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Abstract 

 
Interrupt processing can be a major bottleneck in the end-to-end performance of high-speed networks.  The 

performance of Gigabit network end hosts or servers can be severely degraded due to interrupt overhead 

caused by heavy incoming traffic.  Under heavy network traffic, the system performance will be negatively 

affected due to interrupt overhead caused by the incoming traffic.  In particular, excessive latency and 

significant degradation in system throughput can be experienced.  In this paper, we present a throughput-delay 

analysis of such behavior.  We develop analytical models based on queueing theory and Markov processes.  In 

our analysis, we consider and model three systems: ideal, PIO, and DMA.  In ideal system, the interrupt 

overhead is ignored.  In PIO, DMA is disabled and copying of incoming packets is performed by the CPU.  In 

DMA, copying of incoming packet is performed by DMA engines.  For high-speed network hosts, both PIO and 

DMA can be desirable configuration options.  The analysis yields insight into understanding and predicting the 

impact of system and network choices on the performance of interrupt-driven systems when subjected to light 

and heavy network loads.    Simulations and reported experimental results show that our analytical models are 

valid and give a good approximation. 
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1. Introduction 

Nowadays, a massive deployment of 1-Gigabit and 10-Gigabit for Ethernet network devices is taking place. 

However, existing operating systems still use for the most part the same mechanisms to handle both network 

processing and traditional I/O devices.  Traditional operating systems were designed to handle network devices 

that interrupt on average rate of around 1000 packets per second, as is the case for shared 10Mbps Ethernet [1].  

The cost of handling interrupts in these traditional systems was low enough that any normal system would 

spend only a fraction of its CPU time handling interrupts. The shift to higher packet arrival rate can subject a 

host to congestive collapse.  Such a collapse is driven primarily by interrupt handling and overhead.   
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Under heavy traffic load such as that of Gigabit networks, the performance of interrupt-driven systems can be 

degraded significantly, and thus resulting in a poor host performance perceived by the user.  For one thing, 

every hardware interrupt, for every incoming packet, is associated with context switching of saving and 

restoring processor’s state as well as potential cache/TLB pollution.  More importantly, interrupt-level 

handling, by definition, has absolute priority over all other tasks.  If interrupt rate is high enough, the system 

will spend all of its time responding to interrupts, and nothing else will be performed; and hence, the system 

throughput will drop to zero.  This situation is called receive livelock [2].   In this situation, the system is not 

deadlocked, but it makes no progress on any of its tasks, causing any task scheduled at a lower priority to starve 

or not have a chance to run.  

 

The receive livelock was established by experimental work on real systems in [2-4].  A number of solutions 

have been proposed in the literature [1,3,5-13] to address network and system overhead and improve the OS 

(Operating System) performance.  Some of these solutions include interrupt coalescing, OS-bypass protocol, 

zero-copying, jumbo frames, polling, pushing some or all protocol processing to hardware, etc.  In most cases, 

published performance results are based on research prototypes and experiments.  However little or no research 

has been done to study analytically the impact of interrupt overhead on OS performance.  In [9,13],  a simple 

calculation of the interrupt overhead was presented.  In [9], a mathematical equation was given directly for 

application throughput based on packet length and cost of interrupt overhead per byte and per packet.  In [13], 

the interrupt overhead was computed based on the arrival rate, ISR (Interrupt Service Routine) time, and a fixed 

cost of interrupt overhead.  Both of these calculations are very simple.  The calculations fail to consider 

complex cases such as interrupt masking, CPU utilization, and effect of ISR and its overhead on packet 

processing at OS and application levels.  Moreover, the calculations fail to capture the receive livelock 

phenomenon and identify the saturation point of the host.   

 

In [17], a preliminary delay-throughput analysis was presented for interrupt-driven kernels when utilizing 

DMA (Direct Memory Access) in high-speed networks such as that of Gigabit Ethernet. In this paper, we 

present three analytical models that are based on queueing theory and Markov processes. We first present an 

analytical model for the ideal system when interrupt overhead is ignored.  We then present two models which 

describe the impact of high interrupt rate on system performance. One model is for PIO (Programmable 

Input/Output) option in which DMA is disabled or for host in which the network adapters are not equipped with 

DMA engines.  The other model is for DMA option in which network adapters are equipped with DMA 

engines.   As opposed to prototyping and simulation, these models can be utilized to give a quick and easy way 

of studying the receive livelock phenomenon and system performance in high-speed and Gigabit networks.  

These models yield insight into understanding and predicting the performance and behavior of interrupt-driven 

systems at low and at very-high network traffic.  The models can also be used to aid in system calibration and 

diagnosis at a later stage when the system is up and running.    

 

In this paper, we study the performance in terms of system throughput and delay.  Also, equations are given for 

CPU utilization and saturation conditions.  Since our analysis is based on queueing theory, our analytical work 

can be easily extended to study mean waiting time, mean number of packets in system and queues, blocking 
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probability, etc. [18].  In addition, our analytical work can be important for engineering and designing various 

NIC (Network Interface Card) and system parameters.  These parameters may include the proper service times 

for ISR handling and protocol processing, buffer sizes, CPU bandwidth allocation for protocol process and 

application, etc.   

 

The rest of the paper is organized as follows.  Section 2 presents analysis for the above three models.  Section 3 

gives verification and validation of analysis. Finally, Section 4 concludes the study and identifies future work. 

2. Analysis 

In this section we present an analytical study to examine the impact of interrupt overhead on system 

performance. First we define the system parameters.  Let λ be the mean incoming packet arrival rate, and µ be 

the mean protocol processing rate carried out by the kernel. Therefore 1/µ  is the time the system takes to 

process the incoming packet and deliver it to the application process.  This time includes primarily the network 

protocol stack processing carried out by the kernel, excluding any interrupt handling.  Let TISR be the interrupt 

handling time, which is basically the interrupt service routine time for handling incoming packets.  We will also 

define µλρ = .  ρ  is as a measure of the traffic intensity or system load.  We study the system performance in 

terms of system throughput (γ) and delay (R).  System throughput is the rate at which packets are delivered by 

the kernel to the application process.  System delay is the latency of delivering one packet by the kernel to the 

application once received by the network adapter.  In addition, we investigated two important and critical 

operating points for the system, mainly receive lock and saturation.  Receive-livelock point is the point at 

which system throughput becomes zero.  Saturation point is the point at which the system can not keep up with 

the offered load. 

 

Throughout our analysis, we assume the following: 

i) It is reasonable not to assume the times for protocol processing or ISR handling to be constant.   Both of 

these service times change due to various system activities.  For example ISR handling for incoming 

packets can be interrupted by other interrupts of higher priority, e.g. timer interrupts.  Also, protocol 

processing can be interrupted by higher priority kernel tasks, e.g. scheduler.  For our analysis, we assume 

both of these service times to be exponential.  In Section 3, we demonstrate that this assumption gives a 

good approximation. 

ii) The network traffic follows a Poisson process, i.e. the packet interarrival times are exponentially 

distributed. 

iii) The packet sizes are fixed.  This assumption is true for Constant Bit Rate (CBR) traffic such as 

uncompressed interactive audio and video conferencing.  This assumption is also true for all ATM traffic 

in which cells of a fixed size are always used. 

 

Our analytical models assume the packet arrivals are Poisson, and the packets are of a fixed size.  In practice, 

network packets are not always fixed in size, and their arrivals do not always follow a Poisson process.  An 

analytical solution becomes intractable when considering variable-size packets and non-Poisson arrivals.  As 
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we will demonstrate in Section 3, it turns out that our model with the above assumptions gives a good 

approximation to real experimental measurements.  Traffic with variable-size packets, e.g. Jumbo frames, and 

other traffic distributions, e.g. bursty traffic [19], are currently being studied by the authors using simulations 

and results are expected to be reported in the near future. 

 

2.1. Ideal System 

In the ideal system, we assume the overhead involved in generating interrupts is totally ignored.  With our 

assumptions, we can simply model such a system as an M/M/1/B queue with a Poisson packet arrival rate λ and 

a mean protocol processing time of µ/1  that has an exponential distribution. B is the maximum size the system 

buffer can hold.  M/M/1/B queueing model is chosen as opposed to M/M/1 since we can have the arrival rate 

go beyond the service rate, i.e., 1>ρ .  This assumption is a must for Gigabit environment where under heavy 

load λ can be very high compared to µ.  

 

2.2. PIO Option 

This option is for hosts which have no DMA engines or for hosts that disable the DMA.  Disabling DMA can 

be desirable if the host’s PCI bus is highly contended by other I/O devices or the incoming packets, to be 

transferred to host memory, arrive at a low rate.  According to [20], PIO option can also be attractive when 

considering factors such as cost, simplicity, and speed and efficiency in copying relatively small-size packets.  

Also, traditional network adapters or Network Interface Cards (NICs) as those of 10Mbps Ethernet and 16Mbps 

Token Ring are not equipped with DMA engines.  In PIO, the copying of an arrived packet from NIC buffer to 

host kernel memory is performed by the CPU as part of ISR handling for each incoming packet.  This method 

of copying is known as PIO (Programmed I/O).  In PIO, the CPU during the ISR handling sits in a tight loop 

copying data from the NIC memory into the host memory.  After the packet is copied, the ISR then sets a 

software interrupt to trigger packet protocol processing.  It is very possible that one or more incoming packets 

arrive during the execution of the ISR.  For this, the ISR handling must not exit unless all incoming packets are 

copied from the NIC to the kernel memory.  When the network packet processing is triggered, the kernel 

processes the incoming packet by executing the network protocol stack and delivers the packet data to user 

application [3]. 

 

There are two possible system delivery options of packet to user applications.  The first option is to perform an 

extra copy of packet from kernel space to user space.  This is done as part of the OS protection and isolation of 

user space and kernel space.  This option will stretch the time of protocol processing for each incoming packet.  

A second option eliminates this extra copy using different techniques described in [6-8,14-16].   The kernel is 

written such that the packet is delivered to the application using pointer manipulations.  Our analytical model 

captures both options.  The only difference is in the protocol processing time.  The second option will have a 

smaller processing time than the first. 
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After the notification of the arrival of a new packet, the kernel will process the packet by first examining the 

type of frame being received and then invoking immediately the proper handling stack function or protocol, e.g. 

ARP, IP, TCP, etc.  The packet will remain in the kernel or system memory until it is discarded or delivered to 

the user application.  The network protocol processing for packets carried out by the kernel will continue as 

long as there are packets available in the system memory buffer.  However, this protocol processing of packets 

can be interrupted by ISR executions as a result of new packet arrivals.  This is so because packet processing by 

the kernel runs at a lower priority than the ISR. 

 

Modeling Interrupts is a Challenging and Difficult Task.  One may think that such an interrupt-driven 

system can be simply modeled as a priority queueing system with preemption in which there are two arrivals of 

different priorities. The first arrival is the arrival of ISRs, and has the higher priority.  The second arrival is the 

arrival of incoming packets, and has the lower priority.  As noted the ISR execution preempts protocol 

processing.   However this is an invalid model because ISR handling is not counted for every packet arrival.  

ISR handling is ignored if the system is servicing another interrupt of the same level.  In other words, if the 

system is currently executing another ISR, the new ISR which is of the same priority interrupt level will be 

masked off and there will be no service for it.  We use instead a queueing model based on the mean effective 

service rate.  

 

We model the interrupt-driven system as an M/G/1/B queue with a Poisson packet arrival rate of λ and a mean 

effective service time of µ ′/1   that has a general distribution.  The mean effective service time is the effective 

CPU time for packet processing carried out by the kernel's network protocol stack.  We next determine the 

mean effective service time for such a behavior. 

 

Let us assume copying of the packet from NIC to kernel memory is exponentially distributed with a mean 

service time of c/1 .  Also for simplicity, let us assume that the TISR for servicing one packet, including the 

copying of the packet from NIC to kernel memory, is exponentially distributed with a mean of r/1 .  One can 

express the mean effective service rate as 

 

µ ′ = Rate at which packets get processed by the kernel’s network protocol given that the CPU is available 

for protocol processing, i.e. the CPU is not handling ISR. 

µ ′   = ⋅µ (% CPU availability for protocol processing). (1) 

 

 
Figure 1. Markov state transition diagram for modeling CPU usage with PIO 
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In order to determine the CPU availability percentage for protocol processing and interrupt handling, we use a 

Markov process to model the CPU usage, as illustrated in Figure 1.   The process has state (0,0) and states 

(1,n).  State (0,0) represents the state where the CPU is available for protocol processing. States (1,n) with 0 ≤ n 

< ∞ represents the state where the CPU is busy handling interrupts.  n denotes the number of interrupts that are 

batched or masked off during TISR.  Note that n+1 denotes the number of packet arrivals during ISR handling.  

In other words, state (1,0) means there are no interrupts being masked off and the CPU is busy handling an ISR 

with one packet arrival.  State (1,1) means that one interrupt has been masked off and the CPU is busy handling 

an ISR with two packet arrivals:  one packet will be serviced with a mean rate of r and the other with a mean 

rate of c. 

 

The steady-state solution of the Markov chain, shown in Figure 1, can be expressed as 
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It is to be noted from equation (1) that the distribution of the effective service time is exponential with a mean 

µ ′1 , as µ  is multiplied by a constant fraction, that is (% CPU availability for protocol processing). Therefore, 

the system can be modeled as M/M/1/B queue with a mean service rate of µ ′ . 

 

2.3. DMA Option  

PIO-based design or configuration can be an attractive option due to cost, simplicity, and speed and efficiency 

in copying relatively small-size packets, as discussed in Section 2.2.  However, a major drawback for PIO is 

burdening the CPU with copying incoming packets from the NIC to kernel memory.  In order to save CPU 

cycles consumed in copying packets, major network vendors equip high-speed NICs with DMA engines. These 

vendors include Intel, 3Com, HP, Alteon owned now by Nortel, Sundace, and NetGear.  NICs are equipped 

with a receive Rx DMA engine and a transmit Tx DMA engine.  A Rx DMA engine handles transparently the 

movement of packets from the NIC internal buffer to the host system memory.  A Tx DMA engine handles 

transparently the movement of packets from the host memory to the NIC internal buffer.  It is worth noting that 

the transfer rate of incoming traffic into the kernel memory across the PCI bus is not limited by the throughput 

of the DMA channel.  These days a typical DMA engine can sustain over 1 Gbps of throughput for PCI 32/33 

MHz bus and over 4 Gbps for PCI 64/66 MHz bus [21, 22]. 

 

The DMA-based design option can be modeled as an M/G/1/B queue with a Poisson packet arrival rate of λ 

and a mean effective service time of µ′1  that has a general distribution. In order to determine the mean 

effective service time µ′1 , we need to determine the CPU availability percentage for protocol processing and 

interrupt handling.  We use a Markov process to model the CPU usage, as illustrated in Figure 2.   The process 

has state (0,0) and states (1,n).  State (0,0) represents the state where the CPU is available for protocol 

processing. States (1,n) with 0 ≤ n < ∞ represents the state where the CPU is busy handling interrupts.  n 

denotes the number of interrupts that are batched or masked off during TISR.  Note that n+1 denotes the number 

of packet arrivals during ISR handling.  Therefore, state (1,0) means there are no interrupts being masked off 

and the CPU is busy handling an ISR with one packet arrival.  State (1,1) means that one interrupt has been 

masked off and the CPU is busy handling an ISR with two packet arrivals.  Both of these packets will be 

serviced together with a mean rate r of servicing only one packet. 

 

 
 

Figure 2. Markov state transition diagram for modeling CPU usage with DMA 
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The steady-state difference equations can be derived from pQ=0 , where p },,,,{ 2,11,10,10,0 Lpppp=  and Q is 

the rate-transition matrix and is defined as follows: 
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As we already know the mean effective service time µ ′1  is exponential.  Please refer to equation (2). 

Therefore, this system can also be modeled as M/M/1/B queue with a mean service rate of µ ′ . 

 

2.4. Throughput Analysis  

In an M/M/1/B model or the ideal system, the mean system throughput γ  can be expressed as 

)1( 0p−= µγ , (7) 

where p0 is the probability of zero packets being processed by the kernel's network protocol stack. p0 is given 

by 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
+

≠
−

−

=
+

).1(
1

1

),1(
1

1
1

0

ρ

ρ
ρ

ρ

B

p
B

 (8) 

 



 9 

For PIO, the system throughput can be expressed by equation (7).  However, the mean service rate µ  of 

equation (7) must be replaced by the mean effective service rate µ′  of equation (5).  Similarly, for DMA, the 

system throughput can be expressed by equation (7).  However, the mean service rate µ  of equation (7) must 

be replaced by the mean effective service rate µ′  of equation (6).   

2.5. Receive-Livelock Point 

A critical operating point for a system is the condition at which the system throughput becomes zero.  This 

condition is where receive livelock occurs.  By examining equation (7), system throughput (γ) can be zero if  p0 

= 1 or the mean service rate µ  is zero.   

 

For PIO, the receive-livelock point becomes zero when the mean effective service rate µ′  of equation (5) 

becomes zero.  Based on equation (5), the receive-livelock point depends only the values of λ and c .  It 

precisely occurs when c≥λ .  Further, the receive livelock always occurs at the same point regardless of 

improving the network protocol processing for packets.  In another words, utilizing a mechanism such as zero-

copy, in which the protocol processing is reduced, does not eliminate receive livelock.    

 

For DMA, the mean effective service rate µ′  of equation (6) depends only on the values of λ and r, as copying 

has been eliminated.  From theoretical aspect as given by equation (6), µ′  does not become zero unless ∞→λ .  

This means that the receive-livelock point for DMA occurs theoretically when ∞→λ .  However from 

practical aspect, having an incoming packet arrival rate λ  to reach infinity is not possible due to the physical 

limitation of host hardware as well as the capacity limit of network link.  Host physical limitation is related to 

PCI bus, DMA engines, memory speed, etc.  Nowadays the transfer bit rate of a 64/66 MHz PCI bus goes little 

over 4 Gbps [21,22].  Also the current exiting Ethernet links have a bandwidth of up to 10 Gbps.  Of course the 

incoming packet rate λ  is much less than such a bit rate as it gets reduced by the packet size and payload 

overhead.  Therefore from practical aspect, the receive livelock should not occur when employing DMA. 

 

2.6. Saturation Point 

Another critical operating point for a system is the situation at which the system can not keep up with the 

offered network load.  This is referred to as the saturation point where 1=ρ , or is defined as the “cliff” point of 

system throughput.  It is where the throughput starts falling as the network load increases.   

 

For PIO, the saturation point can be expressed as 
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Since the term ( )λrcrc −+  is always positive, then 
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For DMA, the saturation point can be expressed as 
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the saturation point for this system occurs when 
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It is to be noted that equation (9) and equation (10) can also be derived by finding the maximum point of 

system throughput. This can be done by taking the derivative of the system throughput of equation (7) with 

respect to λ  and setting it to zero, i.e.  0=
λ
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, and then solving for λ .    

 

2.7. Delay Analysis 
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In M/M/1/B model or the ideal system, the mean system packet processing delay )(rE  can be given by 
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For systems with PIO and DMA, the mean system delay per packet is affected by both ISR handling and 

protocol processing.  An incoming packet experiences a delay due to interrupt handling and due to the delay of 

protocol processing.  To determine this delay analytically, we apply Jackson’s queueing theorem in which the 

mean system delay is approximated to be the sum of the mean delay of interrupt handling plus the mean delay 

of protocol processing.   Hence the total mean system delay, )(rE ,  according to Jackson theorem can be 

expressed as 
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where )(rEISR   is the mean delay due to ISR and )(rEIP  is mean delay due to  protocol processing. 

 

For PIO, )(rEISR  can be computed using the Markov chain depicted in Figure 1.  First we compute the average 

number of packets being serviced by one ISR, )(nEISR , as follows 
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Therefore the mean delay due to ISR, )(rEISR , can be computed using Little’s law as 
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As for the mean delay caused by protocol processing, )(rEIP , in PIO, it is simply the mean delay encountered 

in the M/M/1/B queueing system with ⎟⎟
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 and 'λ  is the mean effective arrival rate.  'λ  is the same as the mean 

system throughput γ  given by equation (7) with µµ ′= .   In PIO, remember that the µ ′  , to be substituted in 

the equations of  'λ  and ρ ,  is given by equation (5).   

 

For DMA, )(rEISR   is simply  r/1 .  This is so due to the nature of servicing packets during ISR handling.  The 

mean ISR handling time for one packet or many packets is the same, i.e.  r/1 .  This delay can also be 

computed using the Markov chain depicted in Figure 2.  First we compute np ,1  from Figure 2.   Using 

mathematical induction and the iterative method of solving the steady-state difference equations, 
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    The average number of packets being serviced by one ISR, )(nEISR ,  can be expressed 

in a similar fashion as in PIO where by 
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With further simplification, 

r
nEISR

λ=)( .  

 
And therefore, the average ISR delay per packet, )(rEISR , according to Little’s law, is  

r

nE
rE ISR

ISR

1)(
)( ==

λ
. (14) 

 
 
As for the mean delay caused by protocol processing, )(rEIP , in DMA, it is simply the mean delay 

encountered in the M/M/1/B queueing system with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'µ
λρ .   )(rEIP  is expressed in equation (13).  It is to be 
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noted that in DMA, 'λ  is the same as the mean system throughput γ given in equation (7) with µµ ′= .   Also 

remember that the µ′ , to be substituted in the equations of 'λ  and ρ ,  is given by equation (6) in this case.   

 

3. Analysis Verification and Validation 

In this section we verify our analysis two ways:  by using simulation and by considering some special cases.  

As for validation, we compare our analysis results to reported experimental measurements in the literature. 

3.1. Special Cases 

We consider a special case when interrupt handling is ignored, i.e., the ideal system when TISR = 0.  In this 

situation when TISR = 0, r → ∞ and c → ∞.   With this condition, we prove that the equations for PIO and DMA 

mean effective service rate, saturation point and mean system latency become the same equations for the ideal 

system. 

 

Mean effective service time. We prove that equations (5) and (6) yield the ideal system mean service rate µ as 

follows: 

 

For PIO mean effective service rate of equation (5), 

.
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For DMA mean effective service rate of equation (6), 

µ
λ

µ
λ
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⎠
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⎛
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⋅=⎟
⎠

⎞
⎜
⎝
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+
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1
limlim
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r
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Saturation Point.  We prove that equations (9) and (10) yield the ideal system saturation point of µλ = as 

follows: 

 

For PIO saturation point of equation (9), we first take the limit as ∞→r , and then multiply both numerator and 

denominator by r/1 . 
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Now we take the limit as c → ∞.   But this is still µ  as it does not depend on c. 
 
For DMA saturation point of equation (10),  
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Applying L'Hopital Rule, we get 
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Mean system delay. When the interrupt is ignored, it is expected the delays encountered by the interrupt 

overhead resort to zero.  When examining )(rEISR  for PIO and DMA in equation (12) and equation (14), 

respectively, it can be concluded easily that )(rEISR ,  when  r → ∞ and c → ∞, becomes zero.  This is in line 

with intuition and our expectation.   Consequently, the mean system delay becomes that of an M/M/1/B 

queueing system, i.e., the ideal system. 

 
 

3.2. Simulation 

In order to verify and validate our analytical models, a discrete-event simulation model was developed and 

written in C language.  A detailed description and flowcharts of the simulation model for normal interruption 

can be found in [23].  The assumptions of analysis were used. The simulation followed closely and carefully 

the guidelines given in [24].  We used the PMMLCG as our random number generator [24].  The simulation 

was automated to produce independent replications with different initial seeds that were ten million apart.  

During the simulation run, we checked for overlapping in the random number streams and ascertain that such a 

condition did not exist.  The simulation was terminated when achieving a precision of no more than 10% of the 

mean with a confidence of 95%.  We employed and implemented dynamically the replication/deletion 

approach for means discussed in [24].   We computed the length of the initial transient period using the MCR 
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(Marginal Confidence Rule) heuristic developed by White [25].  Each replication run lasts for five times of the 

length of the initial transient period.  Analytical and simulation results, as will be demonstrated in Section 3, 

were very much in line.  

3.3. Numerical Examples 

In this section, we report and compare results of system throughput and delay for the ideal system, PIO and 

DMA.  For validation, we compare our analysis and simulation results of system throughput to the PIO 

experimental results reported in [3] and the DMA experimental results reported in [4].  

 

In [3], the experiment basically consisted of a target system of a router, DECstation 3000/300 Alpha-based, 

running Digital UNIX V3.2 OS with 10Mbps Ethernet NICs with no DMA engines.  A traffic of fixed-size 

packets was generated back-to-back to the router using an infinite loop running at the application level on 

another host.    As measured by [3], the mean service time for ISR ( r1 ) was 95 µ seconds which included the 

copying the packet from NIC to kernel memory.  This mean copy time from NIC to kernel memory ( c1 ) was 

55 µ seconds.  The mean protocol processing time ( µ1 ), which included copying of packet data to user space, 

was 150 µ seconds.    

 

In [4], the experiment basically consisted of a PC-based router, 450 MHz Pentium III, running Linux 2.2.10 OS 

with two Fast-Ethernet NICs with DMA.  Similarly, a traffic of fixed-size packets was generated back-to-back 

to the router.  As measured by [4], the mean service time for ISR ( r1 ) was 7.7 µ seconds and the mean 

protocol processing time ( µ1 ) was 9.7 µ seconds.   In all of our examples, we fix the kernel’s protocol 

processing buffer B to a size of 1024 packets, which occupies about 1.6M bytes of host memory when 

assuming a maximum of 1536 bytes per packet in accordance to IEEE802.3 standards.  This size is typically a 

power of 2 and a configurable parameter [26].  

 

Figure 3 and 4 show four overlaid plots of system throughput as a function of packet arrival rate.  For 

verification purposes, the assumptions of analysis were used for simulation. The four plots are as follows: 

i. Ideal system. The results are from both analysis and simulation when ignoring interrupt overhead, i.e., 

the mean service time for ISR ( r1 ) is 0.  

ii. Experimental.  The results are those of the PIO and DMA experimental measurements as reported in 

[3] and [4], respectively. 

iii. Analysis.  The results are obtained by our analysis given the same experimental parameters of [3] and 

[4]. Poisson arrival is assumed here, i.e., the inter-arrival times of packets are exponentially distributed. 

iv. Simulation with Poisson arrival.   The results are obtained by the discrete-event simulation given the 

experimental parameters of [3] and [4].  As in analysis, the incoming packets follow a Poisson process. 
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Figure 3. System throughput with PIO 

 

0 20 40 60 80 100 120 140
0 

20 

40 

60 

80 

100

120

Packet Arrival Rate (Kpps)

S
ys

te
m

 T
hr

ou
gh

pu
t (

K
pp

s)

Ideal System
Experimental
Analysis
Simulation

 

Figure 4. System throughput with DMA 

By subjectively eyeballing the graphs in Figure 3 and Figure 4, it is clear that the results of analysis are in a 

perfect accordance to those of simulation. Therefore, our analysis is correct and verified. As for validation, we 

compare the experimental results to those of analysis.  We see that the analysis results give adequate 

approximation to real experimental measurements.  Both figures depict that the analysis results match exactly 

those of experimental at light load, just before the system saturation point or throughput cliff point.   At high 

load, there is a slight difference for both PIO and DMA.  This difference can be contributed to the arrival 

characteristics of incoming packets.  When comparing PIO and DMA system throughput, one can conclude that 
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DMA system throughput does not fall rapidly to zero, but it gradually decreases as the system load of packet 

arrivals increases.  It can be noted from Figure 5 that the receive-livelock point for PIO occurs at 

182,18== cλ pps.   On the other hand for DMA, the receive-livelock point is not shown within the scope of the 

network offered load.  As for DMA and as discussed in Section 2.5, the receive-livelock point does not occur. 
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Figure 5. Mean delays with PIO 
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Figure 6. Mean delays with DMA 
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Figure 5 and Figure 6 show the mean delays for the same offered load for PIO and DMA, respectively.  Also 

the corresponding mean system delays for the ideal system delay are shown.   The discrete-event simulation 

results were very much in line with those of analysis, and not shown in the figures for clarity.  Delays using real 

experiments were not measured in [3] and [4].   The figures show the mean delays for ISR handling, protocol 

processing, and system.  As illustrated by analysis the system delay is the sum of ISR delay and protocol 

processing delay.  In general, both figures show that at light load the mean system latency is small but increases 

considerably when the system is overloaded.  This will result in an undesirable excessive latency in which 

packets start timing out.  It is observed from both figures that in general the system delay is dominated by the 

protocol processing delay than the ISR handling.  ISR handling delay, given in this numerical example, is small 

compared to protocol processing delay.  However, as shown in Figure 5 for PIO, ISR handling delay shoots to 

infinity at only a very high load.  For DMA, shown in Figure 6, the ISR handling delay remains constant all the 

time. 

 

The mean protocol processing delay and system delay take a different shape than that of ISR handling.   For the 

ideal system of the PIO example, Figure 5 shows the mean system delay reaches the cliff point of an arrival rate 

of 6,667 pps, and then the delay sharply increases until it reaches a high value.  After that the mean system 

delay stays flat.  The high value is determined by the size of the queue and the mean service rate, and it is equal 

to µB . For ideal system this value is 150 msec.  Figure 5 shows that the mean delay also increases sharply 

when reaching the cliff point of an arrival rate of 4,328 pps.  The delay then does not flatten off at 'µB , but 

rather it slowly shoots to infinity.   This is because as the arrival rate increases right after the cliff point, the 

mean effective service rate 'µ  decreases rapidly to zero, and thus resulting in a very huge delay. 

 

For DMA, Figure 6 shows the mean ideal system delay sharply increases when reaching the cliff point of an 

arrival rate of 103,093 pps and then it stays flat after that with a mean delay value of 9.7 msec. Figure 6 also 

depicts that the mean system delay sharply increases when reaching the cliff point of an arrival rate of 67,750 

pps and then it starts increasing considerably as the mean effective service rate 'µ  decreases. 

 

4. Conclusion 

We developed analytical models to study the impact of interrupt overhead caused by high-speed network traffic 

on OS performance. We presented a throughput-delay analysis for hosts when subjected to light and heavy 

network loads.  We considered high-speed network hosts with PIO and DMA design options or configurations.  

We also investigated two critical system operating points, mainly receive livelock and saturation.  As noted, 

degraded throughput and excessive latency can be encountered due to heavy network loads.  If the system is 

poorly designed or configured, these penalties are quite high and can hurt the overall performance.  Our 

analysis effort provided equations that can be used to easily and quickly predict the system performance and 

behavior when engineering and designing network adapters, device drivers, and OS network and 

communication software.  Given a worst-case network load, acceptable performance levels for throughput and 

delay can be reached by choosing between DMA vs. PIO configurations and by finding the proper system 
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parameters for protocol processing and ISR times.  An acceptable performance level varies from one system 

requirement to another and depends on the worst tolerable system throughput and latency.  Our analytical 

models were verified by simulation.  Also reported experimental results show that our analytical models give a 

good approximation.   As demonstrated in the paper, degradation in system throughput is far worse in PIO than 

DMA.  As opposed to PIO, the receive livelock point does not occur in DMA.  Therefore, utilizing DMA 

engines for high-speed network adapters becomes very important design and implementation consideration in 

order to minimize the negative impact of interrupt overhead on system performance.  The impact of generating 

variable-size packets instead of fixed-size and bursty traffic instead of Poisson is being studied by the authors 

using simulation, and results are expected to be reported in the near future.  A lab experiment of 1-Gigabit links 

is also being set up to measure and compare the performance of different system metrics.  As a further work, 

we will study and evaluate the performance of the different proposed solutions for minimizing and eliminating 

the interrupt overhead caused by heavy network loads. 
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