
WIRELESS FAIR QUEUING ALGORITHM FOR
WINDOW-BASED LINK LEVEL RETRANSMISSION

Abdul-Rahman Elshafei and Uthman Baroudi

Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

{shafei,ubaroudi}@kfupm.edu.sa

ABSTRACT

Wireless networks have unreliable channels that
experience bursty and location-dependent errors. Several
fair queuing algorithms have been proposed in order to
provide QoS in presence of errors in a fair manner.
However, most of these algorithms are unpractical as they
require perfect channel predication or do not work well
with the Link Layer. Wireless Fair Queuing with
Retransmission (WFQ-R) algorithm was recently
suggested to address these problems by penalizing flows
that use wireless resources without permission in the link
layer. However, the WFQ-R algorithm is based on Stop-
and-Wait LLR scheme which also costs the network
extensive delay and low utilization. In this paper, a new
wireless fair queuing based on the WFQ-R algorithm is
proposed to work with the window-based error control
schemes in the link layer. The proposed algorithm has
shown outstanding results compared with WFQ-R in
terms of lower queuing delay, better throughput and
fairly allocated resources.

Index Terms— Wireless Fair Queuing; Wireless
QoS; Wireless Packet Scheduling; Link Level
Retransmission

1. INTRODUCTION

The rapid-growth of wireless networks in recent years

has sparked interest in providing the required quality of
service for a wide variety of applications such as VoIP,
video conferencing, WWW, ftp, telnet, etc.. Wired-
networks fair queuing algorithms cannot be applied on
wireless networks because wireless networks have
unreliable channels that experience bursty and location-
dependent errors. In order to provide quality of service in
wireless networks by overcoming these type of errors,
wireless fair queuing algorithms have been proposed,
such as Idealized Wireless Fair-Queuing (IWFQ) [1],
Server Based Fairness Approach (SBFA) [2], Channel-
condition Independent Fair Queuing (CIF-Q) [3].
However these algorithms are unpractical for several
reasons. First, they require perfect channel prediction.
Second, these algorithms assume unrealistically ideal

conditions. Third, they do not address the relation with
the link layer.

 Since most wireless networks adopt the Link Level

Retransmission (LLR) algorithm within the link layer,
Kim and Yoon suggested [4] a new wireless fair queuing
algorithm that is well matched with LLR Algorithm and
does not require channel prediction. The new Wireless
Fair Queuing with Retransmission (WFQ-R) algorithm is
able to achieve flow separation, flow compensations and
maintains fairness adaptively in presence of channel
errors. However, the WFQ-R algorithm only works on
Stop-and-Wait error control schemes in the link layer.
The WFQ-R therefore may not be practical since several
link layer strategies are based on window error controls
such as the Go-Back-n and Selective Repeat ARQ.
Moreover, Stop-and-Wait error control scheme costs the
network an extensive delay and low utilization Therefore,
in this paper; we propose a new wireless fair queuing
algorithm based on the WFQ-R that works with any
windows-based scheme.

The remainder of the paper is organized as follows.
Section2 introduces the background information on
WFQ-R concepts. Section3 presents the new wireless fair
queuing algorithm with windows-based link level
retransmission. Simulation environment and results are
presented and discussed in Section 4. Finally, section 5
concludes the paper.

2. WFQ-R ALGORITHM
 In wireless networks, there are two types of fairness;
data fairness and resource fairness. Data fairness is based
on the amount of data received. This type of fairness
guarantees that each flow receives the same amount of
data. On the other hand, resource fairness provides
fairness based on the amount of resources received by
each flow. Resource fairness criterion is more suitable
when there is a presence of errors because with data
fairness an erroneous flow can exhaust almost all wireless
resources. The WFQ-R algorithm is based on resource
fairness. The algorithm achieves wireless fairness with
the LLR algorithm by penalizing flows that use wireless
resources without permission in the link layer.

Figure 1. Illustration of FIC and SIC for both approaches. Circled flows are resources used by retransmission

Figure 2. Wireless Channel Architecture

 The main concept of the WFQ algorithm is that the
resource share used for the retransmission is regarded as
a debt of the retransmitted flow to other flows. The
concept is also based on adopting the compensation
model in which a flow receives a compensative share
later when it does not get its share due to channel errors.
There are two types of compensation that were proposed;
flow-in-charge (FIC) and server-in-charge algorithms
(SIC).

 The flow-in-charge works by preventing a flow from
its turn by every resource it has consumed during
retransmission. However, the flow-in-charge provides
only strict equity or resource fairness and may not be
adequate for a flow experiencing frequent errors. On the
other hand, server-in-charge provides fairness to both
data and resources combined. It works by charging the
overhead to all backlogged flows in a distributive

manner. The retransmitted flow has responsibility for
only a portion of the overhead to its weight.
Consequently, server-in-charge compensation is proven
to be more suitable [4] and as such we concentrate in this
work on server-in-charge compensation for our new fair
queuing algorithm. An example of a SIC and FIC types
can illustrated in Figure 1. We can observe that for FIC,
Flow 1 lost the chance to send for two consecutive turns.
On the other hand, using SIC, the same flow only lost one
turn which is equivalent to its weight.

2.1. Problems with WFQ-R

The main problem with the WFQ-R algorithm is that
it is not compatible with windows-based LLR schemes
such as Go-Back-n and Selective Repeat ARQ. The
WFQ-R algorithm depends on the fact that when a packet
is sent to the link-layer, the scheduler has to wait until the
link layer reports the number of resources the packet
used. According to the WFQ-R algorithm [4], the
algorithm states that charging the flows due to
retransmission must be accomplished as soon as the
packet is sent. So the scheduler cannot send any further
packets until this process is complete. During the wait
time, the packets waiting in the queues are delayed and
resources are wasted.
In contrast to the WFQ-R algorithm, the proposed
wireless fair queuing with windows-based retransmission
(WFQ-WBR), the scheduler can send several successive
packets without waiting for resources consumed during
transmission from the LLR.

3. WIRELESS FAIR QUEUING ALGORITHM
WITH WINDOW-BASED RETRANSMISSION

3.1. Network Model

In this section, we present our Wireless Fair Queuing
with Windows-Based Retransmission (WFQ-WBR)
algorithm. The architecture of the network model is

1 2 3 3 2 3 3

2 3 3 1 2 3 3

1 1

F irs t T u rn S e c o n d T u rn

T h ird T u rn F o u r th T u rn

F lo w - In - C h a r g e W F Q -R

1 2 3 3

2 3 3 1 2 3 3

1 1

F irs t T u rn

S e c o n d T u rn T h ird T u rn

S e rv e r - In - C h a rg e W F Q -R

1 1

1 2 3 3

F irs t T u rn

1 2 3 3

S e c o n d T u rn

2 3 3 1 2 3 31 1 1 1

T h ird T u rn F o u r th T u rnR e tra n s m is s io n

S e rv e r - In - C h a rg e W F Q -W B R

depicted in Figure 2 where a cell has a base station or an
access point with a shared wireless channel. The
scheduler server exists in a communication layer above
the link layer. It selects a packet for transmission from on
the active flows based on the wireless fair queuing
algorithm and sends it to the link layer. The scheduler
continues to send packets to the link layer from each flow
in turn according to their weights until one of the three
conditions are met:

1. There no more packets to send from all flows
(no active flows)

2. The maximum windows size N has reached for
packet transmission in the link layer and thus the
scheduler has to wait until an acknowledgement
has been received in the link layer for the
previous N packets sent.

3. When the link layer receives the amount of
resources consumed by a flow during the
retransmission of one of the packets.

When the third condition happens, the scheduler
calculates the amount of extra resources (R) a flow used
during retransmission and then calculates the amount of
compensation needed to be served to other flows based
on their weights as follows. It finds first how much
should be charged:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−×=

∑∑
∈∈ activekactivek

kweight
jwieght

kweight
jwieghtReCh

)(
)(

)(
)(1arg (1)

Then, it distributes the charge of used resources to all
backlogged flows. Charge is done in proportional to its
weight.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×=+

∑
∈activek

kweight
AwieghteChAlag

)(
)(arg)((2)

Then, the algorithm computes the difference between the
amount of service should have received and the services
that the flow actually received. If lagging is positive, then
the flow received less service. If lagging is negative, then
the flow received more service. If lagging is 0, then the
flow is in sync.

For example, assume there are three flows and the
third flow has twice the weight. The link layer has a
selective-repeat ARQ protocol with window size of 8
packets. In the first turn, each flow sends packets
according to their weights. Flow 1 experiences errors
within transmission during the first turn, but the negative
acknowledgment has not yet been received. The
scheduler continues to select and send packets normally
until a negative acknowledgment is received. When flow
1 has used four extra resources from the retransmission
and the weight of the flow is a quarter of the sum of the
weights of all flows as in Figure 2, the retransmitted flow

is responsible for only one resource. Accordingly, the
flow disclaims only one resource in the third turn.

3.2. Algorithm Description

The algorithm is divided into several functions. The full
algorithm WFQ-WBR algorithm is shown in Table 1.

We define the following variables for the algorithm:
 serviceRecieved(i): normalized amount of service

received by a leading flow i
 lagging(i): indicates the difference between the

amount of service should have received and the
services that the flow actually received. If lagging
is positive, then the flow received less service. If
lagging is negative, then the flow received more
service. If lagging is 0, then the flow is in sync.

 Compensation(i): the normalized amount of
compensation service received by a lagging flow i

 resourcesRecieved(i): total amount of resources
that a flow consumed

 weight(i): rate of flow
 α: fraction of service retained by leading flow
 packetCounter(i): the number of outstanding

packets (unacknowledged packets < windows size)

A detailed description of each function is as follows:

1. On Receiving:
When a packet is received it is added to queue. If

flow i is backlogged, then the resources received for i
should at least the equal to the minimum resources
received for each other active flow

2. Deactivate:
Removes a flow i from scheduling when there is no

more packets. This flow i has lagging(i) that is
proportionally distributed among all active flows

3. On sending:
Selects a flow i with minimum virtual time. If flow

i is lagging then it is transmitted. If flow i is leading
but did not receive the minimum service, then it is
transmitted. If flow i is leading and it already received
its minimum service, then search for lagging flow j
with minimum compensation. If found transmit j
otherwise i. If however the number of outstanding
packets reached maximum, i.e. the window size, then
the packets will not be sent until an acknowledgement
is received. The selected packet is sent to sendPAcket
function

4. send Packet():
Gets packets from buffer and adjusts lagging for

each flow. Then sends the packet through the link-
layer. ResourcesRecieved for transmitting flow is
incremented by the amount of resources consumed by
the packet depending on the ratio of the packet length
and the rate of flow. If flow i is leading, then
servicesRecieved(i) is also incremented by the
packet/rate ratio. On the other hand, if flow i is
lagging, then the lagging(i) is decremented by the
packet/rate

ratio. The function also saves the values of i and j for
each packet p sent, since acknowledgements or

negative acknowledgments may be received out of
order in a selective repeat request ARQ scheme.

On receiving packet p from flow i:
If flow i not active
 resourcesRecievedi ← max(resourcesRecievedi, min{vk})

 lagging(i) =0;
 flow i becomes active;
 add p to queue;

On sending current packet:

find active i with minimum resourcesRecieved
while(packetCounter(i) < windowSize(i))
 find another active i with minimum resourcesRecieved
 if (new i does not exits) return;
if (i is lagging or leading with graceful degradation)
 sendPacket(i,i);
 packetCounter(i)++;
else
 j ← flow with minimum compensation service
 if(j exists and packetCounter(j) < windowSize(j))
 sendPacket(i,j);
 packetCounter(j)++;
 if (j buffer is empty) deactivate j
 else sendPacket(i,i); packetCounter(i)++;
if(queue i empty) deactivate i;

sendPacket (j,i) :
remove p from queue
resourcesRecieved(i) += length(p) / weight(i);
if(i = j)
 lagging(j) -= length(p);
 if(lagging(j) > 0) // still lagging
 compensation(j) = length(p) / weight(j);

 if(lagging(j) + length(p) ≥ 0 while j is lagging)
 // Graceful degradation of service
 serviceRecieved(j) ← α*resourcesRecieved(j)
 lagging (i) += length(p);
 if(lagging(i) – length(p) ≤ 0 and i became leading)
 compensation (i) = max(compensation (i), minimum
 compensation of all other active lagging flows)

send p to MAC layer;
store values of i , j temp in buffer until link layer responds

On receiving packet p from flow i:
If flow i not active
 resourcesRecievedi ← max(resourcesRecievedi, min{vk})

 lagging(i) =0;
 flow i becomes active;
 add p to queue;
On sending current packet:

find active i with minimum resourcesRecieved
while(packetCounter(i) < windowSize(i))
 find another active i with minimum resourcesRecieved
 if (new i does not exits) return;
if (i is lagging or leading with graceful degradation)
 sendPacket(i,i);
 packetCounter(i)++;
else
 j ← flow with minimum compensation service
 if(j exists and packetCounter(j) < windowSize(j))
 sendPacket(i,j);
 packetCounter(j)++;

 if (j buffer is empty) deactivate j
 else sendPacket(i,i); packetCounter(i)++;
if(queue i empty) deactivate i;

sendPacket (j,i) :
remove p from queue
resourcesRecieved(i) += length(p) / weight(i);
if(i = j)
 lagging(j) -= length(p);
 if(lagging(j) > 0) // still lagging
 compensation(j) = length(p) / weight(j);

 if(lagging(j) + length(p) ≥ 0 while j is lagging)
 // Graceful degradation of service
 serviceRecieved(j) ← α*resourcesRecieved(j)
 lagging (i) += length(p);
 if(lagging(i) – length(p) ≤ 0 and i became leading)
 compensation (i) = max(compensation (i), minimum
 compensation of all other active lagging flows)

send p to MAC layer;
store values of i , j temp in buffer until link layer responds

on status usedResources for p from link layer:
retrieve corresponding i and j of packet
packetCounter(j)--;

 for all active flows A
charged = usedResources

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−×

∑∑
∈∈ activekactivek

kweight
jwieght

kweight
jwieght

)(
)(

)(
)(1

if(i = j and i is leading)
 servicesRecieved += charged/weight(j);
else
 lagging(j) -= charged;
 if(j is still lagging)
 compensation(j) += charged/weight(j);
 if(lagging (j) + length(p) ≥ 0 and j became leading)
 // Graceful degradation of service

 serviceRecieved(j) ← α*resourcesRecieved(j)

 lagging (A) += charged

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×

∑
∈activek

kweight
Awieght

)(
)(

//distribute the shares for compensation
 if(A just became lagging)

compensation (A)= max(compensation (A),
 minimum compensation of all other active lagging flows)

deactivating i
 for all active flow f

 lagging(f)+= lagging(i)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×

∑
∈activek

kweight
fwieght

)(
)(

 if(f has become lagging)
 compensation (f)= max(compensation (f), minimum
 compensation of all other active lagging flows)

Table 1 WFQ-WBR Algorithm

5. On status:
When the link layer responds to the upper layer

with the amount of used resources during
retransmission. Then retrieve the corresponding flow i
and j for the status report received. packetCounter is
decremented since it has been acknowledged. Also
calculates the overhead in which the retransmitted flow
is responsible. Then distribute the charge of used
resources to all backlogged flows. Charge is done in
proportional to its weight.

4. SIMULATION EXPERIMENTS

4.1. Simulation Environment

In this section, we represent the results of the simulation
experiments to demonstrate the fairness of the WFQ-
WBR algorithm using the server-in-charge approach. To
evaluate the algorithm the following metrics are
measured:

1. Allocated resources: the amount of wireless
resources consumed by a flow

2. Queuing delay: experienced delay in a
queue

3. Received data: the actual amount of data at
a receiver

 For simulation we used C++ programming to model
and simulate the algorithm. For a fair comparison with
the WFQ-R simulation results presented in [4], we use
the simulation parameters which can be summarized as
follows: There are three transmission flows; flow1,
flow2, flow3. The probability of retransmission for flow1
is 0, flow2 is 0 and flow3 is 0.2. The packet transmission
starts for flow1 at time 0, flow2 at 0.4s and for flow3 at
1.3s. The packet inter-arrival time for each flow is
exponentially distributed with mean of 8 ms. Each flow
has a 5KB queue separately. The packet size is fixed at
1KB and the weight of each flow is 1000. The flows
share a wireless channel with a 1.5Mbps bandwidth. If a
packet is retransmitted in the link layer, four more
resources are consumed by the link level retransmission.
The total simulation time was 10s.
 The error control scheme used in the link layer is
selective repeat request ARQ with maximum window-
size of 6. The time delay for the link layer to respond
with amount of used resources a delivered packet
consumed is investigated under different values.
Unfortunately, due to the limited space, we are only
going to present the system performance under 4.667 ms.

4.2. Simulation Results

To compare the efficiency of the WFQ-WBR to the
WFQ-R algorithm, we added a fixed delay that represents
the time period which the link layer responds to the upper
layer with the status report after a packet is transmitted.
In our simulations we used different delay parameters at
different maximum window sizes to demonstrate the
performance of the WFQ-WBR compared to WFQ-R.

We represent the LLR response time by d and the
maximum window size by W. The results show the
amount of allocated resources, queuing delay and
received data served to each flow.

From Figure 3, we can observe that the WFQ-R SIC
separates the delay smoothly and gives slightly more
resources to the error-prone flow to compensate for error
recovery. However, the allocated resources for WFQ-
WBR appears to be slightly less in proportion compared
to the results obtained for WFQ-R. This is due to
presence of outstanding packets within the windows
frame that were not yet acknowledged and therefore the
link layer has not yet reported the number of consumed
resources obtained by these packets.

0

100

200

300

400

500

600

700

0.125 1.5 2.875 4.25 5.625 7 8.375 9.75
Time (seconds)

A
llo

ca
te

d
R

eo
ur

ce
s

(K
bi

ts
) Flow1

Flow2
Flow3
Flow1
Flow2
Flow3

WFQ-
WBR for
W=2,3,7

WFQ-R

Figure 3. Comparison between WFQ-WBR and WFQ-R allocated
resources when LLR response delay is 4.667 ms

On the other hand, Figure 4 shows the significant

improvements obtained in the throughput of the system
using a window-based queuing algorithm compared to
WFQ-R. Furthermore, considering the queuing delay, we
can see the significant drop in this metric under the
proposed algorithm as shown in Figure 5 and Figure 6.
Nevertheless, Flow 3 suffers more delay than Flow 1 & 2
as Flow 3 is the only erroneous flow in the system and
therefore, it will not be allowed to send data over some
turns as explained above. As the window size increases,
the queuing delay decreases.

Furthermore, as shown in figures 3 and 4, the results
for the amount data received and allocated resources with
different window sizes are the same. Since the total
response of the system is 10ms (LLR delay + service
time), the maximum number of windows slots that can be
utilized is only 2 regardless of the window size.
Significant effects of the system throughput at different
window sizes will become apparent as we increase the
LLR response time. Figure 7 shows the difference in the
amount of data received for each flow with window sizes
of 2 and 7 when the LLR response time is 14.67 ms. For
this particular delay time the data received for WFQ-R
does not exceed 170 packets for all flows.

0

100

200

300

400

500

600

700

0.125 1.5 2.875 4.25 5.625 7 8.375 9.75
Time (seconds)

D
at

a
R

ec
ie

ve
d

(K
bi

ts
)

Flow1
Flow2
Flow3
Flow1
Flow2
Flow3

WFQ-
WBR for
W=2,3,7

WFQ-R

Figure 4: Comparison between WFQ-WBR and WFQ-R received data
when LLR response delay is 4.667 ms

Average Queuing Delay For Flow1

0

50

100

150

200

250

300

0 3 6 9 12 15
LLR Response Delay (ms)

Q
ue

ui
ng

 D
el

ay
 (m

s)

WFQ-R

W = 2

W = 3

W = 7

Figure 5 Average Queuing delay for Flow1 & 2 at different LLR
response times and different windows sizes

Average Queuing Delay For Flow3

0
50

100
150
200
250
300
350
400

0 3 6 9 12 15
LLR Response Delay (ms)

Q
ue

ui
ng

 D
el

ay
 (m

s)

WFQ-R

W = 2

W = 3

W = 7

Figure 6 Average Queuing delay for Flow3 at different LLR response
times and different windows sizes

0

100

200

300

400

500

600

0.13 1.25 2.38 3.5 4.63 5.75 6.88 8 9.13
Time (seconds)

D
at

a
R

ec
ie

ve
d

(K
bi

ts
)

Flow1
Flow2
Flow3
Flow1
Flow2
Flow3

WFQ-
WBR for
W=7

WFQ-
WBR for
W=2

Figure 7 Received data comparison between windows sizes 2 and 7
when LLR response delay is 14.667 ms

5. CONCLUSIONS

We presented a new wireless fair queuing algorithm

with windows-based retransmission and its role in
providing quality of service in error-prone wireless
networks. The algorithm is based on the WFQ-R
suggested earlier by Kim and Yoon and modified to work
with link layer that uses window-based schemes for error
control such as Go-Back-n and Selective repeat ARQ.
Through simulation, we have shown the significant
improvement that can be obtained in term of high
throughput and very low queuing delay. However, we
also found that our WFQ-WBR algorithm had little effect
on the fairness performance in comparison to the WFQ-
R, but generally, WFQ-WBR is able to maintain fairness
adaptively in presence of errors.

6. ACKNOWLEDGMENT

This work is supported by King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia. Abdul-
Rahman Elshafei would like to thank Mohamad al-Maliki
and Dr. AbdulHafid Bouhraoua for their valuable
suggestions.

7. REFERENCES

[1] S. Lu, V. Bharghavan and R. Srikant, Fair scheduling in wireless

packet networks, IEEE/ACM Transactions on Networking 7
(1999) (4).

[2] P. Ramanathan, P. Agrawal, Adapting packet fair queueing
algorithms to wireless networks, in: proceeding of ACM
MOBICOM'98, Dallas, USA, Oct. 1998.

[3] T.S.E. Ng, I. Stoica, H. Zhang, Packet fair queueing algorithms for
wireless networks with location-dependent errors, in: Proceeding
of IEEE INFOCOM'98, 1998.

[4] Namgi Kim, Hyunsoo Yoon: “Wireless packet fair queueing
algorithms with link level retransmission.” Computer
Communications 28(7): 713-725 (2005).

[5] P. Lin, B. Benssou, Q. L. Ding, and K. C. Chua, “CS-WFQ:
awireless fair scheduling algorithm for error-prone wireless
channels,”in Proceedings of Computer Communications and
Networks, 2000, pp.276–281

[6] H. Luo and S. Lu, A Topology-Independent Fair Queueing Model
in Ad Hoc Wireless Networks Proc. IEEE Int'l Conf. Network
Protocols, 2000

[7] Yung Yi, Yongho Seok, Taekyoung Kwon, Yanghee Choi and
Junseok Park, “W2F2Q : Packet Fair Queuing in Wireless Packet
Network,” ACM WoWMoM 2000, Boston, Massachusetts, USA,
August, 2000.

[8] A.K.F Khattab and K.M.F Elsayed, “Channel-quality dependent
earliest deadline due fair scheduling schemes for wireless
multimedia networks”, 7th ACM Intl. symp. on modeling, analysis
and simulation of wireless and mobile systems, pp. 31-28, Venice,
Italy, 2004

[9] Vijay Raghunathan, Saurabh Ganeriwal, Curt Schurgers, Mani B.
Srivastava, "Energy Efficient Wireless Packet Scheduling and Fair
Queuing," ACM Transactions on Embedded Computing Systems,
Vol.3, No.1, pp. 431-447, February 2004.

