Term Paper Review

On
Direct Pattern Matching on Compressed Text
Submitted by,

Aiman Rasheed

220306
[image: image1.png]

Information and Computer Sciences

King Fahd University Of Petroleum and Minerals

Lot of research is being done for making the applications time and space efficient. Pattern matching is one of such applications. This paper review discusses fast compression and decompression technique for the natural language text. Using this scheme an efficient direct pattern matching technique on compressed text is presented. Thus making it both time and space efficient.

1. Introduction

Pattern matching is a fundamental and well-studied problem in computer science. It is interesting from both theoretical and practical point of view, with applications to text searching, searching for particular pattern in DNA sequence (computational biology), pattern recognition etc.

Pattern matching problem can be formalized as; ‘ given a string of text T = t1 t2 …..tn and a pattern P = p1 p2 … pm where m ≤ n. We say that P occurs with shift s in text T, if 0 ≤ s ≤ n-m and T[s +1 ….s+m] = P[1 … m] (i-e if T[s+j] = P[j] for 1≤ j ≤ m) [3]. Now, the problem of pattern matching is to determine whether or not the pattern appears in text T, [2,3].

Some well known algorithms are: Solving by brute force with complexity O(n2), Rabin-Karp with O((n-m+1)m) complexity, algorithm that uses finite automata has O(n+m|(|) complexity, Knuth-Morris-Pratt algorithm with O(n+m) complexity, Boyer-Moore algorithm of O((n-m+1)m + |(|) complexity [3], Randomized algorithm has complexity of O(n+m) [2]

Another well-studied area is data compression. The main thrust in the study of data compression has been in achieving compression that is efficient in packing while also being practical in time and space. It is typically used to save storage and communication cost.

We are now interested in new paradigm and for this problem, we would like the compression to have additional property of allowing pattern matching in the compressed data.

In this paper we will discuss a technique of searching a pattern, presented by [1], in compressed text by compressing the pattern instead of decompressing the text and then searching the compressed pattern directly. Since the compressed file is smaller than the original file, the search is faster both in terms of I/O time and processing time than a search in the original file.

This paper is organized as follows; section 2 gives review of related work. Section 3 defines the problem of compressed matching and approximate text searching, section 4 presents a proposed solution. In section 5 the analytical result is discussed. Conclusion is given in section 6.

2. Related Work

[4] Presents a compressed matching algorithm for the LZ1 classic compression scheme that runs in time O(nlog2(u/n)+m). Amir, Benson and Farach has discussed a LZ78 compression scheme that finds the first occurrence in time O(n+m2) in one of their papers. Some algorithms are presented for treating LZ compressed files, including language recognition algorithms and specific search algorithms to find all occurrences of a pattern represented by LZ code.

Another text compression scheme that allows direct searching was proposed by [6]. His scheme packs pairs of frequent characters in a single byte, leading to a compression ration of approximately 70% for typical text files.

The searching algorithm that presented in this paper is a variant of the scheme presented in [5], which provides good compression ratio and also permits fast searching on the compressed text.

3. Problem Statement

The two main issues to be discussed are as follows,

3.1 Compressed Matching Problem

The compressed matching problem was first defined in the work of Amir and Benson[7] as the task of performing string matching in a compressed text without decompressing it. Giving a text T, a corresponding compressed string Z, and a pattern P, the compressed matching problem consists in finding all occurrences of P in T, using only P and Z. A naive algorithm, which first decompresses the string Z and then performs standard string matching, takes time O(u +m), where u = |T| and m = |P|.
3.2 Approximate Text Searching Problem

The approximate text-searching problem is to find all sub-strings in a text that are close to the pattern under some measure of closeness. A pattern P is said to be at a distance k from the text if we can make the pattern similar to that of text T with the help of k editions.
4. Proposed Solution:

The scheme basically works in two main steps; first one is about the compression technique and the second is about the searching problem.

In a nutshell the compression scheme uses word based Huffman coding where the code assigned to each text word is a sequence of bytes and the searching algorithm compresses the pattern and then searches for the compressed pattern directly in the compressed text.

4.1 The Compression Scheme

The compression scheme uses semi-static word-based modeling and byte Huffman coding. The semi-static modeling works in two phases; first one collects the parameters (in this case the parameter is frequency of different text word) and actual compression is performed in the second phase [8]. In word-based model the words are taken as alphabets to be used in compression phase of the text. Since text is both words and separators therefore we parse the text into space less words [5]. For encoding we add the space with the word and if a separator follows the word then word and separator are encoded separately. A space is assumed after the word during the decoding phase.

[image: image2.png]

Figure 1 presents an example of compression using Huffman coding for space less-words method. The set of symbols in this case is; {,(, a, each, is, for, rose}, whose frequencies are 1, 2, 1, 1, 1, 3, respectively ((represents a space).
Original text:

for
each
rose
,
a
rose
is
a
rose

Compressed text:
0010
0000
1
0001
01
1
0011
01
1

Figure1. Compression using Huffman coding for space-less words. [1]

In byte Huffman coding we use 8-bits code instead of 1-bit, as used in original proposed Huffman coding, for each text word. Now it is important to note that searching in a text compressed by byte-Huffman scheme cannot be done by compressing the pattern and applying a conventional search algorithm. This is because of the possibility of finding a false match as we show in the example,

If we have the words Perfect, World, order and their corresponding byte codes as shown in the table. Further Order does not exist in the text but it is the pattern that we are looking for then in this case we can find the false match.

Word

Code

Perfect

32 77
Original text …..perfect world……

World

56 12 49
Compressed text …32 77 56 12 49

Order

77 56 12

Figure 2. An example where the code of a word is present in the Byte Huffman compressed text but the word is not present in the original text

This problem is solved by identifying the start of each word. This is achieved by using only 7-bits of the byte for coding and allocating the first bit for flag. If flag value is 1 then it means that it is start of the word and 0 otherwise.

4.2 Searching on Compressed Text

Searching on a compressed text is comprised of two phases; the first one compresses the pattern using the same compression technique for text compression. In second phase we search for the compressed pattern. Further we have two different cases of pattern searching, exact search and approximate searching.

4.2.1 Compressing the Pattern

Pattern compression is similar to Huffman coding of the text if we are performing exact search. The process is simple, symbol (word or separator) of the pattern are searched in the Huffman vocabulary and then their compressed code are generated. If the symbol does not exist in the vocabulary then it means that pattern does not exist in the text. In case of approximate search, the compressed codes corresponding to the symbols in pattern are generated for symbols in the Huffman vocabulary. For each symbol in the pattern a list of compressed code is maintained, which contains Huffman vocabulary matched compressed codes.

4.2.2 Searching Phase

Incase of exact search, any known algorithm can be used to process the search after obtaining the compressed codes. In approximate search, each symbol of the pattern corresponds to a list L (L1,L2,…Lj), where Li contains all compressed codes that match ith symbol of pattern. For searching the pattern we take any one of the list depending upon the heuristics that takes the maximum of the minimum of the codes from the lists. Now we take any multi-pattern-matching algorithm to find the occurrences of the codes in the lists. If an occurrence is found then we see other lists to see if the complete pattern exists or not. The effect of heuristics is that, the larger the code the lesser the probability of hitting the search and thus the lesser number of comparison for other lists. Due to this the algorithm works efficiently.

5. Analytical Results

Let, u be the length of the original text, n be its size after compression and v be the size of vocabulary where v = √n. k is the number of errors allowed. Number of characters in a pattern are m and it has j words of length m1, m2…..,mj, ∑mi = m, (i = 1,2,…,j).

The main cost in compression phase is that of searching in the vocabulary. Searching all words of the pattern costs O(m). If pattern is complex, then preprocessing is required for all words at cost of O(juβ + m), where 0 < β < 1, or O(jkuβ + m) incase of considering all errors. The preprocessing step has sub-linear complexity and thus too small to consider.

As for text searching, the multi-pattern algorithm makes the search time near O(n/c + t), where t is the preprocessing cost.

6. Conclusion

This paper has presented a good compression and decompression scheme that achieves about 33% of compression ratio and an efficient pattern matching technique is presented which does not require decompression of the text. Their algorithm is using word-based Huffman coding technique, which does not cover sub-string matching. Future work can be done in this regard.

Reference:

[1] Moura, E. S., Navarro, G., Ziviani, N., And Baeza-Yates, R. 1998b Direct pattern matching on compressed text. In Proceedings of 5th International Symposium on String Processing and Information Retrieval (SPIRE'98, Sept. 1998), IEEE Computer Society, Washington, DC, 90-95.

[2] M. H. AlSuwaiyel. Algorithms: Design Techniques and Analysis. Lecture notes series on computing-Volume 7. Information and Computer Science Department, King Fahd University of Petroleum and Minerals. 1996.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to Algorithms. The MIT press 1992.

[4] M. Farach and M. Thorup. String matching in lempel-ziv compressed strings. In Proc. 27th ACM Annual Symposium on the Theory of Computing, 1995.

[5] E. de Moura, G. Navarro, N. Ziviani and R. Baeza-Yates. Fast text searching allowing errors. In Proc of the ACM Sigir’98.

[6] U. Manber. A text compression scheme that allows fast searching directlly in the compressed file. ACM Transactions on Information Syatems, 15(2), 1997.

[7] A. Amir and G. Benson. Efficient tow-dimensional compressed matching. In Proc. Second IEEE Data Compression Conference, 1992.

[8] E. de Moura, G. Navaro, and N. Ziviani. Indexing compressed text. In R. Baeza-Yates, editor, Proc of the Fourth South American Workshop on String Processing, Volume 8, Carleton University Press International Informatics Series, 1997.

� EMBED Word.Picture.8 ���

_1103556102.doc
[image: image1.png]

