
Modeling and Analysis of Interrupt Disable-Enable Scheme

K. Salah K. Elbadawi
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: {salah,elbadawi}@kfupm.edu.sa

Abstract

System performance of Gigabit network hosts can
severely be degraded due to interrupt overhead caused
by heavy incoming traffic. One of the most popular
solutions to mitigate such overhead is interrupt
disabling and then enabling. In this solution, interrupt
overhead is significantly reduced by disabling
interrupts and only re-enabling them after processing
all queued packets. In this paper we investigate
analytically the performance of the scheme of interrupt
disabling and enabling and compare it with normal
interruption and interrupt coalescing. The system
performance is analyzed and compared in terms of
throughput, latency, and CPU availability for user
applications.

1. Introduction

With almost all today’s Gigabit NICs, an incoming
packet gets transferred (or DMA’d) through the PCI
bus from the NIC to the protocol processing buffer of
the kernel. After the packet has been successfully
DMA’d, the NIC generates an interrupt to notify the
kernel to start protocol processing of the incoming
packet. Protocol processing typically involves TCP/IP
processing of the incoming packet and delivering it to
user applications. During protocol processing, other
packets may arrive and get queued. Protocol
processing time is affected by the interrupts of
incoming packets. Interrupt handling has an absolute
priority over protocol processing. If an interrupt occurs
during protocol processing, the protocol processing
will be disrupted or preempted (i.e., protocol
processing will stall until the completion of interrupt
handling). Therefore, the protocol processing time can
be enormously stretched. If interrupt rate is high
enough (as the case in Gigabit networks), the system
will spend all of its time responding to interrupts, and
hence the system throughput will drop to zero. This
situation is called receive livelock [1]. In this

situation, the system is not deadlocked but causing
tasks scheduled at a lower priority to starve.

A number of solutions has been proposed in the
literature to mitigate interrupt overhead and improve
OS performance. Some of these solutions include
interrupt coalescing, OS-bypass protocol, zero-
copying, jumbo frames, polling, pushing some or all
protocol processing to hardware, etc. One of the most
popular solutions to mitigate the interrupt overhead for
Gigabit network hosts is interrupt disabling and then
enabling. The key idea behind interrupt disable-enable
scheme is inspired by [1]. Lately such scheme has
been utilized by some kernels such as the case of Linux
NAPI [2]. The idea is to have the interrupts of
incoming packets turned off or disabled as long as
there are packets to be processed by the kernel’s
protocol stack, i.e., the protocol buffer is not empty.
When the buffer is empty, the interrupts are turned on
again or re-enabled. Any incoming packets (while the
interrupts are disabled) are DMA’d silently to protocol
buffer (called Rx DMA Ring in Linux 2.6) without
incurring any interrupt overhead. Therefore, interrupt
overhead is only associated with the first incoming
packet that arrives when the buffer is empty.
Subsequent incoming packets that get queued in the
protocol buffer do not introduce interrupt overhead.
Intuitively, such scheme is expected to mitigate a
significant amount of interrupt overhead when
compared to normal interruption (where every
incoming packet incurs an interrupt overhead).

In previous work [3], we presented an analytical and
simulation study of normal interruption. In [4], we
presented a complete analytical model to study the
performance of interrupt coalescing scheme. In this
paper, we present a novel analytical study and models
for the scheme of interrupt disabling and enabling.
The performance of scheme of interrupt disable-enable
is compared with that of normal interruption and
interrupt coalescing. The performance is studied and
compared in terms of three key performance indicators
which include system throughput, system latency, and

CPU availability for other processing including user
applications.

The rest of the paper is organized as follows.
Section 2 summarizes previously related analytical
work for three interrupt handling schemes: ideal,
normal interruption, and interrupt coalescing. Section
3 presents an analytical model using Markov chains of
the scheme of interrupt disable and enable. Section 4
compares the four interrupt handling schemes by
giving numerical examples showing both analysis and
simulation results. Finally, Section 5 concludes the
study and identifies future work.

2. Related Analytical Work

We will summarize previously related analytical
work for related analytical work for three interrupt
handling schemes: ideal, normal interruption, and
interrupt coalescing. Later in Section 4, we will
compare the performance of these schemes with the
scheme of interrupt disable and enable.

2.1 Ideal and Normal Interruption

In previous work [3], we presented analytical
models to study two types of interrupt handling
schemes (viz. ideal scheme and normal interruption).
In ideal scheme, the overhead involved in generating
interrupts is totally ignored. The ideal scheme gives
the best performance that can possibly be obtained
when employing interrupts, thus serving as a reference
(or a benchmark) to compare with. In normal
interruption, every incoming packet causes an
interrupt. Closed-form solutions for a number of
performance metrics can be found in [3].

2.2 Interrupt-Coalescing (IC)

One of the most popular solutions to mitigate
interrupt overhead for Gigabit network hosts is
interrupt coalescing or IC. In recent years most
network adapters or NICs are manufactured to have
interrupt coalescing. Additionally, many operating
systems, including Windows 2000 and Linux, support
IC. IC is a mode or a feature in which the NIC
generates a single interrupt for a group of incoming
packets. This is opposed to normal interruption mode
in which the NIC generates an interrupt for every
incoming packet. In interrupt-coalescing (IC) mode,
there are two schemes to mitigate the rate of interrupts:
count-based IC and time-based IC. In count-based IC
mode, the NIC generates an interrupt when a
predefined number of packets (denoted by τ) has been
received. In time-based IC mode, the NIC waits a

predefined time period (denoted by T) before it
generates an interrupt. During this time period
multiple packets can be received. The coalescing
parameters of τ and T are tunable and configurable
parameters which are set by the device driver.
Analytical models and closed-form solutions for
system throughput, latency, and CPU availability were
given in [4]. The same underlying assumptions and
notations used in this paper were used in [4].

3. Modeling and Analysis of Interrupt

Disabling and Enabling

Under the scheme of interrupt disabling and
enabling, an incoming packet (while the protocol
processing buffer is empty) would cause an interrupt
when it first arrives. The ISR first disables the
interrupt and then notifies protocol processing to
process the packet. Protocol processing will keep
processing packets as long as the buffer is not empty.
When the buffer is empty, protocol processing will re-
enable the interrupts. During protocol processing,
incoming packets will not introduce interrupt overhead
and will get queued (or DMA’d) quietly onto the
protocol buffer.

For comparison purposes, we will use the same
assumptions and notations presented in [3]. We
assume Poisson incoming traffic, fixed packet sizes,
and exponential times for interrupt handling and
protocol processing.
Let λ denote the mean incoming packet arrival rate,

μ denote the mean protocol processing rate
carried out by the kernel, and thus 1/μ
becomes the average time the system takes to
process the incoming packet and deliver it to
the user application. This time includes
primarily the network protocol stack
processing carried out by the kernel,
excluding any time disruption due to interrupt
handling, and

r/1 denote the mean ISR or interrupt handling
time (i.e., the interrupt service routine time for
handling incoming packets). r/1 basically
includes the interrupt-context switching
overhead as well as the ISR handling. The
main function of ISR handling is to notify the
kernel to start protocol processing of the
received packet.

Figure 1 exhibits a Markov chain model for the

behavior of the interrupt disable-enable scheme. The
state space is defined as

(){ } (){ }BnnBnnS ≤≤∪≤≤= 0,1,1,0,

0,1

1,1 2,1

1,0 2,0

3,1 4,1

3,0

µ µ µ

Figure 1. Markov state transition diagram for modeling interrupt disable-enable scheme

where n denotes the number of packets in the buffer,
and B denotes the buffer size. States)1,(n define the

states in which the interrupts are enabled. States)0,(n

define the states in which the interrupts are disabled.
State)1,0(represents the state where the system is idle

(with no packets) and the interrupts are enabled. We
let v1 denote the mean processing service time when

the interrupts are enabled. We assume v1 is

exponentially distributed and it includes: the time to
disable the interrupts, the time to handle interrupt (with
a mean of r/1), and the time to service one packet by
the kernel’s protocol stack (with a mean of μ1). For

simplicity, we ignore the time for re-enabling the
interrupt. We believe it is very small and negligible
(typically one or two write instructions to the NIC’s
control register).

Let mnp , be the steady-state probability at state

),(mn . The stationary equations of the Markov chain

in Figure 1 are:

0,11,11,00 ppp μνλ ++−= (1a)

1,01,1)(0 pp λνλ ++−= (1b)

0)(0 0,21,20,1 =+++−= ppp μνμλ (1c)

1,11,)(0 −++−= nn pp λνλ , 2≥n (1d)

0,11,10,10,)(0 ++− ++++−= nnnn pppp μνλμλ , 2≥n (1e)

Before we proceed to present the solution of the

above system, we will use the abbreviations μλ /=a

and)(/ νλλ +=b . Now, by using equations (1b) and

(1d), we have

1,0

2

1,11,2

1,01,01,1

pbpp

pbpp

=
+

=

=
+

=

νλ
λ

νλ
λ

1,0
3

1,21,3 pbpp =
+

=
νλ

λ

And by using mathematical induction, we get

11,01, ≥= npbp n

n (2)

Similarly, equations (1a), (1c), and (1e) can be used

iteratively to obtain the following:

1,11,00,1 ppp
μ
ν

μ
λ −= (3)

But
μ
ν

can be expressed as
b

aba −
, then substituting

this expression into equation (3) we get

1,01,01,00,1)(pabpabapap =−−=

1,0
22

1,01,0

1,20,10,2

)(

)()1(

pbaba

pababpaba

ppp

+=

−−+=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
μ
ν

μ
μλ

1,0
3223

1,0

2

1,0

2

1,0

22

1,30,10,20,3

)(

)()()1(

pbababa

pababpbapbabaa

pppp

++=

−−−++=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
μ
ν

μ
λ

μ
μλ

1,0

432234

1,0
3

1,0
223

1,0
3223

1,40,20,30,4

)(

)(

)()()1(

pbabababa

pabab

pbabapbababaa

pppp

+++=

−−

+−+++=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=
μ
ν

μ
λ

μ
μλ

At this point it is reasonable to conjecture that

1,0

1221

0,)(pbabababap nnnn

n ++++= −− L (4)

Equation (4) can be verified by using mathematical

induction also. We assume that equation (4) holds for
1−n and n , and we want to show that it also holds for
1+n as follow. Using (1e) and (4) we get

1,0
1221

1,0
1

1,0

1,0
122321

1,0

1221

1,0

21321

1,0

1,0
122221

1.0

1221

1,10,10,1

)(

)(

)(

)(

)(

)(

)()1(

pbabababa

pbapba

pbabababa

pbabababa

pbabababa

pabab

pbabababaa

pbabababaa

pppp

nnnn

nn

nnnn

nnnn

nnnn

n

nnnn

nnnn

nnnn

++

+

−−−

−−

−+

−−−−

−−

+−+

++++=

+−

++++−

+++++

++++=

−−

++++−
+++++=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +=

L

L

L

L

L

L

μ
ν

μ
λ

μ
μλ

We can rewrite equation (4) as follow:

() ()

1,01,0

11

1,0

1

1

1
1,0

1

1,0
1

1
0,

)(

1

pab
ab

ba
p

ab

baba

p
ba

baba
bbapb

pbap

nn
nn

n

n
n

i

in

n

i

ini

n

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−⋅=⋅=

=

++

+
+

=

+

=

+−

∑

∑

(5)

To obtain 1,0p , we utilize the fact that 1, =∑ mnp .

Hence

()

.
)1()1(

1

111
1

1

1

1,0

1,0

1,0
11

1
1,

1
0,1,0

p
ba

baa

p
b

b

a

a

b

b

ab

ba

pbab
ab

ba

ppp

n

n

n

nn

n
n

n
n

−−
+−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
⎟
⎠

⎞
⎜
⎝

⎛
−

+=

⎟
⎠

⎞
⎜
⎝

⎛ +−
−

+=

++=

∑∑

∑∑
∞

=

∞

=

∞

=

∞

=

Therefore,

baa

ba
p

+−
−−=

1

)1()1(
1,0 . (6)

It is worth mentioning that ∑∞

=
−

1n

nn ab is a

geometric series and it converges only if a and b are
less than 1. The value of b is always less than 1. And
therefore, the only condition for the existence of the
steady-state solution is that a must be less than 1, or
equivalently, μλ < .

CPU availability. CPU availability for user

applications is basically the idleness state which can be
given by equation (6).

Mean System Throughput. The mean system

throughput γ can be expressed as

() ,1,0
11

1
0,

1
1,

pab
ab

ba
b

pp

p

n

nn

n

n

n
n

n
n

i
ii

⎟
⎠

⎞
⎜
⎝

⎛ −
−

+=

+=

=

∑∑

∑∑

∑

∞

=

∞

=

∞

=

∞

=

μν

μν

μγ

which can be subsequently simplified to

baa

baa

+−
+−=

1

)1(μνγ . (7)

Mean System Latency. The mean system

latency)(TE , can be expressed straightforward as

λ
)(

)(
nE

TE = , (8)

where)(nE is the average number of packets in

protocol buffer and can be expressed as

()

1,022

2

1,0222

1,0
11

1
1,

1
0,

)1()1(

)1()1(

)1()1()1(

)(

p
ba

bbaab

p
a

a

b

b

ab

ba

b

b

pabn
ab

ba
bn

pnpnnE

n

nn

n

n

n
n

n
n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅−

−+−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

⋅
−

+
−

=

⎟
⎠

⎞
⎜
⎝

⎛ −
−

+=

+=

∑∑

∑∑
∞

=

∞

=

∞

=

∞

=

Thus,

)1()1()1(

)1()1(
)(

2

baaba

bbaab
nE

+−−−
−+−== . (9)

Special Case. Let us consider the special case

when μ=v . It can be easily verified that all the

equations derived for the throughput, latency and CPU
availability will be exactly reduced to those of a pure

M/M/1 queueing system with an arrival rate of λ and
service rate of μ .

4. Simulation.

In order to verify and validate our analytical
models, a discrete-event simulation model was
developed and written in C language. The assumptions
of analysis were used. The simulation followed closely
and carefully the guidelines given in [5]. A detailed
description and flowcharts of the simulation model for
normal interruption can be found in [3]. The
simulation model reported in [3] was modified for the
scheme of interrupt disabling and enabling.

5. Numerical Examples

In this section, the results of analysis and simulation
are reported. Numerical results are given for key
performance indicators. These indicators include mean
system throughput, CPU availability, latency, and
packet loss. We compare the performance for the ideal
system, normal interruption, and IC. We use a mean
interrupt handling time (1/r) of 3.73 μs and a protocol
processing (μ1) of 5.34 μs. For interrupt disabling-

enabling scheme, there is also the incurred cost of
writing to the NIC control registers to disable and
enable interrupts of incoming packets. We assume the
cost of writing to the NIC register is 0.5 μs. As a
consequence, the parameter v1 in analysis, which

denotes the mean protocol processing service time
when interrupts are enabled, is approximately equal to
9.57 μs, that is 0.5 + 3.73 + 5.34 μs. In all of our
examples, a kernel’s protocol processing buffer B of a
size of 1000 packets is used. These values are realistic
and selected based on experimental findings reported
in [6,7].

Figure 2 plots the mean system throughput, CPU
availability for user applications, and mean system
latency as a function of the system load represented by
the packet arrival rate. The load and throughput are
both expressed in pps (packets per second). Analysis
and simulation results were in very close agreement.
From the figures, it is observed that the maximum
throughput occurs at 187 Kpps. For normal
interruption, it can be noted that the saturation or cliff
point for the system occurs at 127 Kpps. At this point,
the corresponding CPU utilization (for ISR handling
plus protocol processing) is at 100%, and thus resulting
in a CPU availability of zero. Therefore, user
applications will starve and livelock at this point.

Figure 2(a) shows that as the arrival rate increases after
the cliff point the system throughput starts to decline.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Packet Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

Normal

Ideal & Disable−Enable

Count−based IC

Time−based IC

(a)

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (Kpps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

Normal

Disable−Enable

Time−based IC

Count−based IC

Ideal

(b)

0 50 100 150 200

10
−5

10
−4

10
−3

10
−2

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (Kpps)

Normal

Time−based IC

Count−based IC

Ideal

Disable−Enable

(c)

Figure 2. Key performance indicators in
relation to traffic load

One observation can be made about IC schemes
with a parameter of 1=τ in case of count-based
coalescing and 0=T in case of time-based coalescing.
It is observed that in such cases, both coalescing
scheme resort exactly, as expected, to normal
interruption. Also from the figure, it is depicted that
the analysis curves for time-based coalescing (more
noticeable in Figure 7(b) and 7(c) at very low rate) are
not smooth. As illustrated in [4], the analysis for time-
based coalescing is performed based on the analysis of
count-based coalescing with the coalescing parameter
τ being an integer and approximated to ⎡ ⎤Tλ . Thus,

τ takes on discrete values and remains unchanged
until a different value is produced as λ changes in

⎡ ⎤Tλ .

There are also a number of important observations
and conclusions to be made when examining and
comparing the performance of all interrupt handling
schemes. It can be concluded that no single scheme
gives the best performance. For example, the scheme
of interrupt disabling and enabling outperforms all
other schemes in terms of throughput and latency.
However in terms of CPU availability, the interrupt
disabling and enabling gives the worst performance
second to normal interruption. Also at extremely low
rate interrupt disabling and enabling gives worse
latency than normal interruption.

6. Concluding Remarks

We developed an analytical model to analyze and
study the performance of Gigabit-network hosts when
employing the interrupt handling scheme of disabling
and enabling for the mitigation of interrupt overhead
caused by incoming traffic. The analytical model was
verified and validated by simulation and by
considering special cases. The performance was
studied in terms of system throughput, CPU
availability, and latency. It was concluded that no
particular interrupt handling scheme gives the best
performance under all load conditions. Selection of the
most appropriate scheme to employ depends primarily
on system performance requirements, user’s most
important performance metric, and present traffic load.
It was demonstrated by giving numerical examples that
the scheme of disabling and enabling interrupts
outperforms, in general, all other schemes in terms of
throughput and latency. However when it comes to
CPU availability, the scheme of interrupt coalescing is
more appropriate. Polling is yet another potential
scheme to mitigate interrupt overhead. Polling is
designed to primarily solve the issue of CPU
availability under high load. However, polling is

expected to perform poorly under low load. A hybrid
scheme of interrupt disable-enable and polling or
coalescing can be an attractive solution. As a further
study, we are in the process of studying the
performance of polling. Performance and comparison
results are to be published in the near future.

Acknowledgements

We acknowledge the support of King Fahd
University of Petroleum and Minerals in completion of
this work. This work has been funded under Project
#FT-2005/17.

7. References

[1] J. Mogul, and K. Ramakrishnan, “Eliminating Receive
Livelock In An Interrupt-Driven Kernel,” ACM Trans.
Computer Systems, vol. 15, no. 3, August 1997, pp. 217-252.

[2] J. H. Salim, “Beyond Softnet,” Proceedings of the 5th
Annual Linux Showcase and Conference, November 2001,
pp 165-172

[3] K. Salah and K. El-Badawi, “Analysis and Simulation of
Interrupt Overhead Impact on OS Throughput in High-Speed
Networks,” International Journal of Communication
Systems, vol. 18, no. 5, Wiley Publisher, June 2005, pp.
501-526

[4] K. Salah “To Coalesce or Not to Coalesce”, International
Journal of Electronics and Communications (AEU), (In
Press.)

[5] A. Law and W. Kelton, Simulation Modeling and
Analysis, McGraw-Hill, 2nd Edition, 1991.

[6] M. Aron and P. Druschel, “Soft Timers: Efficient
Microsecond Software Timer Support for Network
Processing,” ACM Transactions on Computer Systems, vol.
18, no. 3, August 2000, pp. 197-228.

[7] Ashford Computer Consulting Service, “GigaBit Ethernet
to the Desktop – Client1 System Benchmarks”, 2004,
http://www.accs.com/p_and_p/GigaBit/Client1.html

