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[Abstract] In this paper we adapt and extend the results of a recently developed 
continuum mixture model to study wave propagation interaction with plain weave textile 
composites. The original model, which was first used to study wave propagation in bi-
laminated composites, is based on approximate distributions for some of the transverse 
stress and displacement components. This results in two coupled partial differential 
equations describing the micromechanical behavior of the layered composite. Next, we 
idealize the complex weave unit cell into segments of bi-laminated composite, which 
geometrically model the undulation. Formal solutions for the two coupled equations are then 
obtained in each of the segments. Finally, the transfer matrix method is used to relate the 
solutions at one end of the idealized unit cell to the other, to obtain the unit cell global 
transfer matrix and to derive the dispersion equation of the system. The procedure is applied 
to a graphite-epoxy plain-weave composite and several characteristics are observed. Very 
good convergence is achieved using only a small number of segments. 

Nomenclature 
A = transfer matrix of a composite segment 
a = length of the straight part of the idealized unit cell 
b = length of the tapered part of the idealized unit cell 
C = stiffness matrix of the weave tow 
c = wave speed 
d = half minimum height of the idealized unit cell 
h = half thickness of the yarn 
L = length of the idealized unit cell 
n =  number of segments in tapered part 
n1 =  volume fraction of weft 
n2 = volume fraction of warp 
t = time 
U = displacement amplitude  
u = displacement vector 
V = displacement amplitude ratio 

α = characteristic value 
ρ = density of the weave material 
σ = stress tensor 
ω = angular frequency of the propagating wave 
ξ = wave number 

I. Introduction 
extile Composites in general, and plain-weave fabrics in particular, proved to be complex, structural materials 
with the potential of enhancing many of the shortcomings of conventional layered or fiber-reinforced 

composites. Plain-weave composites consist of two sets of interlaced fibers, known as the warp and the weft tows. 
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Figure 1a illustrates a repeating unit cell of such a composite. Often, the system is coated with a resin material added 
to the warp and the weft and hence such added material plays the role of the matrix. 
 The mechanics of plain-weave composites are 
set apart from that of straight fibrous composites by 
several complicating factors. The first is concerned 
with its large relaxing initial deformation effects.1 
The second is concerned with their complicated 
geometric morphology. This is mainly due to the 
nature of undulation of the warp and weft 
components, the kinking and also to the resulting 
inherent periodicity. To assess plain weave utility in 
structural applications, an understanding of their 
micromechanical behavior is required. As a 
minimum, their effective anisotropic properties 
need to be calculated. Also micro-structural 
information regarding the degree of interaction 
between the warp and weft components is of prime 
importance if damage assessment is of concern. 

Several approximate model analyses aimed at 
deriving effective properties of plain-weave 
composites are readily available. Most of these 
models are based on static loading analysis.2-5 
Comparatively speaking, very little work is 
available that deals with their micro-structural 
behavior especially under dynamic loading. Most of 
the work in the literature is based on experimental 
measurements or deal with the propagation of 
Lamb waves. Stempien6 developed a method for 
estimating the tension wave propagation velocity in 
flat textile composites by means of an 
optoelectronic transducer. Tasdemirci et al.7 studied 
the effects of stress wave propagation in S2 glass 
woven fibers with SC15 epoxy composite plates. 
Later Tasdemirci and Hall8 combined experimental 
techniques and numerical modeling to investigate 
the severe stress discontinuities in multilayered 
woven composites. The study of harmonic wave 
propagation along an axis of symmetry in such materials adds to the understanding of their micro-structural 
behavior. The aim of this present work is to present such a study. 

The complicated geometry of Fig. 1a suggests that exact solutions are not possible to obtain. As an alternative, 
we seek approximate modeling based on some idealization of the cell geometry. Figure 1b presents an idealization 
of that of Fig. 1a. It smoothes the undulation and presents instead an inclined segment in the warp component. Even 
here, the geometry is still difficult to handle. By adopting the mosaic type model of Fig. 1c, we get a representative 
geometry that can be handled with relative ease.  Besides its relative analytic tractability, it includes an attractive 
feature concerning the symmetry of the warp and weft layering. Here, we are also assured of retaining an element of 
undulation and the inherent periodicity of the system. Missing however is the bonding material of the system, which 
we are also neglecting for simplicity. Furthermore, the system is periodic along the propagation direction and is 
expected to lead to Bloch-type waves. 

II. Analysis of the Bi-layered System 
To illustrate the model, we now consider the bi-layered system shown in Fig. 2. The behavior of this system is 

described by the field equations that hold for both components 1 and 2, respectively: 

 
 

a)  Repeating unit cell of the plain weave textile 
 

 
 
b)  First step idealization: the warp undulation 
 

 
c)  Second step idealization: the variable thickness 
mosaic model 

Figure 1. Geometric idealization of the textile. 
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These equations are supplemented with the appropriate symmetry and continuity conditions shown in Fig. 2. 
Rather than solving the field equations for 

each lamina subject to satisfying all boundary 
and interface conditions, a rational construction 
of an alternative set of coupled equations that 
automatically satisfy all interface conditions is 
presented. This leads to simple coupled 
governing equations for the total composite 
which retain the integrity of each component but 
allow them to coexist under some derived 
interfacial transfer terms. Here, information on 
the distribution of displacements and stresses 
within each component are readily available. The 
construction procedure is inevitably based on 
some approximating assumptions. These are 
mainly concerned with the introduction of 
through-thickness approximate distributions for 
some of the field variables, which automatically 
satisfy symmetry and interface conditions. 
Similar approximations were presented in our 
previous application of the proposed technique to 
the concentric cylindrical model.9 Confidence in 
our modeling was gained by good comparisons to 
experimental data. 

  For the laminated problem at hand, we follow the same approach we used for the concentric cylinder model. 
Once again, we use the averaging technique as a means to facilitate our analysis and to manipulate some of the 
algebraic expressions. In no where we find it necessary to satisfy any required equation, boundary or interface 
condition based on its average. Details of the procedure used here are readily available in Ref. 9.  

For the present improved mosaic model the field equations, Eqs. (1) and (2), are combined with the constitutive 
relations (3-5), to yield the two coupled equations 
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Figure 2. Symmetry and continuity conditions of the bi-
laminated model. 
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These equations are valid for any bi-laminated 
segment i with uniform total thickness 2hi. We now 
adopt the above model to describe the behavior of 
each of the mosaic segments. Since the straight 
segments have uniform thickness constituents, Eqs. 
(6) and (7) can be directly applied to them. And we 
see now that if we obtain formal solutions for one 
segment, then solutions for the second straight 
segment can merely be obtained by interchanging 
the role of both constituents. To maintain 
reasonable uniform thickness of the constituents, 
we shall approximate each of the inclined segments 
by a number n of sub-segments. Obviously, the 
layered model is also applicable to each of them. 
We recognize that the unit cell will consist of 4n+2 
sub-segments (see Fig. 3).  

The half thickness of the ith sub-segment, hi, is 
calculated from 
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n
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Figure 3. Geometry discretization of the idealized unit 
cell. 
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If we are able to find formal solutions in each of these sub-segments, then the transfer matrix method will be 
ideal for constructing the behavior of the total system. This method, which is described in details in Nayfeh10, 
requires expressing the formal solutions in each sub-segment in terms of wave amplitudes. Eliminating these 
amplitudes relates the displacements and stresses on one side of each sub-segment to those on the other. By 
subsequently satisfying appropriate continuity conditions at the interfaces, we construct a global transfer matrix, 
which relates the displacements on one side of the total unit cell to those on the other. 

III. Formal Solutions 

For a plane wave propagating along the direction of layering, the formal solutions for the displacements )1(
xu  

and )2(
xu  are given in Nayfeh10 as: 

 (1) (2) ( )
1 2( , ) ( , ) i x ct

x zu u U U e ξ α −=  (16) 

where α  is an unknown parameter and the longitudinal wave number / cξ ω= . 
Substituting this solution into Eqs. (6) and (7) yields a set of two linear homogeneous equations in the 

amplitudes. In matrix form, the two-coupled equations are 
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For nonzero solution of the amplitudes, the determinant of this equation must be equal to zero. This yields a 
fourth order polynomial relating α  to the phase velocity c . Solutions for α  occur in two pairs. Each pair consists 
of two values that are equal in magnitude but opposite in sign to each other. Corresponding to each qα , q= 1, 2, 3, 

4, Eq. (17) yields the amplitude ratio 2 1/q q qV U U=  as 
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Using the principle of superposition, together with the constitutive relation (3), the formal solution for the relevant 
displacements and stresses take the form: 
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 (2) (2) (2) (2) (1)
2 11 2 1 12 66 12 66( / ) ( )q q q qD C n n FC C V FC Cα α= − −   (22) 

Following the procedure described in Nayfeh10, in the case of multi-segmented composite, we specialize the 
formal solutions to the right and left faces of each sub-segment and combine the resulting equations to get 

 i i iP A P+ −=  (23) 
where i = 1, 2,… 4n+2. Here Ai is the transfer matrix for the sub-segment i, given by 

 
1

i i i iA X D X+ −=  (24) 
and Pi is the vector of unknown displacements and stress resultants 
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and the diagonal matrix of the system is: 
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Continuity between two adjacent sub-segments implies that  

 1i iP P+ −
+=  (29) 

where i = 1, 2, ...4n+2. This equation, when combined with Eq. (23), leads to: 

 4 2 1nP A P+ −
+ =  (30) 

where  

 4 2 4 1 2 1...n nA A A A A+ +=  (31) 

is the global transfer matrix for the multi-segmented composite system (i.e. for the complete unit cell.) Periodicity of 
the composite system along the direction of wave propagation requires that  
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 Finally, we combine Eqs. (30) and (32) to obtain the dispersion characteristic equation 

 0i LA e ξ− =  (33) 

relating the phase velocity c  to the wave number ξ . This equation does not have solution for all frequency values. 
Rather, the frequency range is divided into bands of allowed and forbidden frequencies, corresponding to real and 
imaginary i Le ξ , respectively. These can be found from Eq. (33) by setting 2L nξ π= , and solving for the 
frequency. 

IV. Numerical Illustration and Discussion 
As an illustration of the proposed modeling, we 

consider the case of wave propagation in a graphite-
epoxy woven composite. With reference to Fig. 3, the 
unit cell has the following dimensions: h=0.2 cm, 
a/h=1, b/h=1.5, d/h=0.5. The transversely isotropic 
weave and weft tows have the same fiber volume 
fraction of 0.5. The stiffness matrix of the weave tow 
is calculated as: C11=157, C12=C13=4.659, C23=4.29, 
C44=3.33, C55=C66=7.47 GPa. The stiffness matrix of 
the weft is obtained by interchanging 1 and 2 in Cij. 
The density of the tow is 1.6ρ = gm/cm3.  

Figure 4 shows the convergence characteristics of 
the solution. The value of the zero frequency limit of 
the wave speed asymptotically reaches its correct 
value with increasing number of segments. The 
monotonic convergence is so fast that with only 3 
segments, the error is less than 1%. For the following 
illustrations, this value of n=3 is chosen.  

Figures 5 and 6 show the dispersion 
characteristics of the composite unit cell. As Fig. 6  
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Figure 4. Convergence of the zero-limit wave speed 
with number of inclined segments n. 
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Figure 5. Dispersion curves for the first five modes 
for a graphite-epoxy plain weave. 
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Figure 6. Dispersion curves of the illustration 
showing the frequency stop bands. 
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indicates, the curves have either a maximum or a 
minimum at wave numbers equal to multiples of π 
and π/2. Figures 5 and 6 clearly demonstrate the 
existence of a band structure with its allowed and 
forbidden frequencies. 

Finally, we study the effect of the undulation 
angle on the analysis results. Amount of undulation 
can be expressed by the ratio d/h. Figure 7 shows 
the variation of the zero frequency limit of the 
wave speed with increasing values of d/h. As the 
figure demonstrates, the variation is almost linear. 
Increasing the undulation of the woven composite, 
which means decreasing d/h ratio, significantly 
increases the wave speed. 

 
 
 

V. Conclusion 
In this paper the different characteristics of wave propagation in plain weave textiles has been investigated. A 

previously developed model has been applied to an idealized unit cell of the textile composite. The transfer matrix 
method, combined with formal solutions of the resulting system of differential equations, is proved to be ideal for 
constructing the behavior of the total system. The dispersion equation of the system has been used to study the 
variation of the zero frequency limit of the wave speed with various values of the textile undulation. Several stop 
bands are shown to exist in the dispersion curves of graphite-epoxy textiles. It is concluded that undulation 
significantly increases the wave speed. The model shows potential for application in other classes of problems, 
including wave propagation in three-layered textile composites, and forced oscillations of woven composites. 
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Figure 7. Effect of fiber undulation on the zero-limit 
wave speed in graphite-epoxy textile. 

Geometric Ratio of d/h 

 Ze
ro

 L
im

it 
S

pe
ed

, k
m

/s
 

Graphite-Epoxy 
b/a=1.5 
n=3 


