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ABSTRACT 

Plates with piezoelectric coupling have been used extensively for active vibration 

damping of aerospace structures. Ensuring the existence of the correct amount of the 

piezoelectric constituent over time and health monitoring are essential in the reliability 

analysis of these plates. NDT techniques involving wave propagation in solid media 

proved to be effective inspection tools for aerospace structures. In this paper, a recently 

developed continuum mixture model for studying guided wave propagation in bi-

laminated periodic composites of piezoelectric materials is used to investigate the effect 

of piezoelectric coupling on the wave dispersion characteristics of such plates. The theory 

leads to the simple governing coupled equations for the actual composite which retain the 

integrity of the propagation process in each constituent but allow them to coexist under 

analytically derived interaction parameters. As a consequence of the analysis, effective 

mixture properties of the composite are obtained in the zero-frequency limit. The analysis 

for the cases with and without the piezoelectric constituent can be coupled with 

experimentally obtained dispersion curves to give an accurate estimate of the percentage 

of the piezoelectric patch. The procedure lends itself to modifications that allow it to be 
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used as an effective tool in quality control of piezoelectric coupled plates manufacturing 

or for health monitoring of such structures. 

 

INTRODUCTION 

There has been an increased interest in determining the effective bulk properties of 

piezoelectric composite materials. See for example Benveniste, 1993, Bisegna et al., 

1996, and Dunn et al., 1993. This has been perhaps prompted by the fact that, since the 

late seventies, piezoelectric composites have been used in the manufacturing of high tech 

components such as ultrasonic transducers and actuators.  

In some idealized situations, and for simple systems, exact solutions might be 

obtained. On the other hand, for simple deterministic geometries, limited success has 

been realized in calculating some of the properties; this is based primarily on solving 

appropriate boundary value problems.  For the most situations, however, properties are 

calculated or estimated by using bounds schemes or by using various theories of mixture 

depending upon available information about the variability in constituent properties, 

geometrical arrangements and interactions. See, for example, Nayfeh, 1995 for detailed 

references. 

In the case of dynamic applications and, in particular those involving wave 

propagation, the applicability of the effective modules theories is somewhat restrictive. 

Specially, these theories are incapable of reproducing the dispersion and pronounced 

alteration (spreading and attenuation) of propagation pulses in these composites. The 

necessity to simulate such effects on the mechanical, thermal and electromagnetic 

response of composites has led to development and applications of several theories 

reflecting the influence of the microstructure.  Wang, 2002, derived theoretical 
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expressions for the dispersive characteristics and mode shapes of the transverse 

displacement and electric potential of the piezoelectric layers and studied the limits of the 

wave velocity as the wave number increases. Later, Qian et al., 2004, obtained the 

dispersion relations for wave propagation in periodic piezoelectric composite layers. 

In this paper, a continuum mixture model that was developed by Nayfeh et al., 

1999 for the study of guided wave propagation in piezoelectric plates is adapted to 

investigate the effect of the piezoelectric content on the coupling characteristics, 

dispersion properties and the zero-frequency limit of the wave speed. This provides a 

means of estimating the piezoelectric content of composite plates by measuring these 

characteristics. The model employs the use of four coupled simple equations for the 

propagation process in each constituent subject to some interactions. The derived system 

of equations is readily adaptable to the study of harmonic excitation in the system. The 

utility and range of applicability of this simple theory was established by comparison 

with an exact treatment. See Nayfeh et al., 1999. 

 

FORMULATION OF THE PROBLEM 

FIELD EQUATIONS 

Details of the micromechanical model can be found in Nayfeh et al., 1999. A 

partial development of the development of this model is provided here. Consider the 

propagation of waves in the direction parallel to the interface of a periodic array of bi-

laminated composite as shown in figure 1a.  From symmetry all field variables are 

independent of the y -coordinate. Thus, the problem reduces to strictly two-dimensional 

one. For longitudinal wave propagation along the x -direction, the wave motion is further 
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restricted to yield symmetric xu  and antisymmetric zu  displacement components. 

Insuring such symmetries also leads to the vanishing of the shear stress and the transverse 

displacements (mechanical and electric) at the center of each layer. These symmetry 

conditions allow the isolation of a repeating unit cell of the composite as shown in figure 

1b. For each constituent of this cell a local transverse z -coordinate with the origin 

located at the layer’s center is assigned. Symmetry and the applicable continuity 

conditions are shown on figure 1c. 

 With respect to this geometrical arrangement, the relevant piezoelectric field 

equations for each constituent consist of the momentum equations 

2

2

t
u

zx
xxzx

∂
∂

=
∂

∂
+

∂
∂

ρ
σσ

,        (1a) 

2

2

t
u

zx
zzxz

∂
∂

=
∂

∂
+

∂
∂

ρ
σσ

,         (1b) 

the charge equation of electrostatics 
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The elastic, piezoelectric and dielectric constants for the orthotropic piezoelectric 

system are given in the expanded matrix forms 
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which reflect renaming ijklc  as pqC  such that p  and q  = 1,2, …6 are replaced by 11, 22, 

33, 23 or 32, 31 or 13, and 12 or 21, respectively. For simplicity of the notation, we shall 

thereafter suppress the superscripts E  and S in the equations (6) and (8). According to 

the above relations, the constitutive equations (5) take the expanded form 
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which, once again, hold for each layer. 
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SYMMETRY AND CONTINUITY CONDITIONS 

The above field equations are supplemented with the symmetry conditions 
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that hold at the center of layers 1 and 2, respectively. The continuity conditions at the 

interface defined by 11 hz =  and 22 hz −=                                                                                                 
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where superscripts (1) and (2) and subscripts 1 and 2 refer to layers 1 and 2, respectively. 

ACROSS-THICKNESS AVERAGING 

Eliminating the z -dependence by performing the across-thickness integration: 
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If the symmetry and continuity conditions on )(ασ xz , α =1,2 are taken into account, then 

applying the averaging to the equation of motion (1a),  and the charge equation of 

electrostatics (2) leads to 
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with 21 hhh +=  define the volume fractions for layers 1 and 2, respectively.  

Similarly, the constitutive relations (9a) and (9d) for xσ  and xD  are averaged to yield 
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also defines an interface interaction term.  

 

EVALUATION OF THE INTERACTION TERMS 

APPROXIMATIONS 
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To solve for the interaction terms, we assume that ),,( 1
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These relations are intentionally chosen which automatically satisfy the individual 

symmetry and interface conditions as required by equations (10) and (11).  

Subject to these approximations, we now proceed to average the remaining 

constitutive relations (9c) and (9e) for each constituent. The procedure is summarized as 

follows. First, we substitute the approximate expressions for )(ασ xz  and )(α
zD , α=1, 2, into 

equations (9c) and (9e). Second, we multiply the resulting equations by 1z  and 2z  for 
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INTERACTION TERMS *
xzσ  AND *

zD   

Substitution of the expressions for *
xu  and *φ  from equation (23) back into 

equations (21) finally results in  
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Invoking the continuity relation on zσ  and eliminating *
xu  and *φ  as per equation 

(21) finally leads to 

)()(1 )2(

4

)1(

3

)2(

2

)1(

1
*

x
E

x
E

x
u

E
x

u
Eu

h
xx

z ∂
∂

−
∂

∂
+

∂
∂

−
∂

∂
=

φφ ,    (26) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
−+−= 1

)1(
13

)2(
13

)1(
13

)2(
13

1

2
1 )()(1 PeeCC

T
T

E
E ,  ⎥

⎦

⎤
⎢
⎣

⎡
−+−−= 2

)1(
13

)2(
13

)1(
13

)2(
13

1

3
2 )()(1 PeeCC

T
T

E
E , 

⎥
⎦

⎤
⎢
⎣

⎡
−+−−= 3

)1(
13

)2(
13

)1(
13

)2(
13

1

4
3 )()(1 PeeCC

T
T

E
E ,  ⎥

⎦

⎤
⎢
⎣

⎡
−+−= 4

)1(
13

)2(
13

)1(
13

)2(
13

1

5
4 )()(1 PeeCC

T
T

E
E , 

and 

2

)2(
33

1

)1(
33

n
C

n
C

E += . 

 

MIXTURE EQUATIONS OF MOTION 

 So far, we have solved for all interaction terms *
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The four coupled equations (27) comprise a mixture system for the laminated 

piezoelectric composite. In general, these equations retain the integrity of the propagation 

process in the individual constituents and allow them to coexist under the derived 

interaction parameters *
zu , *

xzσ , and *
zD . In particular, information as to the distribution 

of the field variables in the individual constituent is readily obtainable. 

As a further observation, assuming that the left hand sides of equations (27) 
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where xu  stands for either )1(
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ILLUSTRATION 

As an illustration for the effect of the piezoelectric constituent on the composite 

dynamic characteristics, we study the three arrangements, with PZT65/35 being the 

piezoelectric constituents in two of them, and PZT5 in the third. In all cases we use h1= 

0.25 mm and h2 = 0.25 mm, which result in the volume fractions n1= 0.5 and n2= 0.5. The 

material properties used in the calculations are presented in Table 1.  

To quantify the influence of piezoelectric coupling, Figures 2-4 depict the 

variation of the effective properties )(
11

eC , )(
11

ee  and )(
11

eε  with the PZT65/35 volume 

fraction. These figures show characteristics similar to those predicted by Auld et al., 

1991. By correctly selecting the frequency of the propagating wave, and measuring the 
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corresponding value of effective properties, these figure provide a means for predicting 

the piezoelectric content in the composite. If applied over longer periods of time, it can 

provide useful information regarding the deterioration of the material properties with 

time. 

 

CONCLUSION 

In this work, a previously developed model for the wave propagation in piezoelectric 

composite plates is utilized to study the effective properties of several piezoelectric 

arrangements. As a consequence of the analysis, the variations of the effective stiffness, 

piezoelectric coupling, and permittivity with the piezoelectric volume fraction of the 

composite are obtained. The work can be used to estimate the piezoelectric volume 

fraction based on measurements of these effective properties. 
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Figure 1: (a) The geometry of the composite model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: (b) Unit cell geometry and coordinate system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: (c) Unit cell symmetry and continuity conditions. 
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Figure 2. Variation of effective stiffness with the piezoelectric volume fraction. 
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Figure 3. Variation of effective piezoelectric coupling with the piezoelectric volume 

fraction. 
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Figure 4. Variation of effective permittivity with the piezoelectric volume fraction. 
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Table I. The Material Properties of Selected Materials. 

Units of pqC and ipe  are 109 N/m2 and coulomb/m2, respectively. ijε  is given non-

dimensional as S
o

s εε /  where S
oε =8.85410*10-12=10-9/36π farad/m. 

 

Materials Constants PZT 65/35 PZT5 Spurr Quartz 

ρ(g/cm3) 7.500 7.75 1.100 2.651 

C11 

C12 

C13 

C22 

C23 

C33 

C44 

C55 

C66 

159.4 

73.9 

73.9 

159.4 

73.9 

159.4 

42.8 

38.9 

38.9 

121 

75.2 

75.2 

121 

75.4 

121 

22.9 

22.9 

22.9 

 

5.3 

3.1 

3.1 

5.3 

3.1 

5.3 

1.1 

1.1 

1.1 

10.72 

0.699 

1.191 

8.674 

1.191 

10.72 

5.794 

5.794 

3.988 

e11 

e12 

e13 

e26 

e35 

10.7 

-6.13 

-6.13 

8.39 

8.39 

15.8 

-5.4 

-5.4 

10.6 

10.6 

  

ε11 

ε22 

ε33 

153.3 

639.3 

639.3 

830 

635 

635 

1.0 

1.0 

1.0 

4.6 

4.5 

4.5 
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Figure 1(a). Composite model geometry. 

Figure 1(b). Unit cell geometry and coordinate system. 

Figure 1(c). Symmetry and continuity conditions. 

Figure 2. Variation of effective stiffness with the piezoelectric volume fraction. 

Figure 3. Variation of effective piezoelectric coupling with the piezoelectric volume 

fraction. 

Figure 4. Variation of effective permittivity with the piezoelectric volume fraction. 

 


