duign



Chapter 1

1. Introduction

The processing power needed by scientific and engineering applications like numerical
analysis, image processing, artificial intelligence, and many other applications *:»s been
ever increasing. To satisfy these needs, the processing power of high performance
processors has been increasing in a similar pace. However, for many applicauons like
image processing and numerical analysis, the overall performance is highly affected by
how fast a processor can get the information to be processed. In other words. th+ spzed of

the memory system can significantly affect the overall performance.

The bandwidth mismatch between fast processors and the available memories has
been a main design problem for long time. Researchers and designers have been always

looking for the right way of combining processing power and memory system
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architecture. Different ways have been in use to bridge the gap between processors and
memories. The available techniques fall mainly into three categories : technology,

software, and architecture.

1.1 Technology

In the technology side, scientists have been pushing hard to go around undesired physical
characteristics of memory devices. Physical characteristics like signal delay, races. and
capacitive behavior have been the most significant obstacles of speeding up memory.
Many of these characteri.stics have been negligible for long time, but started to cause
problems for larger scales of integration. As the integration technology advances, many
negligible effects become significant. Solving these problems is the aim of most
technological research. In general, technology contributes to speeding memory up by the

use of alternative technologies, wider buses, SRAM, and special interfaces.
1.1.1 Alternative Technologies

Today, most of the industry relies on the use of CMOS technology which is cheaper than
other technologies. With CMOS, much higher densities of memory devices can be
integrated into a chip, which gives larger storage. Moreover, it consumes less power than
other technologies like TTL and ECL. However, undesired physical characteristics like

signal delay and capacitive behavior are encountered more in CMOS technology, which
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makes it slower. To gain speed, other technologies like TTL and ECL (which have much
faster switching) can be used, though that will be on the expense of cost and power
consumption. ECL is much faster, but the most power consuming. BiCMOS is a hybrid
technology of TTL and CMOS. It is faster than CMOS and less power consuming than

TTL [32].

1.1.2 Wider Buses

Memory speed can also be gained by increasing the memory bus width. Doing so allows
transferring more data bits at the same memory cycle. Memory bus width ranges from K-
bit to 32-bit in different systems. The optimal width is the one that matches the memorv

bus with the system bus [32].

1.1.3 Use of SRAM

The main problem of the main memory is being dynamic. In Dynamic RAM (DRAM),
data bits are stored in capacitors. A data bit is read by draining out the current from the
capacitor. So, the data bit has to be written back and the capacitor has to be recharged
before reading it again. In addition, capacitors need to be refreshed because of the current
leakage they have. This makes the memory cycle much longer. Another type of RAM is
the Static RAM (SRAM). In SRAM, a data bit is stored in a flip-flop and a read cycle can

start as soon as the previous one is complete. This makes SRAM much faster than



DRAM. Unfortunately, SRAM is about four times larger than DRAM and hence costs
four times more [32]. So, we can not build the whole memory of SRAM, but it can be
used as a cache memory. Cache is a small SRAM inserted between the processor and the
memory. The cache holds data with high probability of being referenced and so avoids
accessing the slow DRAM main memory as shown in Figure 1-1. Design issues of cache

are discussed in section 1.3.1.

DRAM Main

Processor ———— SRAM Cache
Memory

Figure 1-1 : Cache Memory

1.1.4 Special Interfaces

Another bottleneck is the interface between memory and processor. Several input/output
modes were invented to enhance and speed up this interface [32]. When a memory row is
selected by stropping its address, all data bits in that row appear on the output amplifiers.
In random access mode, one column is selected and its bits appear on the output pins. In a
page mode read operation, all the row data bits are held on the sense amplifiers while new
column is selected. This way, no time is spent on writing the data on the amplifiers back

to the memory cells and precharging before a new column in that row is selected. This



reduces the memory cycle if the data to be read lies in the same row. Various similar

modes are in use like hyperpage mode [32].

In spite of the memory speedup achieved by technological development, it has
some problems. First, it is bounded by physical limits. Signal speed inside memory chips

is bounded by the speed of light and we are now very close to this limit; current signal

speed is about % of the speed of light. Moreover, device dimensions are approaching the

atomic level and further dimension reduction is becoming increasingly harder; compare

the 25u technology with the 2.64;X diameter of the Silicon atom [23]. So, speeding
memory up by increasing signal speed or reducing device dimensions is almost
exhausted. Second, whenever memory speed is increased by technological developments.
processor speed can be similarly increased, which means that the speed gap between
processors and memories is still persistent and will result in low utilization of processing

power.

1.2 Software

Software and hardware are functionally equivalent, but with different cost and
performance. Software can be thought of as an extension of hardware. We can not afford
enough physical memory to hold all programs that may run concurrently, so we can
emulate this memory in software by virtual memory and page swapping. Similarly. we

can not afford a CPU for every program or user of a system, so we emulate this in



software by multitasking or timesharing. In these two cases we compensated for hardware
by software to save cost on the expense of performance. But how can we use similar
arguments to hide memory hardware latency by software and speed up the overall

memory system.

If the memory technology used is slow or the memory organization does not
deliver the needed throughput, the software can not change these inherent physical and
hardwired characteristics of the memory system. The software can not boost the memory
speed to match the processor speed. However, it can improve overall performance by
trying to hide these undesired characteristics by mainly two techniques. First, by reducing
the number of services requested from the systems slowest part, the memory. Second. by

keeping the processor busy during the portion of time spent on waiting for memory.

1.2.1 Minimizing Memory References

We can reduce the number of memory references by two means. First. by reducing the
frequency of load and store operations. This is a compiler task. The compiler optimizes
the code and efficicatly schedules internal registers to minimize the number of load and
store operations. Second, if it is necessary to use load or store operations, then try to make
them to the cache instead of the main memory. This task is performed by the operating
system. The memory management part of the operating system uses different algorithms

to keep the most likely to be referenced pages in the cache. By doing so. the operating



system can hide the memory latency from the processor. There are many cache
management algorithms and techniques in the literature. The performance of these

algorithms is application dependent [45,48].

So, no matter how the compiler will optimize, the program must need access to the
memory. And no matter what clever techniques the operating system will use to manage
the cache, there will be cases where the main memory will be accessed (cache misses).

So, software can virtually reduce the memory latency, but can not completely hide it.

1.2.2 Reducing Idle Time

If the software can not completely hide the memory latency, it still has a chance of
partially or completely hiding its effect on performance. This can be achieved by keeping
the processor busy performing other tasks instead of waiting for the memory operation.
Many techniques are in use to keep the processor busy while waiting for a memory
request. This is an operating system and compilers task. The operating system can switch
to another process after issuing a memory request to minimize idle time. The compiler
also can find pieces of code that can run in parallel so that the operating system can
switch from one to another. The trend of multithreading is an example of such techniques

that can be used to reduce the processor idle time.



1.3 Architecture

As discussed in previous sections, technology and software approaches have been used 10
speed up the memory. However, these approaches still have their limitations. Bevond
these two approaches we are left with the other alternative approach, which is the
architectural organization of the memory system. Research in memory architecture has

been going in two directions : cache architectures and parallel architectures.

1.3.1 Cache Architecture

As mentioned in section 1.1.3, cache is a small SRAM inserted between processor and
main memory. The cache memory function is based on the concept of data locality. The

processor accesses a relatively small amount of data in each time window. The cache

-~ AR
Frocessor Processor
‘ Processor
T Processor T
Cache
Cache
Cache
- - —_— ’/-—’—‘—ﬁ ————————
T Synchro
Cache nous
- Intecface
MM MM
MM UM

—_————— —— —_—

(a) ® (©) C)]
Figure 1-2: Cache Topologies



memory is intended to capture the essential data by the program so that, main memory
access time is hidden by the small access time of the cache. There are various cache
topologies having different properties. Figure 1-2 [32] shows four different topologies. In
the simplest form, cache is inserted between processor and main memory as in (a). In (b),
the cache is embedded to the processor to avoid input/output delays and to match the
memory bus with the wide processor bus. In (c), it is embedded to the main memory to
connect the fast cache to the wide internal DRAM bus. In (d), the cache is embedded in
the processor and a synchronous interface is embedded in the main memory to deliver fast

bursts of data to the cache [32].

It is observed that the cache memory concept has some limitations. It seams that
there is some limitation on increasing throughput beyond some cache size and
organization. The limit results from two conflicting effects : temporal locality and spatial
locality. The first requires small page size while the second requires the opposite. Since
any program contains a mixture of the two (temporal locality and spatial locality), it is
possible to find some cache size and organization that is suitable for a typical program but

not necessarily for other programs [32].

1.3.2 Parallel Memory Architecture

The other architectural direction is the paraliel memory organization. This approach can

be divided into two categories: time parallelism and space parallelism.
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1.4 Time Parallelism

In this approach, the memory access process is decomposed into a number of independent
stages. When a memory access request is done with one stage, it can go to the next one
and the previous stage can start processing another request. In other words, different
memory requests can be overlapped. This is memory pipelining. A possible memory
access decomposition is shown in Figure 1-3. In this example, it is decomposed into three
stages. Unlike instruction execution pipelines, where up to 20 stages or more can be
exploited, it is hard to decompose memory access process into more than about three

stages. This puts a limit on the gain of memory pipelining or time parallelism [21].

Stage 1 Stage 2 Stage 3
. 1
. Row/Column N — N Data ™.
Address. ——— > " pee i Cell Access ___> Transtore > Data

space

r'S

3 Adri Adr2 ..

2 Adrt Adr2 ..

1 Adr Adr2 .. -

- —o» tlime

Figure 1-3 : Memory Pipelining
1.5 Space Parallelism

In time parallelism, different requests are processed by different stages representing

different processing steps. In space parallelism, however, identical units process in
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parallel different requests. In other words, the memory is divided into identical memory

banks so that, a number of memory requests can be processed at the same time. In this

scheme, in general, a number of memory banks or memory modules (M) is connected

through a network to a processor or in the general case to a number of processors (P) . So.

any processor p; can access memory bank m; by alignment through the network. One

well-known example of this model is the SIMD computer shown in Figure 1-4. By using

this scheme, we can achieve in the optimal case a memory speedup of M, which means

Instruction Stream
i
|
//’\‘ , A\ /\
P1 . P1o PN
.‘i\_/' \/ N S
E Y
Network -
Control S interconnection Network
Unit Control
— -
- T S
! : .
M1 S OM2 MN
~ _ H‘_J |
Address Com;utation
Figure 1-4 : SIMD Model

that the processor/memory speed gap will be significantly reduced or completely

eliminated. By using M parallel memories, it is expected that the average bandwidth is

MB,,, where B, is the bandwidth of one memory bank. Unfortunately, due to



12

serialization of addresses at the input of some memory banks, the effective bandwidth is
far from being linear ( MB,, ). The reason is that due to data organization a request can not
be decomposed into requests to all M memory banks, because many data elements fall

into the same memory bank. An effective bandwidth given by Hwang [21], is

Bparallel =vM Bm’

To achieve an optimal memory access, all the data elements that will be accessed
at the same time should be stored into different memory banks. In many cases, this
condition is difficult or impossible to be met. That may result in severe performance
degradation of many orders. Consider the case were we have & data elements that will be

needed at the same time, but are stored into the same memory bank. At least ¥ memory

[k
cycles will be needed to access these k£ elements instead of ! -‘7] cycles in the optimal

case. To avoid or minimize this problem, we have to consider the data patterns that will
be accessed by the program and predefine storage mappings that minimize access
conflicts for these specific patterns. The task of finding out these data patterns is
performed by a parallelizing compiler. Parallelizing compilers have to perform data

dependence analysis in order to parallelize a given code.

As an example of simple data patterns, consider the case where the pattern is a set
of consecutive data elements in an array. Low Order Interleaving (LOI) can be used in

this case. In LOI, consecutive array elements are stored into consecutive memory banks.



For example, if element ¢; is stored into memory bank m;,, then element ¢;,, is stored

into memory bank m;, |y moq 3r- If We have 2™ memory banks and d-bit array element
address, then LOI can be implemented by taking the least significant n bits of the d4-bit
(n<d) address as the memory bank number in which that array element should be
stored. For example, the element e, whose address in the amray is i;_jiy_5...7,_;...i; will
be stored into memory bank m; where j=1i, i, _,...iy. LOI helps only with patterns in
which the least significant n bits of addresses take all the possible combinations for all the
elements in the pattern. A set of consecutive elements is a special case of such patterns.
However. many other patterns are frequently needed by different types of applications.

Consider the situation where a program references array elements with stride 2 (stride is

the difference between two consecutive elements in the pattern) and we have 2™ memory
banks. Now if LOI is used, only half of the memory banks will be used, those even

numbered, and the memory throughput will drop to half the optimal. In general, if the

stride is 2° with 2 memory banks and LOI, 2° cycles will be needed to access 2™

elements instead of 1 cycle in the optimal case.
1.5.1 Prime Memory Systems

A more general case is for any stride S and M memory banks (S,M are any integers). Let
g be the greatest common divisor of S and M, g =GCD(S, M) . Then, it can be shown

using number theory that g cycles will be needed to access a pattern of M elements if
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LOI is used [7,25]. Many techniques were proposed to solve this problem [7,14,25,38].
One proposed soiution is to have S and M relatively prime [7], i.e., GCD(S, M) =1. This
leads to the optimal case and M elements can be read in one cycle. If M is a prime
number, then for any stride S that is not a multiple of M then, GCD(S, M) =1 and we can

achieve the perfect access.

This scheme will guarantee conflict-free access for any number of patterns P with
strides s;,5,,...,5p such that, GCD(s;, M) =1, 1<i< P. However, this scheme is
computationally expensive and time consuming because it needs to compute the modulo
function. In the case where S and M are power of two, the modulo function is just a shift
operation. In the general case where S and M can be any numbers, however, it will cost
much more. Implementing the modulo function in hardware is difficult while

implementing it in software is time consuming.

1.5.2 Skewing Schemes

Other approaches were introduced to avoid computing the modulo function
[4,13,18,19,20,31]. Many of these approaches rely on observing the data patterns
frequently needed by different applications and then constructing priori mappings of data
elements so that these patterns could be accessed with minimum conflicts, though other
patterns might not. Examples of frequently used patterns are columns, rows, diagonals.

and square blocks. Figure 1-5 shows three simple storage schemes of such patterns. The
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numbers in bold are the row and column indices. The numbers inside indicate the memory
bank number in which the corresponding array element should be stored. In (a), elements
in one column are stored into different memory banks which means that they can be
accessed in parallel. However, elements in one row are stored into one memory bank. The
scheme in (b) gives conflict-free access to columns as well as to rows as can be seen.
Scheme (c) adds another pattern and gives conflict-free access to square blocks of size
2 x 2. By having these patterns known in advance, storage schemes or mappings that give
conflict-free access to these patterns are predefined. Such schemes are good for
applications were predefined patterns constitute most of the actually accessed patterns.

Other applications with more general or irregular patterns will suffer severe degradations.

01 2 3 01 2 3 0 1 2 3
0 0 0 00 0 01 2 3 0 0 2 1 3
111 1 1 110 3 2 113 0 2
2 2 2 2 2 2 2 3 0 1 2 2 0 3 1
3 3 3 3 3 332 10 3 3 1 2 0
(a) (b) (c)

Figure 1-5 : Simple Storage Schemes

1.5.3 Bitwise Address Transformation Schemes

Looking for more general and efficient schemes, several Bitwise Address
Transformations (BAT) were proposed. In this section, linear BAT schemes will be

discussed, while general BAT schemes will be discussed in section 2.5. Linear
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transformations map the addresses generated by the program into memory banks. The d-
bit address generated by the program is multiplied by a linear transformation matrix
My, to generate an n-bit address that is the memory bank number in which that array
element is to be stored. In the matrix multiplication process, the logical AND corresponds
to scalar multiplication while XOR corresponds to addition. This transformation is simple
and efficient; all what it needs is ANDing followed by XORing. Its simplicity makes it
suitable for hardware implementation which means fast operation. Many known schemes
can be represented by linear transformations. The schemes shown in Figure 1-5 can be

represented in linear transformation forms as shown in Figure 1-6.

(mo)_(o 01 o) Jo
@m)=0 0 0 U];

b(mo)_(l 01 o) o
()ml o1 0 14

Figure 1-6 : Bitwise Transformations
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These are linear transformations of the form m,,; = M, x X,,,, where m is
the memory bank number, M is the transformation matrix, X is the array element address,
and j and i represent the column index and row index, respectively. Linear
transformation schemes can be used with many other types of regular or irregular data
patterns. They were used in situations with single power-of-two stride and perfect access

was guaranteed. However, with no satisfying solutions arise in situations with multiple

patterns and with nonpower-of-two strides.
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Chapter 2

2. Literature Review

2.1 Background

Rather than just increasing the speed of scalar computations, vector parallelism has been
heavily studied and implemented since 1965. This is due to the ease of detecting and
exploiting this type of parallelism [25,38]. Vector processing is utilized in vector
machines and in SIMD machines. In such machines, a set of memory words belonging to
some vector are read and processed in parallel. Sohi [41] noticed that cache memories
were not able to provide vector machines with high-bandwidth access to elements of large
data structures, which necessitates the use of parallel or interleaved memories. Seznec and
Lenfant [37] noticed that parallel memories in SIMD machines have to be synchronized.

They showed that an SIMD machine without synchronization will have about 38% of the
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theoretical throughput, while this throughput can be increased to 50% just by

synchronizing the memories without changing the storage scheme.

The unability to access vector elements in parallel can significantly decrease the
memory throughput and affect the overall performance. Such cases happen when more
than one element belonging to the same vector are stored into the same memory bank,
which causes memory access conflict. This problem has been the subject of many studies
since the late 1960's. The degree of conflict depends on the access stride. If the stride is
relatively prime with the number of memory banks, perfect access can be easily achieved.
Problems, however, arise with other strides. In [37], Seznec and Lenfant considered a

stride distribution collected from real applications. The distribution was as follows :
e 80% of the vectors are accessed with stride 1.

e 10% of the vectors are accessed with odd strides other than 1.

10
e for k= 1,;—,(—% of the accessed vectors have strides of the form r2%, where r is an

odd number.

The study showed that having N =2" memories, then accessing 100 N -element
vectors using simple interleaving techniques will result in 55% of the throughput for
n=9. Though only 10% of the strides are not conflict-free accessible, this small portion

may cause severe degradation.
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As shown above, using simple interleaving techniques, one can waste about 50%
of the memory throughput. Since the introduction of Illiac IV in the late 1960's,
researchers have developed many techniques to avoid this waste by avoiding memory
conflicts. These techniques belong to three classes : Prime Memory Systems (PMS),

Skewing schemes, and Bitwise Address Transformations.

2.2 Regular Data Patterns

Before discussing the different storage schemes, let's look at the kind of data patterns
usually considered in these schemes. In a system of M memories each of K words,

Budnik [7] showed that the ratio between all possible M -element vectors and those that

1
are accessible in parallel is approximately ( 3 mlw)ze‘" . So, there is storage scheme(s) that

allow conflict-free access to all possible patterns. So, it is beneficial to consider oniy
those patterns that are expected in practice rather than considering arbitrary patterns. That

is why all studies in the literature considered frequently used patterns like rows, columns,

diagonals, and power-of-two patterns and strides of the form r2* for odd r. Budnik also

showed that the ratio between differently ordered vectors and uniquely ordered vectors is

MM | So, it is of great benefit to have a reskewing interconnection scheme between
processors and memories. By having such scheme, we can consider a vector instance
without considering its order. A crossbar switch gives optimal connection and can reskew

a vector in any order, but it is very expensive for large systems. Multistage
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interconnection networks are the best and most widely used alternative. Constructing a
storage scheme for these networks is more difficult because it has to avoid network

conflict in data realignment or reskewing.

2.3 Prime Memory Systems (PMS)

Budnik [7] and Lawrie {25] showed that if the number of memory banks and the access
strides are relatively prime, then these strides can be accessed without conflict. Budnik
proposed row rotation scheme, in which, every row of the array is rotated with respect to
the previous row with a distance & . They showed that when & is relatively prime with

the number of memory banks, then columns, rows, and square blocks can be accessed in

parallel. They applied their scheme for the case of 2/ +1 memories and d =2% +1 and

or other cases aiso.
In a con~entional PMS, the mapping is defined as follows :

F(AY=Amod M

r(N=4/M
Where F is the memory bank to which 4 is mapped and r is the offset of 4 in that
memory bank. Computing this address is expensive; it needs computing the modulo
function in addition to integer division to find r(4). These two operations are complex
and can cause a lot of overhead. Gao [14] proposed a high speed multiple-bit division

approach which includes the approach to find " 4 mod M " by parallel "/ -bit cycle adder”
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in one step when M =2'+1. Many other techniques were proposed to compute the

modulo function. Lawrie [25] proposed the use of prime number of memories and P =2°

processors. He redefined the PMS mappings to be :

F(4)=Amod M
r(Ay=A4/ P

By dividing over P instead of M, scheme avoids dividing by a prime number and

instead uses a very simple division, since P is a power of two. This fast address
computation is on the expense of memory wastage. Since P < M, only 75- of the

memory space is used, while 1 —+; of the memory is wasted in what is called holes. A

possible combination could be M =257 and P =256. In this case, 557 of the memory is

wasted. Figure 2-1 shows this mapping for M =5 and P =4.

MO M1 M2 M3 M4
0 1 2 3 hole
5 6 7 hole 4
. 10 11 hole 8 9 !
15 hole 12 13 14
ihole 16 17 18 19 |
| 20 21 22 23 hole
| 25 26 27 hole 24

N U B W N +H O

Figure 2-1: Lawrie's Scheme with M=5 and P=4



Gao [14] and Seznec and Lnfant [38] proposed a new mapping :

F(A)=Amod M
r(A)= AmodC

Where C=2° is the number of words per memory bank. By having M =2°+1, we

make M and C relatively prime. They showed using the Chinese remainder theorem that

this mapping is a one-to-one mapping from the address space {0,..., M x 2° — 1} onto the

set of memory words of the memory system. In this scheme integer division is avoided

and in computing r(A4) only modulo with respect to C=2° is computed which is a very

simple operation; it is just the least significant ¢ bitsof 4.

A major problem with PMS schemes is realigning data to processors. This
alignment is very complex. In [38], they proposed a special network called the Chinese
remainder network. However, this network is complex and specific to this application. In
addition to this, computing the addresses in PMS schemes is very complex. Although fast
hardware was proposed to compute the modulo function, it still causes some overhead and
requires very complex hardware. Moreover, it is desired to have power-of-two number

(that is not prime) of memories and processors for the following reasons [13] :

—
.

[t simplifies address computation.

[\

. It allows the use of most efficient interconnection networks.

It achieves optimal utilization of address decoders.

W



2.4 Skewing Schemes

A skewing scheme is defined in the literature to be a scheme that does not use a prime
number of memories. Most skewing schemes are linear. Linear schemes are of the form
F(i,j) = (ai + bf)mod M for some constants a and b, where i and j are the indices of
the corresponding element. In corﬁputing F(i, j), arithmetic and modulus operations are
needed. When bitwise logical operations are used instead of arithmetic and modulus
operations (for example, F(i, ) =i j), the scheme is called bitwise transformation. All
skewing schemes are periodic. The class of linear schemes is a proper subclass of the

class of periodic schemes [11].

Patterns like rows and columns can be accessed without conflict using linear
skewing schemes. However, Lawrie [26] and Budnik [7] showed that patterns like

diagonals and coils are nonlinear and there is no linear skewing scheme to access such

patterns with 2" memories, where n>1. Shapiro [39] claimed that T={row, column,
diagonal. square, block} has no valid skewing scheme (a scheme that gives conflict-free
access), but Deb [10] presented a counter example to that ;:lairn by presenting a vaiid
nonlinear scheme of T for n=2. Then, Raghavendra [4] gave a general algorithm that

finds a nonlinear skewing scheme for any n.
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Wijshoff and Leeuwen [47] studied periodic skewing schemes and showed various

properties of these schemes in light of foundations in the mathematical theory of integral

v
latices and Z -modulus.

Harper [18] proposed the use of dynamic storage schemes, in which a storage

scheme is selected for each vector based on the access patterns used with that vector. He
synthesized storage schemes for r2* stride families, where r is an odd number. It was
shown that if a storage scheme gives conflict-free access to a stride 2*, then it will also

give access to any stride 72° for any odd r, but not for any other x.These schemes rely
on skewing every period of addresses generated by a linear scheme with respect to the
previous period. This scheme is shown in Figure 2-2. The performance of this scheme
was studied for arbitrary strides and simulation showed that using buffers can improve

throughput for nonconflict-free strides.

4
t
1
|
|
1
t
|
1
l
!

N Ul & W N = O

Figure 2-2 : Row Skewing
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To solve the problem with nonlinear patterns like diagonals and coils, Deb [11]
proposed a multiskewing scheme. In multiskewing, an array is divided into parts and each
part is stored using a different linear storage scheme. Deb showed that storing an array
with different linear schemes enables conflict-free access of nonlinear patterns. He then
gave an instance of such schemes and showed that all conventional linear patterns in

addition to diagonals and coils can be accessed without conflict.

2.5 Bitwise Address Transformations

Bitwise address transformation schemes are skewing schemes that use bitwise logical
instead of arithmetic operations in address computations. In [19,34,41,46] the advantages

of using bitwise address transformations over the other schemes were discussed:

1. Use of simple logical operations rather than arithmetic and modulus operations.

S

Simple control of cheap, general, and well studied interconnection networks.

. Compact representation as logical operations and Boolean matrices.

(9%

4. Bitwise operations have no carry which makes the complexity of address computation

independent of the number of memories.

(94

Data movement is fast and efficient and can be pipelined through the interconnection

network.



27

Frailong, Jalby, and Lenfant [13] developed a general power-of-two data pattern
that covers many conventional pattemns like rows, columns, grids, and rectangles. They
proposed an XOR-scheme of the form: F(i, ) = Ai® Bj, where 4 and B are Boolean
matrices. They identified the necessary and sufficient conditions for conflict-free access
of these patterns and identified the conditions for their scheme to pass the Q network.
Norton and Melton [31] synthesized the first bitwise linear transformation scheme for
conflict-free access of power-of-two strides and formulated the conditions for their
scheme to pass the baseline network. They also gave an efficient procedure for

constructing Boolean matrices representing these storage schemes.

Lee and Wang [27] tried to apply bitwise schemes for the pattern set 7. To achieve

so, they used a nonlinear bitwise scheme defined as follows :

Fi,))=i® P& j

r(i,j)=1i
Here P is a Boolean matrix. They showed that this scheme gives conflict-free access of
T. However, data realignment is very complex. Processors are connected to memories
with an indirect binary n-cube network in addition to a reverse shuffle network connecting
processors with each other. Raghavendra and Boppana [34] defined a similar mapping :

F@i,))=i® Pj
r(i,j)=i
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This is a valid scheme for T. They used an Q network with some additional
hardware for data realignment. This solution uses half the number of memories and
network size of those used in Lawrie's scheme. Boppana and Raghavendra modified this

scheme to work with the inverse Q2 network [6,34].

Most of the storage schemes try to provide conflict-free access of known patterns

like T or strides of the form r2*. But the use of these schemes with other patterns and
strides significantly degrades the throughput [18,41,46]. [18,41,46] studied this problem
and proposed the use of buffers at memory inputs and outputs (Figure 2-3) and presented
simulation results that showed the profitability of using these buffers. Valero [46] uses
buffers with a reordering technique. In reordering, elements of a given nonconflict-free
stride are read into buffers in consecutive memory cycles (other vectors can be read
during these cycles) and then reordered and given to processors. Valero showed that using

. . . L(T-1 .
buffers without reordering can lead to a maximum latency of ¢ T ) cycles, where L is

the length of the vector stream to be read and T = 2° is the ratio between processor and
p

memory cycle. This needs % —|';‘--| buffers per memory bank. With reordering, however.

at most T —1 extra cycles will be needed to read a stream of length L.

Harper [19] expressed the conflict-free access conditions of a r2* stride in terms
of the periodicity of the transformation matrix and used elementary matrices of known

periods to compose transformation matrices of maximum period for optimal access.
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In all the previous schemes, a space multiplexed memory system was assumed.
Seznec and Lenfant [37] proposed the use of time muitiplexed as well as space

multiplexed memory system. This system is shown in Figure 2-4. The system consists of
P processors and N logical memory banks where P = N =2". Each logical memory

bank consists of 2¢ physical banks. They used XOR scheme on different fields of the
array element address to compute the physical memory bank. Their scheme gives conflict-

29+9*" consecutive vector elements with stride 2%, k <q . So,

free access to any slice of
this scheme restricts the size of accessible vectors. The evaluation of this scheme, using

the stride distribution presented at the beginning of the chapter, showed that it boosts the

throughput to 90% rather than 50% with LOI.

Address Bus

v v v
— : input Buffers —
—— —— ——

———v YT v
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N———— \_.__/. ~—
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Figure 2-3 : Memories with Buffers
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Chapter 3

3. Linear Bitwise Storage Schemes

3.1 Introduction

Since the knowledge of data patterns or patterns is within the capability of the compiler,
storage schemes that offer higher flexibility have been proposed [13] as linear
transformations from the processor address to the storage location. Frailong [13]
presented a necessary and sufficient condition for conflict-free access of data patterns.
The image by the storage scheme of all the elements of a given pattern should map into
different memory modules. Therefore; the columns or the rows of the needed

transformation matrix should be linearly independent.
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Norton [31] synthesized a transformation matrix that allows conflict-free access to
a number of power of 2 strides. The scheme was intended for the RP3 multiprocessor. As
the interconnection network should provide data alignment between processors and
memories, other constraints [5] can then be used for finding the storage matrix. By using
bitwise linear transformation matrices, Boppana [6] proposed a conflict-free storage
scheme to the row, column, main-diagonal, and square blocks. The above matrix is

characterized by non-singular diagonal sub-matrices.

The data patterns that are accessed by a program can be mapped by a dynamic
storage scheme that minimizes the overall memory conflicts for a set of given patterns.
Dynamic storage schemes make the hardware transparent to the user and avoid
reorganizing the data, but require the address transformation to be implemented as part of
every processor hardware to increase concurrency. We are concerned with dynamically
reconfigurable storage schemes for SIMD models that minimize the overall access time

for an arbitrary set of weighted data patterns.

For array references, vectorizing loops in presence of loop-carried-dependency
(LCD) may constrain the SIMD load and store operations to some specific data patterns
such as the row (LCD across the columns), the column (LCD across the row), stride
access, or arbitrary blocks. The problem is to find how arrays can be stored into paraliel

memories in order to force the elements of a given data pattern to be uniformly distribured
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over the memories. Each uniformly distributed data pattern can then be accessed in one

memory cycle so that each PE is mapped to one element of the pattern.

Given a program that requires access to a set of data patterns, our objective is to
find a cost-effective storage scheme that minimizes overall memory access time. A
general approach for combining the constraints of different data patterns into one single
bit-wise address transformation is proposed. We will see that finding the address

transformation that minimizes overall access time of a given set of data patterns is

reduceable to m-coloring, where 2™ is the number of memories. Since the transformation
should be implemented by each PE of some SIMD system, it is interesting to optimize its
hardware requirements. Optimizing the transformation is investigated by using coloring
heuristics and the access frequency of each data pattern. In this case, the problem consists
of minimizing the access time as well as the number of gates required to implement the

transformation.

In section 3.2, we give a background on power of 2 patterns and their
representation. In section 3.3, linear bitwise schemes are analyzed with some definitions
and results known in literature. In section 3.4, we present our combined storage scheme.
Access of arbitrary strides is discussed in section 3.5. The chapter is concluded by stating
the NP-Completeness of the problem of constructing combined storage schemes in

section 3.6.



3.2 Background

Consider an SIMD computer that consists of a number of processing elements and
memory units connected by a network as shown in Figure 1-4. Any processor can access

any memory unit through an interconnection network. We assume that there is an equal

number N of processors and memory units, and that N is a power of two N =27 If
more than one processor tries to access a location in a given memory unit, during a given
instruction cycle, a conflict occurs. If i processors all try to access a given memory unit
during the same cycle, it takes i cycles for the memory unit to serve them. Since all
processors run in lock-step, the entire computation is dramatically slowed. It would be
desirable to store the data that should be simuitaneously accessed into different memories

so that parallel access to all items can be achieved.

Suppose that we know a priori the memory access patterns of a given program. We
assume that the data to be accessed is a two dimensional array. Let the statement
a(i.j) = F(a(i,j—1),...) be the body of a loop, where a(.,.) is a 2-D array and F is
some function. Due to data dependency between a(i,j)anda(i,j—1) across the
iterations, one way to vectorize the loop is to distribute the code so that the PEs evaluate
elements along rows of the array. Thus the PEs need to perform simultaneous access to a
column of data element from the array which allows defining a column data access
pattern. Note that a column access may be translated within the array to allow different

instances of column patterns be accessed in parallel.
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Figure 3-1: Patterns a) sub-row, b) sub-column, ¢) 2X¢ blocks, and d) row/stride access

A pattern is defined as a collection of array elements whose addresses are relared
by some relationship. The origin of a pattern is the coordinate of its upper leftmost
element. Changing the origin allows access to different instances of the pattern. Figure 3-
| shows an 8 x 16 array that is partitioned into a set of 8-elements row-pattern. column-
pattern, 2 x 4 block-pattern. and a stride-2 row-pattern. A pattern that is needed for some
SIMD program is a collection of array elements that any instance (its origin) of it can be
accessed in parallel, by all the PEs, during the running of the program. We are interested

in patterns of arbitrary dimension but having power-of-2 elements.
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We would like to find a function that allows us to access all patterns in a conflict
free manner. By this, we mean that for all given pattems, for all pattern instances, all of
the elements of any pattern instance map to distinct memory units. For instance, in a
matrix multiply algorithm, we would like to have conflict free access to all rows, and all
columns. The set of all rows (columns) is a pattern, and each row (column) is a pattern
instance. We want to allocate the array among the memory units in such a way that no
two elements of the same row are in the same memory unit, and no two elements of the
same column are in the same memory unit. Such an allocation is called a conflict-free

storage scheme [13,31] for the row and the column.

Without loss of generality, the memory is considered as a single two dimensional
array such that the element in the ith row and the jth column is denoted by (i, ;). The
upper left-most element is (0,0). To simplify the notation, the sizes of the horizontal and

vertical dimensions are both 2¢. By convention, the array is always indexed by a variable

i in the vertical direction, and a variable ;j in the horizontal direction.

The binary representation of an integer i is i;_...ijig. In other words, the least

significant bitof i is iy, the first bit is i}, etc.

A row position i can also be thought of as a vector, over the finite field Z,, the
integers modulo 2. In Z,, addition corresponds to logical exclusive or, and muitiplication

corresponds to logical and. (i;_,...i}ig) is the vector representation of i, in terms of the



bits of i. We define a vector space F =Z‘21 for horizontal position. Let
B(F)={f4_1s---+S0} be the canonical basis of F, le.
fo = (0,...,0.1), f; = (0,...,1,0).., fz_; = (1,0,...,0) . Each row has a unique representation
as a vector in F. A row i is expressed as iy_;fy_1D..®i f; ®Piyf, in terms of
components over B(F). For example, 11 in binary is 1101, and so the vector

representation of row 11 is (1,1,0,1). Expressed as a linear combination of the basis F,

row llis 1380/, @11, D1fy:

DL

-0 O O

Without loss of generality, we assume d xd 2-dimensional arrays to simplify the
notation, but both sizes can be arbitrary as well. We similarly define vector spaces G for
column positions and with canonical bases B(G) = {g4_;...-.81,8¢}- There are 27
memories and that the number of PEs is identical to the number of memories. Let H be =

vector space for memory unit numbers and its basis B(H) = {h,,_;,...,h;,hy} .

The Cartesian product of the vector spaces F and G is another vector space
FxG with basis B(FxG)={fyy,-sfi:f0:84-1>-+81:80}. Any location
(i.j)e FxG in memory is uniquely associated with a linear combination

iy 1 fa-19..Bigfo® j4184-19.-Bjogo of the basis vectors of B(F x G). Adding two

vectors in Z%d corresponds to bitwise exclusive or. Multiplying a vector by the scalar 1
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gives back that vector, while multiplying a vector by the scalar 0 results in the zero

vector.

Consider the parallel access to 8 memories for the set of elements
{0} = Uaotseesbgs Ja—ts--+s J35—s=s—) » Where iy_,...,ig, f4_15.--» J3 are constant for all
the 8 elements and components i,,i;,i; take all possible combinations. The accessed
pattern (7;) consists of a sub-row of 8 successive elements of array 4. Pattern T; is
associated a basis B(7}) = {g>,81.80}- We note that i,,i|,i; are the components of
(i.j) over the basis B(7}), i.e. projection of (i,j) over B(I;). The set of components
[g_ys--esbgs g-15---»Jj3 TEPIEsent the pattern origin and used to define one instance of 7

By changing the origin we can access different instances of 7;. For example, we can

position the origin of 7} into 22473 (ifferent locations within array A.

To access a sub-column of 8 successive elements, we define pattern 7 that
accesses the set {(i,/)}=(lg—1:--si3,=—Jg4-1>--»Jo) The basis of T, is
B(L) ={f>.fi,fo} - Finally, we define a pattern T5 that consists of 2 successive rows by
4 successive columns for which the set of  elements 1s

{(i~j)} = (id—[a---si[ ’—ajd—[?""jz?—f_) ¢ The baSiS Of 73 is B(Té) = {.f()’gl’go} -

To cause the parallel access to all the 8 elements of 7;, for a given instance of the
origin, one can choose to store each element 4(i,j) into memory (i, ,i},iy) . In this case,

all the elements of 7; will be distributed over all the memories and parallel access to T;
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becomes possible. Therefore, accessing one single pattern does not pose any problem. We
are interested in finding storage schemes that allow an array to be accessed in parallel

with respect to an arbitrary set of data patterns.

3.3 Analysis of Storage Schemes

Each location (i, ) € F x G has2d components over the basis B(F x G). Denote by ¥
a subspace of F'x G whose basis B(V) is formed by m vectors out of the 2d canonical
vectors of B(F x G), where n <2d . From now on we consider vector x (also y) as the

projection of some (i, j) over V.

Consider the following two Boolean matrices:

1 01 101
Mo={0 1 1] M={011
001 01 1

Matrix M, represents a linear permutation defined over the set of integers (0.....7).
M, achieves the permutation (0,1,2,3,4,5,6,7)—(0,7,2,5,4,3,6,1). Each source has a
unique image by M;. However, the image by M, of the ordered set of elements
(0,1,2,3,4,5.6,7) is (0,7,3,4,4,3,7,0). We note that each image by M, has two sources. We
are interested in finding Boolean matrices M that causes an array to be distributed over
the memories for a given set of data patterns. Each element A(i, j) of some array A4 will

be stored into memory module Mx, where x is the projection of A(i, /) over the basis of
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the corresponding pattern, and M will be called storage scheme. In the following we
present a theorem that states the necessary and sufficient condition to cause the elements
of an array to be distributed over the memories to allow parallel access to a given data

pattern.

Theorem 1 Two different vectors x,y €V always have different images by an mxm

matrix M if and only if M is non-singular.

The proof of this theorem can be found in any book on linear algebra. As an
example of theorem 1, matrix M, allows one-to-one mapping of the source elements
over the memories if each array element A(i, ) is stored into memory M;x and M, is
non-singular, where x is the projection of (i,j) over some three canonical vectors of
B(F x G). Note that M, does not allow the same result because M, is singular. For
example, in row-major memory organization element (i, /) = (iy_1,.--»ig> S g—1»----Jg) IS
stored into memory module Mx, where x=(j,,/;,/p) and M is the 3x3 identity

matrix.

Theorem 2 4 pattern T that is defined by its basis B(T) = {t y_;.--,tq} < B(F x G) can

be accessed in parallel using 2™ memories if each element x = x,_t, ®..®xytq of T

is stored into memory module Mx and matrix M is non-singular.
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Proof As M is non-singular, then elements x,y €T such that x # y satisfy Mx = My
as shown in Theorem 1. Therefore, the elements of T will be distributed over the

memories whenever each element x €T is stored into memory Mxand Mis non-

singular.

3.4 Combined Storage Schemes

Consider a set I’ ={T},...,T;} of data patterns so that each pattern consists of 2"
elements. The basis of each pattern 7} is denoted by B(T;)={t, m-1o--stg 0} . Where
Lgm—1s---2Lk o are some canonical vectors chosen from B(F xG). Since each pattern

instance has 2™ elements, our objective is to define a storage scheme for the array

4(i, j) so that any pattern instance can be accessed in one memory cycle. In other words.

2™ elements of any pattern instance should be distributed over the 2™ memories in order

to allow parallel access to that pattern.

Definition 1 The basis B of a set I,,...,T, of data patterns is the set of all distinct
canonical vectors of the bases of all patterns T, sy lgs B= U,S,(Sq B(Ty) = {tmey-----t0}

where t; is a canonical vector of B and n= Card(B)

The bases of two data patterns may or may not share a number of canonical

vectors. Therefore, the number of distinct vectors n in the union of all pattern bases



should always satisfies m<n<2d. Consider the previously defined set of patterns
{.T;,I;} with  bases  B(D))={f2,f1./o}» B(h)={g1.£1.8}. and
B(T3) = {/0:81:80} - which allows finding B=Ugg B(T;) =

{f2:/1:/0:82:81:80} -

Definition 2 The projection of vector (i,j) € F x G over the basis B(T,) is defined by

b(Tx)

vector x =X, 1tk 11 D--Oxly o that is formed by the components of (i, j) over the

basis B(T;).

It is important to note that each data pattern has power of 2 elements and ail
instances of a given data pattern are non-overlapping. Therefore, the projection of vector
(i,/) over B(T}) gives the location of element (i,;) within pattern 7, and the other
components of (i,j) remain constant when accessing 7, in parallel. The constant

components specify the origin of the pattern instance. For parallel access of sub-columns

of 2° elements for some array A(10x12), the element address will be
(i, /) = (igs.--5igs Ji1»---+Jo) and its projection over the pattern (sub-row) basis is
{i2,i,ip} . When accessing a sub-column in parallel, the components over (g;,g,.g7) of
all addresses located in a sub-column instance take all possible combination of bits in
{i,i),ig} - Moreover, the projection of all elements of some pattern 7}, that is accessed in

parallel take all possible combinations over the canonical vectors of B(7}).
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We similarly define the projection of vector x over the basis B of all the data

patterns.

Definition 3 The projection of vector (i,j) e Fx G over the basis B is the vector

x? = Xpttn1D..Oxpty that is formed by the components of (i,j) over the canonical

vectors of B.

Each vector (i, j) admits a projection x? over the basis B of all data patterns. For
example, vector (i,/)= fy_1i4-1®.. B fpig © g4_1/419D..Dgojy has a projection
b = f113® foiz © foip ® 8373 D 822 ® gojg over the basis B=U .5 B(T,). In the
following we define the combined storage matrix M that is used to evaluate the memory

module number where the (i, j)th element of some array should be stored.

Definition 4 The combined storage associated to all data patterns {T..0<k <q} is a

matrix M of dimension mx n such that each vector (i, j) is stored into memory location

Mx?, where 2™ is the number of memory modules and n is the number of distinct

vectors in the union of all partern bases.

The combined storage matrix M can be seen as a collection of columns vectors.
ire. M=[C,,,....Cy], where C, is an mx1 column vector. There is one-to-one
correspondence between each canonical vector ¢, € B and column C, of M. The

column vector C, is the image by M of t, for 0<su<m. As B(T,) c B, then each



column vector C, of M is the image by M of some canonical vector ¢, 2 €B(T}). For
example, the combined storage matrix M for the data patterns 7;,75,and T3 is a 3x6

matrix because B = {f3, fi,f¢.82.81,8}- If one choose arbitrary data for the matrix

M , we obtain:

L h o2 a1

1 01 11
Mc®={0 1001
00110

SO -

Definition S The restricted matrix My, of M to pattern T} is defined by the m columns

of M that are the images by M of all canonical vectors of basis B(T}).

The storage matrix M is mx n and there are m columns in M. 1, » then My isan

mxm matrix. For example, the restricted matrices My, Mp,, and My, are the

following:

L h S 82 & % o &1 g
1 01 111 111)
M =[0 10 Mp=|0 10 M, ={0 1 0
00 1 100 1 0 0

In the following we summarize our analysis. For some array 4, we consider a set

T'={T,....,T,} of data patterns that will be accessed by some program at run-time. Each

pattern has 2™ elements and there are 2™ parallel memories. We are interested in finding

a storage scheme so that each of these pattern can be accessed in one memory cycle. This
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requires that the elements of each pattern be distributed over the memories so that parailel
access can occur to all the memories. Each power of 2 pattern 7, can be uniquely
associated a basis B(7}). While each pattern basis has m canonical vectors, the set B of
all distinct canonical vectors of all bases has 7 >m canonical vectors because some of
these vectors cannot be shared among patterns. To define the storage scheme, the address

(i,j) of array element A(i. ) is restricted to its components over B and this restricted
vector is denoted by <. A storage matrix M (mx n) is used to find the memory module

Mx® where element A(i, J) of array A should be stored.

Theorem 3 The storage scheme M allows parallel access to a set T = {f,....I;} o
data patterns if and only if the restricted matrix M 1, !0 each pattern T; €T is non-

singular.

Proof Consider all the 2™elements of some pattern T, ={(i,j)} that should be
simultaneously accessed when a given instance of 7, is to be accessed in parallel. The

projection of each element (i,j) over the basis B(T;) 1is defined by
xPTe) = Xl m-19--Oxgto. When T, is accessed in parallel, the components

Xp-1---Xo take all possible combinations (2™) and all the remaining components of (i. /)

over B remain constant. Therefore, the projection of (i,j) over the basis B, which is

x? . of all the patterns can be divided into two groups as follows.
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o The projection of (i, j) over the basis B(7}) of the currently accessed pattern 7, .

These components take all the 2™ combinations when considering all accessed
elements of 7.

o The projection of (i, ) over the remaining canonical vectors of B, which we denote
by R = B— B(T}) . The Projections over R are constant when 7; is accessed in

parallel because RUB(T;)=86.

Hence the product Mx® can be decomposed into two terms: 1) the projection of x over
B(T,) which is xBUTE) and 2) the projection of x over the remaining canonical vectors
of B, which we denote by x". Mx® can then be written as:

Mxb = M, x" @ My X"
The product M, .x" yields a constant vector because x” is the same for all the elements

of T, that are accessed in parallel. Therefore, pattern T, can be accessed in parallel if and

only if the restricted matrix M7y, is non-singular.

Consider the parallel access to some instance of pattern T3 for which the origin is

defined by (io,jo) = (id_[,..-,il,o,jd_[,...,jz,0,0) . Note that the basis of Z}, is
B(T3) = {ig, j1-Jo} - Let x? be the projection of (i, ;) over B=U 3 B(T}) s0 that the

accessed elements of 73 are defined by {xb Y= {(i2,01,0p5 025715 J0)} = (LO—1.——).

where iy, /. jo take all possible combinations of bits when accessing pattern 7;. The
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origin of Tj is defined by the bits iy_;,...,i3,4{, j4-1,--.-, /2 that can be arbitrarily chosen.
For example, assume the origin is chosen so that i, =1, i; =0, and j, =1. In this case,

the element A(i, ) is stored into memory:

Hh /o 82 a8 &

1

1 01 1 1 1)io
A/Lt"=010010."l’

001 10O

The product Mx® can be decomposed into the following sum:

H h & o &1 2o

1 0 I)(1 1 1 1) 0 iy
Mc®={0 1 0[j0{®|0 1 O.j[=0®M,.’.jl

0 0 J\I I 0 O\, 1 Jo

The image by W 5 of elements (iy./;,/q) €{0.,1,2,3,4,5,6.7} is (0.4,6,2,5,1,3,7) and the
image by W is (1.5.7.3,4,0,2.6). As one can see, the distribution of the array element
over different memory modules only requires that MTé be non-singular. Summing a

b(T3)

constant vector to M,-sx changes the naming of the storages but maintains one-to-

one mapping between the elements of the accessed pattern and the memories.

3.5 Accessing Arbitrary Strides

In previous sections, we have seen the conditions and formulations for accessing power-
of-2 patterns. In this section, we will show how we can use the same techniques to

improve access time of arbitrary strides ( nonpower-of-2 ).
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Given an origin a (offset within the accessed array ) and a stride s, the problem of

stride access is to access the following sequence of addresses in an array A4 :
A(a), A(a +5), A(a +25),..., A(a + (N —1)s).

This is a vector of length N within the accessed array. In our case we assume that

the vectors accessed are of length 2™ where we have 2™ memories. If we can access a

vector of length 2™ in C cycles, then a vector of length N can be accessed in [’%‘] -C

cycles. So, restricting the vector length to 2™ dose not restrict the solution.

Any stride s can be written as r2* , where r is an odd number. A power of 2

stride is a power of 2 pattern and can be characterized by its basis vectors. A power of 2
stride 2 has the basis {f,fc.1..--- fxem-1} fOr a vector of length 2™ Figure 3-2 shows
this for s=2' and m=3. Now for any stride of the form r2*, in the sequence of
addresses generated, the bits 7 . ,j.....Ix, -1, Will take all the 2™ possible combinations

as in the case of the power of 2 stride (2%). However, with power of 2 strides, only those
m bits change, while with arbitrary strides other bits may aiso change. This is shown in
Figure 3-3 for stride s=6=3-2'. Now, if the problem is to access an array with only one

stride of the form r2*, we can store it as we store the corresponding stride 2* and use the
bits (iy,icss--erizsm1) Of the address to indicate the memory bank number and we can

guarantee perfect access. In other words, we will consideritas a
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Figure 3-2 : Address Sequence for s=2 and m=3

Other bits

Bm#ﬂﬁs

'i.j—'- - - -

change

i0

[1

i

i3

i4

i6

6 and m=3

Figure 3-3 :Address Sequence for s
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power of 2 pattern with basis {f, f .1,---s fxemt} - If, however, more than one stride are
to be accessed by a storage matrix, we can not guarantee perfect access even if the
corresponding restricted matrix is nonsingular. This is because other bits in the address
may change and cause two different addresses to be mapped to the same memory bank.

There are some cases, however, where we can access more than one arbitrary stride

without conflicts. One case could be if all strides belong to the same family r2* (they all

have the same x, but may differ in r), because they will have the same basis. For

example, the strides 1,3,5,7.... (they belong to the family r2°) can be accessed without
conflict in a combined storage scheme. Other cases with strides from different families
can also be accessed without conflict (when the varying nonbasis bits of one stride do not
fall in the corresponding restricted matrix of any other accessed stride) like 1.8,10. We

will see also that in most of the other cases, a stride can be accessed with less than 3

cycles. So, to access any arbitrary stride s =r2%, we will first convert it into a power of 2
pattern with basis {f,, fri1,---» fx+m-1} and use the same techniques used for power of 2

patterns to construct the storage matrix.

3.6 NP-Completeness

Suppose we are given a vector space Zj, a set of variables B = {t,,_,,...,fo}, and a set

[=A{T\,T....,T,} such that B(T}) is any set of n vectors of B. Each vector ¢, €B

must appear in some B(7;). The problem is to assign each ¢, € B a vector in Z%, such
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that for all T;, the vectors assigned to all ¢, €7, are linearly independent. We call this

problem linear independence satisfaction (LIS).

Theorem 4 Linear independence satisfaction is NP-complete.

This theorem is proved in [1]. By stating this theorem, we conclude this chapter
keeping in mind the NP-Completeness of the problem of constructing combined storage
schemes which suggests resorting to heuristics. In the next chapter, we use three heuristics

based on graph coloring.



Chapter 4

4. Heuristic Approaches

4.1 Introduction

In the previous chapter, we have seen that the problem of constructing combined storage
schemes is NP-Complete. In this chapter we will describe three heuristics which we use to
construct combined storage schemes. These heuristics are based on graph coloring. We
will seen how a given set of patterns can be represented as a conflict graph. In [1], it was

shown that constructing a conflict-free combined storage scheme for P patterns and

2™ memories is possible if and only if the corresponding conflict graph is m-colorable.
So, our approach is to construct a combined storage scheme by coloring the

corresponding conflict graph.
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We assume that the compiler is capable of finding the patterns that will be
accessed by a given program. It is reasonable to assume that if the memory access patterns
of a program are known, the access frequency to the given patterns will also be known.
The access frequency of w(7)pattern T}, is the number of times this pattern is accessed
during the running of the program. We extend the weight function to the edges and
vertices of the conflict graph, where each vertex corresponds to a basis vector. We define
the weight of an edge:

wit,t) = Zw(T)
t,t €B(T;)
Where rand ¢ are two basis vectors. Each vector is assigned a weight which is the sum
of edge weights linking this vector to all others:

w(t) = Z w(t,t-)

t eB

The weight of an edge is proportional to the number of extra CPU cycles that will be
spent if the vertices of that edge are identically colored by assuming that all other edge

constraints are met.

Consider the set of patterns {7j,..., T} that are defined using their basis vectors
B(T) which are denoted here by 1,...,5 and their access frequency w(T) as shown in

Figure 4-1 (a).
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The conflict graph for the above set of patterns is shown on Figure 4-1 (b) with the
weights w(r,t’) and w(s). The union of the vectors of all the pattern bases is

B={12,345}.

Pattems T1 Tz T3 Ta TS Ts
Freq. 31417 10] 4

[

Basis |1
Vectors | 4

L
pLON
v W
[V 7 )

(a)

Figure 4-1: Set of Pattern Bases and their Conflict Graph
4.2 Coloring heuristics

[n the following we use Weighted Graph Coloring for allocating values (colors) to the
basis vectors. [nitially, the basis vectors are associated an undirected graph in which a
node u represents a basis vector and assigned the weight w(u). An edge (u,v) indicates
that the basis vectors « and v are member of at least one pattern basis. Edge (u.v) is
given the weight w(x,v) that is the extra number of memory cycles over the optimum

that will be needed if ¥ and v are given the same color.



55

The total number of nodes in the graph is identical to the number of basis vectors
in the union of all the pattern bases (m). The number of available colors is identical to

the number of vectors in the pattern basis (7).

The degree of dependence of the pattern bases is arbitrary which indicates that the
conflict graph may be formed by a collection of non-connected sub-graphs. In the
following we present a number of coloring heuristics that are adequate for synthesizing

storage schemes by using our approach.

4.3 Weighted coloring with node splitting

A first coloring heuristic, denoted by (GC) for Greedy Coloring, operates on weighted

conflict graphs and perform node splitting when it fails in coloring a node.

GC repeats until all the nodes are colored while always choosing an uncolored
node v with the highest weight. Node v is colored with the smallest available color that

is not used by its neighbors. If all the available colors have been assigned to the neighbors

of the current node v, then v is split into two nodes v and v . The splitting operation
must divide the pattern bases that contain v as basis vector into two groups which nearly
have equal weights. Whenever a node is split, GC re-evaluates the weights for all

uncolored nodes and restarts again.
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A node z that is present in only one pattern basis has necessarily m~ 1 neighbors.

Such a node u can always be colored without splitting. A node v that is split is
necessarily present in more than on pattern basis because it has at least m neighbors that
are assigned all the m colors. Splitting node v into v’ and v’ means that some of the
pattern bases that contain v will be represented by v’ and the other basis by v . Node

splitting has the effect of reducing the degree of conflicts with other vectors at the cost of

duplicating the representation of vectors in the storage matrix.

! c-Phase 4 :split 1 into 1 and 1" and color (2, 1™, 2", and 1)

Figure 4-2 : Node Splitting by GC
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Figure 4-2 shows the coloring by GC of the set of patterns displayed in Figure 4-1.

In Phase 1, the heuristic color nodes 3, 4, and 5 in the order of decreasing weight. In
phase 2, it splits node 1 into | and 1 because the neighbors of 1 have all available colors
as shown in Figure 4-2 (a). In phase 3, it split node 2 into 2 and 2 for the same reason
and color 1" as shown in Figure 4-2 (b). Finally, in phase 4 the heuristic splits 1 again into

1 and 1" which makes all the remaining nodes colorable as shown in Figure 4-2 (c).

In the worst case, we can have a fully connected graph, i.e., every node has n-1
edges. Splitting a node with e edges, may result in two nodes: one with 1 edge and the
other with e —1edges. An upper bound on the number of splits of a node with n -1 edges
is n—m where we have m colors. So. an upper bound on the number of splits needed to

color any graph is n(n—m). A split operation needs to update the graph. This update

process takes O(n) time. So. the time complexity of this algorithm is O(n® — nzm) .

4.4 A clustering-based heuristic

This simple heuristic considers each pattern basis and uniformly distributes its vectors
over a number of clusters, where each cluster is associated to a color. The distribution is
uniform because when handling one paﬁem basis, no pair of vectors are assigned to the
same cluster. To minimize the conflicts, a vector is mapped to the cluster whose conflict
with the vector is the least among all clusters. In the following we present this heuristic in

more detail.



Initially, for each color j such that 0 < j<n—1 we create an empty cluster C;.

The pattern bases are sorted in the decreasing order of their weights and the pattern basis

By with the highest weight is taken first.

Let By be the current pattern basis. Br = {v,...,v,_;} consists of n distinct
vectors. The algorithm evaluates the conflict array conf (i, /) for each v; € By and each
cluster C;, where conf(.,.) is an mxm array. A cluster can be either empty or it

contains a sub-set of basis vectors. Each cluster receives one basis vector after examining
each pattern basis except when this basis vector is already present in the cluster. The value
of the array conflict conf (i. ) is the sum of conflicts between vector v; € By and all the

vectors {e; q.e;,...} thatare the current members of cluster C; :

conf(i, )= 2 w(v;,e; )
ej,keCj

Note that vector e,, is member of the union of all pattern bases and also member of at
least one pattern basis. Since the clusters are initially empty, we set w(v;,d) =0 and
w(v;,v;) = 0. Now, the basis vectors {vy,...,v,,_|} are taken in the decreasing order of
their weights. Vector v; is inserted into cluster C; if conf (i, ) is the least among all the
m clusters. However, if C y already contains a copy of v;, then the insertion is omitted
because the copy is also representative of v;. Next, we lock cluster C; to ensure that no

other vector from the same pattern basis will be inserted into C;. Each cluster receives
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one and only one vector of each pattern basis. This guarantees the pattern basis vectors are
uniformly distributed over the clusters, a necessary condition to ensure that the basis
vectors of any given pattern basis will receive linearly independent values after
completion of the algorithm. The above process is repeated for all the vectors of the

current pattern basis which leads to distribute its vectors over the clusters. The algorithm

terminates when all the pattern bases have been visited.

As a result of this heuristic the m basis vectors of each pattern are uniformly
distributed over the m available clusters and each cluster contain basis vectors that have
the least degree of conflict. Thus the heuristic is useful to partition the set of basis vectors
into groups so that: 1) intra-cluster conflicts are minimized and it is more likely to cluster
independent vectors, and 2) avoid as possible placing copies of the same vector in distinct

clusters (duplication) or duplicate the least weighted vectors.

Each cluster C; should map to one row of the storage matrix M. Since each
column ; of the above matrix corresponds to one vector e of the union of all the patterr:
bases because such a column is the image by M of e(j = Me) . The storage matrix .\/ is
formed by examining each cluster so that the ith row of M is filled by 1 in each column
J where t; ec;, otherwise the row is. completed with zeros. The heuristic is better
explained using the previous example of 6 patterns Ti,...,Tg and their access frequencies

which are shown in Figure 4-1.
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The clusters are initialized with the pattern basis that is the most frequently

accessed which is T, and the clusters become co = {1}, ¢, = {3}, ¢ = {5}. Now we

consider the next pattern that is T;

2

and 73 as shown in the first block of

and build the conflict diagram between the clusters

@

(5)

T3/7 Tzl‘ Tsl‘
cLusla2 44 v40 CLUS|1/34 44 4/40 CLUS| /22 4/40 S/36
f(iyjo 14 @ REI A4 @ (1.4}] 11 @ 22
Rz @ 3 Bl @ 1 @lz 3 @
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Figure 4-3 : Conflict Diagrams in Clustering

Column CLUS list the current content of the clusters. The right block contains the

pattern, its-weight, its basis vectors and their weights, and conflict weights between the

vectors (columns) and clusters (rows). The mapping of vectors to clusters is taken in the

decreasing order of vector weights. In the first block of Figure 4-3, vector 3 is taken first

because it has the highest weight (44) and mapped to cluster {3} because it has the least

conflict (0) with this cluster compared to other clusters (14 with {1} and 12 with {3}).

Since vecter 3 is already in {3} which leave the cluster unchanged. Now no more vectors

from the basis of 7; can map onto {3} because these vectors must be distributed over

cluster so that each cluster will map to only one vector of a any given pattern basis.
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Similarly, vectors 2 and 4 are mapped to {5} and {1} which after updating become {2.5}

and {1,4}, respectively.

The overall result is the state of the clusters after the last step is completed (here
conflict diagram 5). The clusters are {1,4}, {3,5} and {1,2,5} which shows that | and 3
are duplicated in the solution. The basis vectors of each cluster will receive the same
coloring vector. As basis vectors may appear in more then one cluster, then the final
coloring of each basis vector must be the sum (exclusive-or) of all the coloring vectors it
received. Clusters {1,4}, {3,5} and {1,2,5} are assigned the coloring vectors (1,0.0),
(0,1,0), (0,0,1), respectively. Since 1 is in the first and last clusters, then the final color of
I must be (1,0,1) and that of 5 is (0,1,1). The storage matrix M is directly obtained from

the clusters where each row of M corresponds to one cluster:

M

I
— 0 e —
_—0 O N
O - O W
—— O Wy

One can easily verify that the restricted sub-matrices to each data pattemn are all r.on-

singular. For example, matrix .L[r3 whose basis is B(T3) = {2,3,4} is the following.

o — o W

4
0
0
1

<
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OO'—‘N



Building the conflict or weight matrix takes O(n’m P) time. Constructing the

conflict table for a given pattern takes O(m’n) time and O(m*n P) for P patterns. This

is in the worst case where every cluster has n vectors. Selecting the least conflicting
cluster for one vector takes O(m) time and O(m2 P) to map all vectors of all patterns to

clusters. So, the overall time complexity is O(nzm P+m’n P).

4.5 The merge-split heuristic

One important feature of a coloring heuristic is the ability to early detect largest
independent sets of node and color these sets. An independent set contains the nodes that
are not related pairwise. In our approach we use the concept of largest independent set
within a general rode merging (MERGE) procedure that assembles independent node
from the conflict graph but without coloring them. The objective of MERGE is to find
early sets of independent nodes so that all the nodes that belong to a given independent set
is renamed and given one single name. There are two results from this operation: 1) all
the nodes which bear the new name will be colored later by the same color and, 2) the set
of bases is reduced by the renaming process which reduces the complexity of the problem.
For example consider two bases b, =(e;,e,,e3) and b, =(e;,e,,e4) with frequencies f;
and f,, respectively. Assume (e;,ey) forms an independent set, then we can rename
(e3,e;) by an unused name say es and the bases become & =(ej,e;,e5) and

by = (ej,ey.e5) which can be combined into one single basis say b=(e,.es,e5) with
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frequency f + f,. Later when es is colored by a color say k both e; and e, will be
colored by k. The benefit of this approach is to keep in the graph only one single copy of
a set of nodes that can be given the same color. Delaying the coloring of new names has
the benefit of handling the new name and its new weight with respect to all the other

nodes which is likely to produce more adequate coloring.

The MERGE procedure works as follows: It chooses node u with the highest
weight and places it in a set S. Next it selects nodes in decreasing order of weights so
that each of the selected nodes is not a neighbor to any node already in S . Every time it
finds such a node. it inserts it into S . This process ends when no more independent nodes
can be found. The nodes of S are renamed except when S contains only u. If some

nodes are renamed. it reduces the current set of bases and re-evaluate the new weights.

The second important operation is the node splitting which occurs when it
becomes impossible to color a graph because it contains a clique of m+ 1 nodes or more
and there is only m colors. A clique is a set of nodes that are connected to each other
within the set. For example consider three bases b; =(e;,e5,€3), by =(ej,e5,¢,), arl
by = (ey,e3,¢,; to form a clique of 4 nodes which cannot be 3-colored. Splitting node u
into two new nodes u, and u; consists of partitioning the set of bases that contain u, so
that some of these bases map to u, and the other map to ;. We must create a merge-
inhibitor edge for (u,,4;) to avoid any attempt to reverse the splitting operation. This is

similar to providing two different mapping of node u which indicates that the resulting
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storage scheme will incorporate two distinct accesses for pattern bases that contain the

split node u . This defines the procedure (SPLIT).

In the above example, we split an arbitrary node say e, and create two new nodes
e3p and e3; so that the bases become b; = (ej,e;,e3), b5 =(ey,€31,¢4), and b, remains
unchanged. Apparently, pairs of nodes (e,,e3;) and (e3;,e4) become independent sets

and a 3-coloring can be found.

A coloring heuristic called Merge-Split (MS) is presented. The strategy of this
heuristic is to perform alternate merge and split operations until the conflict graph become
m-colorable, where m is the number of memories. The outcome of MERGE is one of the
following cases: 1) reducing the number of bases but the conflict graph is still
uncolorable, 2) the number of bases remains unchanged, and 3) the conflict graph
becomes colorable. In the first case, there is opportunity for merging but there is still a
clique of m or more nodes. In the second case, there is no opportunity for merging. {n the
third case, some node merging is performed which reduces the number cf bases to 1.
Since each base forms a clique of m nodes, then reducing the number of bases to 1 means
that the problem is now m-colorable which terminates the algorithm. Now the algorithm
retrieve all the previous merge and split decisions which are simple renaming operations
and construct the solution based on the lastly colored m nodes. Let us consider the
example of 6 patterns 7j....,Tg that have been previously defined in Section 4.4. The list

of these patterns and their associated conflict graph are shown in parts a and b of Figure
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4-1. Edge (1,2) is not used in any base which makes its weight to be zero (w(1,2) =0).
The heuristic first merges nodes (1,2), rename them 1, and substitute 1 to each occurrence
of 2 in the pattern bases as shown in Figure 4-4 (a) which also displays the conflict graph

of the reduced set of pattern bases. The number of pattern bases reduces from 6 to 4.

To reduce the number of patterns bases further, the heuristic selects node 3 that has
the least weight and splits it into two nodes 5 and 6. Now node 5 is contained in pattern
bases (1,4.5), (3,4,5), and (1,3.5) as shown in Figure 4-4 (a). Since node 1 has now the
highest weight and it appears in two bases out of three which all contain 5. In order to
create an opportunity for merging later 1 with 6, the name 5 is changed 6 in (3.4.5) which
becomes (3,4,6). Figure 4-4 (b) shows the new list of patterns and its conflict graph. A
merging-preventing edge is added to (5,6) to avoid undoing the previous operation. Note

that splitting a node does increases the number of pattern bases which remains four.

During the next merging step, node | is merged to 6 and renamed 1. The number
of pattern bases becomes three. This represents the only opportunity offered at this stage
and the results are shown on Figure 4-4 (¢ ). Next, the least weighted node that is 3 is split
again into nodes 5 and 7 as shown in Figure 4-4 (d). This operation is straightforward

because 5 is contained in two pattern bases.

In the next merging step, nodes 3 and 5 are merged and renamed 3. Additional

merge preventive edges are used for (1,3) and (3,7). This reduces the number of pattern
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Figure 44 : The Merge/Split Heuristic
bases to two (Figure 4-4 (e)). Another merging opportunity is that of nodes 4 and 7 which

are renamed 4. The set of partern bases becomes one which indicate that the merge-split
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phases are complete and the previous conflict graph is now reduced to a clique of 3 nodes
({1},{3},{4}) which is 3-colorable (Figure 4-4 (e)). Now we need to propagate the
previous decisions (from last to first) of merging and splitting in order to find the coloring
solution. Merging (4,7) gives the coloring ({1},{3},{4,5}) because 7 is a copy of 3.
Merging (3,5) gives ({1},{3.5},{4,5}). Merging (1,6) gives ({1,5},{3,5},{4,5}) because 6
is another copy of 5. Finally, merging (1,2) gives ({1,2,5},{3,5},{4,5}) which is the

solution.

Assume {1,2,5}, {3,5}, and {4,5} are assigned (1,0,0), (0,1,0), and (0,0.1),
respectively. vector 5 will be assigned the sum (exclusive-or) of (1,0,0), (0.1,0). and
(0,0,1) which gives (1,1,1). This is equivalent to assigning 1's in the columns of the
storage matrix M so that row I, 2, and 3 map to {1,2,5}, {3,5}, and {4,5}, respectively.

This gives the storage matrix:

1 23 435
1 10 01
M=10 01 01
0 0011

This storage matrix allows conflict-free access to all the patterns because each restricted

matrix My, is non-singular, where 1<i<6. For example, the restriction My, that is

formed by columns (1,3,5) of M is non-singular:
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The time complexity of this heuristic is O(n’m P + M N*) . The first term is the
time to build the conflict matrix. In the second term, M is the total number of merges and
splits the algorithm makes and N is the maximum number of nodes in the graph after

some number of merges and splits.

4.6 Evaluation

In this section, we experimentally test and compare the three heuristics described in this
chapter. These heuristics will be compared in two types of problems: access of power of
iwo patterns and access of arbitrary strides. In each of these two types of problems, the
comparison between the different heuristics will be in two criteria: cost of solutions and

execution time.

4.6.1 Power-of-2 Patterns

Given a solution (m x n Boolean matrix), let C be the number of memory cycles needed

to access all patterns using this matrix,
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where P is the number of pattemns, f(T;) is the frequency (weight) of pattern I;,
and c; is the number of memory cycles needed to access 7; for one time. If the restricted

matrix M7 has a rank of m. then ¢; =1. If, however, the rank of Mz is m—k, then

¢; = 2% . This is how we compute c¢; and consequently C. We define C; as the lower

bound on C:

P
Cr=2/(T) ¢
i=l
Where ¢, is a lower bound on the number of cycles needed to access one pattern for one

time and is chosen to be 1 memory cycle. So,

P
Cr =2 f(T)

i=l

We evaluate a given solution by measuring its deviation (D) from the lower

bound. This deviation is defined as follows :

A good solution is a one with small D, and a worst solution is with D =2" —1.

We tested the different heuristics with a range of problem sizes. A given problem

i is defined by the number of memories 2™ and the number of patterns P. in that

problem and is represented by (m;.P;). In our experiments, we varied the number of
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memories from 8 to 256 (3 < m < 8) which is typically the case for VLIW machines. The

number of patterns was varied from 3 to 20 (3 < P <20).

(m;, P;) is a problem consisting of F; patterns each consisting of m; basis vectors.
These m; basis vectors are randomly generated out of a range of 3 m, possible vectors.
The generated vectors are normally distributed as shown in Figure 4-5. In this Figure, the
y-axis is the frequency of the corresponding vector out of 500 randomly generated
vectors. Normal distribution forces patterns to use neighboring vectors. This situation
makes vectors and patterns more correlated and finding a solution becomes more difficult,

but it is more realistic.
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Figure 4-5 : Normal Distribution of Vectors

For every problem (m;, P;), 50 random instances were randomly generated. In any

instance, P£ patterns are generated with weights uniformly distributed between
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land 2- P,. Now, Cof the problem (m;, P;) is computed as the average of C of the 50

instances of that problem.
4.6.2 Arbitrary Strides

In the case of arbitrary strides, given a Boolean matrix, then C;, is the average number of
memory cycles needed to access the stride s; by this matrix. In accessing an arbitrary

stride s; in 2™ memories, we will have the following addresses :

A(a), A(a +5;), A(a + 2s;),..., A(a+ (2™ - 1)s;)
where a is the origin within the array. We varied the origin ¢ from 0to 2™ -1.
For every origin, we computed the number of cycles needed to access this sequence of
addresses and then averaged this number for all origins to get the average number of

memory cycles needed to access the stride s;, C;,. Then C of the given solution is :

S
>c,

_i=l
C= S

where S is the number of strides.

In our experiments, we varied the number of memories again from 8 to 256. The
problem considered here is to construct a storage matrix that minimizes the average
memory access time of the strides (1, 2, 3...., 64). So, the cost of a given solution in the

case of stride access is :
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64
o— ——‘=
C= 64

Where C; is the average number of cycles needed to access the stride i .

Throughout this thesis, we compare our approaches in stride access with Sohi’s
solution. Sohi [41] gave a Boolean matrix for stride access and no body in the literature
gave a better solution. The matrix was for 8 memories and 12-bit array addresses and was

as follows :

111110100100
Meu=/1001111100T10
110100111001

Sohi, however, did not give a procedure to construct such matrices for arbitrary number of

memories and arbitrary size of addresses.

4.6.3 Results

In the plots and tables of this section, we evaluate and compare the three heuristics. In this
section we will be referring to Merge/Split, Greedy Coloring (H1), and Clustering by MS,
GC, and Clust, respectively.

The first three plots show the deviation (D) of the three heuristics versus the number of

patterns. Figure 4-10 compares the three heuristics in the same plot for the case of 2%
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memories. Figure 4-11 shows the execution time per one problem instance versus the
number of memories ( P is fixed to 20). Figure 4-12 shows the execution time versus the
number of patterns (m is fixed to 8). Figure 4-13 to Figure 4-16 compare the stride access
of the three heuristics and Sohi’s solution. The x-axis is the stride being accessed and the
y-axis is the average number of memory cycles needed to access that stride. In these plots,
m was set to 3. Figure 4-17 compares the heuristics’ average stride access versus the
number of memories. Figure 4-18 compares the average stride access time for the
heuristics and Sohi’s solution for m= 3. The first three tables show the worst case of (D)
between different instances of a problem for the three heuristics with various problem
sizes in pattern access. The other three tables show the worst case, C, and the variance of

the three heuristics.

[t is clear from the plots that GC outperforms the other two heuristics in the case of
pattern access. It may seem surprising since the quality of this heuristic in graph coloring
problems is less than other heuristics. This is because in graph coloring, splitting a node
directly means an increase in the solutions cost. In our problem, however, a split can
increase the cost only if it leads to making two or more vectors in the storage matrix
linearly dependent. Any neighbor vectors (vectors that are common in at least one pattern
basis) will not be given the same color because there will be an edge between them and if
needed one of them will be split and given more than one color. This split may not
increase the cost and on the contrary will likely lead to a set of linearly independent

vectors. So, in our problem, there is a good chance of getting a good solution by splitting.
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Although MS performs well in graph coloring, it dose not in pattern access. This is
due to two things. First, it dose not utilize the chance of splitting (as GC does) because it
splits only when it can not convert the graph into m-clique. Second, it goes to merging
whenever it is possible. It seems that merging in the context of constructing storage
matrices is destructive because it means giving two nodes the same color or giving two

vectors the same value.

Due to the high coupling or correlation between different vectors in the case of
stride access (see Figure 4-6), GC will have to make a lot of splits before being able to
color the graph. By doing so, the chance in splitting will be exhausted and extra penalized
splits will be needed. This is why GC is not the best in stride access as it was in pattern
access. [t seems that high correlation also restricts the freedom of MS and prevents it from
merging neighbor vectors and that is why MS is outperforming the other heuristics in

stride access.

Clustering takes the least execution time. GC takes more time than MS dose. This
is because it keeps splitting nodes and increasing the number of nodes and graph size
which directly increases the execution time. MS keeps the number of nodes minimum by

merging. This reduces the execution time of MS.
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Figure 4-6 : Patterns Corresponding to Strides (1,2,...,64)
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m
3 4 S 6 7T 8
3 0.00 0.00 0.00 0.00 000 0.00
8 027 053 040 137 0.89 095
15 | 091 097 210 3.67 323 438
20 | 092 151 3.03 416 707 820

Table 4-1 : Worst Case Pattern Access of MS

m
3 4 5 6 7 8
3 0.00 0.00 0.00 0.00 0.00 0.00
8§ 1011 014 013 000 0.17 0.00
15 032 030 047 036 048 0.23
20 | 057 049 060 0.71 0.56 0.84 |
Table 4-2 : Worst Case Pattern Access of GC
m '
' 3 4 5 6 7 8
3 | 0.00 0.00 0.00 0.00 0.00 0.00 !
8 ; 0.18 022 047 023 041 0.83 |
15 . 085 088 1.03 097 094 1.12
20 1.09 1.06 134 141 138 1.22

Table 4-3 : Worst Case Pattern Access of Clust
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m
3 4 5 6 i/ 8

|
a
!
| Worst]
|
{

! 7.00 425 531 497 531 6.72
l Avg | 256 2.77 3.07 335 3,66 3.97
| Yar | 0.82 041 0.68 058 075 126

Table 4-4 : Stride Access of MS

m
3 4 5 6 7 8
“Worst! 7.00 8.25 1150 14.13 1325 1747
Avg | 2.57 284 3.02 345 375 423 |
 Var © 123 185 328 637 230 0.58

Table 4-5 : Stride Access of GC

; m

3 3 5 6 7 8
"Worst: 7.00 825 1150 1413 1325 17.47
 Avg | 257 284 3.02 345 375 423 |
" Var | 123 185 328 637 230 0.58

Table 4-6 : Stride Access of Clust



Chapter 5

5. Neural Networks

Neural Nets (NN's) have been used to solve a variety of problems in diverse fields. Such
fields include combinatorial optimization, vision, pattern recognition, classification, and
many other fields. NN's are characterized by their ability to find solutions faster than
solutions found by conventional approaches. They can be implemented both in hardware
and in software, but are much faster when implemented in hardware. In this section, I will
use a neural net to build- Boolean storage matrices. The neural net was tested for power-
of-2 patterns as well as for arbitrary strides. In the case of arbitrary strides, the NN found
solutions that are of the same quality as other techniques, but was much faster. With
power-of-2 patterns, the NN was also faster and found good solutions for problems of

large sizes.
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S.1 Background

A variety of approaches have been in use to solve different problems in the fields of
science and engineering. Some problems have satisfactory algorithmié solutions.
Algorithmic approaches, however, may not be suitable for other problems (like NP
problems). For such problems, other heuristic approaches were employed. General
purpose heuristics like Simulated Annpealing, Simulated Evolution, and Genetic
Algorithms have been successful in many fields. There are, however, other types of
problems that do not have specific algorithmic or heuristic procedures to solve them. Such
problems like image recognition. speech recognition and similar problems. The human
brain is known to be successful and better than the most powerful computer in this type of
problems. So, to develop approaches that are successful in these problems, it is logical to
study the human brain and try to imitate it. This is actually what is happening in the field

of Neural Networks.

Neural Networks are artificial simulations of the human nervous system. They
imitate the operation of human brains by having similar structures and operation to scive
problems that the human brain can solve. Although our problem of synthesizing storage
schemes have heuristic techniques, we will use a neural net in trying to increase speed and

quality. Neural nets can be mainly divided into two categories [24]:

e Biological type. In this type, artificial nets are in high resemblance of human neural

nets in structure and operation. These nets have similar cell structure of the biological
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neurons shown in Figure 5-1 [22]. Such nets are usually used in learning machines,
classifiers, and pattern recognition. To achieve these functions, the net has also to

operate in a way similar to that of the human brain.

* Application-driven type. In this class, neural nets are affected more by the nature of
the application which they perform rather than the biological neural nets. There are
many models of this class of which the most known is the Hopfield model. Our

discussion will be limited to application-driven which are of interest to us.

2 4

Figure 5-1 : Biological Neuron
5.2 Why Usea NN ?

In this section, we will briefly discuss the advantages of using 2 NN in constructing
storage matrices rather than using other approaches. we can identify the following merits

of using NN's in our problem :
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NN's have the potential of massively parallel processing. Since in a parallel or
hardware implementation of NN's neurons operate in parallel, we can gain a speedup

linear in the number of neurons.

They are faster than other approaches. As will be seen in the comparisons, the
software implementation is much faster than all other approaches except the clustering

heuristic which is almost of the same speed.

Hardware implementation is more feasible than other approaches. Since a hardware
neuron operates faster than its software simulation by several orders, we can get

speedups of several orders beyond the parailelism speedup.

The object oriented nature of NN's (being composed of independent discrete neurons)

makes them easily scaleable and flexible for architecture improvement.

Current VLSI technologies are in favor of making hardware implementation of NN's

cheaper and more flexible.

In our problem, the NN works directly on the storage matrix without the need for

graph representation or any kind of conversion as needed in other approaches.

The simplicity of the architecture as will be seen makes the found solutions very

attractive.
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5.3 Biological Neural Nets

The human nervous system is composed of basic nervous cells or neurons as shown in
Figure 5-1. A neuron is composed of three main parts: the cell body and two tree-like
branches: dendrites and axon. The cell body contains the nucleus which has the plasma
and other chemical materials needed to be produced by the neuron. Dendrites work as the
receivers of the neuron. So a neuron receives signals from other neurons through its
dendrites and transmits its signals to other neurons through the axon. The axon is long
branch coming out of the cell body and branching at its end into strands and sub strands.
To deliver the signal from one neuron to another, strands have to meet with dendrites. The
junction point between the strands of one neuron and the dendrites of another is called the

synapse [22,24].

There are two types of synapses: excitatory and inhibitory. When the signal of one
neuron is transmitted through a synapse to the dendrite of another neuron, it will either
excite or inhibit the output of the other neuron depending on the type of the synapse.
Every synapse is characterized by a specific synaptic strength or weight. The significance
of an input signal on the output of a neuron is proportional to the weight of the synapse
through which it was received. Synaptic weights characterize the operation of a given NN
and varying them may completely change the operation of the net. In biological neural
nets, synaptic weights change in the long term as signals pass through them. This change

is believed to be responsible for learning and memory in human brains [22,24].
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The human brain contains about 10'' neurons. Every neuron is connected to about

10° to 10* other neurons which means that there are about 10" to 10" connections in
the brain. Signals in biological neural nets are about 1 million times slower than signal in
modern computers. though, human brains can do jobs like image recognition hundreds or

thousands of times faster and more accurate than computers. This is due the massive
parallelism in human brains, where 10" processors or neurons work in parallel and the

high coupling where every neuron is connected to 10° to 10* other neurons [22,24].

5.4 Artificial Neural Nets

An artificial NN is a collection of interconnected Neurons. Every neuron is an abstracted
model of the biological neuron. Figure 5-2 shows a simple neuron model. It mainly
consists of three parts: input synapses, body, and output synapse. Similar to the biological
case, input synapses carry signals from other neurons and the output synapse transmits the
output of the neuron to other neurons. A specific synaptic weight is associated with every

input svnapse.

Figure 5-2 : Artificial Neuron
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The neuron body is responsible for the main job of a neuron. It performs a
summation operation of the weighted input synapses. Then, it outputs a nonlinear function

of the weighted sum S; (for neuron /) and the neuron threshold 6. Every neuron has a
number of input synapses carrying the output of other neurons to it. The weight w, of the
input sﬁapse 5; coming from neuron n; to neuron n; represents the significance of the
output of 7, on the output of 7, . Let v, be the output of neuron n, Then the output of ,
is computed as follows :

v, = £ (wv,)-8)

J=t

where V is the total number of neurons and f is a nonlinear function. Figure 5-3 shows
four possible forms of the function f. The unit step function shown in (a) is the most

widely used function with various neural nets models.

(a) (®

4/

_/ l

(©) | (d)
Figure 5-3 : Forms of Output Function
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The neuron model described above is the standard model in most of the neural nets
in various applications. The difference between different neural net models is in the way
neurons are connected (NN architecture) and the way the weights are set and adjusted. To
describe the architecture, the neural net can be abstracted as a directed graph where nodes
are neurons and directed edges are synaptic links. Neural network architectures can be

grouped into two classes [24]:

1. feed-forward networks: in which neurons are arranged in layers without feedback. If
the net is represented as a directed graph, then the feed-forward networks are those

graphs without loops.

2. feedback networks: which are nets that have feedback connections or the

corresponding graphs contain loops.

In feed-forward networks, for any input pattern, there is a single output pattern.
The output pattern is found in one pass over the layers of the network. Having feedback
connections in feedback networks makes the network iterate several times and give
several intermediate output patterns before reaching a stable output pattern. The set of all
inputs and outputs of the network define the state of the network. When the outputs of the
network change, inputs of some neurons accordingly change which moves the network
into another state. This way the network takes several iterations of changing inputs and

outputs until it reaches or converges into a stable state.
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There are several models of each of the classes described above. The most well-
known models of the feedback networks are: Competitive networks, Kohonen's networks,
and Hopfield networks. Every model of these has special fields of use. The Hopfield
model is mostly used in combinatorial optimization problems. The network architecture
that we will use in our problem belongs to this model. So, in the next section we describe

the Hopfield model before presenting our neural net.

5.5 The Hopfield Model

One of the most known application-driven models is the Hopfield model. This model is
mostly used in optimization problems. It is characterized by the feedback between
deferent layers of the NN (Figure 5-4 [22]). Having feedback, implies that the NN may

take several number of iterations to converge or to be stable.

OO0

Figure 5-4: Feedback Model



To fully describe any NN, it is enough to give two things. First is the weight
matrix W where W (i,)) is the weight w; of the synapse s;- So, if we have N neurons
then ¥ isan N x N 2-D array. Second is the threshold /-D array 8 of size V., where
@(i) is the threshold of the neuron 7, . These two things define the architecture of the NN.

After the architecture, remains the operation dynamics.

Let the output of neuron », at iteration ¢ be v/ and ¥’ be the array of all neuron

outputs, i.e., ¥’ (i) = v;. To find the output v/*' of neuron n, at iteration ¢+1, we need first

to compute the weighted sum S; of the inputs to that neuron. S, is defined as follows:

N
S = 2 nv))
j=l

Now. v;*" is defined as follows :

S, >0 =>vi"t =1
S, <8@()=>v" =0

S, =6@)=>v*"=v

This is just another way of representing the nonlinear function in Figure 3-3 (a). If

we look at S, we can see that it is the ith number in the matrix .S, where

S=WxV'
So, the whole NN update process can be represented by this matrix multiplication

operation and the comparison between every element in S with the corresponding element



93

in 8. There are two ways, however, of this updating process: serial and parallel. In the

1+1

serial update, whenever a new output v/ is computed, it is stored into V(i) so that at
the end of the update process V'*' is equal to V. This approach guarantees fast
convergence, but may not give the best results. In the parallel update, when v/*' is
computed, it is stored into ¥'*'(i) and ¥’ (i) is not updated. This way, the NN takes long
time to converge and may not converge. However, the solutions found by the parallel
update are usually better. The NN converges, in both update approaches, when it reaches
an iteration ¢ where V' is equal to V'™, ie., when the ith iteration does not make any

update on V'"'.

To systemize the design of multilayer networks, Hopfield used a mathematical
model that characterizes all networks of this type. This mathematical model is helpful in
network convergence analysis. Hopfield used a mathematical quantity and called it the

energy function of the network. His energy function is as follows :
E= ‘%ZZ WyViV;
i

It had been shown that when a network converges, it will be in a local optima of
this function E. The energy function makes the Hofield model most suitable for
optimization problems. In such problems, the designers job consists of two things. First,
he should make a decoding mechanism which will decode a given network output pattern

into a solution of his problem. Second, he should map his objective function into the
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energy function, so that his objective function will be optimized when the network
converges. Mapping the objective function is achieved by setting the synaptic weights

which are the remaining variables in the energy function.

Using the energy function is not the only way to design a Hopfield network. The
network can be intuitively structured in a way that will lead the network to a solution as

will be seen in our case.

5.6 Constructing the matrix

Our aim in synthesizing a storage matrix is to make the restricted matrix of every pattern
nonsingular (in the optimal case). Designing an approach that will guarantee this
condition is very complex and may not be possible. So, we will put other criteria that will
give near optimal solutions and imply feasible network architectures. A matrix is
nonsingular if and only if its vectors or columns are linearly independent. We will replace
this condition by other conditions that are more flexible but are ﬁkeiy to' lead to

nonsingular matrices as will be seen :

1. All columns are nonzero.

o

All rows are nonzero.

Giving a value to one vector reduces the chance of other vectors in the same restricted

L)

matrix to take the same value.
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Having a zero vector will lead to the case of trivial linear dependence. In other
words, if an mx m matrix has k zero vectors, then its rank will be at most m—k .
Conditions 1 and 2 will prevent this by preventing having zero columns or rows. If two
vectors are not similar then they are linearly independent. So, if we guarantee that in a
matrix there are no two similar vectors, we are sure that any two vectors are linearly
independent. This, however, is not enough to guarantee a nonsingular matrix, because a
vector may be a linear combination of more than one vector. In other words, to guarantee
that an mx m matrix is nonsingular, we have to have a group of m linearly independent
vectors rather than a group of two. Now, we have two linearly independent (not similar)
vectors and we generate a third vector such that it is not similar to any of them then there
is a good chance that the three vectors are linearly independent. In Figure 3-3, vector a
was randomly selected and vector b was selected so that it is not similar to vector a.
Now, if we want to select a third vector ¢ to build a 3x3 matrix. we are left with 6
possible vectors as shown in the Figure. The zero vector will not be selected because of
condition 1. Clearly, of the 5 remaining vectors only that framed vector will lead to a
singular matrix. So, there is an 83% chance of having a nonsingular matrix. The network
will not even choose that vector because it is similar to the ORing of the other two vectors
as will be seen in the next section. This will make the chance even higher. This example
just shows the idea, though we may not be lucky in other cases. The criteria used in
constructing this matrix is to select a vector that is not similar to already selected vectors.

We chose condition 3 to satisfy this criteria. Condition 3 will reduce the chance of having
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similar and linearly dependent nonzero vectors. In the next section, we will show how a
neural network will realize these three conditions and build a storage matrix. In section

5.8, we will propose an alternative network to build the matrix in a different way.

Unsele/cted Vectors Possible /Vectors

/’/ /

~
.

O = O

C b

Figure 5-5 : Constructing Dissimilar Vectors

VSR o S

5.7 Proposed Architecture I

In this section, we. will show how to construct a neural net which will construct the
storage matrix depending on the three conditions stated in the previous section. The i.et
consists of three main blocks: 4, B, and C (Figure 5-6). Block 4 is an image ot the
corresponding storage matrix. For every bit in the storage matrix, there is a corresponding
neuron in block A. So, block 4 consists of m rows and n columns. This block will
contain the final solution when the network converges to a stable state, i.e., an arbitrary
bit in the storage matrix will be 1 if the corresponding neuron outputs a 1 and will be 0

otherwise. All neurons in this block will have a threshold of 0. Block B consists of m
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Figure 5-6 : Architecture I Layout

rows and P colun:rs, where F is the rotat number of patterns. Iu a given row of this
block. every neurcn represents orc cf the pasterns. All neurons in this block have a
threshold of -0.5. Block C consists of n colvmns. The numbe: of neurons in everv
column in this block is not fixed. The number of neurons in column i is 2quat .. the
number 5 patterns to which v; ( the vector corresponding to column i ) belongs. In other
words, for every pattern that has v, in its basis, there is a corresponding neuron in column

i of block C. Again, neurons in this block have a threshold of -0.5.
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All connections in the net are interblock. In other words, there are no links within a
given block. As shown in Figure 5-6, there are connections between blocks 4 and B and
between blocks 4 and C. Let us look at the connections between blocks 4 and C . For
simplicity we will describe the connections for one column and other columns are
connected in the same way. The output of every neuron in a column of block C will be
connected to the inputs of all neurons in that column of block 4. The weight of these
connections is #, which is the weight of the corresponding pattern. Also, the output of
every neuron in that column of block 4 is connected as an input to every neuron in that
column of block C. The weight of these connections is -1. These connections are shown in
Figure 5-7 for one neuron in block C. The connections between blocks 4 and B are
similar. Here, however, a neuron (corresponding to pattern T7;) in row / of block B is not
connected to all neurons in row i of block 4. It is, however, connected to the subset of
those neurons in columns corresponding to vectors in the basis of the pattern 7;. The

number of those neurons is m and the connections between them and the neurons in block

B are like those of block C and are shown in Figure 5-7.

In the previous paragraph we have described the architecture of the neural net.
Now, we will describe the way it is updated. The network is updated in a serial way. It is,
however, slightly different from the standard serial update method. In our update, at every
iteration we select the neuron », whose |S, —6,.| is maximum. If this neuron is to be

updated (from O to 1 or from 1 to 0) then it is updated, otherwise the next neuron is
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considered until one neuron is updated. After updating a neuron, the inputs of other
neurons that are connected to the output of this neuron are updated and the next iteration
starts. When the net reaches an iteration where no neurons need to be updated, the

algorithm halts. The algorithmic form of this update procedure is shown in Figure 5-8.

Figure 5-7 : Architecture I Connections
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l.forall i do
v, =0;
2.Stable =0;
3.While (! Stable )
{
Stable = 1;
forall i do

N
Si = Z(wjivj) "0,-

Jj=1
sort neurons in decreasing order of S;.
i=0;
While (Stable)
{
if (S; >0 and v, =0)
{
Stable = 0;
v, =1;
}
if (S; <0 and v, =1)
{
Stable = 0;
v, =0;
}
++i;

}

Figure 5-8 : The Update Algorithm

The connections between blocks 4 and C will guarantee condition 1. This is
because a neuron in block C will output a 1 as long as its inputs are all zeros (since its
threshold is -0.5). Outputting a 1 will excite one of the neurons in the corresponding

column of block A to output a 1. When one of these neurons (in block A) outputs a 1, it
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will force the outputs of all neurons in the same column of block C to output zeros. This
will prevent forcing more than a 1 in the same column of block 4 or in the storage matrix.

In the same way, connections between blocks 4 and B will force condition 2.

If a vector in the matrix gets a 1 in one of its rows, that will reduce the chances of
another vector in the same restricted matrix to have a 1 in the same row. This is because at
least one of the neurons in that row of block B will go off and hence the input sum of
these vectors in that row will be less. This will guarantee condition 3. This way, we can
see that the proposed network architecture will satisfy the three conditions of section 5.6.
Figure 5-9 shows how the storage matrix is built through the network iterations for the
same example used in the previous chapter. The row above every matrix shows the
corresponding basis vectors. Figure 5-10 shows the restricted matrix of every pattern. As
can be seen from the Figure, all matrices are nonsingular except the restricted matrix of

P6.

The time complexity of this neural netis O(N* + I N), where N is the number of

neurons and [/ is the number of iterations of the network. The N? term is due to the for
loop in step 3 of the algorithm. In every iteration, the algorithm makes a search to find the
neuron with maximum § which makes-the /N term. From our experiments we found

that / can be quite accurately approximated by /=m+n.
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(b)

(a)

(d)

(c)

(f)

(e)

o O

(h)

(g)

Figure 5-9 : Building The Storage Matrix



1 4 5 1 3 4
0O 1 0 0 1 1
1 1 0 1 0 1
1 0 1 1 0 O
P1 P2
2 3 4 3 4 5
0 1 1 1 1 0
0 0 1 0 1 0
1 0 O 0 0 1
P3 P4
1 3 5 2 4 5
0O 1 O 0 1 0
1 0 O 0 1 0
1 0 1 1 0 1
P5 P6

Figure 5-10 : The Restricted Matrices

5.8 Proposed Architecture II

This architecture is also based on the idea of trying to make vectors in restricted matrices
linearly independent by reducing the chance of similarity. The network will use a concept

similar to the concept of force directed optimization. In this technique, every vector tries
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to push away neighbor vectors (vectors in the same restricted matrix) to have different
values form the one it got. In the previous architecture, similar action was done, but with
external forces coming from blocks C and B to block 4. Here, these forces are internal
which will reduce the number of neurons used in the network. In this architecture, there is
only one block corresponding to block 4 in the previous architecture (Figure 5-11). In this
block, every vector exerts forces on other vectors to push them away. The force of a
vector is proportional to its weight. In the network, this means that the output of neurons
belonging to a high weighted vector will be fed as inputs to neurons in neighbor vectors
with weights of magnitude proportional to the weight of that vector. These weights are

negative to inhibit (push) other vectors.

m Rows
AL

Figure 5-11 : Architecture I Layout
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In this network, a neuron is connected to neurons in the same column and some of
the neurons in the same row only. The output of every neuron is fed to all other neurons in

the same column with a weight of #,,, where W, is the total weight of all the patterns to

which the corresponding vector belongs. Figure 5-12 shows the connections for one
neuron. These connections prevent assigning ones to more than one row in a vector. In the
coloring sense, these inhibitory synaptic links can be thought of as a way to prevent
giving a node (vector) more than one color (a 1 in a row). In coloring heuristics, the least
weighted vector is split if it is needed to split any node. In this network, having synaptic

links of weight -W_ implies that high weighted vectors (large W,) will have a small

L4

chance of being split (getting 1 in more than one row).

? Wep Q Nep h
e o |bo:
é -Wep ;
0 o Lo

Figure 5-12 : Architecture II Connections
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In the horizontal direction, any two neurons n, and »#; in the same row are
connected with weights w; = w, =W, where W_, is the total weight of all patterns that
are common for the two vectors corresponding to the columns having the two neurons. If
a vector (column in the net) gets a 1 in a row, these horizontal links will prevent other

columns with common patterns to have 1's in the same row. This corresponds to giving

connected nodes different colors in the coloring heuristics.

After defining the weights of all synaptic links, we are left with setting the
thresholds. To give the priority of output update to neurons in high weighted vectors, the

threshold will be set to -#,,. So, at the beginning when all neurons outputs are 0,

S =W

i pe

and the highest weighted vector (highest ;) will be updated first.

corresponding to coloring the highest weighted nodes first. The update procedure of this

network is the same as the one used in the previous section

5.9 Evaluation

In this section we will use the same data sets used in the previous chapter to test the two
NN architectures Al and AIl for power-of-2 patterns as well as for arbitrary strides. Here

we also use the same set of plots and tables for the NN architectures.

From the first Figure, we can see that Al strongly deviates for P =2, 3, and 4 and

then drops and starts to increase slowly and smoothly. The reason of this behavior is that
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for small number of patterns, less significant effect comes to block A from blocks B and
C and hence the nctwork becomes quite loose and behaves more randomly. AIl dose not
have this problem because of the strong coupling between neurons. We can see that in the

next Figure, AIl has a smooth behavior from the beginning.

Figure 5-15 shows that All outperforms Al for up to 10 patterns. After that, A [
wins. Changing the number of patterns has very little effect on AI which makes it suitable
for large problems. In stride access, the two architectures have exactly the same

performance.

AIl takes much more execution time because it has more connections to be
considered in the update procedure. Moreover, Al update procedure can be greatly
simplified and accelerated by using logical operations rather than arithmetic operations.
This can be done by ORing the outputs of neurons in one column and feeding the resuit to

the corresponding neurons in block C. The same thing is done in the horizontal direction.
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Figure 5-15 : Pattern Access for m=8

m |

3 3 5 6 7 g
3 | 1.00 200 300 300 7.00 7.001
P| 8 | 058 057 075 1.16 1.44 2.36§
|

15 | 0.69 0.74 071 098 1.10 1.49 !
20 | 070 0.73 0.82 145 134 213 |

Table 5-1 : Worst Case Pattern Access of Al

m
3 4 - 5 6 7 8
3 0.00 0.17 013 0.00 0.00 0.00
8 0.20 028 027 023 0.28 0.29
15 | 0.29 028 033 045 037 041
20 | 0.28 035 033 047 0.50 0.44

Table 5-2 : Worst Case Pattern Access of AIl

Lo e Ll
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Figure 5-16 : Execution Time Vs. m of Pattern Access
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Figure 5-17 : Execution Time Vs. P of Pattern Access
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m

3 ) 3 6 7 8

Worst] 7.00 825 11.66 18.50 20.08 27.05
Avg | 267 296 3.13 368 4.11 471

 Var | 146 253 474 928 5.09 2020

Table 5-3 : Stride Access of Al

m
3 3 5 6 7 8 |
Worst/ 7.00 825 11.66 1850 20.08 27.05
. Avg | 267 296 3.13 368 411 471 |
. Var | 146 253 474 928 5.09 2020

Table 54 : Stride Access of AIT
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Chapter 6

6. Genetic Algorithms

For the last decade., general optimization algorithms like simulated annealing,
evolutionary algorithms. and genetic algorithms have been very widely and successfully
used in diverse fields. Recently, a lot of attention and research efforts have been devoted
to explore the theory and applications of genetic algorithms. This made genetic
algorithms very popular in many fields like VLSI design automation, machine learning,

and simulation of biological genetic systems.

In our problem, we have used genetic algorithms to synthesize storage matrices.
The results were encouraging. Solutions found by GA were superior to all other
approaches. However, the execution time of GA was the largest among the other

approaches in the case of synthesizing matrices for storage of arbitrary stride patterns. In



ti5

cases where storage synthesis is needed once at compilation time, GA are very attractive.

since execution time is not a main issue.

6.1 Background

Simulated annealing, evolutionary algorithms, and genetic algorithms are directed random
search strategies used in solving various types of optimization problems. These strategies
are useful for problems with huge solution spaces. They mainly operate by testing sample
solutions from diverse areas of the search space and then gradually intensifying the search
in promising areas. This way, the search algorithm concentrates the effort in areas more
likely to have the optimal solution instead of wasting time in searching hopeless areas. To
achieve this, these algorithms have two main factors in common. First is the random
search technique which is used to explore different areas of the solution space. Second is
the technique used to direct the random search to promising areas. The second factor
narrows the search scope as the algorithm progresses. Simulated annealing uses random
perturbation to current solutions as the search technique and a cooling schedule as the
technique to direct the search and narrow the search scope. Evolutionary and genetic
algorithms are common in their natural origin from which they were inspired.
Evolutionary algorithms use mutation as their main search strategy. On the other hand.
genetic algorithms use the crossover operator as the main search technique and mutation
as a secondary operator. Genetic algorithms use probabilistic selection as a way of

directing the search process.
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In nature, fit individuals survive and produce next generations while weak
individuals die out. This way, good genes of fit individuals survive in next generations
and generational evolution takes place. As new generations are produced, the average
fitness of individuals is expected to improve. Features of individuals are carried by their
genes. Two things are responsible for genetic evolution in nature : selection and
reproduction. Giving survival to the fittest is actually selecting it and its genes to survive
in next generations. Genetic materials of individuals are contained in what is called
chromosomes. Reproduction happens when genetic materials of two parents recombine to
form the genetic materials of new offsprings in the new generation. This process is called
crossover. In crossover, segments of parents’ chromosomes recombine and form the
offsprings’ chromosomes. Since crossover happens after selection takes place, only those
fit individuals participate in producing new individuals for the new generation. This

makes the expected fitness of the new generation high to drive the evolution wheel.

Genetic algorithms simulate the genetic evolution in nature. They treat solutions of
a given problem as individuals of a population. The population in a genetic algorithm is
all currently produced solutions. The fitness of a given solution is the objective function
that we want to optimize in our problem. There should be an encoding scheme to encode
solutions as chromosomes, in order t6 apply genetic operators like crossover and
mutation. Typically, a chromosome is a string of integers representing a solution. The
genetic algorithm starts by randomly generating an initial population. It then evaluates the

fitness of all solutions in this population. After this comes the probabilistic selection stage
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in which a solution is selected with a probability proportional to its fitness value. Finally,
solutions of the new generation are produced as offsprings of the selected parent solutions
from the current population. Production of offsprings from parents is done by the two
operators: crossover and mutation. Like in nature, in crossover, randomly selected
segments of parents’ chromosomes are intermixed to form chromosomes of offsprings. In
mutation, a randomly selected gene of the offsprings chromosome is inverted. The cycle
of producing a new generation from an existing one continues until some stopping criteria

are met.
Any genetic algorithm is composed of the following main building blocks :
¢ Encoding Scheme.
e Fitness Function.
o [Initial Population.
e Selection Mechanism.
e Crossover.
e Mutation.

e Control Parameters and stopping criteria.
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A genetic algorithm is almost completely defined by defining the above building
blocks. Although there are standard forms and settings of most of these items, many
implementation details and variations differ from one genetic algorithm to another. The
first two items are directly related to the problem being solved, while the other items are
quite independent of the problem. So, for different problems, the first two items should be
totally different while the others should not. In the following sections, each of these items

will be described for the case of our problem.

6.2 Encoding Scheme

In many fields, finding a way of representing a solution as a chromosome is the main
issue. Before using the genetic algorithms approach, there should be an encoding scheme.
The encoding scheme is a way of representing a solution of the problem we have as a
chromosome. Being successful in setting this encoding scheme is essential to the success
of the genetic algorithm in finding a solution to the problem. In a good encoding scheme,
the features of a solution are clearly manifested by the solutions genes. If we can attribute
the high fitness of a given solution to a subset of its genes with a high probability, ther we
have a good encoding scheme. Typically, a solution is encoded as a string of integers.

This string is the chromosome and the integers it contains are the solutions genes.

In our problem, a solution is simply a Boolean matrix. If in the problem there are

2™ memories and n basis vectors, then the storage matrix will be an mxn Boolean
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matrix. We want to encode or map this matrix into a string or an array of integers. Let us
consider every vector or column in the matrix as the binary representation of an integer
number, where the highest row in the matrix contains the most significant bits. This way,

we can represent the matrix as an array of integers. These integers range from

0 to 2™ —1. In this encoding scheme, an m x n matrix is represented as a chromosome of

n m-bit integers corresponding to genes.

Figure 6-1 shows how a solution (Boolean matrix) is encoded into a chromosome.

Storage Matrix

1
1
0

- O O

0
1
1

O -0
O -
_ O -
- O O
O A

Chromosome

61325516

Gene

Figure 6-1 : Encoding Scheme
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We know that a matrix is nonsingular if and only if its columns (vectors) are
linearly independent. Now, in a given matrix, we can identify a subset of linearly
independent vectors and the remaining vectors are linear combinations of these. So, in a
solution with high fitness (a solution containing high- or full-rank restricted matrices),
there is a high probability that those genes corresponding to linearly independent vectors
are responsible for this high fitness. In other words, this encoding scheme is a good one in
the sense that good features of solutions are clearly manifested by their genes. Another

desirable feature of this encoding scheme is that it is simple and straight forward.

6.3 Fitness Function

The fitness function is a measure of how good a solution is. This function should be an
accurate measure of our optimization objective so that good or fit solutions are selected to
survive in next generations. After producing a new generation, the fitness function is

invoked for every solution to compute its fitness in preparation for the selection step.

In the case of power-of-2 patterns, the cost function we used was the percent

deviation from the lower bound of 1. This way, an optimal solution will have a cost of 1,

while the worst solution will have a cost of 2™ in the case of 2™ memories. However, for
the fitness function, we want the fitness value to be proportional to how good a solution

is. [n other words, it should be high for good solutions and low for bad solutions. So, we

1
will choose the fitness function to be ok where C is the cost function used before. This



1
fitness function will range from E;; to 1, where 1 is at the fit end. The same thing applies

for the case of stride access where C is the number of memory cycles.

6.4 Initial Population

The first step in the genetic algorithm is the generation of the initial population. The
initial population is the first generation from which next generations will be formed by

selection, crossover, and mutation. In our case, this population was randomly generated.

Every gene is selected as a random integer between 0 and 2™ —1. [t is essential to
generate the initial population so that all possible genes are in the populations
chromosomes. It also should be such that chromosomes in the population are of various
and diverse combinations of genes. These two criteria depend to some extent on the
random number generator used. It is also important to have a population size enough tc

cover all possible genes and diverse chromosome combinations of these genes.

6.5 Selection

After computing the fitness values of all solutions in the current population, the selection
stage is invoked. "Survival for the fittest" is a main rule in nature and a corner stone in
genetic algorithms. This rule ensures that good solutions will survive while weak

solutions will extinct as new generations are produced. Survival of good solutions implies
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the survival of their good genes and hence survival of their good features. Improvement
over generations is driven by two things: selection and crossover. Selection keeps good
genes and features for new generations. In crossover, genes of good solutions are
recombined hoping that an optimal solution is a combination of features or genes of good
solutions. By having large number of offsprings in the new population taken from a good
solution, we increase the probability of getting the right combination of an optimal
solution in one of these offsprings. So, our selection mechanism should be chosen so that
the number of offsprings taken from a given parent solution is proportional to its fitness

value.

In our problem, we use the Roulette wheel selection method [12,42]. In this
method, every solution is allocated a pie slice of a roulette. The area of this pie slice is
proportional to its fitness. Then the roulette is spin so that it will rotate with a random
angle between 0 and 27. When the roulette stops, it will be pointing to one point
belonging to one of the solutions' areas. Every time the roulette is spin; the solution
corresponding to the pointed area is selected. Clearly, the probability that the roulette will
point to a solutions area is proportional to that area and hence is proportional to its fitness
value. So, this method guarantees that selecting a solution for reproduction is proportional
to its fitness. This way, a fitter solution w111 be allocated a higher number of offsprings in
the new generation and will have a higher probability of surviving in next generations.

The roulette wheel selection method is demonstrated in Figure 6-2. For large populations,
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the expected number of offsprings of a given parent solution i will be =-- P,..,, where

fe

f; is the fitness of solution i, f, is the total fitness of all solutions in the current

population, and P,., is the population size .

Selected
Solution

Rndom Angle
Figure 6-2 : Roulette Wheel Method

6.6 Crossover

Crossover is the main search operator in genetic algorithms. It has similar operator in
nature. In nature, genes of parents are recombined to form genes of offsprings. In
crossover, randomly selected substrings of parents’ chromosomes are interchanged to

form chromosomes of offsprings.

A good solution will have a large number of offsprings as we have seen in the

previous section and so a large number of substrings will be selected. This large number
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will increase the chance of taking the substring most responsible for the high fitness of the
solution. When this substring is recombined with a similar substring of another good

solution, it will likely lead to an optimal or suboptimal solution [12].

There are different ways of dividing a chromosome into substrings. The simplest
form is shown in Figure 6-3, where a random point is selected between 0 and Z-/ (L is
the length of the chromosome). This will divide the parent P,'s chromosome into two
substrings: Sy; and S);. Another parent P, is divided into two substrings: S,; and S,,.
Now, in crossover, two offsprings will be formed: O; and O,. O, will be composed of
Sy and S,5. O, will be composed of Sy, and S5, as shown in Figure 6-3. Another way
of subdividing the chromosome is by taking two cut points instead of one as shown in
Figure 6-4. In our experiments, we have tried both ways. We found that taking two cut

points gives better results in the average.

Random Cut

romgems /

Parent 1 Parent 2

Offspring 1 Offspring 2

Figure 6-3 : 1-Cut Crossover
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Random Cut

e /\

Parent 1 Parent 2

<L

Offspring 1 Offspring 2
Figure 6-4 : 2-Cut Crossover

When two solutions are selected to be parents for next generation, they are not
always subjected to the crossover operator. The crossover operator is applied with a
probability P . So, there is a probability of (1 - F¢) that the two parents will be taken as

they are (without crossover) to be members of the new generation.

6.7 Mutation

Assume that a given gene (a vector in our case) is in the chromosome of only one solution
in the population of a given generation. There is a probability of not selecting that
solution for the next generation. In this case, that unique gene will be lost for ever. This is

because the crossover operator will create new chromosomes by recombining existing
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ones, but will never create a new gene. So, with the crossover operator alone, a lost gene
will be lost for ever which is undesirable [12]. To overcome this problem, the mutation
operator was introduced. Again, there are various forms of this operator, the mostly used
of which is the inversion. When this mutation is applied on a given chromosome, a
randomly selected gene in that chromosome is inverted. This operator is demonstrated in

Figure 6-5.

Chromosome

61325516

/ Randomly
Selected Gene

- O =

6132521

Figure 6-5 : Mutation by Inversion

In our implementation, we tried this form of mutation in addition to another form

(Figure 6-6). In the other form, when a gene is randomly selected, it is replaced with a

new random gene (a random integer between 0 and 2™ —1). Inversion is more suitable
when genes are bits. In our case, however, when a gene consists of more than one bit,

replacing a gene with another random independent gene (rather than inverting it) adds
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more diversity in the search process. The mutation operator is also used as a
diversification operator. Our experiments showed that the other operator gives better
results. This operator is also applied with a probability P, which is a very small

probability. Typically ranging from 0.005 to 0.05

Chromosome

61325516

Randomly
Selected Gene

Random Numberin
{0,...,7} - {5}

6132571

Figure 6-6 : Mutation by Random Number

6.8 Control Parameters

In previous sections, the building blocks of the genetic algorithm were discussed. There
are, however, some control parameters that will affect the operation of these blocks and
the performance of the whole genetic algorithm. These parameters are P, P,, P

size »

MaxGen, and the stopping criteria.
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Typically, P ranges from 0.5 to 1.0. We have done experiments with varying P
in that range. P-=0.65 was the most suitable setting for this parameter. Our experiments
showed that 0.05 was the best value of P, in the range 0.01 to 0.09. For small problem
sizes (e.g. m=4 and P=5), the stopping conditions (finding the optimal solution or not
finding further improvement) were met after very few generations, while for large
problems (e.g., m=8 and P =15), the stopping criteria were met after a number of
generations in the order of 20 on the average. So, we decided to make MaxGen a function
of m and P. The function chosen was MaxGen=m+ P because Increasing it beyond
this number did not improve the results by significant amounts, but directly increased the
execution time. By similar experiments, the best value for P,;,, was found to be equal to
m+ P+10. As discussed in section 6.4, the population size should be set so that enough
randomness and diversity in chromosomes and genes is incurred. Clearly, for large m,
there is a larger number of possible genes that should exist some where in the population.
Also, large P causes large variations in fitness of different combinations of genes, which
needs large population to cover these different combinations. So, we see that P, should

also be a function of m and P.

We set the genetic algorithm to stop when one of the following three conditions
happens. First, if the optimal solution is found. Second, if the current number of

generations exceeds MaxGen. Third, if the improvement of the average fitness



f newpopulation

( , where f is the average fitness) is not worth continuing (<1.05 for 4

f oldpopulation

consecutive generations).

6.9 The Algorithm

The genetic algorithm we used is shown in Figure 6-7. The control parameters are set
first. Then the algorithm starts by generating the initial population. The algorithm then
enters the loop in step 3 which is the main part of the algorithm. In this loop, the fitness of
the current population is computed by calling the fitness function for every solution. Next,
for every member in the new population, a parent from the current population is selected
by the function Select. Now, starting from i =0 and for every i and i +1, two offsprings
for the new generation are generated by applying the crossover operator on the two
selected parents. The function Crossover makes this operator. The Mutatiqn function is
then called for every offspring. After generating all members of the new population, the
loop is repeated and the fitness of this population is computed. The main loop is repeated
until the stopping criteria is met. While producing the different generations the fittest

solution is kept and returned at the end as the final solution.

The time compiexity of this algorithm in the case of pattern access is

O(G- P, - Pm’), where G is the number of generations. m> is the complexity of
(

size

computing the fitness value of a solution. In the case of stride access, we have to compute
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the average number of memory cycles C to find the fitness value. We compute C not for

all possible origins, but for 4 random origins to reduce the execution time. At the end,

1. Initialize Population
2. Old_Avg_Fitness=0;Gen=0;
3. Do
{
Old_Avg_Fitness=Avg_Fitness;
Evaluate_Population;
for i=0;i< P, —Li+=2)
{
Ol=i;
02=i+1;
PI=Select (O]);
P2=Select (02);
Mutation (i);
Mutation (i+1);
}
++Gen;
} While (! Stopping Condition)

Figure 6-7 : The GA
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however, we have to compute C of the final solution for all possible origins. So, the

complexity in the case of stride access is O(G- P, -S-2™ -mn), where 2™ is the
number of addresses to be transformed by a solution S is the number of strides, and mn

is the complexity of multiplying the m x n storage matrix by the address vectors.

6.10 Evaluation

The same data used before will be used in this section to evaluate the two Genetic
Algorithms (1-cut and 2-cut). The plots in this section are the same as those presented in

previous chapters.

Figures 6-8 and 6-9 show how the deviation increases with increasing the number
of patterns. We can see how the deviation increases as the number of memories increases.
Figure 6-10 shows the difference in performance between the 1-cut and 2-cut GA’s. The
2-Cut GA outperforms the 1-Cut GA and behaves more smoothly. The 2-Cut GA is
expected to be better because it adds more disruption and variety to population’s

chromosomes which is required for small populations [12]

[n stride access also the 2-Cut is better, not only in the average, but also in the
variance and the worst case. Figure 6-16 shows that the two GA versions outperform the
Sohi’s solution. This is a major result of our work since no body in the literature was able

to outperform Sohi’s solution. Moreover, our approach is dynamic. In other words, it can
pp y.
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be optimized for any number of memories and any set of strides. Sohi’s solution,

however, is fixed to 8 memories and to arbitrary strides with 12-bit array addresses.
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m
3 4 ] 6 7 ]
3 0.00 0.00 0.00 0.00 000 0.00
P 8 0.16 0.16 023 024 025 024
1§ | 021 025 025 037 036 0.34
20 | 030 025 033 034 048 041

Table 6-1 : Worst Case Pattern Access of 2-Cut GA

m
3 4 5 6 7 8
3 000 0.17 0.13 0.00 0.00 0.00
P 8 020 028 027 023 028 0.29
15 | 029 028 033 045 037 041
20 | 028 035 033 047 050 044

[ e s e

Table 6-2 : Worst Case Pattern Access of 1-Cut GA
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m
3 4 5 8
Worst| 400 5.00 425 562 4.77 3538
Avg | 228 2.69 299 299 3.65
Var | 028 040 031 0.52 0.58
Table 6-3 : Stride Access of 2-Cut GA
m
3 4 5 8
Worst| 362 431 459 577 4.69 5.58
Avg | 234 270 3.06 3.18 3.68
Var | 029 0.29 038 0.57 0.82

Table 6-4 : Stride Access of 1-Cut GA




Chapter 7

7. Comparisons and Conclusions

7.1 Comparisons

In this section, we present brief comparisons between the different approaches presented
in this thesis. The comparisons are based on the plots below. Table 7-1 shows the ranks

from 1 to 5 of the different techniques based on the different criteria we have seen before.

The Genetic approach is the best in terms of solution quality for both patterns and
strides. The only problem of this approach is the execution time. This problem, however
can be ignored since these are compile time procedures. It will not be an overhead to add
few seconds to the compilation time. Other faster approaches (like Clustering or NN) can

also be used for intermediate or test compilations and use the GA only at the final
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compilation. In the case of stride access, some times a storage scheme for a range of
strides (e.g., strides 1,2,...,64) is generated once and used as a static scheme without the
need to rebuild it at every compilation. In such cases, execution time is not an issue at all

and the GA approach will be the best choice.

The MS heuristic can be modified to improve its performance. For example, one
can use the Merge procedure only at the beginning to convert the graph into a clique and
then proceed just as the GC. This way we should find solutions that are at least as good as

those found by the GC.

The NN though was not successful in finding solutions as those found by other
techniques, is still attractive in the sense that it is a totally different approach. The very
little dependence of AI NN on the number of patterns makes it a good choice for
problems of large size. As, can be seen from Figure 7-1, the NN is approaching the
performance of other techniques for large number of patterns. The speed of the NN is also

a major advantage of this approach.
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Pattern Access Stride Access
Avg. = Worst | Memory | Worst | Execution
Deviation!| Case Cycles Case Time

MS 5 5 2 2 4
GC 2 2 3 3 5
Clust 3 3 3 3 1
NN 4 4 5 5 2
GA l l 1 | 1 S

Table 7-1 : Ranking of the different techniques

7.2 Conclusion

In this thesis. we have addressed the problem of serialization of parallel memory access.
In specific, we have addressed the problems of accessing power of 2 patterns as well as
accessing arbitrary strides in parallel lock-step memories. We have developed different

techniques based on graph coloring, Neural Networks, and Genetic Algorithms.

In Chapter 1, the problem of bandwidth mismatch between fast processors and
slow memories was introduced. We have seen the different categories of techniques
developed to bridge this gap. Among Technology, Software, and Architecture.
Architecture and specifically parallel memory architecture was the most promising

technique to speed up memories.

In Chapter 2, we have presented a brief survey of the techniques used to overcome
the problem of conflicts in parallel memory access. We have seen that improper storage of

arrays into memories can waste up to 36% of the system throughput in accessing arbitrary
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strides. In the case of other patterns, like power of two patterns, memory throughput can
drop by several orders. Three main techniques of storage were presented: Skewing, Prime
Memory Systems, and Bitwise Address Transformations. Bitwise Address

Transformations are desirable due to their cost, efficiency, simplicity, and other reasons.

In Chapter 3, we have presented a detailed analysis of linear bitwise schemes. The
necessary and sufficient conditions for parallel access of power of 2 patterns were stated
and proved. The NP-Completeness of the problem of constructing combined storage

schemes was also proved.

In Chapter 4, the problem of constructing bitwise storage schemes was reduced to
a graph coloring problem. Three heuristics for constructing combined storage schemes

were presented and evaluated.

In Chapters 5 and 6. Neural Networks and Genetic Algorithms respectively were
used to find storage schemes for both power of 2 patterns and arbitrary strides. The two

approaches were tested with in the same way the other heuristics were tested.

In the case of power of 2 patterns, we were able to find optimal solutions in many
cases and near optimal in most of the cases. Our solutions are at least 20 times better than
those found by Al-Mouhamed and Seiden [1]. In [1] they used simple heuristics to show
the feasibility of solutions. In the case of arbitrary strides, our schemes gave better
solutions than all schemes in the literature and were more dynamic than some of the best

schemes like the one proposed by Sohi [41].
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