
 1

Performance Analysis and Comparison of Interrupt-Handling
Schemes in Gigabit Networks

K. Salah** K. El-Badawi F. Khalid
Department of Information and Computer Science
King Fahd University of Petroleum and Minerals

Dhahran 31261, Saudi Arabia
Email: {salah,elbadawi,fahd}@kfupm.edu.sa

Abstract

Interrupt processing can be a major bottleneck in the end-to-end performance of Gigabit networks. The

performance of Gigabit network end hosts or servers can be severely degraded due to interrupt overhead caused

by heavy incoming traffic. In particular, excessive latency and significant degradation in system throughput

can be encountered. Also, user applications may livelock as the CPU power gets mostly consumed by interrupt

handling and protocol processing. A number of interrupt handling schemes has been proposed and employed to

mitigate the interrupt overhead and improve OS performance. Among the most popular interrupt handling

schemes are normal interruption, polling, interrupt coalescing, and disabling and enabling of interrupts. In

previous work, we presented a preliminary analytical study and models of normal interruption and interrupt

coalescing. In this article, we extend our analysis and modeling to include polling and the scheme of interrupt

disabling and enabling. For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling.

The performances for all these schemes are compared using both mathematical analysis and discrete-event

simulation. The performance is studied in terms of three key performance indictors: throughput, system

latency, and the residual CPU bandwidth available for user applications. As opposed to our previous work, we

consider not only Poisson traffic, but also bursty traffic with empirical packet size distribution. Our analysis

and simulation work gives insight into predicting the system performance and behavior when employing a

certain interrupt handling scheme. It is concluded that no single interrupt handling scheme outperforms all

other schemes under all traffic conditions. Based on obtained results, we propose and discuss a novel hybrid

scheme of interrupt disabling-enabling and pure polling in order to attain peak performance under low and

heavy traffic loads.

KEYWORDS: High-Speed Networks, Operating Systems, Interrupts, Interrupt Coalescing, Polling, Modeling
and Analysis, Simulation, Performance Evaluation.

** Corresponding Author: Prof. K. Salah, PO Box 5066, ICS Department, KFUPM, Dhahran 31261, Saudi Arabia

 2

1. Introduction

1.1. Background

In hosts with Gigabit Ethernet links, the arrival rate of incoming packets can surpass the kernel’s packet

processing rate of network protocol stack processing and interrupt cost. In fact even with today’s powerful

multi gigahertz processors, the cost of per-packet interrupt alone surpasses the inter-arrival time of packets.

With Gigabit Ethernet and the highest possible rate of 1.23 million interrupts per second for a minimum sized

packet of 64 bytes, the CPU must process a packet in less than 0.82 µs in order to keep up with such a rate.

According to reported measurements in [1], an incoming-packet interrupt cost, on a 450MHz Pentium-III

machine running Linux 2.2.10, was 13.23 µs. With the presence of more powerful multi gigahertz processors

these days, it is expected the interrupt cost will not be decreased linearly by the speed frequency of the

processor, as I/O and memory speed limits dominate [2]. In [2] it was concluded that the performance of

2.4GHz processor only scales to approximately 60% of the performance of an 800MHz processor.

Under heavy traffic load such as that of Gigabit networks, the performance of interrupt-driven systems can be

degraded significantly, and thus resulting in a poor host performance perceived by the user. For one thing,

every hardware interrupt, for every incoming packet, is associated with context switching of saving and

restoring processor’s state as well as potential cache/TLB pollution. More importantly, interrupt-level

handling, by definition, has absolute priority over all other tasks. If the interrupt rate is high enough, the

system will spend all of its time responding to interrupts, and nothing else will be performed; and hence, the

system throughput will drop to zero. This situation is called receive livelock [3]. In this situation, the system

is not deadlocked, but it makes no progress on any of its tasks, causing any task scheduled at a lower priority to

starve or not have a chance to run.

A number of interrupt-handling schemes and solutions have been proposed in the literature [4-22] to mitigate

interrupt overhead and improve OS performance. Some of these solutions include interrupt coalescing, polling,

disabling interrupts, OS-bypass protocol, zero-copying, jumbo frames, pushing some or all protocol processing

to hardware, etc. A comprehensive summary that comprises many of these solutions can also be found in [4].

The most popular interrupt-handling schemes include primarily normal interruption, interrupt coalescing,

polling, and interrupt disabling and enabling. In this paper we present analytical models for a number of

schemes that includes ideal system, normal interruption, pure polling, and interrupt disabling and enabling.

The analytical models presented in this paper are based on queueing theory and Markov process. Discrete-event

simulation (DES) is utilized to verify analysis. Also we utilized DES to study the performance of all schemes

when hosts are subjected to bursty traffic.

 3

In previous work [23-25], we presented a preliminary analytical study of normal interruption. The performance

was studied primarily in terms of throughput [23,24]. The performance in terms of latency for only normal

interruption was briefly discussed in [23]. A detailed simulation models for hosts with PIO and DMA were

given in [25]. In [26], we presented a complete analytical model to study the performance of interrupt

coalescing scheme.

1.2. New Contributions

In sharp contrast to our previous work presented in [23-26], this paper is different in significant ways. First, the

paper presents novel analytical study and models for polling and for the scheme of interrupt disabling and

enabling. For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling. Second, the

paper summarizes and extends the analytical work of normal interruption to model the system when there is a

per-packet processing overhead. Third, a comprehensive performance comparison of all known interrupt

handling schemes is presented. The host performance is studied and compared in terms of three key

performance indicators which include system throughput, system latency, and CPU availability for other

processing including user applications. Fourth, we utilize DES simulation to model and examine the

performance when host is subjected to not only to Poisson traffic but also to bursty traffic and with variable

packet sizes. Fifth and as opposed to our previous work, we consider more realistic values for system

parameters that suit modern Gigabit network environment and hosts. In previous work we used system

parameters of 400 MHz Pentium III machines. In this article we consider system parameters of today’s CPU

cores such as the 2.53 GHz Pentium-IV machines. Sixth, the paper investigates the influence on performance

due to the selection of different parameter values for a certain interrupt handling scheme. One may argue that

the selection of parameter values may favor one scheme over the other. Seventh, the paper proposes and

discusses a hybrid scheme that combines interrupt disabling-enabling and pure polling in order to attain peak

performance under low and heavy traffic loads. Lastly, the paper discusses in detail a typical DMA-based

architecture model of transferring packets between the Network Interface Card (NIC) and host memory.

The rest of the paper is organized as follows. Section 2 illustrates a common and typical architecture model of

transferring packets between the NIC and host memory. The architecture model is based on employing DMA.

Section 3 explains briefly the different interrupt handling schemes and presents analytical models that capture

the system behavior and study their performance. Section 4 gives numerical examples showing both analysis

and simulation results under Poisson traffic. Section 5 examines performance impact when hosts are subjected

to bursty traffic with empirical variable-size packets. The impact is studied using simulation. Also Section 5

discusses the impact of selecting different parameter values for each scheme on the host’s performance. A

hybrid interrupt-handling scheme is also proposed in Section 5. Finally, Section 6 concludes the study and

identifies future work.

 4

2. DMA-Based Design

For our hosts, we assume that the NIC is equipped with DMA engines. Today’s high-speed NICs are equipped

with DMA engines in order to save CPU cycles consumed in copying packets. NICs are typically equipped

with a receive Rx DMA engine and a transmit Tx DMA engine. A Rx DMA engine handles transparently the

movement of packets from the NIC internal buffer to the host’s kernel memory. A Tx DMA engine handles

transparently the movement of packets from the host memory to the NIC internal buffer. It is worth noting that

the transfer rate of incoming traffic into the kernel memory across the PCI bus is not limited by the throughput

of the DMA channel. These days a typical DMA engine can sustain over 1 Gbps of throughput for PCI 32/33

MHz bus and over 4 Gbps for PCI 64/66 MHz bus [27-30].

Albeit there are numerous variants of how packets get transferred from the NIC and then to protocol buffer

[1,9,16,19,27-35], we discuss here one of the common architecture models that best suits the Gigabit

networking environment and currently implemented in FreeBSD and Linux latest releases of 2.4 and beyond

[9,19,32,33,35,36]. Figure 1 shows such an architecture model of DMA-based design. The figure shows the

flow path of an incoming packet involving the NIC, host memory, and application. The packets are DMA'd

from the NIC Rx buffer, through the bus interface such as the PCI, to a system shared ring Rx buffer or Rx

DMA ring, and subsequently consumed by user application or routed elsewhere.

Note that the DMA ring is shared between the NIC and kernel’s protocol processing, with the NIC being the

producer and protocol processing being the consumer. A producer-consumer implementation must be carried

out and the implementation varies depending on the machine architecture and NIC features. Typically, the

DMA engines implement scatter-gather DMA logic and operate in a bus-master fashion. At initialization, the

kernel allocates the Rx circular buffer. Rx circular buffer is typically a FIFO of memory block pointers. The

blocks are scattered in memory and are pre-allocated to store incoming packets. The block pointers are linked

in a circular fashion and can be read by the NIC DMA engine. Usually, the NIC is configured to have a write-

pointer register. If the NIC’s write-pointer register has a null value, no DMAing will take place, and incoming

packets will get dropped. To start DMAing of incoming packets, the kernel writes, at initialization, the address

of the first block pointer into the NIC’s write-pointer register. After a successful DMAing of an incoming

packet, an interrupt is generated by the NIC. The NIC DMA engine will read and update automatically its

write pointer to next address in the chain. The NIC will keep DMAing incoming packets as long as the buffer

is not full, i.e., the next address in the chain does not have a null value. The last block in the chain will have a

null pointer. It is to be noted that the kernel has a read pointer to the circular buffer. Every time a packet is

processed by the kernel, the kernel refills the ring with a new block and updates its read pointer. Note that

kernel’s protocol processing for a single packet will finish when the packet is placed in an upper layer queue

such as that of the application or is placed in an outgoing output queue of an interface in case of routing.

 5

Figure 1. Architecture model of DMA-based design

Under normal-interruption mode, it is important to emphasize again that the NIC is typically configured such

that an interrupt is generated after the incoming packet has been completely DMA'd into the host’s kernel

memory. In order to minimize the time for ISR execution, ISR handling mainly sets a software interrupt to

trigger the protocol processing for the incoming packet. Practically, it is prudent to limit the function of ISR

handling to only notifying the kernel to start protocol processing of the received packet. In [1,16,33,36] and

Linux releases prior to 2.4.20 [34,35], ISR handling included appending or chaining DMA’d incoming packets

from DMA ring to protocol incoming buffer. Additionally ISR handling included refilling or replenishing

DMA ring with new buffer space to make up for the space consumed by the appended packets. If any packet

handling (such that of appending or replenishment) is done during ISR, the interrupt overhead can considerably

stretch as multiple packets can be received during ISR handling, and subsequently causing considerable cache

pollution as well as starving protocol processing. As opposed to [1,16,33-36], Linux 2.4.20 and thereafter

[19,32,35] implements a NAPI (New API) architecture in which the DMA ring is the same as the protocol

buffer, and therefore there is no extra chaining or appending required. Also the replenishment of DMA ring is

carried out as part of the protocol processing. Therefore, the only remaining function of ISR handling becomes

the notification of the kernel to start protocol processing, and therefore minimizing interrupt cost and causing

minimal cache pollution.

 6

After the notification of the arrival of a new packet, the kernel will process the packet by first examining the

type of frame being received and then invoking immediately the proper handling stack function or protocol, e.g.

ARP, IP, TCP, UDP, etc. Note that TCP or UDP processing includes IP processing. The packet will remain in

the kernel or system memory until it is discarded or delivered to the user application. The network protocol

processing for packets carried out by the kernel will continue as long as there are packets available in the

system memory buffer. However, this protocol processing of packets can be disrupted by interrupts as a result

of new packet arrivals. This is so because packet processing by the kernel runs at a lower priority than

interrupts of incoming packets. There are two possible system delivery options of packet to user applications.

The first option is to perform an extra copy of packet from kernel space to user space. This is done as part of

the OS protection and isolation of user space and kernel space. This option will stretch the time of protocol

processing for each incoming packet. A second option eliminates this extra copy using different techniques

described in [6,7,12,36-39]. The kernel is written such that the packet is delivered to the application using

block pointer manipulations (known also as zero copy) whereby the data is not copied but moved from kernel

to user space by changing pointers.

3. Analysis

In this section we present analytical models to examine the impact of interrupt overhead on OS performance.

First we define the system parameters. Let λ be the mean incoming packet arrival rate and µ be the mean

protocol processing rate carried out by the kernel. Note that 1/µ is the average time the kernel takes to process

one DMA’d packet and deliver it to user application. This time includes primarily the network protocol stack

processing carried out by the kernel. 1/µ includes the average cost of OS context-switching and scheduling

overhead, cache bouncing and pollution, protocol code execution, any checksum computation, as well as packet

copying and buffering [4,40,41]. However 1/µ excludes any time disruption due to interrupts. Examples of

protocol processing can be IP processing, TCP processing, and UDP processing. For TCP and UDP

processing, IP processing would be included. Let r/1 be the mean time for handling an incoming packet

interrupt. This mean time is essentially the overall interrupt cost which includes interrupt overhead and

handling. We will refer to this overall cost r/1 simply by “ISR handling”.

Throughout our analysis, we assume the following:

i) It is intuitive to assume the times for protocol processing or ISR handling to be not deterministic. These

times change due to various system loads and conditions, I/O activities, kernel activities, as well as cache

pollution/bouncing. For example ISR handling for incoming packets can be interrupted by other

interrupts of higher priority, e.g., timer interrupts. Also, protocol processing can be interrupted by higher

priority kernel tasks, e.g., scheduler. For our analysis, we assume these service times to be exponential.

 7

ii) The network traffic follows a Poisson process, i.e., the packet interarrival times are exponentially

distributed. In many situations, assuming Poisson arrivals is adequate. In [42], it was concluded that

modeling the voice traffic as Poisson gives adequate approximation, especially if the voice traffic is high.

iii) The packet sizes are fixed. This assumption is true for Constant Bit Rate (CBR) traffic such as

uncompressed interactive voice and video conferencing.

Our analytical models assume Poisson traffic with fixed-size packets. In practice, network traffic is not always

Poisson and packets are not always fixed in size. In [43-45], it was shown that the aggregated Ethernet traffic

(resulting from network applications and services) is bursty and characterized as self-similar with long range

dependence. An analytical solution becomes intractable when considering variable-size packets and non-

Poisson arrivals. In Section 5.1, we use simulation to study and compare the impact of bursty traffic with

empirical variable packet sizes on system performance.

3.1. Ideal Mode

In the ideal system, we assume the overhead involved in generating interrupts is totally ignored. The ideal

system gives the best performance that can possibly be obtained when employing interrupts, thus serving as a

reference or a benchmark to compare with. Under our stated assumptions, we can simply model such a system

as an M/M/1/B queue with a Poisson packet arrival rate λ and a protocol processing time that has an

exponential distribution with a mean of µ/1 . B is the maximum size the system buffer can hold. M/M/1/B

queueing model is chosen as opposed to M/M/1 for two important reasons. First, in M/M/1/B, the arrival rate

can go beyond the service rate, i.e., µλ > . This assumption is a must for Gigabit environment where under

heavy load λ can be very high compared to µ. Second, hosts practically and realistically has a finite amount of

buffer space reserved for protocol processing.

3.2. Normal Interruption

In normal interruption, every incoming packet causes an interrupt. Modeling normal interruption mode is

based on first determining the CPU utilization for ISR handling, next finding the mean effective or disrupted

protocol processing rate, and then modeling the protocol processing as M/G/1/B queueing system with this

mean effective rate. More details on this model can be found in [25]. In [25], the system performance was

only studied in terms of throughput. In this paper we extend the analysis work to examine more performance

metrics. In particular we study system latency and CPU availability for user applications.

The CPU utilization for ISR handling, ISRU , was derived in [25] and expressed as

 8

⎟
⎠
⎞

⎜
⎝
⎛

+
=

r
U ISR λ

λ
. (1)

The mean effective service rate µ′ for protocol processing was computed in terms of CPU percentage

availability for protocol processing. The mean effective service rate was expressed as

×=′ µµ (% CPU availability for protocol processing),

.

),1(

r

r

U ISR

+
⋅=′

−×=′

λ
µµ

µµ

(2)

The term
r

r

+λ
is the percentage of CPU bandwidth available for protocol processing, and is equal to

r+
−

λ
λ

1 .

CPU Availability. For such a model, the percentage of CPU power or bandwidth available for other

processing, including user applications, is basically the probability when there is no ISR handling and there are

no packets being processed by the protocol stack. It is to be noted from Equation (2) that the effective service

time is exponential. Therefore, the protocol processing can be modeled as an M/M/1/B queue with a mean

service rate of µ ′ . Hence, the CPU availability for other processing can be expressed as

0p
r

r
V ⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=

λ
, (3)

where 0p is the probability of not queueing, i.e. finding zero packets, in the M/M/1/B queueing system of the

kernel’s protocol processing. 0p is known as

11

1
0 +−

−
=

B
IP

IPp
ρ

ρ
, (4)

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=
'µ

λρ IP . Note that IPρ is the network load, or traffic intensity, being encountered due to kernel’s

protocol processing.

Mean System Throughput. System throughput, in this context, refers to the achievable throughput of

protocol processing of the OS networking subsystem. Consequently, the mean system throughput γ is

basically the departure rate due to protocol processing. γ can be derived multiple ways, which are all

mathematically equivalent. One way is to express γ as

 9

)1(' 0p−= µγ , (5)

where 0p is expressed by Equation (4).

Mean System Latency. System latency, in this context, refers to the delay encountered from the arrival of the

packet into host memory (i.e., after being completely DMA’d into protocol processing buffer) until the

completion of protocol processing of the OS networking subsystem. The mean system latency per packet is

affected by both ISR handling and protocol processing. An incoming packet experiences a delay due to

interrupt handling and due to the delay of protocol processing. Accordingly, the mean system delay is therefore

decomposed to be the sum of the mean delay of interrupt handling plus the mean delay of protocol processing.

Hence the total mean system delay,][TE , can be expressed as

][][][TETETE IPISR += ,

where][TEISR
 is the mean delay due to ISR and][TEIP is mean delay due to protocol processing.][TEISR

 is

simply r/1 . This is so due to the nature of servicing packets during ISR handling. The mean ISR handling

time for one packet or many packets is practically the same, i.e. r/1 . As for the mean delay caused by

protocol processing,][TEIP , is simply the mean delay encountered in the M/M/1/B queueing system with

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'µ
λρ IP . Therefore, such a delay can be expressed using Little’s theorem as

'

][
][

λ
NE

TE IP
IP = , where

11

1)1(

1
][+−

++
−

−
=

B

BB
NE

IP

IP

IP

IP
IP

ρ
ρ

ρ
ρ (which is the average packets in the system) and 'λ is the mean effective arrival

rate. 'λ is basically the same as γ and is expressed of Equation (5). Therefore, the mean system delay is

expressed as

'

][1
][

λ
NE

r
TE IP+= . (6)

Special Case. There is a special case of interest that can be used to verify our analysis and mathematical

derivation. The case is when interrupt handling is ignored, i.e., the case of the ideal system when r/1 = 0. The

mean effective protocol processing rate of Equation (2) becomes just µ as follows:

µ
λ

µ
λ

µµ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅=⎟
⎠

⎞
⎜
⎝

⎛
+

⋅=′
∞→∞→ 1

1
limlim

rr

r
rr

.

3.3. Interrupt Disabling and Enabling

The key idea behind interrupt disable-enable handling scheme is inspired by [5]. This scheme is used by some

OSes such as the case of Linux NAPI [19]. In short, the idea of pure interrupt disable-enable scheme is to have

 10

the interrupts of incoming packets turned off or disabled as long as there are packets to be processed by

kernel’s protocol stack, i.e., the protocol buffer is not empty. When the buffer is empty, the interrupts are

turned on again or re-enabled. Any incoming packets (while the interrupts are disabled) are DMA’d quietly to

protocol buffer without incurring any interrupt overhead.

Figure 3 exhibits a Markov chain model for the behavior of the interrupt disable-enable scheme with finite

buffer. This model is more realistic than a simpler model which was presented in [20] considering infinite

buffer. The state space of Figure 3 is defined as (){ } (){ }BnnBnnS ≤≤∪≤≤= 0,1,1,0, where n denotes the

number of packets in the buffer, and B denotes the buffer size. States)1,(n define the states in which the

interrupts are enabled. States)0,(n define the states in which the interrupts are disabled. State)1,0(represents

the state where the system is idle (with no packets) and the interrupts are enabled. We let v1 denote the mean

processing service time when the interrupts are enabled. We assume v1 is exponentially distributed and it

includes: the time to disable the interrupts, the time to handle interrupt (with a mean of r/1), and the time to

service one packet by the kernel’s protocol stack (with a mean of µ1). For simplicity, we ignore the time for

re-enabling the interrupt. This delay is very small (typically one or two write instruction to the NIC’s control

register). It was shown that this delay has negligible impact on simulation results shown in Section 4.

Figure 3. Markov state transition diagram for modeling interrupt disable-enable scheme

Let mnp , be the steady-state probability at state),(mn . The stationary equations of the Markov chain in Figure

3 are:

 0,11,11,00 ppp µνλ ++−=

 1,01,1)(0 pp λνλ ++−=

 0)(0 0,21,20,1 =+++−= ppp µνµλ

 1,11,)(0 −++−= nn pp λνλ Bn <≤1

 0,11,10,10,)(0 ++− ++++−= nnnn pppp µνλµλ Bn <≤1

 11

 1,11,0 −+−= BB pp λν

 0,10,0 −+−= BB pp λµ

Let µλ /=a and)(/ νλλ +=b . By applying mathematical induction, the solution of the above system is given

as follows:

 1,0

11

0,
)(

p
ab

baab
p

nn

n −
−=

++
, Bn <≤1

 1,01, pbp n
n = , Bn <≤1

 1,01, 1
p

b

b
p

B

B −
= , and

 1,00,
)(

p
ab

baaba
p

BB

B −
−= .

The probability 1,0p can be obtained by the fact that the sum of all probabilities is equal to 1. This will yield

 ()

() .
1

)(1

1
)(

1

1

1

11
21

1
1,0

1,0

1

1
1,01,0

11
21

1
1,01,0

1,

1

1
1,0,

1

1
0,1,0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
++−

−
+−⋅

−
+=

−
+⋅+−

−
+−⋅

−
+=

++++=

∑∑

∑∑

∑∑

−

=

−−
−

=

−

=

−−
−

=

−

=

−

=

b

b
bab

ab

ba
ab

ab

ba
p

p
b

b
bppab

ab

ba
abp

ab

ba
p

ppppp

BB

n

nBB
B

n

nn

BB

n

nBB
B

n

nn

B

B

n
nB

B

n
n

 Therefore,

()
b

b
bab

ab

ba
ab

ab

ba
p

BB

n

nBB
B

n

nn

−
++−

−
+−⋅

−
+

=

∑∑
−

=

−−
−

= 1
)(1

1
1

1

11
21

1

1,0 .

Simplifying, we obtain

() () ()

() () () ().11

11
21,0

baabbaababaab

baab
p

BBB −−−−+−−
−−−= (7)

CPU availability. CPU availability for user applications is basically the idleness state which can be given
by 1,0p .

Mean System Throughput. The mean system throughput γ can be expressed as

,
1

1

1
0,0

1

1
0,0

1

1
0,0

1

1
0,0

1
0,

1
1,

∑∑∑∑

∑∑

∑

−

=

−
−

= =

+−
−

=

==

⋅+⋅+⋅
−

+⋅=

+=

=

B

n

iBi
B

n

n

i

ini
NB

n

n

B

n
n

B

n
n

i
ii

pbapbap
b

b
pb

pp

p

µµνν

µν

µγ

 12

which can be subsequently simplified to

()() ()()

()() ()()baabbababaaab

baabbabbaaab
BBB

BBB

−−−−+−−
−−−−+−−×=

11

11
2

λγ . (8)

Mean System Latency. The mean system latency][TE , can be expressed straightforward as
λ′

=][
][

NE
TE ,

where 'λ is the mean effective arrival rate, and is expressed by
 ()Bp−=′ 1λλ
where

0,1

0,10,1

12

1,0,

)1()(

)()1(

1

pa
ab

ab
b

bab

ababa

p
b

b
p

ab

baba

ppp

BB

BBB

BBB

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−
−⋅

−−
−+−=

⋅
−

+⋅
−
−=

+=
+

and][NE is the average number of packets encountered due to protocol processing and can be expressed as

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−
−+−⋅+⎟

⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

−
−+×=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−
−+−⋅+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
−⋅=

+=

+−

=

−

=

+−

=

++
=

∑∑

∑

∑

ab

ba

bab

bababa
Ban

ab

ba
bn

ab

abab
p

p
ab

ba

bab

bababa
Bpb

ab

baba
n

ppnNE

BBB

n

n
B

n

n

BBB

n

n
nn

B

n
nn

11

1

1

1
0,1

0,1

11

1
0,1

11

1
1,0,

)1()(

)()1(

)1()(

)()1(

)(][

Special Case. Let us consider the special case when µ=v . It can be easily verified that all the equations

derived for the throughput, latency and CPU availability will be exactly reduced to those of a pure M/M/1/B

queueing system with an arrival rate of λ and service rate of µ .

3.4. Polling

The idea of polling is to disable interrupts of incoming packets altogether and thus eliminating interrupt

overhead completely. In polling, the OS periodically polls its host system memory (i.e., protocol processing

buffer or DMA Rx Ring) to find packets to process. In general, exhaustive polling is rarely implemented.

Polling with quota is usually the case whereby only a maximum number of packets is processed in each poll in

order to leave some CPU power for application processing. There are primarily two drawbacks for polling.

First, unsuccessful polls can be encountered as packets are not guaranteed to be present at all times in the host

memory, and thus CPU power is wasted. Second, processing of incoming packets is not performed

immediately as the packets get queued until they are polled. Selecting the polling period is crucial. Very

frequent polling can be detrimental to performance as significant overhead can be encountered at each poll. On

the other hand, if polling is performed infrequently, packets may encounter long delays.

 13

Pure Polling vs. NAPI Polling. Polling was proposed in [3,17-19,21,22] to mitigate completely the interrupt

overhead generated by packet arrivals. Releases of FreeBSD 4.6 and Linux 2.6 and thereafter can be

configured for polling mode. Both of these releases use polling with quota, however, there is a difference. In

FreeBSD polling, the interrupt is completely disabled for incoming packets. The algorithm for pure polling (or

basic FreeBSD style) is illustrated in Figure 4. During the polling period, a limited number of packets, say Q,

are processed by the protocol stack. In the situation where polling is triggered while in the midst of a polling

cycle (i.e., servicing packets by the protocol stack), the trigger is ignored, but polling is turned on again and

overhead is incurred which is purely a waste of CPU cycles.

Poll_Int (start of polling cycle PollT)
1. Set Poll_Mode ON

2. Trigger IP Processing

IP Processing
1. Set Poll_Mode OFF

2. Process up to Q packets or until no

more packets in buffer

3. If Poll_Mode is ON goto Step 1

Figure 4. Pure Polling algorithm

In Linux NAPI polling [19,28], a combination of the scheme of interrupt disabling-enabling and polling is used.

This is achieved by disabling the interrupts of incoming packets once a packet is received and triggering polling

immediately (as illustrated in the NAPI algorithm of Figure 5). After processing Q packets, if the protocol

processing buffer is not empty, polling is triggered again on the next polling cycle; otherwise, polling is turned

off and the interrupts of incoming packets are re-enabled. The key idea behind Linux NAPI polling is to

combine the mitigation of interrupt overhead at high load while improving the responsiveness at low load.

Rcvd_Pkt_INT
1. Disable Rcvd_Pkt_INT

2. Enable Poll_INT and

trigger the handling

of Poll_INT

Poll_INT (start of polling cycle PollT)
1. Set Poll_Mode ON

2. Trigger IP Processing

IP Processing
1. Set Poll_Mode OFF

2. Process up to Q packets or

until no more packets in

buffer

3. If Poll_Mode is ON goto

Step 1
4. If buffer is empty then

disable Poll_INT and

enable Rcvd_Pkt_INT

Figure 5. NAPI Polling algorithm

The polling period in the latest versions of FreeBSD and Linux is not deterministic. Linux polls occur with

softirqs. As all softirqs, they get typically executed at end of hardware interrupt and just before returning from

kernel to user mode. FreeBSD polls occur at end of clock interrupt and system calls, and within idle loops.

With these techniques, context switching overhead and cache pollution are decreased. It is also possible to

avoid more context switching overhead and cache pollution in polling by utilizing soft timers [18]. With soft

 14

timers, the OS can choose to poll the protocol buffer at more “convenient” or “trigger” points. OS convenient

points can occur when the system is already in the right context and has already suffered cache pollution [18].

As opposed to Linux, the quota during polling in FreeBSD is dynamically adjusted. In FreeBSD, the quota

depends on a number of configured parameters such as system load, CPU speed, remaining CPU fraction for

polling process, and maximum quota. In this paper and for the sake of performance comparison, we will use a

fixed polling period and a fixed quota. Pure polling is studied using mathematical analysis and simulation,

while NAPI polling is studied using simulation.

Let us assume PollT is the polling period, that is, a hardware timer is configured to periodically generate an

interrupt every PollT . Obviously, there is a polling overhead associated with each polling period that involves

context switching overhead and notifying the protocol processing. We denote PollOHT for this polling overhead.

In this case where PollT is generated by an interrupt, the polling overhead is close to the cost of interrupt

overhead. Note that the cost of polling overhead would be an order of magnitude less than the interrupt

overhead when using soft timers to trigger polling [17,18,22]. For our analysis in this paper, we use hardware

timers as opposed to software timers for the generation of PollT , and hence PollT is deterministic. The analysis

of using soft timers for polling is left for future work.

PollT

µ/QPollOHT

PollOHPollv TTT −=

Figure 6. Polling cycle components

Let us assume for now a deterministic distribution for both PollOHT and µ/1 . Hence, for our analysis the time

is divided into a sequence of polling slots lasting exactly PollT time units. Figure 6 illustrates the time division

of a PollT which is comprised of an initial polling overhead, lasting PollOHT , a time span used for processing up

to Q packets, lasting up to µ/Q , and possible an idle (or leftover) period lasting until the end of PollT .

Obviously protocol processing may not run at the full rate of µ during PollT (in the situation when µ/Q ends

before the end of PollT). Running at full rate means that protocol processing for packets will continue back-to-

back without giving away the CPU during the polling period.

Therefore, the effective mean protocol processing rate 'µ can be expressed as

()⎩
⎨
⎧

≥−
<

=
)(1

)(/
'

vPollOH

vv

TQU

TQTQ

µµ
µ

µ , (9)

 15

Where PollOHPollv TTT −= and PollPollOHPollOH TTU = . PollOHU is the CPU utilization due to polling overhead.

An issue related to our analysis of pure polling above is that it assumes deterministic times for protocol

processing and polling overhead. It is important to recognize that the analysis for polling is not a trivial task,

and it is best studied using simulation. Our polling analysis under these assumptions gave adequate

approximation to those of reported results (shown in Section 4) of simulation with exponential times for

protocol processing and polling overhead.

CPU Availability. The CPU availability for user applications can be expressed as)(1 IPPollOH UUV +−= . IPU

is the CPU utilization due to protocol processing. To find IPU , we let N denote the average number of packets

arrived during PollT and M denote the average number of packets that can be served during vT . That is,

pollTN ×= λ and vTM ×= µ . Therefore, IPU can be expressed as

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<
×

<<

=

otherwise

if else

andif

poll

v

poll
IP

T

T

MQ
T

Q

QNMN

U
µ

µ
λ

, (10)

Note that V becomes zero when vTQ ≥µ .

Mean System Throughput. Under our assumptions, the mean effective protocol processing rate 'µ expressed

in Equation (9) is constant. With a Poisson traffic rate arrival λ , an M/D/1/B queueing model can be utilized to

obtain the mean system throughput. The mean system throughput γ can be expressed as)1(' 0p−= µγ ,

where 'µ is given by Equation (9) and 0p is the probability for not queueing in the M/D/1/B queueing system.

0p was derived by both [46,47] and was expressed as

ρα+
=

1

1
0p , where kkBk

B

k

k

ekB
k

ρα ρ)1(
1

0

)1(
!

)1(−−
−

=

−−−=∑ and
'µ

λρ = . (11)

Mean System Latency. The mean system latency for polling is comprised of mainly two types of delay:

(i) a delay due to packet processing with a mean effective service rate of 'µ expressed in equation (9), and
(ii) a delay between the initial arrival of a packet and the start of the protocol processing.

The average delay of (i) can be expressed using M/D/1/B queueing model as follows

 16

,
1

11

)1(

][
][

1

1

01

1

1

−

−

=−

−

−

+

−+
⋅+⋅=

−
=

∑
B

B

k kB

B

B

B

IP
IP

b

bbBB

b

b

p

NE
TE

ρ

ρρ
λ

λ

where ,1,)(
!

)1(
,1

0

)(
0 ≥−−== ∑

=

− nekn
k

bb
n

k

kknk
k

n ρρ and '/ µλρ = .

The delay of (ii) is encountered only when the packet first arrives (right after it gets DMA’d and before the start

of the protocol processing cycle). It is more obvious to visualize this delay when the system has no packets. A

packet may encounter an upper bound delay as high as pollT . This happens when the system is empty and the

packet arrives just after protocol processing has finished examining that there are no packets to process. In this

case, this packet will be missed (by protocol processing) and will have to wait (a time pollT) until the start of

the next protocol processing cycle. On the other hand, a packet may encounter a lower bound delay of almost

zero if it arrives during protocol processing cycle. As a conservative approximation for the delay of (ii), we

will use the upper bound delay. Therefore, the delay of (ii) can be approximated as pollTp ×0 , where 0p is the

probability of not queueing which was expressed in equation (11).

Accordingly, the mean system delay can be approximated as

pollIP TpTETE ×+= 0][][. (12)

3.5. Interrupt-Coalescing (IC)

One of the most popular solutions to mitigate interrupt overhead for Gigabit network hosts is interrupt

coalescing or IC. In recent years most network adapters or NICs are manufactured to have interrupt coalescing.

Additionally, many operating systems, including Windows and Linux, support IC. IC is a mode or a feature in

which the NIC generates a single interrupt for a group of incoming packets. This is opposed to normal

interruption mode in which the NIC generates an interrupt for every incoming packet. In interrupt-coalescing

(IC) mode, there are two schemes to mitigate the rate of interrupts: count-based IC and time-based IC. In

count-based IC mode, the NIC generates an interrupt when a predefined number of packets (denoted by τ) has

been received. In time-based IC mode, the NIC waits a predefined time period (denoted by T) before it

generates an interrupt. During this time period multiple packets can be received. The coalescing parameters of

τ and T are tunable and configurable parameters which are set by the device driver. Analytical models and

closed-form solutions for the key performance metrics under study (which include system throughput, latency,

and CPU availability) were given in [26]. The same underlying assumptions and notations used in this paper

were used in [26].

 17

3.6. Simulation

In order to verify and validate our analytical models, a discrete-event simulation model was developed and

written in C language. A detailed description and flowcharts of the simulation model for normal interruption

can be found in [25]. The simulation model reported in [25] was extended for the schemes of pure and NAPI

polling, count-based and time-based IC, and disabling and enabling of interrupts. The assumptions of analysis

were used. The simulation followed closely and carefully the guidelines given in [48]. We used the PMMLCG

as our random number generator [48]. The simulation was automated to produce independent replications with

different initial seeds that were ten million apart. During the simulation run, we checked for overlapping in the

random number streams and ascertain that such a condition did not exist. The simulation was terminated when

achieving a precision of no more than 10% of the mean with a confidence of 95%. We employed and

implemented dynamically the replication/deletion approach for means discussed in [48]. We computed the

length of the initial transient period using the MCR (Marginal Confidence Rule) heuristic developed by White

[49]. Each replication run lasts for five times of the length of the initial transient period. Analytical and

simulation results, as will be demonstrated in Section 4, were very much in line.

4. Numerical Examples

In this section, we report and compare results of analysis and simulation. Numerical results are given for key

performance indicators. These indicators include mean system throughput, CPU utilization, and latency. We

plot and compare the performance for the all interrupt schemes that include the ideal system, normal

interruption, pure and NAPI polling, interrupt disable-enable, and interrupt coalescing of time-based and count-

based. For our numerical examples, realistic values for system parameters, that suit modern Gigabit network

environment and hosts, must be used. Experimental study is the best approach to give accurate measurements,

as well as the underlying probability distributions. Such experimental is beyond the scope of this paper and left

for future work. However, for the sole purpose of comparison, we base our values on modern credible

experimental measurements reported in the literature.

The overall interrupt cost 1/r includes both interrupt overhead and handling. In [18], the interrupt overhead for

an off-chip timer interrupt with a null event handler was measured to be in the vicinity of 4.36 µs on a 500MHz

Pentium-III machine running for FreeBSD-2.2.6. A similar result of 7.7 µs was reported by [1] on a 450MHz

Pentium-III machine running Linux 2.2.10. For a modern 2.53GHz Pentium-IV machine, it is expected this

overhead will not be decreased linearly by the speed frequency of the processor, as I/O and memory speed

limits dominate [2]. In [2] it was concluded that the performance of 2.4GHz processor only scales to

approximately 60% of the performance of an 800MHz processor. Consequently the NIC interrupt overhead

with null handler for a modern 2.53GHz Pentium-IV machine can be roughly 60% of 4.36, which is 2.62 µs.

 18

In [1] the interrupt handling was measured to be 5.53 µs on a 450MHz Pentium-III machine running Linux

2.2.10. The measurement of interrupt handling included substantial work and a major cache pollution. The

handling included appending the packet from DMA ring to protocol buffer, replenishment of the DMA ring,

and finally notifying the protocol processing. In our case, considering the speed of the processor and limited

work for the interrupt handling, which primarily includes notification of protocol processing with minimal

cache pollution, we assume the handling cost is 20% of 5.53, or 1.11 µs. Hence for a modern 2.53GHz

Pentium-IV machine, the overall interrupt cost 1/r = 2.62 + 1.11 = 3.73 µs.

For protocol processing, we use the TCP processing values measured by lmbench [50] on a 2.53GHz Pentium-

IV running Linux 2.4.18. The results are reported in [51]. Also results for different machines are reported in

[52]. From the results in [51], it is reported that the average local loopback latency for one TCP token (i.e., 4-

byte data packet) is 10.5 µs. This time, of course, includes OS overhead as well as TCP actual processing.

Ideally, the TCP latency of the receiving path would be approximately half of 10.5, that is 5.25 µs. TCP

processing also includes copying of packet payload to user application. [51] reports that the average TCP

bandwidth (buffering and copying) is 748 Mbytes/s. Therefore, for a minimum packet size of 64 bytes, the cost

of copying and buffering is 64/748= 0.086 µs. Hence the mean TCP processing time µ1 (for a fixed size

packet of 64 bytes) can be summed up to approximately 5.34 µs. In all of our examples, we fix the kernel’s

protocol processing buffer B to a size of 1024 packets, which occupies about 1.5M bytes of host memory when

assuming a maximum of 1538 bytes per packet in accordance to IEEE802.3 standards. This buffer size is a

configurable parameter [34].

For interrupt disabling-enabling scheme, we assume the same overall interrupt cost of 3.73 µs. However, there

is also the incurred cost of writing to the NIC control registers to disable and enable interrupts of incoming

packets. We assume the cost of writing to the NIC register is 0.5 µs. As a consequence, the parameter v1 in

analysis, which denotes the mean protocol processing service time when interrupts are enabled, is

approximately equal to 9.57 µs, that is 0.5 + 3.73 + 5.34 µs. For polling, we use a quota of 3 packets per poll, a

polling period of 20 µs, and a polling overhead of 1.59 µs. As measured in [18] on machines with a 500MHz

Pentium-III CPU running for FreeBSD-2.2.6, the average polling period was in the range between 12 µs to 32

µs. For our study, we chose a mean polling period of 20 µs. It is to be noted that in reality (and in current

Linux and FreeBSD implementations) the polling period is not deterministic [18] and is generated by a soft

timer with a deadline. The deadline is generated by a hardware timer. Lastly for count-based IC, we use the

coalescing parameters of 1=τ and 8=τ . For time-based coalescing we use the coalescing parameters of 0=T

and 50=T µs.

 19

Figure 7 plots the mean system throughput, CPU availability for user applications, mean system latency at low

load, and mean system latency at high load, respectively, as a function of the system load represented by

packet arrival rate. The load and throughput are both expressed in pps (packets per second). Both of these

measures can easily be expressed in bits per second by multiplying the packet rate by the packet size. For pure

polling, analysis results with constant times for protocol processing and polling overhead gave adequate

approximation to those of simulation results with exponential times for protocol processing and polling

overhead. In order to compare easily and clearly the relatively close performance of pure and NAPI polling, the

analysis results for pure polling are left out, and only simulation results (with dashed lines with circles) are

reported in the figures. For other schemes, the solid curves represent analysis results and the circles are those

of simulation. The figures exhibit a very close agreement between discrete-event simulation results and analysis

results.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Packet Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

Normal

Ideal & Disable−Enable

Pure Polling &

Count−based IC

Time−based IC

NAPI Polling

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (Kpps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

Normal

Disable−Enable

NAPI Polling

Time−based IC

Count−based IC

Ideal

Pure Polling

Pure
Polling

(a) (b)

0 50 100 150 200

10
−5

10
−4

10
−3

10
−2

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (Kpps)

Normal

Time−based IC

Count−based IC

Ideal

NAPI Polling

Disable−Enable

Pure Polling

100 120 140 160 180 200 220 240 260 280 300

1

2

3

4

5

6

7

8

9

x 10
−3

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (Kpps)

Normal

Time−based IC

Count−based IC

Ideal &
Disable−Enable

Pure Polling &
NAPI Polling

(c) (d)

 20

Figure 7. Key performance indicators in relation to a Poisson arrival rate

From the figures, it is observed that the maximum throughput occurs at 187 Kpps. For normal interruption, it

can be noted that the saturation or cliff point for the system occurs at 127 Kpps. At this point, the

corresponding CPU utilization (for ISR handling plus protocol processing) is at 100%, and thus resulting in a

CPU availability of zero. Therefore, user applications will starve and livelock at this point. Figure 7(a) shows

that as the arrival rate increases after the cliff point the system throughput starts to decline. Figure 7(d) shows

the mean system delay also continues to increase after reaching the saturation point. Theoretically, the latency

should flatten off at 'µB , but rather we find it slowly shoots to infinity. The decline in the throughput and the

sharp increase in latency is due to the fact that the mean effective service rate 'µ decreases as the arrival rate

increases right after the saturation point. See equation (2). Intuitively, CPU availability for protocol processing

decreases as CPU becomes more utilized handling ISR.

One observation can be made about IC schemes with a parameter of 1=τ in case of count-based coalescing

and 0=T in case of time-based coalescing. It is observed that in such cases, both coalescing scheme resort

exactly, as expected, to normal interruption. Also from the figure, it is depicted that the analysis curves for

time-based coalescing (more noticeable in Figure 7(b) and 7(c) at very low rate) are not smooth. As illustrated

in [26], the analysis for time-based coalescing is performed based on the analysis of count-based coalescing

with the coalescing parameter τ being an integer and approximated to ⎡ ⎤Tλ . Thus, τ takes on discrete values

and remains unchanged until a different value is produced as λ changes in ⎡ ⎤Tλ .

There are also a number of important observations and conclusions to be made when examining and comparing

the performance of all interrupt handling schemes. It can be concluded that no single scheme gives the best

performance. For example, the scheme of interrupt disabling and enabling outperforms all other schemes in

terms of throughput and latency. However in terms of CPU availability, the interrupt disabling and enabling

gives the worst performance second to normal interruption. Also at extremely low rate interrupt disabling and

enabling gives worse latency than normal interruption. When comparing pure polling with NAPI polling, it is

obvious from the plots that both give comparable results in terms of throughput and latency at high load.

However NAPI polling outperforms pure polling in terms of CPU availability and latency at low load.

Comparing interrupt disabling and enabling to polling, it is shown that the latency of polling at light load is

larger than interrupt-disable scheme, and also at high load the system throughput of polling is smaller.

However for CPU availability, polling outperforms all other schemes at high load, as depicted in Figure 7(b).

As expected polling can sustain a certain degree of CPU availability regardless of the presented load. When

comparing polling to IC, it can be noted that IC can give similar throughput and CPU availability (and latency

at very high load) with large coalescing values of τ and T. However with large coalescing values, the latency

 21

at low load degrades considerably. We will address in Section 5.2 the impact of selecting different values for

scheme parameters on the overall performance.

5. Discussion

Thus far we presented analysis and simulation work to study and compare the performance of various interrupt

handling schemes considering fixed packet sizes and Poisson arrival. In this section we address two related

important questions that may affect the performance: (1) subjecting the host to bursty traffic, and (2) the

selection of different parameter values for each scheme. Finally in this section and based on obtained results

and observations, we propose and discuss briefly a novel hybrid interrupt-handling scheme that yields the best

performance.

5.1. Impact of Bursty Traffic

Assuming Poisson arrival for network traffic can be valid for modeling real-time voice and video traffic [42].

However such a Poisson traffic fails for modeling Ethernet traffic. It was shown that Ethernet traffic is bursty

and characterized as self-similar with long-range dependence [44,45]. A comprehensive summary and review

of the topic of self-similar network traffic can be found in [53]. For examining the impact of bursty traffic on

the performance of the various interrupt handling schemes, we modified our discrete-event simulation

accordingly. To generate such a bursty traffic, we implemented the method described in [54]. This method

follows fractional Gaussian noise such as the resulting self-similar traffic is obtained by aggregating multiple

streams (one stream per source) each consisting of alternating Pareto-distributed ON/OFF periods. In previous

preliminary work, we used a total of 100 streams to generate bursty traffic [55]. In this paper, only 8 streams

are used. As few as 8 streams were reported in [56] to give as good results and significantly reduced the

simulation run time to almost 20%. Figure 8 illustrates graphically the aggregation of multiple streams.

S1

S2

S3

Aggregated
Stream

ON/OFF
Source

S1

Self-Similar Traffic
(Aggregated Load)

ON/OFF
Source

S2

ON/OFF
Source

SN

Aggregator

Figure 8. Self-similar traffic generation model

 22

Pareto distribution is a heavy-tailed distribution with PDF of bxxabxf ≥= + ,)(1αα , where α is a shape

parameter and b is a location parameter. We use this distribution to generate both the ON and OFF periods

with shape parameters of 3.1=ONα and 5.1=OFFα , respectively. The choice of the values of these shape

parameters are commonly used and promoted by measurements on actual Ethernet traffic performed in [45].

The location parameter of ONb is the minimum ON period and depends on the minimum Ethernet frame size of

64 bytes. This is fixed to 64x8 bit times or 512 ns. The calculation of OFFb can be computed from the desired

total load for all sources, i.e., ∑=
i

iTotal ρρ . We assume equal loads for all sources. The individual load of a

single source is measured as])[][/(][OFFEONEONEi +=ρ . Note that the load Totalρ takes on values between 0

to 1. In Pareto,)1()(][−= ONONON bONE αα and)1()(][−= OFFOFFOFF bOFFE αα . Solving these simple

formulas, OFFb can be expressed (in terms of the known parameters of Totalρ , ONb , ONα , and OFFα) as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i

ON

OFF

OFF

ONON
OFF

b
b

ρ
ρ

α
α

α
α 1

1

1
.

During the ON period, packets are generated back-to-back with a rate of 1 Gbps. The number of packets

generated in the ON period depends on the ON period, the packet size, and the inter-packet size. The inter-

packet size is 20 bytes which comprises of the standard minimum Ethernet IFG of 12 bytes plus 8 bytes for the

preamble. The packet sizes are not fixed and follow an empirical distribution, which are real measurements of

packet sizes from MCI backbone. The measurements are reported in [57] and available online at

http://www.caida.org. In [57], the reported packet size distribution represents IP datagram sizes. To obtain

Ethernet frame size distribution, the packet sizes were modified to include 18-byte header (12 bytes for

destination and source addresses, 2 bytes for length/type, and 4 bytes for FCS). In addition all bytes shorter

than 46 bytes were padded to 46 bytes, so that the minimum Ethernet frame size is equal to 64 bytes. The

histogram and CDF of the resulting Ethernet frame sizes are shown in Figure 9. The figure shows dominating

frame sizes of 64, 570, 594, and 1518 bytes.

 23

Mean = 557.07

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

64 427.5 791 1154.5 1518

Packet Size (bytes)

R
el

at
iv

e
F

re
q

u
en

cy

BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only
BestFit Trial Version
For Evaluation Purposes Only

 Mean = 557.07

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

64 427.5 791 1154.5 1518

Packet Size (bytes)

C
u

m
u

la
ti

ve
 P

ro
b

ab
il

it
y

Figure 9. Histogram of empirical packet sizes and their corresponding CDF

It is to be noted, and as described in Section 4, when packet sizes are variable, the service time for protocol

processing is strongly correlated with the packet size, primarily due to CRC checksum calculation and copying

to application layer. In this case, the service time for protocol reprocessing is comprised of packet overhead

which is exponentially distributed with a mean of 5.25 µs plus a fixed per-byte overhead of PacketSize/(748

Mbytes/s).

The simulation results shown in Figure 10 represent the estimated mean of 10 simulation replications. We had

to fix the number of replications when generating bursty traffic. As opposed to the simulation carried out with

Poisson traffic, a simulation run with bursty traffic can not be automated to stop when achieving a desired

precision for the estimated mean. This is because of the presence of irregular incoming traffic. The irregularity

of traffic is due to the use of empirical variable packet sizes and the superposition of multiple streams with each

stream producing ON and OFF periods (with huge variance) modeled by heavy tailed distribution such as that

of Pareto. The problem is exacerbated when the Pareto’s shape parameter α is close to 1 (as is the case for the

shape parameters for our ON and OFF periods). Therefore simulation with such traffic will be very slow to

converge to steady state and thus the CI (Confidence Interval) can be very long [58]. In order to obtain

relatively acceptable accuracy and precision, simulation has to produce a huge number of samples [58]. For

our simulation, each replication generated for each source at least 10 million samples for its ON period and

another 10 millions for its OFF period. Care was taken to make sure that there is no overlapping in the random

number streams of simulation. Table 1 shows the estimated mean with 95% CI for system latency of time-

based coalescing when 50=T µs for 10 simulation runs. The precision is defined as the percentage error in the

estimated mean which is equal to CI half length divided by the estimated mean. It is noted that very low loads

and high loads contribute to a longer CI, as the simulation becomes less stable and the estimators converge

very slowly to their true values, especially when traffic is irregular [59]. The length of the CI of the other

performance metrics exhibited the same characteristics.

 24

Table 1. Simulation estimates for system latency (in ms) from 10 replications

Load Lower 95% Upper 95% Estimated Mean CI Half Length Precision

0.0004 0.0302 0.0612 0.046 0.015 34%

0.02 0.0259 0.0508 0.038 0.012 32%

0.1 0.0299 0.0513 0.041 0.011 26%

0.2 0.1411 0.2312 0.186 0.045 24%

0.4 0.2885 0.4221 0.355 0.067 19%

0.6 5.2582 7.1252 6.192 0.934 15%

0.8 4.9112 7.5692 6.240 1.329 21%

1.0 3.9312 8.6321 6.282 2.350 37%

Figure 10 plots the three key performance metrics of mean system throughput, CPU availability, and latency as

a function of the aggregated self-similar traffic load Totalρ . By subjectively eyeballing the performance curves

and comparing their shapes to the performance curves of Poisson traffic, we find the shapes of the curves are

very similar for the most part. Figure 10a shows at low load a curved shape for the achievable system

throughput as opposed to straight one. This is because the units for the throughput and the load are not the

same. Remember that the load Totalρ takes a value between 0 to 1. Also note that the highest average system

throughput is around 167 Kpps. This is expected as the average empirical packet size, based on the distribution

presented in Figure 7, is 557 bytes. The average protocol processing service time is the sum of fixed packet

overhead of 5.25 µs plus a fixed per-byte overhead of PacketSize/(748 Mbytes/s). This yields an average

service time of 5.99 µs, or a throughput of 167Kpps.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

60

80

100

120

140

160

180

Load

T
hr

ou
gh

pu
t (

K
pp

s)

Normal

Ideal &
Disable−Enable

Pure Polling &
NAPI Polling

Count−based IC

Time−based IC

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

Load

C
P

U
 A

va
ila

bi
lit

y
(%

)

Normal

Disable−Enable

NAPI Polling &
Pure Polling

Time−based IC

Count−based IC

Ideal

NAPI
Polling

Pure
Polling

(a) (b)

 25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

10
−5

10
−4

S
ys

te
m

 D
el

ay
 (

se
c)

Load

Normal

Time−based IC

Count−based IC

Ideal

NAPI Polling

Disable−Enable

Pure Polling

 0.1 0.3 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

6

8

10

12
x 10

−3

S
ys

te
m

 D
el

ay
 (

se
c)

Load

Normal

Time−based IC

Count−based IC

Ideal &
Disable−Enable

Pure Polling &
NAPI Polling

(c) (d)

Figure 10. Key performance indicators in relation to system load of bursty traffic

5.2. Effect of Selecting Different Parameter Values

A question related to the performance of a certain interrupt handling scheme is the selection of its parameter

values. One may argue that the parameter values selected may favor one scheme than the other. In this section

we study how the selection of parameter values impacts the performance of a particular scheme. Figure 11

shows the impact of selecting different values for the parameters of time-based and count-based coalescing as

well as pure and NAPI polling. The units of the time-based coalescing parameter T and polling period PollT are

in µs.

1 1.5 2 2.5 3

x 10
5

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Packet Arrival Rate (pps)

T
hr

ou
gh

pu
t (

pp
s)

Normal

Ideal

Τ=0
τ=1

τ=2

τ=20

τ=3

Τ=100

Τ=10

Τ=20

1 1.5 2 2.5 3

x 10
5

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Packet Arrival Rate (pps)

T
hr

ou
gh

pu
t (

pp
s)

Normal

Ideal

Q=3

Q=2

Q=4
Pure Polling

NAPI Polling

1 1.5 2 2.5 3

x 10
5

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Packet Arrival Rate (pps)

T
hr

ou
gh

pu
t (

pp
s)

Normal

Ideal

Tpoll=30

Pure Polling

NAPI Polling

Tpoll=25

Tpoll=20

(a) (d) (g)

 26

0 0.5 1 1.5 2

x 10
5

0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (pps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

Ideal

Norm
al

Τ=0

τ=1

τ=20
τ=3
τ=2

Τ=100
Τ=20

Τ=10

0 0.5 1 1.5 2 2.5

x 10
5

0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (pps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

Ideal

Norm
al

Q=2

Q=4

Q=3

Pure Polling

NAPI Polling

 0 0.5 1 1.5 2 2.5

x 10
5

0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (pps)

C
P

U
 A

va
ila

bi
lit

y
(%

)

Ideal

Norm
al Tpoll=20

Pure Polling

NAPI Polling

Tpoll=30

Tpoll=25

(b) (e) (h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
−5

10
−4

10
−3

10
−2

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (pps)

N
or

m
al

Ideal

τ=
1

Τ=
0

τ=2
τ=3

τ=20

Τ=10
Τ=20

Τ=100

Τ=10
Τ=20

Τ=100

τ=2

τ=20

τ=3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
−5

10
−4

10
−3

10
−2

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (pps)

N
or

m
al

Id
ea

l

Q
=

2

Q
=

3

Q
=

4

Pure Polling

NAPI Polling

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
−5

10
−4

10
−3

10
−2

S
ys

te
m

 D
el

ay
 (

se
c)

Packet Arrival Rate (pps)

N
or

m
al

Id
ea

lT
po

ll=
20

Pure Polling

NAPI Polling

T
po

ll=
30

T
po

ll=
25

(c) (f) (i)

Figure 11. Effect of parameter values of coalescing and polling on performance

For coalescing, Figures 11a, 11b, and 11c show that selecting large values for the count-based coalescing

parameterτ can be very detrimental to performance in terms of latency at low load. At very low arrival rate,

packets have to wait longer time to be coalesced. The larger the value of τ , the larger the coalescing time. In

time-based coalescing, there is a bound on the waiting time, which is the value of T.

For polling, Figures 11d, 11e, and 11f show the impact of selecting the polling quota Q on performance. For

these examples, PollT is fixed to 20 µs. When varying Q, it is noted when Q is large (Q=4), protocol processing

will be done at full speed, and thus resulting in a CPU availability to drop to 0 at high load. However, when Q

is small (Q=2), CPU availability is best, but resulting in considerable latency and degraded throughput.

Selecting the polling period is crucial. Figures 11g, 11h, and 11i study such an effect. For these figures, we

fix Q to 4. The figures are in line with intuition and show that small values of PollT (i.e., frequent polling) will

result in more overhead and thus degraded performance in terms of throughput and CPU availability.

However, when PollT takes on large values (i.e., infrequent polls), more latency will be encountered. NAPI

polling outperforms pure polling in terms of latency, especially at low rate. However, pure polling outperforms

 27

NAPI polling in terms of CPU availability at moderate load as depicted in Figure 11e. At very low load, pure

polling has much smaller CPU availability. This is expected as pure polling has always fixed overhead of only

the timer interrupt and polling overhead. However NAPI has the additional overhead of enabling and disabling

the interrupts for incoming packets, and thus acts similar to the scheme of enabling and disabling interrupts at

low to moderate load.

5.3. Hybrid Scheme

It was concluded from numerical examples given in Section 4 and the discussion in Sections 5.1 and 5.2 that no

particular interrupt handling scheme gives the best performance under all load conditions. Selection of the

appropriate scheme depends primarily on the system performance requirements, most important performance

metric of interest, and traffic load. It was shown by giving numerical examples that the scheme of disabling and

enabling interrupts outperforms, for the most part, all other schemes in terms of throughput and latency.

However when it comes to CPU availability, pure polling is the most appropriate scheme to use. Based on

these important observations and in order to compensate for the disadvantage of interrupt disable-enable

scheme of poor CPU availability, we propose a novel hybrid scheme of interrupt disable-enable and pure

polling. This hybrid scheme would make up for the CPU availability drawback of interrupt disable-enable

scheme when the host is under heavy load. In short, the scheme would operate in interrupt disable-enable until

reaching a heavy load region at which the system must switch to pure polling. The selection of parameters for

pure polling period and quota at high load rate depends largely on what the most important performance metric

is. For example, if latency has a more dominant weight than throughput and CPU availability, a small value for

the polling period and a larger quota are desirable. In [5,17,22], a hybrid scheme of normal interruption and

polling was proposed. As demonstrated in this paper, normal interruption performs very poorly at light and

moderately light loads in terms of throughput, CPU availability, and latency. Also in [5,17,22], the switching

between normal interruption and polling was done somewhat arbitrarily.

Identifying the switching point is critical. The switching point should be in the vicinity of or just before the

cliff point occurs. Under Poisson traffic, our analytical work provided equations to identify where cliff point

occurs. The cliff point can be simply identified as the saturation point of normal interruption. The cliff point

occurs when
r

r
orIP +

⋅<<
λ

µλρ 1 . Solving for λ, the saturation point or cliff point can be expressed as

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 141

2 r

r
cliff

µλ . (13)

For Poisson traffic, Equation (13) gives a cliff point at 127 Kpps, and thus a proper switching point can be

selected to be at 120 Kpps. For bursty traffic, Equation (13) surprisingly gives an adequate approximation for

 28

the cliff point. The cliff point can be computed if the average packet size is measured. Based on the empirical

packet size distribution, the average packet size is 557bytes. As discussed in Section 5.1, this yields an average

protocol service time of 5.99 µs, or a rate of 167Kpps. Consequently and applying Equation (13), the cliff

point cliffλ for bursty traffic is 116 Kpps, which is very much in line with the simulation results of Figure 10a.

And therefore, a proper switching point can be at a system throughput of 110 Kpps.

From implementation point view, the OS can be modified to measure the average packet size and the average

system throughput at the protocol level, and accordingly switch point pure polling and interrupt disable-enable

scheme. This implementation is simple and under the control of the OS and it does not require any load

measurement or functionality at the NIC end. As a further study, we are currently in the process of

implementing our proposed hybrid scheme that combines interrupt disable-enable and pure polling in Linux

2.6.

6. Conclusion

We developed analytical models to analyze the performance of Gigabit-network hosts when employing

different interrupt handling schemes that included ideal system, normal interruption, interrupt disabling and

enabling, count-based coalescing, time-based coalescing, pure polling, and NAPI polling. The analytical

models were verified and validated by simulation and by considering special cases. Our analysis provided

equations to give insight into predicting the system performance and behavior when employing a certain

interrupt handling scheme. The performance was studied in terms of system throughput, CPU availability, and

latency. We also studied using simulation the impact on performance of subjecting the host to bursty traffic

that is self-similar with long-range dependence. In addition we studied the impact of selecting different values

for scheme parameters.

It was concluded that the relative performance of interrupt-handling schemes under bursty traffic was similar to

that of Poisson traffic. Also it was concluded that no particular interrupt handling scheme gives the best

performance under all load conditions. Selection of the most appropriate scheme to employ depends primarily

on system performance requirements, most important performance metric, and present traffic load. It was

shown by giving numerical examples that the scheme of disabling and enabling interrupts outperforms, in

general, all other schemes in terms of throughput and latency. However when it comes to CPU availability,

pure polling is the most appropriate scheme to use. Based on these important observations, we proposed and

discussed briefly the implementation of a hybrid scheme of interrupt disable-enable and pure polling. Such a

hybrid scheme would be able to attain peak performance under low and heavy traffic loads. As a further study,

we are in the process of implementing our proposed hybrid scheme in Linux 2.6. Details, results and

comparisons of such implementation are to be published in the near future.

 29

Acknowledgements

We acknowledge the support of King Fahd University of Petroleum and Minerals in completion of
this work. This work has been funded under Project #FT-2005/17.

References

[1] R. Morris, E. Kohler, J. Jannotti, and M. Kaashoek, “The Click Modular Router,” ACM Transactions on Computer

Systems, vol. 8, no. 3, August 2000, pp. 263-297.

[2] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier, “TCP Performance Re-Visited,” IEEE Symposium on

Performance of Systems and Software, March 2003, pp. 70-79

[3] K. Ramakrishnan, “Performance Consideration in Designing Network Interfaces,” IEEE Journal on Selected Areas

in Communications, vol. 11, no. 2, February 1993, pp. 203-219.

[4] J. Chase, A. Gallatin, and K. Yocum, “End System Optimizations for High-Speed TCP” IEEE Communication

Magazine, vol. 39, no. 4, April 2001, pp. 68-74.

[5] J. Mogul, and K. Ramakrishnan, “Eliminating Receive Livelock in an Interrupt-Driven Kernel,” ACM Trans.

Computer Systems, vol. 15, no. 3, August 1997, pp. 217-252.

[6] P. Druschel, “Operating System Support for High-Speed Communication,” Communications of the ACM, vol. 39, no.

9, September 1996, pp. 41-51.

[7] P. Druschel, and G. Banga, “Lazy Receive Processing (LRP): A Network Subsystem Architecture for Server

Systems,” Proceedings Second USENIX Symposium on Operating Systems Design and Implementation, October
1996, pp. 261-276.

[8] Alteon WebSystems Inc., “Jumbo Frames,” http://www.alteonwebsystems.com/products/white_papers/jumbo.htm

[9] A. Gallatin, J. Chase, and K. Yocum, "Trapeze/IP: TCP/IP at Near-Gigabit Speeds", Annual USENIX Technical

Conference, Monterey, Canada, June 1999.

[10] C. Traw, and J. Smith, "Hardware/software Organization of a High Performance ATM Host Interface," IEEE JSAC,

vol.11, no. 2, February 1993, pp. 240-253

[11] C. Traw, and J. Smith, "Giving Applications Access to Gb/s Networking," IEEE Network, vol. 7, no. 4, July 1993,

pp. 44-52.

[12] P. Shivan, P. Wyckoff, and D. Panda, “EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet Message Passing,”

Proceedings of SC2001, Denver, Colorado, USA, November 2001.

[13] A. Indiresan, A. Mehra, and K. G. Shin, “Receive Livelock Elimination via Intelligent Interface Backoff,” TCL

Technical Report, University of Michigan, 1998.

[14] R. Prasad, M. Jain, and C. Dovrolis, “ Effects of Interrupt Coalescence on Network Measurements,” Proceedings of

Passive and Active Measurement (PAM) Workshop, France, April 2004.

[15] M. Zec, M. Mikuc, and M. Zagar, “Estimating the Impact of Interrupt Coalescing Delays on Steady State TCP

Throughput”, Proceedings of the 10th SoftCOM, October 2002.

 30

[16] I. Kim, J. Moon, and H. Y. Yeom, “Timer-Based Interrupt Mitigation for High Performance Packet Processing, ”
Proceedings of 5th International Conference on High-Performance Computing in the Asia-Pacific Region, Gold
Coast, Australia, September 2001.

[17] C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid Interrupt-Polling for the Network Interface,” ACM

Operating Systems Reviews, vol. 35, October 2001, pp. 50-60.

[18] M. Aron and P. Druschel, “Soft Timers: Efficient Microsecond Software Timer Support for Network Processing,”

ACM Transactions on Computer Systems, vol. 18, no. 3, August 2000, pp. 197-228.

[19] J. H. Salim, “Beyond Softnet,” Proceedings of the 5th Annual Linux Showcase and Conference, November 2001, pp

165-172

[20] Salah, K., and El-Badawi, K., “Modeling and Analysis of Interrupt Disable-Enable Scheme,” Proceedings of the

IEEE 21st International Conference on Advanced Information Networking and Applications (AINA-07), Niagara
Falls, Canada, May 21-23, 2007, pp. 1000-1005.

[21] L. Deri, “Improving Passive Packet Capture: Beyond Device Polling,” Proceedings of the 4th International System

Administration and Network Engineering Conference, Amsterdam, September 2004.

[22] O. Maquelin, G. R. Gao, H. J. Hum, K. G. Theobalk, and X. Tian, “Polling Watchdog: Combining Polling and

Interrupts for Efficient Message Handling,” Proceedings of the 23rd Annual International Symposium on Computer
Architecture, Philadelphia, PA, 1996, pp. 178-188.

[23] K. Salah and K. El-Badawi, " Evaluating System Performance in Gigabit Networks ", The 28th IEEE Local Computer

Networks (LCN), Bonn/Königswinter, Germany, October 20-24, 2003, pp. 498-505

[24] K. Salah and K. El-Badawi, " Performance Evaluation of Interrupt-Driven Kernels in Gigabit Networks", The IEEE

Global Telecommunications Conference, 2003, GLOBECOM’03, December 1-5, 2003, pp. 3953-3957

[25] K. Salah and K. El-Badawi, “Analysis and Simulation of Interrupt Overhead Impact on OS Throughput in High-

Speed Networks,” International Journal of Communication Systems, vol. 18, no. 5, Wiley Publisher, June 2005, pp.
501-526

[26] K. Salah “To Coalesce or Not to Coalesce”, International Journal of Electronics and Communications (AEU), vol.

61, no. 4, 2007, pp. 215-225.

[27] W. Feng, “Is TCP an Adequate Protocol for High-Performance Computing Needs?” Proceedings of SC2000, Dallas,

Texas, USA, November 2000.

[28] A. Bianco, J. M. Finochietto, G. Galante, M. Mellia, and F. Neri, “Open-Source PC-Based Software Routers: A

viable Approach to High-Performance Packet Switching” Proceedings of QoS-IP 2005, Catania, Italy, February 2-4,
2005, pp. 353-366.

[29] K. Kochetkov, “Intel PRO/1000 T Desktop Adapter Review,” http://www.digit-life.com/articles/intelpro1000t

[30] 3Com Corporation, "Gigabit Server Network Interface Cards 7100xx Family,”

http://www.costcentral.com/pdf/DS/3COMBC/DS3COMBC109285.PDF

[31] R. Bhoedjang, T. Ruhl, and H. Bal, “User-Level Network Interface Protocols,” IEEE Computer Magazine, vol. 31,

no. 11, Nov. 1998, pp. 53-60.

[32] A. Sinhra, S. Sarat, and J. Shapiro, “Network Subsystems Reloaded: A High-Performance, Defensible Network

Subsystem,” Proceedings of the USENIX Technical Conference, Boston, MA, June 2004, pp. 213-226.

 31

[33] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack”, February 2001,
http://www.sics.se/~adam/lwip/doc/lwip.pdf

[34] A. Rubini and J. Corbet, “The Linux Device Drivers,” O’Reilly, 2001.

[35] V. Guffens, “Path of a Packet in the Linux Kernel,” Submitted for publications,

www.auto.ucl.ac.be/~guffens/doc/path_packet.pdf, April 2003

[36] M. McKusick, K. Bostic, M. Karels, and J. Quarterman, The Design and Implementation of the 4.4BSD Unix

Operating System, Addison Wesley, Reading, MA, 1996.

[37] J. Brustoloni and P. Steenkiste, "Effects of Buffering Semantics on I/O Performance ," Proceedings Second USENIX

Symposium. on Operating Systems Design and Implementation, October 1996, pp. 277-291.

[38] Z. Ditta, G. Parulkar, and J. Cox, "The APIC Approach to High Performance Network Interface Design: Protected

DMA and Other Techniques," Proceeding of IEEE INFOCOM 1997, Kobe, Japan, April 1997, pp. 179-187.

[39] H. Keng and J. Chu, "Zero-copy TCP in Solaris," Proceedings of the USENIX 1996 Annual Technical Conference,

January 1996.

[40] D. Clark, V. Jacobson, J. Romkey, and H. Salwn, “An Analysis of TCP Processing Overhead,” IEEE

Communication Magazine, vol. 40, no. 5, May 2002, pp. 94-101.

[41] A. Brown and M. Seltzer, “Operating System Benchmarking in the Wake of lmbench: A Case Study of the

Performance of NetBSD on the Intel x86 Architecture,” Proceedings of the 1997 ACM SIGMETRICS international
conference on measurement and modeling of computer systems, Seattle, WA, 1997, pp. 214-224.

[42] M. Karam and F. Tobagi, “Analysis of Delay and Delay Jitter of Voice Traffic in the Internet,” Computer Networks

Magazine, vol. 40, no. 6, December 2002, pp. 711-726.

[43] W. Leland, M. Taqqu, W. Willinger, D. Wilson, "On the Self-Similar Nature of Ethernet Traffic", IEEE/ACM

Transaction on Networking, vol. 2, no. 1, February 1994, pp. 1-15

[44] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” IEEE/ACM Transactions on

Networking, vol. 3, no. 3, June 1995, pp. 226-244

[45] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson, “Self-Similarity Through High-Variability: Statistical Analysis

of Ethernet LAN Traffic at the Source Level,” Proceedings of ACM SIGCOMM, Cambridge, Massachusetts, August
1995, pp. 100-113.

[46] O. Brun, J. M. Garcia Analytical Solution of Finite Capacity M/D/1 Queues,” Journal of Applied Probability, vol 37,

no 4, December 2000, pp. 1092-1098.

[47] S. Alouf, P. Nain, and D. Towsley, “Inferring Network Characteristics via Moment-Based Estimators,” Proceeding

of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001, pp. 1045-1054.

[48] A. Law and W. Kelton, Simulation Modeling and Analysis, McGraw-Hill, 2nd Edition, 1991.

[49] J. White, “An Effective Truncation Heuristic for Bias Reduction in Simulation Output,” Simulation Journal, vol. 69,

no. 6, December 1997, pp. 323-334

[50] L. McVoy and C. Staelin, “lmbench: Portable Tools for Performance Analysis,” Proceedings of the 1996 USENIX

Technical Conference, San Diego, CA, January 1996, pp. 279-295.

 32

[51] Ashford Computer Consulting Service, “GigaBit Ethernet to the Desktop – Client1 System Benchmarks”, 2004,
http://www.accs.com/p_and_p/GigaBit/Client1.html

[52] T. Dunigan, “ORNL Opteron Evaluation – lmbench 2.0 Summary”, http://www.csm.ornl.gov/~dunigan/opteron-

1.5/lm.rpt

[53] K. Park and W. Willinger, “Self-Similar Network Traffic and Performance Evaluation,” John Wiley & Sons, Inc,

2002.

[54] M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a Fundamental Result in Self-Similar Traffic Modeling”

ACM/SIGCOMM Computer Communication Review, vol. 24, no. 2, 1997, pp. 5-23.

[55] K. Salah and K. Elbadawi, “Throughput and Delay Analysis of Interrupt-Driver Kernels under Poisson and Bursty

Traffic,” International Journal of Computer Systems Science and Engineering, vol. 22, nos. 1-2, January 2007.

[56] S. Malik and U. Killat, “How Many Traffic Sources are Enough?” Proceedings of Performance Modeling and

Evaluation of Heterogeneous Networks (HET-NETS), Ilkely, U.K., July 2004.

[57] K. C. Claffy, G. Miller, and K. Thompson, “The Nature of the Beast: Recent Traffic Measurements from an Internet

Backbone,” In the Proceedings of INET 1998, Geneva, Switzerland, July 1998.

[58] M. Crovella and L. Lipsky, “Long-Lasting Transient conditions in Simulations with Heavy-Tailed Workloads,”

Proceedings of the 1997 Winter Simulation Conference, Atlanta, GA, pp. 1005-1012.

[59] C. Wang and D. Wolff, “Efficient Simulation of Queues in Heavy Traffic,” ACM Transactions on Modeling and

Computer Simulation, vol. 13, no. 1, January 2003, pp. 62-81

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BC03B5002003C503C803B703BB03CC03C403B503C103B7002003B103BD03AC03BB03C503C303B7002003B503B903BA03CC03BD03C903BD002003B303B903B1002003B203B503BB03C403B903C903BC03AD03BD03B7002003C003BF03B903CC03C403B703C403B1002003B503BA03C403CD03C003C903C303B703C2002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002E0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020062806230639064406490020062F06420629002006440644063506480631062900200645064600200623062C06440020062A062D0633064A06460020062C0648062F062900200627064406370628062706390629002E0020064A064506430646002006440648062B06270626064200200050004400460020062306460020064A062A064500200641062A062D064706270020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200064006F006B0075006D0065006E0074016F0020005000440046002000730020007600790161016100ED006D00200072006F007A006C006901610065006E00ED006D0020006F006200720061007A016F002C002000610062007900730074006500200064006F007300E10068006C00690020007600790161016100ED0020006B00760061006C0069007400790020007400690073006B0075002E00200044006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000520065006100640065007200200035002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006A006F006200620020006E0079006F006D00740061007400E1007300690020006D0069006E0151007300E90067002000E9007200640065006B00E900620065006E0020006D00610067006100730061006200620020006B00E9007000660065006C0062006F006E007400E1007300FA002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A002000770079017C0073007A010500200072006F007A0064007A00690065006C0063007A006F015B0063006901050020006F006200720061007A006B00F30077002C0020007A0061007000650077006E00690061006A0105006301050020006C006500700073007A01050020006A0061006B006F015B0107002000770079006400720075006B00F30077002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E04320020044100200431043E043B0435043500200432044B0441043E043A0438043C00200440043004370440043504480435043D04380435043C00200441002004460435043B044C044E0020043F043E043B044304470435043D0438044F0020043B04430447044804350433043E0020043A04300447043504410442043204300020043F04350447043004420438002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF004400610068006100200069007900690020006200610073006B01310020006B0061006C006900740065007300690020006900E70069006E002000640061006800610020007900FC006B00730065006B0020006700F6007200FC006E007400FC002000E700F6007A00FC006E00FC0072006C00FC011F00FC006E0065002000730061006800690070002000500044004600200064006F007300790061006C0061007201310020006F006C0075015F007400750072006D0061006B00200061006D0061006301310079006C006100200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

