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Abstract 

 
Interrupt processing can be a major bottleneck in the end-to-end performance of Gigabit networks.  The 

performance of Gigabit network end hosts or servers can be severely degraded due to interrupt overhead caused 

by heavy incoming traffic.  In particular, excessive latency and significant degradation in system throughput 

can be encountered.  Also, user applications may livelock as the CPU power gets mostly consumed by interrupt 

handling and protocol processing.  A number of interrupt handling schemes has been proposed and employed to 

mitigate the interrupt overhead and improve OS performance.  Among the most popular interrupt handling 

schemes are normal interruption, polling, interrupt coalescing, and disabling and enabling of interrupts.  In 

previous work, we presented a preliminary analytical study and models of normal interruption and interrupt 

coalescing.  In this article, we extend our analysis and modeling to include polling and the scheme of interrupt 

disabling and enabling.  For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling.  

The performances for all these schemes are compared using both mathematical analysis and discrete-event 

simulation.  The performance is studied in terms of three key performance indictors: throughput, system 

latency, and the residual CPU bandwidth available for user applications. As opposed to our previous work, we 

consider not only Poisson traffic, but also bursty traffic with empirical packet size distribution.  Our analysis 

and simulation work gives insight into predicting the system performance and behavior when employing a 

certain interrupt handling scheme.   It is concluded that no single interrupt handling scheme outperforms all 

other schemes under all traffic conditions.  Based on obtained results, we propose and discuss a novel hybrid 

scheme of interrupt disabling-enabling and pure polling in order to attain peak performance under low and 

heavy traffic loads. 
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1. Introduction 

1.1. Background 

In hosts with Gigabit Ethernet links, the arrival rate of incoming packets can surpass the kernel’s packet 

processing rate of network protocol stack processing and interrupt cost.  In fact even with today’s powerful 

multi gigahertz processors, the cost of per-packet interrupt alone surpasses the inter-arrival time of packets.  

With Gigabit Ethernet and the highest possible rate of 1.23 million interrupts per second for a minimum sized 

packet of 64 bytes, the CPU must process a packet in less than 0.82 µs in order to keep up with such a rate.    

According to reported measurements in [1], an incoming-packet interrupt cost, on a 450MHz Pentium-III 

machine running Linux 2.2.10, was 13.23 µs.   With the presence of more powerful multi gigahertz processors 

these days, it is expected the interrupt cost will not be decreased linearly by the speed frequency of the 

processor, as I/O and memory speed limits dominate [2].  In [2] it was concluded that the performance of 

2.4GHz processor only scales to approximately 60% of the performance of an 800MHz processor.   

 
Under heavy traffic load such as that of Gigabit networks, the performance of interrupt-driven systems can be 

degraded significantly, and thus resulting in a poor host performance perceived by the user.  For one thing, 

every hardware interrupt, for every incoming packet, is associated with context switching of saving and 

restoring processor’s state as well as potential cache/TLB pollution.  More importantly, interrupt-level 

handling, by definition, has absolute priority over all other tasks.  If the interrupt rate is high enough, the 

system will spend all of its time responding to interrupts, and nothing else will be performed; and hence, the 

system throughput will drop to zero.  This situation is called receive livelock [3].   In this situation, the system 

is not deadlocked, but it makes no progress on any of its tasks, causing any task scheduled at a lower priority to 

starve or not have a chance to run.  

 
A number of interrupt-handling schemes and solutions have been proposed in the literature [4-22] to mitigate 

interrupt overhead and improve OS performance.  Some of these solutions include interrupt coalescing, polling, 

disabling interrupts, OS-bypass protocol, zero-copying, jumbo frames, pushing some or all protocol processing 

to hardware, etc.   A comprehensive summary that comprises many of these solutions can also be found in [4].  

The most popular interrupt-handling schemes include primarily normal interruption, interrupt coalescing, 

polling, and interrupt disabling and enabling.  In this paper we present analytical models for a number of 

schemes that includes ideal system, normal interruption, pure polling, and interrupt disabling and enabling.  

The analytical models presented in this paper are based on queueing theory and Markov process. Discrete-event 

simulation (DES) is utilized to verify analysis.  Also we utilized DES to study the performance of all schemes 

when hosts are subjected to bursty traffic.   
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In previous work [23-25], we presented a preliminary analytical study of normal interruption.  The performance 

was studied primarily in terms of throughput [23,24]. The performance in terms of latency for only normal 

interruption was briefly discussed in [23].  A detailed simulation models for hosts with PIO and DMA were 

given in [25].  In [26], we presented a complete analytical model to study the performance of interrupt 

coalescing scheme.   

1.2. New Contributions 

In sharp contrast to our previous work presented in [23-26], this paper is different in significant ways.  First, the 

paper presents novel analytical study and models for polling and for the scheme of interrupt disabling and 

enabling.  For polling, we study both pure (or FreeBSD-style) polling and Linux NAPI polling.  Second, the 

paper summarizes and extends the analytical work of normal interruption to model the system when there is a 

per-packet processing overhead.  Third, a comprehensive performance comparison of all known interrupt 

handling schemes is presented.  The host performance is studied and compared in terms of three key 

performance indicators which include system throughput, system latency, and CPU availability for other 

processing including user applications.  Fourth, we utilize DES simulation to model and examine the 

performance when host is subjected to not only to Poisson traffic but also to bursty traffic and with variable 

packet sizes.   Fifth and as opposed to our previous work, we consider more realistic values for system 

parameters that suit modern Gigabit network environment and hosts.  In previous work we used system 

parameters of 400 MHz Pentium III machines.  In this article we consider system parameters of today’s CPU 

cores such as the 2.53 GHz Pentium-IV machines.  Sixth, the paper investigates the influence on performance 

due to the selection of different parameter values for a certain interrupt handling scheme.  One may argue that 

the selection of parameter values may favor one scheme over the other. Seventh, the paper proposes and 

discusses a hybrid scheme that combines interrupt disabling-enabling and pure polling in order to attain peak 

performance under low and heavy traffic loads. Lastly, the paper discusses in detail a typical DMA-based 

architecture model of transferring packets between the Network Interface Card (NIC) and host memory.   

 

The rest of the paper is organized as follows.  Section 2 illustrates a common and typical architecture model of 

transferring packets between the NIC and host memory. The architecture model is based on employing DMA. 

Section 3 explains briefly the different interrupt handling schemes and presents analytical models that capture 

the system behavior and study their performance.  Section 4 gives numerical examples showing both analysis 

and simulation results under Poisson traffic.  Section 5 examines performance impact when hosts are subjected 

to bursty traffic with empirical variable-size packets.  The impact is studied using simulation.  Also Section 5 

discusses the impact of selecting different parameter values for each scheme on the host’s performance.  A 

hybrid interrupt-handling scheme is also proposed in Section 5.  Finally, Section 6 concludes the study and 

identifies future work. 
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2. DMA-Based Design  

For our hosts, we assume that the NIC is equipped with DMA engines.  Today’s high-speed NICs are equipped 

with DMA engines in order to save CPU cycles consumed in copying packets.  NICs are typically equipped 

with a receive Rx DMA engine and a transmit Tx DMA engine.  A Rx DMA engine handles transparently the 

movement of packets from the NIC internal buffer to the host’s kernel memory.  A Tx DMA engine handles 

transparently the movement of packets from the host memory to the NIC internal buffer.  It is worth noting that 

the transfer rate of incoming traffic into the kernel memory across the PCI bus is not limited by the throughput 

of the DMA channel.  These days a typical DMA engine can sustain over 1 Gbps of throughput for PCI 32/33 

MHz bus and over 4 Gbps for PCI 64/66 MHz bus [27-30]. 

 
Albeit there are numerous variants of how packets get transferred from the NIC and then to protocol buffer 

[1,9,16,19,27-35], we discuss here one of the common architecture models that best suits the Gigabit 

networking environment and currently implemented in FreeBSD and Linux latest releases of 2.4 and beyond 

[9,19,32,33,35,36].  Figure 1 shows such an architecture model of DMA-based design.  The figure shows the 

flow path of an incoming packet involving the NIC, host memory, and application. The packets are DMA'd 

from the NIC Rx buffer, through the bus interface such as the PCI, to a system shared ring Rx buffer or Rx 

DMA ring, and subsequently consumed by user application or routed elsewhere.   

 

Note that the DMA ring is shared between the NIC and kernel’s protocol processing, with the NIC being the 

producer and protocol processing being the consumer. A producer-consumer implementation must be carried 

out and the implementation varies depending on the machine architecture and NIC features.  Typically, the 

DMA engines implement scatter-gather DMA logic and operate in a bus-master fashion.  At initialization, the 

kernel allocates the Rx circular buffer.  Rx circular buffer is typically a FIFO of memory block pointers.  The 

blocks are scattered in memory and are pre-allocated to store incoming packets.  The block pointers are linked 

in a circular fashion and can be read by the NIC DMA engine. Usually, the NIC is configured to have a write-

pointer register.  If the NIC’s write-pointer register has a null value, no DMAing will take place, and incoming 

packets will get dropped.   To start DMAing of incoming packets, the kernel writes, at initialization, the address 

of the first block pointer into the NIC’s write-pointer register.  After a successful DMAing of an incoming 

packet, an interrupt is generated by the NIC.  The NIC DMA engine will read and update automatically its 

write pointer to next address in the chain.  The NIC will keep DMAing incoming packets as long as the buffer 

is not full, i.e., the next address in the chain does not have a null value.  The last block in the chain will have a 

null pointer.  It is to be noted that the kernel has a read pointer to the circular buffer.  Every time a packet is 

processed by the kernel, the kernel refills the ring with a new block and updates its read pointer.  Note that 

kernel’s protocol processing for a single packet will finish when the packet is placed in an upper layer queue 

such as that of the application or is placed in an outgoing output queue of an interface in case of routing. 
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Figure 1. Architecture model of DMA-based design 

Under normal-interruption mode, it is important to emphasize again that the NIC is typically configured such 

that an interrupt is generated after the incoming packet has been completely DMA'd into the host’s kernel 

memory.   In order to minimize the time for ISR execution, ISR handling mainly sets a software interrupt to 

trigger the protocol processing for the incoming packet.   Practically, it is prudent to limit the function of ISR 

handling to only notifying the kernel to start protocol processing of the received packet.  In [1,16,33,36] and  

Linux releases prior to 2.4.20 [34,35], ISR handling included appending or chaining DMA’d incoming packets 

from DMA ring to protocol incoming buffer.  Additionally ISR handling included refilling or replenishing 

DMA ring with new buffer space to make up for the space consumed by the appended packets. If any packet 

handling (such that of appending or replenishment) is done during ISR, the interrupt overhead can considerably 

stretch as multiple packets can be received during ISR handling, and subsequently causing considerable cache 

pollution as well as starving protocol  processing.  As opposed to [1,16,33-36], Linux 2.4.20 and thereafter 

[19,32,35] implements a NAPI (New API) architecture in which the DMA ring is the same as the protocol 

buffer, and therefore there is no extra chaining or appending required.  Also the replenishment of DMA ring is 

carried out as part of the protocol processing.  Therefore, the only remaining function of ISR handling becomes 

the notification of the kernel to start protocol processing, and therefore minimizing interrupt cost and causing 

minimal cache pollution. 
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After the notification of the arrival of a new packet, the kernel will process the packet by first examining the 

type of frame being received and then invoking immediately the proper handling stack function or protocol, e.g. 

ARP, IP, TCP, UDP, etc.  Note that TCP or UDP processing includes IP processing.  The packet will remain in 

the kernel or system memory until it is discarded or delivered to the user application.  The network protocol 

processing for packets carried out by the kernel will continue as long as there are packets available in the 

system memory buffer.  However, this protocol processing of packets can be disrupted by interrupts as a result 

of new packet arrivals.  This is so because packet processing by the kernel runs at a lower priority than 

interrupts of incoming packets.  There are two possible system delivery options of packet to user applications.  

The first option is to perform an extra copy of packet from kernel space to user space.  This is done as part of 

the OS protection and isolation of user space and kernel space.  This option will stretch the time of protocol 

processing for each incoming packet.  A second option eliminates this extra copy using different techniques 

described in [6,7,12,36-39].   The kernel is written such that the packet is delivered to the application using 

block pointer manipulations (known also as zero copy) whereby the data is not copied but moved from kernel 

to user space by changing pointers.  

3. Analysis 

In this section we present analytical models to examine the impact of interrupt overhead on OS performance.  

First we define the system parameters.  Let λ be the mean incoming packet arrival rate and µ  be the mean 

protocol processing rate carried out by the kernel.   Note that 1/µ  is the average time the kernel takes to process 

one DMA’d packet and deliver it to user application.  This time includes primarily the network protocol stack 

processing carried out by the kernel.  1/µ  includes the average cost of OS context-switching and scheduling 

overhead, cache bouncing and pollution, protocol code execution, any checksum computation, as well as packet 

copying and buffering [4,40,41].  However 1/µ excludes any time disruption due to interrupts.  Examples of 

protocol processing can be IP processing, TCP processing, and UDP processing.  For TCP and UDP 

processing, IP processing would be included.  Let r/1  be the mean time for handling an incoming packet 

interrupt.  This mean time is essentially the overall interrupt cost which includes interrupt overhead and 

handling.  We will refer to this overall cost r/1  simply by “ISR handling”. 

 
Throughout our analysis, we assume the following: 

i) It is intuitive to assume the times for protocol processing or ISR handling to be not deterministic.  These 

times change due to various system loads and conditions, I/O activities, kernel activities, as well as cache 

pollution/bouncing.  For example ISR handling for incoming packets can be interrupted by other 

interrupts of higher priority, e.g., timer interrupts.  Also, protocol processing can be interrupted by higher 

priority kernel tasks, e.g., scheduler.  For our analysis, we assume these service times to be exponential.   



 7 

ii) The network traffic follows a Poisson process, i.e., the packet interarrival times are exponentially 

distributed.  In many situations, assuming Poisson arrivals is adequate.  In [42], it was concluded that 

modeling the voice traffic as Poisson gives adequate approximation, especially if the voice traffic is high. 

iii) The packet sizes are fixed.  This assumption is true for Constant Bit Rate (CBR) traffic such as 

uncompressed interactive voice and video conferencing.   

 

Our analytical models assume Poisson traffic with fixed-size packets.  In practice, network traffic is not always 

Poisson and packets are not always fixed in size.  In [43-45], it was shown that the aggregated Ethernet traffic 

(resulting from network applications and services) is bursty and characterized as self-similar with long range 

dependence.  An analytical solution becomes intractable when considering variable-size packets and non-

Poisson arrivals.  In Section 5.1, we use simulation to study and compare the impact of bursty traffic with 

empirical variable packet sizes on system performance. 

3.1. Ideal Mode 

In the ideal system, we assume the overhead involved in generating interrupts is totally ignored.  The ideal 

system gives the best performance that can possibly be obtained when employing interrupts, thus serving as a 

reference or a benchmark to compare with.  Under our stated assumptions, we can simply model such a system 

as an M/M/1/B queue with a Poisson packet arrival rate λ and a protocol processing time that has an 

exponential distribution with a mean of µ/1 . B is the maximum size the system buffer can hold.  M/M/1/B 

queueing model is chosen as opposed to M/M/1 for two important reasons.  First, in M/M/1/B, the arrival rate 

can go beyond the service rate, i.e., µλ > .  This assumption is a must for Gigabit environment where under 

heavy load λ can be very high compared to µ.  Second, hosts practically and realistically has a finite amount of 

buffer space reserved for protocol processing. 

3.2. Normal Interruption  

In normal interruption, every incoming packet causes an interrupt.  Modeling normal interruption mode is 

based on first determining the CPU utilization for ISR handling, next finding the mean effective or disrupted 

protocol processing rate, and then modeling the protocol processing as M/G/1/B queueing system with this 

mean effective rate.  More details on this model can be found in [25].  In [25], the system performance was 

only studied in terms of throughput.  In this paper we extend the analysis work to examine more performance 

metrics.  In particular we study system latency and CPU availability for user applications.  

 
The CPU utilization for ISR handling, ISRU , was derived in [25] and expressed as 
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CPU Availability. For such a model, the percentage of CPU power or bandwidth available for other 

processing, including user applications, is basically the probability when there is no ISR handling and there are 

no packets being processed by the protocol stack.  It is to be noted from Equation (2) that the effective service 

time is exponential.  Therefore, the protocol processing can be modeled as an M/M/1/B queue with a mean 

service rate of µ ′ .  Hence, the CPU availability for other processing can be expressed as  
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where 0p  is the probability of not queueing, i.e. finding zero packets, in the M/M/1/B queueing system of the 
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λρ IP .  Note that IPρ  is the network load, or traffic intensity, being encountered due to kernel’s 

protocol processing. 
 
 
Mean System Throughput.  System throughput, in this context, refers to the achievable throughput of 

protocol processing of the OS networking subsystem.  Consequently, the mean system throughput γ  is 

basically the departure rate due to protocol processing.  γ  can be derived multiple ways, which are all 

mathematically equivalent. One way is to express γ as  
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)1(' 0p−= µγ , (5) 

where 0p is expressed by Equation (4).   
 
Mean System Latency.  System latency, in this context, refers to the delay encountered from the arrival of the 

packet into host memory (i.e., after being completely DMA’d into protocol processing buffer) until the 

completion of protocol processing of the OS networking subsystem.  The mean system latency per packet is 

affected by both ISR handling and protocol processing.  An incoming packet experiences a delay due to 

interrupt handling and due to the delay of protocol processing.  Accordingly, the mean system delay is therefore 

decomposed to be the sum of the mean delay of interrupt handling plus the mean delay of protocol processing.  

Hence the total mean system delay, ][TE , can be expressed as 

][][][ TETETE IPISR += ,  

where ][TEISR
  is the mean delay due to ISR and ][TEIP  is mean delay due to  protocol processing.  ][TEISR

  is 

simply  r/1 .  This is so due to the nature of servicing packets during ISR handling.  The mean ISR handling 

time for one packet or many packets is practically the same, i.e.  r/1 .  As for the mean delay caused by 

protocol processing, ][TEIP , is simply the mean delay encountered in the M/M/1/B queueing system with 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'µ
λρ IP . Therefore, such a delay can be expressed using Little’s theorem as 

'

][
][

λ
NE

TE IP
IP = , where 

11

1)1(

1
][ +−

++
−

−
=

B

BB
NE

IP

IP

IP

IP
IP

ρ
ρ

ρ
ρ  (which is the average packets in the system) and 'λ  is the mean effective arrival 

rate.  'λ  is basically the same as γ and is expressed of Equation (5).   Therefore, the mean system delay is 

expressed as 

'

][1
][

λ
NE

r
TE IP+= . (6) 

Special Case.  There is a special case of interest that can be used to verify our analysis and mathematical 

derivation.  The case is when interrupt handling is ignored, i.e., the case of the ideal system when r/1 = 0.  The 

mean effective protocol processing rate of Equation (2) becomes just µ  as follows: 
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3.3. Interrupt Disabling and Enabling  

The key idea behind interrupt disable-enable handling scheme is inspired by [5].  This scheme is used by some 

OSes such as the case of Linux NAPI [19].  In short, the idea of pure interrupt disable-enable scheme is to have 
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the interrupts of incoming packets turned off or disabled as long as there are packets to be processed by 

kernel’s protocol stack, i.e., the protocol buffer is not empty.  When the buffer is empty, the interrupts are 

turned on again or re-enabled.  Any incoming packets (while the interrupts are disabled) are DMA’d quietly to 

protocol buffer without incurring any interrupt overhead. 

 
Figure 3 exhibits a Markov chain model for the behavior of the interrupt disable-enable scheme with finite 

buffer.  This model is more realistic than a simpler model which was presented in [20] considering infinite 

buffer. The state space of Figure 3 is defined as ( ){ } ( ){ }BnnBnnS ≤≤∪≤≤= 0,1,1,0,  where n denotes the 

number of packets in the buffer, and B denotes the buffer size.  States )1,(n  define the states in which the 

interrupts are enabled.  States )0,(n  define the states in which the interrupts are disabled. State )1,0(  represents 

the state where the system is idle (with no packets) and the interrupts are enabled.  We let v1  denote the mean 

processing service time when the interrupts are enabled.  We assume v1  is exponentially distributed and it 

includes: the time to disable the interrupts, the time to handle interrupt (with a mean of r/1 ), and the time to 

service one packet by the kernel’s protocol stack (with a mean of µ1 ).  For simplicity, we ignore the time for 

re-enabling the interrupt.  This delay is very small (typically one or two write instruction to the NIC’s control 

register).   It was shown that this delay has negligible impact on simulation results shown in Section 4. 

 

 
Figure 3.  Markov state transition diagram for modeling interrupt disable-enable scheme 

 
Let mnp ,  be the steady-state probability at state ),( mn .  The stationary equations of the Markov chain in Figure 

3 are: 
 
 0,11,11,00 ppp µνλ ++−=   
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 0)(0 0,21,20,1 =+++−= ppp µνµλ   

 
 1,11,)(0 −++−= nn pp λνλ  Bn <≤1   

 
 0,11,10,10,)(0 ++− ++++−= nnnn pppp µνλµλ  Bn <≤1  
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Simplifying, we obtain 
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CPU availability.  CPU availability for user applications is basically the idleness state which can be given 
by 1,0p .   
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which can be subsequently simplified to 
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Mean System Latency.  The mean system latency ][TE , can be expressed straightforward as 
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and ][NE  is the average number of packets encountered due to protocol processing and can be expressed as 
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Special Case.  Let us consider the special case when µ=v .  It can be easily verified that all the equations 

derived for the throughput, latency and CPU availability will be exactly reduced to those of a pure M/M/1/B 

queueing system with an arrival rate of λ  and service rate of µ . 

 

3.4. Polling  

The idea of polling is to disable interrupts of incoming packets altogether and thus eliminating interrupt 

overhead completely.  In polling, the OS periodically polls its host system memory (i.e., protocol processing 

buffer or DMA Rx Ring) to find packets to process.  In general, exhaustive polling is rarely implemented.  

Polling with quota is usually the case whereby only a maximum number of packets is processed in each poll in 

order to leave some CPU power for application processing.  There are primarily two drawbacks for polling. 

First, unsuccessful polls can be encountered as packets are not guaranteed to be present at all times in the host 

memory, and thus CPU power is wasted.  Second, processing of incoming packets is not performed 

immediately as the packets get queued until they are polled.  Selecting the polling period is crucial.  Very 

frequent polling can be detrimental to performance as significant overhead can be encountered at each poll.  On 

the other hand, if polling is performed infrequently, packets may encounter long delays. 
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Pure Polling vs. NAPI Polling.  Polling was proposed in [3,17-19,21,22] to mitigate completely the interrupt 

overhead generated by packet arrivals.  Releases of FreeBSD 4.6 and Linux 2.6 and thereafter can be 

configured for polling mode.  Both of these releases use polling with quota, however, there is a difference.  In 

FreeBSD polling, the interrupt is completely disabled for incoming packets.  The algorithm for pure polling (or 

basic FreeBSD style) is illustrated in Figure 4.  During the polling period, a limited number of packets, say Q, 

are processed by the protocol stack. In the situation where polling is triggered while in the midst of a polling 

cycle (i.e., servicing packets by the protocol stack), the trigger is ignored, but polling is turned on again and 

overhead is incurred which is purely a waste of CPU cycles.   

Poll_Int (start of polling cycle PollT ) 
1. Set Poll_Mode ON 

2. Trigger IP Processing 

IP Processing 
1. Set Poll_Mode OFF 

2. Process up to Q packets or until no 

more packets in buffer 

3. If Poll_Mode is ON goto Step 1 

Figure 4. Pure Polling algorithm  
 

In Linux NAPI polling [19,28], a combination of the scheme of interrupt disabling-enabling and polling is used. 

This is achieved by disabling the interrupts of incoming packets once a packet is received and triggering polling 

immediately (as illustrated in the NAPI algorithm of Figure 5).  After processing Q packets, if the protocol 

processing buffer is not empty, polling is triggered again on the next polling cycle; otherwise, polling is turned 

off and the interrupts of incoming packets are re-enabled.  The key idea behind Linux NAPI polling is to 

combine the mitigation of interrupt overhead at high load while improving the responsiveness at low load.  

 

Rcvd_Pkt_INT 
1. Disable Rcvd_Pkt_INT 

2. Enable Poll_INT and 

trigger the handling 

of Poll_INT 

Poll_INT (start of polling cycle PollT ) 
1. Set Poll_Mode ON 

2. Trigger IP Processing 

IP Processing 
1. Set Poll_Mode OFF 

2. Process up to Q packets or 

until no more packets in 

buffer 

3. If Poll_Mode is ON goto 

Step 1 
4. If buffer is empty then 

disable Poll_INT and 

enable Rcvd_Pkt_INT 

Figure 5. NAPI Polling algorithm  
 

The polling period in the latest versions of FreeBSD and Linux is not deterministic.  Linux polls occur with 

softirqs.  As all softirqs, they get typically executed at end of hardware interrupt and just before returning from 

kernel to user mode.  FreeBSD polls occur at end of clock interrupt and system calls, and within idle loops.  

With these techniques, context switching overhead and cache pollution are decreased.  It is also possible to 

avoid more context switching overhead and cache pollution in polling by utilizing soft timers [18].  With soft 
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timers, the OS can choose to poll the protocol buffer at more “convenient” or “trigger” points.  OS convenient 

points can occur when the system is already in the right context and has already suffered cache pollution [18].   

As opposed to Linux, the quota during polling in FreeBSD is dynamically adjusted.  In FreeBSD, the quota 

depends on a number of configured parameters such as system load, CPU speed, remaining CPU fraction for 

polling process, and maximum quota.  In this paper and for the sake of performance comparison, we will use a 

fixed polling period and a fixed quota.  Pure polling is studied using mathematical analysis and simulation, 

while NAPI polling is studied using simulation. 

 

Let us assume PollT  is the polling period, that is, a hardware timer is configured to periodically generate an 

interrupt every PollT .  Obviously, there is a polling overhead associated with each polling period that involves 

context switching overhead and notifying the protocol processing.  We denote PollOHT  for this polling overhead.  

In this case where PollT  is generated by an interrupt, the polling overhead is close to the cost of interrupt 

overhead.  Note that the cost of polling overhead would be an order of magnitude less than the interrupt 

overhead when using soft timers to trigger polling [17,18,22].  For our analysis in this paper, we use hardware 

timers as opposed to software timers for the generation of PollT , and hence PollT  is deterministic. The analysis 

of using soft timers for polling is left for future work. 

 

PollT

µ/QPollOHT

PollOHPollv TTT −=
 

Figure 6. Polling cycle components 
 

Let us assume for now a deterministic distribution for both PollOHT  and µ/1 .  Hence, for our analysis the time 

is divided into a sequence of polling slots lasting exactly PollT  time units.  Figure 6 illustrates the time division 

of a PollT  which is comprised of an initial polling overhead, lasting PollOHT , a time span used for processing up 

to Q packets, lasting up to µ/Q , and possible an idle (or leftover) period lasting until the end of PollT .   

Obviously protocol processing may not run at the full rate of µ during PollT  (in the situation when µ/Q  ends 

before the end of PollT ).  Running at full rate means that protocol processing for packets will continue back-to-

back without giving away the CPU during the polling period.   

 

Therefore, the effective mean protocol processing rate 'µ  can be expressed as  

( )⎩
⎨
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µ ,  (9) 
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Where PollOHPollv TTT −=  and PollPollOHPollOH TTU = .     PollOHU  is the CPU utilization due to polling overhead.   

 

An issue related to our analysis of pure polling above is that it assumes deterministic times for protocol 

processing and polling overhead. It is important to recognize that the analysis for polling is not a trivial task, 

and it is best studied using simulation.  Our polling analysis under these assumptions gave adequate 

approximation to those of reported results (shown in Section 4) of simulation with exponential times for 

protocol processing and polling overhead.   

 

CPU Availability.  The CPU availability for user applications can be expressed as )(1 IPPollOH UUV +−= .  IPU  

is the CPU utilization due to protocol processing.  To find IPU , we let  N denote the average number of packets 

arrived during PollT  and M denote the average number of packets that can be served during vT .   That is, 

pollTN ×= λ  and vTM ×= µ .  Therefore, IPU  can be expressed as  
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Note that V becomes zero when vTQ ≥µ .  

 

Mean System Throughput.  Under our assumptions, the mean effective protocol processing rate 'µ  expressed 

in Equation (9) is constant.  With a Poisson traffic rate arrival λ , an M/D/1/B queueing model can be utilized to 

obtain the mean system throughput.   The mean system throughput γ  can be expressed as )1(' 0p−= µγ , 

where 'µ  is given by Equation (9) and 0p  is the probability for not queueing in the M/D/1/B queueing system. 

0p  was derived by both [46,47] and was expressed as 

ρα+
=

1

1
0p , where kkBk

B

k

k

ekB
k

ρα ρ)1(
1

0

)1(
!

)1( −−
−

=

−−−=∑  and 
'µ

λρ = . (11) 

 

Mean System Latency.  The mean system latency for polling is comprised of mainly two types of delay: 

(i) a delay due to packet processing with a mean effective service rate of 'µ  expressed in equation (9), and 
(ii) a delay between the initial arrival of a packet and the start of the protocol processing. 

 
The average delay of  (i) can be expressed using M/D/1/B queueing model as follows 
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The delay of (ii) is encountered only when the packet first arrives (right after it gets DMA’d and before the start 

of the protocol processing cycle).  It is more obvious to visualize this delay when the system has no packets.  A 

packet may encounter an upper bound delay as high as pollT .  This happens when the system is empty and the 

packet arrives just after protocol processing has finished examining that there are no packets to process.  In this 

case, this packet will be missed (by protocol processing) and will have to wait (a time pollT ) until the start of 

the next protocol processing cycle.  On the other hand, a packet may encounter a lower bound delay of almost 

zero if it arrives during protocol processing cycle.  As a conservative approximation for the delay of (ii), we 

will use the upper bound delay.  Therefore, the delay of (ii) can be approximated as pollTp ×0 , where 0p is the 

probability of not queueing which was expressed in equation (11). 

 

Accordingly, the mean system delay can be approximated as 

pollIP TpTETE ×+= 0][][ .  (12) 
 

3.5. Interrupt-Coalescing (IC)  

One of the most popular solutions to mitigate interrupt overhead for Gigabit network hosts is interrupt 

coalescing or IC.  In recent years most network adapters or NICs are manufactured to have interrupt coalescing.  

Additionally, many operating systems, including Windows and Linux, support IC.  IC is a mode or a feature in 

which the NIC generates a single interrupt for a group of incoming packets.  This is opposed to normal 

interruption mode in which the NIC generates an interrupt for every incoming packet.  In interrupt-coalescing 

(IC) mode, there are two schemes to mitigate the rate of interrupts: count-based IC and time-based IC.   In 

count-based IC mode, the NIC generates an interrupt when a predefined number of packets (denoted by τ ) has 

been received.  In time-based IC mode, the NIC waits a predefined time period (denoted by T) before it 

generates an interrupt.  During this time period multiple packets can be received. The coalescing parameters of 

τ  and  T are tunable and configurable parameters which are set by the device driver. Analytical models and 

closed-form solutions for the key performance metrics under study (which include system throughput, latency, 

and CPU availability) were given in [26].  The same underlying assumptions and notations used in this paper 

were used in [26].   
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3.6. Simulation 

In order to verify and validate our analytical models, a discrete-event simulation model was developed and 

written in C language.  A detailed description and flowcharts of the simulation model for normal interruption 

can be found in [25].  The simulation model reported in [25] was extended for the schemes of pure and NAPI 

polling, count-based and time-based IC, and disabling and enabling of interrupts.  The assumptions of analysis 

were used. The simulation followed closely and carefully the guidelines given in [48].  We used the PMMLCG 

as our random number generator [48].  The simulation was automated to produce independent replications with 

different initial seeds that were ten million apart.  During the simulation run, we checked for overlapping in the 

random number streams and ascertain that such a condition did not exist.  The simulation was terminated when 

achieving a precision of no more than 10% of the mean with a confidence of 95%.  We employed and 

implemented dynamically the replication/deletion approach for means discussed in [48].   We computed the 

length of the initial transient period using the MCR (Marginal Confidence Rule) heuristic developed by White 

[49].  Each replication run lasts for five times of the length of the initial transient period.  Analytical and 

simulation results, as will be demonstrated in Section 4, were very much in line.  

4. Numerical Examples 

In this section, we report and compare results of analysis and simulation.  Numerical results are given for key 

performance indicators. These indicators include mean system throughput, CPU utilization, and latency.  We 

plot and compare the performance for the all interrupt schemes that include the ideal system, normal 

interruption, pure and NAPI polling, interrupt disable-enable, and interrupt coalescing of time-based and count-

based.  For our numerical examples, realistic values for system parameters, that suit modern Gigabit network 

environment and hosts, must be used.   Experimental study is the best approach to give accurate measurements, 

as well as the underlying probability distributions.  Such experimental is beyond the scope of this paper and left 

for future work.  However, for the sole purpose of comparison, we base our values on modern credible 

experimental measurements reported in the literature.    

 

The overall interrupt cost 1/r includes both interrupt overhead and handling.  In [18], the interrupt overhead for 

an off-chip timer interrupt with a null event handler was measured to be in the vicinity of 4.36 µs on a 500MHz 

Pentium-III machine running for FreeBSD-2.2.6.  A similar result of 7.7 µs was reported by [1] on a 450MHz 

Pentium-III machine running Linux 2.2.10.  For a modern 2.53GHz Pentium-IV machine, it is expected this 

overhead will not be decreased linearly by the speed frequency of the processor, as I/O and memory speed 

limits dominate [2].  In [2] it was concluded that the performance of 2.4GHz processor only scales to 

approximately 60% of the performance of an 800MHz processor.  Consequently the NIC interrupt overhead 

with null handler for a modern 2.53GHz Pentium-IV machine can be roughly 60% of 4.36, which is 2.62 µs.   
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In [1] the interrupt handling was measured to be 5.53 µs on a 450MHz Pentium-III machine running Linux 

2.2.10.  The measurement of interrupt handling included substantial work and a major cache pollution.  The 

handling included appending the packet from DMA ring to protocol buffer, replenishment of the DMA ring, 

and finally notifying the protocol processing. In our case, considering the speed of the processor and limited 

work for the interrupt handling, which primarily includes notification of protocol processing with minimal 

cache pollution, we assume the handling cost is 20% of  5.53, or 1.11 µs.  Hence for a modern 2.53GHz 

Pentium-IV machine, the overall interrupt cost  1/r = 2.62 + 1.11 = 3.73 µs. 

 

For protocol processing, we use the TCP processing values measured by lmbench [50] on a 2.53GHz Pentium-

IV running Linux 2.4.18.  The results are reported in [51].   Also results for different machines are reported in 

[52].  From the results in [51], it is reported that the average local loopback latency for one TCP token (i.e., 4-

byte data packet) is 10.5 µs.  This time, of course, includes OS overhead as well as TCP actual processing.  

Ideally, the TCP latency of the receiving path would be approximately half of 10.5, that is 5.25 µs.  TCP 

processing also includes copying of packet payload to user application.  [51] reports that the average TCP 

bandwidth (buffering and copying) is 748 Mbytes/s.  Therefore, for a minimum packet size of 64 bytes, the cost 

of copying and buffering is 64/748= 0.086 µs.  Hence the mean TCP processing time µ1  (for a fixed size 

packet of 64 bytes) can be summed up to approximately 5.34 µs.  In all of our examples, we fix the kernel’s 

protocol processing buffer B to a size of 1024 packets, which occupies about 1.5M bytes of host memory when 

assuming a maximum of 1538 bytes per packet in accordance to IEEE802.3 standards.  This buffer size is a 

configurable parameter [34].  

 

For interrupt disabling-enabling scheme, we assume the same overall interrupt cost of 3.73  µs.  However, there 

is also the incurred cost of writing to the NIC control registers to disable and enable interrupts of incoming 

packets.  We assume the cost of writing to the NIC register is 0.5 µs.   As a consequence, the parameter v1  in 

analysis, which denotes the mean protocol processing service time when interrupts are enabled, is 

approximately equal to 9.57 µs, that is 0.5 + 3.73 + 5.34 µs.  For polling, we use a quota of 3 packets per poll, a 

polling period of 20 µs, and a polling overhead of 1.59 µs.   As measured in [18] on machines with a 500MHz 

Pentium-III CPU running for FreeBSD-2.2.6, the average polling period was in the range between 12 µs to 32 

µs.  For our study, we chose a mean polling period of 20 µs.  It is to be noted that in reality (and in current 

Linux and FreeBSD implementations) the polling period is not deterministic [18] and is generated by a soft 

timer with a deadline.  The deadline is generated by a hardware timer.  Lastly for count-based IC, we use the 

coalescing parameters of 1=τ  and 8=τ .  For time-based coalescing we use the coalescing parameters of 0=T  

and 50=T  µs. 
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Figure 7 plots the mean system throughput, CPU availability for user applications, mean system latency at low 

load, and  mean system latency at high load, respectively,  as a function of the system load represented by 

packet arrival rate.  The load and throughput are both expressed in pps (packets per second).  Both of these 

measures can easily be expressed in bits per second by multiplying the packet rate by the packet size.  For pure 

polling, analysis results with constant times for protocol processing and polling overhead gave adequate 

approximation to those of simulation results with exponential times for protocol processing and polling 

overhead. In order to compare easily and clearly the relatively close performance of pure and NAPI polling, the 

analysis results for pure polling are left out, and only simulation results (with dashed lines with circles) are 

reported in the figures.  For other schemes, the solid curves represent analysis results and the circles are those 

of simulation. The figures exhibit a very close agreement between discrete-event simulation results and analysis 

results. 
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Figure 7. Key performance indicators in relation to a Poisson arrival rate 

From the figures, it is observed that the maximum throughput occurs at 187 Kpps.  For normal interruption, it 

can be noted that the saturation or cliff point for the system occurs at 127 Kpps.  At this point, the 

corresponding CPU utilization (for ISR handling plus protocol processing) is at 100%, and thus resulting in a 

CPU availability of zero.  Therefore, user applications will starve and livelock at this point.  Figure 7(a) shows 

that as the arrival rate increases after the cliff point the system throughput starts to decline.  Figure 7(d) shows 

the mean system delay also continues to increase after reaching the saturation point.  Theoretically, the latency 

should flatten off at 'µB , but rather we find it slowly shoots to infinity.   The decline in the throughput and the 

sharp increase in latency is due to the fact that the mean effective service rate 'µ  decreases as the arrival rate 

increases right after the saturation point.  See equation (2).  Intuitively, CPU availability for protocol processing 

decreases as CPU becomes more utilized handling ISR. 

 

One observation can be made about IC schemes with a parameter of 1=τ  in case of count-based coalescing 

and 0=T  in case of time-based coalescing.  It is observed that in such cases, both coalescing scheme resort 

exactly, as expected, to normal interruption.  Also from the figure, it is depicted that the analysis curves for 

time-based coalescing (more noticeable in Figure 7(b) and 7(c) at very low rate) are not smooth.  As illustrated 

in [26], the analysis for time-based coalescing is performed based on the analysis of count-based coalescing 

with the coalescing parameter τ  being an integer and approximated to ⎡ ⎤Tλ .  Thus, τ  takes on discrete values 

and remains unchanged until a different value is produced as λ  changes in ⎡ ⎤Tλ .   

 

There are also a number of important observations and conclusions to be made when examining and comparing 

the performance of all interrupt handling schemes.   It can be concluded that no single scheme gives the best 

performance.  For example, the scheme of interrupt disabling and enabling outperforms all other schemes in 

terms of throughput and latency.  However in terms of CPU availability, the interrupt disabling and enabling 

gives the worst performance second to normal interruption.  Also at extremely low rate interrupt disabling and 

enabling gives worse latency than normal interruption.   When comparing pure polling with NAPI polling, it is 

obvious from the plots that both give comparable results in terms of throughput and latency at high load.  

However NAPI polling outperforms pure polling in terms of CPU availability and latency at low load.  

Comparing interrupt disabling and enabling to polling, it is shown that the latency of polling at light load is 

larger than interrupt-disable scheme, and also at high load the system throughput of polling is smaller.  

However for CPU availability, polling outperforms all other schemes at high load, as depicted in Figure 7(b).  

As expected polling can sustain a certain degree of CPU availability regardless of the presented load.  When 

comparing polling to IC, it can be noted that IC can give similar throughput and CPU availability (and latency 

at very high load) with large coalescing values of τ  and T.   However with large coalescing values, the latency 
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at low load degrades considerably.  We will address in Section 5.2 the impact of selecting different values for 

scheme parameters on the overall performance. 

 

 

5. Discussion 

Thus far we presented analysis and simulation work to study and compare the performance of various interrupt 

handling schemes considering fixed packet sizes and Poisson arrival.  In this section we address two related 

important questions that may affect the performance: (1) subjecting the host to bursty traffic, and (2) the 

selection of different parameter values for each scheme.  Finally in this section and based on obtained results 

and observations, we propose and discuss briefly a novel hybrid interrupt-handling scheme that yields the best 

performance. 

5.1. Impact of Bursty Traffic 

Assuming Poisson arrival for network traffic can be valid for modeling real-time voice and video traffic [42]. 

However such a Poisson traffic fails for modeling Ethernet traffic.  It was shown that Ethernet traffic is bursty 

and characterized as self-similar with long-range dependence [44,45].  A comprehensive summary and review 

of the topic of self-similar network traffic can be found in [53].  For examining the impact of bursty traffic on 

the performance of the various interrupt handling schemes, we modified our discrete-event simulation 

accordingly.   To generate such a bursty traffic, we implemented the method described in [54].  This method 

follows fractional Gaussian noise such as the resulting self-similar traffic is obtained by aggregating multiple 

streams (one stream per source) each consisting of alternating Pareto-distributed ON/OFF periods.  In previous 

preliminary work, we used a total of 100 streams to generate bursty traffic [55].  In this paper, only 8 streams 

are used.  As few as 8 streams were reported in [56] to give as good results and significantly reduced the 

simulation run time to almost 20%.  Figure 8 illustrates graphically the aggregation of multiple streams. 
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Figure 8. Self-similar traffic generation model 
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Pareto distribution is a heavy-tailed distribution with PDF of bxxabxf ≥= + ,)( 1αα , where α  is a shape 

parameter and b  is a location parameter.  We use this distribution to generate both the ON and OFF periods 

with shape parameters of 3.1=ONα  and 5.1=OFFα , respectively.  The choice of the values of these shape 

parameters are commonly used and promoted by measurements on actual Ethernet traffic performed in [45].   

The location parameter of ONb  is the minimum ON period and depends on the minimum Ethernet frame size of 

64 bytes.  This is fixed to 64x8 bit times or 512 ns.  The calculation of OFFb  can be computed from the desired 

total load for all sources, i.e., ∑=
i

iTotal ρρ .  We assume equal loads for all sources.   The individual load of a 

single source is measured as ])[][/(][ OFFEONEONEi +=ρ .  Note that the load Totalρ  takes on values between 0 

to 1.  In Pareto, )1()(][ −= ONONON bONE αα  and )1()(][ −= OFFOFFOFF bOFFE αα .   Solving these simple 

formulas, OFFb  can be expressed (in terms of the known parameters of Totalρ , ONb , ONα , and OFFα ) as  
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During the ON period, packets are generated back-to-back with a rate of 1 Gbps. The number of packets 

generated in the ON period depends on the ON period, the packet size, and the inter-packet size.  The inter-

packet size is 20 bytes which comprises of the standard minimum Ethernet IFG of 12 bytes plus 8 bytes for the 

preamble.  The packet sizes are not fixed and follow an empirical distribution, which are real measurements of 

packet sizes from MCI backbone.  The measurements are reported in [57] and available online at 

http://www.caida.org.   In [57], the reported packet size distribution represents IP datagram sizes.  To obtain 

Ethernet frame size distribution, the packet sizes were modified to include 18-byte header (12 bytes for 

destination and source addresses, 2 bytes for length/type, and 4 bytes for FCS).  In addition all bytes shorter 

than 46 bytes were padded to 46 bytes, so that the minimum Ethernet frame size is equal to 64 bytes.  The 

histogram and CDF of the resulting Ethernet frame sizes are shown in Figure 9.  The figure shows dominating 

frame sizes of 64, 570, 594, and 1518 bytes. 
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Figure 9. Histogram of empirical packet sizes and their corresponding CDF 
 

It is to be noted, and as described in Section 4, when packet sizes are variable, the service time for protocol 

processing is strongly correlated with the packet size, primarily due to CRC checksum calculation and copying 

to application layer.  In this case, the service time for protocol reprocessing is comprised of packet overhead 

which is exponentially distributed with a mean of 5.25 µs plus a fixed per-byte overhead of PacketSize/(748 

Mbytes/s).  

 
The simulation results shown in Figure 10 represent the estimated mean of 10 simulation replications.  We had 

to fix the number of replications when generating bursty traffic.  As opposed to the simulation carried out with 

Poisson traffic, a simulation run with bursty traffic can not be automated to stop when achieving a desired 

precision for the estimated mean.  This is because of the presence of irregular incoming traffic.  The irregularity 

of traffic is due to the use of empirical variable packet sizes and the superposition of multiple streams with each 

stream producing ON and OFF periods (with huge variance) modeled by heavy tailed distribution such as that 

of Pareto.  The problem is exacerbated when the Pareto’s shape parameter α  is close to 1 (as is the case for the 

shape parameters for our ON and OFF periods).  Therefore simulation with such traffic will be very slow to 

converge to steady state and thus the CI (Confidence Interval) can be very long [58].  In order to obtain 

relatively acceptable accuracy and precision, simulation has to produce a huge number of samples [58].  For 

our simulation, each replication generated for each source at least 10 million samples for its ON period and 

another 10 millions for its OFF period.  Care was taken to make sure that there is no overlapping in the random 

number streams of simulation.  Table 1 shows the estimated mean with 95% CI for system latency of time-

based coalescing when 50=T µs for 10 simulation runs.   The precision is defined as the percentage error in the 

estimated mean which is equal to CI half length divided by the estimated mean.  It is noted that very low loads 

and  high loads contribute to a longer CI, as the simulation becomes less stable and the estimators converge 

very slowly to their true values, especially when traffic is irregular [59].   The length of the CI of the other 

performance metrics exhibited the same characteristics. 
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Table 1.  Simulation estimates for system latency (in ms) from 10 replications 

Load Lower 95% Upper 95% Estimated Mean  CI Half Length Precision 

0.0004 0.0302 0.0612 0.046 0.015 34% 

0.02 0.0259 0.0508 0.038 0.012 32% 

0.1 0.0299 0.0513 0.041 0.011 26% 

0.2 0.1411 0.2312 0.186 0.045 24% 

0.4 0.2885 0.4221 0.355 0.067 19% 

0.6 5.2582 7.1252 6.192 0.934 15% 

0.8 4.9112 7.5692 6.240 1.329 21% 

1.0 3.9312 8.6321 6.282 2.350 37% 

 

Figure 10 plots the three key performance metrics of mean system throughput, CPU availability, and latency as 

a function of the aggregated self-similar traffic load Totalρ .  By subjectively eyeballing the performance curves 

and comparing their shapes to the performance curves of Poisson traffic, we find the shapes of the curves are 

very similar for the most part.  Figure 10a shows at low load a curved shape for the achievable system 

throughput as opposed to straight one.  This is because the units for the throughput and the load are not the 

same.  Remember that the load Totalρ  takes a value between 0 to 1.  Also note that the highest average system 

throughput is around 167 Kpps.  This is expected as the average empirical packet size, based on the distribution 

presented in Figure 7, is 557 bytes.  The average protocol processing service time is the sum of  fixed packet 

overhead of 5.25 µs plus a fixed per-byte overhead of PacketSize/(748 Mbytes/s).   This yields an average 

service time of 5.99 µs, or a throughput of 167Kpps.   
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Figure 10. Key performance indicators in relation to system load of bursty traffic 

 

5.2. Effect of Selecting Different Parameter Values 

A question related to the performance of a certain interrupt handling scheme is the selection of its parameter 

values.  One may argue that the parameter values selected may favor one scheme than the other.  In this section 

we study how the selection of parameter values impacts the performance of a particular scheme.  Figure 11 

shows the impact of selecting different values for the parameters of time-based and count-based coalescing as 

well as pure and NAPI polling.  The units of the time-based coalescing parameter T and polling period PollT  are 

in µs.   
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Figure 11. Effect of parameter values of coalescing and polling on performance 
 

For coalescing, Figures 11a, 11b, and 11c show that selecting large values for the count-based coalescing 

parameterτ  can be very detrimental to performance in terms of latency at low load. At very low arrival rate, 

packets have to wait longer time to be coalesced.  The larger the value of τ , the larger the coalescing time.  In 

time-based coalescing, there is a bound on the waiting time, which is the value of T.     

 

For polling, Figures 11d, 11e, and 11f show the impact of selecting the polling quota Q on performance.  For 

these examples, PollT  is fixed to 20 µs.  When varying Q, it is noted when Q is large (Q=4), protocol processing 

will be done at full speed, and thus resulting in a CPU availability to drop to 0 at high load. However, when Q 

is small (Q=2), CPU availability is best, but resulting in considerable latency and degraded throughput.  

Selecting the polling period is crucial.  Figures 11g, 11h, and 11i study such an effect.   For these figures, we 

fix Q to 4.  The figures are in line with intuition and show that small values of PollT (i.e., frequent polling) will 

result in more overhead and thus degraded performance in terms of throughput and CPU availability.  

However, when PollT  takes on large values (i.e., infrequent polls), more latency will be encountered.   NAPI 

polling outperforms pure polling in terms of latency, especially at low rate.  However, pure polling outperforms 
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NAPI polling in terms of CPU availability at moderate load as depicted in Figure 11e.  At very low load, pure 

polling has much smaller CPU availability. This is expected as pure polling has always fixed overhead of only 

the timer interrupt and polling overhead.  However NAPI has the additional overhead of enabling and disabling 

the interrupts for incoming packets, and thus acts similar to the scheme of enabling and disabling interrupts at 

low to moderate load.   

 

5.3. Hybrid Scheme 

It was concluded from numerical examples given in Section 4 and the discussion in Sections 5.1 and 5.2 that no 

particular interrupt handling scheme gives the best performance under all load conditions.  Selection of the 

appropriate scheme depends primarily on the system performance requirements, most important performance 

metric of interest, and traffic load. It was shown by giving numerical examples that the scheme of disabling and 

enabling interrupts outperforms, for the most part, all other schemes in terms of throughput and latency.  

However when it comes to CPU availability, pure polling is the most appropriate scheme to use.   Based on 

these important observations and in order to compensate for the disadvantage of interrupt disable-enable 

scheme of poor CPU availability, we propose a novel hybrid scheme of interrupt disable-enable and pure 

polling.   This hybrid scheme would make up for the CPU availability drawback of interrupt disable-enable 

scheme when the host is under heavy load.  In short, the scheme would operate in interrupt disable-enable until 

reaching a heavy load region at which the system must switch to pure polling.  The selection of parameters for 

pure polling period and quota at high load rate depends largely on what the most important performance metric 

is.  For example, if latency has a more dominant weight than throughput and CPU availability, a small value for 

the polling period and a larger quota are desirable.  In [5,17,22], a hybrid scheme of normal interruption and 

polling was proposed.  As demonstrated in this paper, normal interruption performs very poorly at light and 

moderately light loads in terms of throughput, CPU availability, and latency.  Also in [5,17,22], the switching 

between normal interruption and polling was done somewhat arbitrarily.   

 

Identifying the switching point is critical.  The switching point should be in the vicinity of or just before the 

cliff point occurs.  Under Poisson traffic, our analytical work provided equations to identify where cliff point 

occurs.  The cliff point can be simply identified as the saturation point of normal interruption.  The cliff point 

occurs when 
r

r
orIP +

⋅<<
λ

µλρ 1 .  Solving for λ, the saturation point or cliff point can be expressed as 

⎟
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r
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µλ . (13) 

For Poisson traffic, Equation (13) gives a cliff point at 127 Kpps, and thus a proper switching point can be 

selected to be at 120 Kpps.   For bursty traffic, Equation (13) surprisingly gives an adequate approximation for 
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the cliff point.  The cliff point can be computed if the average packet size is measured.  Based on the empirical 

packet size distribution, the average packet size is 557bytes.  As discussed in Section 5.1, this yields an average 

protocol service time of 5.99 µs, or a rate of 167Kpps.  Consequently and applying Equation (13), the cliff 

point cliffλ for bursty traffic is 116 Kpps, which is very much in line with the simulation results of Figure 10a.   

And therefore, a proper switching point can be at a system throughput of 110 Kpps. 

 

From implementation point view, the OS can be modified to measure the average packet size and the average 

system throughput at the protocol level, and accordingly switch point pure polling and interrupt disable-enable 

scheme.   This implementation is simple and under the control of the OS and it does not require any load 

measurement or functionality at the NIC end.   As a further study, we are currently in the process of 

implementing our proposed hybrid scheme that combines interrupt disable-enable and pure polling in Linux 

2.6. 

6. Conclusion 

We developed analytical models to analyze the performance of Gigabit-network hosts when employing 

different interrupt handling schemes that included ideal system, normal interruption, interrupt disabling and 

enabling, count-based coalescing, time-based coalescing, pure polling, and NAPI polling.  The analytical 

models were verified and validated by simulation and by considering special cases.  Our analysis provided 

equations to give insight into predicting the system performance and behavior when employing a certain 

interrupt handling scheme.  The performance was studied in terms of system throughput, CPU availability, and 

latency.  We also studied using simulation the impact on performance of subjecting the host to bursty traffic 

that is self-similar with long-range dependence.  In addition we studied the impact of selecting different values 

for scheme parameters.   

 

It was concluded that the relative performance of interrupt-handling schemes under bursty traffic was similar to 

that of Poisson traffic.  Also it was concluded that no particular interrupt handling scheme gives the best 

performance under all load conditions.  Selection of the most appropriate scheme to employ depends primarily 

on system performance requirements, most important performance metric, and present traffic load.  It was 

shown by giving numerical examples that the scheme of disabling and enabling interrupts outperforms, in 

general, all other schemes in terms of throughput and latency.  However when it comes to CPU availability, 

pure polling is the most appropriate scheme to use.   Based on these important observations, we proposed and 

discussed briefly the implementation of a hybrid scheme of interrupt disable-enable and pure polling.  Such a 

hybrid scheme would be able to attain peak performance under low and heavy traffic loads. As a further study, 

we are in the process of implementing our proposed hybrid scheme in Linux 2.6. Details, results and 

comparisons of such implementation are to be published in the near future.   
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