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Chapter 1

Introduction

Hypercubes belong to a class of disjoint memory or distributed memory computers.
Distributed memory computers have recently offered a cost-effective and feasible
approach to supercomputing by connecting a large number of processors with local
memory. Hypercube networks have received much attention over past few years
since they offer a rich interconnection structure with large bandwidth, logarithmic
diameter, and high degree of fault tolerance [20]. Many interconnection networks
such as trees and multidimensional meshes can be embedded in the hypercube [35].
Popular networks such as PM21, Illiac,and shuffle exchange can be emulated by a
hypercube with no hardware overhead. Another appealing feature of a hypercube is
its homogeneity and symmetry. In contrast with trees and shuffle exchange networks,
in a hypercube no node or link plays a special role. A number of hypercube machines

have been implemented since the advent of the 64 processor Cosmic cube at Caltech



[38] such as Intel iPSC, Amtek’s system/14 [19], NCUBE/10 [24] and the connection
machine.

The probability of one or more processors failing in such a complex concurrent
system is quite large. Further in a hypercube if a single processor or link fails, the
physical topology is altered. The hypercube topology is ideally suited for running
a large class of computationally intensive divide-and-conquer algorithms. Most of
the algorithms for which the hypercube topology is ideally suited require that the
topology does not change during their execution. Therefore some form of fault tol-
erance has to be introduced such that even in the presence éf component (node and
links) failures the topology is not altered. The importance of hypercube networks
motivated several researchers to propose, analyze and design fault-tolerant hyper-
cube based networks. In this thesis we survey a number of different fault-tolerant
architectures proposed in the literature. We present a new modular fault-tolerant
hypercube architecture using what are known as fault-tolerant basic blocks (FTBBs)
and analyse its subcube reliability. Further we also extend our scheme for incorpo-
rating fault tolerance in hierarchical hypercube networks.

Section 1.1 of this introductory Chapter provides a brief introduction to the hy-
percube topology and its topological properties. Section 1.2 briefly introduces the
reader to the previous work on fault-tolerant hypercube architectures, including the
merits and demerits of the. various fault-tolerant hypercube architectures investi-

gated in the literature. Section 1.3 sets the motivation for our work. Section 1.4



defines the objectives of our work. In Section 1.5 we present the organization for

rest of the thesis.

1.1 Hypercubes

In this section we introduce the hypercube topology and give a brief overview of
the topological properties of the hypercube. A hypercube of dimension d or a d-
dimensional hypercube consists of N = 2¢ nodes placed at the vertices of a d-
dimensional cube with d24-! links interconnecting these nodes. A 3-cube is shown
in Figure 1.1. Each node in a d-cube has a d-bit address consisting of 1s and
0s. Two nodes whose addresses differ in a single bit position i, 0<i<(d — 1) are
connected by a link which is said to span dimension 7. Each of the d dimensions (0
to (d — 1)) have N/2 links spanning them [4, 35]. The minimum distance (number
of links) between two nodes is the hamming distance between their addresses. The
maximum internode distance is the maximum hamming distance between any two
node addresses and is equal to d. The average internode distance is equal to d/2.
Each node has direct links to d other nodes i.e., to nodes whose addresses are at a
hamming distance of one from it. A j-subcube of a d-cube is defined as a subgraph
consisting of 2/ nodes obtained by choosing values (0s and 1s) for d — j dimensions
such that all node addresses in the j subcube have the same values for these d — j

dimensions [1]. For example, there are two 2-cubes in a 3-cube, {0xx} and {lxx}
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Figure 1.1: A hypercube of order d=3.

each containing four nodes, where x assumes a value either 0 or 1. In general we have
24-j disjoint j-subcubes in a d-cube. A j-subcube can be obtained by the following
procedure. Split the d-cube across any dimension i, to get two (d—1) subcubes (i.e.,
in one (d — 1) subcube all node addresses will have a ‘0’ in dimension 7; and in the
other (d — 1) subcube all nodes addresses will have a ‘1’ in dimension i1). Next split
the (d — 1) subcubes across any dimension i, to get four d — 2 subcubes. Continue

this procedure until each j + 1 subcube has been split into two j subcubes.



1.2 Previous Work

A number of fault-tolerant hypercube architectures have been proposed in the liter-
ature. In this Section we shall summarize the salient features of these architectures
and then consider the motivation for our work. Chapter 3 considers each of the
fault-tolerant architectures investigated in the literature in more detail.

The earliest fault-tolerant hypercube architecture is due to Rennels [34]. In
Rennels’s scheme a hypercube of dimension d is constructed of 2d-m fault-tolerant
modules each of dimension m. A fault-tolerant module consists of a hypercube of
dimension m and some spares to replace faulty nodes in the module. Rennels uses
two crossbar switches in each module to accomplish reconfiguration i.e., to switch
in a spare node in place of faulty nodes. The demerit of Rennels’s scheme is the
high cost of crossbar switches. Further link failures are not tolerated by his scheme.
Subcube reliability (explained in Section 2.2) is not analysed for Rennels’s scheme.

Chau et al proposed another scheme similar to Rennels’s idea of modular sparing
[12]. But this scheme uses decoupling networks instead of crossbar switches to
accomplish reconfiguration. This scheme is shown to have better reliability than
Rennels's scheme for the same cost of hardware overhead [12]. Even this scheme
does not tolerate link failures. Further link failures are not taken into consideration
in the derivation of system reliability for this scheme. Subcube reliability is also not

analysed.



Sultan and Melhem [42] proposed another modular sparing scheme using mul-
tiplexers and demultiplexers for reconfiguration within a module. Here the fault-
tolerant module consists of 2™ active nodes and k spare nodes. Unlike the fault-
tolerant module of Rennels’s scheme and the decoupling hypercube the failure of any
active node in Sultan’s scheme can be replaced only by two spare neighboring nodes
in the same module. The advantage of Sultan’s scheme is that it achieves better
system reliability than that of Rennels’s and Chau et al’s schemes. But Sultan’s
scheme employs too many spare nodes and thus has a cost disadvantage.

Yang et al consider another modular fault-tolerant hypercube schemé [47]. In
this scheme spare nodes in a fault-tolerant module can be used as local spares
to replace the faulty nodes in the fault-tolerant module or as remote spares to
replace the faulty nodes in other fault-tolerant modules via spare sharing links in
the architecture. The advantage of this scheme is that it tolerates both node and
link failures. The disadvantage is that it uses a lot of links in addition to the links in
the hypercube. All the schemes above only evaluate the system reliability. Subcube
reliability of their schemes is not investigated.

Banerjee and Peercy proposed another fault-tolerant hypercube architecture 7.
Their scheme uses spare processors attached to certain processors in the hypercube.
The hypercube is composed of two class of nodes P nodes which are ordinary nodes
and S nodes which have spare nodes attaciled to them. The S nodes are embedded

in a hypercube at appropriate places such that a P node is adjacent to exactly one



S node in the hypercube. Failures of the P nodes are tolerated by adjacent S nodes.

1.3 Motivation

In this Section we set the motivation for this thesis. In general there are two ways to
introduce spare nodes and links in a hypercube system: using either global sparing
or modular sparing. In global sparing, spare nodes or links can replace any failed
primary node or link respectively in the system. Global sparing is difficult to imple-
ment due to increased amount of logic needed for reconfiguration i.e., a spare node
or link should have the capability to replace any node or link in the hypercube. In
modular sparing a hypercube is built of basic modules. This is feasible due to the
recursive construction property exhibited by the hypercube. Specifically, a d-cube
can be constructed from 2™ fault-tolerant basic subcubes each of dimension d — m.
These fault-tolerant subcubes have in general some spare nodes and links to tolerate
node and link failures within the basic block. In this thesis we adopt the modular
sparing approach because of its many merits listed in Section 3.1.2. We also con-
sider building hypercubes from basic blocks referred to as fault-tolerant basic blocks
(FTBBs) because of their capability to tolerate node and/or link failures within the
block.

Most of the fault-tolerant hypercubes described in literature tolerate only node

failures {34, 12, 42]. Only overall system reliability is analysed for these fault-



15

tolerant schemes. Subcube reliability which is an important issue for hypercubes
(Section 2.2) is not investigated for any of the fault-tolerant hypercube architectures.
However, subcube reliability analysis for the basic hypercube is provided in [1}. Link
failures are not accounted for in the system reliability analysis in [34, 12, 42]. It
should also be noted that most of them use hardware switches like crossbar switches
[34] or multiplexers [42] or decoupling networks [12]. Until recent years, proposals
for fault tolerance in distributed memory machines such as hypercubes and meshes
assumed that only processors that are connected directly by links could communicate
easily with each other. The hardware solutions to th‘e problem focussed on direct
replacement of nodes through extra links and switches [34, 12, 42, 8]. Schemes such
as these carry a high cost due to ports and switches required to bring in spare
links and nodes [7]. The scheme which we shall introduce avoids hardware switches.
Further our scheme tolerates both node and link failures. More importantly we
analyse subcube reliability of our scheme extending the analysis in (1] for fault-
tolerant hypercube architectures.

In either global or modular sparing there are in general two techniques to replace
the failed primary nodes or links by spare nodes or links respectively: i.e., reconfig-
uration by hardware switches or use of fault-tolerant routing. In modular sparing
schemes (34, 12, 42] hardware switches are used for reconfiguration. As stated ear-
lier hardware switche; are extra overhead (cost) and they also introduce additional

links into the system. Fault-tolerant routing schemes [7, 42] have the advantage of




not introducing any hardware switches or links into the system. The disadvantage
is that they alter the physical topology even though the logical topology is main-
tained. This could mean introducing a few extra link delays between some nodes.
If these delays do not represent too much a penalty then, fault-tolerant routing
schemes are excellent both cost and performance wise. Recently routing strategies
based on circuit-switching concepts have been proposed for hypercubes and meshes
where the message delays for multiple hop messages are only slightly greater than
those for single hop messages. Hence it is possible to have logical links that span a
number of physical links without much extra cost in the message delays. We adopt
fault-tolerant routing into our architecture. The reconfiguration scheme which we
shall describe uses the notion of logical links spanning one or more physical links
to implement the desired topology [15, 22, 5, 31]. A penalty paid due to increased
congestion in the physical links might induce delays in the presence of increased
traffic. Hence even though multilink mapping of logical links is feasible with these
technologies, it should be kept to a minimum.

The logical complexity of the link is less than that of the node. This implies that
the failure rate of link should be lower than that of node. However link failures can-
not be neglected as discussed in [1] since there are d/2 times more links than nodes
in a d dimensional hypercube. Subcube reliability analysis of the basic hypercube in
[1] shows that if identical failure rates were assumed for the nodes and links then link

failures dominate the reliability of the hypercube over the nodes. System reliability
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evaluation of most of the fault-tolerant schemes only considers node failures.

We propose a fault-tolerant hypercube architecture which combines several fea-
tures of previous architectures. We use modular sparing i.e., spare nodes and links
can replace failed primary node and links respectively within the fault-tolerant basic
blocks. We define a FTBB of order m or a m-FTBB to be a basic building block
consisting of an m-cube and a spare node connected to all the primary nodes (nodes
of the m-cube) with 2™ spare links. The scheme which we propose tolerates both
node and link failures within a FTBB. No hardware switches are used for reconfig-
uration, instead we use faﬁlt-tolerant routing. Larger cubes are built from FTBBs
using the recursive construction property of the ypercube. We analyse subcube
reliability of our scheme permitting both node and link failures in the analysis. Fur-
ther, we extend our technique to be incorporated in hierarchical hypercubes which

gives better system reliability than current techniques.

1.4 Objectives of our Work

This section defines the objectives of our work. This thesis addresses the problem
of fault-tolerance in hypercubes. The primary objective is to study the merits and
demerits of existing fault-tolerant schemes in hypercubes and then propose a new
fault-tolerant scheme or a modification to the existing one such that both node and

link failures can be tolerated. Then we are required to develop a reconfiguration
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strategy for the proposed fault-tolerant hypercube architecture such that both node
and link failures are tolerated. Our objective also includes the subcube reliability

analysis of the proposed fault-tolerant scheme we propose for four failure models:
1. Node failure model: where only node failures are permitted.
2. Link failure model: where only link failures are permitted.

3. Combined node and link failure model: where both node and link failures

are permitted.

4. Supernode failure model: an approximation to the combined node and link

failure model.

adopting a methodology similar to the one considered in [1] to evaluate the subcube
reliability of ordinary hypercube. We propose a new fault-tolerant scheme which
is a modification to the Rennels’s scheme and Sultan & Meclhem's scheme so that
both node and link failures are tolerated. We investigate the subcube reliability of
the proposed scheme and compare it with the subcube reliability of the ordinary
hypercube. Our secondary objective is to study the current fault-tolerant schemes
in hierarchical hypercubes and then investigate the incorporation of modular fault-
tolerance concepts in hierarchical hypercubes. We extend our FTBB technique to
hierarchical hypercubes and build analytical models to evaluate the system reliability

of fault-tolerant schemes including the FTBB scheme, in hierarchical hypercubes.
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1.5 Organization of the Thesis

The thesis is organized as follows. Chapter 2 presents the required background
material in fault-tolerance used throughout the thesis, the importance of subcube
reliability in evaluating hypercubes & fault-tolerant hypercubes and the subcube re-
liability analysis of the basic hypercube for four failure models: node failure model,
link failure model, combined node and link failure model and the supernode failure
models. Chapter 3 presents a survey of a number of fault-tolerant hypercube and hi-
erarchical hypercube architectures investigated in the literature. Chapter 4 presents
the proposed modular fault-tolerant hypercube architecture utilizing FTBBs and
also present the reconfiguration strategy adopted for this architecture in the pres-
ence of node or/and link failures.In Chapter 5, we investigate the reliability of the
FTBBs. In Chapter 6, we investigate the subcube reliability of the proposed FTBB
based hypercube architecture and compare its reliability with the ordinary hyper-
cube. In the same chapter we also investigate the system reliability of fault-tolerant
schemes in hierarchical hypercubes. Finally, Chapter 7 presents our contributions,

conclusions and suggestions for future research.



Chapter 2

Subcube Reliability of Hypercube

Section 2.1 of this Chapter provides the background material in fault-tolerant com-
puting used throughout the thesis. Section 2.2 discusses the subcube reliability
importance in comparing different fault-tolerant hypercube architectures. The re-
maining sections discuss the subcube reliability of the basic hypercube for four failure
models: node failure model, link failure model, combined node & link failure model

and the supernode failure model [1].

2.1 Background Material

Fault Tolerance is an attribute of the system which aids the system to continue
functioning in the presence of hardware failures or software errors [27]. System

reliability (R(t)) at time ¢t is defined as the conditional probability that the system

13
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is operational during the interval [0,t] given that it was operational at time ¢ = 0.
System availability is defined as the probability that the system is opcrational at
time t. Reliability and availability are important goals of fault tolerance. Mean
Time To Failure (MTTF) is defined as the average time a system will continue to

function before encountering a failure. Mathematically
MTTF = [ R(t)dt
PR

The reciprocal of the MTTF i.e., the number of failures of a component or system
per unit time is known as the failure rate of that component or system and is usually
denoted by A. Therefore MTTF = -}: A widely used realistic assumption in fault
tolerance is the exponential failure law which relates the reliability ‘R(t)’ and failure
rate ‘X’ of a component and is given as R(t) = e~*. Reliability evaluation of any
system first consists of building a model for the system which is defined below.

A model for the hypercube or any system is an abstract representation of a
system derived using various assumptions about the system and involving three

steps: definition, parameterization and evaluation [17].

1. Definition: Here the system designer defines the system and the objective
of modelling. The objective could be reliability, availability or performance
related reliability or availability. The designer also defines precisely what con-
stitutes an operational system. The minimum connectivity of the system for

an operational system could be based on the following:
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(a) Terminal Reliability: The system works as long as two specified nodes

are working and connected.

(b) Multiterminal Reliability: The system works as long as connection be-

tween a specific set of input nodes and output nodes exist.

(c) Network Reliability: The system works as long as all nodes in the system
are working and connected. This is also referred to as system reliability

with the added constraint that no degradation is permitted in the working

of the system.

(d) Task Based Reliability: The system works as long as some minimum

number of connected nodes are available on the system for task execution.

(e) Subcube Reliability: The system works as long as some functional mini-

mum degree (order) subcube exists. This is a special case of task based

reliability.

The reliability of a hypercube based multi-computer is generally computed by
using the above measures [1, 3, 11, 18, 20}. In hypercube structures measures
(a) and (c) are useful for packet switching applications because they verify
the sturdiness of the topology and depict the probability of successful flooding
(for route setup or packet transmission). (b) is good measure for reliability of
dynarr;ic multistage interconnection networks. The other two measures incor-

porate graceful degradation into reliability metrics. Measure (e) is particularly
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important in hypercubes because most of the algorithms for hypercubes can be

executed on various sizes of hypercubes by setting parameters appropriately.

9. Parameterization: The designer has to specify his input parameters for the
model and output parameters in which he is interested. For example, for the
hypercube the failure rate of the nodes and the links, their repair rate etc.,
can be input parameters. The model’s output parameters include measures

such as reliability, availability, MTTF(mean time to failure) etc.

3. Evaluation: The designer finally evaluates the model using analytical tech-
niques or simulation. Analytical techniques include reliability block diagrams

(combinatorial modelling), fault trees, markov models or petri nets.

A conventional reliability modelling approach considers a stochastic graph model
for the hypercube system and evaluates reliability measures by assuming that nodes
and/or links can fail independently with known probabilities. We us markov and
combinatorial models to evaluate the reliability of the proposed architecture. Failure
rates of nodes and links are input parameters and system reliability and subcube

reliability are output parameters for our models.

2.2 Subcube Reliability

In this section we present the importance of subcube reliability for fault-tolerant

hypercube architectures. A d-cube can be built recursively from smaller dimensional
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cubes. Take two 1-cubes and connect the corresponding nodes by links to get a 2-
cube. Take two 2-cubes and connect the corresponding nodes by links to get a
3-cube and so on until the corresponding nodes of two (d — 1) cubes are connected
to get a d-cube. This recursive construction of a hypercube from smaller subcubes
proves very useful in task allocation and partitioning the binary d-cube for various
applications. The subcubes have all the architectural properties of the larger cube
so that many of the algorithms designed for hypercubes can use the size of the
available cube as a runtime parameter. For example, in the NCube Multiprocessor
(a binary 10 cubé), its operating system called AXIS, permits the main cube array
to be shared among many tasks, allocating subcubes of appropriate size to each task
[24, 25, 13]. Because the subcubes are disjoint from each other, allocation of the
partitions is easy since each task considers itself as working on an i-cube with nodes
relabelled accordingly. It is possible to view an incoming task as a set of interacting
modules that have to be assigned to the nodes of a subcube with adjacencies between
modules in the task graph being preserved in the subcube. Algorithms have been
developed to determine the size of the subcube required for each task under this
condition {14]. In addition, efficient algorithms for many applications are designed
to exploit the subcube partitioning ability of the hypercube, quite often in a recursive
or divide-and-conquer fashion [28, 44]. It is useful to see how much of this ability
is lost when failures begin to occur in a hypercube. Therefore evaluation of the

subcube reliability - the probability of having functional subcubes of different sizes
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even in the presence of failures for any hypercube based architecture is important
[39, 10]. This provides a basis for comparison of various fault-tolerant hypercube
architectures in their efficacy in running the various hypercube algorithms.

Subcube reliability for the basic hypercube has been investigated in (1, 37] under

four failure models, namely:
1. Node Failure Model - where only node failures are assumed to occur.
2. Link Failure Model - where only link failures are assumed to occur.

3. Combined Node and Link Failure Model - where both node and link failures

are assumed to occur.

4. Supernode Failure Model - which is an approximation to the combined node

and link failure model.

The reliability is computed in terms of the number of disjoint subcubes that can be
embedded in a d-cube in the presence of node and/or link failures. In particular, the
ability of a hypercube to embed a (d — 1) subcube (the largest fault-free subcube)
in the presence of failures is considered. When component failures (node and link)
occur the topology of the hypercube changes. For example, when a single node
failure occurs in a d-cube it is no longer possible to have a functional d-cube but a
functional (d—1)-subcube could be embedded. Thus some form of fault tolerance has

to be incorporated such that at least the first few component (node and link) failures
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are tolerated and still a d-cube embedding is possible. Algorithms for operational
subcube identification even in the presence of failures is treated in (2, 46]. A lower
bound on hardware redundancy that is necessary to tolerate a single node and link
failure is established in [39]. For all the failure models considered in this thesis
we assume that both node and link failures obey exponential failure law with node
failure rate denoted by A, and link failure rate denoted by A;. Therefore evaluation
of subcube reliability of any hypercube or fault-tolerant hypercube involves the
evaluation of probabilities of existence of subcubes of different sizes inside a damaged

or undamaged hypercube structure.

2.3 Node Failure Model

In this section subcube reliability of the basic hypercube is considered under the
node failure model. We assume that a single node fails at any given time. Consider
the embedding of a fault free (d — 1) subcube in a d-cube in the presence of node
failures. A single node failure will always leave an undamaged (d — 1) subcube but
two node failures could destroy all (d — 1) subcubes. For example, if node 0 and
node N — 1 fail there is no way of embedding a (d — 1) subcube. A fault free (d—1)
subcube exists if and only if all failures occur such that they can be enclosed in an
i subcube and i < d. This could be easily seen as follows. Split the d cube along

a dimension such that all failed nodes are left in an i subcube (i < d). This is not
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possible when nodes 0 and N — 1 fail because both these failed nodes can only be
enclosed in a d-cube. We shall now define the system states.

Let S; be defined as the system state signifying that all failures that have occurred
could be enclosed in a maximal i subcube i.e., a lower order subcube that encloses
all the failed nodes does not exist. In terms of functional cubes state S; can be
characterized as embedding (d — i) disjoint fault free subcubes of order (d —1),(d —
2),(d—3),-- -, i respectively. This could be seen as follows. Split the d cube into two
subcubes of order (d — 1) such that the faulty i subcube is enclosed in one (d — 1)
subcube. The other (d—1) subcube is fault free. Now split. the faulty (d—1) subcube
into two (d — 2) subcubes such that the faulty i subcube is enclosed in one (d —2)
subcube. Continue this procedure until a faulty (i + 1) subcube is split into two ¢
subcubes such that one is faulty and the other one is fault free. By this procedure
we would have obtained (d — i) disjoint subcubes mentioned above. Although we
cannot embed a fault free subcube of order greater than or equal to (i — 1) it could
be possible to enclose subcubes of order (i — 2) or less inside the faulty ¢ subcube.
The state diagram along with the transition rates is shown in Figure 2.1. State Sq
means that all failures have occurred in a maximal d cube so that no embedding of
(d — 1) subcube is possible. S. represents the fault free initial state or perfect state.

We shall now describe the state transitions. Consider the state transition from .
S. to Sp. Any node failur;a out of the N nodes can cause a transition from S, to S.

Therefore the transition rate is N)\,. Now consider the state transition from S; to



21

O OB O, (59

Figure 2.1: System state diagram for the node failure model.

Siy;. S; signifies that all failures have occurred within a ¢ subcube. This takes up ¢
dimensions of the d. Label these dimensions as faulty. (d — i) fault free dimensions
remain. Sy, ; signifies that all failures have occurred in a (i +j) subcube. This labels
(i + j) dimensions faulty. The transition from S; to Si;; then means additional j
dimensions become faulty out of the fault-free (d — ¢) dimensions. j dimensions out
of (d — 1) can be chosen in (d;i) ways. Considering one of these ways we see that
the original faulty i dimensions could take up values either 0s or 1s (total 21 ways).
Each of the different ways represents the address of the node which could fail to
cause the transition. Therefore the transition rate is (d;.") 2t),. Let the probability
of being in state S; be P;(t) at time t. The state equations for this system are given
as follows:

0P.[/ét = —A\,NP.,

8Py/6t = —Aa(N — 1)Py + A.NP.,



22

§Pi[6t = ~Ma(N = 2)P; + Tizh M2 () Py, 0< i< d.
The initial conditions are P.(0) = 1 and P;(0) = 0 for all i. It can be shown by

induction on i that the solution to this system of equations is [1]

P(t) = (—1)‘+‘(d)2“-‘e**~“‘ + (d) Z (—1)"""(i)?“""e“‘”‘?”"*”‘ (2.1)

1 i) =6 m
Let us define the reliabilities as follows
R.(t) = P.(t),
Ry(t) = Py(t) + R.(t) and
R;(t) = Pi(t) + Ri-i(t), for all i.
Thus Pi(t) is the probability that all failures are enclosed in an i subcube. R(t)
is the probability that all failures have occurred in a subcube of order less than or
equal to i. So the probability R;(t) is larger than P(t). The system’s mean time to
failure can be evaluated by integrating R;(t). The MTTF is given by the expressions
T.=1/NA,,

To=T.+1/(N —1)A, and

1 fd) 1 d\ ¢ im (1 24
T 1)) = -1 " —_ 2.2
netor 0 (o + () Lo l)aem 2
The curves for R;(t) and the values of MTTF are shown in Figure 2.2 and Table 2.1
respectively. We see from Figure 2.2 that values of R;(t) increase with . This is

because with larger i more failures can be tolerated. Let us interpret the MTTF

numbers taking the 10 cube as an example. The mean time to the first node failure
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Figure 2.2: 10 cube reliabilities R;(t) for the node failure model.

Table 2.1: MTTF in hours for node failure model (), = 107%/hour).
d N Te Th Ty Th Ty Ty Te Tg Te Tg Tq Tyo Ty
6 64 1563 3150 3303 3726 4468 5611 7867
7 128 781 1569 1612 1750 2014 2400 2968 4094
8 256 o 783 798 839 934 1079 1272 1554 2118
8 512 198 391 394 408 442 498 $73 668 808 1090
10 1024 98 193 196 201 212 234 264 301 348 418 5389
1 2048 49 1.3 28 29 103 1 124 139 187 180 216 286
12 4096 24 49 49 49 51 54 59 65 73 81 93 111 146
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is 98 hours. If the system can stay operational with disjoint subcubes of 9,8,7,6,5
and 4 (i.e., all failures could be enclosed in a 4 cube ), then the MTTF increases to
about 10 days. Much of this increase materializes from just the ability to tolerate

first node failure (Tp = 195 hours).

2.4 Link Failure Model

We now consider the effect of link failures. As before we are interested in embeddings
which have a (d — 1) subcube. We again assume that the link failures follow the
exponential failure law and that the failure rate of a link is ;. Each dimension ¢
(0 <€ i < d) has N/2 links spanning them. We can split a d cube across any of its
_dimensions and get two (d — 1) cubes. By splitting a d cube across any dimension
we mean that all links spanning that particular dimension are cut. So there are a
total of 2d possible (d — 1) subcube embeddings. Not all these subcubes are disjoint.
Let us label the (d — 1) subcubes as follows. C;; (0 < i < d,0 < j < 1) refers
to a subcube with all nodes having a j in their ith bit position. Only C;p and Ci
are disjoint for all i. Any other pair of subcubes will have a common d — 2 subcube
i.e., C;; and Cy; will share a d — 2 subcube with node addresses having a j in their
ith bit position and a ! in their kth bit position. The first link to fail will destroy
(d — 1) of the 2d possible (d — i) subcube embeddings. This can be seen as follows.

Without loss of generality assume that the first link to fail is the link connecting
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node 0 and node 1. Then the link spans dimension 0. When the d-cube is split
across Oth dimension we get two fault-free (d — 1) subcubes since anyway the failed
link (link between node 0 and node 1) is cut and is not part of any (d — 1) subcube
obtained by the split. If the d-cube is split across any other dimension we get one
fault-free subcube and the other which contains the failed link, since in this case
the faulty link is not split. The second link failure may or may not destroy the
remaining subcubes depending on whether it belongs to the Oth dimension or not.
To characterize the subcube reliability we have to now define the system states for
every link failure just like the node failure model.

Consider again the failure of the link between node 0 and node 1. This damages
only subcubes C;g,i > 0 leaving the remaining d + 1 subcubes undamaged. While
any link in the system is equally likely to fail, for the purpose of analysis‘we relabel
all the nodes in the cube such that the faulty link is mapped to the link between
node 0 and node 1. Since only 0th dimension is fixed by this relabeling we have
(d — 1)! ways of relabeling the remaining dimensions. When additional links fail
an appropriate labelling for the remaining dimensions may be chosen. Only if the
subsequent link failure does not belong to the already labelled dimension, do we
have to choose an additional labelling for the new failed link. We effectively assume
therefore, that the cubes are damaged in order i.e., Cy, is damaged first then Ca1

and so on.

We now define the system states in terms of the undamaged cubes remaining in
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the system as follows. The possible system states ( 0 < i < d) are
S.={C;;0<k<d0<j<1}

Sz = {Co0,Co1,Cin,i < j < d}

S1i = {Co1,Cjn,i < j < d}

Soi = {Cjp,i < j < d}.

The states Sp; each support two disjoint (d — 1) subcubes and these are the only
states which do not have equivalent states in the node failure model. State Sj;
embeds d — i fault free subcubes of order d — 1,d — 2,---,1 respectively. We can
summarize the equivalence between the states for the node and the link failure
models as follows. State Sp; does not have any equivalent state in the node failure
model. S} is equivalent to state Sp in the node model. State Spq-1 is equivalent to
Sy, the state in which no (d — 1) subcube embedding is possible. The state diagram
for the link failure model is shown in Figure 2.3. Now we shall explain the transition
rates. The transition rate from S. to Spg is Ad2¢~!. This is because the failure of
any link in the fault free system will result in the system state of Sap.

A detailed description of the transition rates between the remaining states now
follows. Let us first consider the transitions from state Sz to state S,j; Cop and
Cy, are both undamaged in these transitions. Any link failure contributing to this
transition must span dimension 0. Without loss of generality, let the new failed link
be incident to node z, z belongs to Cog. Consider such nodes with exactly j bits of

value 1 in the node address. We may remap all the nodes in the cube so that the j
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Figure 2.3: System state diagram for the link failure model.

bits of value 1 in the address of node 2 will be in bit positions 1,2, ...,j. Note that
« and its new faulty link (across dimension 0) are now in Cy, for all k, 0 < E<Ly.
Therefore, exactly j additional subcubes have been damaged. We may count the
number of nodes z by counting the nodes in Co‘o with exactly j 1 bits; this results
in a transition rate from state S to state S ; of /\(d;l) .

To generalize this for the Sy ; to Sayj transition, (0 € i< d,0 < j < d—1i) we
are again concerned only with faulty links that span the Oth dimension. Since the
sub-cubes Ci, ¢ < k < d are already damaged, only the d — 1 —1 sub-cubes Ciy,
i < k < d need be considered. Let us consider a faulty link incident to node z, z
belongs to Cg, with a node address containing exactly j, 1 bits in the bit positions
greater than i. Since the only dimension labels fixed from previous mappings are

those that are < i, we may remap all the nodes in the cube so that the j 1 bits just

described are in bit positions i + 1,7+ 2, ...,i + j. Clearly z and its new faulty link
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are in Cyy for all k, i < k < i+ j. Thus, we count the number of nodes in Cypp
with an address containing exactly j 1 bits in bit positions k, i < k < d and obtain
a transition rate of A(‘“}"‘)T. This rate (among others) is shown in Figure 2.4.
The remainder of the transitions from state S, j involve the links which do not span
dimension 0. Failure of any of the nonzero dimensioned links will damage either
Cop or Cp, plus j additional subcubes 0 < j < d —i. Since we may remap the cube
so that Cpg is always damaged first, we may consider links in Cyo without loss of
generality. To account for link failures in Cp; the final rate will be doubled.
Consider some node z in Cpp with an address containing j bits with value 1 in
nodes in the cube so that the j bits with value 1 just described are in bit positions
i+1,i+2,---,i+j. We need to determine all the links incident to x (other than
the link spanning dimension 0) such that z and this link will be in Ci,, for all
k,i < k < i+ j. The only links which fit this description span the dimensions
1,2,--,i,i+j+1,i4+3j+2,---,d = 1. We may determine the number of nodes
z by counting the number of nodes in Cpp with an address containing exactly j 1
bits in bit positions k, i < k < d. However, we may not simply multiply this figure
by d — 1 — j to obtain the number of links since the links which span dimensions
1,2,...,1 are incident to two nodes with exactly j 1 bits in bit positions k, i < k < d.
Thus, half of these links must be subtracted out so that the total number of links is
25\("';“) (d—=1-1/2—j). To take into account links in Cyp,;, we double this figure

to obtain the rate for the Sp; to S} ;4; transition as 2‘*1/\(“';_‘) (d-1-1i/2—j)
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for0<i<d,0<j<d—1i.
The transitions from state S;;, 0 < ¢ < d (See Figure 2.4(b)), are similar to the
transitions out of state Sp;. For the S); to S1iti0<j<d— i) transition, start

with the rate 2‘,\("";") for links spanning dimension 0. 2')\(‘“;.") (2d—1—-1i—2j).

" The transitions rates are indicated in the Figure 2.4.

From the state diagram we can write the state equations. Let P;;(t) be the
probability of being in state S;; at time . The solution to the system of equations
is obtained numerically. We can define the following probabilities.

P.(t) =Probability that no failures have occurred.

Ps_(4-1)cubes(t) = probability that link failures have occurred, but two disjoint sub-
cubes can be embedded.

Pi(t) =probability that link failures have occurred leaving d — ¢ functional disjoint
subcubes of order d — 1,d — 2, ..., i respectively. Reliability measures are then given
by:

R.(t) = P.(1)

Ro—(d-1)cubes(t) = Rut + Pa_(d—1)cues(t)

Ro(t) = Ra—(a-1)cutes(t) + Polt)

Ri(t) = Ri(t) + P(t), 0 <i < d.

The mean time to failure T, corresponding to these reliability measures are shown

in Table 2.2.

Note that we have used a lower failure rate for the links than that for the nodes,
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Figure 2.4: Transition rates for the link failure model.

Table 2.2: MTTF in hours for link failure model (A, = 107/hour).

d | N Te To- | To 7] T, Ty Ty Ts Tg T7 Te To Tio L 711
[ 64 5208 11458 11740 12957 15298 18552 23434 33361

7 128 2232 4836 4897 5213 5924 6945 8273 10284 14353 .

8 |25 | 977 | 2003 | 2106 | 2188 | 2406 | 2753 | 3184 [ 3745 | 4603 | 6324

9 512 434 922 928 947 1013 1132 1288 1471 1718 2088 2835

10 | 1024 | 295 | a2 413 419 438 479 537 605 685 793 | 958 | 1287

11 2048 89 186 187 188 194 207 229 256 285 321 369 443 591

12 4096 41 85 85 85 87 92 100 110 122 135 151 173 206 273




31

to account for their lower logical complexity.

2.5 Combined Node and Link Failure Model

In this section, the effect of both node and link failures on the system reliability is
explored. Under the node failure model, the failure of links can be ignored because
link failures may be considered as a failure of one of its terminal nodes. Thus the
node failure rate under that model encompassed the failure of the node and all of
its incident links. However, to apply this technique to the link failure model would
necessitate modeling a node failure as the simultaneous failure of all its incident links.
This would violate the assumption that failures are independently distributed. For
this reason a combined node and link failure model is developed.

Let the node failure rate be A, and the link failure rate be A, . We again assume
that both the node and link failures obey the exponential failure law. Both failure
rates are assumed to be constant and independent. We start from the link failure
model. We shall see that this model and the state transitions accurately model link
failures under the combined model. It only remains to know what happens to the
links of a failed node. In the link failure model the failure of a link is significant only
if it damages an as yet undamaged (d — 1) subcube. Since links incident to failed
nodes are not part of any undamaged subcube, they can be ignored in the analysis.

Thus the state diagram and link failure transitions (with A = M) of Figures 2.3
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and 2.4 are valid for the link failure transitions for the combined model. All that
now remains is to add the node failure transitions rates. These rates are developed
below.

When a node fails in the fault free system it can be mapped to node 0 of the
system. This failure damages d subcubes (C;go for 0 < ¢ < d) and corresponds to
state S)9. Thus we have new transition from S, to state S;o with rate An2¢ (see
Figure 2.5(a)). Any node failure in state Sp;, 0 < ¢ < d puts the system into state
Sy,i+js 0 £ j < (d — 1), since it damages Copp or Cp,; and j subcubes. The rates of
these transitions may be derived in a manner similar to the way link failures were
derived i.e., counting the number of nodes with addresses containing j bits with
value 1 in the d — 1 — i positions greater than i. The rate must be doubled to
account for failures in Cpg and Cy,;, leading to the transitions in Figure 2.5(a). In
state Sy ;, 0 < ¢ < d, a node failure will damage all, some or none of the remaining
subcubes. First considering the nodes in Cpp, we see that only those nodes with
addresses containing 1 bits in bit positions greater than ¢ will damage additional
subcubes. These are the transitions from state S ;, to state Sy 1j, 0 < j < (d — 1)
shown in Figure 2.5(b). Next if the faulty node is in Cp,, at least one subcube
(Co,1) will be damaged; j additional subcubes 0 < j < (d — 7) will be damaged for
nodes with addresses containing j 1 bits in bit positions greater than i. These are
the transitions from S;; to Spi4; depi.cted in Figure 2.5(b). Finally the transitions

from state Sp;, 0 < i < d (see Figure 2.5(c)) correspond to the failure of nodes with




33

2]611“ d-14

o—0 g

©

Figure 2.5: Additional failure rates for the combined model.
addresses containing j bits with value 1, 0 < j < (d — 7) in bit positions greater
than i.

The node transition rates can now be combined with the link transition rates to
derive the system of equations. We can solve the system of equations numerically
and the reliability measures defined in the previous section are computed and shown
in Table 2.3. The reliability and the MTTF are seen to be lower than those under

the node and link failure models because now both link and node failures are taken

into account.
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Table 2.3: MTTF in hours for combined node and link failure model (A =
10~%/hour, \, = 1073 /hour).
[1]

d N Te To_ T n B Ty Ty T T T Ty Ty T10 Ty
6 64 1202 1490 2443 2599 2982 3603 4532 6369

7 128 579 138 1170 1218 1341 1559 1862 2305 3187

8 256 279 362 563 578 816 695 806 950 1162 1587

9 s12 135 178 271 288 288 316 359 412 481 483 787

10 1024 | 65 88 131 132 136 146 163 184 209 242 291 390

n 2048 { 32 43 63 64 65 68 75 83 93 105 121 145 193

12 4096 15 21 31 31 31 32 35 38 42 47 53 61 72 95

2.6 Supernode Failure Model

We present now a simplified model for the combined failure model known as the
supernode failure model. This is an approximation to the combined node and link
failure model. We define a supernode to be a node and half its incident links i.e.,
each link is associated with a node. The failure of any of the 1 + d/2 components
of the supernode would lead to its failure. .The failure rate for the supernode is
given by A = X\, + d\;/2. The supernode is treated as though it is an independent
component. Substituting this value of X into the node failure model we derive the

MTTF given in Table 2.4. This provides results close to the exact combined model.

Table 2.4: MTTF in hours for supernode failure model (A = A, + Ad/2).
N T Ty Ty T Tg

Te T Ty T7 Tr Tg Tin Ty

d

6 64 1202 2423 2541 2866 3437 4316 6051

1 128 879 1162 1194 1296 1491 1778 2198 3033
8 256 279 559 568 600 687 m 909 1110 1513
9 512 135 270 272 282 308 344 398 461 558 752

10 1024 65 130 131 134 142 156 176 201 232 279 373
1 2048 32 63 63 64 a7 72 80 80 101 116 139 185
12 4096 15 31 31 31 32 34 37 41 45 51 58 69 91
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2.7 Discussion of the Results

In this Section we discuss the results i.e., the reliability and the MTTF obtained
for each of the models above. From Figure 2.2 we sce that the reliabilities Ri(t)
increase with the value of i. Ri(t) is the probability that the failures are contained
in a subcube of order i or less. For large i the permissible subcube in which to
encompass all failures is bigger and so is easier to satisfy since now more node
failures are tolerable. Hence the probability is large. R.(t) signifies the perfect
cube and so is most difficult to satisfy . Therefore this is the lowermost curve in
Figure 2.2. Table 2.1 shows the MTTF values for the node failure model. For a
fixed d we see that the MTTF T; increases with i. For example, with d = 10 the
MTTF for the first node failure (7.) is 98 howrs and for the second node failure
(T, all failures could be enclosed in a 0 subcube) is 195 hours. The MTTF for
subsequent failures does not increase to a large extent until T5 (all failures could be
enclosed in a 5 subcube). We notice that the any MTTF T; decreases with increase
in the order (d) of the hypercube. In fact T., the MTTF to the first node failure
(to leave the perfect state), nearly gets half as the order of the hypercube increases
by one (i.e., the nodes are doubled). For large practical hypercubes for example,
d = 11 or d = 12 we see that the MTTF to leave the perfect state is rather very
small just 49 and 24 hours respectively. Again consider the MTTF values for a

d = 10 cube. The MTTF to the first node failure is 98 hours. If the system can
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stay operational with disjoint subcubes of order 9,8,7,6,5 and 4 (i.e., all failures
could be enclosed in a 4-cube), then the MTTF increases to about 10 days [1]. Note
that much of this increase materializes from just the ability to tolerate one node
failure (Ty = 195 hours). The key point is then this. If we could tolerate the first
node failure using fault masking by having a spare node i.e., the first failed node can
be replaced by the spare node, then the MTTF to leave the perfect state (T%.) and
To can be improved. Other subcube MTTFs (T;’s) will also be improved. Similar
remarks hold for the link and combined node and link failure models. The reliability
and the MTTF for the link failufe model could be improved by the same technique
as for the node model i.e., we can have spare links to replace failed links in the
system. We use the above markov models for to evaluate the subcube reliability

of the proposed fault-tolerant hypercube architecture for each of the failure models

considered above.
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Chapter 3

Existing Fault-Tolerant

Hypercubes

In this chapter we shall review in detail different fault-tolerant hypercube and hier-
archical hypercube architectures investigated in the literature. Section 3.1 presents
the various fault-tolerant hypercube architectures while Section 3.2 considers fault-

tolerant hierarchical hypercube architectures.

3.1 Existing FTBB Based Hypercubes

This section reviews the following fault-tolerant hypercube architectures
1. Rennels’s Scheme.

2. Chau et al’s Scheme.

37
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3. Sultan and Melhem’s Scheme.
4. Banerjee and Peercy’s Scheme.

5. Yang et al’s Scheme.

3.1.1 Rennels’s Scheme

Rennels [34] suggests two schemes that use spare nodes to tolerate node failures in
a hypercube. The first scheme can be used for systems that do not require very
high reliability. Here an n-cube is divided into 2° subcubes each of dimension m
where n = s + m. One spare node is used to back up the nodes in each subcube.
The spare node which may be used to replace any failed node in the subcube is
connected to every node in the subcube and to each of its neighbors by means of
two crossbar switches. The first crossbar has 2™ + s inputs and n outputs. The
second crossbar has 2™ inputs and s outputs. In addition, each node requires an
extra port to connect to the crossbar switches.

For very high reliability systems, a second hierarchical scheme is proposed [34).
Here one spare node is hooked up to each subcube of four nodes via a high speed
bus. The scheme is applied recursively. For example, a spare group of five nodes
(one spare and four active) is used to back up four groups of five nodes each via a
High speed bus. This multilevel redundancy provides high reliability. Rennels did

not evaluate the overall system reliability or the subcube reliability of his schemes.
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Figure 3.1: A fault-tolerant module with k spares.

Further Link failures are not tolerated by his schemes.

3.1.2 Chau et al’'s Scheme

Chau et al [12] suggest another fault-tolerant hypercube architecture using similar
fault-tolerant modules as Rennels’s but using decoupling networks and soft switches
instead of crossbar switches. Here a fault-tolerant module consists of m active
nodes and k spare nodes. When m = 4 and with k spares the four active nodes
are connected in a cycle to model a 2-cube. Since only four nodes are active at
any given time in a fault-tolerant module, the spare and faulty nodes have to be
bypassed. This can be done using soft switches as shown in Figure 3.1. Such
9-cubes are connected together to form a n-cube. The connections between the 2-
cubes are realized by decoupling networks such that only active nodes in a module
are connected. Decoupling networks have been previously used in fault-tolerant
binary tree architectures [41]. A group of k level decoupling networks as shown in

Figure 3.2 is used to connect one fault-tolerant module to another. When none of
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Figure 3.2: Connecting one fault-tolerant module to another using decoupling net-

works.
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Figure 3.3: Connections after node 3 has become faulty.

the nodes have failed, dotted connections shown in Figure 3.2 are not used. When
a node fails the fault-tolerant module is reconfigured by the soft switches so as to
bypass the failed node and replace it with a spare node. Now connections between
nodes of one module and another are established as follows. Given a module with
k spare nodes, let i — 1 be the number of nodes that have failed and replaced at
some fixed time during the operation of the system. When another active node
fails, the level i decoupling network is switched. The ith level of the decoupling
network is reconfigured by switching the link that connects to the failed node and
all links to the right of it, one position to the right. For example, with three spares
we show the connections in Figure 3.3 after node 3 has failed. If the fault-tolérant

module is a m-cube (m > 2) with k-spare nodes, connections among the nodes can
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be done using decoupling networks instead of soft switches. For a m-cube fault-
tolerant module with k spares we need m groups of k-level decoupling networks to
establish the connections among the nodes in a module [12]. Chau et al generalize
this scheme when m = n i.e., global sparing and the entire network is a single fault-
tolerant module. The system reliability of the local sparing scheme for an n-cube

with fault-tolerant modules consisting of a m-cube and k spares is given by
RSn.m,k = (RMm,k)zn-m
where,

2"l k - 1 m N3
RMp = RMp g1 + ( +k )r‘-’- (1 —r)kck
and c is the fault coverage factor. Fault coverage is defined as the probability of

successful fault detection and reconfiguration. The system reliability of their global

sparing scheme is given by

2"+ k =1\ on . 1
RSn,n,k - Rsn,n,k—l + ( +k )7'2 (1 - 7’)LCA

where RS, 0 = r?" for an n-cube with k spares [12]. This global sparing scheme
requires far less number of spares than Rennels’s basic scheme to achieve the same
level of system reliability. Further Chau et als scheme requires less amount of
hardware than Rennels’s hierarchical scheme to achieve the same level of reliability.
Comparing Chau et al's modular sparing and global sparing techniques it is shown

in [12] that global sparing is preferable when n < 8 and modular sparing is better
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when n > 8 in terms of the hardware overhead and reliability. Further, modular

sparing has the following advantages [42],
e Local and fast fault detection and reconfiguration.
¢ Ease of construction, scalability and module replacement and
¢ Simple fault-tolerant routing algorithms

The drawback of Chau et al's scheme is that it takes longer to reconfigure, since
on average the states of half the nodes have to be shifted to neighboring nodes.
Furthermore, link failures have not been taken into consideration in the derivation
of the system reliability. Link failures are not tolerated by their schemes. Only the

system reliability is evaluated and subcube reliability of the given schemes is not

analyzed.

3.1.3 Sultan and Melhem’s Scheme

Sultan and Melhem introduce two schemes for reconfiguration in fault-tolerant mod-
ules: one using hardware switches-multiplexers & demultiplexers and the other one
using fault-tolerant routing [42]. Their scheme using hardware switches does not
have the overhead of shifting processor states. This leads to reduction in reconfigu-
ration time and overhead significantly. The scheme using hardware switches works
as follows. Consider an FTBB with M primary nodes P,:--,Py and K spare

nodes, Sy, -, Sk using full spare utilization i.e., any spare can replace any primary
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Figure 3.4: Switching logic within an FTBB.

node within an FTBB. The switching logic for reconfiguration is in terms of multi-
plexers and demultiplexers as shown in Figure 3.4. In this figure it is assumed for
simplicity that multiplexers and demultiplexers can multiplex and demultiplex du-
plex lines respectively. Specifically,a 1 —to— (I +1) demultiplexer is used for each
P; to divert when needed the links of P; to any S;. Also an M — to — 1 multiplexer
is used for each S; to connect it to the appropriate links. If a primary node P; is
nonfaulty then the demultiplexer is set to select the 0th output. In case P; is faulty,

the replacement of P; by S; requires that the demultiplexer associated with P; be
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set to its ith output and the multiplexer associated with S; be set to select its jth
input. This scheme can also support spare failures.

The second technique uses a general two phase routing algorithm. Here the
logical topology of the hypercube is preserved by modifying the routing algorithm
rather than preserving the physical topology in the presence of failures. A node
failure in this scheme is assumed to be the failure of the processor, the router and
the links of the node. If a node P fails then the spare node that replaces P inherits
the address of P. The routing algorithm is distributed and requires local fault
knowledge, in the sense that only the neighbors of the failed nodes need to know
about the fault in order to take corrective action. Sultan and Melhem calculated only

the system reliability of their schemes and subcube reliability is not investigated.

Link failures are also not considered.

3.1.4 Banerjee and Peercy’s Scheme

Banerjee and Peercy consider two fault-tolerant hypercube schemes [7]. The first
scheme called the node spare scheme uses spare nodes attached to specific nodes
in the cube using a novel embedding technique. The hypercube in this scheme
consists of two types of nodes called P nodes and S nodes. The P and S nodes
have different internal architectures. Figure 3.5(a) shows the internal details of a
normal processing node (called a P node) of a hypercube. The P node consists of a

computation processor (CPU) connected through an internal bus to a local memory
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Figure 3.5: Architecture of two types of nodes. (a) P-node architecture (b) S-node
architecture.
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and message routing logic consisting of the DMA unit and a (d+1) X (d+1) crossbar
switch for a 2¢ processor hypercube. Figure 3.5(b) shows an S-node consisting of
two copies of the CPU and local memory connected to two internal busses. The
DMA and message routing logic is shared between the two processing units, one of
which is active under normal conditions; the other is a standby spare. Under failure
of any processing element either within the S node or in a nearby P node, the spare
processor/memory/bus from the corresponding S-node is brought on line.

From trace driven studies of a large number of parallel CAD and numeric appli-
cations on the hypercube it has been determined that typical applicatibns running
on a node of the hypercube only use the DMA /router less than 10% of the time
[7, 6, 33]. The router is actually used less than 25% of the time by other parallel
data transfers between channels not involving the node. Hence a single DMA unit
could be shared by both the CPU units.

A perfect embedding is considering for allocation of S nodes in the cube i.e.,
each P node is adjacent to exactly one S node in the cube. A perfect embedding in
a 3 cube is shown in Figure 3.6. An algorithm for reconfiguration in the presence
of primary node failures is given in [7]. The second scheme called the link spare
scheme introduces spare nodes (L) into the hypercube by inserting them along links
connecting particular pairs of processors. The hardware of the node is not modified
here. Figure 3.7 shows an embedding.of spares in a 16 node hypercube. Under

normal operation, nodes 0 and 8 are connected to each other through the spare



Figure 3.6: A perfect embedding in a 3-cube.

Figure 3.7: Spares embedded in a four dimensional cube.
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node 0L whose connections are permanently set to minimize the overhead of setting
the connections. When node 0L fails its task can be taken by the spare node 0L. All
messages that were originally routed to node 0 will now be routed to 0L via node 0
or node 8. In this example, the logical link (4,0) gets mapped to a path of length 2
(4 — 0—0L) in the case of partial failures and a path of length 3 (4 — 12 — 8 — 0L)
in the case of total failure of node 0. The algorithm for allocation of L nodes in the

hypercube and reconfiguration is given in [7].

3.1.5 Yang et al’s Scheme

Yang et al propose another fault-tolerant scheme consisting of fault-tolerant modules
(FTMs) [47). The FTMs are then interconnected with additional links called the
spare-sharing links (SSLs) in the modular hypercube. The main characteristic of
this scheme is that spare nodes within a FTM can be used as local spares , or as
remote spares to replace faulty nodes in other FTMs. The structure of each FTM is
built by 2™ active nodes, p local spare nodes, an internal switch connection (ISC),
(n — m) external switch connections (ESCs), n.p input SSLs and n.p output SSLs.
as shown in Figure 3.8. In this figure the ISC is used to connect the first 2™ fault-
free nodes from a total of 2™ + p nodes to form the m subcube topology and the
(n — m) ESCs are used to connect this FTM with other FTMs. The n.p input
SSLs will be used by this FTM to receive at most p remote spare nodes from other

FTMs and the n.p output SSLs will used to send at most p idle spare nodes to other
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FTMs. A reconfiguration algorithm to tolerate node and link failures within the
FTM is given in [47]. This scheme achieves better system reliability than earlier
schemes and tolerates both node and link failures. But it uses hardware switches.

The reconfiguration strategy is complex. Subcube reliability of this scheme is not

investigated.

3.2 Existing Hierarchical Hypercubes

This Section presents fault-tolerant schemes in hierarchical hypercube networks.
Hypercubes present a good tradeoff between the number of links required (cost)
and the worst case message delay when a moderate to large number of processors
(around 102 to 10%) are to be connected. For connecting very large number of
processors, the link cost of a hypercube becomes prohibitively large and hierarchical
interconnection network (HINs) schemes are to be used {16]. There are two main

motivations for HINs:

1. to reduce link cost, and

2. to provide a framework for integrating several network topologies.

A homogeneous two level Binary Hypercube/Binary Hypercube (BH/BH) HIN is
shown in Figure 3.9. Each level 1 network is called a cluster. A cluster size of 8 and
two levels have been found to be most optimal under a cost/performance tradeoff for

connecting very large number of processors in a BH/BH network. Although we can
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Figure 3.9: A BH/BH HIN with a cluster size of 8.
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reduce the number of links, the HIN does not seem to possess good fault tolerance
characteristics. Major disadvantages of HINs include the potential for high traffic
rates on inter-cluster links, and thus the potential degradation in performance, and
the potential for diminished fault tolerance due to the special role played by the
interface nodes. However standard fault tolerance techniques can be applied to the
interface nodes to improve the reliability of the BH/BH network close to that of
a BH network. We shall elaborate on two techniques using hardware redundancy
to improve the fault tolerance of the BH/BH network suggested in [16]. In one
technique, the level two network is duplicated. In the other technique, a standby
spare interface node is provided to reduce the impact of interface node failures on

reliability. The two techniques are described below:

1. Replication Technique: Here each cluster uses two nodes as interface nodes.
The level 2 network is duplicated for each interface node. This network referred
to as BH/BH-RS and is shown in Figure 3.10. It is preferred to keep the two

interface nodes in a cluster as far apart as possible.

2. Standby Spare Interface node Technique: Since the interface nodes are the
most vulnerable, a standby spare for each interface node in the network is
used. One node is normally operational and the other serves as a spare. If
a failure of the interface node occurs, the spare takes over. This technique

is referred to as BH/BH-SI. We see that the BH/BH-RS technique uses more
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Figure 3.10: A BH/BH-RS network with a cluster size of 8.
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links than the BH/BH-SI but the BH/BH-SI requires fault detection of the
interface node and extra spare nodes. We shall see later that the performance

of the BH/BH-RS is substantially better justifying the increased link cost.

We present simulation results for the task based reliability of fault-tolerant
schemes hierarchical hypercubes below from [16]. With task based reliability, a
system is considered to be working as long as some minimum number ‘I’ of nodes
are fault-free and available for task execution. The simulation model considered is
as follows. The nodes and links are assumed to follow the exponential failure law
with failure rates A, and ) respectively. Therefore, the node and link failure rates
for the whole network are N\, and L.\, respectively where N, is the number of
active nodes and L, is the number of active links in the network. The given network
is represented by its adjacency matrix. The adjacency matrix of an interconnection
network with N nodes is a NxN symmetric binary matrix A = [a;;] such that
a;; = 1 if there is a link between the ith and jth nodes, otherwise a;; = 0. A
fault-free node is represented by making the diagonal element a; = 1. The net-
work connectivity is shown by using the reachability matrix. Two nodes ¢ and j are
considered reachable if there is a path between them. The reachability matrix can
be computed from the adjacency matrix by standard algorithms. The adjacency
matrix is modified every time a node or a link failure occurs. The failure of the link
connecting nodes ¢ and j is represented by making both a;; and a;; 0s. The failure of

a node i is represented by making all entries in the ith row and ith column 0Os. This
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modification of the adjacency matrix is reflected in the reachability matrix. The
reachability matrix then determines whether or not there is connectivity among at
least I of the N nodes in the network. We also assume that a single repair facility
is available for both the nodes and links with the repair rates of the nodes and links
i, i Tespectively. The failed component is put in a FIFO queue waiting for the
repair facility. When the component is repaired the corresponding entries in the
adjacency matrix are updated.

Reliability results are now given for the simulation model presented above [16].
The node failure and link failure rates used are 100/10% hours and 20/10° hours
respectively. Figure 3.11 shows the reliability results with cluster sizes of 8 and 4.
For comparison purposes the reliabilities of the bidirectional ring (BR) and complete
connection (CC) networks are also included. It can be seen from this figure that
the BH network reliabilities are as good as a complete connection network. The
BR network is at the other extreme. The BH/BH network provides reliabilities in
between these two extremes. The impact of the two fault-tolerant schemes BH/BH-
SI and BH/BH-RS are also shown. Both these networks provide similar reliabilities
. We see that the reliabilities are better for the smaller cluster size. This is mainly
due to the fact that the penalty associated with an interface node failure decreases
as the cluster size decreases. A weakness of both the BH/BH-SI and BH/BH-RS
networks is that their reliability is uniformly poorer than the BH neiwork. This

drawback can be remedied by using both the schemes together called BH/BH-SI&
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5

58

RS scheme and its results are also shown in the Figure 3.11.

We are going to use the fault-tolerant basic blocks for level one clusters instead
of the spare interface node scheme . This architecture is expected to perform better
in terms of reliability than the schemes given in {16] since now the spare node can

replace any node in the cluster rather than just the interface node.



Chapter 4

The Proposed FTBB Based

Architecture

In this chapter we introduce the proposed FTBB based architecture. In Section 4.1
of this Chapter we present the new fault-tolerant hypercube architecture utilizing
fault-tolerant basic blocks (FTBB). Section 4.2 presents reconfiguration strategy
used by our architecture to tolerate node and/or link failures. Section 4.3 presents
the methodology used by us to analyse the subcube reliability of the proposed fault-

tolerant hypercube architecture.
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(a) (b)
Figure 4.1: (a)A FTBB of order 2. (b)A FTBB of order 3.

4.1 Architecture

In this section we shall describe the proposed fault-tolerant hypercube architecture.
The architecture of our fault-tolerant module is similar to the modular scheme in
[34] in that it contains a spare node. It however is different in that no hardware
switches are used for reconfiguration. We define a FTBB of order m or a m-FTBB
to be a basic building block consisting of a m-cube and a spare node connected to
all the primary nodes (nodes of the m-cube) with 2™ spare links. A FTBB of order
2 and a FTBB of order 3 are shown in Figure 4.1a and Figure 4.1b respectively.
A 3-FTBB consists of a 3-cube with a spare node connected to all the nodes of
the 3-cube by 2% spare links. Each node contains an extra port to connect to the
spare. In real systems using hypercube topology, the processors are manufactured

with the maximum allowable links. Very often not all these links are used in the
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Figure 4.2: A 4-cube built of 3-FTBBs.

regular structure of the system [45]. This gives the motivation of utilizing the extra
connections of the nodes for spare links. Therefore the proposal of having extra
spare links is a very practical one because these links are equipped as the processors
are fabricated, would be unused otherwise, and the implementation does not pose
difficulty [45]. Such cubes with extra links are called enhanced hypercubes and they
achieve noticeable improvements in many measurements such as mean internode
distance, diameter and traffic density compared to regular hypercubes [43].

Larger hypercubes can be built using FTBBs by utilizing the recursive construc-
tion property of the hypercube. For example, to get a 4-cube, we take two FTBBs
of order three and join the corresponding nodes in the two FTBBs with links (see
Figure 4.2). A 5-cube would be obtained by taking the two previously constructed

4-cubes and joining the corresponding nodes. Higher order hypercubes could be



15

62

obtained in a similar manner. In general a d-cube can be constructed of 2° fault-
tolerant basic blocks each of dimension m = d —b. It should be noted that the spare
nodes are not connected directly to each other in this architecture. We refer to such
a cube as an augmented b-cube i.e., constructed of FTBBs to distinguish from a
d-cube which is the ordinary hypercube consisting of 2¢ nodes. A b-cube consists
of 2° basic blocks. If each basic block in a b-cube is of dimension m then it has 2
nodes where d = b+ m. For example, if a b-cube is constructed of 3-FTBBs then
d=b+3.

The spare nodes are no different t'han the primary nodes in a FTBB in terms of
their hardware structure. Spare nodes within a m FTBB will have m links attached
to each of them. For any augmented d cube built of m FTBBs if d > 2™ than the
spare nodes have same or lesser links attached to them than the primary nodes.
For cubes built of 2 & 3 FTBBs and for practical cubes (d > 8) the spare nodes
will have lesser links attached to them than the primary nodes. Therefore the spare

node can be identical to the primary node except that its extra link connections will

be unused.

4.2 Reconfiguration Strategy

In this Section we shall present the reconfiguration strategy used by the FTBB to

tolerate node and link failures. Consider the 3-FTBB and consider the failure of any
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primary node. The failure can be tolerated in the following manner. Whenever a
primary node fails, the failure is detected in the FTBB by some diagnostic strategy
[45]. Low cost schemes for achieving such diagnosis and recovery are presented in
[29]. The spare node takes over the functions of the failed node. Nodes adjacent
(directly connected) to the failed node can now communicate with the replaced
spare via spare links connecting them to it. The physical topology of a 3-cube is
still maintained. For example, if node 4 fails (see Figure 4.3(a)) the spare node takes
over the functions of node 4. Nodes 0,5 and 6 which were adjacent to the failed
node in the FTBB now start communicating with the spare node which inherits the
address of node 4. In effect links (0, S),(5,S5) and (6, S) replace links (0,4),(5,4)
and (6, 4) respectively. S represents the spare node. Effectively a spare node and
three spare links replace a failed node. The links connected to a failed node are
deemed to be failed. This is because of the failure model for a node we are adopting
here. We have assumed that when a node fails, it loses both its computational and
communication capabilities. Another model could assume that a node can fail on
computation but its communication capability is intact. Under this assumption links
connected to the failed node could be utilized. We assume throughout that a node
failure means the failure of both its computation and communication capabilities.
Now consider the case where the 3-FTBB were part of a larger cube and node
4 had failed. The spare within the FTBB would have replaced it. But nc;de 4 was

adjacent to some other nodes in addition to 3-nodes within its FTBB. The spare
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which has replaced node 4 has direct links only to nodes which were adjacent within
the FTBB and does not have direct links to other adjacent nodes of node 4. This is
resolved in the following manner. Before its failure node 4 was either computing or
sending messages or receiving messages from other nodes. Now the replaced spare
performs the computation. The messages which node 4 would have sent via the
adjacent nodes (other than the adjacent nodes within its FTBB) will now be sent
to either node 0,5 and 6. All messages destined to node 4 will now be received
by either node 0,5 and 6 and passed on to the replaced spare node. Therefore the
routing algorithm should be suitably altered depending on the list of failed nodes in
the system. Only nodes adjacent to the failed node need to know about its failure.
More than one node failure cannot be tolerated, within a FTBB as a single spare
node is present.

Consider now the failure of any primary link within a FTBB. When a primary
link fails, communication between the nodes connected by the failed link is disrupted.
This can be tolerated in the following manner. The nodes connected by a failed link
establish connection between themselves by using the spare links connecting them
to the spare node. The spare node relays messages between the two nodes, acting
effectively as a short circuiting element between these nodes. For example, if link
(4,6) fails in (see Figure 4.3(b)), links (4, S) and (5, S) replace link (4,6). Note that
the spare does not take part as a computing element but only as a communicating

element. But now nodes 4 and 6 have an extra link delay between them i.e., the
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Figure 4.4: Both a primary node and link have failed.

logical topology of a 3-cube is still maintained though the physical topology is not.
More than one link failure can also be tolerated. Even if all the primary links
fail, they can still be tolerated by using the spare node and all the spare links. In
this case the physical topology will be equivalent to a star network. In general only
combinations of link failures which have both a spare and a primary link connected to
the same node cannot be tolerated. All other multiple link failures can be tolerated.

In addition combinations of certain node and link failures could be tolerated.
For example the combined failure of node 4 (see Figure 4.4) and any link or links
other than (0, 5),(5,S) and (6,S) can be tolerated. All combinations of node and
their direct link failures can be tolerated. All combinations of node and link failures

in which any one or more links in the combination is a link which is supposed to
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replace the failed node in the combination, cannot be tolerated.

The various combinations of node, link and combined node and link failures
that can be tolerated within a FTBB are captured in the reconfiguration strategy
presented in Figure 4.5 in the form of rules (0 < 7,5 < 2™).

The reconfiguration strategy is divided into two steps. Step 1 includes the case
where the spare node has failed. Step 2 includes the case where the spare node
within the FTBB is working. In step 1 where the spare node has failed no primary
node/link failures can be tolerated as the spare node is eritical to tolerate any
primary node/link failures. Step 2 is divided into three cases: a. All primary nodes
functioning. b. One primary node has failed and 3. More than one primary node
has failed. In the reconfiguration strategy we call a spare link which replaces a failed
link or node as a switched spare link. We only permit spare links replacing primary.
node/link failures. No spare link is permitted to replace another failed spare link.

When none of the nodes have failed the spare node is functional and can enhance
the performance by taking part in the computation within the FTBB. It can serve
to reduce the maximum distance between the nodes of an m FTBB from m to 2.
This will reduce the average internode distance for the whole network.

It has to be noted that if the spare node fails before the failure of any component
in the FTBB then no further failures of primary nodes or links can be tolerated. So
it would be advantageous if the spare node is made moré reliable than the primary

node. We have made a realistic assumption above, that the primary nodes and spare
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Reconfiguration Strategy;
Begin
1. If the spare node s has failed then,;
No primary node/link failures can be tolerated.
FTBB continues functioning.
a. If a spare link (¢, s), for any ¢ fails then;
FTBB continues functioning.
b. If any primary node ¢ or link (3, §), for any ¢, j fails then;
FTBB unreconfigurable.
Else
FTBB continues functioning.
2. If the spare node s is working then;
a. If all primary nodes are working then;
i. If any primary link (¢, ) for any ¢, j fails then;
Replace it with spare links (7, S) and (5, S)
FTBB continues functioning.
ii. If a switched in spare link (7, S), for any ¢ fails then;
FTBB unreconfigurable.
iii. If a non-switched spare link (7, S) and a
primary link (z, j) for any i, j fail then;
FTBB unreconfigurable.
Else
FTBB continues functioning.
b. If any single primary node i fails then;
Replace it with the spare node
Replace primary link (7, §) for all j with link (4, S)
i. If any primary link (Z, 7) for any 4, j fails then;
Replace it with spare links (7,S) and (j,5)
FTBB continues functioning.
ii. If a switched in spare link (7, S), for any ¢ fails then;
FTBB unreconfigurable.
iii. If a non-switched spare link (¢,.S) and a
primary link (7, j) for any i, j fail then;
FTBB unreconfigurable.
Else
FTBB continues functioning.
c. If more than one primary node fails then;
FTBB unreconfigurable
End.

Figure 4.5: Reconfiguration strategy for any m-FTBB.
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nodes are identical in their hardware architecture and this assumption is maintained
throughout our analysis. A different sort of hardware architecture is considered for
the spare nodes to make them more reliable in {7] and explained in Section 3.1.4.
The idea is to adopt the S node architecture for the spare nodes within our FTBB.
In the S nodes the CPU and memory section of the node is duplicated and so will be
more reliable (will have lesser failure rate) than ordinary nodes. We can estimate the
failure rate of the S nodes given the failure rate of ordinary nodes (X,) as explained
below. We assume that the each CPU énd memory section has a failure rate of a
ordinary node-),. Assume that the DMA section of the node is perfect. Then the
S node will function correctly if one of the pairs of the CPU and memory section is
working. It is equivalent to a parallel system of two modules where one module has
to work correctly for the system to function correctly. Given that the failure rate
of the CPU and the memory section is A, we can easily calculate the failure rate of
the S node to be 2),/3.

Throughout our analysis we assume that the spare node is identical to the pri-
mary node i.e., they have the same failure rate. We shall mention it specifically

when we relax this assumption.
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4.3 Methodology

In this Section we shall describe the methodology we adopt to analyse the reliability
of the FTBBs and the cubes built of FTBBs (augmented cubes). We have seen
that the FTBB can tolerate a variety of node/link failure conditions. Therefore
it is expected that the FTBB will have better reliability than the corresponding

ordinary basic cube, cubes built of FTBBs are expected to be more reliable than

corresponding cubes built of ordinary basic blocks.
The foremost objective of our proposed work is to analyse and evaluate the

subcube reliability of the proposed fault-tolerant hypercube built of FTBBs for the

four failure models listed below.
1. Node Failure Model - where only node failures are assumed to occur.
2. Link Failure Model - where only link failures are assumed to occur.

3. Combined Node and Link Failure Model - where both node and link failures

are assumed to occur.

4. Supernode Failure Model - which is an approximation to the combined node

and link failure model

‘We consider the possibility of using two basic building blocks either the 2-FTBBs
or the 3-FTBBs to build larger cubes. To achieve this objective we have done

the following. We first analyse the system reliabilities of the 2-FTBB and the 3-
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FTBB by using the definition of a functioning FTBB given in the reconfiguration
rules in Section 4.2 for each of the failure models listed above. By this analysis we
obtain MTTF T, for 2 and 3 FTBBs for all the failure models. By extending the
results given in [1] we obtain MTTF T. for 2-cube and 3-cubes and compare the
results with the corresponding FTBBs. This shall give us an idea of how good the
FTBB is in terms of reliability over the corresponding ordinary cubes. By using the
failure rates of the 2 or 3-FTBB and the corresponding ordinary cubes (reciprocal
of their T. values) , we can build markovian models for the cubes constructed from
FTBBs or corresponding ordinary basic blocké for each of the failure models listed
above extending the subcube reliability analysis given for the ordinary hypercube
in chapter 2 [1]. Again we can compare the subcube reliabilities and the various
MTTFs of the cubes built of 3 or 4-FTBB with the corresponding values for cubes
built of ordinary basic blocks.

As a secondary objective, we investigate the possibility of using the 3-FTBB or
2-FTBBs for the level 1 clusters instead of the BH/BH-SI scheme. We denote this
scheme as BH/BH-FTBB. We build analytical models to analyse the system reliabil-

ity of hierarchical hypercubes such as BH/BH, BH/BH-SI, BH/BH-RS, BH/BH-SI

& RS and BH/BH-FTBB.



Chapter 5

Reliability of Fault-Tolerant Basic

Blocks

In this Chapter we present the reliability and MTTF analysis of 2 and 3 FTBBs
for node, link, combined node & link and the supernode failure models. We shall
compare the reliability and MTTF of the 2 and 3 FTBBs with those of ordinary 2

and 3 basic blocks respectively for each of the failure models.

5.1 Node Failure Model

In this section we shall develop a state transition model for the FTBBs assuming only
node failures can occur and derive expressions for reliability and MTTF. We then

compare the reliability and MTTF figures of the 2 and 3 FTBBs with corresponding

72



73

Figure 5.1: System state diagram for 3 FTBB under node failure model.

values of ordinary 2 and 3 cubes respectively.

Consider the 3-FTBB shown in Figure 4.1(b). The first node to fail is replaced
by the spare node. We assume here perfect fault coverage i.e., the probability that
a failure is detected and appropriately reconfigured is unity. The state transition
diagram is shown in Figure 5.1. Sj. is the perfect state i.e., the state where none
of the nodes, including the spare node have failed. S». is a state where one node
has failed and has been replaced by the spare node. The spare node could also
fail but in this case no reconfiguration takes place. The hypercube structure is still
maintained. The structure is now an ordinary 3-cube. Since in state Si. any node
out of the 9 nodes within the FTBB can fail, the transition rate from S1« to S is
9),. The transitions out of Sy. are similar to the transitions out of S. in Figure 2.1.
The transition rates can be calculated with d = 3 in Figure 2.1. The transition rates
are indicated in Figure 5.1. We write the state transition equation in the usual form
[27].

P(t + At) = A.P(t) (5.1)



P.(t + At) 1 ' Pi(t) 7
Py.(t + At) Pou(t)
where P(t + At) = PRyt +At) P(t) = Po(t)
Pi(t + At) Pi(2)
Pyt + At) Py(t)
Pyt + At) | A()

and the state transition matrix 4 using a discrete markov model is given by

1—-9A,At 0 0 0 0 0

9A, At 18N AL 0 0 0 0

A 0 8A At 1 -TA,AL 0 0 0
) 0 0 3. At 1-06NAL 0 0

0 0 3A.At 42, At 1-4),At O

i 0 0 AnAt 20, At 40,400 1

The differential equations obtained from Equation 5.1 are as follows.
P;.(t) = =9\, Pp.(t)

Pp.(t) = 9AnPuu(t) ~ 8XnPau(t)

Py(t) = 8AaPau(t) — TAPo(t)

Pj(t) = 3\, Py(t) — A Pi(2)

Py(t) = 3APo(t) + 4XaPy(t) — 42, Pa(t)

Pi(t) = A Po(t) + 20, Py (t) + 4), Po().
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With the initial conditions P;.(0) = 1, P,.(0) = P;(0) = 0 for all 7, the solutions for
the above set are

Pp.(t) = et

Py.(t) = —9¢™ 9t 4 ge=8Ant

Py(t) = 36e™9nt — 728t 4 36¢~72n!

Py(t) = —36e9n! 4 108e8¢t — 108e~ 720t 4 360

Py(t) = (36/5)e %%t — 54¢-8rnt 1 108e=TAnt — 720t 4 54e~4Ant

Py(t) = 1+ (4/5)e™%%nt 4 9e~8Mt . 3ge~TAnt 4 36e~64nt — 54e4Ant

P;’s for a 2-FTBB and 4 FTBB could be derived in a similar manner. We | just give
the solutions for a 2 FTBB below

Pr.(t) = e~5%t

Py.(t) = —5e~% et 4 5e4at

Py(t) = 10e™5*t — 20g=4Mnt 4. 10g~3nt

Pi(t) = (—20/3)e5*t 4 20e~4t — 20e~3 ! + (20/3)e 22!

Py(t) = 1 4 (2/3)e™%Mt — 42t 4 1034t — (20/3)e 22!

We define the reliabilities as follows
R.(t) = Pr.(t)+ Pa.(t), Ro(t) = Py(t)+ R*(t) and Ri(t) = Pi(t)+ Ri\(t), fori > 0.
The system’s MTTF can be evaluated by integrating R;(t) [27]. The variation of
subcube reliabilities R;(t) for all i, with t; for a 3 FTBB and a 3-cube are shown

in Figure 5.2. To get R;(t) for a 3 cube we have used the reliability equations in
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Figure 5.2: Reliabilities for 3-FTBB and Ordinary 3-cube.
Section 2.3 with d = 3. The subcube reliabilities of the 3-FTBBs are seen to be
superior to the ordinary 3-cube. Similar reliability curves for the 2-FTBB and 2-cube
are shown in Figure 5.3. Integrating the subcube reliability expressions R;(t) for any
i, we get the corresponding MTTF. The comparison of the MTTF for the 2 and 3
FTBBs with ordinary 2 and 3 cubes is shown in Table 5.1 and Table 5.2 respectively.

We observe that the MTTF to leave the state of complete hypercube structure (7.

Table 5.1: MTTF in hours for 2-FTBB and 3-FTBB for node failure model.

214 |45000 | 78333 | 111667
3|8 |23611 | 37896 | 45040 | 62897

value) of the 2-FTBB or 3-FTBB is nearly twice the value of the ordinary 2-cube
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Figure 5.3: Reliabilities for 2-FTBB and Ordinary 2 cube.

Table 5.2: MTTF in hours for 2-cube and 3-cube for node failure model.

d|N]|T. To T Ty
2|4 | 25000 | 58333 | 91666
318 {12500 26785 | 33929 | 51786
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or 3-cube respectively. This has been achieved with a spare node and additional
links. We take 7.‘- as the failure rate of the FTBB or the corresponding basic block
under the node failure model. Then subcube reliability for larger cubes built using

FTBBs or corresponding ordinary blocks is evaluated hierarchically with TL taken

as the failure rate of the basic blocks.

5.2 Link Failure Model

In this Section, we shall derive the expressions for system reliability of a 2 and
3 FTBB using the definition of a working FTBB in the reconfiguration strategy
presented in Section 4.2 assuming only link failures can occur. We then calculate
the MTTF figures (T%.) of the 2 and 3 FTBB and compare them with corresponding
values of ordinary 2 and 3 cubes respectively under link failure model. From T. we
obtain failure rates of basic blocks for the link failure model, similar to the node
failure case in Section 5.1.

Consider again the 3-FTBB in Figure 4.1(b). There are a total of 20 links in the
system. Using the combinatorial model we calculate the probability of the 3-FTBB
functioning when any 1,2...,20 links fail in the 3-FTBB. The state of a functioning
FTBB is defined in the reconfiguration rules in Section 4.2. Using this definition of

a working FTBB we give the system reliability expressions for the functioning 2 and
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3 FTBBs below for the link failure model.

Rly_prps(t) = ’I‘l(.t)s + 81‘1(t)7(1 —r(t)) + 207‘1(t)6(1 - 1‘1((‘,))2 +
167:(2)%(1 — 7y(2))® + 2r(2)4(1 — m(2))* (5.2)
Consider the expression for a 2-FTBB i.e., Rlo_rr5p(t). The first term includes the
state where all the 8 links are working. The second term signifies that there are 8
ways of one link failing and still the FTBB successfully reconfigures. Other terms

could be verified in a similar manner. For a 2-cube we have Rlo_cuse(t) = mi(t)*

which means all the links should funétion in a 2-cube.

Rls_prap(t) = n(t)® +20m(t)'°(1 — ni(t)) +
166r,(2)'®(1 — r())* + T44r(t)7(1 — n(2))® +
196974(2)'%(1 — ri(2))* + 3184r(t)13(1 — ri(t))® +
3198r(t)4(1 — r(t))® + 20567(¢)'3(1 — n(t))" +
91dry(t)'2(1 — ri(t))® + 304n(1) " (1 — (1))’ +
74r()'0(1 — (1)1 + 12ry(¢)°(1 — ni(t)) +
r(t)8(1 - r(t))*? (5.3)
For a 3-cube we have Rl3_cue(t) = 7i(t)!2 Where r(t) = e~ is the reliability of a
link.
Integrating Equations 5.2 and 5.3 we get the MTTF T. for the 2 and 3 FTBBs. T.

for the 2 and 3 FTBBs are found to be 451190 and 237402 hours respectively for the
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link failure model (\; = 10~¢/hour, A, = 1075/hour). Corresponding values for the
2 and 3 cubes are 250000 and 83333 hours respectively. We observe that the MTTF
to leave the state of working FTBB (7. value) of the 2-FTBB or 3-FTBB is superior
to the value of the ordinary 2-cube or 3-cube respectively using the link failure
model. We again consider Ti as the failure rate of the FTBB or the corresponding
ordinary basic block under the link failure model tp evaluate the subcube reliability

of augmented cubes hierarchically.

5.3 Combined Node and Link Failure Model

In this Section, we shall derive the expressions for system reliability of a 2 and
3 FTBB using the definition of a working FTBB in the reconfiguration strategy
presented in Section 4.2 assuming both node and link failures can occur. We then
calculate the MTTF figures (T.) of the 2 and 3 FTBB and compare them with
corresponding values of ordinary 2 and 3 cubes respectively. From 7. we obtain
failure rates of basic blocks for the combined node and link failure model, similar to
the node failure case in Section 5.1.

Here we use the bayes theorem to derive the expressions for the system reli-
ability again using combinatorial approach [40]. Consider again the 3-FTBB in
Figure 4.1(b). We separate the working state of the FTBB to two cases: the spare

node is in working state and the spare node is in failed state. We again separate the
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working FTBB state where the spare node is working to two cases: Case 1 Where all
primary nodes within the FTBB are working and case 2 where one of the primary
nodes has failed and has been replaced. Following this approach we give the system
reliability expressions for the functioning 2 and 3 FTBBs below for the combined

node and link failure model.

Reo_pras(t) = Tn(t)[rn(t)4Rl2-—FTBB+4Tn(t)3(1_Tn(t))R2f(t)]+(1—Trl(t))[rﬂ(t)4rl(t)4]
(5.4)
For a 2-cube we have

Rea—cube(t) = ma(t) ri(t)* (5.5)

Expressions for the 3-FTBB and 3-cube are given below.

Res_rreB(t) = Tn(t)[r,.(t)sRls-F'rBB+87‘n(t)7(1—7',,(t))R3,(t)]+(l—r,,(t))[r,,(t)sr,(t)m]
(5.6)
Re3—cube(t) = ma(t)’ri(t)? (5.7)
Where r,(t) = e~*»¢ is the reliability of a node.
Ry is the probability of the 2 FTBB working when the spare node is working, any

primary node within the FTBB has failed and has been replaced.

Rayp = n(t)® + 3ri(2)*(1 — r(8)) + () (1 = mu(t))? (5.8)

Rjy is the probability of the 3 FTBB working when the spare node is working, any

primary node within the FTBB has failed and has been replaced.
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Ry = mi(t)'® + 13r(t)'5(1 — r(t)) + 66r,(2)"(1 — mi(2))* +
169r;(£)13(1 — 7y(£))® + 2407(t)'2(1 — mi(t))* +
204r,(t)11(1 — my(t))® + 1117(t)1°(1 — m(2))° +
40m(2)°(1 = ni(t)) + 9m(2)®(1 — m())® +

n(t)'(1 - n(t))’ (5.9)

Integrating Equations 5.4 and 5.6 we get the MTTF T. for the 2 and 3 FTBBs.
T. for the 2 and 3 FTBBs are found to be 42320 and 22394 hours respectively for
the combined node and link failure model. Corresponding values for the 2 and 3
cubes are 22727 and 10869 hours respectively. We observe that the MTTF to leave
the state of working FTBB (7. value) of the 2-FTBB or 3-FTBB is superior to
the value of the ordinary 2-cube or 3-cube respectively using the combined node
and link failure model. We again take TL as the failure rate of the FTBB or the

corresponding ordinary basic block under the combined node and link failure model.

5.4 Supernode Failure Model

In this Section, we present reliability and MTTF values of 2-FTBB and 3-FTBB
for the supernode failure model which is an approximation to the combined node

and link failure case. We then compare the MTTF values with corresponding values
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of 3-cube and 4-cube respectively. A supernode is defined as a node and half its
incident links such that every link is associated with a node. The 3-FTBB has 20
links and 9 nodes. We associate each link with a node so that the failure rate of
the supernode in a 3-FTBB is A = A, 4+ 20)\;/9. For a2 — FTBB, A = A\, + 8\ /4.
Similarly, A = A, +3)\;/2 and A = A, + 4);/2 for a 3-cube and 4-cube respectively.
Substituting the value of As for the failure rate in the node failure model analysis in
Section 5.1 we get the MTTF values for a 2-FTBB and 3-FTBB for the supernode
failure model in Table 5.3. The MTTF values for a 2-cube and 3-cube are similarly
obtained and are shown in Table 5.4. From Table 5.3, we observe that the MTTF for
the FTBBs are superior to the ordinary cubes of the same order using the supernode
failure model. We again take TL as the failure rate of the FTBB or the corresponding
ordinary basic block under the supernode failure model. In Table 5.5 we show T.
i.e., MTTF to leave the working state of an ordinary cube or a FTBB for 2 & 3
cubes and 2 & 3 FTBB:s for all the failure models. From this table we see that the

FTBBs are superior in reliability to the corresponding ordinary basic blocks under

all the failure models.

Table 5.3: MTTF in hours for 2-FTBB and 3-FTBB for supernode failure model.

ld|N|T. Ty T 1
214 |38793 | 67529 | 96264 |-
318 | 19318 | 31006 | 36850 | 51461
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Table 5.4: MTTF in hours for 2-cube and 3-cube for supernode failure model.
d| N |T. To T T,

214 |22727 | 53030 | 83333 “
318 110870 | 23292 | 29503 | 45031

Table 5.5: MTTF T, in hours for 2 & 3-cubes and 2 & 3-FTBBs with and without
S nodes, for all failure models.

FailureModel 2 —cube | 2= F188 | 2~ FIBBg | 3—cube | 3~ FTBB | 3~ FTBB
Node 25000 45000 48377 12500 23611 24540

Link 250000 451190 451190 83333 237402 237402
Combined N & L | 22727 42320 45417 10869 22394 23304
Supernode 22727 38793 41260 10869 19318 19933

If we assume the S node architecture for the spare nodes in our FTBBs then
the failure rate of the spare node is %'L where ), is the failure rate of the primary
node as explained at the end of Section 4.2. We denote the FTBBs with S nodes as
FTBBg. In Table 5.5 we also show T, i.e., MTTF to leave the working state of a 2
or 3 FTBB with S nodes for all the failure models. We observe from Table 5.5 that
T. for FTBBs with S nodes is marginally better than the corresponding FTBBs

without S nodes. Note that 7. for FTBBs with and without S nodes has the same

value under link failure model.
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Chapter 6

Reliability of Augmented

Hypercubes

In this Chapter, we invéstigate the reliability and MTTF of larger cubes built of
2 and 3 FTBBs for node, link, combined node and link and the supernode failure
models. We then compare the MTTFs obtained with corresponding cubes built of 2
and 3 cubes for each of the failure model. Sections 6.1, 6.2, 6.3 and 6.4 consider the
reliability of the augmented cubes built of 2 and 3 FTBBs for node, link, combined
node & link and the Supernode failure models respectively. Section 6.5 discusses
the results obtained in the previous sections. Section 6.6 presents analytical models
and results for augmented hierarchical hypercubes.

We refer to the cubes built of 2 and 3 FTBBs as augmented hypercubes. We also

refer to the cube built of basic blocks either FTBB or the corresponding ordinary
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basic block, as the b-cube to distinguish from the cube built using single nodes
referred to before as the d-cube as explained in Section 4.1. For cubes built of 3-
FTBBs or 3-cubes as basic blocks we have d = b + 3. We define N, = 2° to be the
number of basic blocks in a b-cube. N as before is the total number of nodes in
the cube (N = 2¢). For example, a b = 7-cube (N, = 27 basic blocks ) built using
3-FTBBs or 3-cubes is actually a d = 10-cube (contains N = 2!? nodes).

We shall compare the reliability and MTTF of larger cubes built using 2 and 3
FTBBs as basic blocks with the cubes built using ordinary 2 and 3 cubes as basic

blocks respectively for each of the failure models.

6.1 Node Failure Model

In this section, we present the reliability and MTTF analysis of augmented hy-
percubes built using 2 and 3 FTBBs as basic blocks for the node failure model.
Augmented hypercubes can be built from FTBBs using the recursive construction
property of hypercubes as explained in Section 4.1. The approach we use to evaluate
the reliability and MTTF of augmented hypercubes is explained below.

Consider the cubes built of 3-FTBBs. From Table 5.5 we see that the MTTF
to leave the working FTBB state (T.) for the 3-FTBB under node failure model is
23611 hours. It’s failure rate is therefore 1/T. = 4.24 X 10~°/hour under node failure

model. We consider the 3 FTBB as a basic block i.e., treat it as a single component
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with the failure rate = 4.24 x 10~3/hour. Now we can use the markov model of
Section 2.3 with A, considered as the failure rate of the 3 FTBB under node failure
model. The various subcube reliabilities and MTTF for a b cube constructed of 3
FTBBs can be evaluated using the expressions in Section 2.3. Similar procedure
could be adopted for cubes built of 3 cubes as basic blocks. Subcube reliabilities
defined in 2.3 are evaluated and plotted for a b = 7-cube (2!° nodes) constructed of
3-FTBBs or 3-cubes as basic blocks in Figure 6.1.(a) and 6.1.(b) respectively. For
comparison purposes we show each R;(t) for all i in Figure 6.2. We observe that
the reliability curves for é b = 7-cube constructed of 3-FTBBs are superior to the
curves for the same cube built of ordinary 3-cubes as basic blocks. Let us interpret
the subcube reliabilities in Figure 6.1.(a) and 6.1.(b). RJ'®(t) for example, in the
curves represents the probability that all failures are contained within a b < 6-
cube. R{,"’b(t) in the curves represents the probability that all failures are contained
within a b = 0-cube, which means a single node has failed in cubes c;onstructed of
ordinary 3-cubes or two nodes have failed in a single 3-FTBB in cubes constructed
of 3-FTBBs .

We have shown MTTF values for cubes of varying sizes built using 3-FTBBs or
3-ordinary cubes in Tables 6.1 and 6.2 respectively. We note that the MTTF T. for
cubes built of 3-FTBBs is almost twice as much the value of the corresponding cubes
built using ordinary 3-cube basic blocks. All other MTTFs (Ts) of cubes built of

3 FTBBs are superior to the corresponding MTTFs of cubes built of 3 cube basic
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Figure 6.1: Reliabilities for a b = 7-cube built (a)using 3-FTBBs (b) Ordinary

3-cubes.
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blocks. MTTFs for the cubes built of 2 FTBBs and 2 cubes as basic blocks for the

node failure model can be obtained similarly and are shown in Tables 6.3 and 6.4

respectively. We observe from Tables 6.3 and 6.4 that the MTTFs of cubes built of

2 FTBBs are superior to the MTTF's of cubes built of 2 cubes.

Table 6.1: MTTF in hours for node failure model (basic block is a 3-FTBB).

b|Ny | N T. To Th T T3 Ty Ts Te |T7 | T%
38 64 2948 | 6317 | 8002 | 12214

416 1128 | 1474 | 3046 | 3496 | 4506 | 6640

5132 | 256 | 737 | 1498 | 1625 | 1933 | 2467 | 3533

664 |512 369 {743 1779 | 879 1054 | 1323 | 1855

71128 | 1024 | 184 | 370 | 380 | 413 475 | 566 | 700 | 966

8 | 256 | 2048 | 92 185 1188 | 198 220 | 255 ]300 | 367|499
91512 | 4096 | 46 92 93 96 104 (118 | 135 {158 | 191 | 257

Table 6.2: MTTF in hours for node failure model (basic block is a 3-cube).

biNy | N T. To T Ty T3 Ty Ts {Ts | Ty | Is
38 64 1562 | 3348 | 4241 | 6473

4116 |128 | 781 | 1615 | 1853 | 2388 | 3519

5132 | 256 |391 |[794 |861 |1024 | 1307 | 1873

6|64 |512 |195 |394 413 |466 | 559 | 70L | 983

71128 | 1024 | 98 196 {202 [219 |252 |300 |371]|s12

8 | 256 | 2048 | 49 98 99 105 | 117 | 135 | 159 | 194 | 265

9 ]512 | 4096 | 24 49 49 51 55 62 72 |83 | 101 | 136
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Table 6.3: MTTF in hours for node failure model (basic block is a 2-FTBB).

b Np N Te Ta T T Tq Ty T Te T TR Tq
4 16 €4 2812 5812 6670 8598 12670

H 32 128 1406 | 2858 { 3100 { 3687 | 4707 6742

6 64 256 703 1417 1487 1677 2011 2525 3540

7 128 512 as2 706 726 787 906 1080 1335 1842

8 256 1024 176 352 358 378 420 486 572 699 953

9 512 2048 | 88 176 178 184 199 224 258 301 364 491

10 1024 4096 44 88 88 90 96 105 119 135 157 188 252

Table 6.4: MTTF in hours for node failure model (basic block is a 2-cube).
b Ny N Te To Es Ta Ty Ty Ts Te T7 Ty Tg
4 16 64 1562 3229 3705 4777 7039
5 32 128 781 1588 1722 2049 2615 3745
6 64 256 391 787 826 931 1117 1403 1967
7 128 512 195 392 403 437 503 600 742 1024
8 256 1024 98 196 199 210 234 270 318 389 529
9 512 2048 49 98 29 102 m 125 143 167 202 273
10 1024 4096 24 49 49 50 53 59 66 75 87 105 140

6.2 Link Failure Model

In this section, we present the reliability and MTTF analysis of augmented hyper-
cubes built using 2 and 3 FTBBs as basic blocks for the link failure model. The
approach we use to evaluate the reliability and MTTF of augmented hypercubes
for the link failure model is slightly different than the node failure model and is
explained below.

Consider the cubes built of 3-FTBBs. From Table 5.5 we see that the MTTF
to leave the working FTBB state (7.) for the 3-FTBB under link failure model is
237402 hours. It’s failure rate is therefore 1/T, = 4.21 x 10~6/hour under link failure
model. We consider the 3 FTBB as a basic block i.e., treat it as a single node with
the failure rate given above. Therefore A, = 4.21 x 107%/hour. A 3 FTBB has 8

links coming out of it. We consider all these links as a superlink with failure rate
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8 times the failure rate of a single link. Therefore \; = 8 x 107%/hour. Now we
can use the markov model of Section 2.4 (combined node and link failure model
results) with A, considered as the failure rate of the 3 FTBB under link failure
model and A, = 8 x 10~%/hour. Note that although we are using the results of
the combined node and link failure model only link failures are taken into account
above in calculating A, and )A;. The various subcube reliabilities and MTTF for a b
cube constructed of 3 FTBBs can be evaluated using the expressions in Section 2.4.
Similar procedure could be adopted for cubes built of 3 cubes as basic blocks.

We have shown MTTF values for cubes of varying sizes built usihg 3-FTBBs or
3-ordinary cubes under link failure model in Tables 6.5 and 6.6 respectively. We
note that all other MTTFs (T}s) of cubes built of 3 FTBBs are superior to the
corresponding MTTFs of cubes built of 3 cube basic blocks even under the link
failure model. MT'TFs for the cubes built of 2 FTBBs and 2 cubes as basic blocks
for the node failure model can be obtained similarly and are shown in Tables 6.7
and 6.8 respectively. We observe from Tables 6.7 and 6.8 that the MTTF's of cubes

built of 2 FTBBs are superior to the MTTFs of cubes built of 2 cubes for the link

failure model.




Table 6.5: MTTF in hours for link failure model (basm block is a 3-FTBB).

b | Np Te T2- To ) £} I3 T4 Tg 7 | T3
3|8 s4 7700 | 16300 | 21800 | 30800 | 48600

4|16 | 128 | 3300 | 6600 | 7900 | 9950 | 13350 | 19800

s |32 | 256 | 1200 | 2730 | 3120 | 3630 | 4530 | 5350 | 8400

6 164 | 512 |555 | 1170 | 1200 | 1425 | 1695 | 2070 | 2610 | 3660

7 | 128 | 1024 | 240 | 520 552 592 672 792 952 | 1184 | 1620

8 | 256 | 2048 | 106 | 228 244 252 280 320 372 | 440 | s4¢ | 760

9 | s12 | 4098 | 49 104 110 112 120 135 154 | 177 | 206 | 251 | 339

Table 6.6: MTTF in hours for link failure model (basw block is a 3-cube).

b Ny Te To_ To Ty T T3 Ty Ty Ty 13
3 8 Gl 5125 8625 13375 18500 29375

4 16 128 2200 3950 §350 6600 8850 13250

5 32 256 960 1770 2250 2580 3210 4170 6030

[ 64 512 430 810 990 1080 1270 1550 1960 2890

7 128 1024 192 368 432 456 520 616 736 920 1272

8 256 2048 84 168 196 204 224 256 300 352 432 592

9 512 4096 41 79 90 91 98 110 126 145 169 206 277

Table 6. 7 MTTF in hours for link failure model (basic block is a 2-FTBB).
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b Np, Te Ta_ Ty Ty Ta T3 Ty Ty 17 Tg Ty
4 16 64 6100 12900 15600 19600 26300 39500

5 32 128 2550 5400 6200 7200 8950 11600 16900

6 64 256 1100 2318 2575 2850 3375 4100 5175 7250

7 128 512 480 1020 1098 1170 1335 1575 1890 2355 3255

8 258 1024 210 455 485 505 555 640 745 875 1078 1470

9 5312 2048 96 206 218 220 240 268 306 350 408 498 684

10 1024 4096 44 94 99 100 105 115 130 146 166 192 232 310

Table 6. 8 MTTF in hours for link failure model (basic block is a 2-cube).

b Ny Te Ta_ To T Ty Ty T4 T T T7 Ty Tq
4 18 64 5150 9950 12850 16000 21450 32150

5 32 128 2220 | 4360 | 5260 6100 7580 9820 14660

6 64 256 970 1940 | 2250 2470 2930 3570 4510 6360

7 128 512 432 870 984 1044 1188 1404 1674 2082 | 2888

8 256 1024 190 398 440 458 500 578 670 790 970 1320

] 512 2043 84 180 196 200 216 240 276 316 Jes 452 608

10 1024 4096 41 83 91 81 96 105 119 134 152 176 213 284




94

6.3 Combined Node and Link Failure Model

In this section we present the reliability and MTTF analysis of augmented hyper-
cubes built using 2 and 3 FTBBs as basic blocks for the combined node and link
failure model. The approach we use to evaluate the reliability and MTTF of aug-
mented hypercubes for the combined node and link failure model is same as that for
the link failure model considered above. We use the markov model of Section 2.4
(combined node and link failure model results) as for the link failure model except
that now ), is considered as the failure rate of the 3 FTBB under combined node
and link failure model. Therefore A, = z555; = 4.47 X 10-5. N = 8 x 1078 /hour is
same as before.

We have shown MTTF values for cubes of varying sizes built using 3-FTBBs
or 3-ordinary cubes under combined node and link failure model in Tables 6.9 and
6.10 respectively. We note that all other MTTFs (Tis) of cubes built of 3 FTBBs
are superior to the corresponding MTTF's of cubes built of 3 cube basic blocks even
under the combined node and link failure model. MTTFs for the cubes built of 2
FTBBs and 2 cubes as basic blocks for the combined node and link failure model
can be obtained similarly and are shown in Tables 6.11 and 6.12 respectively. We
observe from Tables 6.11 and 6.12 that the MTTFs of cubes built of 2 FTBBs are

superior to the-MTTFs of cubes built of 2 cubes.
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Table 6.9: MTTF in hours for combined node and link failure model (basic block is

a 3-FTBB).
b{Ny, | N T. T | Tp T T T3 Ty Ts T | T7 | T
38 64 2200 | 2750 | 5250 | 7000 | 10850
4116 |128 | 1025 11350 | 2325 | 2800 | 3700 | 5475
5(32 | 256 | 480 |660 | 1065 | 1200 | 1470 | 1905 | 2715
664 |512 |220 |320 {490 | 530 | 620 760 | 950 | 1350
71128 11024 | 105 | 155 | 235 | 240 | 270 320 | 385 | 475 | 660
8 | 256 | 2048 | 50 76 110 } 114 | 122 140 164 | 192 | 236 | 322
9| 512 | 4096 | 24 37 53 53 56 63 72 82 96 | 117 | 157

Table 6.10: MTTF in hours for combined node and link failure model (basic block

is a 3-cube).
b|Ny, | N T. - | To T T T3 Ty Ts |Te | T7 | Ty
318 64 1175 | 1375 | 2800 | 3650 | 5650
4116 |128 550 |675 | 1275 1525 | 2000 | 2950
5(32 | 256 |270 {330 | 600 | 675 | 810 | 1050 ; 1515
6|64 |512 [130 |165 |290 |310 |[355 | 435 | 550 | 770
71128 | 1024 | 63 81 138 | 144 | 159 | 189 | 225 | 279 | 387
8 | 256 | 2048 { 31 40 67 69 74 84 98 116 | 142 | 194
91512 {4096 | 15 20 33 33 35 38 44 51 159 |72 |96
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Table 6.11: MTTF in hours for combined node and link failure model (basic block
is a 2-FTBB).

b Ny, N Te Ta.. | 19 Ty To Ty Ty Tg Tg Ty Ty Ty
4 16 64 1980 2550 4500 5370 7110 10200

s | 32 128 | 928 1250 | 2050 } 2300 | 2825 | 3725 5225

6 | 64 256 | 440 | 600 | 960 1020 | 1200 | 1460 1840 | 2580

7 128 | 512 | 210 | 300 ] 450 | 468 | 528 618 744 918 1260

8 256 1024 98 147 215 220 238 271 317 3N 457 623

9 512 2048 47 T 102 104 108 120 138 159 186 225 303

10 1024 4096 22 34 49 49 50 54 62 70 80 92 111 148

Table 6.12: MTTF in hours for combined node and link failure model (basic block
is a 2-cube).

b Np, N To_ To Ty Ty Ty Ty Ty Tg T Ts Ty
4 16 64 1170 1380 2670 3150 4170 6180

5 32 128 878 678 1250 | 1400 | 1700 | 2200 | 3150

6 64 256 274 340 600 640 740 900 1120 1580

7 128 512 132 168 288 300 336 380 468 582 784

8 256 1024 [-13 84 140 144 154 178 204 240 294 401

9 512 2048 | 32 41 66 68 72 80 90 105 122 149 | 200

1 1024 | 4098 | 15 21 33 33 34 37 41 47 53 62 74 99

6.4 Supernode Failure Model

In this section we present the reliability and MTTF results of augmented hypercubes

built using 2 and 3 FTBBs as basic blocks for the Supernode failure model.

Consider again cubes built of 3-FTBBs as basic blocks . The failure rates of the

basic blocks are taken to be (71-_-) as before. From Table 5.5, the failure rate of 3-

FTBB considered as basic blocks are 1/T, = 1/19318 = 5.17X 1075, The failure rates

of the supernode for cubes built of 3-FTBBs is given by A = 5.17 X 1075 4+ 280,b/2.

The various subcube reliabilities and MTTF for a b cube constructed of 3 FTBBs
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for the supernode failure model can be evaluated using the expressions in Section 2.3
and the failure rate of the supernode. Similar procedure could be adopted for cubes
built of 3 cubes as basic blocks. We have shown MTTF values for cubes of varying
sizes built using 3-FTBBs or 3-cubes in Table 6.13 and Table 6.14 respectively.
We observe that all MTTFs (T}s) of cubes built of 3 FTBBs are superior to the
corresponding MTTFs of cubes built of 3 cube basic blocks. MTTFs for the cubes
built of 2 FTBBs and 2 cubes as basic blocks for the supernode failure model can be
obtained similarly and are shown in Tables 6.15 and 6.16 respectively. We observe
from Tables 6.15 and 6.16 that the MTTFs of cubes built of 2 FTBBs are superior

to the MTTFs of cubes built of 2 cubes.

6.5 Discussion of the Results

In this Section we shall discuss the subcube reliability and MTTF results presented
in the the previous sections in this Chapter for each of the failure models. Observing
Table 6.1 and Table 6.2 we see that the MTFF's for the cubes built from 3-FTBBs
are nearly twice as much as the corresponding values of cubes built from 3-cubes
under the node failure model. In fact the MTTFs scale with the failure rate (51,—) of
the corresponding basic block (3-FTBB or 3 cube) given in Table 5.5 under the node
failure model. Similar remarks hold for the MTTFs of cubes built from 2-FTBBs

and 2-cubes shown in Table 6.3 and Table 6.4 respectively.




Table 6.13: MTTF in hours for supernode node failure model (basic block is a
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3-FTBB).
b Ny | N T. |To |Th T, |T3 |Ty Ts |Te |T7 | Ts
318 64 1962 | 4205 | 5326 | 8130
4|16 | 128 923 | 1908 | 2189 | 2822 | 4159
5132 1256 | 436 |[886 }|961 | 1143 | 1459 | 2090
6|64 | 512 |206 |416 | 436 | 492 | 590 | 741 1039
71128 | 1024 | 98 197 | 202 | 220 | 253 301 372 | 514
8 | 256 | 2048 | 47 94 95 100 | 112 | 129 152 | 186 | 253
91512 | 4096 | 22 45 45 47 50 57 65 76 192 | 124

Table 6.14: MTTF in hours for supernode failure model (basic block is a 3-cube).

b{Ny | N T. Ty T T T3 Ty Ty |Te |T7 [ T8
3i8 64 1202 | 2576 | 3262 | 4979

4116 | 128 |579 | 1196 | 1372 | 1769 | 2607

532 | 256 [279 {567 |615 | 732 | 934 [ 1338

664 |512 |135 (272 |285 |321 |385 {484 |678

71128 711024 | 65 131 | 134 | 146 168 | 200 | 247 | 341

81256 | 2048 | 32 63 64 68 75 87 103 | 125 | 171

9 (512 | 4096 | 15 31 31 32 35 39 45 [ 52 163 |85
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Table 6.15: MTTF in hours for supernode failure model (basic block is a 2-FTBB).

b | Ny N T. To T i) T3 T4 Ts Te |T7 |Ts | Te
4 |16 64 1496 | 3092 | 3548 | 4574 | 6739

5 |32 128 | 683 | 1387 | 1505 | 1790 | 2285 | 3273

6 |64 256 | 314 | 633 [664 | 748 |898 | 1127 | 1580

7T (128 |512 145 |292 {300 [325 |374 |446 | 552 | 761

8 (256 | 1024 | 68 135 | 138 | 145 | 162 { 187 | 220 | 269 | 367

9 | 512 | 2048 | 32 63 64 66 72 81 93 108 | 131 | 176

10 | 1024 | 4096 | 15 30 30 31 32 36 40 46 |53 |64 |85
Table 6.16: MTTF in hours for supernode failure model (basic block is a 2-cube).

b | Ny N T. To /i T T3 Ty Ts Ts |T7 | T | Ty
4 |16 64 1042 | 2153 | 2470 | 3184 | 4692

5 |32 128 | 488 |[992 | 1076 | 1280 | 1634 | 2341

6 (64 |256 |230 |463 |486 |548 | 657 | 825 | 1157

7 | 128 |[512 {109 |218 |224 {243 |280 | 333 |412 | 569

8 {256 | 1024 |51 103 | 105 | 110 | 123 | 142 | 167 | 205|279

9 | 512 | 2048 | 24 49 49 51 55 62 72 83 |[101 | 136

10 | 1024 | 4096 | 12 23 23 24 25 28 31 36 {41 |50 |67
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Further note that the MTTF T, for for cubes built of 3-cubes or 2-cubes has the
same value for the cubes built of single nodes (refer Table 2.1) for the same value of
N (number of nodes) under the node failure model. This is cxpected as the MTTF
T. is the Mean Time To Failure to leave the perfect state (MTTF to the first node
failure). Comparing the MTTFs for cubes built from 3-FTBBs and 2 FTBBs under
node failure model (Tables 6.1 and 6.3) we see that for the same value of N, MTTF
T, for the cubes built from 3-FTBBs is superior to the corresponding value for the
cubes built from 2-FTBBs. This is due to the following reason. Cubes built from
2-FTBBs have twice the number of spare nodes than cubes built from 3-FTBBs.
These additional spare nodes (their possibility of failure) in the cubes built of 2
FTBBs account for the lower value of T.. We remind that 7. is the mean time to
first failure. Other T;s cannot be compared as they denote different states in terms
of the number of failures that can occur leading to them. However it should be noted
that cubes built from 2 FTBBs will be more fault-tolerant than cubes built from 3
FTBBs, for the same value of N due to the following reason. Consider a 3-FTBB
and a 3-cube built using two 2-FTBBs. Two node failures cannot be tolerated in a
3-FTBB but in a 3-cube built from two 2-FTBBs two node failures can be tolerated
if they occur in different 2-FTBBs. Conclusions for the MTTF's under the supernode
failure model are similar to the node failure model case.

Now consider the MTTFs for the cubes built from 3 FTBBs and 3-cubes under

the link failure model (Tables 6.5 and 6.6). The MTTF's for the cubes built from
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3-FTBBs are superior to the corresponding MTFFs for cubes built using 3-cubes,
but unlike the node failure model, the MTTFs do not scale with failure rate of the
corresponding basic block (3-FTBB and 3-cube) under link failure model. This is
explained as follows. In the node failure model failure of any node in a cube built
from 3-FTBB is tolerated but this is not the case in the link failure model. In
particular only intra-FTBB link failures are tolerated but not inter-FTBB links in
our reconfiguration strategy. In other words no spare link can replace any failed link
which connects the nodes of different FTBBs. Similar remarks hold for the cubes
built from 2-FTBBs and 2-cubes under the' link failure model. Again Comparing
the MTTFs for cubes built from 3-FTBBs and 2 FTBBs under link failure model
(Tables 6.5 and 6.7) we see that for the same value of N, MTTF T. for the cubes
built from 3-FTBBs is superior to the corresponding value for the cubes built from
2-FTBBs. This is due to the following reason. For example, consider a 3-FTBB
and a 3-cube. In a 3 FTBB failure of any first link can be tolerated but in a 3-
cube built using 2-FTBBs not all first link failures can be tolerated. In particular if
links interconnecting the two 2-FTBBs fail, no spare link can replace them. Further
for the same reason, cubes built from 3 FTBBs will be more fault-tolerant than
cubes built from 2 FTBBs, for the same value of N unlike the node failure model.
Conclusions for the MTTFs under the combined node and link failure model are

similar to the link failure model case.
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6.5.1 Cost/Fault Tolerance Tradeoff

In this section we shall calculate the percentage node and link redundancy in our
scheme over a regular hypercube. Let us first calculate the node and link redundancy
in our scheme over a regular hypercube. This redundancy is a measure of the cost
of our scheme to achieve higher reliability over the regular hypercube. In general

for cubes built of m FTBBs the percentage node redundancy is (2,1,021) and the link

redundancy is (112(;)’ Note that the node redundancy does not depend on the order
of the augmented cube and the link redundancy does not depend on the order of the
FTBB. For practical hypercubes such as d = 10 and d = 12 the node redundancy
is approximately 11% if 3 FTBBs are used and 20% if 2 FTBBs are used. The link

redundancy is 17% for a d = 10 cube and approximately 14% for a d = 12 cube.

6.5.2 Runtime Performance of Hypercube Applications

In this section we shall comment on the degradation in performance suffered by
actual hypercube applications when embedded on hypercubes using Banerjee and
Peercy’s fanlt-tolerant schemes [7]. Since even our architecture uses fault-tolerant
routing like Banerjee and Peercy’s scheme the following general comments hold for

our architecture too.

Banerjee and Peercy have done work on evaluating the reliability of their re- .

configuration schemes [7] on actual hypercube applications. Their work shows that
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given a bounded number of faults the dilation of logical links is bounded. More
specifically they quantify the loss in performance of the reconfigured system by ex-
amining the runtimes of standard applications on iPSC/2. They used the simulator
developed by Hsu and Banerjee [26]. This simulator was used to investigate com-
munication characteristics of the commercially-available Intel iPSC/2 hypercube.
The simulator accurately models all the steps of communication, both hardware
and software. Banerjee and Peercy augmented the simulator to allow for faults and
the tolerance of them by the reconfiguration schemes outlined above. The following
applications were run on their simulator, three numerical programs and three CAD

programs.

1. FFT [21]: The FFT algorithm maps perfectly on a hypercube. Each node
performs identical computation on its points and then exchanges these with its
neighbors in each dimension in turn. All communication in the programming of

the FFT algorithm on a hypercube is nearest neighbor and very synchronous.

2. QR[32]:(128 x 128 matrix) The QR factorisation application maps columns
of the matrix on a ring of processors and performs orthogonal factorisation
on them. It is used as an example of a numerical algorithm carefully and

successfully tuned to execute of the hypercube.

3. TRED2[23]: A subroutine taken from the EISPACK routines for linear al-

gebra, TRED2 does not map well to distributed processing. As a result this
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program is very communication intensive, and it provides a good example for

examining the reconfiguration under high network load.

4. EXTRACTI[9):VLSI circuit extraction. This program runs in two distinct
phases. In the first, communication intensive phase, the circuit is sent to the
nodes in a tree fashion. In the second phase, the circuits are locally extracted

and the results are merged, a computation intensive activity.

ot

. PLACE[36]:cell placement. This CAD program uses a simulated annealing
algorithm to place cells on a VLSI chip so that connecting wirelength is min-
imizing. Cells allocated geographically to processors are exchanged in moves

at every iteration. Hence it requires fine-grain synchronization.

6. TEST(30]:test generation. In this application, processor 0 distributes brand-
and-bound tasks to all other processors. Thus every communication is sourced
or sinked at processor 0, and communication in general is very asynchronous-

processor 0 being able to source only one message at a time.

Each of the six experiments was run on four (simulated) hypercube machines,
each with node-sparing and link-sparing, reconfigured from varying degrees of fault
injection. To standardize the results all four machines use the iPSC/2 communica-
tions protocols and timings. Runtime overhead is the most important overhead in
the design of fault-tolerant schemes for hypercubes. The simulation results given

in [7] demonstrate that logical mapping of links i.e., replacing single physical link
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delays with multiple link delays in their schemes does not degrade the runtime per-
formance of the above applications. Specifically the runtime overheads are small for
both proposed schemes i.e., the node spare scheme and the link spare scheme. For
the 4-fault cases (the most faults which can possibly be tolerated in a 4-spare 16
node machine) the mean magnitudes of overheads run from under 0.04% for TEST

to under 7.4% for TRED2.

6.6 Augmented Hierarchical Hypercubes

In this Section we shall consider the possibility of using FTBBs for the level 1 clusters
in hierarchical hypercubes instead of BH/BH-SI scheme. We denote this scheme as
BH/BH-FTBB and called such cubes as augmented hierarchical hypercubes.

A two level hierarchical hypercube network using 3-FTBBs is shown in Figure 6.3.
Note that the spare node in BH/BH-FTBB network can replace any node, including
the interface node in the level 1 network unlike the BH/BH-SI scheme where the
spare can replace only the interface node. Further, link failures within the level 1
cluster are also tolerated by using the reconfiguration strategy given in Section 4.2.
Even in the BH/BH-FTBB scheme the level 2 network could be duplicated like
the BH/BH-RS scheme where two nodes within the cluster act as interface nodes.
Observing Figure 6.3 we see that when the interface node fails, the spare node within

the level 1 network replaces it, but the spare node now is not connected to the level
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Level 1 network

Figure 6.3: A two level BH/BH-3FTBB network.
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Level 1 network

Figure 6.4: A two level BH/BH-3FTBB-RS network.

two network. To avoid this we suggest to replicate the level 2 network on the
spare nodes of level 1 clusters. We call this scheme BH/BH-FTBB-RS similar to the
BH/BH-RS scheme and is shown in Figure 6.4. We shall now use an analytical model
to evaluate the system reliability of the BH/BH-FTBB-RS sch;eme and also the
hierarchical schemes given in Section 3.2 such as BH/BH, BH/BH-SI and BH/BH-
RS. The analytical model is explained below.

Let the level cluster be a 3-cube or a 3-FTBB. Consider a 64 node network. So




108

the level 2 network is a 3-cube. We have derived expressions for system reliability for
a 3 cube and 3-FTBB in Section 5.3 (equations 5.7 and 5.6). We use these system
reliability expressions to calculate the system reliability of each level 1 cluster. Now
consider the level 1 clusters as single nodes connected by the level 2 network, which
is a 3-cube if 64 nodes are to be connected. We can again use the same expressions
to calculate the system reliability of the level 2 network, with level 1 clusters consid-
ered as single nodes. This gives the system reliability for the whole network. Using
this analytical model and using equations 5.7 and 5.6, the system reliability for a
64 node BH/BH network is

Rer/i(t) = r1*R%_cuper Res—cute is the reliability of a 3 — cube cluster and all 8
such clusters should function (RE,__,,.) alongwith all the 12 links (r}?) of the level
2 network for the 64 node BH/BH network to function. Other expressions given
below could be explained in a similar manner.

For a 64 node BH/BH-SI we have

Rpu/pr-si(t) = r/*R%;, where

Rsp = ri?(ra + 2r3(1 — 1))

is the system reliability of a level 1 cluster with a spare for the interface node. For
a 64 node BH/BH-RS we have

Rpr/Br-rs(t) = r}2R% ... Where,

r1. = e~2M3 is the reliability of each pair of replicated links in the level 2 network.

For a 64 node BH/BH-RS & SI we have
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Rphpr-rsesi(t) = 1}’ R%, where,

Rsip =10 4+ 419(1 — 1) + 408(1 = 7,2

For a 64 node BH/BH-3FTBB-RS we have

Rpu/sr-arree-rs(t) = T12R%

r, and r; are the reliability of a node and link respectively. In the BH /BH-3FTBB-
RS if we do not replicate the level 2 network, instead provide a spare for the spare
\;vithin the FTBB (a spare node for a spare node) and the level 2 network only
connects the spares within the FTBB we get the BH/BH-FTBB-SI network. The
BH/BH-FTBB network saves on links but uses extra spare nodes. Similarly expres-
sions for system reliability can be derived if 2 cubes or 2-FTBBs are used for level
1 clusters. The system reliability of each of these 64 node hierarchical networks is
shown in Figure 6.5 From this figure we see that using FTBBs for level 1 clusters
improves the system reliability considerably. This is due to the following. There are
a large number of primary link failure configurations which are tolerated. This can
be seen in the reconfiguration strategy given in Figure 4.5 used to tolerate node and
link failures within the FTBB. Consider Figure 4.1. Specifically when a primary
link fails, two spare links replace it. This is accepted and the FTBB is consid-
ered to be working. Trace driven performance studies on hypercubes have shown

that 2 hop message delays are only slightly greater than single hop message delays

15, 5, 31, 26).
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Figure 6.5: System Reliability for 64 node BH/BH, BH/BH-SI, BH/BH-RS,
BH/BH-SI&RS and BH/BH-FTBB-RS (a) Cluster size 3-cube or 3-FTBB (b) Clus-

ter size 2-cube or 2-FTBB.




Chapter 7

Conclusions and Future Research

This final chapter summarizes the results of the thesis and its contributions to fault-
tolerance in hypercubes. Future research based on this thesis and general directions

in related areas are also described.

7.1 Contributions

In this Section we present the main contributions of this research in the area of

fault-tolerant hypercube architectures.

o This thesis presented a new modular fault-tolerant hypercube architecture

capable of tolerating both nodes and link failures in a hypercube.

o This thesis has given a set of rules for reconfiguration in the event of node

and link failures in a hypercube for the proposed fault-tolerant hypercube
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architecture.

o This thesis presented subcube reliability analysis of the proposed fault-tolerant

hypercube architecture for four failure models:

1. Node failure model: where only nodes are permitted to fail
2. Link failure model: where only links are permitted to fail

3. Combined node and link failure model: where both nodes and links are

permitted to fail

4. Supernode failure model: an approximation to the more realistic com-

bined node and link failure model

The analysis showed that the architecture has better subcube reliabilities and
Mean Time To Failures (MTTF) than ordinary hypercube. We have analysed
subcube reliability of our architecture. This analysis could be extended to
other fault-tolerant hypercube architectures. Specifically our subcube reliabil-
ity analysis for the node failure model holds for Rennels’s, Chau et al’s and
Sultan and Melhem’s schemes with the fault-tolerant modules consisting of
a single spare node. Note that the Rennels’s, Chau et al’s and Sultan and

Melhem’s schemes do not provide spare links and do not tolerate link failures

-with spare links.
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o This thesis extended the FTBB idea to be incorporated in hierarchical hyper-
cubes which has been shown to have better system reliability than previous

fault-tolerant techniques in hierarchical hypercubes.

7.2 Summary and Conclusions

This research has proposed a modular fault-tolerant hypercube architecture which
can tolerate both node and link failures in a hypercube. The scheme we have pro-
posed has extended the ideas for modular fault tolerance in hypercubes investigated
in [34, 12, 42, 7]. We have analysed the subcube reliability of the proposed modular
fault-tolerant hypercube architecture extending the the subcube reliability analysis
of hypercube presented in [1]. The analysis shows that the fault-tolerant hypercube
architecture we propose is more resilient than the basic hypercube in terms of its
ability to support several smaller subcubes in the damaged structure. Specifically,
the reliabilities and the MTTF values of the FTBBs have been shown to be superior
to those of the ordinary cubes of the same order under the node, link, combined
node and link and supernode failure models. The reliabilities and MTTF of aug-
mented cubes built of FTBBs have been shown to be superior to corresponding
cubes built using ordinary basic blocks under the node, link, combined node and
link and supernode failure models. We have extended the idea of FTBBs to be

incorporated in hierarchical hypercube networks which gives better reliability than




114

current fault-tolerant techniques.

7.3 Future Research

In this Section we outline some future research topics in the area of fault-tolerant
hypercube architectures prompted by the work presented herein. We have analysed
subcube reliability of the modular fault-tolerant architecture we presented. Other
measures that characterize the fault-tolerant hypercube systems are performance
related dependability and diagnosability. Performance related dependability of a
fault-tolerant hypercube architecture is a combined measure of the reliability and
performance. Performance is related to the average diameter between two nodes
which effects the message delay in a hypercube network. The introduction of spare
nodes and links in the architecture we presented serves to reduce the average diam-
eter between nodes in a hypercube. The spare nodes and links could be therefore
utilized to increase the performance. Performance related dependability is treated
in [17, 16]. Performance related dependability is another important measure in fault
tolerance and could be investigated for modular fault-tolerant hypercube architec-
tures. Diagnosability of a hypercube architecture is a measure of how effectively
nodes in a hypercube can test their adjacent nodes to find for node failures. In
[45] diagnosability of a fault-tolerant hypercube architecture which has spare links

between certain nodes is investigated. In general diagnosability of the modular fault-
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tolerant hypercube architectures including the architecture we presented could be
investigated.

The modular fault-tolerant hypercube architecture together with the reconfigura-
tion strategy we presented tolerate link failures only within a FTBBi.e., intra-FTBB
link failures are tolerated but not inter-FTBB links. The reconfiguration strategy
could be extended to tolerate inter-FTBB links. The spare links within a FTBB
could be used to replace link failures outside the FTBB as well. This needs to be
investigated.

Several advantages are associated with modular sparing. Global sparing uses
less spare overhead but in general the reconfiguration strategies become complex.
Specifically in hypercubes the question is how large a FTBB has to be to achieve
high reliability as well as performance. Current VLSI technology also affects this.
Various factors like the average message delay, reliability, reconfiguration strategy
etc., have to be considered on deciding the size of the FTBB. This issue needs further

investigation.
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