
Stochastic Finite Element Analysis of the  
Free Vibration of Functionally Graded Material Plates 

 
Shaker, A.,  

Department of Aerospace Engineering, Cairo University, Cairo, Egypt. 
Sadek, E., 

Department of Aerospace Engineering, Cairo University, Cairo, Egypt. 
Tawfik, M.,  

Department of Mathematical Sciences, German University in Cairo, Cairo, Egypt. 
and Abdelrahman, W. G.,  

Department of Aerospace Engineering, King Fahd University of Petroleum and Minerals, 
Dhahran, Saudi Arabia 

 
 

Abstract 
 

The superior properties of Functionally Graded Materials (FGM) are usually 
accompanied by randomness in their properties due to difficulties in tailoring the 
gradients during manufacturing processes. Using the Stochastic Finite Element Method 
(SFEM) proved to be a powerful tool in studying the sensitivity of the static response of 
FGM plates to uncertainties in their material properties. This tool is yet to be used in 
studying free vibration of FGM plates. The aim of this work is to use both a First Order 
Reliability Method (FORM) and the Second Order Reliability Method (SORM), 
combined with a nine-noded isoparametric Lagrangian element based on the third order 
shear deformation theory to investigate sensitivity of the fundamental frequency of FGM 
plates to material uncertainties. These include uncertanties in the effect of both the metal 
and ceramic constituents. The basic random variables include ceramic and metal Young’s 
modulus and Poisson’s ratio, their densities and ceramic volume fraction. The developed 
code utilizes MATLAB capabilities to derive the derivatives of the stiffness and mass 
matrices symbolically with a considerable reduction in calculation time. Calculating the 
eigenvectors at the mean values of the variables proves to be a reasonable simplification 
which significantly increases solution speed. The stochastic finite element code is 
validated using available data in the literature, in addition to comparisons with results of 
the well-established Monte Carlo simulation technique with importance sampling. 
Results show that SORM is an excellent rapid tool in the stochastic analysis of free 
vibration of FGM plates, when compared to the slower Monte Carlo simulation 
techniques.  
 
Introduction 
 

The superior properties of advanced composite materials, such as high specific 
strength and high specific stiffness, have led to their widespread use in aircrafts, 
spacecrafts and space structures. In conventional laminated composite structures, 
orthotropic elastic laminas are bonded together to obtain enhanced mechanical and 
thermal properties. However, the abrupt changes in material properties across the 
interface between different materials can result in large interlaminar stresses leading to 



delamination. Furthermore, large plastic deformations at the interface may trigger the 
initiation and propagation of cracks in the material. One way to overcome these adverse 
effects is to use Functionally Graded Materials (FGM), in which material properties vary 
continuously. This is achieved either by gradually changing the volume fraction of the 
constituent materials, usually in the thickness direction only, or by changing the chemical 
structure of a thin polymer sheet to obtain a smooth variation of in-plane material 
properties and an optimum response to external thermo mechanical loads.  

Due to difficulties in tailoring the gradients to actual specifications during 
manufacturing processes, properties of FGM’s are not deterministic in nature. There is a 
reasonable body of recent research on studying the effect of uncertainties in material 
properties on the accuracy of static and thermal analyses of FGM’s. In [1], for example, 
Ferrante and Graham used simulation to study the effect of microstructural randomness 
on stress and temperature distributions in FGM’s. Later, they added the effect of non-
Gaussian porosity randomness on the calculation of thermal distributions [2]. Yang, et al. 
[3] investigated the stochastic bending response of moderately thick FGM plates. In their 
work they combined a higher order shear deformation plate element and a first order 
perturbation technique to obtain the second order statistics; mean and variance of the 
flexural deflection of the plates with various boundary conditions.  
  Dynamic analysis, however, has not received as much attention, even for the more 
commonly used laminated composites. In [4] Salim, et al. used first order perturbation 
techniques and FEM formulation to investigate the sensitivity of the natural frequencies 
of single ply and double ply laminates to randomness of material properties. In [5], 
Senthil and Batrab obtained exact solutions to the free vibration of FGM rectangular 
plates. In this work, however, the values of the FGM properties were assumed to be 
exactly known. Mechanical properties, material density, and plate dimensions, factors 
that determine the dynamic behavior of FGM plates, are not deterministic in nature. 
Rather, uncertainties in their values due to manufacturing and fabrication result in 
variations in the behavior characteristics of the plate such as the values of the natural 
frequencies. For proper quality control of the dynamic characteristics of laminates, their 
sensitivities to the laminate properties need to be investigated. 

In order to gain knowledge of the sensitivity of the solution to various FGM 
parameters, a reliability analysis has to be performed. In this work, our previously 
developed stochastic finite element SFEM analysis of the free vibration of composite 
laminates [6] is adopted for FGM plates. This analysis allows the random variables 
representing material properties to be normal or nonnormal, correlated or uncorrelated. A 
choice between the First Order Reliability Method (FORM) and the Second Order 
Reliability Method (SORM) is facilitated by the procedure. Laminate mechanical 
behavior is modeled using a higher order shear deformable element. Considerable 
reduction in calculation time is achieved by deriving the derivatives of the reduced 
stiffness and mass matrices symbolically. The code is built using the MATLAB 7.1 
compiler and all runs are made on a P4 2.8 GHz machine with 512 MB RAM. 

 
Stiffness of Functionally Graded Materials 
 

A functionally graded material is often a mixture of two kinds of materials; one is 
a metal and the other is ceramic. Without losing generality, it can be assumed that the top 



surface of an FGM plate is ceramic rich and the bottom is metal rich. The region between 
the two surfaces consists of material blended with both of them, whose distribution is 
assumed to be in the form of a simple power law [7]: 

 
( ) ( )1e C C M CP z P V P V= + − ,            (1) 

 
where Pe , PC, PM stand for the effective material properties of the FGM , of the ceramic, 
and of the metal constituent, respectively. The ceramic volume fraction VC is a function 
of the coordinate in the thickness direction, z, and is given by: 
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where h is the plate thickness. Pe =PC, when the exponent n=0, and Pe=PM as n 
approaches infinity. The stiffness matrix of a FGM plate, calculated using Eq. (1) is: 
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where the stiffness matrices of the isotropic constituents are given by: 
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Reliability Models of the Composite Laminate 
 

Probabilistic analysis provides necessary information to achieve optimal use of 
material. The first step in performing such an analysis for the free vibration of a FGM 
plate, similar to the one in Fig. (1), is to define a suitable and specific performance 
function. The plate is assumed to be subjected to a periodic load with frequency ωL, 
which can take any value up to ωp. This upper limit is not a unique value, but has a 
certain distribution. This distribution can be quantified by its mean value and standard 
deviation. At the design point, the plate fundamental frequency ωp, is equal to a certain 
specified value ωr, which may be taken as that of the periodic load. Accordingly, the 
performance function is defined as: 

 



( ) ( / ) 1p rg X λ λ= −         (5) 
 

where  2, ,p r p rλ ω=  are the eigenvalues, and X is a vector of the basic variables. For this 
plate, X is chosen as: 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Geometry of the FGM plate. 
 
 

[ ], , , , , ,C C C M M MX E E nν ρ ν ρ=       (6) 
 
where ρC and ρM  are the material density of the ceramic and metal, respectively. 
According to Eq. (5), a failure surface or a limit state of interest can be defined as g(X)=0, 
with the probability of failure calculated from: 
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where fX(X1,X2,…,Xn), is the joint probability density function for the seven basic random 
variables. The integration is performed over the failure region g() <0. In order to calculate 
pf, and following our procedure in [6], we shall use two types of analytical 
approximations that lead to two methods; the First-Order Reliability Method (FORM-
Method 2), and the Second-Order Reliability Method (SORM). Both methods will be 
investigated in their ability to correctly predict the probability of failure and the Most 
Probable Point (MPP) of the system. A detailed account of both methods can be found in 
[8] and will be summarized here. 
 
First-Order Reliability Method (FORM Method-2): 
 

In this method a Newton-type recursive formula is used to find the design point 
when the performance unction is implicit, as in the case when using finite element 
formulation to describe the behavior of the system. First the vector X is transformed into 
a reduced X ′  with normal random variables of zero mean and unit standard deviation. 
The starting point of the procedure in the space of X ′  is usually taken as the point of 
mean values. This point does not, in general, lie on the limit surface 0( ) 0g X ′ = , as shown 
in Fig.2 for a two dimensional space. The equation of the limit state is now linearized 
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around 0X ′ : 
 

0 0( ) ( )Tg X c g X X′ ′= + ∇        (8) 
 

 
    

Fig. 2. FORM Method-2 for the nonlinear limit state. 
 

Since the performance function is nonlinear, then its gradient is not constant. In this case, 
the new design point is obtained recursively by: 
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The distance from the origin to this new design point in the X ′ -space is: 
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The procedure is terminated when reaching the Most Probable Point (MPP). MPP is 
assumed to be reached when both of the following conditions are satisfied 
 

1k kβ β ε+ − ≤ ,         (11.a) 
*

1( )kg X δ+′ ≤ ,         (11.b) 
 

with ε and δ being reasonably small numbers. The probability of failure in this case is: 
 

1 ( )fp β= − Φ          (12) 



 
where Φ  is the cumulative distribution function of a standard normal distribution with 
zero mean and unit standard deviation. 
 
Second-Order Reliability Method (SORM): 
 

This method uses a second order Taylor approximation of the nonlinear limit state 
function in order to better model its curvature. This expansion at a given point *X  in the 
standard normal variable space is: 
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A simple closed-form solution for the probability of failure using this second-order 

approximation is derived using the theory of asymptotic approximations in as: 
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where β is the reliability index using FORM, and κi are the principal curvatures of the 
limit state at the minimum distance point. These curvatures are obtained as follows. First 
the X ′  standard normal variables are rotated to another set of coordinates, denoted as Y, 
such that the last component of the new set, Yn, coincides with α, the unit gradient vector 
of the limit state at the design point. This transformation is shown in Fig. 3 for the case of 
n=2. This orthogonal transformation is given by: 
 

Y RX ′=          (15) 
 

where R is the rotation matrix. For the case n>2, the rows ri of this matrix are calculated 
using Gram-Schmidt orthogonalization procedure, see [8], as: 
 

0n nr r= ,         (16.a) 

0
0

1

Tn
j k

k k jT
j k j j

r r
r r r

r r= +

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ , k = n-1, n-2,..,1    (16.b) 

 
where 0ir  are the rows of the matrix 0R , given by: 
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with αι being the components of the unit gradient vector α at the design point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. SORM rotation of coordinates. 

 
Defining a matrix A whose elements are denoted by aij is computed as: 
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where D the nxn second-derivative matrix of the limit state surface in the standard 

normal space evaluated at the design point. Since Yn coincides with the β-vector 
computed in FORM, the last column and last rows in the A matrix and the last row in the 
Y vector are dropped out to take this factor into account. The limit state can then be 
rewritten in terms of a second-order approximation in the rotated Y space as: 

1 
2

T
nY Y AYβ= + ,        (19) 

where A is now of size (n-1)x(n-1). The required curvatures κi are computed as the 
eigenvalues of the matrix A. The probability of failure can now be calculated from Eq. 
(14). 

 
Finite Element Model 
 

To include transverse shear stresses and rotatory inertia effects into the free 
vibration analysis of laminates, several shear deformation theories are developed. Here, 
an element based on the Higher-Order Shear Deformation Theory (HSDT) is utilized. 
Development of the element, detailed in [9] and briefly summarized here, employs the 
parabolic shear deformation theory. 
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In the parabolic shear deformation theory, the displacement field is described in 
terms of midsurface displacements u, v and w, the perpendicular to the midplane, ζ, and 
the rotations of the normal to the midsurface at ζ = 0,  φ1 and φ2. Considering the 
derivatives of the out-of-plane displacement as separate independent degrees of freedom 
transforms this system, with 5 degrees of freedom per node and C1 continuity, into one 
with 7 degrees of freedom per node and mathematically easier C0 continuity. The 
displacement field may be modified to accommodate C0 continuity, see [9]. The resulting 
displacement field is:  

 
( )1 2 1 1 2 1, , , ( ) ( )u x x t u f fζ ζ φ ζ θ= + +                     

( )1 2 1 2 2 2, , , ( ) ( )v x x t v f fζ ζ φ ζ θ= + +                                    (20) 

( )1 2, , ,w x x t wζ = ,      
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which satisfies the conditions of stress-free upper and lower plate surfaces. 
 
Strain Energy 

The elastic strain energy of the plate as it undergoes deformation is: 
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where i and j take the values 1,2,6 in (25.a) and take the values 4,5 in (25.b), and 
components of Q are calculated in Eq. (4). 

The strain energy functional is computed for each element and then summed over 
all the elements in the domain to get the total functional for the domain. Following this 
procedure, Eq. (22) can be written as: 
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where, NE is the number of elements. Upon substituting for the strain vector, the 
mechanical strain energy becomes: 
 

   TU q Kq=              (27)  
 

where K is the global stiffness matrix and q is the global displacement vector. 
 

Kinetic Energy 
The kinetic energy of the vibrating plate, within the domain of small 

displacements, is: 
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where û  is the displacement vector given by { }û u v w=  and  ρ is the density calculated 
using a power law similar to Eq. (1). Similar to the strain energy, this expression can be 
rewritten as: 
 

TT q Mq= ,         (29) 
 

where M is the global mass matrix. 
 

FEM Formulation 
Using variational principles, the governing equations for free vibration for the 

system can be derived as: 
 

0Kq Mq+ =          (30)    
                                                                                

For positive definite M, this equation is transformed into a standard eigenvalue problem: 
 

0Aq qλ− = ,         (31) 
 

where 1A M K−= and 2
P pλ ω= , with ωp being the natural frequency of the plate. This 

FEM formulation, augmented with suitable boundary conditions, is used next to represent 
the system response when calculating the implicit objective function at each iteration of 
the stochastic analysis.  
 
Stochastic Finite Element Analysis 
 

In reliability analysis, the partial derivatives of the performance function g(X) 
with respect to all random variables Xi are required. These can be expressed, using the 
chain rule and Eq. (16) as: 
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The partial derivatives of the jth eigenvalue with respect to the random variables are:  
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where φj is the eigenvector corresponding to λj.  
Noting that K is independent of ρ, while ρ is a common factor of all elements of M, 
substitution of  Eq. (30) into Eq. (29) yields: 
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 Standard finite difference routines can be used to evaluate the derivatives of the 
stiffness matrix K in Eq. (31.a) with respect to the random variables. This, however, 
becomes time consuming, especially when the set of random variables include ply 
orientation angles, because the process is repeated at each iteration point. Moreover, 
since the prediction of the new point depends on the derivatives, which are approximate 
in this case, the optimization method takes a larger number of iterations to converge. 
Finally, using SORM in computing the probability of failure requires calculating the 
second derivatives as well, which deems the finite difference choice impractical. Use is 
made of MATLAB symbolic capabilities in evaluating the derivatives of the reduced 
stiffness and mass matrices. In evaluating the derivative in the numerator of Eq. (31), the 
eigenvectors at the mean value of X are used, and are not updated at each iteration. This 
greatly simplifies calculations and is justifiable for large frequency ratios. As the 
frequency ratio increases, MPP tends to be closer to the mean value of X, which is used in 
calculating the eigenvectors. Validity of this simplification, and confidence in the whole 
modeling, is established in our recent work [6] by comparisons with available published 
results and with results obtained when this simplification is not used.  
 For the case when all the variables are treated as uncorrelated random variables, 
the eigenvalue can be assumed to have a statistical distribution with mean and variance 
calculated at the mean of the random variables, given by: 
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Numerical Illustrations 



 
1. Full stochastic analysis of a square FGM plate: 
 

The first numerical illustration is a SSSS aluminium-zirconia FGM plate. The 
plate has a thickness ratio a/h = 10. In the present example the ceramic volume fraction 
exponent is assumed deterministic, n=2. Material properties of the constituents are taken 
as normal random variables with the distributions shown in Table 1. The tolerances δ and 
ε that determine convergence are taken to be 0.001. 
 
Table 1. Statistical distribution of the basic random variables. 

Property EC (GPa) EM (GPa) νC νM ρC (Kg/m3) ρM (Kg/m3) 
Mean 151 70 0.3 0.3 3,000 2,707 
COV 0.036 0.037 0.0 0.03 0.036 0.036 

 
The calculated nondimensional natural frequency 2 2/M Ma E hω ω ρ= for a 5x5 

mesh is 4.7799 which compares very well with the published result of 4.7756 reported in 
[7]. This latter value was obtained using a 10x10 mesh of quadratic rectangular 8-node 
serendipity elements.  

To the best of our knowledge, full stochastic analyses, with calculated probability 
of failure, reliability index, and MPP, of the free vibration of FGM plates do not exist in 
literature. Therefore, the obtained results of the probability of failure will be compared 
only to those of a developed and verified code in [6] employing Monte Carlo simulation 
with importance sampling. The aluminium-zirconia plate is analyzed for a frequency ratio 
FR= / 0.93r pω ω = . The probability of failure using Monte Carlo simulation technique 
depends on the number of simulations, as can be seen in Table 2. Therefore pf can be 
taken as a dependent random variable, for which one can calculate a mean, a standard 
deviation and a skewness coefficient. These values for the pf distribution of Table 2 are 
5.362x10-5, 0.01586, -0.00301 respectively. The small value of SD suggests that the value 
of pf does not change much around the mean. The negative skewness coefficient means 
that dispersion is more below the mean than above it. Therefore, taking the mean of 
Monte Carlo calculated pf as a reference for comparison is justified and reasonable. 

 
Table 2. Variation of pf of Monte Carlo for SSSS FGM square plate with a/h =10, 
n=2, and a frequency ratio of 0.93 

No. of 
Simulations 900 1000 1100 1200 1300 1400 1500 1600 1700 1500 

pf (x105) 5.04 5.26 5.34 5.46 5.48 5.46 5.41 5.38 5.34 5.45 
 

Table 2 shows one of the disadvantages of the use of Monte Carlo simulation to 
predict the probability of failure for problems with high reliability and relatively low 
frequency ratios. Since pf for these cases are very small, convergence is not clearly 
visible due to round-off error. FORM and SORM algorithms, on the other hand, do not 
suffer from this problem because convergence is based on the value of β, which for all 
practical purposes, a very large number compared to any round-off error. The probability 
of failure, calculated using FORM, is pf =5.42x10-5, while that calculated using SORM is 



pf =5.3625x10-5. In both methods, the system has to be solved only five times, as 
compared to the hundreds of times required to get a solution using Monte Carlo 
simulation, even when importance sampling is used. FORM overestimates the value of 
the mean of probability of failure by about 1.13%, while SORM overestimates it by only 
0.01%. This means that this problem is quasi linear with a small introduced error when 
the nonlinearity is ignored in FORM.  

Full stochastic analysis involves determining, not only pf, but also the MPP and 
the sensitivity of the performance function to changes in the random variables. Table 3 
presents the MPP of the plate for three values of the frequency ratio. It is clear from this 
table that Poisson’s ratio of both constituents does not affect the reliability of the 
solution. Table 4 shows a comparison of the values of the reliability index and the 
probability of failure, calculated for the three frequency ratios using both FORM and 
SORM optimization methods. 
 
Table 3. MPP of SSSS FGM square plate with a/h =10, n=2, for three values of the 
frequency ratio. 

/r pω ω  EC (GPa) EM (GPa) νC νM ρC (Kg/m3) ρM (Kg/m3) 
0.90 137.3 61.3 0.3 0.3 3,190.8 3019.1 
0.93 141.8 64.2 0.3 0.3 3,136.8 2,930.8 
0.95 144.6 66.0 0.3 0.3 3,099.0 2,869.0 

 
Table 4. Comparison of the safety index and probability of failure of SSSS FGM 
square plate with a/h =10, n=2, for three values of the frequency ratio. 

/r pω ω  FORM SORM 
 β pf β pf 

0.90 5.5951 1.10E-8 5.5978 1.09E-8 
0.93 3.8710 5.42E-5 3.8737 5.36E-5 
0.95 2.7414 3.10E-3 2.7440 3.00E-3 

 
The sensitivities of the performance function, g, for changes in the random 

variables are plotted in Fig. 4. The figure shows that, at this particular value of n, with 
more metal than ceramic, metal properties have a more pronounced effect on the solution. 
The natural frequency is most sensitive to changes in Young’s moduli, and is least 
sensitive to changes in Poisson’s ratio, which explains why the values of νC and νM at the 
MPP point are almost equal to their mean values. Finally, the figure shows that the 
relative importance of the variables is the same at all reliability levels of this range. 
Relative importance can be measured by changes in the COV value of the eigenvalue 
corresponding to variations in COV of the random variables. This second order statistics 
investigation is carried out in the second illustration. 
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Fig. 4. Sensitivity of g to changes in the random variables for SSSS FGM square 

plate with a/h =10 and n=2 for different ωr/ωp. 
 
2. Second Order Statistics of a square FGM plate: 
 

In this example, the variation of the covariance of the square of the natural 
frequency due to individual variations in the basic random variables is investigated. The 
FGM plate is the same as that studied in the first illustration. Unlike the first illustration, 
the randomness of the ceramic volume fraction is considered here. Figs. 5-7 show the 
variation of the COV of the eigenvalue when the COV of each of the random variables 
varies from 0 to 20%, for n = 0.5, 1 and 2, respectively. From these figures it can be 
concluded that the volume fraction exponent  n and the Poisson’s ratios νm and νC have a  
small effect on the COV of the fundamental eigenvalue, while constituent density and 
Young’s moduli have the most striking effect. This conclusion is even emphasized in 
Table 5. The table shows the order of importance of the uncertainties on the calculated 
distribution of λ in a decreasing order of importance for three different compositions of 
the plate, represented by n=0.5, 1, and 2. It can be seen that as n increases, signifying 
more metal, the plate natural frequency becomes more sensitive to the metal properties 
than to those of the ceramic.  
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Fig. 5. COV of the fundamental eigenvalue of SSSS FGM square plate with a/h =10 

and n=0.5. 
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Fig. 6. COV of the fundamental eigenvalue of SSSS FGM square plate with a/h =10 

and n=1. 
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Fig. 7. COV of the fundamental eigenvalue of SSSS FGM square plate with a/h =10 

and n=2. 
 
 
Table 5. Order of importance of the random variable uncertainties on λ for SSSS 
FGM square plate with a/h =10 for three values of µ(n).  

µ(n) EC  EM  νC νM ρC ρM  n 
0.5 1 4 6 7 2 3 5 
1.0 1 4 6 7 2 3 5 
2.0 3 2 7 5 4 1 6 

 
Discussion and Conclusions 
 

The potential and versatility of a suggested procedure was demonstrated by 
applying it to reliability analysis of the free vibration of FGM plates. Using the developed 
code, the derivative of the performance function with respect to each of the random 
variables is calculated. These variables included the properties of both constituents and 
the ceramic volume fraction. FORM and SORM techniques were used to optimize the 
solution and obtain MPP of the plate. Natural frequency results obtained showed 
excellent agreement with the limited published results and with Monte Carlo simulation 
results. FORM Method 2 and SORM were found to be appropriate methods for this 
problem, and converged after small number of iterations. 

The present work lends itself to modifications that add to its speed, accuracy and 
range of applicable problems. The algorithm can be modified to solve other classes of 
problems with minor programming modifications and smart choice of the performance 
function. These include static response, damage characteristics, optimization and forced 
vibrations. 
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