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Abstract 
 

System performance of Gigabit network hosts can 
severely be degraded due to interrupt overhead caused 
by heavy incoming traffic.  One of the most popular 
solutions to mitigate such overhead is interrupt 
disabling and then enabling.  In this solution, interrupt 
overhead is significantly reduced by disabling 
interrupts and only re-enabling them after processing 
all queued packets. In this paper we investigate 
analytically the performance of the scheme of interrupt 
disabling and enabling and compare it with normal 
interruption and interrupt coalescing.  The system 
performance is analyzed and compared in terms of 
throughput, latency, and CPU availability for user 
applications.  
 
1. Introduction 
 

With almost all today’s Gigabit NICs, an incoming 
packet gets transferred (or DMA’d) through the PCI 
bus from the NIC to the protocol processing buffer of 
the kernel.  After the packet has been successfully 
DMA’d, the NIC generates an interrupt to notify the 
kernel to start protocol processing of the incoming 
packet.  Protocol processing typically involves TCP/IP 
processing of the incoming packet and delivering it to 
user applications.  During protocol processing, other 
packets may arrive and get queued.  Protocol 
processing time is affected by the interrupts of 
incoming packets.  Interrupt handling has an absolute 
priority over protocol processing. If an interrupt occurs 
during protocol processing, the protocol processing 
will be disrupted or preempted (i.e., protocol 
processing will stall until the completion of interrupt 
handling).  Therefore, the protocol processing time can 
be enormously stretched.  If interrupt rate is high 
enough (as the case in Gigabit networks), the system 
will spend all of its time responding to interrupts, and 
hence the system throughput will drop to zero.  This 
situation is called receive livelock [1].   In this 

situation, the system is not deadlocked but causing 
tasks scheduled at a lower priority to starve. 

A number of solutions has been proposed in the 
literature to mitigate interrupt overhead and improve 
OS performance.  Some of these solutions include 
interrupt coalescing, OS-bypass protocol, zero-
copying, jumbo frames, polling, pushing some or all 
protocol processing to hardware, etc.   One of the most 
popular solutions to mitigate the interrupt overhead for 
Gigabit network hosts is interrupt disabling and then 
enabling.  The key idea behind interrupt disable-enable 
scheme is inspired by [1].  Lately such scheme has 
been utilized by some kernels such as the case of Linux 
NAPI [2]. The idea is to have the interrupts of 
incoming packets turned off or disabled as long as 
there are packets to be processed by the kernel’s 
protocol stack, i.e., the protocol buffer is not empty.  
When the buffer is empty, the interrupts are turned on 
again or re-enabled.  Any incoming packets (while the 
interrupts are disabled) are DMA’d silently to protocol 
buffer (called Rx DMA Ring in Linux 2.6) without 
incurring any interrupt overhead.  Therefore, interrupt 
overhead is only associated with the first incoming 
packet that arrives when the buffer is empty.  
Subsequent incoming packets that get queued in the 
protocol buffer do not introduce interrupt overhead.   
Intuitively, such scheme is expected to mitigate a 
significant amount of interrupt overhead when 
compared to normal interruption (where every 
incoming packet incurs an interrupt overhead).    

In previous work [3], we presented an analytical and 
simulation study of normal interruption. In [4], we 
presented a complete analytical model to study the 
performance of interrupt coalescing scheme.  In this 
paper, we present a novel analytical study and models 
for the scheme of interrupt disabling and enabling.  
The performance of scheme of interrupt disable-enable 
is compared with that of normal interruption and 
interrupt coalescing. The performance is studied and 
compared in terms of three key performance indicators 
which include system throughput, system latency, and 



CPU availability for other processing including user 
applications.  

The rest of the paper is organized as follows.  
Section 2 summarizes previously related analytical 
work for three interrupt handling schemes: ideal, 
normal interruption, and interrupt coalescing.  Section 
3 presents an analytical model using Markov chains of 
the scheme of interrupt disable and enable.  Section 4 
compares the four interrupt handling schemes by 
giving numerical examples showing both analysis and 
simulation results.  Finally, Section 5 concludes the 
study and identifies future work. 

 
2. Related Analytical Work 
 

We will summarize previously related analytical 
work for related analytical work for three interrupt 
handling schemes: ideal, normal interruption, and 
interrupt coalescing.  Later in Section 4, we will 
compare the performance of these schemes with the 
scheme of interrupt disable and enable. 

   
2.1 Ideal and Normal Interruption 
 

In previous work [3], we presented analytical 
models to study two types of interrupt handling 
schemes (viz. ideal scheme and normal interruption).  
In ideal scheme, the overhead involved in generating 
interrupts is totally ignored.  The ideal scheme gives 
the best performance that can possibly be obtained 
when employing interrupts, thus serving as a reference 
(or a benchmark) to compare with.  In normal 
interruption, every incoming packet causes an 
interrupt.  Closed-form solutions for a number of 
performance metrics can be found in [3].   

 
2.2 Interrupt-Coalescing (IC)  
 

One of the most popular solutions to mitigate 
interrupt overhead for Gigabit network hosts is 
interrupt coalescing or IC.  In recent years most 
network adapters or NICs are manufactured to have 
interrupt coalescing.  Additionally, many operating 
systems, including Windows 2000 and Linux, support 
IC.  IC is a mode or a feature in which the NIC 
generates a single interrupt for a group of incoming 
packets.  This is opposed to normal interruption mode 
in which the NIC generates an interrupt for every 
incoming packet.  In interrupt-coalescing (IC) mode, 
there are two schemes to mitigate the rate of interrupts: 
count-based IC and time-based IC.   In count-based IC 
mode, the NIC generates an interrupt when a 
predefined number of packets (denoted by τ ) has been 
received.  In time-based IC mode, the NIC waits a 

predefined time period (denoted by T) before it 
generates an interrupt.  During this time period 
multiple packets can be received. The coalescing 
parameters of τ  and  T are tunable and configurable 
parameters which are set by the device driver. 
Analytical models and closed-form solutions for 
system throughput, latency, and CPU availability were 
given in [4].  The same underlying assumptions and 
notations used in this paper were used in [4]. 
 
3. Modeling and Analysis of Interrupt 

Disabling and Enabling 
  

Under the scheme of interrupt disabling and 
enabling, an incoming packet (while the protocol 
processing buffer is empty) would cause an interrupt 
when it first arrives.  The ISR first disables the 
interrupt and then notifies protocol processing to 
process the packet.  Protocol processing will keep 
processing packets as long as the buffer is not empty.  
When the buffer is empty, protocol processing will re-
enable the interrupts.  During protocol processing, 
incoming packets will not introduce interrupt overhead 
and will get queued (or DMA’d) quietly onto the 
protocol buffer. 

For comparison purposes, we will use the same 
assumptions and notations presented in [3].  We 
assume Poisson incoming traffic, fixed packet sizes, 
and exponential times for interrupt handling and 
protocol processing. 
Let  λ     denote the mean incoming packet arrival rate,  

μ denote the mean protocol processing rate 
carried out by the kernel, and thus 1/μ 
becomes the average time the system takes to 
process the incoming packet and deliver it to 
the user application.  This time includes 
primarily the network protocol stack 
processing carried out by the kernel, 
excluding any time disruption due to interrupt 
handling, and  

r/1 denote the mean ISR or interrupt handling 
time (i.e., the interrupt service routine time for 
handling incoming packets). r/1  basically 
includes the interrupt-context switching 
overhead as well as the ISR handling.  The 
main function of ISR handling is to notify the 
kernel to start protocol processing of the 
received packet. 

 
Figure 1 exhibits a Markov chain model for the 

behavior of the interrupt disable-enable scheme.  The 
state space is defined as 
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Figure 1.  Markov state transition diagram for modeling interrupt disable-enable scheme 
 

where n denotes the number of packets in the buffer, 
and B denotes the buffer size.  States )1,(n  define the 

states in which the interrupts are enabled.  States )0,(n  

define the states in which the interrupts are disabled. 
State )1,0(  represents the state where the system is idle 

(with no packets) and the interrupts are enabled.  We 
let v1  denote the mean processing service time when 

the interrupts are enabled.  We assume v1  is 

exponentially distributed and it includes: the time to 
disable the interrupts, the time to handle interrupt (with 
a mean of r/1 ), and the time to service one packet by 
the kernel’s protocol stack (with a mean of μ1 ).  For 

simplicity, we ignore the time for re-enabling the 
interrupt.  We believe it is very small and negligible 
(typically one or two write instructions to the NIC’s 
control register).  

Let mnp ,  be the steady-state probability at state 

),( mn .  The stationary equations of the Markov chain 

in Figure 1 are: 
 

0,11,11,00 ppp μνλ ++−=  (1a) 

1,01,1)(0 pp λνλ ++−=   (1b) 

0)(0 0,21,20,1 =+++−= ppp μνμλ  (1c) 

1,11,)(0 −++−= nn pp λνλ ,    2≥n  (1d) 

0,11,10,10,)(0 ++− ++++−= nnnn pppp μνλμλ , 2≥n (1e) 

  
Before we proceed to present the solution of the 

above system, we will use the abbreviations μλ /=a  

and )(/ νλλ +=b . Now, by using equations (1b) and 

(1d), we have 

1,0

2

1,11,2

1,01,01,1

pbpp

pbpp

=
+

=

=
+

=

νλ
λ

νλ
λ

 

1,0
3

1,21,3 pbpp =
+

=
νλ

λ
 

 
And by using mathematical induction, we get 
 

11,01, ≥= npbp n

n  (2) 
 
Similarly, equations (1a), (1c), and (1e) can be used 

iteratively to obtain the following: 
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μ
ν

can be expressed as 
b

aba −
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this expression into equation (3) we get 
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At this point it is reasonable to conjecture that 
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Equation (4) can be verified by using mathematical 

induction also.  We assume that equation (4) holds for 
1−n  and n , and we want to show that it also holds for 
1+n  as follow.  Using (1e) and (4) we get 
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We can rewrite equation (4) as follow: 
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To obtain 1,0p ,  we utilize the fact that 1, =∑ mnp .  

Hence 
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Therefore, 
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It is worth mentioning that ∑∞

=
−

1n

nn ab is a 

geometric series and it converges only if a  and b  are 
less than 1.  The value of b  is always less than 1.  And 
therefore, the only condition for the existence of the 
steady-state solution is that a  must be less than 1, or 
equivalently, μλ < . 

 
CPU availability.  CPU availability for user 

applications is basically the idleness state which can be 
given by equation (6).   

 
Mean System Throughput.  The mean system 

throughput γ  can be expressed as 
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which can be subsequently simplified to 
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Mean System Latency.  The mean system 

latency )(TE , can be expressed straightforward as  
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where )(nE  is the average number of packets in 

protocol buffer and can be expressed as 
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Thus, 
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Special Case.  Let us consider the special case 

when μ=v .  It can be easily verified that all the 

equations derived for the throughput, latency and CPU 
availability will be exactly reduced to those of a pure 



M/M/1 queueing system with an arrival rate of λ  and 
service rate of μ . 

 
4. Simulation.   
 

In order to verify and validate our analytical 
models, a discrete-event simulation model was 
developed and written in C language.  The assumptions 
of analysis were used. The simulation followed closely 
and carefully the guidelines given in [5].  A detailed 
description and flowcharts of the simulation model for 
normal interruption can be found in [3].  The 
simulation model reported in [3] was modified for the 
scheme of interrupt disabling and enabling.  

 
5. Numerical Examples 
 

In this section, the results of analysis and simulation 
are reported.  Numerical results are given for key 
performance indicators. These indicators include mean 
system throughput, CPU availability, latency, and 
packet loss.  We compare the performance for the ideal 
system, normal interruption, and IC.  We use a mean 
interrupt handling time (1/r) of 3.73 μs and a protocol 
processing ( μ1 ) of 5.34 μs.  For interrupt disabling-

enabling scheme, there is also the incurred cost of 
writing to the NIC control registers to disable and 
enable interrupts of incoming packets.  We assume the 
cost of writing to the NIC register is 0.5 μs.   As a 
consequence, the parameter v1  in analysis, which 

denotes the mean protocol processing service time 
when interrupts are enabled, is approximately equal to 
9.57 μs, that is 0.5 + 3.73 + 5.34 μs.   In all of our 
examples, a kernel’s protocol processing buffer B of a 
size of 1000 packets is used.  These values are realistic 
and selected based on experimental findings reported 
in [6,7].   

Figure 2 plots the mean system throughput, CPU 
availability for user applications, and mean system 
latency as a function of the system load represented by 
the packet arrival rate.  The load and throughput are 
both expressed in pps (packets per second).  Analysis 
and simulation results were in very close agreement.  
From the figures, it is observed that the maximum 
throughput occurs at 187 Kpps.  For normal 
interruption, it can be noted that the saturation or cliff 
point for the system occurs at 127 Kpps.  At this point, 
the corresponding CPU utilization (for ISR handling 
plus protocol processing) is at 100%, and thus resulting 
in a CPU availability of zero.  Therefore, user 
applications will starve and livelock at this point.  

Figure 2(a) shows that as the arrival rate increases after 
the cliff point the system throughput starts to decline.   
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Figure 2. Key performance indicators in 
relation to traffic load 



One observation can be made about IC schemes 
with a parameter of 1=τ  in case of count-based 
coalescing and 0=T  in case of time-based coalescing.  
It is observed that in such cases, both coalescing 
scheme resort exactly, as expected, to normal 
interruption.  Also from the figure, it is depicted that 
the analysis curves for time-based coalescing (more 
noticeable in Figure 7(b) and 7(c) at very low rate) are 
not smooth.  As illustrated in [4], the analysis for time-
based coalescing is performed based on the analysis of 
count-based coalescing with the coalescing parameter 
τ  being an integer and approximated to ⎡ ⎤Tλ .  Thus, 

τ  takes on discrete values and remains unchanged 
until a different value is produced as λ  changes in 

⎡ ⎤Tλ .   

There are also a number of important observations 
and conclusions to be made when examining and 
comparing the performance of all interrupt handling 
schemes.   It can be concluded that no single scheme 
gives the best performance.  For example, the scheme 
of interrupt disabling and enabling outperforms all 
other schemes in terms of throughput and latency.  
However in terms of CPU availability, the interrupt 
disabling and enabling gives the worst performance 
second to normal interruption.  Also at extremely low 
rate interrupt disabling and enabling gives worse 
latency than normal interruption.    
 

6. Concluding Remarks 
 

We developed an analytical model to analyze and 
study the performance of Gigabit-network hosts when 
employing the interrupt handling scheme of disabling 
and enabling for the mitigation of interrupt overhead 
caused by incoming traffic. The analytical model was 
verified and validated by simulation and by 
considering special cases.  The performance was 
studied in terms of system throughput, CPU 
availability, and latency.  It was concluded that no 
particular interrupt handling scheme gives the best 
performance under all load conditions.  Selection of the 
most appropriate scheme to employ depends primarily 
on system performance requirements, user’s most 
important performance metric, and present traffic load.  
It was demonstrated by giving numerical examples that 
the scheme of disabling and enabling interrupts 
outperforms, in general, all other schemes in terms of 
throughput and latency.  However when it comes to 
CPU availability, the scheme of interrupt coalescing is 
more appropriate.  Polling is yet another potential 
scheme to mitigate interrupt overhead.  Polling is 
designed to primarily solve the issue of CPU 
availability under high load.   However, polling is 

expected to perform poorly under low load.  A hybrid 
scheme of interrupt disable-enable and polling or 
coalescing can be an attractive solution.  As a further 
study, we are in the process of studying the 
performance of polling.  Performance and comparison 
results are to be published in the near future. 
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