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Chapter 1

Introduction

With advances in VLSI (Very Large Scale Integration) technology, it is possible
to achieve fabrication on the nano-technology scale with component densities of
millions of transistors per circuit. Due to its complexity the VLSI design process is
divided into several intermediate levels of abstraction. More details about the new
design are introduced as the design progresses from higher to lower levels. Typical
levels of abstraction, together with their corresponding design steps, are illustrated
in Figure 1.1.

Until recently, physical design optimizing the wirelength (area) and performance
(timing) was of prime importance. Results of several research efforts to optimize area
and performance are available in literature and summarized in several papers and
books [1, 2, 3, 4, 5, 6]. Nowadays, with several new power-constrained applications

ranging from mobile phones to laptop computers, power dissipation has emerged as



another important objective of VLSI circuit design [7]. The problem of optimizing
the three above mentioned objectives in VLSI circuit design can be addressed at
any of mentioned design steps. In this work, the concern is with optimization at the
physical level, in particular the cell placement phase.

In VLSI circuit design, placement is the process of arranging circuit blocks on a
layout. In standard cell design, where circuit blocks are of fixed height and variable
widths, placement consists of determining optimum positions of all blocks on the

layout to satisfy a number of objectives.

CAD subproblem level Generic CAD tools

Behavioral/Architectural | Architectural design I thavpral modeling and
Simulation tool
|

| Logical design I Functional and logic minimization,
logic fitting and simulation tools
|

Cellimask | Physical design |
[
| Fabrication I

Figure 1.1: Levels of abstraction and corresponding design steps.

Register transfer/logic

Tools for partitioning,
placement, routing, etc.

Placement is an NP-hard problem, whether the complexity is low or high, irre-
spective of single or multiple objectives. Conventional constructive techniques have
often proved inadequate in achieving multi-objective optimization for placement.
Iterative heuristics on the other hand have been a tremendous success in reaching

acceptable solutions for such problems.



1.1 Iterative Non-deterministic Heuristics

The primary advantage of iterative heuristics over conventional constructive algo-
rithms is their probabilistic ability to escape from local optima. Among the earliest
of these heuristics, Simulated Annealing (SA) was proposed in the early eighties [8]
and was considered a phenomenal success when applied to combinatorial optimiza-
tion problems from a variety of disciplines. SA is often credited for sparking the
research interest in iterative algorithms and is considered a comparison benchmark
for new heuristics in its class. It has become customary that every newly reported
randomized search heuristic has to prove itself by performing better than SA on a
number of test cases. There are also other heuristics that are used in solving combi-
natorial optimization problems like Genetic algorithms, GRASP (Greedy Random-
ized Adaptive Search Procedures), Ant Colonies, but in this work, only Tabu Search

is considered.

1.2 Parallel CAD

1.2.1 Motivation

Despite advances in VLSI technology, there are still a few challenges that pose an
obstacle in its rapid development. One of them is the large run-time required for

iterative heuristics which play a crucial role in VLSI design. Of the various ac-



celeration strategies attempted, parallel computing has always exhibited the most
potential. Not only is it possible to achieve shorter run-times with parallel process-
ing but also handle larger problem sizes, obtain better quality results, etc. These

potential advantages are enumerated and detailed below [9]:

1. Faster Runtimes: Most of the VLSI design problems are computationally
intensive and take a large amount of time ranging from several hours to days.
Moreover, future design tools will require even more computational capabili-
ties. Given such increased requirements for speed and accuracy, parallel pro-

cessing is one viable alternate to accelerate the design tasks.

2. Larger Problem Sizes: Sometimes, due to time or memory limitations,
these design tools cannot handle larger problem sizes. This can be overcome
by using parallel processing, as both computational speed and memory size

are enhanced by using parallel architectures.

3. Better Quality: As most of the VLSI design problems are NP complete [10],
heuristics used to solve them may give non-optimal solutions. The solutions
obtained are a function of the fraction of the search space traversed. With
the use of parallel search techniques, better quality results can be obtained.
This is possible as a larger search space can be traversed in the same time

constraint.



4. Cost-effective Technology: With the proliferation of parallel computers,
powerful workstations, and fast communication networks, parallel implemen-
tation of iterative heuristics, seem to be a natural alternate to speedup the

search for approximate solutions [11].

1.2.2 Challenges

Albeit it is relatively easy to build parallel machines whose peak performance is in
few hundred GigaFlops (GFlops) or even TeraFlops (TFlops), it is quite difficult
to harness this computational power. The challenge lies in design of good and
efficient parallel algorithm, that can use this hardware resources to get maximum
performance.

The use of parallel algorithms for VL.ST CAD is thus important as these represent
a rich class of important, non-numerical, unstructured applications, that are difficult
to parallelize. Researchers exposed to parallel algorithms, typically use structured
numerical problems, e.g., in computational chemistry, but have less idea about the
intricacies of solving a large non-numerical, unstructured problem. In addition to
this, there is a growing need by most of the CAD tools that are used to automate

VLSI physical design.



1.3 Parallel Processing Models

In this section some of the available parallel processing models and architectures are
discussed. There exist two well-known parallel architectures for implementing par-
allel processing models. General purpose multiprocessors in which each processor
can access a common shared address space are classified as shared memory multi-
processors. As compared to this model, in a distributed memory multiprocessor each
processor has its own local memory.

The shared memory model, as the name implies, allows all processors to access
data from a shared memory without any explicit declarations. A high-speed bus
serves as the interconnection medium between these processors. In distributed mem-
ory model, data is shared between the memories of individual processors through
explicit message passing. Here the latter is discussed since it is most suitable to the
proposed work.

The distributed memory models have evolved into cluster computing systems,
using complete stand-alone workstations connected through dedicated low-latency
networks. Although such clusters comprising general-purpose workstations provide
an affordable and cost-effective means of generating enormous computing power,
the challenge lies in achieving their effective utilization. In these parallel computing
systems, communication between nodes (workstations) places a significant overhead

on the actual runtime due to the network latency. Hence, process communica-



tion among the nodes has to be minimized. Effective partitioning of the computa-
tional load among the workstations is another important aspect, to minimize overlap
between individual work-domains. Hence, harnessing the computational power of
cluster systems through efficient parallel programming is inarguably, a significant
challenge.

Parallel Programming environments: In order to exploit concurrency, Parallel
algorithms have to be designed by taking into consideration the underlying archi-
tecture, which effects the degree of parallelism or granularity of the application it
can run. The reason for this is that the best parallel strategy cannot be achieved
by just adopting a sequential algorithm [12].

Basically, there are three strategies for developing parallel programs. [11]

1. Parallel Programming Languages: These are sequential languages aug-
mented by a set of special system calls and provide low-level primitives for
message passing, process synchronization, etc. Examples of such languages
are HPF (High Performance Fortran) and OpenMP. Such programming lan-

guages are well suited to fine-grain synchronous applications.

2. Communication Libraries: Communication libraries provide routines that
can be used with regular programming languages like C, C++, and Fortran.
These communication construct/routines can be augmented within the code to

send and receive messages among different processors. PVM (Parallel Virtual



Machines) and MPI (Message Passing Interface) are examples of this type.
This programming mode is particularly suited to coarse-grain applications

running on clusters of PCs/workstations.

3. Lightweight Processes (Threads): With the increase in the use of SMP
cluster, threads such as POSIX (Portable Operating System Interface) threads
or Java threads are also used. Although, threads are an operating system
concept, they are extensively used in parallel programming due to their support
for concurrency programming. Their use is particularly suited to medium and

coarse-grained parallel applications.

In this thesis, parallel algorithms for Tabu Search applied to multi-objective
VLSI cell placement are presented. Parallel implementations are achieved over a
dedicated computing cluster with individual nodes connected via an ethernet con-
nection. The performance of these parallel algorithms in terms of run-time and
search efficiency are compared with their respective sequential counterparts running
on a single processor.

The overall work objective is to develop Parallel algorithm for Tabu Search, on

message passing architectures to achieve, either of the two:

1. that can run in lesser time, achieving similar quality of solution, thereby

achieving scalability with the increase in the number of processors.

2. that can run for similar amount of time and get better quality of solution.



1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2, some theoretical aspects of paral-
lelizing heuristics are discussed along with a review of related literature. Problem
formulation is dealt with in Chapter 3, where we discussed the parallel environment,
hardware, software, and the paradigm. Various approaches to the solve the prob-
lem are reported in Chapter 4 followed by the comparison with other heuristics in

Chapter 5, with Conclusion and Future work are discussed in Chapter 6.



Chapter 2

Literature Review

This chapter gives a short introduction to Tabu Search heuristic and literature review

of the efforts that were done to parallelize it for various optimization problems.

2.1 Tabu Search (TS)

Several heuristics are used in solving combinatorial optimization problems. Tabu
Search is one such heuristic. The word tabu is a variant of ‘taboo’, which means
excluded or forbidden from use. In context of the heuristic, it maintains a list of
moves which are forbidden, in order to prevent cycling.

Conceptually, Tabu Search is elegant. It is a generalization of local search. The
heuristic is based on systematic exploration of memory functions. It is an aggressive

search technique where for a given solution, a large number of neighbors are gener-

10



Q . Set of feasible solutions.
S : Current solution.
S* :  Best admissible solution.
Cost : Objective function.
N(S) : Neighborhood of S € Q.
\A :  Sample of neighborhood solutions.
T . Tabu list.
AL . Aspiration Level.
Begin
1. Start with an initial feasible solution S € €.
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V* C X(S).
5. Find best S* € V™.
6. If move S to S*isnot in T Then
7. Accept move and update best solution.
8. Update tabu list and aspiration level.
9. Increment iteration number.
10. Else
11. If Cost(S*) < AL Then
12. Accept move and update best solution.
13. Update tabu list and aspiration level.
14. Increment iteration number.
15. EndIf
16. EndIf
17. EndFor
End.

Figure 2.1: Algorithmic description of short-term Tabu Search (TS) [1]

11
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ated, from which the best is chosen. To determine which of the generated solutions
is the best, an evaluator that is based on the objectives being optimized and the
historical information that has been accumulated, is used [13, 14, 15]. The trace
of the current solution is controlled by a recent move history to avoid cycling in
the solution space. This is done with the help of a list called the Tabu list, which
stores the most recently visited moves. Moves in this list are tabu. However, the
tabu status is overridden when an aspiration criteria is satisfied. Use of intensifica-
tion/diversification in Tabu Search considerably helps in obtaining superior quality
solutions. This is accomplished with the help of additional memory structures that
keep record of information such as frequencies of moves, elite solutions, etc. An

algorithmic description of short-term Tabu Search is given in Figure 2.1. [1, 2].

2.2 Parallelization of Tabu Search (TS)

A generic intuitive strategy for achieving parallelization is to partition the data
into small subsets distributed among the processors [16, 17]. Each processor is
responsible for a data subset and implements a sequential version of the concerned
heuristic over this data subset.

However, for combinatorial optimizations, three types of parallelization strategies

seem to be appropriate as were reported by Toulouse et. al [18]. They are:

1. The operations within an iteration of the solution method are parallelized.
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2. The search space (problem domain) is decomposed.

3. Multi-search threads with various degrees of synchronization.

Crainic et. al classified the parallel Tabu Search heuristic based on a taxonomy
along three dimensions [19]. Based on this taxonomy, they also classified the earlier

work done related to parallel Tabu Search, which is presented in the Section 2.3.

e The first dimension is Control Cardinality, where the algorithm is either
1-control (one processor executes the search and distributes tasks to other
processors) or p-control (each processor is responsible for its search and com-

munication with other processors).

e The second dimension is Control and Communication Type, where the
algorithm can follow a rigid synchronization (RS), knowledge synchronization
(KS), Collegial (C), or a Knowledge Collegial (KC) strategy. RS and KS belong
to synchronous operation mode where the process is forced to establish commu-
nication and exchange information at specific points explicitly defined, where
as C and KC are asynchronous operation modes where contents of commu-
nication are analyzed, concerning the global characteristics of good solutions

and search strategy.

e The third dimension is Search Differentiation where the algorithm can

be SPSS (single point single strategy), SPDS (single point different strate-
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gies), MPSS (multiple point single strategy), or MPDS' (multiple point different

strategies).

The second dimension, i.e., Control and Communication type is basically divided

into two types: Synchronous and Asynchronous.

Synchronous Parallel Tabu Search

In synchronous version, a master process runs on one machine and the slaves pro-
cesses run on different machines. All slave processes start with an initial solution,
either sent by the master process, or generated by the slave itself, depending on the
third dimension of the taxonomy. If it is I-control, then the master sends the initial
solution. Otherwise, in p-control the slaves generate their own initial solutions. Af-
ter searching its part of the current neighborhood, each slave process reports its best
solution back to the master. The master process selects the best among the received
best solution subject to tabu conditions. The slave processes maintain their own
tabu list and apply their own aspiration criteria, depending on the first dimension
of the taxonomy, i.e. if it is I-control, only the master process maintains a Tabu
list and aspiration criteria. If the stopping criteria (number of iterations) are met
then the search stops; otherwise the master broadcasts the selected solution back
to the slaves and the search continues. The main idea behind this is the communi-

cation between the master and slave processors at fixed points, that enforces it to
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synchronize.
The main steps of the synchronous parallel Tabu Search are outlined in Fig-

ure 2.2.

Algorithm ParallelTabuSearch;

Begin

1. Generate initial solution on all processors
(In case of 1-control, the master does it & broadcasts)

2. For Number of Iterations

3. Each slave process explores its own neighborhood and
sends its best solution to the master;

4. The master selects the best solution from the solutions
received from the slaves;

5. The master maintains the Tabu list & applies aspiration criteria,
(In case of 1-control, only the master maintains it)

6. The master broadcasts the best solution so far to all the slaves

7. EndFor

End.

Figure 2.2: Skeletal outline of synchronous parallel Tabu Search.

Asynchronous Parallel Tabu Search

In this approach, each processor explores a subset of the neighborhood of its current
solution. Each processor is competing with its neighbors (its adjacent processors)
in finding a superior solution. When the stopping criteria are met, every processor
reports its best solution. There is no fixed point at which all the processors have to

synchronize or communicate to exchange information.
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2.3 Literature Review of Parallel Tabu Search

The first reported studies on the parallelization of Tabu Search were published in
the early nineties. The following paragraphs summarize the breadth of applications,
where Parallel Tabu Search has been applied.

Malek et. al [20] compare the performance of serial and parallel implemen-
tations of simulated annealing and Tabu Search for Travelling Salesman Problem
(TSP). The reported experiments were performed on a 10 processor Sequent Bal-
ance 8000 computer. The authors report that the parallel version of Tabu Search
outperforms not only its sequential counterpart, but produces comparable or better
results than the serial and parallel version of simulated annealing. Their strategy
was synchronous with 1-control, KS, SPDS.

In order to solve the flow shop sequencing problem, Taillard [21] used a mech-
anism for parallel implementation of Tabu Search algorithm using search space de-
composition strategy. It is a 1-control, RS, SPSS algorithm.

Battiti et. al [22] used Tabu Search to solve the Quadratic Assignment Problem
(QAP) with hashing procedures. The scheme used is the p-control, RS, MPSS. The
authors report that the parallelization strategy is efficient and the average success
time decreases with increase in the number of processors.

Taillard [23] used parallel Tabu Search for vehicle routing problem. The paral-

lelization strategy is based on domain decomposition strategy, which is p-control,
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KS, MPSS. It was implemented on a Silicon Graphics 4D/35 workstation with 4
Processors.

Another effort by Taillard [23] to apply parallel Tabu Search to quadratic assign-
ment problem follows a 1-control, RS, SPSS strategy. A ring of 10 transputers were
used, but no implementation details were given. Load balancing through partition
of the neighborhood is acknowledged as critical.

Chakrapani et al. [24] also used parallel Tabu Search to solve QAP, which is
1-control, RS, SPSS. The search is performed sequentially, while the move evalua-
tion is done in parallel. The implementation is specifically designed for Connection
Machines CM-2: a massively parallel SIMD machine. The authors report that the
best known solutions were obtained which required significantly lesser number of it-
erations. Furthermore, they were also able to determine good suboptimal solutions
to bigger problems in reasonable time. Same authors applied a similar strategy
to the problem, approximated by a very large quadratic assignment problem with
sparse flow matrix. Very good results were reported on a 8192 processor hypercube
configuration of a CM-2 Connection Machine.

Another effort to parallelize Tabu Search for travelling salesman problem by
Fiechter [25], used the p-control, KS, MPSS strategy. Intensification and diversi-
fication steps were implemented in the synchronous version. The algorithm was
implemented on a network of transputers arranged in a ring structure. The authors

report near-optimal solutions to large problems and almost linear speed-ups.
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Another parallelization of Tabu Search for vehicle routing problem by Garica et.
al [26] also uses search space decomposition strategy. It is also 1-control, RS, SPSS
algorithm. The authors report a noticeable improvement in solution quality over
one of the best constructive algorithms for vehicle routing problem, with substantial
reduction in runtime.

In order to improve parallel Tabu Search using evolutionary principles, the al-
gorithm presented by Falco et. al [27] used multi-search thread strategy for the
travelling salesman and quadratic assignment problems. It is a p-control, C, MPSS
algorithm. The results reported indicate a marked improvement in solution quality
as well as convergence speedup.

Another parallel Tabu Search algorithm for the 0-1 multidimensional knapsack
problem was put forth by Nair [28], which used multi-search threads strategy. It is
a p-control, RS, MPDS algorithm.

Taillard [29] also applied parallel Tabu Search for job sequencing problem, which
is p-control, RS, MPSS strategy. Several parallelization ideas focusing on speeding
up computations related to neighborhood evaluation, didn’t yield good results, ei-
ther because the communication overtook computation, or the available computing
platform (a ring of transputers, and a 2-processor Cray) were not suitable.

Crainic et. al [19], the authors who put forth the taxonomy of classification
of Tabu Search, present several of the strategies for both: synchronous and asyn-

chronous, for multi-commodity location-allocation problem with balancing require-
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ments. [t was implemented on a heterogenous network of 16 SUNSparc worksta-
tions. The results show that the average gap improved in most of the cases, when
the number of processors increased.

Mori and Hayashim [30], used parallel Tabu Search algorithm for voltage and
reactive power control in power systems. Of the two schemes, one of them used
the domain decomposition strategy, while the other scheme followed a multi-search
threads strategy. The first one is 1-control, RS, SPSS and the second one is p-control,
RS, MPDS algorithm.

A recent work by Yamani et.al [31], parallelized Tabu Search for VLSI cell place-
ment on heterogenous cluster of workstations, using PVM. The algorithm was paral-
lelized on two levels simultaneously. The higher parallelization level can be classified
as p-control while the lower level was 1-control. The synchronization strategy was
RS and MPSS search differentiation strategy was used for both the levels. The
authors report obtaining proportional speed-up in most of the cases.

This brief literature review can be summarized as below:

e The taxonomy proposed classify all parallelization strategies presented earlier.

Also, it is independent of the particular problem class or computing platform.

e Synchronous version of parallel Tabu Search seems to be used more often than

its counterpart, and the results show that they outperform serial ones.

e The use of parallelism improves the performance of Tabu Search procedures
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in most of the cases. Thus, it is definitely worth the effort to explore alternate

parallelization strategies.



Chapter 3

Problem Description and Cost

Functions

In this chapter, the cell placement problem is explained. Cost functions for the
three objectives viz. power, delay and wire length are also formulated. Finally the

experimental setup for the research conducted is described.

3.1 Problem Statement

The cell placement problem can be stated as follows: Given a collection of cells or
modules with ports (inputs, outputs, power and ground pins) on the boundaries,
the dimensions of these cells (height, width, etc), and a collection of nets (which

are sets of ports that are to be wired together), the process of placement consists

21
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of finding suitable physical locations for each cell on the entire layout. By suitable
it mean those locations that minimize given objective functions, subject to certain
constraints imposed by the designer, the implementation process, or layout strategy
and the design style. The cells may be standard-cells, macro blocks, etc. In this
work, standard cell design is used, where all the circuit cells are constrained to
have the same height, while the width of the cell is variable and depends upon its

complexity [1].

3.2 Cost Functions Estimations

This section discusses the modelling of the cost functions used for estimating the

values of three objectives as well as the constraint.

Power Estimation

In VLSI circuits with well designed logic gates, the dynamic power consumption
contributes the 90% to the total power consumption [32, 33]. Hence, most of the
reported work is focused on minimizing the dynamic power consumption. Also,
in the case of standard-cell placement, the cells are obtained from the technology
library.

In standard CMOS technology, power dissipation is a function of the clocking

frequency, supply voltages and the capacitances in the circuit,
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ptotal = Zpl(cl X Vd2d X fClk) X /8 (31)

eV
where p; is the switching probability of gate i over a clock cycle, C; represents the
capacitive load of gate i, f. is the clock frequency, V4 is the supply voltage, and
B is a technology dependent constant. Assuming that the clocking frequency and
power voltages are fixed, the total power dissipation of the circuit is a function of
the total capacitance and the switching probabilities of the various gates in the logic
circuit. The capacitive load of a gate comprises the input gates capacitances of cells

and those of interconnects,

Ci=Y CI+Cy (3.2)

JEF;
where C’j‘-’ is the capacitance for gate j, C7; represents the interconnect capacitance
between gates i and j, and F; = {j|(i,j) € E}. Two other terms contribute to
power dissipation, the short-circuit current and the leakage current. These are not

considered at this level of design.

Delay Estimation

A digital circuit comprises a collection of paths. A path is a sequence of nets and
blocks from a source to a sink. A source can be an input pad or a memory cell

output, and a sink can be an output pad or a memory cell input. The longest path
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(critical path) is the dominant factor in deciding the clock frequency of the circuit.
A critical path makes a problem in the design if it has a delay that is larger than
the largest allowed delay (period) according to the clock frequency.

The delay of any given path is computed as the summation of the delays of the
nets vy, v9, ..., Uy belonging to that path and the switching delay of the cells driving

these nets. The delay of a given path 7 is given by,

k—1
T, = 3 (CD,; + ID,,) (3.3)
i=1

where C'D,; is the switching delay of the driving cell and ID,; is the interconnection
delay that is given by the product of the load factor of the driving cell and the

capacitance of the interconnection net, i.e.,

IDW; = LFM X Om' (34)

SLACK, of path 7 is given by

SLACK, = LRAT, — T, (3.5)

where LRAT, is the latest required arrival time and Ty is the path delay [34, 35]. If
T, is greater than LRAT}, then the path 7 will have a negative SLAC'K which is an

indicator of a long path problem. Upper bounds can be applied to nets belonging
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to the critical path as constraints not to allow them to exceed a certain limit beyond
which the SLACK will be negative.

In this work, the approach reported in [34] to predict the K-most critical paths
is used. The placement program will seek to satisfy the delay constraints imposed

by these paths.

Wirelength Estimation

Different models have been proposed for the estimation of length of a given net.
Semi-perimeter of bounding box, minimum Steiner tree, minimum spanning tree,
etc., are among those models [1, 36]. A Steiner tree approximation described below,
which is fast and fairly accurate in estimating the wire length will be adopted in
this work [37]. To estimate the length of net using this method, a bounding box,
which is the smallest rectangle bounding the net, is found for each net. The average
vertical distance Y and horizontal distance X of all cells in the net are computed
from the origin which is the lower left corner of the bounding box of the net. A
central point (X, Y) is determined at the computed average distances. If X is greater
than Y then the vertical line crossing the central point is considered as the bisecting
line. Otherwise, the horizontal line is considered as the bisecting line. Steiner tree
approximation of a net is the length of the bisecting line added to the summation
of perpendicular distances to it from all cells belonging to the net. Steiner tree

approximation is computed for each net and the summation of all Steiner trees is
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considered as the interconnection length of the proposed solution.

i=1Ti y = Zi=l Yi (3.6)
n n

X =

where 7 is the number of cells contributing to the current net.

k
Steiner Tree = B+ P; (3.7)

7=1
where B is the length of the bisecting line, k is the number of cells contributing to

the net and P; is the perpendicular distance from cell j to the bisecting line.

m
Interconnection Length = Steiner Tree (3.8)
=1

where m is the number of nets [38].

Layout Width Estimation

In standard-cell design, cells have fixed height and variable widths. Cells are placed
in rows separated by routing channels. The overall area of the layout is represented
by the rectangle that bounds all the rows and routing channels. In this work, the
channels heights are initially estimated using an area efficient placement tool and
then assumed to be fixed. This leaves only the width of the layout that can effect

the layout area. Since the available area for the placement is normally predefined,
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therefore the width of the layout is used as a constraint. The upper limit on the

layout width is defined as,

Widthmes = (1 + a) x Widthgy (3.9)

where Width,,q, is the maximum allowable width of the layout, Width,, is the min-
imum possible layout width obtained by adding the widths of all cells and dividing
by number of rows in the layout, and a denotes the maximum allowed fractional

increase in the layout width as compared to the optimal width.

3.3 Fuzzy Logic

Fuzzy Logic is a mathematical tool invented to express human reasoning. In classical
(crisp) reasoning a proposition is either true or false whereas in fuzzy system a
proposition can be true or false with some degree.

A classical (crisp) set is normally defined as collection of elements or objects
xz € X. Each single = element is either belong to the set X (true statement), or not

belong to the set (false statement). Whereas a fuzzy set can be defined as follows.

A= {(z, pa(x))|z € X}

pa(z) is called the membership function or grade of membership(or degree of

truth) of = in A that maps X to the membership space M. The range of the
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membership function is a subset of the non-negative real numbers whose supremum
is finite [39]. Elements with zero degree of membership are normally not listed.
Like crisp sets, set operations such as union, intersection, and complementation
etc., are also defined on fuzzy sets. There are many operators for fuzzy union and
fuzzy intersection. For fuzzy union, the operators are known as s-norm operators

(denoted as @). While fuzzy intersection operators are known as t-norm (denoted

as *).

3.3.1 Fuzzy Reasoning

Fuzzy reasoning is a mathematical discipline to express human reasoning in vigorous
mathematical notation. Unlike classical reasoning in which propositions are wither
true or false, fuzzy logic establishes approximate truth value of propositions based on
linguistic variables and inference rules [40]. A linguistic variable is a variable whose
values are words or sentences in natural or artificial language [41]. For example,
wirelength is a linguistic variable is its values are linguistic rather than numerical,
i.e., very short, short, medium, long, very long and very long etc., rather than 20um,
25pum, 35um, 45um, 55um and 80um. The linguistic variables can be composed to
form propositions using connectors like AND, OR and NOT. Formally, a linguistic

variable comprises five elements [42].

1. The variable name.
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2. The primary term set.
3. The Universe of discourse U.

4. A set of syntactical rules that allows composition of the primary terms and

hedges to generate the term set.

5. A set of semantic rules that assigns each element in the term set a linguistic

meaning.

1.0

129

(%, 4 (%)
HA(X)

AN
X

Xa

Figure 3.1: Membership function of a fuzzy set A.

For example wirelength can be used as linguistic variable for VLSI placement
problem. According to the syntactical rule, the set of linguistic values of wirelength
may be defined as very short, short, medium, long, very long and very long wire-
length. The universe of discourse for linguistic variable is positive range of wirelength

of a design, eg., [25um, 80um]. The set of semantic rules define fuzzy sets for each
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linguistic value. A linguistic value is characterized by its corresponding fuzzy set.
The membership in fuzzy set is controlled by membership functions like Figure 3.1.

It shows the designer knowledge of problem [40].

3.3.2 Fuzzy Operators

There are two basic types of fuzzy operators. The operators for the intersection,
interpreted as the logical “and”, and the operators for the union, interpreted as the
logical “or” of fuzzy sets. The intersection operators are known as triangular norms
(t-norms), and union operator as triangular co-norms (t-co-norms or s-norms) [39].
Some examples of s-norm operators are given below, (were A and B are the fuzzy

sets of universe of discourse X).

1. Maximum. [py|p(2) = maz{pa(z), ps(z)}.
2. Algebric sum.  [p,)5(@) = pa(@) + pp(@) — pa(@)ps ()]
3. Bounded sum. [u,jp(z) = min(1, pa(z) + pp(2))]-

4. Drastic sum.  [pyyp(®) = pa(z) if pp(x) =0, pp(2) if pa(z) =0, 1if

pa(x), pp(x) > 0].

An s-norm operator satisfies commutativity, monotonicity, associativity and p 4 U o(x) =

pa(z) properties. Following are some examples of t-norm operators.

L. Minimum.  [p,n5(2) = min{pa(z), pp(z)}]-
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2. Algebraic product. [psnp(2) = pa(@)ps(2)].

3. Bounded product. [psnp(z) = maz(0, pa(z) + pp(z) — 1))

4. Drastic product. [y p(2) = pa(2) if pp(z) =1, pp(z) if pa(z) =1, 0if

pa(e), pp(r) <1J.

Like s-norm, t-norms also satisfy commutativity, monotonicity, associativity and

uAnl(x) = pa(x). Also, the fuzzy complementation operator is defined as follows.

pip(r) =1 = pp(r) (3.10)

3.3.3 Ordered Weighted Averaging (OWA) Operator

Generally, the formulation of multi criterion decision functions neither desires the
pure “anding” of t-norm nor the pure “oring” of s-norm. The reason for this is the
complete lack of compensation of t-norm for any partial fulfillment and complete
submission of s-norm to fulfillment of any criteria. Also the indifference to the
individual criteria of each of these two forms of operators led to the development of
Ordered Weighted Averaging (OWA) operators [43, 44]. This operator allows easy
adjustment of the degree of “anding” and “oring” embedded in the aggregation.

According to [43, 44], “orlike” and “andlike” OWA for two fuzzy sets A and B are
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implemented as given in Equations 3.11 and 3.12 respectively.
1
paup(z) = B x max(ua, pg) + (1 — B) x §(MA + 1) (3.11)

pann () = X min(jua, i) + (1= 6) X 5 (a + ) (3.12)

[ is a constant parameter in the range [0,1]. It represents the degree to which OWA
operator resembles a pure “or” or pure “and” respectively.

To solve an MOP using fuzzy logic, the problem is first defined in linguistic
terms then the membership of different fuzzy sets is combined using t-norm or s-
norm operator (depends upon problem). Then the resulting membership is used in

minimization or maximization problem.

3.4 Fuzzy Cost Function for VLSI Standard-Cell

Placement Problem

In this method, it is assumed that there are I' Pareto-optimal solutions. Also a p-
valued cost vector C'(z) = (Cy(x), Cy(x), ...,Cp(x)), where x € T is given. There is a
vector O = (Oy, O, ..., O,) that gives the lower bounds on the cost for each objective
such that O; < Cj(z) Vj, and Vo € T. These lower bounds are normally not
reachable in practice. There is another user defined goal vector G = (g1, g2, ..., gp)

that represents the relative acceptance limits for each objective. It means that x is
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an acceptable solution if C;(z) < g; x O;, Vj where g; > 1.0. For two dimension

problem, Figure 3.2 shows the region of acceptable solution.

C,(x)
A

g,0
272 Acceptable

Solutions

Lower
Bound

Figure 3.2: Range of acceptable solution set.

In order to solve multiobjective placement problem, three linguistic variables
wirelength, power dissipation, and delay are defined. The following fuzzy rule is
used to combine the conflicting objectives [38].

Rule R1:

IF a solution has
small wirelength
AND
low power dissipation
AND
short delay
THEN it is a good solution.

The above mentioned linguistic variables are mapped to the membership values
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in fuzzy sets small wirelength, low power dissipation, and short delay respectively.
These membership values are computed using the fuzzy membership functions shown

in Figure 3.3.

1.0

\ > C/O,
1.0 9

Figure 3.3: Membership functions within acceptable range.

As layout width is a constraint, therefore if a solution violates this constraint,
it is not a valid solution and is hence discarded. However, for the objectives, by
increasing and decreasing the value of g;, its preference can be varied in combined
membership function. The lower bounds O; (shown in Figure 3.3) for different

objectives are computed as given in Equations 3.13-3.16.

O = > I Vo, € {ui,v9,..., 05} (3.13)
i=1

0, = ZS}Z;‘ Vo, € {vy,ve, ..., 05} (3.14)
i=1
k

Oq = ZCDj—i-ID; Vo, € {v1,v2,..., v} in path m, (3.15)
j=1
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r ., Width;
# of rows in layout

sz’dth (316)

where O; for j € {l,p,d, width} are the lower bounds on the costs for wirelength,
power dissipation, delay and layout width respectively, n is the number of nets in
layout, [} is the lower bound on wirelength of net v;, C'D; is the switching delay
of the cell 7 driving net v;, /D] is the lower bound on interconnect delay of net v;
calculated with the help of [7, S; is the switching probability of net v;, 7, is the most
critical path with respect to optimal interconnect delays, & is the number of nets in
7. and Width; is the width of the individual cell driving net v;.

Using the Ordered Weighted Averaging (OWA) operator [43, 45, 44], rule R1 is

interpreted as follows:

plx) = B xmin(uy(), pa(@), m(x)) + (1= F) x % > wilx)  (3.17)

J=p,d,l

where p(x) is the membership of solution x in fuzzy set of acceptable solutions,
whereas p;(x) for j = p,d,l, are the membership values in the fuzzy sets within
acceptable power, within acceptable delay, and within acceptable wirelength respec-
tively. [ is the constant in the range [0, 1].

In this thesis, p(z) is used as the aggregating function. The solution that results
in maximum value of u(x) is reported as the best solution found by the search

heuristic i.e. Tabu Search.
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3.5 Experimental Setup

In this section, the experimental setup for conducting the research is described.
It includes hardware, software, parallel programming paradigm, and other related
issues.

Hardware & Software: The hardware part of the experimental setup consists of

the following:

e A dedicated cluster of 8 machines, x86 architecture, Pentium-4 of 2 GHz clock

speed, 256 MB of memory per processor.
e Ethernet connection (100 Mbit/sec)
The software part consists of the following:
e The operating system used in Redhat Linux 7.2 (kernel 2.4.7-10).

e MPICH !, version 1.2.5, a portable implementation of MPI standard 1.1 is

used.

Programming Paradigm: MPI is a library specification for message-passing, pro-
posed as a standard by a broadly based committee of vendors, implementors, and
users. MPI was designed for high performance on both massively parallel machines
and on workstation clusters. MPICH 1.2.5 (a specific implementation of MPT 1.1

Standard) is used.

"http://www-unix.mes.anl.gov/mpi/mpich/
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Tools: Various tools for different purposes were used. They include:

Debugging: GDB (Gnu DeBugger) and Totalview from Etnus cop. was used to

debug programs.

Performance(System): Built-in UNIX/Linux tools, such as vmstat, top, sar

were used.

Performance(Network): Tools available in public domain, such as Netpipe, PMB
(Pallas MPI Benchmarks) and NPB (NAS Parallel Benckmarks)were used to

obtain performance of the cluster and the network.

Profiling: GProf (Gnu Profiler) was used to profile sequential programs, Intel’s
VTune Performance Analyzer was used for Remote Data Collection for Sam-
pling and Call Graph generation. VampirTrace was used to generate trace for

parallel programs.

Visualizations: Accompanied with MPICH, upshot was used for visualizing traces
generated by MPI routines. Vampir was used to visualize more details, that

were generated with VampirTrace.

Benchmarks for Placement: In this work, ISCAS-89 2 benchmarks circuits are
used. These contain a set of circuits with various sizes, in terms of number of gates

and paths.

Zhttp://www.cbl.ncsu.edu/CBL_Docs/Bench.html
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Table 3.1: Different benchmark circuits

Circuit | No. of gates | No. of paths
$298 136 150
s386 172 205
s641 433 687
$832 310 240
s953 440 583
s1196 561 600
s1238 540 661
s1488 667 557
s1494 661 558
3540 1753 668
s9234 5844 512
s15850 10470 512
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Figure 3.4: Bandwidth versus Message length per process

38



39

Cluster Performance: In terms of GFlops, the maximum performance of the
cluster, with NAS Parallel Benchmarks was found out to be 1.6 GFlops, (using NAS’s
LU, Class A, for 8 processors). Using this same benchmark for a single processor,
the individual performance of one machine was found out to be 0.3 GFlops.

The cluster is connected with 100 MBit/sec Ethernet. The maximum bandwidth
that was achieved using PMB was 91.12 Mbits/sec, with a latency of 68.69 usec per
message.

As for the bandwidth versus message-size, the message size should be in the
range of 10KB to utilize the maximum bandwidth. Message size considerable less
than this will waste the bandwidth, while very large size will take longer to send.
This can be seen in the Figure 3.4. In this figure, the bandwidth is measured using
the NetPipe benchmark for finding the latency by sending and receiving messages
of different sizes from one processor to other in ring and random patterns.

It can be seen that irrespective of different test patterns, the behavior remains
very similar, i.e., in order to utilize the maximum bandwidth, the message size must

be greater than 1KB.



Chapter 4

Parallelization Approach

In this chapter, an approach to parallelization of Tabu Search for VLSI Standard-
cell placement is discussed. First the sequential implementation of Tabu Search is

analyzed.

4.1 Analysis of Sequential Implementation

The analysis of the sequential (serial) implementation of an application is an impor-

tant step before developing its parallel version for the following reasons:

e Resources: The parallel version will definitely have more resources, in terms
of number of processors, memory, hard-disk, I/Os than the serial one. Thus,
the comparison of an un-optimized serial code with its parallel counterparts

will not show correct performance gain.

40
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e Allocation: The identification of bottlenecks and/or hot-spots in the serial
code allows tuning of the application, which can help in allocating more re-

sources (if possible, e.g., increasing physical memory) for any task.

e Insight: Profiling of the sequential code gives an insight about the functionality
of the code e.g., number of times a function is called, part of the code that
took most of the time, etc. This insight gives an idea as to which part of the

code is amenable to parallelization.

There are three major steps involved in analyzing the sequential code. They are

as follows:

Profiling: Profiling gives an idea of the sequential code performance.

System Performance: It shows the usage of system resources when the code is

executed.

Tuning: Based on the code and system performance, recommendations are pro-
vided either to fine tune the code into an optimized sequential code or identify

parts of code that can be parallelized.

Each of the above steps is explained below.
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4.1.1 Profiling

Profiling shows where the program spent its time and the callee and the called
functions while it was executing. This information can show which chunks of the
program are slower than expected, and might be candidates for rewriting to make
the program execute faster. It can also tell which functions are being called more
or less often than expected. This may also help in spotting bugs that had otherwise
been unnoticed.

Since the profiler uses information collected during the actual execution of the
program, it can be used on programs that are too large or too complex to analyze
by reading the source code. However, the profile data collected depends on how the
code was executed. For example, if some features of the program are not used, while
it is being profiled, the profile information will not be generated for those features.

Although there are several tools used for profiling the code, the GNU profiler
(gprof), a built-in tool for profiling for C compiler is used.

Some of the most common steps in profiling a code include:

e The program must be compiled and linked with the option ‘profiling enabled’.
e The program must be executed to generate the profile data file.

e Gprof must be executed to analyze the profile data.

Once the profiling steps are completed, the output from the profiling results are

available for analysis. The output can be either a flat profile of the code, that shows
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how much time was spent in each function or a call graph showing the callee and
called functions.

Before going into details of the profile, the flowchart of the sequential code will
give an idea of the program being executed. This is shown in Figure 4.1

As shown in the figure, in the initialization phase of the algorithm, an initial
solution is generated randomly and its cost is calculated (This could have also been
generated by enumerative techniques). For the circuit, best cost of its wirelength,
delay, power is estimated. Combining these best costs using OWA operators (ex-
plained in 3) cost is considered to be the best solution that might be obtained, which
is done by placing all the cells adjacent to each other and calculating the cost of
each objective. Now, based on this best cost, the fitness of the randomly gener-
ated solution is obtained. The calculation of the fitness is based on the fuzzified
ordered-weighted average method, and the value obtained is in the range [0,1].

After the initialization step, the rest of the steps are executed for a (parametric)
fixed number of iterations. In each iteration, the N neighboring solutions are gener-
ated from the current solution. For each neighbor of the current solution, a random
different move [swapping any two cells] is made to perturb the solution. The cost
of each of the new solution is calculated. The one with the best cost (and fitness)
is selected to be current solution for the next iteration, even though its cost might
be worse that the current solution or the best solution obtained so far. This is the

hill-climbing feature of Tabu search, which allows it to explore unvisited regions in



Figure 4.1: Flowchart for Sequential Tabu Search for VLSI Cell Placement
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the search space. The move that was made to obtain the new solution is checked
if it was ‘Tabu’ by checking the tabu-list (short-term memory). If it is tabu, then
it is checked against aspiration criteria. If the aspiration criteria is satisfied, it is

accepted as the new solution, which is the current solution for the next iteration.

Flat Profile: The flat profile obtained is tabulated in Table 4.1. All the runs were
executed for about 20% of the total runtime to obtain the profile with varying circuit

(data) sizes.

Table 4.1: Flat profile of sequential code with varying data sizes.

Circuit | Runtime | Wirelength | Delay | Power | TS | TS-Map | Others
(sec) (%) %) | (%) | (%) (%) (%)
5641 35 34.78 42.52 | 8.61 7.62 6.17 +
$1494 33 62.12 10.49 | 11.2 8.85 7.30 +
89234 1272 49.86 3.49 | 9.22 | 10.13 | 26.50 +
s15850 2838 50.75 275 | 8.85 9.63 26.92 +

In the table, the first and second column shows ‘Circuit’ used and its ‘Runtime’.
The ‘Wirelength’, ‘Delay’ and ‘Power’ columns, show the percentages of time spent
in computing their respective costs. ‘TS’ is the time taken by the heuristic itself
and 'TS-Map’ is the time spent to map a given solution into the layout. This is
proportional to the size of the circuit. The last column shows the time spent by
other functions, which accounts for less that 2% of the total time, hence negligible.

As can be observed from Table 4.1, the calculation of wirelength took most of

the time and is very much independent of the data size.
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However, the delay calculation for the smaller circuits was found out to be more
than the larger circuits. The reason for this is because delay is calculated from the
number of paths, whose higher limit was set to 500. In smaller circuits, most of
the critical paths were taken into consideration, while in larger circuits, a maximum
of 500 paths were taken. Hence, less time is spent in delay calculation for larger
circuits.

The time spent on calculation of power didn’t fluctuate and accounted for less
than 10% of the total time. The same can be said about the TS (Tabu Search

heuristic, itself). The TS-Map increased as the data size increased.

Call Graph: The call graph shows the callee and the called functions. The call
graph was generated by “GProf” as well as with, “VTune Performance Analyzer”
by Intel. The latter was used, as it gives a graphical view as shown in Figure 4.2.

The call graph consists of nodes and edges. The names of the nodes are the
function names. The thick edge shows the critical path, either in terms of the most
time-consuming path or the call-sequence originating from the root or both.

As it is seen clearly from the call graph, most of the time is spent in cost cal-
culation in every iteration. This is in confirmation with the flat profile obtained

earlier.



Figure 4.2: Call Graph of the Sequential Tabu Search.
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4.1.2 System Performance

In order to obtain the system performance, operating systems’ built-in tools were

used. They are:

e Vmstat (Virtual Memory Statistics): vmstat reports information about pro-
cesses, memory, paging, block 10, traps, and cpu activity. The first report
produced gives averages since the last reboot. Additional reports give infor-
mation on a sampling period of length delay. The process and memory reports

are instantaneous in either case.

e Top (displays top CPU processes): Top provides an ongoing look at processor
activity in real time. It displays a listing of the most CPU-intensive tasks
on the system, and can provide an interactive interface for manipulating pro-
cesses. It can sort the tasks by CPU usage, memory usage and runtime. Most
features can either be selected by an interactive command or by specifying the

feature in the personal or system-wide configuration file.

e SAR (System Activity Report): The sar command writes to standard output
the contents of selected cumulative activity counters in the operating system.
The accounting system, based on the values in the count and interval param-
eters, writes information the specified number of times spaced at the specified
intervals in seconds. If the interval parameter is set to zero, the sar command

displays the average statistics for the time since the system was started. The
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default value for the count parameter is 1. If its value is set to zero, then
reports are generated continuously. The collected data can also be saved in

the file, in addition to being displayed onto the screen.

The system performance for the sample runs that were executed and tabulated

in Table 4.1 can be summarized as follows:

e CPU usage (user): 98.8 %

e CPU usage (system): 1.2%

e CPU usage (idle): 0.0%

e CPU usage (nice): 0.0%

e Average load on the system: 95%

e Number of interrupts/sec (including clock): 500 (otherwise normally: < 120)
e Number of context switches: 480 (otherwise normally: < 150)

e Memory Usage: 3.1 % (of the total: 256MB)

4.1.3 Tuning

This section describes a general tuning methodology. This general tuning method-

ology presents a high-level overview, beginning at the system level down to the
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microarchitecture level. Tuning not only addresses the application, but improves
the cost-benefit ratio of the system as well.

The first level of performance tuning is system-level tuning. The goal of system-
level tuning is to optimize system resource utilization and speed up an application
by improving the way it interacts with the system. System-level tuning usually gives
the greatest speed-up with the least amount of effort (up to 3 times in most cases),
making it a good place to start. It is especially relevant for I/ O-intensive applications
such as applications that are disk-intensive or network-intensive. However, as it is
observed above, the application is very processor-intensive (and not I/O-intensive),
the system-level tuning can be skipped to application-level tuning.

The second level of performance tuning is application-level tuning. The goal of
application-level tuning is to speed up the application by improving the application’s
algorithms, threading implementation, and/or use of APIs or primitives. The tuning
can be done by either sampling and/or call graph. The speedup obtained by this
tuning could be twice as fast as that of the previous one.

Based on the results of the call graph, an attempt was made to tune the appli-
cation by making algorithmic changes. The number of critical paths were reduce
from an upper limit of 500 to 10. However, this resulted in shifting of cost calcula-
tion from delay to wirelength. Therefore, this option didn’t contribute much to the
tuning. Other alternatives, like threading implementations were not tried as there

were no memory bottlenecks.
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Since there are no significant application-level tuning, the next level is consid-
ered. The third level of performance tuning is microarchitecture-level tuning. The
goal of microarchitecture-level tuning is to speed up the application’s performance
by improving how the application runs on the processor. This type of tuning is
especially relevant for processor-intensive applications. The general methodology

for microarchitecture-level tuning is as follows:

1. Find the most time-consuming code regions that have a high impact on appli-

cation performance.

2. Analyze the execution of those code regions on the machine architecture.

3. Identify microarchitecture level performance problems.

4. Determine how to avoid them to improve performance.

Steps 1 and 2 were accomplished with the help of flat profile and call graph.
For Steps 3 and 4, remote data collection (RDC) methodology was used. RDC
supports ‘Sampling’, a non-intrusive, instruction-address method to collect, analyze,
and display system-wide software performance data. It is an event-based sampling
method that uses processor counters.

The following discussion summarizes the results obtained by event-based sam-
pling.

Problem: High First-level cache load misses: The results show that there
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are ~ 85% first level cache load misses. First level cache load misses cause a signif-
icant negative impact on performance . The reason is that the working data set is
too large to fit into the first level cache.

In order to improve this situation, it is better to avoid them. It requires an
understanding of the first level cache layout and architecture, the way in which
the code has been designed with the data structures and access routines, and their
arrangement in the compiled code. Optimization techniques such as blocking, loop
interchange, loop skewing and packing can help avoid them. Other possible problems
include branch misprediction, second level-cache load misses, trace cache misses.
However, These methods are best implemented by the compiler itself.

The code optimization was done with built-in compiler optimization options
(such as O1, 02, O3) as the above suggested methods are better handled by the
compiler. With ‘O1’, the compiler tries to reduce the the code size and the exe-
cution time. With ‘O2’, the code is optimized even more. Nearly all supported
optimizations that do not involve a space-speed tradeoff are performed. Loop un-
rolling and function inlining are not done. As compared to ‘O1’, this option increases
both compilation time and the performance of the generated code. ‘O3’ option op-
timize yet more. This turns on everything ‘O2’ does, along with also turning on
inline-functions.

The results for a single processor are tabulated in Table 4.2. The results show

that runtime decreased by almost 50% in all the test cases. That is the speedup
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was twice the non-optimized version. Profiling for the optimized code was not done
as ‘gprof” doesn’t give correct function profiling information, if the code is compiled
using optimization options, i.e., O3, as this option swaps assembly code among
different procedures, for optimized timing performance.

Table 4.2: Runtimes for different ISCAS’89 circuits with and without compiler op-
timizations

Circuit | Runtime (sec) | Runtime (sec)
(Without ‘03’) | (With ‘03")
$298 115 26
$386 210 104
s641 3750 1865
s832 319 160
s953 798 391
s1196 1531 752
s1238 1515 755
s1488 1086 538
$1494 1094 541
c3540 7721 3843
s9234 21512 10717
s15850 41023 20192

To summarize the tuning step, analysis was done as to how to proceed to tune
the application, but at the end, it was found that the tuning did help to reduce the

runtime, but the application still remained a processor intensive task.

4.1.4 Conclusion

Tabu Search is a CPU intensive task. This can be seen from profiling and the system

performance, when the code was executed.
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In sequential version, the major time spent is in cost recalculation of the new
solution. Therefore, one possible option was to parallelize the cost computation in
different iterations, i.e., cost of wirelength, delay, power to be calculated separately
on each slave processor and send to the master processor for calculating the fitness.

However, this solution would not have been feasible for two reasons:

1. There would be lot of communication overhead, as the cost is calculated in ev-
ery iteration, if different costs are calculated on different processors. Also, very
fine-grain synchronization results in communication taking over computation,
especially in case of the small data sizes (small and medium-sized circuits). In
case of large data sizes, the waiting time to synchronize increases the overall

runtime.

2. In Tabu Search, the next solution is calculated based on the fitness of the
previous one. Unless the fitness of the current solution is known, the new

solution and its fitness cannot be calculated. i.e., there is data dependency.

Thus, just cost calculation parallelization is not considered. Hence, algorithmic

parallelization approaches are taken into account.

4.2 Parallel Algorithm Design Steps

In the previous section, an analysis of the sequential code was presented. A success-

ful attempt was made by optimizing the code based on its profiling results (see Ta-
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ble 4.2). However, even though the runtime decreased, the task remained processor-
intensive.

As mentioned earlier, parallel algorithm executed in a parallel environment pro-
vides an opportunity to increase the performance of sequential code. The challenge
however, is to design the parallel algorithm in such a way, that it makes the best
use of the parallel environment.

Parallel algorithms have four desirable attributes, i.e. Concurrency, Scalabil-
ity, Locality, and Modularity. Concurrency and Scalability are managed by the
communication libraries. Locality (high ratio of local memory accesses to remote
memory accesses) and modularity (decomposition of complex entities into simpler
components) are an important aspect of software engineering and depends on the
algorithm.

Designing parallel algorithms is not straight-forward. It is not just running the
sequential code on more processors. It requires an understanding of parallel en-
vironment, knowledge of the algorithm and the modules that can be executed in
parallel. In addition to this, there are several issues, such as communication strate-
gies, load-balancing, etc. Therefore, a design methodology has to be followed to
develop parallel algorithms, as it maximizes the consideration of the available op-
tions, and reduces the cost of backtracking from bad choices, made in earlier stages.
It also helps in identifying design flaws that compromise the desirable attributes of

parallel algorithm [12].
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4.2.1 Design Methodology

There are four distinct stages in designing parallel algorithms, which are: Partition-
ing, Communication, Agglomeration, and Mapping. Concurrency and scalability
are addressed in the first two stages, while performance related issues are consid-
ered in the later stages. These steps are discussed in the subsequent paragraphs

with reference to the VLSI Cell placement problem.

1. Partitioning

The first steps towards designing a parallel algorithm is to identify the subtasks
that can be executed in parallel. The decomposition can either be domain-wise
(data) or function-wise (computation). Tabu Search algorithm does not have any
structured data structure, to which domain decomposition techniques can be ap-
plied. Therefore, fine-grain functional decomposition in which each processor will
explore different subsets of neighborhoods with different tasks is to be used. Also,
the issue of managing the global best solution, which must be available for access
by all processors after every iteration needs to be addressed.

The algorithm has several functions, that can be divided, which can be executed

in parallel. These are:

e Ts-map (Mapping the solution to the layout)
e Cost-wire (Calculating the cost of the wirelength)

e Cost-power (Calculating the cost of the power)
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Cost-delay (Calculating the cost of the delay)

Fuzzy-cost (Calculating the Fuzzy-cost using the above costs)

Check Tabu List and Aspiration Criteria

Maintain a Global best cost

At this stage, it is not possible to tell whether this strategy is the best if all these
functions are executed in different processors, once the communication strategy has
been established. An probable deficiency with this design is that the number of

tasks do not scale with the problem size, but the individual task size increases.

2. Communication

Although the tasks generated in the partition phase are intended to execute
concurrently, generally they cannot, as computation performed in a task will re-
quire data associated with other tasks. With functional decomposition of tasks, it
is relatively easier to identify communication requirements, as the communication
corresponds to the flow of data between the tasks.

In the placement algorithm, the partitioned tasks should have communication

to:

e find the coordinates of the cells before making a move,

e pass individual costs (wirelength, power, delay) to the fuzzy cost calculation,

e check Tabu List and Aspiration Criteria after getting the best cost, and
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e communication to update the overall best cost found so far,

One possible approach to handle is the use of the master-slave model, in which
master is responsible for maintaining tasks, that can be easily handled in a central-
ized manner. This approach is simple and might be efficient if the communication is
inexpensive, computation is high in each iteration, and number of processors are not
too many. Nevertheless, the centralized approach is essentially difficult to scale, if
the number of processors increase. This is because, the master processor takes some
time to process a request, hence, the number of requests it can handle efficiently is
bounded.

To summarize the communication requirements as a master-slave process, the

communication is:

Global: Each task participates in communication with the master process,

Unstructured: 1t is not a regular structure; such as a tree or graph,

Static: Identity of communication partners do not change over time, and

Synchronous: Processes synchronize at predefined points.

3. Agglomeration

In the agglomeration step of the design process, practical aspects for executing

the algorithm on the the cluster of workstations is considered. In particular,
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the tasks that can be combined (agglomerated), so as to provide a smaller

number of tasks, each of greater size, with lesser inter-process communication

The main idea behind this is to reduce the communication overhead by group-
ing tasks that communicate very frequently. This is because, the communica-
tion does not only depend on the message size to be sent, but also depends on
the fixed startup cost that is incurred. In blocking synchronous mode of com-
munication, a processor has to stop computation, to send/receive messages.
Speed-up can be thus, achieved by reducing communication overhead, as the

overall runtime decreases.

One more additional concern in this stage is the software engineering costs
that must be considered when parallelizing existing sequential code. This is
very important especially in our case, as the sequential code is available and
efforts to parallelize is to go through all the design checklists, but keeping in

mind that extensive code changes have to be avoided.

4. Mapping:

This is the final stage of designing parallel algorithm, where each task is
mapped to a processor. The mapping problem does not arise on a single pro-

cessor or on a shared memory processor, that has automatic task-scheduling.

Based on the literature survey presented in Chapter 2, the strategy chosen
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is the master/slave strategy, in which, the master processor distributes equal
number of tasks to the slave processors. This strategy is effective for moderate
number of processors. The design methodology studied above, will be used

with the master/slave strategy, as explained in the subsequent paragraphs.

4.3 Parallel Models for Tabu Search

4.3.1 First Parallel Model - Algorithm A

The first parallel model is shown in Figure 4.3. This model is developed after
applying the first two techniques, that is Partitioning and Communication.
Basically, it is a Master-Slave strategy, in which the master is executed on a
single machine and the slaves are executed on multiple machines. The master
generates the initial solution, and sends it to the slaves (1-control). Each slaves,
generates N neighboring solutions and calculates the cost of each neighbor
and selects the best neighbor. The best solution with its fitness is sent to the
master by all the slaves and the master selects the best among these, to all
the slaves as the initial solution in the next iteration (SPSS). Synchronization
occurs after every iteration (RS). Thus, this can be classified as 1-control, RS

and SPSS.

The profiling of this parallel code is done using VampirTrace to generate the



Figure 4.3: Flowchart for Parallel Tabu Search (1-RS-SPSS) Algorithm-A.
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Figure 4.4: Summary of time spent in Application versus MPI routines: Algorithm

- A.
trace file and Vampir to visualize the trace. The profiling was done on a circuit
for some small amount of time. Figure 4.4 shows the summary of time spent in
application code as well as MPI routine. The profiling was done for a sampled
amount of time on the cluster of 8 workstations. The topmost horizontal bar
in the figure shows the total runtime (=~ 2 minutes). The second and the third
bar shows the time taken by the ‘application’ and ‘MPI routines’, respectively.
As it is seen, almost 19% of the time is spent in MPI routines, while the

remaining time was spent for executing the application.

Figure 4.5 shows the timeline of the communication pattern. The horizontal
bars represent the processors from 0 to 7. The vertical lines between the

processors is the communication (send or receive) among them. The darker bar
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(red colored) indicates the MPI routine activity, while the lighter bar (green)
shows the time spent in the executing the user application. As it can be seen
from the figure, the communication is very frequent, and the master is idle for

quite some time before it receives any messages from the slave processors.

Figure 4.6 shows the load on each of the 8 processors in form of a pie-chart
depicting the percentages of time spent on application and MPI routines. The
master process is busy with the MPI routines, while the others spend less than
25% of the total time. The load is almost equally balanced on all the slave

processors.

Finally, the Figure 4.7 shows the average length of the messages sent among
the processors. Processes from 0-7 on the left are senders while the ones
on the top are the receivers. The first empty box shows that there is no
message sent from Process 0 to itself. The box beside it with ‘20.235’ is the
size of the message sent from process ‘0’ to process ‘1’, and so on. Thus, the
communication is between the master and the slave processes, but not among
the slave processors. The length of the message send/received is greater than

the minimum message size required to use the network bandwidth effectively.

The results of the parallel tabu search (Algorithm A) for VLSI cell placement

is presented in Chapter 5.
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4.3.2 Second Parallel Model - Algorithm B

As observed in the first parallel model, communication between master and
the slaves is very frequent, due to synchronization after each iteration. Also,
the communication is blocking, so, the processor has to stop computation to

communicate.

Therefore, the second model is developed by applying the third and fourth
steps of the design methodology, i.e., Agglomeration and Mapping. The basic
idea is to reduce communication costs, by grouping tasks that communicate

very frequently, thereby making it more course-grain.

In this second model, the control is vested among all the processors (p-control),
such that all the slaves start from their own initial solution (MPSS). But
they have to synchronize at fixed points (RS). Also, separate Tabu lists are
maintained and Aspiration Criteria is applied. Instead of NUM iterations,
the total number of iterations are NUM/r, and for each NUM /r iteration,
there are r local iterations in each slave. Figure 4.8 shows the flowchart of the

algorithm. Therefore, this can be classified as p-control, RS, and MPSS.

Similar profiling is done to visualize the tracefile. The profiling was done on

the same circuit for the same small amount of time as in the previous case.

Figure 4.9 shows the summary of time spent in application code as well as

MPI routine. As it is seen, the time taken by MPI routines reduced from 19%



Figure 4.8: Flowchart for Parallel Tabu Search (p-RS-MPSS): Algorithm - B.
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to approximately 8% (16.43 seconds out of 2 minutes) of the total time spent.

Figure 4.10 shows the timeline of the communication pattern. This shows that

the communication is less frequent than the previous one.

Figure 4.11 shows the load on each of the processors. The load is almost

equally balanced on all the slaves, with reduced load of MPI routines.

Finally the figure 4.12 shows the average length of the messages sent. Here,

the average for sending to the slave is lesser than the previous one.

The results of Algorithm B of parallel tabu search algorithm for VLSI cell

placement is presented in chapter 5.

5 1:00,0 1:20,0 1:40,0 210010

Figure 4.9: Summary of time spent in Application vs. MPI routines: Algorithm -

B.
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Chapter 5

Experiments and Results

This chapter presents the experimental results of Tabu Search for VLSI Cell
placement. Results obtained from sequential version are compared with par-
allel versions in the terms of the quality of solution as well as the execution

time.
Speed-up in runtime is a ratio of

Regarding the speed-up obtained on multiple processors, it can be formulated

using Amdahl’s law.

73



5.1 Sequential TS Algorithm

The results of various circuits using a sequential Tabu Search on a single
processor (a single machine from the cluster) are tabulated in Table 5.1. The

same algorithm was executed in a PC environment on a single machine in [46].

Our results are obtained after profiling the sequential code and optimizing
it for minimum runtime on a single processor of one of the machines of the
cluster. Here ‘WL’, ‘P’ and ‘D’ are the wire length, power and delay costs

respectively, whereas the aggregate fuzzy cost is denoted by (x) and ‘T’ is the

execution time in seconds.

Table 5.1: Results for ISCAS’89 circuits for one processor

Circuit | Gates | Paths WL P D 1 T
s298 | 136 150 4545 863 127 | 0.726 | 56
s386 | 172 205 6520 1582 | 188 | 0.683 | 104
s641 | 433 687 12176 2834 | 659 | 0.799 | 1865
s832 | 310 240 17878 4016 | 355 | 0.651 | 160
s953 | 440 583 25771 4041 | 202 | 0.670 | 391

s1196 | 561 600 35690 | 10777 | 316 | 0.676 | 752
s1238 | 540 661 38913 | 11473 | 358 | 0.639 | 755
s1488 | 667 557 54786 | 13670 | 651 | 0.620 | 538
s1494 | 661 558 52209 | 12880 | 565 | 0.631 | 541
c3540 | 1753 | 668 | 168831 | 59724 | 695 | 0.693 | 3843
$9234 | 5844 | 512 | 938313 | 170119 | 969 | 0.689 | 10717
s15850 | 10470 | 512 | 2921966 | 228512 | 1831 | 0.683 | 20192
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5.2 Algorithm - A: 1-control, RS, SPSS

Results for the 15 parallel model is are tabulated. Table 5.2 gives the compar-
ison with the sequential version in terms of best quality of solution (fitness)
obtained, while the Table 5.3 illustrates comparison of their best runtimes for

5000 iterations.

Table 5.2: Fitness results of Algorithm - A on P processors

Fitness (u)

Circuit | P=1 | P=2 | P=4 | P=6 | P=8
s298 0.726 | 0.747 | 0.756 | 0.804 | 0.793
s386 0.683 | 0.686 | 0.709 | 0.672 | 0.654
s641 0.799 | 0.773 | 0.744 | 0.785 | 0.798
s832 0.651 | 0.633 | 0.646 | 0.649 | 0.634
s953 0.671 | 0.650 | 0.691 | 0.685 | 0.675
s1196 | 0.676 | 0.621 | 0.645 | 0.661 | 0.643
s1238 | 0.639 | 0.621 | 0.619 | 0.639 | 0.620
s1488 | 0.621 | 0.615 | 0.620 | 0.624 | 0.617
s1494 | 0.631 | 0.617 | 0.608 | 0.617 | 0.607
c3540 | 0.693 | 0.661 | 0.663 | 0.659 | 0.662
s9234 | 0.707 | 0.625 | 0.625 | 0.627 | 0.628
s15850 | 0.683 | 0.611 | 0.617 | 0.618 | 0.621

Observations

— The number of iterations (stopping criteria) for the 15 parallel model were
half of that of sequential one. As seen from the tables, the solution of the
quality for the smaller circuits increased, but at the cost of execution time.
As for medium sized circuits, the runtime was comparable to that of the

sequential one, and the fitness was also in the similar range. However,
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Table 5.3: Runtime results of Algorithm - A on P processors

Runtime (sec)
Circuit | P=1 | P=2 | P=4 | P=6 | P=8

s298 56 73 151 225 301
$386 104 91 166 243 320
s641 1865 | 957 998 1096 | 1194
s832 160 119 192 268 343

$953 391 234 307 386 455
s1196 752 425 493 566 644
s1238 755 425 493 566 644
s1488 938 304 384 466 943
s1494 541 309 382 460 536
¢3540 3843 | 1941 | 1956 | 1989 | 2003
s9234 | 10717 | 5464 | 5539 | 5612 | 5639
s15850 | 20192 | 10093 | 10178 | 10263 | 10352

for larger circuits, since the computation was intense than the smaller
circuits, the computation took over communication, and as a result, the
runtime was almost half of the sequential one, but the compromise was

on its quality.

— With the increase in the number of processors, the execution times and
the quality of solutions obtained are very close to each other for almost
all the circuits. This is because all the slave processors were generating

N neighbor solutions.

— The communication among the processors is blocking, i.e., the processor

has to stop computation in order to communicate.

— It can thus be observed that this model of parallel Tabu Search has lot of
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communication overhead. The communication among the processes has
its own cost, and its frequency of occurrence in every iteration accounts
for increase in the overall runtime (for smaller circuits) or decrease in the

solution quality (for medium and large circuits).

5.3 Algorithm - B: p-control, RS, MPSS

The second parallel model is an improvement over the first model. Not only
is the communication reduced by agglomeration, but in order to improve the
quality of the solution faster, each slave generates its initial solution and iter-

ates for r local iterations, before synchronizing with the master process.

The results of this model are presented in two tables. While the first table (Ta-
ble 5.4) gives the comparison of quality, the second table, Table 5.5 compares

the runtimes with the sequential version.

Observations:

— As seen from the fitness table for the second model, (Table 5.4), the
quality of solution increased as the number of processors increased in
almost all the cases. The main difference from the earlier model was
that, the communication overhead was greatly reduced, which gave more

time for computation.



Table 5.4: Fitness results of Algorithm - B on P processors

Fitness (u)

Circuit | P=1 | P=2 | P=4 | P=6 | P=8
s298 0.726 | 0.758 | 0.762 | 0.760 | 0.775
s386 0.683 | 0.698 | 0.689 | 0.701 | 0.699
s641 0.799 | 0.793 | 0.809 | 0.801 | 0.809
s832 0.651 | 0.653 | 0.647 | 0.663 | 0.647
s953 0.671 | 0.679 | 0.705 | 0.710 | 0.695
s1196 | 0.676 | 0.656 | 0.671 | 0.668 | 0.684
s1238 | 0.639 | 0.641 | 0.681 | 0.661 | 0.663
s1488 | 0.621 | 0.631 | 0.633 | 0.632 | 0.641
s1494 | 0.631 | 0.613 | 0.639 | 0.638 | 0.645
¢3540 | 0.693 | 0.702 | 0.706 | 0.695 | 0.709
s9234 | 0.707 | 0.705 | 0.707 | 0.706 | 0.708
s15850 | 0.683 | 0.689 | 0.688 | 0.698 | 0.692

Table 5.5: Runtime results of Algorithm - B on P processors

Runtime (sec)
Circuit | P=1 | P=2 | P=4 | P=6 | P=8

s298 56 67 69 70 71

$386 104 105 99 107 110
s641 1865 | 1862 | 1841 | 1876 | 1900
$832 160 159 159 162 163

$953 391 389 384 392 392
s1196 752 762 779 775 769
s1238 755 750 745 751 752
s1488 938 939 047 540 042
s1494 541 048 540 542 539
¢3540 3843 | 3973 | 3966 | 3953 | 3942
s9234 | 10717 | 10571 | 10652 | 10705 | 10840
s15850 | 20192 | 20270 | 20332 | 20398 | 20469
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— The runtime in almost all the cases were either similar or a little more
than the sequential one. The reason for this is that the neighborhood size
N remained fixed on each processor. Therefore, larger search space was
traversed on different slave processors, plus some extra time required to

communicate.

— It can thus be observed that, with more resources, better quality of solu-
tions was obtained in similar runtime as of the sequential one. However,
effort had to be done to reduce the communication, but decreasing its

frequency.

5.4 Modified Algorithm - B

In the previous two models, one of the aforementioned targets was obtained:
namely, getting better solution in similar amount of time. This is because of
more resources available, henceforth larger search space was traversed. Com-
munication was a bottleneck in the first model, which was reduced in the

second model.

In order to achieve our second objective, that is, similar quality of solution in

lesser time, the second model is modified. The modification is as follows:

Each slave process has to generate ‘N/(p—1)’ neighbors instead of N neighbors

(where, ‘p’ is the number of processors). As the number of slaves processors
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increases, each processor has lesser number of neighboring solutions to work

with.

However, there is a trade-off in this case. As the neighborhood size is divided
among the slave processors, the number of neighbor solutions generated at each
slave is reduced with the increasing number of processors, and the quality of
the solution decreases. The reason for this degradation is that each slave has a
lower number of possible moves to make and hence the search pool is reduced.
It is observed that the percentage of quality degradation of almost 15% (worst

case) as compared to that obtained by sequential Tabu Search strategy.

The results obtained for the solution quality from this model are tabulated in

Table 5.6.

Table 5.7 shows the execution times as well as the corresponding speed-ups for
2, 4, and 6 processors. As can be seen, there is almost linear speed-up in most
of the cases with minor variations. A significant observation is that in case of
larger circuits, excellent results are obtained in terms of scalability and speed-
up. For instance, in case of s15850 having 10470 gates, the execution time is
reduced from 20,192 seconds down to 3,441 seconds when using 6 processors

resulting in speed-up of 6.03.
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Table 5.6: Fitness results of modified Algorithm - B on P processors and degradation
in quality with respect to that obtained on P=1

Fitness (u)

Circuit | P=1 P=2 P=4 P=6

$298 0.726 | 0.788 (-8.5%) | 0.744 (-2.4%) | 0.660 (11.3%)
s386 | 0.683 | 0.742 (-8.6%) | 0.642 (6%) | 0.584 (14.5%)
s641 | 0.799 | 0.739 (7.5%) | 0.697 (12.7%) | 0.676 (15.3%)
s832 | 0.651 | 0.648 (0.4%) | 0.577 (11.4%) | 0.559 (14.1%)
s953 | 0.671 | 0.661 (1.5%) | 0.596 (11.2%) | 0.571 (14.9%)
s1196 | 0.676 | 0.639 (5.4%) | 0.601 (11.1%) | 0.579 (14.3%)
51238 | 0.639 | 0.625 (2.2%) | 0.583 (3.7%) | 0.541 (15.3%)
s1488 | 0.621 | 0.584 (5.9%) | 0.549 (11.5%) | 0.527 (15.1%)
s1494 | 0.631 | 0.620 (1.7%) | 0.583 (7.6%) | 0.541 (14.2%)
c3540 | 0.693 | 0.685 (1.2%) | 0.636 (8.2%) | 0.584 (15.7%)
59234 | 0.707 | 0.679 (3.9%) | 0.632 (10.6%) | 0.607 (14.1%)
$15850 | 0.683 | 0.667 (2.3%) | 0.631 (7.6%) | 0.608 (11.1%)

Table 5.7: Runtimes and (speed-ups) of modified Algorithm - B on P processors.

Runtime
Circuit | P=1 P=2 P=4 P=6
s298 56 4 (1.65) 19 (2.95) 5 (3.73)
s386 | 104 56 (1.86) 29 (3.58) 21 (5.47)
s641 | 1865 962 (1.94) 503 (3.71) 308 (6.05)
s832 | 160 87 (1.83) 44 (3.64) 26 (6.15))
s953 | 391 201 (1.95) 104 (3.76) | 62 (6.30))
s1196 | 752 401 (1.87) 200 (3.76) | 130 (5.78)
s1238 | 755 390 (1.93) 199 (3.79) | 123 (6.14)
s1488 | 538 283 (1.90) 144 (3.73) 93 (5.78)
s1494 | 541 287 (1.88) 144 (3.75) 93 (5.81)
c3540 | 3843 | 2020 (1.90) | 986 (3.89) | 621 (6.18)
$9234 | 10717 | 5547 (1.93) | 2759 (3.88) | 1777 (6.03)
s15850 | 20192 | 10621 (1.90) | 5294 (3.81) | 3441 (6.07)




Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, a methodology was followed to design a parallel algorithms for
Tabu Search for VLSI Cell placement. The taxonomy that was proposed by
Crainic et. al [19], is sufficiently comprehensive to account for parallelization

strategies applied to different problems.

Two different algorithms for Parallel Tabu Search for VLSI Cell Placement
were presented: Algorithm - A that can be classified as 1-RS-SPSS and Al-
gorithm - B, which is P-RS-MPSS. The third one was modified version of

Algorithm - B.

The use of parallelism improves the performance of Tabu Search for VLSI
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Cell placement. However, certain crucial parameters to be considered are time
spent in communication, stopping criteria, neighborhood size (TS parameter),

number of iteration, and synchronization frequency.

6.2 Future Work

For the future work, other parallel strategies can be implemented, especially,
the asynchronous ones, to improve communication costs over synchronous
strategies. Variations in asynchronous version to fine tune various parameters
has also to be taken into considerations. Intensification and diversification
strategies can be implemented to improve the quality of solution. Comparison
with other iterative heuristics for performance and quality of solution can be
done for comparison purposes. These experiments can be be executed on a

larger cluster with more machines, as there is a tendency to improve more.



Appendix A

MPI (Message Passing

Interface)

Message Passing Interface (MPI), the de facto message-passing standard used

in industry as well as academia.

In the message-passing library approach to parallel programming, a collection
of processes executes programs written in a standard sequential language aug-

mented with calls to a library of functions for sending and receiving messages.

In the MPI programming model, a computation comprises one or more pro-
cesses that communicate by calling library routines to send and receive mes-
sages to other processes. In most MPI implementations, a fixed set of processes

is created at program initialization, and one process is created per processor.
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However, these processes may execute different programs. Hence, the MPI pro-
gramming model is sometimes referred to as multiple program multiple data
(MPMD) to distinguish it from the SPMD model in which every processor

executes the same program.

Processes can use point-to-point communication operations to send a message
from one named process to another; these operations can be used to implement
local and unstructured communications. A group of processes can call collec-
tive communication operations to perform commonly used global operations
such as summation and broadcast. MPI’s ability to probe for messages sup-
ports asynchronous communication. Probably MPI’s most important feature
from a software engineering viewpoint is its support for modular program-
ming. A mechanism called a communicator allows the MPI programmer to

define modules that encapsulate internal communication structures.

To summarize, the principal features of the message-passing programming

model as realized in MPI are as follows [12].

— A computation consists of a (typically fixed) set of heavyweight, processes,

each with a unique identifier (integers 0..P-1).

— Processes interact by exchanging typed messages, by engaging in collec-

tive communication operations, or by probing for pending messages.

— Modularity is supported via communicators, which allow subprograms to
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encapsulate communication operations and to be combined in sequential

and parallel compositions.

— Algorithms that do create tasks dynamically or place multiple tasks on
a processor can require substantial refinement before they can be imple-

mented in MPI.

— Determinism is not guaranteed but can be achieved with careful program-

ming.
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