MOSFET Transistor

DC Analysis

Dr. Alaa El-Din Hussein

March 18, 2008
Outline

1. MOSFET DC Analysis Procedure
2. Examples
3. MOSFET As A Current Source
Outline

1. MOSFET DC Analysis Procedure
2. Examples
3. MOSFET As A Current Source
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

- An enhancement-mode device with \(V_{DS} = V_{GS} \) is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find \(I_D \) and \(V_{GS} \).
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}

2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)

3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation

4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}

5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}

6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together.
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together.
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
 - If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
 - If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
MOSFET DC Analysis Procedure

Procedure

1. Apply KVL at the gate source loop to find V_{GS}
2. If $V_{GS} < V_{TN}$, the transistor is off. Otherwise, assume an operating region (usually saturation)
3. Use V_{GS} from step 1 to calculate I_D using the transistor current equation
4. Apply KVL at the drain source loop and use I_D from step 3 to find V_{DS}
5. Check the validity of assumed region by comparing V_{DS} to V_{DSAT}
6. Change assumptions and analyze again if required.

- An enhancement-mode device with $V_{DS} = V_{GS}$ is always in saturation
- If we have a source resistance, we need to solve the equations in steps 1 and 3 together to find I_D and V_{GS}.
- If we include channel length modulation or we are in the triode region, we will solve the equations in steps 3 and 4 together
- If we include channel length modulation or we are in the triode region and we have a source resistance, we will solve the equations in steps 1, 3, and 4 together
Outline

1. MOSFET DC Analysis Procedure

2. Examples

3. MOSFET As A Current Source
Example 1
Biasing in Triode Region

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\, V\), and \(K_n = 250\, \mu A/V^2\)

Solution
- Assumption: Transistor is saturated, and \(I_G = I_B = 0\)
- Analysis: From input loop \(V_{GS} = V_{DD} = 4\, V\)
- Since the transistor at saturation we can use:
 \[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 = \frac{250}{2} \frac{\mu A}{V^2} (4 - 1)^2 = 1.13\, mA\]
Example 1
Biasing in Triode Region

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\, \text{V}\), and \(K_n = 250\, \mu\text{A}/\text{V}^2\)

Solution

- Assumption: Transistor is saturated, and \(I_G = I_B = 0\)
- Analysis: From input loop \(V_{GS} = V_{DD} = 4\, \text{V}\)
- Since the transistor at saturation we can use:
 \[
 I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 = \frac{250}{2} \frac{\mu\text{A}}{\text{V}^2} (4 - 1)^2 = 1.13\, mA
 \]
Example 1
Biasing in Triode Region

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\) V, and
 \(K_n = 250\, \mu\text{A}/\text{V}^2\)

Solution

- Assumption: Transistor is saturated, and \(I_G = I_B = 0\)
- Analysis: From input loop \(V_{GS} = V_{DD} = 4\) V

 Since the transistor at saturation we can use:
 \[
 I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 = \frac{250}{2} \left(\frac{\mu\text{A}}{\text{V}^2}\right) (4 - 1)^2 = 1.13\, \text{mA}
 \]
Example 1
Biasing in Triode Region

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\) V, and \(K_n = 250\ \mu A/V^2\)

\[K_n = 250\ \mu A/V^2\]
\[V_{TN} = 1\ \text{V}\]

Solution

- Assumption: Transistor is saturated, and \(I_G = I_B = 0\)
- Analysis: From input loop \(V_{GS} = V_{DD} = 4\) V
- Since the transistor at saturation we can use:
 \[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 = \frac{250}{2} \frac{\mu A}{V^2} (4 - 1)^2 = 1.13\ mA\]
Example 1
Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)

- Substitute by the given values:
 \[4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19 \text{V} \]

- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.

- Using triode region equation,
 \[4 - V_{DS} = 1600 \times 250 \frac{I_D}{V_T^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]

- Solving the last equation \(\therefore V_{DS} = 2.3 \text{V} \), and \(I_D = 1.06 \text{mA} \)

- \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region

- Q-pt: (1.06 m.A, 2.3 V) with \(V_{GS} = 4 \text{V} \)
Example 1
Solution

- Applying KVL at D-S Loop: $V_{DD} = I_D R_D + V_{DS}$

- Substitute by the given values:
 \[4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19\text{V} \]

- But $V_{DS} < V_{GS} - V_{TN}$. Hence, saturation region assumption is incorrect and the transistor is in triode region.

- Using triode region equation,
 \[4 - V_{DS} = 1600 \times 250 \frac{\mu A}{V^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]

- Solving the last equation: $V_{DS} = 2.3\text{V}$, and $I_D = 1.06\text{mA}$

- $V_{DS} < V_{GS} - V_{TN}$, transistor is in triode region

- Q-pt: (1.06 m.A, 2.3 V) with $V_{GS} = 4\text{V}$
Example 1
Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)
- Substitute by the given values:
 \[\therefore 4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19 \text{V} \]
- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.

- Using triode region equation:
 \[4 - V_{DS} = 1600 \times 250 \frac{I_D}{V^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]
- Solving the last equation \(\therefore V_{DS} = 2.3 \text{V}, \text{ and } I_D = 1.06 \text{mA} \)
- \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region
- Q-pt: \((1.06 \text{ m.A}, 2.3 \text{ V}) \) with \(V_{GS} = 4 \text{ V} \)
Example 1
Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)
- Substitute by the given values:
 \[4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19 \text{V} \]
- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.
- Using triode region equation:
 \[4 - V_{DS} = 1600 \times 250 \frac{I_A}{V^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]
 - Solving the last equation: \(V_{DS} = 2.3 \text{V} \), and \(I_D = 1.06 \text{mA} \)
 - \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region
 - Q-pt: (1.06 m.A, 2.3 V) with \(V_{GS} = 4 \text{V} \)
Example 1

Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)
- Substitute by the given values:
 \[4 = 1.6 \times 1.3 + V_{DS} \Rightarrow V_{DS} = 2.19 \text{V} \]
- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.

- Using triode region equation:
 \[4 - V_{DS} = 1600 \times 250 \left(\frac{L A}{V^2} \right) (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]

- Solving the last equation: \(\therefore V_{DS} = 2.3 \text{V} \), and \(I_D = 1.06 \text{mA} \)

- \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region

- Q-pt: \((1.06 \text{ m.A}, 2.3 \text{ V}) \) with \(V_{GS} = 4 \text{ V} \)
Example 1
Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)
- Substitute by the given values:
 \[\therefore 4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19V \]
- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.
- Using triode region equation,
 \[4 - V_{DS} = 1600 \times 250 \frac{\mu A}{V^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]
- Solving the last equation \(\therefore V_{DS} = 2.3V \), and \(I_D = 1.06mA \)
- \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region
- Q-pt: (1.06 m.A, 2.3 V) with \(V_{GS} = 4 \) V
Example 1
Solution

- Applying KVL at D-S Loop: \(V_{DD} = I_D R_D + V_{DS} \)
- Substitute by the given values:
 \[4 = 1.6 \times 1.3 + V_{DS} \rightarrow V_{DS} = 2.19 \text{V} \]
- But \(V_{DS} < V_{GS} - V_{TN} \). Hence, saturation region assumption is incorrect and the transistor is in triode region.
- Using triode region equation,
 \[4 - V_{DS} = 1600 \times 250 \frac{\mu A}{V^2} (4 - 1 - \frac{V_{DS}}{2}) V_{DS} \]
- Solving the last equation \(\therefore V_{DS} = 2.3 \text{V}, \text{ and } I_D = 1.06 \text{mA} \)
- \(V_{DS} < V_{GS} - V_{TN} \), transistor is in triode region
- Q-pt: (1.06 m.A, 2.3 V) with \(V_{GS} = 4 \text{V} \)
Example 2
Biasing in Saturation Region

Example

- Find the Q-pt \((I_D, V_{DS})\)
 assuming that \(V_{TN}=1\text{V}\), and \(K_n = 25\mu\text{A/V}^2\)

Solution

- Approach: Assume operation region, find Q-point, check to see if result is consistent with operation region
- Assumption: Transistor is saturated, \(I_G = I_B = 0\)
- Analysis: First, simplify circuit, split \(V_{DD}\) into two equal-valued sources and apply Thevenin’s transformation to find \(V_{EQ}\) and \(R_{EQ}\) for the gate-bias voltage
Example 2
Biasing in Saturation Region

Example

- Find the Q-pt \((I_D, V_{DS})\)
 assuming that \(V_{TN}=1\) V, and \(K_n = 25\mu A/V^2\)

Solution

- Approach: Assume operation region, find Q-point, check to see if result is consistent with operation region
- Assumption: Transistor is saturated, \(I_G = I_B = 0\)
- Analysis: First, simplify circuit, split \(V_{DD}\) into two equal-valued sources and apply Thevenin’s transformation to find \(V_{EQ}\) and \(R_{EQ}\) for the gate-bias voltage
Example 2
Biasing in Saturation Region

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN}=1\text{V}\), and \(K_n = 25\mu\text{A}/\text{V}^2\)

Solution

- **Approach:** Assume operation region, find Q-point, check to see if result is consistent with operation region
- **Assumption:** Transistor is saturated, \(I_G = I_B = 0\)
- **Analysis:** First, simplify circuit, split \(V_{DD}\) into two equal-valued sources and apply Thevenin’s transformation to find \(V_{EQ}\) and \(R_{EQ}\) for the gate-bias voltage
Example 2
Biasing in Saturation Region

Example

- Find the Q-pt \((I_D, V_{DS})\)
 assuming that \(V_{TN}=1\text{V}\), and \(K_n = 25\mu\text{A/V}^2\)

Solution

- Approach: Assume operation region, find Q-point, check to see if result is consistent with operation region
- Assumption: Transistor is saturated, \(I_G = I_B = 0\)
- Analysis: First, simplify circuit, split \(V_{DD}\) into two equal-valued sources and apply Thevenin’s transformation to find \(V_{EQ}\) and \(R_{EQ}\) for the gate-bias voltage
Example 2

Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \[I_D = \frac{K_n}{2} \left(V_{GS} - V_{TN} \right)^2 \]
- \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} \left(V_{GS} - V_{TN} \right)^2 \]

- Substitute by given values
 \[4 = V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} \left(V_{GS} - 1 \right)^2 \]

- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{ V}, +2.66 \text{ V} \)
- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{ V} \), we will ignore it
- Substituting with \(V_{GS} = +2.66 \text{ V} \) results in \(I_D = 34.4 \mu \text{A} \)
- Applying KVL at D-S loop, \[V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{ V} \]
- Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: \((34.4 \, \mu \text{A}, 6.08 \text{ V}) \) with \(V_{GS} = 2.66 \text{ V} \)
Example 2

Solution

Apply KVL at G-S Loop:
\[V_{EQ} = V_{GS} + I_D R_S \]

- Using \[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \]
- \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

Substitute by given values:
\[4 = V_{GS} + \left(\frac{25 \times 10^{-6}}{2} \right) \left(\frac{39 \times 10^3}{2} \right) (V_{GS} - 1)^2 \]

Solving the quadratic equation results in \[V_{GS} = -2.71 \text{ V}, +2.66 \text{ V} \]

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{ V} \), we will ignore it.

Substituting with \(V_{GS} = +2.66 \text{ V} \) results in \(I_D = 34.4 \mu\text{A} \)

Applying KVL at D-S loop,
\[V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{ V} \]

Since \(V_{DS} > V_{GS} - V_{TN} \), hence saturation region assumption is correct.

Q-pt: (34.4 \(\mu\text{A}, 6.08 \text{ V} \)) with \(V_{GS} = 2.66 \text{ V} \)
Example 2
Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)
 \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

- Substitute by given values
 \[4 = V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} (V_{GS} - 1)^2 \]
- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{ V}, +2.66 \text{ V} \)
- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{ V} \), we will ignore it
- Substituting with \(V_{GS} = +2.66 \text{ V} \) results in \(I_D = 34.4 \mu\text{A} \)
- Applying KVL at D-S loop,
 \[V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{ V} \]
- Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: \((34.4 \mu\text{A}, 6.08 \text{ V})\) with \(V_{GS} = 2.66 \text{ V} \)
Example 2

Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)
- \(\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \)

- Substitute by given values
 \[4 = V_{GS} + \left(\frac{25 \times 10^{-6}}{2}\right)\left(\frac{39 \times 10^3}{2}\right) (V_{GS} - 1)^2 \]
- Solving the quadratic equation results in \(V_{GS} = -2.71 \, V, +2.66 \, V \)
- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \, V \), we will ignore it
- Substituting with \(V_{GS} = +2.66 \, V \) results in \(I_D = 34.4 \, \mu A \)
- Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \, V \)
- Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: \((34.4 \, \mu A, 6.08 \, V) \) with \(V_{GS} = 2.66 \, V \)
Example 2

Solution

- **Apply KVL at G-S Loop:**
 \[V_{EQ} = V_{GS} + I_D R_S \]

- **Using**
 \[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \]

- \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

- **Substitute by given values**
 \[4 = V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} (V_{GS} - 1)^2 \]

- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{V}, +2.66 \text{V} \)

- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{V} \), we will ignore it

- Substituting with \(V_{GS} = +2.66 \text{V} \) results in \(I_D = 34.4 \mu A \)

- Applying KVL at D-S loop,
 \[V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{V} \]

- Since \(V_{DS} > V_{GS} - V_{TN} \), hence saturation region assumption is correct.

- **Q-pt:** (34.4 \(\mu A \), 6.08 \text{V}) with \(V_{GS} = 2.66 \text{V} \)
Example 2
Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)
- \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

- Substitute by given values 4 = \(V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} (V_{GS} - 1)^2 \)
- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{V, } +2.66 \text{V} \)
 - Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{V} \), we will ignore it
 - Substituting with \(V_{GS} = +2.66 \text{V} \) results in \(I_D = 34.4 \mu \text{A} \)
 - Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{V} \)
 - Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: (34.4 \(\mu \text{A}, 6.08 \text{V} \)) with \(V_{GS} = 2.66 \text{V} \)
Example 2
Solution

Apply KVL at G-S Loop:
\[V_{EQ} = V_{GS} + I_D R_S \]

Using \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)
\[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

Substitute by given values
\[4 = V_{GS} + \left(\frac{25 \times 10^{-6}}{2}\right)\left(\frac{39 \times 10^3}{2}\right) (V_{GS} - 1)^2 \]

Solving the quadratic equation results in \(V_{GS} = -2.71 \text{ V}, +2.66 \text{ V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{ V} \), we will ignore it

Substituting with \(V_{GS} = +2.66 \text{ V} \) results in \(I_D = 34.4 \mu\text{A} \)

Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{ V} \)

Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.

Q-pt: \((34.4 \ \mu\text{A}, 6.08 \text{ V})\) with \(V_{GS} = 2.66 \text{ V} \)
Example 2

Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \(I_D = \frac{K_n}{2} \left(V_{GS} - V_{TN} \right)^2 \)
- \(\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} \left(V_{GS} - V_{TN} \right)^2 \)

- Substitute by given values \(4 = V_{GS} + \left(\frac{25 \times 10^{-6}}{2} \right) \left(39 \times 10^3 \right) \left(V_{GS} - 1 \right)^2 \)
- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{V}, +2.66 \text{V} \)
- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{V} \), we will ignore it
- Substituting with \(V_{GS} = +2.66 \text{V} \) results in \(I_D = 34.4 \mu A \)
 - Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \to V_{DS} = 6.08 \text{V} \)
 - Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: (34.4 \(\mu A \), 6.08 \text{V}) with \(V_{GS} = 2.66 \text{V} \)
Example 2

Solution

- Apply KVL at G-S Loop:
 \[V_{EQ} = V_{GS} + I_D R_S \]
- Using \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)
- \(\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \)

- Substitute by given values 4 = \(V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} (V_{GS} - 1)^2 \)
- Solving the quadratic equation results in \(V_{GS} = -2.71 \text{ V}, +2.66 \text{ V} \)
- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{ V} \), we will ignore it
- Substituting with \(V_{GS} = +2.66 \text{ V} \) results in \(I_D = 34.4 \mu A \)
- Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{ V} \)
- Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: \((34.4 \mu A, 6.08 \text{ V}) \) with \(V_{GS} = 2.66 \text{ V} \)
Example 2
Solution

- **Apply KVL at G-S Loop:**
 \[V_{EQ} = V_{GS} + I_D R_S \]

- **Using**
 \[I_D = \frac{K_n}{2} \left(V_{GS} - V_{TN} \right)^2 \]

 \[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} \left(V_{GS} - V_{TN} \right)^2 \]

- **Substitute by given values**
 \[4 = V_{GS} + \left(\frac{25 \times 10^{-6}}{2} \right) \left(\frac{39 \times 10^3}{2} \right) \left(V_{GS} - 1 \right)^2 \]

- **Solving the quadratic equation results in**
 \[V_{GS} = -2.71 \text{V}, +2.66 \text{V} \]

- **Since** \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{V} \), we will ignore it.

- **Substituting with** \(V_{GS} = +2.66 \text{V} \) results in \(I_D = 34.4 \mu\text{A} \)

- **Applying KVL at D-S loop,**
 \[V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{V} \]

- **Since** \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.

- **Q-pt:** \((34.4 \ \mu\text{A}, 6.08 \text{V}) \) with \(V_{GS} = 2.66 \text{V} \)
Example 2

Solution

Apply KVL at G-S Loop:
\[V_{EQ} = V_{GS} + I_D R_S \]

Using \[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \]

\[\therefore V_{EQ} = V_{GS} + \frac{K_n R_S}{2} (V_{GS} - V_{TN})^2 \]

Substitute by given values 4 = \(V_{GS} + \frac{(25 \times 10^{-6})(39 \times 10^3)}{2} (V_{GS} - 1)^2 \)

Solving the quadratic equation results in \(V_{GS} = -2.71 \text{V}, +2.66 \text{V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -2.71 \text{V} \), we will ignore it

Substituting with \(V_{GS} = +2.66 \text{V} \) results in \(I_D = 34.4 \mu A \)

Applying KVL at D-S loop, \(V_{DD} = I_D (R_D + R_S) + V_{DS} \rightarrow V_{DS} = 6.08 \text{V} \)

Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.

Q-pt: (34.4 \(\mu A \), 6.08 \text{V}) with \(V_{GS} = 2.66 \text{V} \)
Example 3
Bias Analysis with Body Effect

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TO} = 1\,V\), \(2\phi_F = 0.6\,V\), \(\gamma = 0.5\sqrt{V}\), and \(K_n = 25\mu A/V^2\)

Solution

- Approach: Assume operation region, find Q-point, check to see if result is consistent with operation region

- Assumption: Transistor is saturated, \(I_G = I_B = 0\)

- Analysis: First, using KVL at the G-S loop yields:
 \[V_{GS} = V_{EQ} - I_D R_S = 6 - 22,000I_D\]
Example 3
Bias Analysis with Body Effect

Solution

- **Approach:** Assume operation region, find Q-point, check to see if result is consistent with operation region
 - **Assumption:** Transistor is saturated, $I_G = I_B = 0$
 - **Analysis:** First, using KVL at the G-S loop yields:
 \[V_{GS} = V_{EQ} - I_D R_S = 6 - 22,000 I_D \]

- **Example**
 - Find the Q-pt (I_D, V_{DS}) assuming that $V_{TO} = 1V$, $2\phi_F = 0.6V$, $\gamma = 0.5\sqrt{V}$, and $K_n = 25\mu A/V^2$
Example 3
Bias Analysis with Body Effect

Find the Q-pt \((I_D, V_DS)\) assuming that \(V_{TO} = 1\) V, \(2\phi_F = 0.6\) V, \(\gamma = 0.5\sqrt{V}\), and \(K_n = 25\mu A/V^2\)

Solution

- **Approach**: Assume operation region, find Q-point, check to see if result is consistent with operation region
- **Assumption**: Transistor is saturated, \(I_G = I_B = 0\)
- **Analysis**: First, using KVL at the G-S loop yields:
\[
V_{GS} = V_{EQ} - I_D R_S = 6 - 22,000 I_D
\]
Example 3
Bias Analysis with Body Effect

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TO} = 1V\), \(2\phi_F = 0.6V\), \(\gamma = 0.5\sqrt{V}\), and \(K_n = 25\mu A/V^2\)

Solution
- Approach: Assume operation region, find Q-point, check to see if result is consistent with operation region
- Assumption: Transistor is saturated, \(I_G = I_B = 0\)
- Analysis: First, using KVL at the G-S loop yields:
 \[V_{GS} = V_{EQ} - I_D R_S = 6 - 22,000 I_D \]
Example 3

Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2\varphi_F})$
- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$
- Using $I_D' = \left(\frac{25 \times 10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below.

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \, \mu A$
- Applying KVL at D-S loop,

 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48 V$
- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: $(88 \, \mu A, 6.48 \, V)$ with $V_{GS} = 4.06 \, V$
Example 3
Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2}\varphi_F)$

- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$

- Using $I_D' = \left(\frac{25 \times 10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \mu A$
- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48 V$

- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: $(88 \mu A, 6.48 V)$ with $V_{GS} = 4.06 V$
Example 3
Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\phi_F - \sqrt{2\phi_F})$
- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$
- Using $I_D' = \frac{(25 \times 10^{-6})}{2} (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below.

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \, \mu A$
- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48\, V$
- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: $(88 \, \mu A, 6.48 \, V)$ with $V_{GS} = 4.06 \, V$
Example 3

Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2}\varphi_F)$
- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000}I_D + 0.6 - \sqrt{0.6})$
- Using $I_D' = \frac{(25\times10^{-6})}{2} (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \ \mu A$
- Applying KVL at D-S loop,
 $$V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48V$$
- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: (88 $\ \mu A, \ 6.48 \ \text{V}$) with $V_{GS} = 4.06 \ \text{V}$
Example 3
Solution

- Since \(V_{SB} \neq 0 \) then use \(V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2}\varphi_F) \)

- \(\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6) \)

- Using \(I_D' = \frac{(25 \times 10^{-6})}{2} (V_{GS} - V_{TN})^2 \) we can solve the non-linear equation to find \(I_D \) or use the iteration method below

Iteration Method

- Estimate value of \(I_D \) and use it to find \(V_{GS} \) and \(V_{TN} \)
- Find \(I_D' \) using \(V_{GS} \) and \(V_{TN} \) from the last step
- If \(I_D' \) is not same as original \(I_D \) estimate, start again.

- The iteration sequence leads to \(I_D = 88.0 \, \mu A \)
- Applying KVL at D-S loop,
 \[V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48 \, V \]
- Since \(V_{DS} > V_{GS} - V_{TN} \). Hence saturation region assumption is correct.
- Q-pt: \((88 \, \mu A, 6.48 \, V) \) with \(V_{GS} = 4.06 \, V \)
Example 3
Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2\varphi_F})$
- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000i_D} + 0.6 - \sqrt{0.6})$
- Using $i'_D = \left(\frac{25 \times 10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find i_D or use the iteration method below

Iteration Method

- Estimate value of i_D and use it to find V_{GS} and V_{TN}
- Find i'_D using V_{GS} and V_{TN} from the last step
- If i'_D is not same as original i_D estimate, start again.

- The iteration sequence leads to i_D = 88.0 μA
- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - i_D(R_D + R_S) = 10 - 40,000i_D = 6.48$V
- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: (88 μA, 6.48 V) with V_{GS} = 4.06 V
Example 3

Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2\varphi_F})$

- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$

- Using $I'_D = \left(\frac{25 \times 10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below.

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I'_D using V_{GS} and V_{TN} from the last step
- If I'_D is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \mu A$
- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48V$
- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: $(88 \mu A, 6.48 V)$ with $V_{GS} = 4.06 V$
Example 3

Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma (\sqrt{V_{SB} + 2\varphi_F} - \sqrt{2\varphi_F})$

- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$

- Using $I_D' = \left(\frac{25\times10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \, \mu A$

- Applying KVL at D-S loop,

 $V_{DS} = V_{DD} - I_D (R_D + R_S) = 10 - 40,000I_D = 6.48 \, V$

- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.

- Q-pt: $(88 \, \mu A, 6.48 \, V)$ with $V_{GS} = 4.06 \, V$
Example 3

Solution

Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma (\sqrt{V_{SB}} + 2\varphi_F - \sqrt{2}\varphi_F)$

\[\therefore V_{TN} = 1 + 0.5(\sqrt{22000}\,i_D + 0.6 - \sqrt{0.6}) \]

Using $I'_D = \left(\frac{25\times10^{-6}}{2}\right)(V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below.

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I'_D using V_{GS} and V_{TN} from the last step
- If I'_D is not same as original I_D estimate, start again.

The iteration sequence leads to $I_D = 88.0 \, \mu A$

Applying KVL at D-S loop,

$V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48 \, V$

- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.
- Q-pt: $(88 \, \mu A, 6.48 \, V)$ with $V_{GS} = 4.06 \, V$
Example 3
Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB} + 2\varphi_F} - \sqrt{2\varphi_F})$

- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I_D} + 0.6 - \sqrt{0.6})$

- Using $I_D' = \left(\frac{25 \times 10^{-6}}{2}\right) (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}
- Find I_D' using V_{GS} and V_{TN} from the last step
- If I_D' is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \mu A$
- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48V$

- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.

Q-pt: $(88 \mu A, 6.48 V)$ with $V_{GS} = 4.06 V$
Example 3

Solution

- Since $V_{SB} \neq 0$ then use $V_{TN} = V_{TO} + \gamma(\sqrt{V_{SB} + 2\varphi_F} - \sqrt{2\varphi_F})$

- $\therefore V_{TN} = 1 + 0.5(\sqrt{22000I'_D + 0.6} - \sqrt{0.6})$

- Using $I'_D = \frac{(25 \times 10^{-6})}{2} (V_{GS} - V_{TN})^2$ we can solve the non-linear equation to find I_D or use the iteration method below

Iteration Method

- Estimate value of I_D and use it to find V_{GS} and V_{TN}

- Find I'_D using V_{GS} and V_{TN} from the last step

- If I'_D is not same as original I_D estimate, start again.

- The iteration sequence leads to $I_D = 88.0 \, \mu A$

- Applying KVL at D-S loop,
 $V_{DS} = V_{DD} - I_D(R_D + R_S) = 10 - 40,000I_D = 6.48 V$

- Since $V_{DS} > V_{GS} - V_{TN}$. Hence saturation region assumption is correct.

- Q-pt: $(88 \, \mu A, 6.48 \, V)$ with $V_{GS} = 4.06 \, V$
Example 4
Bias with Feedback

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\) V, and \(K_n = 260\,\mu\text{A}/V^2\)

Solution
- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{DS} = V_{GS}\)
- Using KVL at the D-S loop yields: \(V_{DS} = V_{GS} = V_{DD} - I_D R_D\)
Example 4
Bias with Feedback

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\, \text{V}\), and \(K_n = 260\, \mu\text{A}/\text{V}^2\)

Solution

- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{DS} = V_{GS}\)
- Using KVL at the D-S loop yields: \(V_{DS} = V_{GS} = V_{DD} - I_D R_D\)
Example 4
Bias with Feedback

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\,\text{V}\), and \(K_n = 260\,\mu\text{A}/\text{V}^2\)

Solution
- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{DS} = V_{GS}\)
- Using KVL at the D-S loop yields: \(V_{DS} = V_{GS} = V_{DD} - I_D R_D\)
Example 4
Bias with Feedback

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TN} = 1\) V, and \(K_n = 260\mu A/V^2\)

Solution

- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{DS} = V_{GS}\)
- Using KVL at the D-S loop yields: \(V_{DS} = V_{GS} = V_{DD} - I_D R_D\)
Example 4
Solution

Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

Substitute in the last KVL equation yields:
\[V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \]

Substitute by the given values:
\[\therefore V_{GS} = 3.3 - \left(\frac{2.6 \times 10^{-4}}{2}\right)(10^4) (V_{GS} - 1)^2 \]

Solve the quadratic equation: \(\therefore V_{GS} = -0.769\,V, +2.00\,V \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769\,V \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields: \(I_D = 130\,\mu A \)

Q-pt: (130 \(\mu \)A, 2 V) with \(V_{GS} = 2\,V \)
Example 4

Solution

Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

Substitute in the last KVL equation yields:
\(V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \)

Substitute by the given values:
\[V_{GS} = 3.3 - \frac{(2.6 \times 10^{-4})(10^4)}{2} (V_{GS} - 1)^2 \]

Solve the quadratic equation: \(\therefore V_{GS} = -0.769 \text{V}, +2.00 \text{V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{V} \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields: \(I_D = 130 \mu A \)

Q-pt: \((130 \mu A, 2 \text{V}) \) with \(V_{GS} = 2 \text{V} \)
Example 4
Solution

- Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

- Substitute in the last KVL equation yields:
 \(V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \)

- Substitute by the given values:
 \[\therefore V_{GS} = 3.3 - \frac{(2.6 \times 10^{-4})(10^4)}{2} (V_{GS} - 1)^2 \]

- Solve the quadratic equation: \(\therefore V_{GS} = -0.769 \text{V}, +2.00 \text{V} \)

- Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{V} \) and MOSFET will be cut-off, it will be ignored.

- Substitute in the current equation yields: \(I_D = 130 \mu A \)

- Q-pt: \((130 \mu A, 2 \text{V})\) with \(V_{GS} = 2 \text{V} \)
Example 4
Solution

Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

Substitute in the last KVL equation yields:
\[V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \]

Substitute by the given values:
\[\therefore V_{GS} = 3.3 - \frac{(2.6 \times 10^{-4})(10^4)}{2} (V_{GS} - 1)^2 \]

Solve the quadratic equation: \(\therefore V_{GS} = -0.769 \text{V}, +2.00 \text{V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{V} \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields: \(I_D = 130 \mu \text{A} \)

Q-pt: (130 \(\mu \text{A}, 2 \text{ V} \)) with \(V_{GS} = 2 \text{ V} \)
Example 4

Solution

Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

Substitute in the last KVL equation yields:
\(V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \)

Substitute by the given values:
\[\therefore V_{GS} = 3.3 - \left(\frac{2.6 \times 10^{-4}}{2}\right)(10^4) (V_{GS} - 1)^2 \]

Solve the quadratic equation: \(\therefore V_{GS} = -0.769 \text{V}, +2.00 \text{V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{V} \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields: \(I_D = 130 \mu \text{A} \)

Q-pt: \((130 \mu \text{A}, 2 \text{V})\) with \(V_{GS} = 2 \text{V} \)
Example 4

Solution

Since the transistor at saturation we can use: \(I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \)

Substitute in the last KVL equation yields:
\[V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \]

Substitute by the given values:
\[\therefore V_{GS} = 3.3 - \frac{(2.6 \times 10^{-4})(10^4)}{2} (V_{GS} - 1)^2 \]

Solve the quadratic equation : \(\therefore V_{GS} = -0.769 \text{ V}, +2.00 \text{ V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{ V} \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields: \(I_D = 130 \mu A \)

Q-pt: (130 \(\mu A \), 2 V) with \(V_{GS} = 2 \text{ V} \)
Example 4
Solution

Since the transistor at saturation we can use:
\[I_D = \frac{K_n}{2} (V_{GS} - V_{TN})^2 \]

Substitute in the last KVL equation yields:
\[V_{GS} = V_{DD} - \frac{K_n R_D}{2} (V_{GS} - V_{TN})^2 \]

Substitute by the given values:
\[\therefore V_{GS} = 3.3 - \frac{(2.6 \times 10^{-4})(10^4)}{2} (V_{GS} - 1)^2 \]

Solve the quadratic equation: \(\therefore V_{GS} = -0.769 \text{V}, +2.00 \text{V} \)

Since \(V_{GS} < V_{TN} \) for \(V_{GS} = -0.769 \text{V} \) and MOSFET will be cut-off, it will be ignored.

Substitute in the current equation yields:
\[I_D = 130 \mu\text{A} \]

Q-pt: \((130 \mu\text{A}, 2 \text{V}) \) with \(V_{GS} = 2 \text{V} \)
Example 5
Enhancement PMOS

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\) V, and \(K_p = 50 \mu A/V^2\)

Solution
- **Assumption:** \(I_G = I_B = 0\)
- **Analysis:** Transistor is saturated since \(V_{SD} = V_{SG}\)
- **Applying KVL at D-S loop:**
 \[-15V + (220k\Omega)I_D + V_{SG} = 0 \]
- \(\therefore 15V - (220k\Omega)\frac{50}{2} \frac{\mu A}{V^2} (V_{SG} - 2)^2 - V_{SG} = 0 \)
- \(\therefore V_{SG} = 0.369\) V, 3.45 V
- Since \(V_{SG} = 0.369\) V < \(|V_{TP}| = 2\) V, \(\therefore V_{SG} = 3.45\) V and \(I_D = 52.5\) mA.
- **Q-pt:** (52.2 \(\mu A\), 3.45 V)
Example 5
Enhancement PMOS

Example
- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, \text{V}\), and \(K_p = 50\, \mu\text{A}/\text{V}^2\)

Solution
- **Assumption:** \(I_G = I_B = 0\)
- **Analysis:** Transistor is saturated since \(V_{SD} = V_{SG}\)
- **Applying KVL at D-S loop:** \(-15\, \text{V} + (220\, \text{k}\Omega)I_D + V_{SG} = 0\)
- \(\therefore 15\, \text{V} - (220\, \text{k}\Omega)\frac{50\, \mu\text{A}}{\text{V}^2} (V_{SG} - 2)^2 - V_{SG} = 0\)
- \(\therefore V_{SG} = 0.369\, \text{V}, 3.45\, \text{V}\)
- **Since** \(V_{SG} = 0.369\, \text{V} < |V_{TP}| = 2\, \text{V}\), \(\therefore V_{SG} = 3.45\, \text{V}\) and \(I_D = 52.5\, \text{mA}\).
- **Q-pt:** \((52.2\, \mu\text{A}, 3.45\, \text{V})\)
Example 5
Enhancement PMOS

Example

Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, \text{V}\), and \(K_p = 50\, \mu\text{A}/\text{V}^2\)

Solution

- **Assumption:** \(I_G = I_B = 0\)
- **Analysis:** Transistor is saturated since \(V_{SD} = V_{SG}\)
 - Applying KVL at D-S loop: \(-15\, \text{V} + (220\, \text{k}\Omega)I_D + V_{SG} = 0\)
 - \(\therefore 15\, \text{V} - (220\, \text{k}\Omega)\frac{50}{2} \frac{\mu\text{A}}{\text{V}^2} (V_{SG} - 2)^2 - V_{SG} = 0\)
 - \(\therefore V_{SG} = 0.369\, \text{V}, 3.45\, \text{V}\)
 - Since \(V_{SG} = 0.369\, \text{V} < |V_{TP}| = 2\, \text{V}\), \(\therefore V_{SG} = 3.45\, \text{V}\) and \(I_D = 52.5\, \text{mA}\).
 - Q-pt: \((52.2\, \mu\text{A}, 3.45\, \text{V})\)
Example 5
Enhancement PMOS

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, V\), and \(K_p = 50\, \mu A/V^2\)

Solution

- **Assumption:** \(I_G = I_B = 0\)
- **Analysis:** Transistor is saturated since \(V_{SD} = V_{SG}\)
- **Applying KVL at D-S loop:**
 \[-15\, V + (220\, \text{k}\Omega)I_D + V_{SG} = 0\]
 \[\therefore 15\, V - (220\, \text{k}\Omega)\frac{50}{2} \left(\frac{\mu A}{V^2}\right) (V_{SG} - 2)^2 - V_{SG} = 0\]
 \[\therefore V_{SG} = 0.369\, V, 3.45\, V\]
- Since \(V_{SG} = 0.369\, V < |V_{TP}| = 2\, V\), \(\therefore V_{SG} = 3.45\, V\) and \(I_D = 52.5\, mA\).
- **Q-pt:** \((52.2\, \mu A, 3.45\, V)\)
Example 5
Enhancement PMOS

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, V\), and \(K_p = 50\, \mu A/V^2\)

Solution

- **Assumption:** \(I_G = I_B = 0\)
- **Analysis:** Transistor is saturated since \(V_{SD} = V_{SG}\)
- **Applying KVL at D-S loop:** \(-15\, V + (220\, k\Omega)I_D + V_{SG} = 0\)
- \(\therefore 15\, V - (220\, k\Omega)\frac{50}{2} \frac{\mu A}{V^2} (V_{SG} - 2)^2 - V_{SG} = 0\)
- \(\therefore V_{SG} = 0.369\, V, 3.45\, V\)
- Since \(V_{SG} = 0.369\, V < |V_{TP}| = 2\, V, \therefore V_{SG} = 3.45\, V\) and \(I_D = 52.5\, mA\).
- Q-pt: \((52.2\, \mu A, 3.45\, V)\)
Example 5
Enhancement PMOS

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, V\), and \(K_p = 50\, \mu A/V^2\)

Solution

- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{SD} = V_{SG}\)
- Applying KVL at D-S loop: \(-15\, V + (220\, k\Omega)I_D + V_{SG} = 0\)
- \(\therefore 15\, V - (220\, k\Omega)\frac{50}{2} \frac{\mu A}{V^2} (V_{SG} - 2)^2 - V_{SG} = 0\)
- \(\therefore V_{SG} = 0.369\, V, 3.45\, V\)
- Since \(V_{SG} = 0.369\, V < |V_{TP}| = 2\, V\), \(\therefore V_{SG} = 3.45\, V\) and \(I_D = 52.5\, mA\).
- Q-pt: \((52.2\, \mu A, 3.45\, V)\)
Example 5
Enhancement PMOS

Example

- Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2\, \text{V}\), and \(K_p = 50\, \mu\text{A}/\text{V}^2\)

Solution

- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{SD} = V_{SG}\)
- Applying KVL at D-S loop:
 \[-15\, \text{V} + (220\, \text{k}\Omega)I_D + V_{SG} = 0\]
- \[\therefore \frac{15\, \text{V}}{220\, \text{k}\Omega} \frac{50\, \mu\text{A}}{\text{V}^2} (V_{SG} - 2)^2 - V_{SG} = 0\]
- \[\therefore V_{SG} = 0.369\, \text{V}, 3.45\, \text{V}\]
- Since \(V_{SG} = 0.369\, \text{V} < |V_{TP}| = 2\, \text{V}\), \(\therefore V_{SG} = 3.45\, \text{V}\) and \(I_D = 52.5\, \text{mA}\).
- Q-pt: \((52.2\, \mu\text{A}, 3.45\, \text{V})\)
Example 5
Enhancement PMOS

Find the Q-pt \((I_D, V_{DS})\) assuming that \(V_{TP} = -2 V\), and \(K_p = 50 \mu A/V^2\).

Solution

- Assumption: \(I_G = I_B = 0\)
- Analysis: Transistor is saturated since \(V_{SD} = V_{SG}\)
- Applying KVL at D-S loop:
 \[-15 V + (220k\Omega)I_D + V_{SG} = 0\]
 \[\therefore 15 V - (220k\Omega) \frac{50}{2} \frac{\mu A}{V^2} (V_{SG} - 2)^2 - V_{SG} = 0\]
 \[\therefore V_{SG} = 0.369 V, 3.45 V\]
- Since \(V_{SG} = 0.369 V < |V_{TP}| = 2 V\), \(\therefore V_{SG} = 3.45 V\) and \(I_D = 52.5 mA\).
- Q-pt: \((52.2 \mu A, 3.45 V)\)
Example 6

Example

Design the shown circuit so that the transistor operates at $I_D = 0.3\, m\, A$ and $V_D = +0.4\, V$. The NMOS transistor has $V_t = 1\, V$, $\mu_n C_{ox} = 60\, \mu A/V^2$, $L = 3\, \mu m$, and $W = 120\, \mu m$.

Answer

- $R_S = 3.3\, k\Omega$, and $R_D = 7\, k\Omega$
Example 6

Design the shown circuit so that the transistor operates at $I_D = 0.3 \text{mA}$ and $V_D = +0.4 \text{V}$. The NMOS transistor has $V_t = 1 \text{V}$, $\mu_n C_{ox} = 60 \mu\text{A}/\text{V}^2$, $L = 3 \mu\text{m}$, and $W = 120 \mu\text{m}$.

Answer

- $R_S = 3.3k\Omega$, and $R_D = 7k\Omega$
Example 7

Example

Design the shown circuit so that the transistor operates at $I_D = 80 \mu A$. The NMOS transistor has $V_t = 0.6 V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $L = 0.8 \mu m$, and $W = 4 \mu m$. Also, find the drain voltage V_D.

Answer

- $R = 25k\Omega$, and $V_D = +1V$
Example 7

Example

Design the shown circuit so that the transistor operates at $I_D = 80 \mu A$. The NMOS transistor has $V_t = 0.6 V$, $\mu_n C_{ox} = 200 \mu A/V^2$, $L = 0.8 \mu m$, and $W = 4 \mu m$. Also, find the drain voltage V_D.

Answer

- $R = 25 k\Omega$, and $V_D = +1 V$
Example 8

Design the shown circuit to establish V_D of 0.1 V. The NMOS transistor has $V_t = 1 V$, and $k'_n W/L = 1 mA/V^2$. What is the effective resistance between drain and source at this operating point?

Answer

- $R_D = 12.4 k\Omega$, and $r_{ds} = 253\Omega$
Example 8

Design the shown circuit to establish V_D of 0.1 V. The NMOS transistor has $V_t = 1\, \text{V}$, and $k'_n W/L = 1\, \text{mA/V}^2$. What is the effective resistance between drain and source at this operating point?

Answer

- $R_D = 12.4k\Omega$, and $r_{ds} = 253\Omega$
Example 9

Analyze the circuit shown to determine the voltages at all nodes and the currents through all branches. The NMOS transistor has $V_t = 1\, V$, and $k'_n W/L = 1\, mA/V^2$.

Answer

- $I_G = 0\, mA$, $I_{RG} = 0.5\, \mu A$, $I_D = 0.5\, mA$, $V_G = 5\, V$, $V_S = +3\, V$, and $V_D = +7\, V$
Example 9

Example

Analyze the circuit shown to determine the voltages at all nodes and the currents through all branches. The NMOS transistor has \(V_t = 1 \text{V} \), and \(k'_n W/L = 1 \text{mA/V}^2 \).

Answer

- \(I_G = 0 \text{mA} \), \(I_{RG} = 0.5 \mu \text{A} \), \(I_D = 0.5 \text{mA} \), \(V_G = 5 \text{V} \), \(V_S = +3 \text{V} \), and \(V_D = +7 \text{V} \).
Example 10

Design the shown circuit to obtain the indicated current and voltage values. The NMOS transistor has $V_t = 1\, V$, $\mu_n C_{ox} = 120\, \mu A/V^2$, $\lambda = 0$, and $L_1 = L_2 = 1\, \mu m$.

Answer

- $R = 12.5\, k\Omega$, $W_1 = 8\, \mu m$, and $W_1 = 2\, \mu m$
Example 10

Example

Design the shown circuit to obtain the indicated current and voltage values. The NMOS transistor has $V_t = 1\, V$, $\mu_n C_{ox} = 120\, \mu A/V^2$, $\lambda = 0$, and $L_1 = L_2 = 1\, \mu m$.

Answer

- $R = 12.5\, k\Omega$, $W_1 = 8\, \mu m$, and $W_1 = 2\, \mu m$
Example 11

For the shown circuit calculate the shown current and voltage values for \(v_I = 0V, +2.5V, \) and \(-2.5V\). Assuming matched transistors with \(V_{TN} = V_{TP} = 1V, \) \(k_n = k_p = 1mA/V^2 \), and \(\lambda = 0 \).

Answer

- \(I_{DN} = I_{DP} = 1.125mA \), and \(v_o = 0V \)
- \(I_{DN} = 0.244mA, I_{DP} = 0mA, \) and \(v_o = -2.44V \)
- \(I_{DN} = 0mA, I_{DP} = 0.244mA, \) and \(v_o = +2.44V \)
Example 11

For the shown circuit calculate the shown current and voltage values for \(v_I = 0V, +2.5V, \) and \(-2.5V\). Assuming matched transistors with \(V_{TN} = V_{TP} = 1V \), \(k_n = k_p = 1mA/V^2 \), and \(\lambda = 0 \).

Answer

- \(I_{DN} = I_{DP} = 1.125mA \), and \(v_o = 0V \)
- \(I_{DN} = 0.244mA, I_{DP} = 0mA \), and \(v_o = -2.44V \)
- \(I_{DN} = 0mA, I_{DP} = 0.244mA \), and \(v_o = +2.44V \)
Example 11

For the shown circuit calculate the shown current and voltage values for $v_I = 0V$, $+2.5V$, and $-2.5V$. Assuming matched transistors with $V_{TN} = V_{TP} = 1V$, $k_n = k_p = 1mA/V^2$, and $\lambda = 0$.

Answer

- $I_{DN} = I_{DP} = 1.125mA$, and $v_o = 0V$
- $I_{DN} = 0.244mA$, $I_{DP} = 0mA$, and $v_o = -2.44V$
- $I_{DN} = 0mA$, $I_{DP} = 0.244mA$, and $v_o = +2.44V$
Example 11

Example

For the shown circuit calculate the shown current and voltage values for $v_I = 0V$, $+2.5V$, and $-2.5V$. Assuming matched transistors with $V_{TN} = V_{TP} = 1V$, $k_n = k_p = 1mA/V^2$, and $\lambda = 0$.

Answer

- $I_{DN} = I_{DP} = 1.125mA$, and $v_o = 0V$
- $I_{DN} = 0.244mA$, $I_{DP} = 0mA$, and $v_o = -2.44V$
- $I_{DN} = 0mA$, $I_{DP} = 0.244mA$, and $v_o = +2.44V$
Outline

1. MOSFET DC Analysis Procedure
2. Examples
3. MOSFET As A Current Source
MOSFET As A Current Source

- Ideal current source gives fixed output current regardless of the voltage across it.
- MOSFET behaves as an ideal current source if biased in the pinch-off region (output current depends on terminal voltage).

Notes

- \(V_{DS} \) should be greater than \(V_{DSAT} \) for proper operation.
- If the channel length modulation isn’t neglected, a finite source resistance will exist = \([\lambda I_D]^{-1} \)
MOSFET As A Current Source

- Ideal current source gives fixed output current regardless of the voltage across it.
- MOSFET behaves as an ideal current source if biased in the pinch-off region (output current depends on terminal voltage).

Notes
- V_{DS} should be greater than V_{DSAT} for proper operation
- If the channel length modulation isn’t neglected, a finite source resistance will exist $= [\lambda I_D]^{-1}$
MOSFET DC Analysis Procedure

MOSFET As A Current Source

理想的电流源在给定电压下提供固定的输出电流。

- MOSFET 在压缩区时行为类似于理想的电流源（输出电流取决于端电压）。

Notes

- V_{DS} 应该大于 V_{DSAT} 以保证正常操作。
- 如果忽视了电荷长度调制，有限的源电阻将存在，为：λI_D。
Assumptions: \(M_1 \) and \(M_2 \) have identical \(V_{TN}, K'_n, \lambda \) and are in saturation.

Analysis

\[I_{REF} = \frac{K'_n}{2} \left(\frac{W}{L} \right) M_1 (V_{GS1} - V_{TN})^2 (1 + \lambda V_{DS1}) \]

\[I_O = \frac{K'_n}{2} \left(\frac{W}{L} \right) M_2 (V_{GS2} - V_{TN})^2 (1 + \lambda V_{DS2}) \]

But \(V_{GS2} = V_{GS1} \), \(\therefore I_O = I_{REF} \left(\frac{W}{L} \right) M_2 \left(\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}} \right) \approx \left(\frac{W}{L} \right) M_2 I_{REF} \left(\frac{W}{L} \right) M_1 \]

Thus, output current mirrors reference current if \(V_{DS1} = V_{DS2} \) or \(\lambda = 0 \), and both transistors have the same \((W/L)\).
Assumptions: M_1 and M_2 have identical V_{TN}, K'_n, λ and are in saturation.

Analysis

- $I_{REF} = \frac{K'_n}{2} \left(\frac{W}{L} \right)_{M1} (V_{GS1} - V_{TN})^2 (1 + \lambda V_{DS1})$
- $I_O = \frac{K'_n}{2} \left(\frac{W}{L} \right)_{M2} (V_{GS2} - V_{TN})^2 (1 + \lambda V_{DS2})$
- But $V_{GS2} = V_{GS1}$, $\therefore I_O = I_{REF} \left(\frac{W}{L} \right)_{M2} \left(\frac{1 + \lambda V_{DS2}}{1 + \lambda V_{DS1}} \right) \approx \left(\frac{W}{L} \right)_{M2} I_{REF} \left(\frac{W}{L} \right)_{M1}$
- Thus, output current mirrors reference current if $V_{DS1} = V_{DS2}$ or $\lambda = 0$, and both transistors have the same (W/L).
Assumptions: M_1 and M_2 have identical V_{TN}, K'_n, λ and are in saturation.

Analysis

- $I_{REF} = \frac{K'_n}{2} \left(\frac{W}{L} \right)_{M1} (V_{GS1} - V_{TN})^2 (1 + \lambda V_{DS1})$
- $I_O = \frac{K'_n}{2} \left(\frac{W}{L} \right)_{M2} (V_{GS2} - V_{TN})^2 (1 + \lambda V_{DS2})$

- But $V_{GS2} = V_{GS1}$, ∴ $I_O = I_{REF} \left(\frac{W}{L} \right)_{M2} (1 + \lambda V_{DS2}) \approx \left(\frac{W}{L} \right)_{M2} I_{REF}$
- Thus, output current mirrors reference current if $V_{DS1} = V_{DS2}$ or $\lambda = 0$, and both transistors have the same (W/L).
MOSFET As A Current Source

Assumptions: M_1 and M_2 have identical V_{TN}, K_n^\prime, λ and are in saturation.

Analysis

\[I_{REF} = \frac{K_n^\prime}{2} \left(\frac{W}{L} \right) M_1 (V_{GS1} - V_{TN})^2 (1 + \lambda V_{DS1}) \]

\[I_O = \frac{K_n^\prime}{2} \left(\frac{W}{L} \right) M_2 (V_{GS2} - V_{TN})^2 (1 + \lambda V_{DS2}) \]

But $V_{GS2} = V_{GS1}$, $\therefore I_O = I_{REF} \frac{\left(\frac{W}{L} \right) M_2}{\left(\frac{W}{L} \right) M_1 (1 + \lambda V_{DS2})} \approx \left(\frac{W}{L} \right) M_2 I_{REF} \]

Thus, output current mirrors reference current if $V_{DS1} = V_{DS2}$ or $\lambda = 0$, and both transistors have the same (W/L).
MOSFET As A Current Source

Current Mirror

Assumptions: \(M_1 \) and \(M_2 \) have identical \(V_{TN}, K'_n, \lambda \) and are in saturation.

Analysis

\[I_{REF} = \frac{K'_n}{2} \left(\frac{W}{L} \right) M_1 (V_{GS1} - V_{TN})^2 (1 + \lambda V_{DS1}) \]

\[I_O = \frac{K'_n}{2} \left(\frac{W}{L} \right) M_2 (V_{GS2} - V_{TN})^2 (1 + \lambda V_{DS2}) \]

But \(V_{GS2} = V_{GS1}, \therefore I_O = I_{REF} \left(\frac{W}{L} \right) M_2 \frac{(1+\lambda V_{DS2})}{(1+\lambda V_{DS1})} \approx \left(\frac{W}{L} \right) M_2 I_{REF} \]

Thus, output current mirrors reference current if \(V_{DS1} = V_{DS2} \) or \(\lambda = 0 \), and both transistors have the same \((W/L)\).
Example 12
Current Mirror

Find the output current and the minimum output voltage v_o to maintain the given current mirror in proper operation. Assume, $I_{REF} = 50 \, \mu A$, $V_O = 12 \, V$, $V_{TN} = 1 \, V$, $K'_n = 75 \, \mu A/V^2$, $\lambda = 0 \, V^{-1}$, $(W/L)_{M1} = 2$, $(W/L)_{M2} = 10$

Analysis

$\therefore I_O = I_{REF} \frac{(W/L)_{M2}}{(W/L)_{M1}} = 250 \, \mu A$

$V_{GS} = V_{TN} + \sqrt{\frac{2I_{REF}}{K'_n \frac{W}{L}(1+\lambda V_{DS1})}} = 1 \, V + \sqrt{\frac{2(50 \, \mu A)}{2 * 75 \, \mu A/V^2}} = 1.82 \, V$

Hence, $V_{omin} = V_{GS} - V_{TN} = 0.82 \, V$
Example 12
Current Mirror

Find the output current and the minimum output voltage \(v_o \) to maintain the given current mirror in proper operation. Assume, \(I_{REF} = 50 \mu A, V_O = 12 \text{ V}, V_{TN} = 1 \text{ V}, K'_n = 75 \mu A/V^2, \lambda = 0V^{-1}, (W/L)_{M1} = 2, (W/L)_{M2} = 10 \)

Analysis

\[I_O = I_{REF} \left(\frac{W}{L} \right)_{M2} = 250 \mu A \]

\[V_{GS} = V_{TN} + \sqrt{\frac{2I_{REF}}{K'_n \left(\frac{W}{L} \right)_{M1}(1+\lambda V_{DS1})}} = 1 \text{ V} + \sqrt{\frac{2(50\mu A)}{2*75 \frac{\mu A}{V^2}}} = 1.82 \text{ V} \]

Hence, \(V_{omin} = V_{GS} - V_{TN} = 0.82 \text{ V} \).
Example 12

Current Mirror

Example

Find the output current and the minimum output voltage v_o to maintain the given current mirror in proper operation. Assume, $I_{REF} = 50 \, \mu A$, $V_O = 12 \, V$, $V_{TN} = 1 \, V$, $K'_n = 75 \, \mu A/V^2$, $\lambda = 0 \, V^{-1}$, $(W/L)_{M1} = 2$, $(W/L)_{M2} = 10$

Analysis

1. $I_O = I_{REF} \left(\frac{W}{L} \right)_{M2} = 250 \, \mu A$
2. $V_{GS} = V_{TN} + \sqrt{\frac{2I_{REF}}{K'_n \left(\frac{W}{L} \right)_{M1}(1+\lambda V_{DS1})}} = 1 \, V + \sqrt{\frac{2(50 \, \mu A)}{2*75 \, \mu A/V^2}} = 1.82 \, V$
3. Hence, $V_{omin} = V_{GS} - V_{TN} = 0.82 \, V$.
Example 12
Current Mirror

Example

Find the output current and the minimum output voltage v_o to maintain the given current mirror in proper operation. Assume, $I_{REF} = 50 \, \mu A$, $V_O = 12 \, V$, $V_{TN} = 1 \, V$, $K_n' = 75 \, \mu A/V^2$, $\lambda = 0 V^{-1}$, $(W/L)_{M1} = 2$, $(W/L)_{M2} = 10$

Analysis

1. $I_O = I_{REF} \left(\frac{W}{L}\right)_{M2} = 250 \, \mu A$

2. $V_{GS} = V_{TN} + \sqrt{\frac{2I_{REF}}{K_n'\left(\frac{W}{L}\right)(1+\lambda V_{DS1})}} = 1 \, V + \sqrt{\frac{2(50 \, \mu A)}{2 \times 75 \, \mu A/V^2}} = 1.82 \, V$

3. Hence, $V_{omin} = V_{GS} - V_{TN} = 0.82 \, V$.