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ABSTRACT 
 
Wireless networks have unreliable channels that 
experience bursty and location-dependent errors. Several 
fair queuing algorithms have been proposed in order to 
provide QoS in presence of errors in a fair manner. 
However, most of these algorithms are unpractical as they 
require perfect channel predication or do not work well 
with the Link Layer. Wireless Fair Queuing with 
Retransmission (WFQ-R) algorithm was recently 
suggested to address these problems by penalizing flows 
that use wireless resources without permission in the link 
layer. However, the WFQ-R algorithm is based on Stop-
and-Wait LLR scheme which also costs the network 
extensive delay and low utilization. In this paper, a new 
wireless fair queuing based on the WFQ-R algorithm is 
proposed to work with the window-based error control 
schemes in the link layer. The proposed algorithm has 
shown outstanding results compared with WFQ-R in 
terms of lower queuing delay, better throughput and 
fairly allocated resources. 
 

Index Terms— Wireless Fair Queuing; Wireless 
QoS; Wireless Packet Scheduling; Link Level 
Retransmission 

 
1. INTRODUCTION 

 
The rapid-growth of wireless networks in recent years 

has sparked interest in providing the required quality of 
service for a wide variety of applications such as VoIP, 
video conferencing, WWW, ftp, telnet, etc.. Wired-
networks fair queuing algorithms cannot be applied on 
wireless networks because wireless networks have 
unreliable channels that experience bursty and location-
dependent errors. In order to provide quality of service in 
wireless networks by overcoming these type of errors, 
wireless fair queuing algorithms have been proposed, 
such as Idealized Wireless Fair-Queuing (IWFQ)  [1], 
Server Based Fairness Approach (SBFA)  [2], Channel-
condition Independent Fair Queuing (CIF-Q)  [3]. 
However these algorithms are unpractical for several 
reasons. First, they require perfect channel prediction. 
Second, these algorithms assume unrealistically ideal 

conditions. Third, they do not address the relation with 
the link layer. 

 
     Since most wireless networks adopt the Link Level 

Retransmission (LLR) algorithm within the link layer, 
Kim and Yoon suggested  [4] a new wireless fair queuing 
algorithm that is well matched with LLR Algorithm and 
does not require channel prediction. The new Wireless 
Fair Queuing with Retransmission (WFQ-R) algorithm is 
able to achieve flow separation, flow compensations and 
maintains fairness adaptively in presence of channel 
errors. However, the WFQ-R algorithm only works on 
Stop-and-Wait error control schemes in the link layer. 
The WFQ-R therefore may not be practical since several 
link layer strategies are based on window error controls 
such as the Go-Back-n and Selective Repeat ARQ. 
Moreover, Stop-and-Wait error control scheme costs the 
network an extensive delay and low utilization Therefore, 
in this paper; we propose a new wireless fair queuing 
algorithm based on the WFQ-R that works with any 
windows-based scheme. 

The remainder of the paper is organized as follows. 
Section2 introduces the background information on 
WFQ-R concepts. Section3 presents the new wireless fair 
queuing algorithm with windows-based link level 
retransmission. Simulation environment and results are 
presented and discussed in Section 4. Finally, section 5 
concludes the paper. 

2. WFQ-R ALGORITHM 
     In wireless networks, there are two types of fairness; 
data fairness and resource fairness. Data fairness is based 
on the amount of data received. This type of fairness 
guarantees that each flow receives the same amount of 
data. On the other hand, resource fairness provides 
fairness based on the amount of resources received by 
each flow. Resource fairness criterion is more suitable 
when there is a presence of errors because with data 
fairness an erroneous flow can exhaust almost all wireless 
resources. The WFQ-R algorithm is based on resource 
fairness. The algorithm achieves wireless fairness with 
the LLR algorithm by penalizing flows that use wireless 
resources without permission in the link layer. 



Figure 1. Illustration of FIC and SIC for both approaches. Circled flows are resources used by retransmission 
 
 

 
Figure 2. Wireless Channel Architecture 

 
     The main concept of the WFQ algorithm is that the 
resource share used for the retransmission is regarded as 
a debt of the retransmitted flow to other flows. The 
concept is also based on adopting the compensation 
model in which a flow receives a compensative share 
later when it does not get its share due to channel errors. 
There are two types of compensation that were proposed; 
flow-in-charge (FIC) and server-in-charge algorithms 
(SIC).  
 
    The flow-in-charge works by preventing a flow from 
its turn by every resource it has consumed during 
retransmission. However, the flow-in-charge provides 
only strict equity or resource fairness and may not be 
adequate for a flow experiencing frequent errors. On the 
other hand, server-in-charge provides fairness to both 
data and resources combined. It works by charging the 
overhead to all backlogged flows in a distributive 

manner. The retransmitted flow has responsibility for 
only a portion of the overhead to its weight. 
Consequently, server-in-charge compensation is proven 
to be more suitable  [4] and as such we concentrate in this 
work on server-in-charge compensation for our new fair 
queuing algorithm. An example of a SIC and FIC types 
can illustrated in Figure 1. We can observe that for FIC, 
Flow 1 lost the chance to send for two consecutive turns. 
On the other hand, using SIC, the same flow only lost one 
turn which is equivalent to its weight. 
 
2.1. Problems with WFQ-R 
  

The main problem with the WFQ-R algorithm is that 
it is not compatible with windows-based LLR schemes 
such as Go-Back-n and Selective Repeat ARQ. The 
WFQ-R algorithm depends on the fact that when a packet 
is sent to the link-layer, the scheduler has to wait until the 
link layer reports the number of resources the packet 
used. According to the WFQ-R algorithm  [4], the 
algorithm states that charging the flows due to 
retransmission must be accomplished as soon as the 
packet is sent. So the scheduler cannot send any further 
packets until this process is complete. During the wait 
time, the packets waiting in the queues are delayed and 
resources are wasted.  
In contrast to the WFQ-R algorithm, the proposed 
wireless fair queuing with windows-based retransmission 
(WFQ-WBR), the scheduler can send several successive 
packets without waiting for resources consumed during 
transmission from the LLR. 
 
 

3. WIRELESS FAIR QUEUING ALGORITHM 
WITH WINDOW-BASED RETRANSMISSION 

 

3.1. Network Model 
 
In this section, we present our Wireless Fair Queuing 
with Windows-Based Retransmission (WFQ-WBR) 
algorithm. The architecture of the network model is 
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depicted in Figure 2 where a cell has a base station or an 
access point with a shared wireless channel. The 
scheduler server exists in a communication layer above 
the link layer. It selects a packet for transmission from on 
the active flows based on the wireless fair queuing 
algorithm and sends it to the link layer. The scheduler 
continues to send packets to the link layer from each flow 
in turn according to their weights until one of the three 
conditions are met: 
 

1. There no more packets to send from all flows 
(no active flows) 

2. The maximum windows size N has reached for 
packet transmission in the link layer and thus the 
scheduler has to wait until an acknowledgement 
has been received in the link layer for the 
previous N packets sent. 

3. When the link layer receives the amount of 
resources consumed by a flow during the 
retransmission of one of the packets. 

 
When the third condition happens, the scheduler 
calculates the amount of extra resources (R) a flow used 
during retransmission and then calculates the amount of 
compensation needed to be served to other flows based 
on their weights as follows. It finds first how much 
should be charged:          
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Then, it distributes the charge of used resources to all 
backlogged flows. Charge is done in proportional to its 
weight. 
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Then, the algorithm computes the difference between the 
amount of service should have received and the services 
that the flow actually received. If lagging is positive, then 
the flow received less service. If lagging is negative, then 
the flow received more service. If lagging is 0, then the 
flow is in sync. 
 

For example, assume there are three flows and the 
third flow has twice the weight. The link layer has a 
selective-repeat ARQ protocol with window size of 8 
packets. In the first turn, each flow sends packets 
according to their weights. Flow 1 experiences errors 
within transmission during the first turn, but the negative 
acknowledgment has not yet been received. The 
scheduler continues to select and send packets normally 
until a negative acknowledgment is received. When flow 
1 has used four extra resources from the retransmission 
and the weight of the flow is a quarter of the sum of the 
weights of all flows as in Figure 2, the retransmitted flow 

is responsible for only one resource. Accordingly, the 
flow disclaims only one resource in the third turn. 
 
 
3.2. Algorithm Description 
 
The algorithm is divided into several functions. The full 
algorithm WFQ-WBR algorithm is shown in Table 1. 

We define the following variables for the algorithm: 
 serviceRecieved(i): normalized amount of service 

received by a leading flow i  
 lagging(i): indicates the difference between the 

amount of service should have received and the 
services that the flow actually received. If lagging 
is positive, then the flow received less service. If 
lagging is negative, then the flow received more 
service. If lagging is 0, then the flow is in sync. 

 Compensation(i): the normalized amount of 
compensation service received by a lagging flow i 

 resourcesRecieved(i): total amount of resources 
that a flow consumed 

 weight(i): rate of flow 
 α: fraction of service retained by leading flow 
 packetCounter(i): the number of outstanding 

packets (unacknowledged packets < windows size)  
 
A detailed description of each function is as follows: 

1. On Receiving: 
When a packet is received it is added to queue. If 

flow i is backlogged, then the resources received for i 
should at least the equal to the minimum resources 
received for each other active flow 

2. Deactivate: 
Removes a flow i from scheduling when there is no 

more packets. This flow i has lagging(i) that is 
proportionally distributed among all active flows 

3. On sending: 
Selects a flow i with minimum virtual time. If flow 

i is lagging then it is transmitted. If flow i is leading 
but did not receive the minimum service, then it is 
transmitted. If flow i is leading and it already received 
its minimum service, then search for lagging flow j 
with minimum compensation. If found transmit j 
otherwise i. If however the number of outstanding 
packets reached maximum, i.e. the window size, then 
the packets will not be sent until an acknowledgement 
is received. The selected packet is sent to sendPAcket 
function 

4. send Packet(): 
Gets packets from buffer and adjusts lagging for 

each flow. Then sends the packet through the link-
layer. ResourcesRecieved for transmitting flow is 
incremented by the amount of resources consumed by 
the packet depending on the ratio of the packet length 
and the rate of flow. If flow i is leading, then 
servicesRecieved(i) is also incremented by the 
packet/rate ratio. On the other hand, if flow i is 
lagging, then the lagging(i) is decremented by the 
packet/rate  



ratio. The function also saves the values of i and j for 
each packet p sent, since acknowledgements or  
 

 
negative acknowledgments may be received out of 
order in a selective repeat request ARQ scheme. 

On receiving packet p from flow i: 
If flow i not active 
  resourcesRecievedi ← max(resourcesRecievedi, min{vk})  

    lagging(i) =0; 
    flow i becomes active; 
  add p to queue; 
 
On sending current packet: 

find active i with minimum resourcesRecieved 
while(packetCounter(i) < windowSize(i)) 
   find another active i with minimum resourcesRecieved 
   if (new i does not exits)  return; 
if (i is lagging or leading with graceful degradation) 
  sendPacket(i,i); 
  packetCounter(i)++; 
else 
  j ← flow with minimum compensation service 
  if(j exists and packetCounter(j) < windowSize(j))   
    sendPacket(i,j); 
     packetCounter(j)++; 
    if (j buffer is empty)  deactivate j 
  else sendPacket(i,i); packetCounter(i)++; 
if( queue i empty) deactivate i;  

sendPacket (j,i) : 
remove p from queue 
resourcesRecieved(i) += length(p) / weight(i); 
if( i = j) 
  lagging(j)  -= length(p); 
  if(lagging(j) > 0)  // still lagging 
    compensation(j) = length(p) / weight(j); 

    if(lagging(j) + length(p) ≥ 0 while j is lagging )  
       // Graceful degradation of service 
       serviceRecieved(j) ← α*resourcesRecieved(j)  
    lagging (i) += length(p); 
    if(lagging(i) – length(p) ≤ 0 and i became leading)   
             compensation (i) = max(compensation (i), minimum 
              compensation of all other active lagging flows) 

send p to MAC layer; 
store values of i , j temp in buffer until link layer responds 
 

On receiving packet p from flow i: 
If flow i not active 
  resourcesRecievedi ← max(resourcesRecievedi, min{vk})  

    lagging(i) =0; 
    flow i becomes active; 
  add p to queue; 
On sending current packet: 

find active i with minimum resourcesRecieved 
while(packetCounter(i) < windowSize(i)) 
   find another active i with minimum resourcesRecieved 
   if (new i does not exits)  return; 
if (i is lagging or leading with graceful degradation) 
  sendPacket(i,i); 
  packetCounter(i)++; 
else 
  j ← flow with minimum compensation service 
  if(j exists and packetCounter(j) < windowSize(j))   
    sendPacket(i,j); 
     packetCounter(j)++; 
 

  if (j buffer is empty)  deactivate j 
  else sendPacket(i,i); packetCounter(i)++; 
if( queue i empty) deactivate i;  

sendPacket (j,i) : 
remove p from queue 
resourcesRecieved(i) += length(p) / weight(i); 
if( i = j) 
  lagging(j)  -= length(p); 
  if(lagging(j) > 0)  // still lagging 
    compensation(j) = length(p) / weight(j); 

    if(lagging(j) + length(p) ≥ 0 while j is lagging )  
       // Graceful degradation of service 
       serviceRecieved(j) ← α*resourcesRecieved(j)  
    lagging (i) += length(p); 
    if(lagging(i) – length(p) ≤ 0 and i became leading)   
             compensation (i) = max(compensation (i), minimum 
              compensation of all other active lagging flows) 

send p to MAC layer; 
store values of i , j temp in buffer until link layer responds 
 

on status usedResources for p from link layer: 
retrieve corresponding i and j of packet 
packetCounter(j)--; 

    for all active flows A      
charged = usedResources 
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if( i = j and i is leading)  
  servicesRecieved += charged/weight(j); 
else 
   lagging(j) -= charged; 
   if( j is still lagging) 
     compensation(j) += charged/weight(j); 
   if( lagging (j) + length(p) ≥ 0 and j became leading)  
     // Graceful degradation of service 

      serviceRecieved(j) ← α*resourcesRecieved(j)  

      lagging (A) += charged
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//distribute the shares for compensation 
      if(A just became lagging) 

compensation (A)= max(compensation (A),                  
             minimum compensation of all other active lagging flows) 
 
deactivating i 
  for all active flow f 

          lagging(f)+= lagging(i) 
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          if(f has become lagging) 
               compensation (f)= max(compensation (f), minimum  
                compensation of all other active lagging flows) 
 

 

Table 1 WFQ-WBR Algorithm



5. On status: 
When the link layer responds to the upper layer 

with the amount of used resources during 
retransmission. Then retrieve the corresponding flow i 
and j for the status report received. packetCounter is 
decremented since it has been acknowledged. Also 
calculates the overhead in which the retransmitted flow 
is responsible. Then distribute the charge of used 
resources to all backlogged flows. Charge is done in 
proportional to its weight. 

 
4. SIMULATION EXPERIMENTS 

 
4.1. Simulation Environment 
 
In this section, we represent the results of the simulation 
experiments to demonstrate the fairness of the WFQ-
WBR algorithm using the server-in-charge approach. To 
evaluate the algorithm the following metrics are 
measured: 

1. Allocated resources: the amount of wireless 
resources consumed by a flow 

2. Queuing delay: experienced delay in a 
queue 

3. Received data: the actual amount of data at 
a receiver 

    For simulation we used C++ programming to model 
and simulate the algorithm. For a  fair comparison with 
the WFQ-R simulation results presented in [4], we use 
the simulation parameters which can be summarized as 
follows: There are three transmission flows; flow1, 
flow2, flow3. The probability of retransmission for flow1 
is 0, flow2 is 0 and flow3 is 0.2. The packet transmission 
starts for flow1 at time 0, flow2 at 0.4s and for flow3 at 
1.3s. The packet inter-arrival time for each flow is 
exponentially distributed with mean of 8 ms. Each flow 
has a 5KB queue separately. The packet size is fixed at 
1KB and the weight of each flow is 1000. The flows 
share a wireless channel with a 1.5Mbps bandwidth. If a 
packet is retransmitted in the link layer, four more 
resources are consumed by the link level retransmission. 
The total simulation time was 10s. 
   The error control scheme used in the link layer is 
selective repeat request ARQ with maximum window-
size of 6. The time delay for the link layer to respond 
with amount of used resources a delivered packet 
consumed is investigated under different values. 
Unfortunately, due to the limited space, we are only 
going to present the system performance under 4.667 ms. 

4.2. Simulation Results 
 

To compare the efficiency of the WFQ-WBR to the 
WFQ-R algorithm, we added a fixed delay that represents 
the time period which the link layer responds to the upper 
layer with the status report after a packet is transmitted. 
In our simulations we used different delay parameters at 
different maximum window sizes to demonstrate the 
performance of the WFQ-WBR compared to WFQ-R. 

We represent the LLR response time by d and the 
maximum window size by W. The results show the 
amount of allocated resources, queuing delay and 
received data served to each flow. 

From Figure 3, we can observe that the WFQ-R SIC 
separates the delay smoothly and gives slightly more 
resources to the error-prone flow to compensate for error 
recovery. However, the allocated resources for WFQ-
WBR appears to be slightly less in proportion compared 
to the results obtained for WFQ-R. This is due to 
presence of outstanding packets within the windows 
frame that were not yet acknowledged and therefore the 
link layer has not yet reported the number of consumed 
resources obtained by these packets.  
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Figure 3. Comparison between WFQ-WBR and WFQ-R allocated 
resources when LLR response delay is 4.667 ms 

 
On the other hand, Figure 4 shows the significant 

improvements obtained in the throughput of the system 
using a window-based queuing algorithm compared to 
WFQ-R. Furthermore, considering the queuing delay, we 
can see the significant drop in this metric under the 
proposed algorithm as shown in Figure 5 and Figure 6. 
Nevertheless, Flow 3 suffers more delay than Flow 1 & 2 
as Flow 3 is the only erroneous flow in the system and 
therefore, it will not be allowed to send data over some 
turns as explained above. As the window size increases, 
the queuing delay decreases.  

Furthermore, as shown in figures 3 and 4, the results 
for the amount data received and allocated resources with 
different window sizes are the same. Since the total 
response of the system is 10ms (LLR delay + service 
time), the maximum number of windows slots that can be 
utilized is only 2 regardless of the window size. 
Significant effects of the system throughput at different 
window sizes will become apparent as we increase the 
LLR response time. Figure 7 shows the difference in the 
amount of data received for each flow with window sizes 
of 2 and 7 when the LLR response time is 14.67 ms. For 
this particular delay time the data received for WFQ-R 
does not exceed 170 packets for all flows. 
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Figure 4: Comparison between WFQ-WBR and WFQ-R received data 
when LLR response delay is 4.667 ms 
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Figure 5 Average Queuing delay for Flow1 & 2 at different LLR 
response times and different windows sizes 
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Figure 6 Average Queuing delay for Flow3 at different LLR response 
times and different windows sizes 
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Figure 7 Received data comparison between windows sizes 2 and 7  
when LLR response delay is 14.667 ms 

 
5. CONCLUSIONS 

 
We presented a new wireless fair queuing algorithm 

with windows-based retransmission and its role in 
providing quality of service in error-prone wireless 
networks. The algorithm is based on the WFQ-R 
suggested earlier by Kim and Yoon and modified to work 
with link layer that uses window-based schemes for error 
control such as Go-Back-n and Selective repeat ARQ. 
Through simulation, we have shown the significant 
improvement that can be obtained in term of high 
throughput and very low queuing delay. However, we 
also found that our WFQ-WBR algorithm had little effect 
on the fairness performance in comparison to the WFQ-
R, but generally, WFQ-WBR is able to maintain fairness 
adaptively in presence of errors. 
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