Project Final Report

CSE-551

‘Secure Electronic Transaction’
An

Internet Payment Protocol

Group Members,

Group 1

Group 2

Aiman Rasheed (220306)

Syed Adnan Yusuf (210357)

Syed Adnan Shahab (230239)

Syed Zeeshan Muzaffar (220512)

[image: image34.png]PAYMENT AUTHORIZATION

MERCHANT PAYMENT
COMPUTER AUTHORIZATION GATEWAY
REQUEST

MERCHANT
REQUESTS | — 3
AUTHORZATION — PAYMENT
GATEWAY.
PROCESSES
AUTHORIZATION
MERCHANT REQUEST
processes | € L
RESAONSE
AUTHORIZATION

RESPONSE

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals

Index

	Serial No.
	Topics
	Pg #

	1.
	Introduction
	3

	1.1.
	Online Transaction Systems
	4

	1.2.
	Why SET?
	5

	2.
	Secure Electronic Transaction (SET)
	6

	2.1.
	SET Entities
	7

	2.2.
	Step By Step Processing
	8

	3.
	Cryptography
	12

	3.1
	Secret Key Cryptography
	13

	3.2
	Asymmetric Cryptography
	13

	3.3
	Digital Signatures and Verification
	14

	3.3.1
	Integrity Using Message Digests
	14

	3.4
	Dual Signature
	15

	3.4.1
	Dual Signature Example
	15

	3.4.2
	Encryption
	17

	3.4.3
	Decryption
	17

	4.
	PKI
	19

	4.1
	Certificate
	20

	4.2
	Certification Authority
	21

	4.2.1
	CA Policy
	21

	4.3
	Rooted CA Hierarchies
	22

	4.4
	Client Registration
	22

	4.5
	Certificate Enrolment
	22

	4.6
	Certificate Revocation
	22

	4.7
	Certificate Validation
	23

	4.8
	Key Registration
	23

	4.9
	Certificate Request
	23

	4.10
	Key Recovery
	23

	4.11
	SET Certificates
	24

	4.11.1
	Cardholder Certificates
	24

	4.11.2
	Merchant Certificates
	24

	4.11.3
	Payment Gateway Certificates
	24

	4.11.4
	Acquirer Certificates
	24

	4.11.5
	Issuer Certificates
	25

	4.11.6
	Hierarchy of Trust
	25

	5.
	SET Protocols
	27

	5.1.
	Purchase Process Protocol
	29

	5.1.1.
	The Cardholder Sends Payment Request
	29

	5.1.2.
	Logical Hierarchy of PReq
	32

	5.1.3.
	The Merchant Sends Payment Response
	33

	5.1.4.
	Logical Hierarchy of Pres
	34

	5.2.
	Payment Authorization Process Protocol
	35

	5.2.1.
	Merchant Requests Authorization
	35

	Serial No.
	Topics
	Pg #

	5.2.2.
	Logical Hierarchy of AuthReq
	38

	5.2.3.
	Payment Gateway Processes the Authorization Request
	39

	5.2.4.
	Payment Gateway Sends the Authorization Response
	41

	5.2.5.
	Logical Hierarchy Of AuthRes
	43

	6.
	Information Flow Among SET Entities
	44

	6.1.
	Wallet Data Flow Diagram
	45

	6.2.
	Point Of Sale Data Flow Diagram
	46

	6.3.
	PGWY Data Flow Diagram
	47

	7.
	SET Protocol Implementation
	48

	7.1.
	Purchase Request
	50

	7.2.
	Purchase Response
	51

	7.3.
	Authorization Request
	52

	7.4.
	Authorization Response
	53

	7.5.
	Signed Data
	54

	7.6.
	Enveloped Data
	55

	7.7
	Implementing Security in Java
	56

	7.7.1
	Cryptographic Service Providers
	56

	7.7.2
	Implementations and Providers
	56

	7.7.3
	JCSI Crypto Provider
	57

	7.7.4
	Certificates and KeyStore
	58

	7.7.5
	KeyStore
	58

	7.7.6
	Creating Certificates
	58

	7.7.7
	X509 Certificate Generation Using Java
	59

	7.7.8
	Parsing X.509 Certificates
	59

	7.7.9
	Extracting Private and Public Keys
	60

	7.7.10
	Generating Asymmetric Key Using Java KeyPairGenerator Class
	61

	7.7.11
	Asymmetric Key Encryption / Decryption
	62

	7.7.12
	Generating Symmetric Key
	62

	7.7.13
	Encryption / Decryption using DES-CBC Mode
	62

	7.7.14
	Message Digest
	63

	7.7.15
	Validating A certficicate
	63

	7.7.16
	X509 CRL Generation
	64

	7.7.17
	Revoking A Certificate (Putting Serial Number In CRL)
	64

	7.7.18
	Removing A Certificate From CRL
	64

	7.7.19
	Deleting An Alias From Keystore
	64

	
	Conclusion
	65

	Appendix A
	First Virtual Holding
	67

	Appendix B
	CyberCash
	68

	Appendix C
	Other Web Based Systems
	70

	Appendix D
	Snap Shots
	72

	
	Bibliography
	

List of Figures

	Figure No.
	Caption
	Pg #

	Figure1
	A generalized view of online transaction system
	6

	Figure2
	Payment System Participants
	9

	Figure3
	Secret-Key Cryptography
	13

	Figure4
	Public-Key Cryptography
	14

	Figure5
	Dual Signature Example
	16

	Figure6
	Trust Hierarchy
	26

	Figure7
	Sequence of messages between entities in the system
	28

	Figure8
	Purchase Request
	29

	Figure9
	Cardholder Sends Purchase Request
	31

	Figure10
	Logical class structure of PReq
	32

	Figure11
	Merchant Send Purchase Response
	33

	Figure12
	Logical class structure of PRes
	34

	Figure13
	Payment Authorization Request/Response
	35

	Figure14
	Merchant Requests Authorization
	37

	Figure15
	Logical class structure of AuthReq
	38

	Figure16
	Payment Gateway Receives Authorization Request
	40

	Figure17
	Payment Gateway Sends Authorization Response
	42

	Figure18
	Logical class structure of AuthRes
	43

	Figure19
	Wallet DFD
	45

	Figure20
	POS Data Flow Diagram
	46

	Figure21
	PGWY Data Flow Diagram
	47

	Figure22
	Purchase Request Object Structure
	50

	Figure23
	Purchase Response Object Structure
	51

	Figure24
	Authorization Request Object Structure
	52

	Figure25
	Authorization Response Object Structure
	53

	Figure26
	Signed Data Object Structure
	54

	Figure27
	Enveloped Data Object Structure
	55

	Figure28
	Parsed Certificate
	60

	Figure29
	Extracted Private and Public Keys
	61

	Figure30
	Generated RSA Public and Private Keys
	61

	Figure31
	Message Digest
	63

	Figure32
	Certificate Authority Certificate
	72

	Figure33
	Certificate Revocation List
	73

	Figure34
	Wallet
	74

	Figure35
	Point of Sale
	75

	Figure36
	Payment Gateway
	76

	Figure37
	PKI Client Side Main Menu
	77

Introduction

[image: image1.png]

 Chapter One
Introduction

The Internet is changing the way we access and purchase information, communicate and pay for services, and acquire and pay for goods. Financial services such as bill payment, brokerage, insurance, and home banking are also available over the Internet. Any organization can become a global publisher by establishing an information site on the Internet’s World Wide Web.
The importance of e-commerce and transaction systems cannot be over looked in present technological developments. Keeping in view of such systems, we have studied and tried to implement SET. This report is about the implementation of SET protocol including the feature of PKI which is the set of standard protocol services related with public key cryptography.
To fully understand the transaction system we need to know few things like what actually happens when the merchant runs our credit card through their Point of Sale terminal or provides the credit card number online? Who is actually authorizing the charge payment? What does the merchant need to do to be able to handle credit card transactions? To handle these problems, lots of protocols have been developed. Some of the protocols are discussed briefly in the coming section.
1.1 Online Transaction Systems

The first attempt at making online credit card transactions secure was to take the transaction off-line. Many sites will allow you to call in your credit card number to a customer support person. This solves the problem of passing the credit card number over the Internet, but eliminates the merchant's ability to automate the purchasing process. An employee needs to be available 24 hours a day to take phone calls from buyers. Also, many potential customers that visit the net only have one phone line. This means they need to log off the Internet in order to actually make a purchase. Moreover, not every customer is willing to reveal his credit card information to a vendor.
The next method that was developed, which is currently used by many sites, is hosting the WWW site on a secure server. A secure server is one that uses a protocol such as S SL or S-HTTP to transmit data between the browser and the server. These protocols encrypt the data being transmitted, so when you submit your credit card number through their WWW form it travels to the server encrypted. This method does help ease people's fear, but it still does not go far enough for many people to feel comfortable using their credit card online.

It was apparent that for online commerce to flourish a truly secure means of making payment needed to be developed. Some systems are described for secure credit card transactions online, which should meet this need. Three of these are fully operational systems, First Virtual's, CyberCash's and Secure Electronic Transaction (SET) payment systems. The general on-line credit card payment flow is depicted in figure 1
Note: See appendices for the description of First Virtual, CyberCash and other web based payment systems.

[image: image2.png]

Figure 1: A generalized view of online transaction system
1.2 Why SET?

Although most of the methods provide secure means to use the credit card during an online transaction and are developed quite skillfully, but some of the very important factors that were not included in the previous protocols have been covered in SET. The advantages of using SET over other systems are as follows;
· Authentication of all participants via Trusted Third Party.
· Secure transfer of confidential data over public network using widely accepted public-key cryptography.
· Integrity pertaining measures.
· Interoperability through Compliance Testing by SetCo.
· Free and Open specification.

· There is no need to pay charges to any third party.

· The method is efficient in performance and does not require any special server configuration.
 Secure Electronic Transaction (SET)

[image: image3.png]Secure ™
Electronic
Transaction

Chapter Two
Secure Electronic Transaction (SET)
SET is a proposed standard for performing credit card transactions over the Internet. It was developed jointly by Visa and MasterCard, with technical assistance from various Internet, information systems, and cryptology companies such as Netscape, IBM and VeriSign.

There were several goals they wanted to achieve by creating this protocol:

· To create a simple, yet inexpensive way for merchants to conduct credit card sales over insecure network such as Internet.

· To achieve a highly secure and reliable protocol ensuring transfer of credit between two parties.

· Interoperability with existing infrastructure.

· To keep the quality high and to cut down the cost of software by encouraging the competition between software vendors through open source, license free protocol.

2.1 SET Entities

The SET system is composed of a collection of entities involved in electronic commerce. The collection consists of:

Cardholder is an authorized holder of a payment card supported by an Issuer.

Merchant is one who provides goods, services, and/or information and also accepts payment for them electronically, and may provide selling services and/or electronic delivery of items for sale such as information.

Issuer is a financial institution that supports issuing payment card products to individuals.

Acquirer is a financial institution that supports merchants by providing service for processing payment card transactions.

Payment Gateway is a system that provides electronic commerce services to the merchants in support of the Acquirer, and interfaces to the Acquirer to support the authorization and capture of transactions.

Certificate Authority (CA) is an agent of one or more payment card brands that provides for the creation and distribution of electronic certificates for cardholders, merchants, and payment gateways.

Payment card brand’s financial network is the private network operated by a payment card brand that links Acquirers and Issuers.

[image: image4.png]Certificate Authority

Proroquisite || Cortification.

Cardholder

Merchant

Acquirer

Figure 2: Payment System Participants

2.2 Step-By-Step Processing

The steps in making a credit card purchase using the SET protocol are as follows:

1. The buyer indicates that he is interested in making a credit card purchase.

2. The merchant's system generates and sends the buyer an invoice for the purchase.

· This process is not currently specified in the SET protocols. As it stands, the protocol only details what happens once the buyer's software responds to this invoice.

· The buyer is running software, which will handle the acceptance of the invoice and the transmission of the buyer's credit card data to the merchant.

3. The buyer selects a VISA or MasterCard credit card for payment from the ones they can use with their SET payment software.

4. The buyer's software initiates the payment process by sending a request to the merchant's software for both his public key and the public key of the payment gateway (acquiring bank's system) that the merchant uses. The request indicates the type of credit card the buyer will use, as a merchant may use different payment gateways for different types of cards (probably not).
· The buyer's software needs both the merchant's and payment gateway's (acquiring bank) public keys before it can send credit card data to the merchant.

5. The merchant's software generates a response to the request and replies back to the buyer's software. This response includes:

· A unique transaction identifier generated by the merchant's system

· The certificate for the merchant's public key

· The certificate for the payment gateway's public key

6. The buyer's software generates two packets of information to send back to the merchant, the Order Information packet (OI) encrypted with merchant’s public key, and the Purchase Instructions (PI) packet encrypted with payment gateway’s public key to hide the credit card information from merchant

· The OI is data meant for the merchant to see that is why it is encrypted with merchant’s public key. It contains:

i. the transaction identifier,

ii. brand of card being used, and

iii. the transaction date.

However it does not contain any information about credit card apart from the brand of credit card, which is required for merchant to process the transaction appropriately.

· The PI is data meant for the acquiring bank to use when processing the transaction. It is tunneled through the merchant to the payment gateway. By tunneled through, we mean that the merchant can not decrypt PI packet and process it, but rather passes it to the payment gateway for processing untouched. The PI contains:

i. Credit card number and expiration date

ii. Purchase amount agreed to by the buyer

iii. Description of the order

7. The buyer's software transmits the OI and PI to the merchant.

8. The merchant's software generates an authorization request for the credit card payment request. Included in this request is the transaction identifier that the merchant generated at the beginning of the payment process.

9. The merchant sends to the payment gateway of their acquiring bank a message encrypted using the payment gateway's public key. This message includes the following:

· The authorization request

· The PI packet previously received from the buyer

· The merchant's certificate authority with their public key

10. The payment gateway then decrypts the message and its various components such as the PI from the buyer. It checks the various parts of the message for any tampering. These checks include:

· Making sure the transaction identifier in the authorization matches the one in the buyer's PI packet.

· The merchant has not tried to tamper with the data in the buyer's PI packet.

11. The payment gateway then sends a request for payment authorization to the buyer's credit card issuer through customary bankcard channels, i.e. the same as the acquiring bank would request authorization for any typical credit card transaction.

12. The issuing bank sends back an approval or denial response and code to the payment gateway in response to the authorization request. This happens over regular bankcard networks.

13. The payment gateway generates an authorization response message to be sent back to the merchant. This message includes:

· The issuing bank's response

· An optional capture token to be used by the merchant when requesting capture of the sale later on (May be used by the acquiring bank to find the original authorization request from their records.)

14. The payment gateway encrypts and sends the authorization response message back to the merchant's software.

15. The merchant's software decrypts the authorization notice from the payment gateway. It examines the notice to find out if the request has been approved or not. It then stores the authorization response and capture token sent by the payment gateway for later use when capturing the sale.

16. If the transaction is approved, the merchant's software then creates a purchase response message, which is sent to the buyer's software. This message informs the buyer that payment has been accepted and that the product or service that they purchased will be delivered.

17. The buyer's software processes the purchase response message and informs the buyer that payment has been accepted.

18. At a later time, the merchant's software generates a capture request message to send to the payment gateway. This request includes the capture token (optional), transaction ID, and authorization information. The sequences of events surrounding the capture are very similar to steps 13 - 15 of the authorization process.

This is the sequence of events surrounding a "normal" credit card transaction. These transactions can vary depending on the circumstances. SET allows for variations such as performing the authorization and capture at the same time for merchants that require real time processing.
Cryptography
[image: image5.jpg]

Chapter Three
Cryptography
Cryptography has been used for centuries to protect sensitive information when it is transmitted from one location to another. In a cryptographic system, a message is encrypted using a key. The resulting cipher text is then transmitted to the recipient where it is decrypted using a corresponding key to produce the original message. There are two primary encryption methods in use today: secret-key cryptography and public-key cryptography. SET uses both methods in its encryption process.

3.1 Secret-key Cryptography

Secret-key cryptography, also known as symmetric cryptography, uses the same key to encrypt and decrypt the message. Therefore, the sender and the recipient of a message must share a secret, namely the key. A well-known secret-key cryptography algorithm is the Data Encryption Standard (DES), which is used by financial institutions to encrypt Personal Identification Numbers (PIN).
[image: image35.png]vrces| [0 [remme

|

Purchase Response Message

~ [PuRcnres |
L

D

From Merchant to
Cartholder

Carcholder

somoaonz

Figure 14, Merchant Sends Purchase Response

3.2 Asymmetric Cryptography

Asymmetric cryptography, also known as Public-key cryptography, uses two keys: one key to encrypt the message and the other key to decrypt. The two keys are mathematically related so that data encrypted with either key can only be decrypted using the other. Each user has two keys: a public key and a private key. The user distributes the public key. Because of the relationship between the two keys, the owner and anyone receiving the public key can be assured that data encrypted with the public key and sent to the owner can only be decrypted when the owner uses the private key. This assurance is only maintained if the owner ensures that the private key is not disclosed to anyone else. Therefore, the key pair should be generated by the owner. The best-known public-key cryptography algorithm is RSA (named after its inventors Rivest, Shamir, and Adleman).

[image: image36.png]|

Payment Gatoway's PubicKey.
Exchango Koy (1)

!

Digtel Sgnatre

e

omie
T

Morchant

Floure 19. Payment Gateway Sends Authorization Aesponse

Secret-key cryptography is impractical for exchanging messages with a large group of previously unknown correspondents over a public network. For a merchant to conduct transactions securely with millions of Internet subscribers, each consumer would need a distinct key assigned by that merchant and transmitted over a separate secure channel. On the other hand, by using public-key cryptography, that same merchant could create a public/private key pair and publish the public key, allowing any consumer to send a secure message to that merchant and thus resulting in a reduced communication cost.

3.3 Digital Signatures and Verification

Integrity and authentication of the sent message are ensured by the use of digital signatures.

Because of the mathematical relationship between the public and private keys, data encrypted with either key can only be decrypted with the other. This allows the sender of a message to sign it using the sender’s private key. Any recipient can determine that the message came from the sender by verifying his signature using the sender’s public key.

3.3.1 Integrity Using message digests

When combined with message digests, encryption using the private key allows users to digitally sign messages. A message digest is a value generated for a message (or document) that is unique to that message. A message digest is generated by passing the message through a one-way cryptographic function. When the digest of a message is encrypted using the sender’s private key and is appended to the original message, the result is known as the digital signature of the message. The recipient of the digital signature can be sure that the message really came from the sender. And, because changing even one character in the message changes the message digest in an unpredictable way, the recipient can be sure that the message was not changed after the message digest was regenerated. SET uses MD5 and SHA-1 for achieving these security objectives.
3.4 Dual Signature

Within the SET protocols there is a situation where the cardholder communicates with both the merchant and payment gateway in a single message. The message contains an order section, with details of the products/services to be purchased, plus a payment section. The payment instruction will be used by the acquirer and the order by the merchant, but the messages are both sent together. This means that the message packaging must:

· Prevent the merchant from seeing the payment instruction

· Prevent the acquirer from seeing the order instruction

· Link the two parts of the message, so that they can only be used as a pair

In this case, SET uses a technique called dual signature. When the order and payment instruction is sent by the cardholder, the merchant will be able to see only the order instruction, and the acquirer will be able to see only the payment instruction. The merchant will not see the cardholder’s account information which is included in payment instruction.

3.4.1 Dual Signature Example

Consider the following example: Alice is a buyer and Bob is a merchant. She wants to purchase some products from Bob’s store. After she accepts what Bob is offering, she will send an acceptance message to the bank. Using dual signature, the bank will be able to verify the authenticity of Bob’s transfer authorization and ensure the acceptance is for the same offer. (In fact, in the real SET protocol flow the message is first sent to the merchant who then forwards it to the bank)

There are two parts of this diagram, the encryption and decryption processes.

[image: image37.png]Socrot-Key Cryptography

11

3.4.2 Encryption

The process of encryption is as follows,

1. Alice wants to create a digital signature to prove to Bob and the bank that the message came from her. She needs to do the following:

a. Run her payment instruction through a hash function. This will create a message digest that is unique to her message.

b. Run her order instruction through a hash function. Now she has a second message digest that is unique to her order instruction message.

c. Concatenate the two message digests together and run the result through a hash function.

d. Encrypt the combined message digest with her private key. This is called the dual signature.

2. Alice wants to encrypt the content of her message to ensure that nobody can read it when it travels across the network.

a. She generates some random data that will be used as a key for a bulk encryption algorithm (DES).

b. She uses the DES key to encrypt her payment instruction message, the dual signature, her certificate and the digest of the order message. The result is an encrypted message. She needs to send her certificate because it contains her public signature key that will be used by the bank to decrypt the dual signature. The order message digest will be used by the bank to match up against the same message digest provided by the merchant, to prove that the payment information and the order instruction were generated together by Alice.

3. Alice needs to send the symmetric key that she used to create the encrypted message. To send this key with privacy, she uses the bank’s public key. Alice encrypts the symmetric key using the bank’s public key. The result is called a digital envelope.

4. Alice sends the digital envelope and the encrypted message to the bank.

3.4.3 Decryption

1. The bank decrypts the digital envelope to obtain the symmetric key using its private key.

2. The bank decrypts the encrypted message to obtain the payment instruction, dual signature, Alice’s certificate and the order message digest using the symmetric key.

3. The bank extracts Alice’s public key from her certificate and uses it to decrypt the dual signature to obtain the payment order message digest.

4. The bank does not know if the message that it received is really from Alice. To ensure that she sent this message, it must follow these steps:

a. Run the payment instruction through a hash function to create a payment message digest.

b. Concatenate the payment message digest with the order message digest and run the result through a hash function.

c. Compare this message digest with the message digest obtained from step 3. If they are equal, the message came from Alice.

The bank can then go on to process the order instruction from Bob store, which uses a similar construction and which contains the same dual signature. If the signatures match, the bank can be sure that the two messages are a pair and have not been altered.
Public Key Infrastructure (PKI)
[image: image6.jpg]

Chapter Four
Public Key Infrastructure
The term public key infrastructure (PKI) is used to describe the policies, standards, and software that regulate or manipulate certificates and public and private keys. In practice, PKI refers to a system of digital certificates, certification authorities (CAs), and other registration authorities that verify and authenticate the validity of each party involved in an electronic transaction. Standards for PKI are still evolving, even as they are being widely implemented as a necessary element of electronic commerce.

This section will help in understanding what a PKI is and what services are required to build a PKI. These PKI concepts are discussed in the following subsections:

· Certificate

· Certification authority (CA)

· Rooted CA hierarchies

· Client Registration

· Certificate enrollment

· Certificate revocation

· Certificate validation
· Key registration

· Certificate request
· Key recovery
4.1 Certificate

A public key certificate, often referred to simply as a certificate, is used for authentication and secure exchange of information on the Internet, extranets, and intranets. The issuer and signer of the certificate is known as a certification authority (CA), described in the next section. The entity being issued the certificate is the subject of the certificate.

A public key certificate is a digitally signed statement that binds the value of a public key to the identity of the subject (person, device, or service) that holds the corresponding private key. By signing the certificate, the CA attests that the private key associated with the public key in the certificate is in the possession of the subject named in the certificate.

Certificates also contain the following information:

· The dates between which the certificate is valid.

· The certificate’s serial number, which is guaranteed by the CA to be unique.

· The name of the CA that issued the certificate.

· An identifier of the policy that the CA followed to establish that the subject is who it says it is (more about CA policy later).

· The uses of the key-pair (the public key and the associated private key) identified in the certificate.
4.2 Certification Authority

A certification authority (CA) is an entity trusted to issue certificates to an individual, a computer, or any other requesting entity. A CA accepts a certificate request, verifies the requester's information according to the policy of the CA, and then uses its private key to apply its digital signature to the certificate. The CA then issues the certificate to the subject of the certificate for use as a security credential within a PKI. Because different CAs use different methods to verify the binding between the public key and subject, it is important to understand the policies of the CA (explained next) before choosing to trust that authority.

A CA can be a remote third party, such as VeriSign, GlobalSign, EnTrust & Baltimore Technologies. Alternatively, it can be a CA that you create for use by your organization, for example, by installing Windows 2000 Certificate Services.

4.2.1 CA Policy

A CA issues certificates to requesters based on a set of established criteria. The set of criteria that a CA uses when processing certificate requests (issuing certificates, revoking certificates, and publishing CRLs) is referred to as CA policy.

Types of Certification Authorities

The three types of CA include the following:

Self-signed CA: In a self-signed CA, the public key in the certificate and the key used to verify the certificate are the same. Some self-signed CAs are root CAs (see third bullet).

Subordinate CA: In a subordinate CA, the public key in the certificate and the key used to verify the certificates are different. This process, where one CA issues a certificate to another CA, is known as cross-certification.

Root CA: A root CA is a special class of CA, which is trusted unconditionally by a client, is at the top of a certification hierarchy. All certificate chains terminate at a root CA. The root authority must sign its own certificate because there is no higher certifying authority in the certification hierarchy.

All self-signed CAs are root CAs, because the certificate chain terminates when it reaches a self-signed CA.

4.3 Rooted CA Hierarchies

An administrator can build a hierarchy of CAs, starting with a root CA certificate, and then add intermediate CAs, with each CA issuing certificates to subordinate CAs. The chain terminates when a CA issues a certificate to an end entity (a user).

CAs publish a certificate revocation list (CRL), which is a list of certificates that should no longer be used. The entry for the certificate stays on the CRL until the Valid To date in the certificate, and then the CA removes it. Many applications must be able to ascertain the most recent revocation status information for a certificate. Only an online CA can publish the current information on the status of a certificate. Revocation status published from an offline CA must be distributed using an out-of-band method to an online location.

4.4 Client Registration

Registration is the process by which subjects make themselves known to a CA. Registration can be implicit in the act of making the request for a certificate, or accomplished through another trusted entity (such as a smart card enrollment station) vouching for the subject, or done as a result information received from a trusted source (such as a domain administrator). Once registered with the CA, a certificate is issued to the subject, provided that the certificate is in compliance with the criteria established by the CA policy.

4.5 Certificate Enrollment

Certificate enrollment is the procedure that an end entity follows to request and receive a certificate from a CA. The certificate request provides identity information to the CA; this information then becomes part of the issued certificate. The CA processes the request based on a set of criteria that may require non-automatic authentication that takes place offline (out-of-band authentication). If the request is successfully processed, the CA then issues the certificate to the user.

4.6 Certificate Revocation

Certificates have a specified lifetime, but CAs can reduce this lifetime by the process known as certificate revocation. The CA publishes a certificate revocation list (CRL) that lists serial numbers of certificates that it considers no longer usable. The specified lifetime of CRLs is typically much shorter than that of a certificate. The CA may also include in the CRL the reason why the certificate has been revoked. It also includes a date from which this change of status is understood to apply.

The following reasons may be specified for revoking a certificate:

· Key compromise

· CA compromise

· Affiliation changed

· Superseded

· Cessation of operation

· Certificate hold (this is the only reason code that lets you change the status of a revoked certificate; it is useful if the status of the certificate is questionable)

Revocation of a certificate by the CA means that the CA withdraws its statement about the allowed usage of the key-pair prior to the certificate’s normal expiration. After the revoked certificate expires, its entry on the CRL is removed to reduce the size of the CRL.

During signature verification, applications can check the CRL to determine whether a given certificate and key-pair are still trustworthy. If not, the application can determine whether the reason or date of the revocation affects the use of the certificate in question. If the certificate is being used to verify a signature and the date on the signature precedes the date of the revocation of the certificate by the CA, then the signature can still be considered valid.

After an application obtains a CRL, the CRL is cached by the client, who uses it until it expires. If a CA publishes a new CRL, applications that have a valid CRL do not use the new CRL until the one they have expires.

4.7 Certificate validation

Certificate Validation determines whether the certificate is authorized for usage or not. The validation check includes checking;

· Certificate expiry

· Certificate not being signed by the CA, it was supposed to be.

· Certificate not included in CRL

4.8 Key registration

It is concerned with issuing a new certificate to the client holding a public key. It also includes the key management at client side.

4.9 Certificate request

It’s the process of obtaining other party’s public key. This is also known as Key selection:

4.10 Key recovery

The policy enables client to request for provoking his revoked key.

4.11 SET Certificates

4.11.1 Cardholder Certificates

Cardholder certificates function as an electronic representation of the payment card. Because they are digitally signed by a financial institution, they cannot be altered by a third party and can only be generated by a financial institution. A cardholder certificate does not contain the account number and expiration date. Instead the account information and a secret value known only to the cardholder’s software are encoded using a one-way hashing algorithm. If the account number, expiration date, and the secret value are known, the link to the certificate can be proven, but the information cannot be derived by looking at the certificate. Within the SET protocol, the cardholder supplies the account information and the secret value to the payment gateway where the link is verified. A certificate is only issued to the cardholder when the cardholder’s issuing financial institution approves it. By requesting a certificate, a cardholder has indicated the intent to perform commerce via electronic means. This certificate is transmitted to merchants with purchase requests and encrypted payment instructions. Upon receipt of the cardholder’s certificate, a merchant can be assured, at a minimum, that the account number has been validated by the card-issuing financial institution or its agent. In this specification, cardholder certificates are optional at the payment card brand’s discretion.

4.11.2 Merchant Certificates

Merchant certificates function as an electronic substitute for the payment brand decal that appears in the store window—the decal itself is a representation that the merchant has a relationship with a financial institution allowing it to accept the payment card brand. Because they are digitally signed by the merchant’s financial institution, merchant certificates cannot be altered by a third party and can only be generated by a financial institution. These certificates are approved by the acquiring financial institution and provide assurance that the merchant holds a valid agreement with an Acquirer. A merchant must have at least one pair of certificates to participate in the SET environment, but there may be multiple certificate pairs per merchant. A merchant will have a pair of certificates for each payment card brand that it accepts.

4.11.3 Payment Gateway Certificates

Payment gateway certificates are obtained by Acquirers or their processors for the systems that process authorization and capture messages. The gateway’s encryption key, which the cardholder gets from this certificate, is used to protect the cardholder’s account information. Payment gateway certificates are issued to the Acquirer by the payment brand.

4.11.4 Acquirer Certificates

An Acquirer must have certificates in order to operate a Certificate Authority that can accept and process certificate requests directly from merchants over public and private networks. Those Acquirers that choose to have the payment card brand process certificate requests on their behalf will not require certificates because they are not processing SET messages. Acquirers receive their certificates from the payment card brand.

4.11.5 Issuer Certificates

An Issuer must have certificates in order to operate a Certificate Authority that can accept and process certificate requests directly from cardholders over public and private networks. Those Issuers that choose to have the payment card brand process certificate requests on their behalf will not require certificates because they are not processing SET messages. Issuers receive their certificates from the payment card brand.

4.11.6 Hierarchy of Trust

SET certificates are verified through a hierarchy of trust. Each certificate is linked to the signature certificate of the entity that digitally signed it. By following the trust tree to a known trusted party, one can be assured that the certificate is valid. For example, a cardholder certificate is linked to the certificate of the Issuer (or the Brand on behalf of the Issuer). The Issuer’s certificate is linked back to a root key through the Brand’s certificate. The public signature key of the root is known to all SET software and may be used to verify each of the certificates in turn. The following diagram illustrates the hierarchy of trust.

[image: image7.png]Root
Signature

Brand
Signature

aca
Signature

cca) wea PeA
Signanre Sigmature Signature

© ©

Cardbolder Merchant
Signature Signature

Merchant Payment Gaioway | [Payment Gateway
Key Exchange. Sigmature Key Exchange

[image: image38.png]beem

T sssin et
O PP emean e
D [emiroee O

Cardhidors Pivio O
Sigrmturo Ky -~ Sonare

. p
f—— o,
Tt
)
ot e
i
[y

arkcs Pulc
Koy Scharge
Koy
Aot
oas
(==

iz 0]

Fioure 12 Cardholder Sends Parchase Rocueel

The number of levels shown in this diagram is illustrative. A payment card brand may not always operate a geopolitical Certificate Authority between itself and the financial institutions.

SET Protocols

[image: image8.png]

Chapter Five
SET Protocols
The general SET payment message flow is depicted in the figure 7. The process starts by exchange of initial request and response between wallet (card holder) and point of sale (merchant). With the help of this the cardholder and the merchant exchange their certificates. PReq, PRes, AuthReq and AuthRes are the core messages that cover the whole payment process. CapReq and CapRes are optional messages, which the merchant uses to capture the payment.

	
[image: image9.png]Cardholder Merchant Payment

Gateway

	[image: image39.png]PAYMENT AUTHORIZATION

MERCHANT PAYMENT
COMPUTER AUTHORIZATION GATEWAY
REQUEST

MERCHANT
REQUESTS | — 3
AUTHORZATION — PAYMENT
GATEWAY.
PROCESSES
AUTHORIZATION
MERCHANT REQUEST
processes | € L
RESAONSE
AUTHORIZATION

RESPONSE

PinitReq

	

	[image: image40.png]e s

Cu [

@ s
TR [t il

[T —

Pt o Py ey

Figure 17, Merchant Requests Authorization

PInitRes

	

	[image: image41.png]Public-Key Cryptography

-0

Preq

	

	
	[image: image42.png]I
{

e] [
s <

L e S
Bl 1:%:> <
||| Ve | [r=c=]
= =i P4

[Qe T

IREEEECH Y - B B

% |

Mg Dt

Figure 16, Payment Gateway Receives Authorization Request

AuthReq

	
	[image: image43.png]uopdéeq
oo ss

aimeubis feng

uorshiuy
Binduwon ssany

Figure 7. Dual Signature Example

AuthRes

	Pres

	

	
	CapReq

	
	CapRes

Figure 7: Sequence of messages between entities in the system
5.1 Purchase Process Protocol

[image: image10.png]PURCHASE REQUEST

CARDHOLDER
‘COMPUTER

CARDHOLDER
INITIATES
REQUEST

CARDHOLDER
RECENES
RESPONSE
D
SENDS
REQUEST

CARDHOLDER
RECEIES
PURCHASE
RESPONSE

MERCHANT
INTIATE COMPUTER
REQUEST
— —
MERCHANT
INTIATE SenDs
RESPONSE CERTIFIGATE(S)
-— -~
PURCHASE
REQUEST
— —
MERCHANT
PROCESSES
PURCHASE REQUEST
RESPONSE MESSAGE
afer receving
-~ 4———— | approval from bark.
tough pow

Figure 8: Purchase Request
5.1.1 The Cardholder Sends Payment Request

The cardholder will send the payment request to the merchant. This is a message in two parts, the Order Instruction, which is for the merchant to process, and the Payment Instruction, which is for the payment gateway.

1. The cardholder software creates the order instruction (OI) portion of the purchase request message using information from the shopping phase. The OI does not contain the description of the goods purchased. This information was exchanged between the cardholder and the merchant during the shopping process and before the first SET message.

2. The cardholder creates the second portion of the purchase request, the payment instruction (PI). This contains details of the credit card that the cardholder has chosen to use.
3. A transaction identifier, received from the merchant in the initiate response, is placed in the OI and PI. This identifier will be used by the payment gateway to link the OI and PI when the merchant requests payment authorization.
4. The cardholder generates a dual signature by passing the order instruction and payment instruction through a hash function. The two message digests created (OI message digest and PI message digest) are concatenated. The resulting message is run through a hash function and is signed with the cardholder private key. This is the dual signature.

5. The PI, dual signature are encrypted using a randomly generated symmetric key. This is the encrypted payment message, which will be passed on to the payment gateway.

6. The symmetric key used to construct the payment message and the cardholder’s account number is encrypted with the payment gateway public key-exchange key, generating the payment digital envelope.

7. The encrypted payment message, PI message digest, order instruction (OI) message, payment digital envelope, dual signature and the cardholder certificate containing its public encryption key are sent to the merchant.

[image: image11]

5.1.2 Logical Hierarchy of PReq

[image: image12.wmf]PReq

PReqDualSigned

PI

OIDualSigned

L(PIHead, OIData)

PIDualSigned

PISignature

HPIData

HOIData

DD(PIData)

PIHead

PANData

DD(OIData)

SO(CH, PI-TBS)

EX(P, PI-OILink, PANData

L(OIData, PIData)

TransIDs

RRPID

Chall_C

HOD

ODSalt

BrandID

BIN

DD(HODInput)

OD

PurchAmt

ODSalt

PAN

CardExpiery

PANSecret

ExNonce

TransIDs

Input

HOD

MerchantID

TransStain

SWIdent

PurchAmt

Figure 10: Logical class structure of PReq
5.1.3 The Merchant Sends Payment Response

1. The merchant creates the response message and digitally signs it by passing it through a hash function. The message digest so created is signed with the merchant private key, resulting in a digital signature

2. The merchant sends the purchase response, the digital signature and the merchant certificate containing the public encryption key to the cardholder, see figure 11. This message only indicates that the merchant received the order. The services or goods purchased by the cardholder will only be executed or shipped until merchant receives a payment authorization response from the payment gateway. After the cardholder receives the confirmation that the merchant received the order information, he or she can send inquiries to the merchant to know if the authorization has been performed.

5.1.4 Logical Hierarchy Of Pres

[image: image13.wmf]PRes

S(M, PResData)

TransIDs

RRPID

Chall_C

PResPayLoadSeq

CompletionCode

Figure 12: Logical class structure of PRes
5.2 Payment Authorization Process Protocol

Figure 13: Payment Authorization Request/Response
We show the details of the messages when a merchant asks for a payment authorization with the payment gateway. This authorization ensures that the transaction is approved by the issuer (cardholder’s financial institution). This approval guarantees to the merchant that it will receive payment and the merchant can therefore go ahead and deliver the goods or perform the services requested by the cardholder. The process to obtain a payment authorization begins when the merchant sends an authorization request. The authorization request is in two parts: the payment message originally sent by the cardholder inside the purchase request and an authorization message created by the merchant. When the payment gateway receives the authorization request, it verifies the consistency between the two parts of the request using the dual signature and the transaction identifier. The payment gateway selects the appropriate private bank card network for the particular credit card brand and sends an authorization request using the proper protocol of that network. If the request is approved, the payment gateway sends an authorization response to the merchant containing the capture token that will be used when the merchant requests that the payment be made (or captured in the jargon of SET). This capture token is stored by the merchant until the goods purchased by the cardholder are shipped or the services are performed. We now look at this message flow in detail.

5.2.1 Merchant Requests Authorization

After receiving the purchase request the merchant asks an authorization request from the Payment Gate Way to further process the request from the cardholder.

1. The merchant software creates an authorization request including the amount to be authorized, the transaction identifier from the order instruction (OI), a locally generated digest of the OI and other information related to the transaction. The merchant digitally signs the authorization request by passing it through a hash function, creating a message digest. The message digest is encrypted with the merchant’s private signature key resulting in a digital signature.

2. The authorization request and the digital signature are encrypted using a randomly generated symmetric key(1). We refer to this as key(1) because a second key is also used in this process.

3. Symmetric key(1) is then encrypted with the payment gateway public key-exchange key, generating the digital envelope.

4. The merchant sends the authorization request message, the payment message created during the cardholder’s purchase process, the cardholder certificate containing the public encryption key, the merchant certificate containing the public encryption key, and the other merchant certificate containing the public key-exchange key to the payment gateway.

5.2.2 Logical Hierarchy of AuthReq

[image: image14.wmf]AuthReq

AuthReqItem

captureNow

AuthTags

AuthReqPayLoad

AuthRRTags

TransIDs

SubsiquentAuthInd

AuthReqamt

ReqCardTypeInd

RRTags

MerTermIDs

RRPID

Date

EnCB(M, P,

AuthReqData

, PI)

5.2.3 Payment Gateway Processes the Authorization Request

When the payment gateway receives the authorization request, it first has to disassemble it and validate it.

1. The payment gateway decrypts the digital envelope contained in the authorization request message using the payment gateway private key-exchange key, thereby obtaining symmetric key(1).

2. Symmetric key(1) is used to decrypt the encrypted authorization request to obtain the authorization request message and the digital signature.

3. The digital signature is verified by running the authorization request through a hash function to create a message digest. The digital signature from the request is decrypted using the merchant public signature key and the result is compared with the message digest obtained locally. If they are equal, the integrity of the request is assured.

4. The payment gateway verifies the cardholder certificate by traversing the trust chain to the root. It also verifies that the certificate has not expired.

5. The payment gateway decrypts the payment digital envelope contained in the payment message using the payment gateway private key-exchange key to obtain the symmetric key(2) and the cardholder account information.

6. This symmetric key is used to decrypt the encrypted payment message to obtain the payment instruction (PI) and dual signature.

7. The dual signature is verified by running the PI through a hash function to create the PI message digest. The PI message digest is concatenated with the OI message digest received from the merchant as part of the authorization request. The two digests are then run through a hash function to generate the OPI message digest. The dual signature is decrypted using the cardholder public signature key and the result (which is the OPI digest originally calculated by the cardholder) is compared with the OPI message digest generated locally. If they are equal, the payment gateway can be assured that the two halves of the message match each other and they have not been altered in any way.

The payment gateway also verifies the integrity of the transaction by checking that the transaction identifier received from the merchant matches the identifier sent with the cardholder payment instruction.

5.2.4 Payment Gateway Sends the Authorization Response

The payment gateway formats and sends an authorization request to the appropriate bankcard association network. After receiving authorization from the card issuer, the payment gateway creates an authorization response. This response is in two sections, an authorization message containing the issuer’s response and a capture token. (The payment gateway will need this information to process the capture request.)

1. The payment gateway creates the authorization response and passes it through a hash function to produce a message digest. This is then encrypted with the payment gateway’s private signature key, creating a digital signature.

2. The authorization response and the digital signature are encrypted using a randomly generated symmetric key(2). The result is the encrypted authorization message.

3. Symmetric key(2) is encrypted with the merchant’s public key-exchange key, generating the authorization digital envelope.

4. The payment gateway creates a capture token and encrypts is using a randomly generated symmetric key(3). The result of this is the encrypted capture token message.

5. Symmetric key(3) is encrypted with the payment gateway public key-exchange key, generating the capture token digital envelope.

6. The encrypted authorization message, authorization digital envelope, encrypted capture token message, capture token digital envelope and the payment gateway certificate including the signature key are sent to the merchant.

5.2.5 Logical Hierarchy Of AuthRes

[image: image15.wmf]AuthRes

EnCB(P, M,

AuthResData

, AuthResBaggage)

AuthTags

AuthResPayLoad

AuthHeader

AuthAmt

AuthCode

ResponseData

Figure 18: Logical class structure of AuthRes
Information flow Among SET Entities

[image: image16.png]

Chapter Six
Information flow Among SET Entities
The flow of messages between different SET entities is depicted in the following data flow diagrams. In the diagrams the system blocks related to the mentioned entity are enclosed by a colored box.

6.1. Wallet Data Flow Diagram
[image: image17.png]aomdsay

g EeT
(epgJommog)
s0d
T
wnasy
sabay g
e TR0

g

Figure 19: Wallet DFD
6.2. Point Of Sale Data Flow Diagram

[image: image18.png]2 asay asuodsay

s uonszIOUTY

B

femaen
maushed

]

omezLORy

sonbay

[somzuoupy

#9940

warbay
oz
Bupiauso

pioday
uoaesuel]

piooay swaEy

ansay

asuodsay
Sunesauan

Junouwry

aseaing 7

119 33p0
fuap

artueuBigId
Sguap

Hash of Order Datal &
Purchase Amourt

Purchase
nstrucion

Purchase Response.

[

BIEM

ssanbay
aseqong

Suramoay

Purchase Reaest

Figure 20: POS Data Flow Diagram
6.3. PGWY Data Flow Diagram

[image: image19.png]asodemy
wogezomny
Bupesmuag

TGy

masay
oz

Gagens
guan epmd
L G

Gps 0 m0g)
s0d

santay
[r—

Figure 21: PGWY Data Flow Diagram

SET Protocols Implementation
[image: image20.png]

Chapter Seven
SET Protocols Implementation
Each message of SET protocol when implemented is represented by a class named on the message’s name with a prefix letter ‘C’. These classes also contain objects of other classes according to the protocol. The object names are exactly the same as implemented with case sensitivity. Here we are presenting the object aggregation structures of implemented messages, as listed below.

	
	Object Description
	Class Name
	Object

	1.
	Purchase Request
	CPReq
	PReq

	2.
	Purchase Response
	CPres
	Pres

	3.
	Authorization Request
	CAuthReq
	AuthReq

	4.
	Authorization Response
	CAuthRes
	AuthRes

	5.
	Signed Data
	CSignedData
	SignedData

	6.
	Enveloped Data
	CEnvelopeData
	EnvelopData

Table 1: Objects and their Classes

7.1 Purchase Request

[image: image21.wmf]PReq

PReqDualSigned

PI

PIDualSigned

PISignature

ED

(Structure same

as

EnvelopData)

SD

(Structure same

as SignedData)

OIDualSigned

myHPIData

myOIData

double Version

String DigestAlgorithm

ContentInfo

String Digest

String ContentType

String Content

TransIDs

RRPID

Chall_C

HOD

ODSalt

BrandID

BIN

String LID_C

String PReqDate

String XID

String Language

String RRPID

String Chall_C

double Version

String Digestalgorithm

ContentInfo

String Digest

String ContentType

String Content

String ODSalt

String BrandID

String BIN

Figure 22: Purchase Request Object Structure

7.2 Purchase Response

[image: image22.wmf]PRes

SD

(Structure same

as SignedData)

PResData

TransIDs

RRPID

Chall_C

PResPayLoadSeq

PResPayLoad

Completioncode

result

String Code

AuthStatus

String authdate

authcode

int authratio

String AuthCode

String TransIDs

string RRPID

String Chall_C

Figure 23: Purchase Response Object Structure

7.3 Authorization Request

[image: image23.wmf]CAuthReq

String Encb

envData

(Structure same

as EnvelopData)

PI

authreqdata

PIDualSigned

PISignature

ED

(Structure Same

as EnvelopData)

SD

(Structure Same

as SignedData)

authreqitem

capturenow

authtags

authreqpayload

Boolean

capnow

authrrtags

transids

rrtags

String date

String LID_C

String PReqdate

String XID

String Language

merchID

String MerchantID

rrpid

String RRPID

subauthind

Boolean Subauth

authreqamt

String purchAmt

reqcardtypeind

Boolean reqcardtype

Figure 24: Authorization Request Object Structure

7.4 Authorization Response

[image: image24.wmf]AuthRes

String EnCB

authresdata

authrespayload

authtags

authheader

authrrtags

transids

rrtags

String LID_C

String PReqData

String XID

String Language

rrpid

String RRPID

merchID

String MerchantID

String Date

authamt

String authamt

authcode

String Authcode

responsedate

String cardtype

Figure 25: Authorization Response Object Structure
7.5 Signed Data

[image: image25.wmf]SignedData

double Version

String

DigestAlgo

ContentInfo

String

SignerCert

String CRL

SignerInfo

String ContentType

String Content

double Version

IssuerSerial

String DigestAlgo

Authattrib

String digestEncryptionAlgo

String EncryptedDigest

String unAuthAttrib

String IssuerName

String CertificateSerial

String ContentType

String MessageDigest

Figure 26: Signed Data Object Structure

7 .6 Enveloped Data

[image: image26.wmf]EnvelopData

double Version

ReceipientInfo

EncryptedContentInfo

String ContentType

String ContentEncryptionAlgo

String EncryptedContent

double Version

IssuerSerial

String

KeyencryptionAlgo

String

EncryptedKey

String IssuerName

String CertificateSerial

Figure 27: Enveloped Data Object Structure
7.7 Implementing Security in Java 2
We have developed SET in one of the most richest and potent programming languages (we believe) that is Java 2. We used JDK 1.3 with Kawa 4.01 IDE.

We could not find appropriate RSA cryptography support in Java Cryptographic Architecture (JCA) or Java Cryptographic Extension (JCE), which was provided by Sun Microsystems, along with DES and SHA-1 algorithms. Sun security service provider does not fulfill all of our needs so we tried to find some other service provider. DSTC’s Java Crypto and Security Implementation (JCSI) solved our problems and gather all the needs in one place.

The JDK Security API is a core API of the Java programming language, built around the java.security package. This API is designed to allow developers to incorporate both low-level and high-level security functionality into their programs.

7.7.1 Cryptographic Service Providers

The Java Cryptography Architecture introduces the notion of a Cryptographic Service Provider (used interchangeably with "provider). This term refers to a package (or a set of packages) that supply a concrete implementation of a subset of the cryptography aspects of the Security API.

In JDK 1.1 a provider, for example, contain an implementation of one or more digital signature algorithms, message digest algorithms, and key generation algorithms. Java 2 SDK adds five additional types of services: key factories, keystore creation and management, algorithm parameter management, algorithm parameter generation, and certificate factories. It also enables a provider to supply a random number generation (RNG) algorithm. Previously, RNGs were not provider-based; a particular algorithm was hard-coded in the JDK.

7.7.2 Implementations and Providers

Implementations for various cryptographic services are provided by JCA Cryptographic Service Providers. Cryptographic service providers are essentially packages that supply one or more cryptographic service implementations. For example, the Java Development Kit's default provider, named "SUN", supplies implementations of the DSA signature algorithm, the MD5 and SHA-1 message digest algorithms, the DSA key pair generation algorithm, and the SHA1PRNG pseudo-random number generation. It also supplies a key factory for DSA private and public keys, a certificate factory for X.509 certificates and CRLs, an implementation of DSA parameters (including their generation), and a keystore implementation of the proprietary keystore type named "JKS".

Other providers may define their own implementations of these services or of other services, such as one of the RSA-based signature algorithms or the MD2 message digest algorithm.

7.7.3 JCSI Crypto Provider

We used Java Crypto and Security Implementation (JCSI) v2.2 evaluation release. JCSI Crypto Provider is a security service provider developed by DSTC implemented the followings:

1. A Java Cryptographic Extensions (JCE) framework implementation compatible with JCE 1.2

2. A Security Provider for JCA/JCE with support for

· RSA, DSA and Diffie-Hellman public key cryptography

· IDEA, TripleDES, Blowfish, RC5, RC4, RC2 and DES ciphers

3. A Public Key Infrastructure (PKI) library, including

· A CertificateFactory Provider for X.509 v3 certificate & v2 CRLs

· A PKCS#12-based KeyStore Provider

· An API for PKCS#10 certification requests

· An API for PKCS#8 and SSLeay-style private key protection

· An API for X.509 certificate/CRL generation which can be used to build Certificate Authority tools

4. A Transport Layer Security (TLS) library which

· Supports SSL v3.0 as well as TLS

· Supports all non-anonymous ciphersuites based on RSA and Diffie-Hellman (ephemeral and static)

· Implements the JSSE API

5. A Cryptographic Message Syntax (CMS) library which

· Supports CMS SignedData and EnvelopedData

· Supports RSA and DSA for signing

· Supports RSA and Diffie-Hellman for encryption

6. An S/MIME v3 library supporting

· Signing and/or encryption of MIME messages

· RSA and DSA for signing, and RSA for encryption

· Clear signing as well as opaque signing

· Incorporation into the JavaMail framework

7. A Kerberos 5 library including

· An API for making requests to and processing responses from a Kerberos Key Distribution Centre (KDC)

· A Java GSS API (IETF RFC2853) for application-level messaging

7.7.4 Certificates and KeyStore

In order to store a Digital Certificate in Java, Java keystore is used to store Certificates objects of class java.security.cert.Certificate, which can hold X.509, PGP, or SDSI type certificates.
7.7.5 KeyStore

Java stores its certificates in a special store named Keystore. Keystore can hold two types of entries.

Key Entry holds very sensitive cryptographic key information, which is stored in a protected format to prevent unauthorized access. Typically, a key stored in this type of entry is a secret key, or a private key accompanied by the certificate chain for the corresponding public key.

Trusted Certificate Entry is the second one. This type of entry contains a single public key certificate belonging to another party. It is called a trusted certificate because the keystore owner trusts that the public key in the certificate indeed belongs to the identity identified by the subject (owner) of the certificate.
7.7.6 Creating Certificates

Digital Certificates are usually obtained from a trusted Certificate Authority with its digital signature. In SET environment SET certificates are used with some additional information added by Acquirer Bank or Issuer Bank ensuring authentication for cardholder or merchant. But for demonstration purposes we used self signed root certificates and CA signed certificates. A self-signed certificate is one for which the issuer (signer) is the same as the subject (the entry whose public-key is being authenticated by the certificate) that are generated by using Java KeyTool utility as described below.

Keytool –selfcert –alias chsignature –keypass password –dname “cn=cardholder signature, ou=orgunit, o=org, c=pk”

In order to generate CA signed certificate we will replace –selfcert tag with –genkey.

After running this command on command line a self-signed certificate will be created in .keystore file on windows directory with alias “chsignature” which can be exported in .cer file by using following command:

Keytool –export -alias chsignature –file chsig.cer

7.7.7 X509 Certificate Generation Using Java

We have used DSCT provider class java.security.cert.X509CRL; for Certificate generation. Following code fragment illustrate the generation of X.509 formatted certificate.

X509CertGen cg = new
// private key and CA self signed certificate must be obtained from keystore

X509CertGen(caPrivateKey,"SHA1withRSA", caCert);

cg.setPublicKey(userPublicKey);

cg.setSerialNumber(BigInteger.valueOf((long)num));

cg.setSubjectDN(“CN = Client Name OU = Organization Unit O= Organization C=Contry Name (two alphabets));

cg.setValidity(320);

cg.setSubjectEmail(<set the email address of subject>);

X509Certificate userCertX509 = cg.generateCertificate();

7.7.8 Parsing X.509 Certificates

To obtain the information of certificate programmatically you should parse the certificate using the following code:

-------- ParseCert.java -----------

import java.io.*;

import java.util.*;

import java.security.*;

import java.security.cert.*;

public class ParseCert

{

public static void main(String args[]) throws Exception

{

 FileInputStream fis = new FileInputStream("chsig.cer");

 CertificateFactory cf =

 CertificateFactory.getInstance("X.509");

 Collection c = cf.generateCertificates(fis);

 Iterator i = c.iterator();

 java.security.cert.Certificate cert =

(java.security.cert.Certificate)i.next();

 System.out.println(cert);

}

}

[

[

 Version: V1

 Subject: CN=cardholder signature, OU=orgunit, O=org, L=city, ST=state, C=pk

 Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

 Key: com.sun.rsajca.JSA_RSAPublicKey@3c4459

 Validity: [From: Mon Dec 18 19:03:41 GMT+05:00 2000,

 To: Tue Dec 18 19:03:41 GMT+05:00 2001]

 Issuer: CN=cardholder signature, OU=orgunit, O=org, L=city, ST=state, C=pk

 SerialNumber: [3a3e193d]

]

 Algorithm: [SHA1withRSA]

 Signature:

0000: 05 35 B7 65 BB EE 01 ED 4F 16 97 D8 7B A4 9E 55 .5.e....O......U

0010: B2 96 89 D4 FF E9 E7 45 4A D7 BB 35 2C 7B 39 E9 EJ..5,.9.

0020: C8 EF AC 92 A3 B5 F4 62 29 BD EA BA BD E8 63 3C b).....c<

0030: 09 52 A5 7F B8 A9 27 70 9A 6D 54 93 84 61 E0 4C .R....'p.mT..a.L

0040: F6 D4 DB 71 9A BB B8 14 F8 B1 AB CA A4 7D 82 4B ...q...........K

0050: AE FE 8D 58 50 A6 0D 9F 77 B8 F0 EC 9E 6E 94 D2 ...XP...w....n..

0060: C2 CD A0 BF E2 4A F4 D6 9E CE 49 0B 7F 7D E6 70 J....I....p

0070: 25 DF 20 C2 24 FC 7F AF CE F0 43 C1 B0 E6 FA B4 %. .$.....C.....

]
Figure 28: Parsed Certificate
7.7.9 Extracting Private and Public Keys

Private key is the confidential part of the key pair and must be kept under high security, so it is concealed in keystore with appropriate security measures, while the public key is saved in certificate itself. Below we are presenting the code determining how to extract public and private keys from the certificate and the keystore respectively.

FileInputStream ksis = new FileInputStream(".keystore");

KeyStore ks = KeyStore.getInstance("JKS");

ks.load((InputStream)ksis, "password".toCharArray());

//Getting public key from Certificate

java.security.cert.Certificate Cr = ks.getCertificate("chsig");

PublicKey PubKey = Cr.getPublicKey();

//Getting private key from keystore

PrivateKey PvtKey =

(PrivateKey)ks.getKey("chsig","password".toCharArray());

In the above code PvtKey got the Private Key extracted from the .keystore and the corresponding Public Key, PubKey was took out from the certificate associated with the same alias name.

Private Key:

MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBAK7vTLtHQHm6nlwskxtts9wp6SryMqaKhZMQNWnoqTfKHe68Vg3TPGFglSCJoxRNfI+EF52VY/EJTfQ3jafuBBY9Nf5MmEwXspWFZ8flhirXb7cYp+HvIxwtXnnWd8hy4GzW5YN4IovN326A6AbXamJO4EMP1LgZSbCv7ss653X9AgMBAAECgYAq59KAFIfB033Hyb8C+TMmCrl/qQu3QT5lxZH0OfZXEqGozlSk62xhzdiFtHxlHGQypwlLwzpSAiA2h/GcgIpLqfTqYfAtBAb0KXkMuD5O8YzmzpzikIdkUHMJANJr4sYvwhhjxTxtLDTXhP5Gya61LEtlat9kwZkfsmucybJpwQJBAOStGhV6kOW5CrG89ZSwnAyJV0OdjE+Q1aXIjgUPoZmDNTrBLZWwg32O1CZhNi6qyQtVWaf1hP6HN2DnI4g3rVkCQQDD1lHm/2yUXkHoxCxXutipRBRJDYBAZXIC1YIBcylYrZrbv9eoiLynTeZbU4D/C54OwPA/8pJsftyh9BQKOwVFAkAxknDoHRTSJ+Xwl9To8cwyT4eSSdID4ZLfCHX5FOVkQPRGE2CNZaFrk43b8BDt1uoUQeFYrrmw76EKqbCjM+apAkBqvoVCDfOXI5F1WIh7AUNbb9pGv28qqqDsXohQVf8xcN857GWWXYHHB7UKDof/fMuYax4JHSUmsjd8p1fNA8KpAkEAsmx2cW2kr5fIjUUd1l2kk14gF01xdDCykoSZrFi+bPvLaVPlBkNriGSfZT9exdlbU/wmLiv4PKzXXwOflBsiHA==

Public Key:

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCu70y7R0B5up5cLJMbbbPcKekq8jKmioWTEDVp6Kk3yh3uvFYN0zxhYJUgiaMUTXyPhBedlWPxCU30N42n7gQWPTX+TJhMF7KVhWfH5YYq12+3GKfh7yMcLV551nfIcuBs1uWDeCKLzd9ugOgG12piTuBDD9S4GUmwr+7LOud1/QIDAQAB
Figure 29: Extracted Private and Public Keys
7.7.10 Generating Asymmetric Key Using Java KeyPairGenerator Class

The asymmetric key pair can either be generated by class java.security.KeyPairGenerator or extracted from keystore and certificates. We are now explaining the generation of RSA Keypair as extraction of keys from keystore and certificate has been discussed.

KeyPairGenerator kpg =

KeyPairGenerator.getInstance("RSA","DSTC");

kpg.initialize(1024);

KeyPair Keypair = kpg.genKeyPair();

Key PubKey= Keypair.getPublic();

Key PvtKey= Keypair.getPrivate();

RSA Public key: MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDT07wW9Us6ZQTQrKir+RxLTULbf8ThkQK8OGNXncVHdh7g49HBjP8H8v2a/zpnIywCvP+nBEZMB8g0WxLyI31nWNiGlHCiheZ5pwFIAcOk+IwW7B9wYskoDvajep4i+r7WX+CNvsOG6GfqF7j0svWaJtSSHrsUsbu/KMHDOAS1wwIDAQAB

RSA Private key: MIICeAIBADANBgkqhkiG9w0BAQEFAASCAmIwggJeAgEAAoGBANPTvBb1SzplBNCsqKv5HEtNQtt/xOGRArw4Y1edxUd2HuDj0cGM/wfy/Zr/OmcjLAK8/6cERkwHyDRbEvIjfWdY2IaUcKKF5nmnAUgBw6T4jBbsH3BiySgO9qN6niL6vtZf4I2+w4boZ+oXuPSy9Zom1JIeuxSxu78owcM4BLXDAgMBAAECgYEAycPsbJHIzh5ar8lGAEiPwsoc3KafCZvuVwn+1f3ZY3AHiX521T1PzmqNVY22O3cs/I65lIRl0RW4hOYa7bkQQByjxPPLmGsVHI07n50HS3ld85FMD/UT+rSm2m19rCSDhn6r3229noCZBhBQy8M1Q2NK2lXcyLwuzM5H7R88YgECQQDmk1tInjL4YZdxRNasS0DubhDxUNsT71dtRr789oI4z7Cpe7pfH7V1amPn5q4J8tjOCBREu/Fd9+Q+29C2dKqjAkEA6y8mBBGjqDweAlNObHC2MBH2bo4DHIHkBLpL4i2CoYV185qKPPldHqSnL6EUi866SngNxt+MvClkOgdMiM6aYQJBALUu0aosdczrkv80oqPctnclEjct3Bi8GC0MTIOmiQlvWlizmu2okwRix4Kwp821gFvVyWeBb9bxNe+W91iIMJUCQQChm5J59U0KS9UrL+eR6Jmoyo8WRQuqSS9QeFuwnilHqJf2v1kCsS/l4KrptbySnYmxpnGBGRhyK9ctcNqMn7vBAkAqNX8qrH6YdXdYZUFkncoT+DLrBtMPX9ZZguO7l3jI6M7FM5YjNxLoAhEXleJeGPluWNGzIbyZ+lxwt+Md7OoI
Figure 30: Generated RSA Public and Private Keys
7.7.11 Asymmetric Key Encryption / Decryption

Asymmetric cryptography, also known as Public-key cryptography, uses two keys: one key to encrypt the message and the other key to decrypt the message. The two keys are mathematically related so that data encrypted with either key can only be decrypted using the other. The public-key cryptography algorithm is used for RSA.

RSA Encryption and Decryption is done by using DSTC provider’s javax.crypto.Cipher class. Following is the code describing how to encrypt and decrypt a message.

String msg = new String("GOF");

Cipher cipher = Cipher.getInstance("RSA");
cipher.init(Cipher.ENCRYPT_MODE,PubKey);

byte[] inp = cipher.doFinal(msg.getBytes());

cipher.init(Cipher.DECRYPT_MODE,PvtKey);

byte[] outp = cipher.doFinal(inp);
In the above-described code the parameters Cipher.ENCRYPT_MODE and Cipher.DECRYPT_MODE indicate algorithm mode. This flag makes the class able to Encrypt and Decrypt by either Public or Private Key.

7.7.12 Generating Symmetric Key

Secret-key cryptography, also known as symmetric cryptography, uses the same key to encrypt and decrypt the message. Therefore, the sender and the recipient of a message must share a secret, namely the key. A well-known secret-key cryptography algorithm is the Data Encryption Standard (DES), which is used by financial institutions to encrypt PINs (personal identification numbers).

The symmetric encryption key should be generated using appropriate random number generated by random number generator. In Java security package KeyGenerator class generates DES key using random number, generated by java.util.Random class. Below is the symmetric key generation code:

KeyGenerator gen = KeyGenerator.getInstance("DES");

gen.init(new SecureRandom());

Key key = gen.generateKey();

7.7.13 Encryption / Decryption using DES-CBC Mode

The SET requires a special padding rule such that a padding string always appended to the final plaintext block being encrypted. This final block may be a complete data block, or a partial data block whose length is not an integral multiple of the block length. This padding string is used in SET regardless of whether the final block is a partial or complete data block. After such padding encryption is done using DES-CBC encryption mode with NoPadding.

This padding is not yet completed due to limitations of project, and left for those who further enhance the system. However to complete a session an alternate mode and padding called DES-CBC mode with PKCS5 Padding is used.

String msg = new String("GOF");

Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");

cipher.init(Cipher.ENCRYPT_MODE,PubKey);

byte[] inp = cipher.doFinal(msg.getBytes());

cipher.init(Cipher.DECRYPT_MODE,PvtKey);

byte[] outp = cipher.doFinal(inp);
7.7.14 Message Digest

SET uses SHA-1 Message Digest algorithm. We are only discussing here the implementation of SHA-1 Message Digest in Java.

Following is the code representing how to create digest of a message using SHA-1 algorithm.

String message = new String("Going to Digest");

MessageDigest md = MessageDigest.getInstance("SHA-1");

md.update(message.getBytes());

byte[] byteDigest = md.digest();
In the following figure the digest of two same texts appeared entirely changed only by changing the case of a single character:

	Text: Going to Digest

Digest: T1LALecalRRlKyUx1jsfV1FZZS4=

Text: Going to digest

Digest: h6A4vE85hFIN8JdGET9+YMCq3L0=

Figure 31: Change in Message Digests

7.7.15 Validating A certficicate
For validating a certificate, one needs to validate it in three steps:

1) Checking for expiry:

2) Checking for valid CA signature:

3) Checking CRL for the Serial number of certificate in questions:

7.7.16 X509 CRL Generation:

A crl can be generated by using the X509CRLGen class provided by JCSI. A sample code is shown below:

X509CRLGen crlGen = new X509CRLGen(caPrivateKey,"SHA1withRSA",caCert);

crlGen.setCRLNumber(BigInteger.valueOf((long) num));

crlGen.setThisUpdate(d);

X509CRL crlobject = crlGen.generateCRL();

Now we can write the crlobject in a file with .crl extension.

7.7.17 Revoking A Certificate (Putting Serial Number In CRL)

During CRL generation, we can use the method addRevodedCert (serial number of certificate), to revoke a certificate and put the serial number in CRL.

7.7.18 Removing A Certificate From CRL:

During CRL generation, we can use the method deleteRevokedCert(serial number of certificate), to delete a serial number of a certificate which we want to remove from CRL list.

7.7.19 Deleting An Alias From Keystore

We have implemented key termination mechanism in our PKI implementation. First the entry (alias) of the user is deleted from keystore using keytool with the following argument:

Keytool.exe -delete –alias <alias to be deleted> -keypass <password of alias> -keystore <path of keystore> -storepass <password of keystore>.

After deleting the entry from keystore, we also need to delete the certificate of user from hard disk also.

Conclusion
SET, as it’s claimed about the objectives, it is fulfilling all the goals. It is a simple, inexpensive way for merchants to conduct credit card sales over the Internet. Further it is produced as a protocol for processing credit card transactions that would have little impact on the existing financial infrastructure. The SET protocol also allows software vendors to produce credit card payments through softwares that interoperate with this protocol. Also, by being an open, license-free standard, SET has created a level playing field and insures competition among software vendors.
Among all other benefits, SET has the specialty that it doesn’t allow the merchant to be able to see the credit card information of the cardholder. It is achieving this by avoiding third party processors. SET is based upon strong encryption and decryption techniques involving secret key, asymmetric key and hash algorithms. Its also beneficial for merchants as it gives the choice to the merchants for no-waiting of payments, which is quite usual with other protocols.
The SET protocol is composed of a great number of messages that flow among different SET entities. Out of all these messages the SET has specified four messages, PReq, Pres, AuthReq and AuthRes, as mandatory. These four messages have been implemented as partial fulfillment of this term project. It is needless to mention the importance of Public Key Infrastructure in such protocols. Therefore PKI is also included in the implementation task.
The implementation of SET and PKI is carried out in Java development environment using the CAPI, Cryptographic Application Programming Interface, together with the incorporation of third party security service provider, named as DSTC.
Appendix

[image: image27.png]

Appendix A:

First Virtual Holding

Step-By-Step Processing

The following steps occur during a sale when using the First Virtual payment system:

1. Merchant requests buyer's First VirtualPIN (usually through a form on a WWW page).

2. Merchant can then check whether the VirtualPIN actually belongs to a real First Virtual account that is in good standing. Merchants can verify accounts by using the following programs; Finger, Telnet, email, or the FV_API utility.

· Note - Verifying the account is an optional step in the sale process.

3. The merchant then initiates a payment transaction through First Virtual. This payment transaction is initiated by sending the following information either by email, Telnet, or a SMXP enabled program to First Virtual;

· Buyer's First VirtualPIN

· Merchant's First VirtualPIN

· The amount and currency of the sale (Not everything is processed in dollars!)

· A description of the item for sale

4. First Virtual generates an email request to the buyer to confirm the sale. This email request contains the following sale information:

· The merchant's full name

· The amount of the sale

· A description of the item bought

5. Buyer confirms sale by sending a YES response to back to First Virtual

· A buyer can also respond NO, to state that they are unsatisfied with the item and are unwilling to pay, or FRAUD, to state that they never made the purchase and someone must have stolen their VirtualPIN.
· If a buyer does not respond in a reasonable time, their account is suspended.
6. First Virtual sends a transaction result message to the merchant, indicating whether the buyer accepted the charges.
7. After a waiting period, (91 days after buyer's credit card has been charged), the amount of the sale minus transaction fees are directly deposited into the merchant's account.
· Note - The 91 day waiting period is in place to protect First Virtual from buyers who dispute the charge on their credit card and have the credit card company charge back First Virtual for all or part of the sale.
· Merchant assumes all risk!

Appendix B:
CyberCash

Step-By-Step Processing

Steps to a credit card purchase using CyberCash's payment system:

1. The buyer indicates that they want to purchase an item from the merchant's WWW site by clicking on the CyberCash pay button.

2. The merchant's SMPS software sends an invoice to the buyer's CyberCash Wallet software.

· The CyberCash Wallet is registered as a helper application to the buyer's WWW browser. The browser invokes it whenever it downloads a file with the MIME content encoding of application/x-cybercash.

3. The buyer selects a credit card from the ones bound to their wallet and clicks OK.

4. The Buyer's CyberCash Wallet then digitally signs and encrypts the invoice and credit card information with the key assigned to that Wallet-ID. The encrypted packet is then sent to the Merchant's SMPS software.

5. The merchant software adds information to the payment packet requesting that either the credit card payment be authorized or authorized and captured.

· Under normal credit card operating procedures, i.e.. a merchant using a POS terminal, the merchant only receives authorization when the sale actually happens, and then that night sends all the credit card payments to the acquiring bank to be captured.

· CyberCash is working on allowing batch capture processing and probably it may have done it by now.

6. The merchant's SMPS software digitally signs and encrypts the payment packet with their CyberCash key. The packet is then sent to the CyberCash server.

· The merchant never sees the customers credit card number.

· The payment packet is encrypted twice before arriving at CyberCash's server, once by the buyer's software and once by the merchant's.

7. CyberCash's server moves the packet to a machine that resides behind their firewall and off the Internet. CyberCash then decrypts the message and checks to make sure that the merchant has not tampered with the original invoice agreed upon by the buyer.

8. The credit card information, with the merchant's request (authorize or authorize and capture), is encrypted using hardware that banks use for encrypting financial data. This information is sent over dedicated lines to the merchant's acquiring bank.

9. The merchant's acquiring bank then processes the merchant's request as it would any other credit card transaction. It forwards the request through the card associations network to the card issuing bank.

· Discover and American Express cards are not associated with an issuing bank. Authorizations and captures are performed through the card company itself for these particular cards.

10. The card-issuing bank sends an approval or denial code back to the acquiring bank. The acquiring bank then sends this code to CyberCash.

11. CyberCash sends the merchant a message indicating success or failure of the credit card payment transaction. This message is of course sent encrypted.

· CyberCash claims that the process up to this point should only take between 15 to 20 seconds.

The merchant's SMPS software then sends a message back to the buyer's CyberCash Wallet indicating success or failure of the payment transaction.
Appendix C:
Other Web Based Systems

Many other credit card payment systems do exist, but they are generally not aimed at the broad market. For example, First Virtual Internet Payments System (FVIPS), does not simulate the normal credit card system as SET or CyberCash does in which, the only relationship between the organization that issues the card and the one that processes the purchase is that they subscribe to the same clearing network.

Payment methods for the Internet such as e-Cash and Micro-payments are being developed. A picture of Internet commerce is not complete without a look at these emerging payment schemes.

The details of these systems are left for the reader to explore himself.

C 1 E-Cash

Out in the real world beyond the edge of your browser, the answer to dilemmas of using a specific standard is to pay with cash. On the Web there are a number of initiatives that provide electronic cash or payment methods that mimic coins and notes. It is digital money that one uses to make online purchases. The methods differ in a number of ways. Some of them use digital coins or tokens that represent some small monetary amount that are authenticated by the digital signature of a bank. Others are closer to the credit card model; with a third party that manages the cash on behalf of a customer.

Consumers interested in shopping with e-cash have special software on their system that allows them to download money from their bank account into their cash wallet on their computer. When making a purchase, they exchange this downloaded money with the merchant for the product they want to buy. The merchant then redeems this money at a bank that accepts e-cash deposits.

Here is a sample of some electronic cash schemes

C 1.1 DigiCash

This is the largest electronic cash scheme, based on electronic coins. It has a large number of subscribers, both buyers and merchants, and it is supported by a number of banks. It uses an innovative blind signature scheme to protect the anonymity of the buyer. [Ref: DigiCash]

C 1.2 Smart Cards

In all of the electronic cash examples, a cash balance is maintained on a computer, in some kind of electronic wallet or vault. However, this ties the transaction to a specific machine. Smart cards offer an alternative, by allowing electronic money to be stored in a portable medium.

In most of the payment protocols the buyer has a public key pair, which is usually held in a file on his or her machine. Again, smart cards offer a solution whereby the keys can be help in a very secure, but portable form.

The number of applications of smart cards is increasing at a high rate, not only for payment schemes but also as security keys and as repositories of personal data. So far, these have mostly been based on private networks, because there are relatively few Internet devices with card readers. However, as the cost of card readers decreases, we can expect many of these schemes to start exploiting the public global access offered by the Internet.

C 2 Micro-payments

One of the latest buzzwords on the Internet is micro-payments. Currently, the way many WWW sites make money is from advertising. The content on their pages is free. The prevailing wisdom in the Internet community is that net-surfers are unwilling to pay for content. The concept behind micro-payments is that if the fee for content was low enough, people would not mind paying for it. (By low, we mean 1, 10 or 15 cents a page.) Current payment systems are not set up for handling these types of transactions. The fees associated with processing credit card sales are higher than the actual payment under these circumstances. More over for small payments, the process of authorization and funds capture is too much of an overhead.
C 2.1 NetBill

This is a scheme developed at Carnegie Mellon University. In this case the cash is not held directly by the buyer, but by a NetBill server. It is primarily designed for delivering for-fee data content. When the buyer elects to buy the data or service, the seller sends the data in an encrypted form. It also sends a billing request to the NetBill server. If there are sufficient funds in the buyer’s account, the server sends the buyer the key to unlock the data. If the buyer accepts, the cost is deducted from his or her account.
C 2.2 Minipay

This is a scheme proposed by IBM research. It is similar in some ways to NetBill, but its unique feature is that for small payments there is no need for the seller to request funds from the server that holds the account. Each buyer has a daily spending limit and, as long as it is not exceeded, the seller can be relatively sure that the bill will be paid. The advantage of this scheme is faster, lighter transactions, at the cost of a small additional risk.
Appendix d:

Snap Shots
[image: image28.png][cemncaie TR

Generl | Detals Cortficaton path |

- Certfication path

Authort

View Cortiicate.

Certficate status
[This certfcate & OF.

Figure 32: Certificate Authority Certificate
[image: image29.png][Certificate Revocation List

[—

%7 Certificate Revocation List Information

vl e
= ™

B Confcate Authrty, 15, KFLRH
Elefecve dste Monday, ecanber 01, 2003 120
Elsgnsture sorthm _ shotrsh

sz wzozcere

Figure 33: Certificate Revocation List
[image: image30.jpg]Generating Purchase Request
Checking pkey.cer certxfxcate “with ©A public key
valid certificate pkey.

License to use module ’jcsi.provider’ will expire 2004/81/26
alieg sending Pieq
PRoq Se:

Purchase Request Generated and Sent...

allet receiving PRes from POS GICS-SHAHAB/172.16.131.38
allet received PRes

Transaction Record Matched
Rosulting Status: authorizationPerforned
uthorization Date: 2004017003642.000
uthorization Code: approved

Paynent Process by SET Ended :
Press any key to continue

Figure 34: Wallet
[image: image31.jpg]w T

Listening Bics—shahah p

fregeroing vaciod tron Boitet %ercs-atmans122.16.138.43
recelving

[PReq At POS

Generating Data to verify Cardholder Sinature...
Checking GISIG CER cortif icate wich GR public key
lvalid certificate CHSIG.C

e cispiing bigteal Sionacure. .-

uerifying.

Generated PI-TBSUlHMHU Y9 U jB2 ihocmntNeA 108=
ocrvntod 1a-set-contont——P1-THOuMMHUURIES hochmENme 1a=

signature Verified

¢ Storing Transaction Record

Transaction Record Stored

[Global 1D:KID WBIINIdimax

[Purchase Language :Language en

0rder Details and Purchase Amount Uerified...

Generating Authorization Request to Payment Gate

Liconse o use module :ooi provider’ will expive S664/81/26

(Checking phey-cer certilicate with Ca public key
alid certificate pey.cer

Figure 35: Point of Sale
[image: image32.jpg]i tening Gicoshahan o

pauy receiving Authitog Fron'latlee 0127.0.0.1/127.0.0.1
futhReq At PGHY

xid

fsend by merchant [BE67h241

fsend by cardholder[BA67h241

[PAN approved. You » cleard 2 shop?!

puthorized amount is captured...

Gonerating Authorization Respon
o module ’josi.provider’ will expire 2004/81/26
R certilicate with CA public Key

AuthRes to POS
AuthRes S

Authorization Response Gonerated and sent...
[Press any key to contir

Figure 36: Payment Gateway
[image: image33.jpg]i, Certificate Request
2. Certificate Ualidation

2. Certificate Revocation List Request
4. Request Ch's certificate

5. Certificate Revocation Request

6. Remove Certificate from CRL

7. Delete Key

8. Request for Certificate Exchange

[Please enter your choice:

Figure 37: PKI Client Side Main Menu
Bibliography

Secure Electronic Transaction (SET) Specification, Book1: Business Description

http://www.setco.org/download/set_bk1.pdf
Secure Electronic Transaction (SET) Specification, Book2: Programmers’ Guide

http://www.setco.org/download/set_bk2.pdf
Secure Electronic Transaction (SET) Specification, Book3: Formal Protocol Definition

http://www.setco.org/download/set_bk3.pdf
SET Comparative Performance Analysis, Gartner Consulting, GartnerGroup Inc., November 1998

http://www.setco.org/download/setco6.pdf
Keith Lamond, “Paying by Credit Card- Real World and Online”

http://www.virtualschool.edu/mon/ElectronicProperty/klamond/credit_card.htm
David A. Szwak, “Understanding Credit Cards, Credit Card Reports and Frauds”
http://www.lectlaw.com/files/ban16.htm
Global SET Adoption, SetCo. Backgrounder Report

www.setco.org
SET Supported payment methods SetCo. Backgrounder Report

www.setco.org
IBM Redbook Java 2 Network Security

1. http://www.redbooks.ibm.com/abstracts/sg242109.html
2. http://java.sun.com\jdk1.3\docs\guide\security\cert3.html
3. http://mindprod.com/jgloss/certificate.html
4. http://java.sun.com/j2se/sdk/1.3/docs/guide/security/CryptoSpec.html
5. http://www.dstc.edu.au/AboutDSTC/index.html
Patrick Naughton & Herbert Schildt, “The Complete Reference Java2 Third Edition”

Burton S. Kailski, Jr., RSA Laboritries, “An Overview of PKCS Standards”, 1993
http://www.rsa.com/pub/pkcs/doc

“Java Cryptography Extension (JCE)”,

http://Java.sun.com/products/jce/index.html

“Keytool-Key and Certificate Management”

http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html

“X.509 Certificates and Certificate Revocation Lists (CRLs)”

http://java.sun.com/j2se/1.3/docs/guide/security/cert3.html

“Internet & Payments”

http://www.nwcha.org/internet.htm

“Digital Certificates 101 - A Brief Tutorial”

http://www.elsop.com/wrc/digicert.htm

“The Classification of The Electronic Payment System (Network)”

http://www.adgnet.or.jp/~kagami/e-kessaibunrui.htm

“E-Commerce Security: Cryptography with SET and SSL”

http://www.cs.jcu.edu.au/~pei/cryptography.htm

“Is SET put to practical use?”

http://www.adgnet.or.jp/~kagami/e-nowsetjituyouka.html

“Electronic Payment Transactions”

http://www.brokat.com/int/products/overview/x-pay.html

“How to Integrate Your Cryptography Algorithms into Java TM Security"

http://www.columbia.edu/cu/help/jdk/docs/guide/security/HowToImplAProvider.html
Figure 15: Logical class structure of AuthReq

Figure 17: Payment Gateway Sends Authorization Response

Figure 3: Secret-Key Cryptography

Figure9: Cardholder Sends Purchase Request

� EMBED PBrush ���

Figure 14: Merchant Requests Authorization

Figure 16: Payment Gateway Receives Authorization Request

Figure 11: Merchant Send Purchase Response

Figure 4: Public-Key Cryptography

Figure 5: Dual Signature Example

Figure 6: Trust Hierarchy

PAGE
6

_1041508847.vsd

_1041509165.vsd

_1130054946

_1131559293

_1041509312.vsd

_1041509368.vsd

_1041521912

_1041509217.vsd

_1041509067.vsd

_1041509120.vsd

_1041508974.vsd

_1041074444

_1041508698.vsd

_1041508797.vsd

_1041074464

_1041074458

_1038973054

_1040882204

_1040980924

_1038997240

_1038969286

