A Qualitative Approach Towards Reliability Estimation of OO System Design

Jaralla Al-Ghamdi

Aiman Rasheed

Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran 31261, SA

{jaralla, aimanr}@ccse.kfupm.edu.sa

Abstract

A majority of mission-critical or safety-critical systems are complex computer-controlled systems, which are increasingly relying on software and software does contribute to system failures. To avoid system failures and crashes, research is being done in one of the key areas know as ‘Software reliability analysis’ and that is inevitable for software developers.

Software reliability is an important metric in determining overall system stability and reliability, through error prevention, fault detection and removal. In this paper we have proposed a model to achieve and assess the reliability of the system at design time using incremental process. We have argued that estimation of reliability at design time increases the reliability of the whole system.

1. Introduction

Software reliability is widely recognized as one of the most important aspects of software quality, and it spawns much research effort into developing methods of quantifying it. Software reliability can be defined as;

“Reliability of software is the probability over a given period of time that the system will correctly deliver services as expected by the user”

There are two activities related to software reliability analysis: estimation and prediction. Estimation is retrospective and it is performed to determine achieved reliability from a point in the past to the present time, where as the prediction activity parameterizes reliability models used for estimation and utilizes the available data to predict future reliability. In general we can classify the reliability models as black box and white box models. The difference between these two models is that black box is concerned with only the functionality and white box also takes the structure of the system into account.

Software reliability is concerned with making the estimation or prediction of overall reliability of the system. It considers the probability of failure of different components of the system and how they will affect the reliability of the whole system.

[image: image1.jpg]Failure

Present
Failure

i
Goal

Present Projected Testing Time
Time Finish Time




Figure 1: Software reliability behavior curve

Different models are proposed to make the system more and more reliable.

Some of the fundamental models are identified as under,

1. Reliability growth model

2. Bayesian Network model

3. Markov model

4. Error seeding model

There are a lot of metrics that have been proposed since mid 60’s and the rationale behind almost all the metrics is motivated by two factors;

1. The desire to estimate or predict effort/cost of development processes;

2. The desire to estimate or predict quality of software.

Software Reliability is hard to achieve, because the complexity of software tends to be high. While any system with a high degree of complexity, including software will be hard to reach a certain level of reliability.

Most of the models mentioned above are quantitative models, that is, they require system data to calculate reliabilities. The problem with such models is that they are not able to calculate the reliability if there is no prior information present as in case of calculating the reliability of system design. Based upon this fact and also that more the stable and reliable the design is the more reliable the system will be, we have proposed a model to achieve higher level of reliability when there is no or very little information present. Such techniques are known as ‘qualitative analysis’.

The paper is organized as follows, in section 2 we are discussing the problem with traditional models. Section 3 is about our proposed approach. Section 4 is conclusion and in section 5 we have identified the future work.
2. Background

In the software development process it is a commonplace that the end product has many design defects. This is usually because of system designer or programmer action or omission, which results in a fault. Faults are also known as bugs. The bugs cause system failure, where failure can be defined as unacceptable departure of a program operation from program requirements. Once the failures are detected through the testing process and the corresponding faults are located, then assuming that these faults are perfectly fixed and there is no ripple effect, i.e. the process of fixing a fault did not introduce a new fault, the reliability of the system increases.

If the failure data is recorded in terms of time for example in terms of number of failures observed per given time period or in terms of the time between failures, statistical models can be used to identify the trend of reliability growth of recorded data. Such models are known as Reliability Growth Models.
If the failure data is in the form of number of count, the models used to study such data are called as Error Seeding Models. A program in this case is randomly seeded with a number of known errors. The program is tested using the standard testing strategies.

Many software reliability growth models are proposed in literature; some of them are, Jelinski-Moranda model, Goel-Okumoto model, Littlewood-Verralal model, Musa’s basic execution time model, and Non-homogeneous Duane model. There are many other models that are derivatives of these models. In [Mei1992a] and [Mei1992b] a time based model is discussed that also takes structure of the program into account.

We will look at the shortcomings of these models as follows, 

2.1 Reliability Growth Models

[Bev2000] in his paper has discussed the problems with Reliability Growth models. He argues that, in the first place, it is often difficult to create a testing regime that is statistically representative of operational use. For reliability assessment, doubts will remain on whether inaccuracies in the testing regime may invalidate the reliability predictions obtained. Further, huge history of defect data is required for calculating the probability of failure of the system as a whole. This is not practical at the beginning of system development to assess the reliability of the design, as [Fent2000] also proposed that most operational system failures are caused by a small proportion of the latent faults.

Secondly, the Reliability Growth models tend to assume that fault removal is successful: they can be thought of as sophisticated techniques for trend fitting. They will not capture any short-term reversals of fortune, such as a failure to remove a fault or, worse, the introduction of a new fault. This has serious implications in critical applications, where the possibility that the last fix might have introduced a new fault may be unacceptable. In addition there is an assumption of independence of successive software failures during successive software runs [Katr2000].

The levels of reliability that can be assured are quite limited. Increasing the reliability level increases the length of the test series required until it becomes infeasible.

Prior resourcing of the constraints in the models is not possible. Hence the prediction is premised on impossible assumptions.

These models are essentially black box that hides crucial details from potential users. These models only consider the failure data.

2.2 Time/ structure based models

Time based models uses time dependent data on the estimation of probability. The time-based models are a kind of Reliability Growth models. The Time/ Structure based models include the structure aspect in the Time-based models. [Mie1992a] suggests that structure based reliability models are likely to provide more accurate reliability estimates than the existing black-box models. The time/ structure based models accumulates these two aspects. The problem with these strategies is that they are considering the test cases as [Mei1992b] and [Mark1998] are applying testability to have better estimate of reliability, which are not good if the test path space is very large. Secondly we cannot use this strategy efficiently with current tools, as usually we don’t know the paths to be executed because of their dynamic nature.

2.3 Error seeding models

This model uses the number of errors produced or it is based on the count of defect data. Problems in relating counts/estimates of software faults to reliability is that the number of counts do not matter much as compared to the severity of faults, which is not catered in these approaches. To achieve better reliability of the system it is necessary to estimate the severity of faults along with the number of faults.

2.4 Markov model

The name Markov model is derived from one of the assumptions which allows this system to be analyzed; namely the Markov property. The Markov property states: given the current state of the system, the future evolution of the system is independent of its history. In this approach again the data of the current state is required to predict the information about next state.

3. Proposed approach

The model we have proposed is flexible as compared to the traditional approaches, which were either blind or autopsy methodologies, as suggested by [Meng1998]. The blind approach suggests that engineers have to forcefully follow a specific model from the beginning to have a reliable system. The problem with this approach is that the reliability of the system is dependent upon the choice of the model along with other factors. Where as the autopsy approach suggests that different models will have to be compared at product completion phase. This case has the problem of early estimation and the developer does not know about the reliability until the very end.

The overview of the proposed approach is that it starts by breaking the large system into smaller subsystem; this is done in order to help get the preciseness and efficiency in later steps of the model. After getting the components, the probabilities of failure of these components are computed with the help of Bayesian Belief Network. We call this phase as early phase estimation. Afterwards the ranking of the classes in the components is done using the key-class heuristic to get more error-prone classes. This is done in order to achieve precise reliability of the system, which could be calibrated later on in the incremental process. The details of the whole system is as under,

3.1 Breaking the system in to smaller components

While breaking the system into smaller components we must take care of three features [Brow1998];

1) A component is an independent and replaceable part of a system that fulfills a clear function;

2) A component works in the context of a well-defined architecture; and 

3) A component communicates with other components by its interfaces.

The idea of breaking the software system in to smaller components is that, one can use off-the-shelf components (COTS) and then integrating them to get the system as a whole. This software paradigm is efficient and cost-effective. It can improve maintainability, reliability and overall quality of software systems [Pour1999], as off-the-shelf components can be developed by different developers using different languages, different platforms and above all, parallelism can be achieved [Cai2000]. Furthermore restoring of reliability estimation leaves little room for redoing, partly or fully, components that might be responsible for unacceptable system reliability.

Many researchers have proposed the system reliability estimation on the basis of reliabilities of their components [Lapr1996], [Sail1997]. They are using the quantitative analysis of the system, which cannot be done in the beginning phases like design and code phase of software engineering. [Sail1997] is considering the components on the basis of test cases and test paths, relying of the sequence of components executed during the system or subsystem, where as [Lapr1996] is using the concept of Markov chain and computing the reliability on the basis of knowledge of components interconnections, their failure rates, inter-component transition probabilities and other statistical information. In our approach we will apply the Bayesian Belief Networks on each component to get the initial reliability as we are addressing the problem of lack of quantitative data at design stage.

3.2 Early phase estimation

Bayesian Belief Networks also known as belief networks, causal networks, probabilistic cause effect model and probabilistic influence diagrams are graphical ‘expert systems’ that incorporate subjective and conditional probabilities.

We will use BBN as [Gane2001] and [Gane2002] have described, by starting the estimation of failure rates for basic events for which little or no quantitative data as to reliability exits, or for which qualitative data, such as engineering judgment or expert opinion, as to reliability exit. Further we will construct the BBN based upon these probabilities. We will use BBN to estimate the probability of failure of each component by estimating the failure probability for each class. One thing that is lacking in this step is that we will classify the classes on the basis of their failure probabilities, but we are not taking the severity or the importance of classes among each classification. We know that there are some classes that are key in the development process. If key-classes are error-prone then the probability of system failure increases. On the other hand if non-key classes, i.e. the classes which are only activated for some specific conditions and which are not active most of the time, are error-prone then the system failure probability is comparatively much lesser. For this reason we need to give ranks to the classes on the basis of their severity within each classification or components.

3.3 Assigning ranks to more error-prone classes using the heuristics: key-class

In this step we will use the ‘key-class’ heuristics used by [Lada2003]. In his paper he has argued that design flaws can be detected by identifying the key classes of the system. Here we have to take an assumption that the code is true reflection of design, as this step is done on the source code of the system. Usually, the most important concepts of a system are implemented by very few key classes. These classes manage a large amount of other classes or use them in order to implement their functionality. The two important features of these classes are that they are highly coupled with other parts of the system and they are more complex as compared to other non-key classes as they are implementing core functionality of the system. We can combine the size-complexity and coupling factor of the classes to compute the distance, which identifies the key classes. We have taken these two factors as they play a vital role in the overall complexity of the class with respect to structure and functionality. Once we are able to identify more complex classes we can assign them higher ranks. The distance is calculated as the function of coupling and size-complexity on x-axis and y-axis respectively. Plotting them on x-axis and y-axis will give us the displacement from the origin. The farther the point from origin the more the rank will be. Incase we have the same displacement for more than one class than we check the angle also. The greater the angle is the more the error-prone class is.

3.4 Redesigning higher order ranked classes

Once we have the ranks of classes of the subcomponents and the probability of failure of each subcomponent we can redesign them accordingly. First we will look at those components that have higher probability of failure. After this we go deeper and according to the ranks we redesign the classes in those components.

3.5 Non-probabilistic confidential level model by analyzing the design quality through one of the most effective factors: coupling

In this step we are going to find the effect of increasing or decreasing coupling between the classes and components. This will act as the non-probabilistic and qualitative level of confidence for our analysis. It acts as a top layer of the previously defined analysis. If the correspondence the result of previous steps and this step is the same then we will leave the system design as it is, other wise we look at those classes and components again for redesigning due to which the difference is coming out. This step can be taken as optional and it could be applied at the end of design analysis.

In this step, we will first draw out the attributes that are affecting reliability and then we will draw out the attributes that are affecting coupling in correspondence with the system. For example the attributes that produce affect on reliability could be defect density, fault-proneness, and traceability. Further the factors that are affecting coupling could be the coupling between the objects, response for a class etc. After this we will take the overlapping attributes that is the attributes that are affecting each other externally. This way we will get the common attributes, and playing with one attribute will reveal the nature of design, i.e. how reliable and stable it is, to which level it is coupled etc.

Once we have gone through all these steps, we can assert that since the probability of failure of each component and classes is taken care of and it is now decreased very much, the probability of failure of the system on the whole is decreased.

4. Conclusion

We have presented a qualitative approach, which is useful in attaining a higher degree of reliability by achieving the reliability of system at design and code phase. We have argued on the basis that the more the stability of the system at design time the more reliable the system in later phases and hence the reliability of the system will increase.

Our approach starts with the probabilities of basic internal components and evolves into the design level reliability. We have suggested that, component based software engineering modeling will help us in much precise estimation. Moreover the model has specialty that it is using the rank assignment scheme for the error-prone classes in the classification of Bayesian Belief Network probabilities for the components. Further this model adaptively adjusts the reliability of the whole system by adjusting the reliability of each component in incremental fashion. 

5. Future work

The approaches taken by the traditional reliability estimation models are either blind or autopsy. In this paper we have suggested a system that is neither blind nor autopsy methodology. Our approach starts with known internal reliabilities, and it is independent of fault data in the beginning. In this model we have not specified the coupling metrics that is used in ranking of error prone classes as it is out of the scope of this paper. However a good choice of coupling metrics matters much in precise estimation of reliability. Further, much work can be done in empirical validation of the model by applying it in industry wide applications.

References:

[Lada2003]

Ladan Tahvildari & Kostas Kontogiannis, “A Metric-Based Approach to Enhance Design Quality Through Meta-Pattern Transformations”, Seventh European Conference on Software Maintenance and Reengineering (CSMR'03), IEEE, 2003 

[Gane2002]

Ganesh J. Pai, SusanK. Donohue, & Joanne Bechta Dugan, “Estimating Software Reliability from Process and Product Evidence”, Proceedings of the 6th International Conference on Probabilistic Safety Assessment and Management (PSAM-6), June 2002.
[Gane2001]

Ganesh J Pai, Joanne Bechta Dugan, “Enhancing Software Reliability Estimation using Bayesian Networks and Fault Trees”, Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE 2001), Nov. 2001

[Bev2000]

Bev Littlewood, Lorenzo Strigini, “Software Reliability and Dependability: A Roadmap”, 22nd International Conference on Software Engineering (ICSE 2000), Future of Software Engineering Track, Limerick Ireland, ACM, June 2000

[Katr2000] 

Katerina Go¡seva-Popstojanova, and Kishor S. Trivedi, “Failure Correlation in Software Reliability Models”, IEEE Transactions on Reliability, Vol 49, NO. 1, March 2000
[Fent2000]

Norman Fenton and Martin Neil, “Software Metrics: Roadmap”, In A. Finkelstein, editor, The Future of Software Engineering. ACM Press, New York, 2000

[Cai2000]

Cai Xia, Micheal R. Lyu, Kam-Fai Wong & Ada Fu, “Component-Based Software Engineering: Technologies, Quality Assurance Schemes, and Risk Analysis Tools”, 7th Asia-Pacific Software Engineering Conference, Apsec, 2000.
[Pour1999]

G.Pour, M. Griss, J. Favaro, “Making the Transition to Component-Based Enterprise Software Development: Overcoming the Obstacles – Patterns for Success”, Proceedings of Technology of Object-Oriented Languages and Systems, 1999.

[Brow1998]

A.W.Brown, K.C. Wallnau, “The Current State of CBSE”, IEEE Software, 1998

[Mark1998] 

Mark C. K. Yang, W. Eric Wong and Alberto Pasquini, “Applying Testability to Reliability Estimation”, Proc. of the 9th IEEE International Symposium on Software Reliability Engineering, Paderborn, pp. 90-99, Germany, November 1998

[Meng1998]

Meng-Lai Yin Lawrence E. James Samuel Keene Rafael R. Arellano Jon Peterson “An Adaptive Software Reliability Prediction Approach”, 23rd Annual Software Engineering Workshop, Dec 1998.
[Sail1997]

Saileshwar Krishnamurthy & Aditya P. Mathur, “On the Estimation of Reliability of Software System Using Reliabilities of its Components”, Eighth International Symposium on Software Reliability Engineering (ISSRE '97), IEEE, 1997 
[Lapr1996].

J.C Laprie & K. Kanoum, “Software Reliability and System Reliability, Handbook of Software Reliability Engineering”, McGrawHill NY, 1996

[Mei1992a]

Mei-Hwa Chen, Joseph R. Horgan, Aditya P. Mathur, & Vernon J. Rego, “A Time/ Structure Based model for Estimating Software Reliability”, SERC-TR-117-P, 1992

[Mei1992b]

Mei-Hwa Chen, Aditya P. Mathur, and Vernon J. Rego, “Effect of Testing Techniques on Software Reliability Estimates Obtained using Time-Domain Models”, SERC-TR-108-P, 1992

A Qualitative Approach Towards Reliability Estimation of OO System Design
5

