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Location of the positive pole of the bipolar coordinate system on the x-axis
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Average heat flux on the inner solid-fluid interface
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region
Average Nusselt number on outer solid-fluid interface in fully developed
region
Hydraulic or equivalent diameter of annulus,

2(r, ~r,;)=2a(l - NR, )cosechn,

Pressure gradient

Eccentricity (Distance between axes of the two cylinders)

. . .. e
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r, =r,

Volumetric flow rate, f = :r(r,.oz -r? )E
Dimensionless volumetric flow rate, F = U, (I - NR:Z)

Gravitational body force per unit mass (acceleration)
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Z,)D, (in case with isothermal walls)
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Modified Grashof number,
Coordinate transformation scale factor

. . . . h
Dimensionless coordinate transformation scale factor, D—
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Local heat flux on inner interface
Local heat flux on outer interface
Index for bi-polar grid in the n-direction and the cylindrical grid in the
radial direction
Dimensionless thickness of inner cylinder wall, NR,-NR,
Index for the bi-polar grid in the E-direction and the cylindrical grid in the
tangential direction
Thermal conductivity of fluid
Thermal conductivity of solid
Solid-fluid conductivity ratio, Ky/K¢
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' 4
section, —#)’*—,
pl y=Gr "
Ps Hydrostatic pressure, p g z
P Pressure defect at any point, p—p,
0] Dimensionless heat absorbed from the entrance up to any particular
elevation, F6,
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) Dimensionless heat absorbed up to the annulus exit, i.e., values of Q at z =1,
F em’ex
Tii Inner radius of inner cylinder
Toi Outer radius of inner cylinder
Tio Inner radius of outer cylinder
Too Outer radius of outer cylinder
R Dimensionless radial coordinate, L
T
AR NR, = NR,
NSI
AR, NR, — NR,
NSO
T Temperature at any point
To Ambient or fluid entrance temperature
Tw Isothermal temperature of heated wall
U Dimensionless axial velocity at any point, o
IyGr =
I Average (mean) axial velocity
U Entrance axial velocity
U, Dimensionless axial velocity at annulus entrance, %"—:
r
v Velocity vector or dimensionless n-velocity component, VDy
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wD,

w Dimensionless E-velocity component,
z Axial coordinate (measured from the annulus entrance)
YA Dimensionless axial coordinate in both the Cartesian and bipolar coordinate
systems, -
4 IGr

. . . . Az

AZ Dimensionless Axial step increment, o
r
Greek Letters
n First transverse bi-polar coordinate
ni Value of n) on ther inner interface
Mo Value of n on the outer intrfcace
An Numerical grid mesh size in n-direction
. . (T-1,) .
0 Dimensionless temperature, -(T_T) for isothermal walls case
O¢ Value of 0 in the fluid annulus
Om Mean bulk temperature
Om.ex Mean bulk temperature at channel exit
Om.fa Fully developed value of 8,
Osi Value of 8 in the inner solid wall
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Y Kinematic viscosity of fluid, £
p



Density of Fluid
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4
cop . o .. k
Thermal diffusivity of fluid,
P,

Volumetric coefficient of thermal expansion
Second transverse bi-polar point.
Numerical grid mesh size in &-direction

Angle along the cylinder walls

z
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Chapter 1

INTRODUCTION

The study of steady laminar induced flow in vertical eccentric annuli with conjugate
heat transfer is of great importance because of its many engineering applications in
electrical, nuclear, solar and thermal storage fields.

in the electrical field, in vertical electric motors and generators, the heat generated
by imreversible electrical and mechanical processes is transferred through the air gap
between the rotor and the stator by natural convection. The transfer of heat by free
convection is always a factor in the cooling of such machines and may be the sole means
of cooling small types of these devices. Another typical application is that of gas cooled
nuclear reactor, in which cylindrical fissionable fuel elements are placed axially in
vertical coolant chambers within the graphite moderator; the cooling gas is flowing along
the channel parallel to the fuel element. In such a system, laminar free convection may
provide the sole means of the necessary cooling during the shut down or accident periods.
Natural convection also finds its critical application in nuclear waste storage field.
Cooling of casks containing nuclear waste by natural convection can exceed thermal
guidelines if positioning becomes overly eccentric [1]. A key problem in the storage of

nuclear wastes is the determination of the insulating effect of the annular air space



fundamental thermal boundary conditions. One set of boundary conditions, namely
boundary condition of first kind, comprises of one of the channel wall heated isothermally
while the other wall maintained at inlet fluid temperature. The other set of boundary
conditions, namely boundary condition of third kind, has one wall heated isothermally
while the other wall kept adiabatic. Solution for this problem has not been reported in the
literature. Results of this investigation determine limits for solid-fluid conductivity ratio
above which, and wall thickness below which, the conjugate effect can be neglected for
practical purposes. The effect of eccentricity (E), conductivity ratio (KR), wall thickness
and radius ratio (NR>) on the channel height required to induce a specific flow rate is also
investigated. Furthermore, the present results can be used to refine the available
conventional results to account for the coupling of conduction and convection for systems
with low values of conductivity ratio and/or thick walls particularly at high eccentricities.
The literature survey made during the present work is summarized in chapter 2. The
objectives of the present work along with the general problem formulation are outlined in
chapter 3. Method of solution is outlined in chapter 4. Different possibilities to represent
continuity of temperature and continuity of heat flux on the solid-fluid interfaces of the
geometry and axial step increment techniques, tried, are described in chapter 5. Validation
of the present work by comparisons with the available solutions is presented in chapter 6.
Chapter 7 and 8 describe the influence of conductivity ratio (KR), eccentricity (E). wall
thickness and radius ratio (NRz) on channel height, required to induce specific flow rate
of a Newtonian fluid along with the results for critical conductivity ratio (KR) and critical
wall thickness employing boundary conditions of first and third kind, respectively.

Finally, conclusions and recommendations are presented in chapter 9.



Chapter 2

LITERATURE REVIEW

Considerable work has been done to study the problem of flow and heat transfer in
annuli, both concentric and eccentric. However, this literature review will focus on free
and forced convection in annuli and on conjugate heat transfer in ducts of various

geometries.

2.1. Conjugate Solutions in Various Geometries

Literature until 1976, pertinent to conjugate heat transfer in ducts of various
geometrical shapes, has been reviewed by Shah and London [2]. Using the finite-
difference method, Faghri and Sparrow [3] solved numerically the steady conjugate heat
transfer with hydrodynamically fully developed laminar flow in a thick walled circular
tube. Pagliarini [4] considered the same problem with the exception that the flow is
hydrodynamically developing. Wen and Jang [5] performed experiments to determine the
heat transfer coefficients for forced convection airflow over a cylindrical obstacle,
inclined and yawed relative to the oncomix;g flow.

Using Laplace-transform technique, Krishan [6] analytically solved the transient
conjugate problem for hydrodynamically and thermally fully developed laminar pipe flow

with viscous dissipation. Olek et al. [7] considered the same problem by means of a



method of separation of variables and concluded that the degree of conjugation and
viscous dissipation may have a great impact on the temperature distribution in the fluid.
Higuera and Ryazantsev [8] presented, analytically, an analysis of the laminar natural
convection flow due to localized heat source on the centerline of a long vertical pipe the
walls of which were kept at constant temperature. Bilir [9] used finite difference method
to analyze unsteady conjugate heat transfer in thermally developing laminar pipe flow,
involving two-dimensional wall and fluid axial conduction. Floryan and Novak [10]
numerically investigated free convection heat transfer in multiple parallel vertical
channels with isothermal walls. Systems consisting of two, three and infinite number of
channels located side by side and with aspect ratios ranging from 5 to 20 and for Grashof
numbers based on the channel width up to 105 were analyzed by them.

Al-Nimr and El-Shaarawi [11] obtained an exact analytical solution for the unsteady
conjugated forced convection heat transfer in a steady slug flow inside circular and
parallel plate ducts. Using numerical techniques, Sucec [12] solved the transient heat
transfer problem found for a fluid within a parallel plate duct having sinusoidal generation
with axial position in the duct wall. He determined wall temperature, surface heat flux and
fluid bulk mean temperature as a function of position and time.

Madina et al. [13] numerically analyzed the steady state conjugate heat transfer
process between two counter flowing forced streams separated by a wall with finite
thermal conductivity. They obtained numerically the distribution of the temperature of the
plates as well as the overall heat transfer rates. Mosaad [14] presented analytical solution
for coupled heat transfer between laminar forced convection along and conduction inside

a flat plate wall. He combined the energy equations for the fluid and the plate wall under



fluid temperature. Combinations of solutions corresponding to these fundamental
boundary conditions may be used to obtain solutions for more complicated boundary
conditions found in practice.

Using an approximate integral method, Heaton et al. [20] solved the goveming
equations for the heat transfer in annular passages for simultaneously developing velocity
and temperature profiles in laminar flow. Coney and El-Shaarawi [21] investigated
laminar forced convection heat transfer in concentric annuli with simultaneously
developing hydrodynamic and thermal boundary layers. The hydrodynamic entry length
problem was solved first to obtain the velocity profiles using an extension of the
linearized finite difference technique; then the energy equation was solved for the
temperature profiles by means of implicit finite difference technique. Further analysis was
done numerically by El-Shaarawi and Alkam [22] to obtain the transient solution for the
laminar forced convection in the entrance region of a concentric annulus using the finite
difference scheme.

El-Shaarawi and Al-Nimr [23] presented analytical solutions for fully developed
free convection in open-ended vertical concentric annuli. They investigated four
fundamental boundary conditions and obtained the corresponding solutions. El-Shaarawi
and Al-Attas [24] developed a finite difference scheme for solving the boundary layer
equations governing the unsteady laminar free convection flow in open-ended vertical
concentric annuli. They presented the numerical results for a fluid of Pr=0.7 in an annulus
of radius ratio 0.5. Cadiou et al. [25] investigated numerically the free convective flow in
narrow horizontal air filled concentric annuli without considering the conjugate effect.

Hadjadj et al. [26] used the control volume finite difference method to solve for laminar



free convection heat transfer in two concentric vertical cylinders. Leppinen [27]
examined, analytically, free convection problem in the shallow annular gap between two
concentric circular cylinders to obtain asymptotic solution.

El-Shaarawi and Sarhan [28] solved the problem of developing laminar free
convection in open-ended vertical concentric annuli with a rotating inner cylinder for
which the energy and momentum equations are coupled through the buoyancy term. In
their analysis, El-Shaarawi and Sarhan assumed that the pressure defect at the entrance of
the annulus should equal to a negative value to be obtained by applying Bemoulli’s
equation at the entrance. Results were presented for boundary conditions of the third kind
(i.e. one wall is kept isothermal while the other is kept adiabatic). As a special case of
previous one, El-Shaarawi and Sarhan [29] presented the results for the developing
laminar free convection in heated vertical open-ended concentric annuli with stationary
walls for the boundary condition of the third kind. Lor and Chu [30] investigated forced
and mixed convection in finite vertical concentric cylindrical annuli. They analyzed the
heat transfer rates and flow patterns in concentric vertical cylinders using control volume
finite difference technique. They considered the inner cylinder rotated and heated while

the outer cylinder fixed and cooled.

2.3. Conjugate Solutions in Concentric Annuli

Sakikabara et al. [31] analytically investigated the steady conjugate heat transfer
problem in an annulus with a heated core and an insulated outside tube when the laminar

flow is hydrodynamically fully developed. McGrath et al. [32] worked on combined



convection and radiation heat transfer for absorbing-emitting gas in the entrance region of
a finite length concentric annular duct. They incorporated method of lines and IMSL
(FORTRAN Maths/Stats Library) fifth order Runge-kutta verner method, available as a
subroutine in IMSL Library, to discritize the non-linear PDE & radiation transport
equation into a set of ODE & solve ODE respectively.

El-Sharaawi et al. [33] presented a finite difference scheme to solve the transient
conjugate heat transfer problem in a concentric annulus with simultaneously developing
hydrodynamic and thermal boundary layers. The annular forced flow was taken as
laminar with constant physical properties and the thermally transient problem was
initiated by a step change in the prescribed isothermal temperature of the inner surface of
the inside tube while the outer surface of the external tube was kept adiabatic.

Using finite difference technique, El-Shaarawi and Negm [34] solved the laminar
conjugate natural convection problem in a vertical open-ended concentric annuli. They
provided the solution for a Newtonian fluid of Prandtl number 0.7 in a fluid annulus of
radius ratio 0.5. El-Shaarawi and Negm [35] also worked on the transient conjugate free
convection heat transfer in open-ended vertical concentric annuli. The range for Grashof
number they have considered in their paper is 500 < Gr* < 10° for transient case, where
Gr* is defined as modified Grashof no. (DyGr/l), where D is the equivalent hydraulic

diameter of annulus and 1 is the height of annulus.
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complete the model. Fully developed forced convection in eccentric annuli has been
treated numerically by Suzuki [42]. The finite difference equivalents of the govemning
equations of velocity and temperature fields written in bi-polar coordinates were solved
using an iterative procedure.

Manglik and Fang [43] obtained numerical solution for laminar, fully developed,
forced convective heat transfer in eccentric annuli. With an insulated outer surface, they
used two types of ‘boundary conditions: constant wall temperature and uniform axial heat
flux with constant peripheral temperature on the inner surface of the annulus. El-Shaarawi
et al. [44] proposed a model capable of describing the forced flow in the entry region of
an eccentric annuli without need of assumptions dependent on prior knowledge of the
mechanism of transverse flow. They also developed a numerical algorithm to solve the
obtained model. El-Shaarawi et al. [45] developed a finite difference numerical algorithm
to solve a boundary-layer model describing the laminar forced convection heat transfer in
the entry region of eccentric annuli.

Yao [46] studied the natural convection in slightly eccentric annuli for small
Rayleigh number. He first considered two cylinders with inner circular cylinder and an
outer cylinder of arbitrary shapes. He formulated the perturbation equations for the outer
cylinder with contour having a small deviation from a circular cylinder, which caused the
slight eccentricity to the inner circular cylinder. Ho and Lin [47] studied specifically,
natural convection of cold water, encompassing a density inversion, within an eccentric
cylindrical annulus. They solved it numerically via a finite difference method.

Utilizing the boundary-layer model in bipolar coordinates, El-Shaarawi and

Mokheimer [48,49] investigated developing free convection in open-ended vertical
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eccentric annuli having different boundary conditions with one surface isothermally
heated while the opposite wall isothermally cooled and maintained at the inlet fluid
temperature. They solved the above mentioned problem using finite-difference technique
for a fluid of Prandtl number 0.7 in an annulus of radius ratio 0.5 for three values of the
dimensionless eccentricity, namely, 0.1, 0.5 and 0.7. The conjugate effect was not
considered in their research.

Singh and Rajvanshi [50] utilized bi;;olar coordinate system to determine the heat
transfer between eccentric rotating cylinders. They imposed no restriction on eccentricity.
They did not consider the thickness of the cylinder. Sathyamurthy et al. [51] presented a
numerical study for fully developed laminar mixed convection in a vertical eccentric
annular duct. They solved the equations governing the velocity and temperature using a
body conforming grid and finite volume technique. Moukalled and Darwish [52] used the
bounded skew central difference scheme to study numerically the combined effect of
vertical and horizontal eccentricities on natural convection in an annulus between a heated
horizontal cylinder and its square enclosure. They used four Rayieigh Nos. (Ra=10°, 107,
10° and 10°%), three aspect ratios (0.1, 0.2, 0.3) and eccentricity values ranging from — 0.3

to 0.3.

2.5. Conjugate Solutions for Forced Convection in Eccentric Annuli

El-Shaarawi and Haider [53] studied the conjugate forced convection heat transfer in

eccentric annuli. They presented results for a fluid of Prandtl number 0.7 flowing in an
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annulus of radius ratio 0.5. They considered heated isothermal inner surface of core tube
while the outer surface of external tube maintained at inlet fluid temperature.

To the best of writer’s knowledge and as is evident from this literature review,
solution for the problem of conjugate free convection heat transfer in vertical eccentric
annuli has not been reported in the literature which motivated the author to carry out the

present work.



Chapter 3

OBJECTIVES AND PROBLEM FORMULATION

3.1. Objectives

Lack of information about conjugate free convection in vertical eccentric annuli was
the motivation behind the present work, which is aimed at obtaining a solution for the
conjugate heat transfer problem with laminar free convection in vertical eccentric annuli.
The objectives of this present study are to:

1. Investigate the influence of conductivity ratio (KR), inner and outer wall thickness,
eccentricity (E) and radius ratio (NRz) on the incoming flow rate for fundamental
thermal boundary conditions of first and third kind.

-2. Compute the limit for solid-fluid conductivity ratio above which, the conjugate effect
can be neglected for practical purposes.

3. Compute the limit for wall thickness, below which the conjugate effect can be

neglected.

3.2. Free Convection Phenomenon

The geometry, cross-section of which is shown in Fig. (3.1), comprises an eccentric

annulus between two vertical cylinders of finite height and thickness, open at both ends

14
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and immersed in a stagnant Newtonian fluid of infinite extent maintained at constant
temperature T,. Free convection flow is induced inside this annular channel as a result of
either heating one of the channel walls isothermally while keeping the other wall at
ambient temperature (Boundary condition of first kind) or isothermally heating one of the
channel walls while keeping the other wall adiabatic (Boundary conditions of third kind).
The fluid enters the channel at the ambient temperature T, and is assumed to have
constant physical properties but obeys the Boussinesq approximation according to which
its density is allowed to vary with temperature in only the gravitational body force term of
the vertical (axial) momentum equation. Thus Boussinesq approximation neglects the
compressibility effect everywhere except for the buoyancy force term. Body forces in
other than the vertical direction, viscous dissipation, internal heat generation and
radiation heat transfer are absent. If the channel is sufficiently high, fully developed flow
conditions can be achieved.

It is evident from Fig.3.1 that the eccentric annular geometry is symmetric about line
AB, therefore, only the half symmetric section is taken for the analysis. Figure 3.2 shows
the 2-D cross-section of _the half symmetric geometry of the eccentric annular region. The

axes of the two eccentric cylinders are perpendicular to the plane of the paper.
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T=Tow
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Fig. 3.2. Two Dimensional Cross section of the geometry under
consideration

Because of the asymmetry involved in the geometry under consideration the
cylindrical coordinate will be difficult to use in expressing the governing equations in the
fluid annulus. The most powerful orthogonal curvilinear coordinate system which could
be used to express the partial differential equations describing the flow and heat transfer
through eccentric annuli is the bipolar coordinate system. The bipolar coordinate system
is nothing but a set of orthogonal eccentric cylinders. So, the boundary surfaces of an
eccentric annulus may be taken as one of the coordinates and the other coordinate will be
the set of the eccentric cylinders, which orthogonally intersect the boundaries of the
annulus [54]. Since the cylinder walls have uniform thickness, the cylindrical coordinate

system is more appropriate for the solid walls, therefore, the energy equation for the solid
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cylinder walls will be expressed in cylindrical coordinates whereas the governing

equations for fluid in the annulus will be written in bi-polar coordinates.

3.3. Problem Formulation

3.3.1. Governing Equations

The governing equations, i.e. the momentum equations, the continuity equation and

the energy equation, transformed into bipolar coordinates for the free convection in the

eccentric fluid annulus [54] are as follows:
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Momentum Equation In -Direction
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Energy Equation For Fluid
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Energy Equation for Solid in Cylindrical Coordinates [55]

8*T 18T 1 &*T &*T
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3.3.2. Dimensionless Form of the Governing Equations

Using dimensionless parameters indicated in nomenclature, the governing equations
can be written in dimensionless form in order to make them applicable for any value of

the parameters and for any similar problem.

Continuity Equation
oHW) , (V) 4»4(1-1\[1&2)2—(—a UH?)_
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Momentum Equation In Z-Direction
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Momentum Equation In £-Direction
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Momentum equation in 5-Direction
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Energy Equation For Fluid
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Energy Equation For Solid
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For outer cylinder, 8; = 8, & R vary from NR;=1 to NR,

For inner cylinder, 8; = 6;; & R vary from NR; to NR,

3.3.3. Problem Simplification & Order of Magnitude Analysis

In developing the above equations for the above problem, the following simplifying

assumptions were used.



1. The flow is steady.

2. The fluid is Newtonian with constant properties.

3. Body forces along & and n direction are absent.

4. There is no magnetic effect.

5. Internal heat generation and viscous dissipation are absent.

6. The cylinder walls have thermal boundary conditions uniformly distributed along
the whole lengths, so there is no temperature gradient in cylinder walls in axial (Z)
direction.

Order of magnitude analysis is a very powerful technique to simplify the problem by
eliminating those terms in the govemning equations, which have negligible contribution in
the solution. The details of the order of magnitude analysis are given in Mokheimer’s
work [54].

After performing the order of magnitude analysis keeping under consideration all

the assumptions, the resulting final equations are as follows:

Continuity Equation
o(HW) oHV) . . vlUH?)
T + o7 +4(1-NR,) = =0 (3.1)

Momentum Equation In Z-Direction
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Momentum Equation In £-Direction
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Energy Equation For Solid
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Momentum equation in n-direction (i.e. Radial like direction) is dropped since, the

n-velocity component (V) is much smaller than that in both & & Z directions. Axial
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diffusion of momentum in the fluid and that of energy in both fluid and solid (i.e. “OZ'

terms) are omitted. The pressure is taken to be a function of the axial coordinate only
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3.3.4. Boundary Conditions
Equations (1) through (6) are subjected to the following boundary conditions:
ForZ=0and 5,<7<%;,V=W=0,and U=U,,P =-U,/2
ForZ=Land 9,<9<%;,P=0
ForZ 20andn=9;,,U=V=W=0

ForZ =0and=19,,U=V=W=0

Case Inner Boundary, r;; Outer Boundary, r,,

l-I esi = 1.0 eso = 0
1;0 esi = O eso = 1.0

a6

. i=1 —2.=0

3I 0:i=1.0 R
a6,;

3-0 a—Rn = 0 eso = 1.0

For Z> 0 and £ =0 and 7 (the line of symmetry):

oV _oW _aU a8 _ae,

3 B8E OF oF op

ForZ>0 and R=NR; and R =NR; =1 (i.e. the interfaces)

8¢ =40, continuity of temperature

1 66 1 86 o6 1 06 .
k 4 | =k, Lf+——=7| , Contin f heat fl
‘(Haq' Hag}) s(aRl R o¢ j) ontinuity of heat flux

1, unit vector in the 5 and R directions



Chapter 4

NUMERICAL ANALYSIS AND METHOD OF

SOLUTION

As stated in chapter 3, there is no possible means to solve the set of dimensionless
equations (3.1) through (3.6) analytically. Therefore, these governing equations will be
numerically treated using finite difference technique to solve for the three velocity
components, pressure and temperature in the fluid and the two solid cylinders.

The existing computer program, developed by Mokheimer [54] was used to obtain
the results reported in [44, 45, 48 and 49]. The program was modified by Haider [55] for
the forced convection case to incorporate the inner and outer cylinder wall thickness and
the solid fluid conductivity ratio. In the present work, the program has been modified for
the free convection case to take the conjugate effect into consideration. Since the
goveming equations for the fluid are in bipolar coordinate system whereas the energy
equations for the solids are in cylindrical coordinate system, the two grids are linked by
applying the principals of continuity of temperature and heat flux at the two interfaces.
The finite difference equations and the method to solve for the velocity, pressure and

temperature values are described in the following sections.



4.1. Finite Difference Equations

Figure (4.1) shows the numerical grid of the geometry. The total number of
equations is seven (7) and equals the number of unknowns, namely, P, U, V, W, 0, 6, &
Os0- For outer solid wall, energy equation will be applied on each grid point of outer wall.
Similarly, for the inner solid wall, energy equation will be applied at each grid point of
inner wall. For the annular fluid, there are five equations, which will be applied at each of
its grid points. Using backward differences to express all first derivatives with respect to
Z and the first derivative of (HV) with respect to 1 in the continuity equation and
replacing the second and other first order derivatives in n| and & directions by central finite
differences, equations (3.1) through (3.6) can be written in the following forms,
respectively:

Continuity Equation

Hej+ )W j+)-HG =) WEj-1) HG)VEN-HE-1L)VE-1)
2AE An

N -UG 7 (4.1)
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Fig.4.1. Two-Dimensional Half Symmetric Mesh of Eccentric Annuli

NSO=10, NSI=5, N=15, M=25, E=0.5, NR,=0.5, Inner wall thickness=0.05, Quter wall

thickness=0.1
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E-Momentum Equation
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Energy Equation for Fluid
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01(1,2) = 0i,0), 6:(1,2) = 64(i,0)

For Z>0 and £ =n-» Line of symmetry at the Narrowest gap

UG, M) =U(@ , M+2), V@i, M+2) = V(i , M+2), W(i , M) = W(i , M+2)

Or(i, M) =06(i, M+2), 6,(i , M) =04(i , M+2)

Since the temperature field comprises three separate grids, for the outer tube ‘i’
varies from i =1 at the outer boundary to i = NSO+ at the outer interface; for the fluid
annulus, from i =1 at the outer interface to i = N+1 at the inner interface; and for the
inner tube from i = 1 at the inner interface to i = NSI[+1 at the inner boundary. Thus, i =
NSO+1 of the cylindrical grid in the outer wall is coincident with i =1 of the bi-polar
grid in the eccentric fluid annulus. Similarly, i = N+1 of the bipolar grid coincides with i=
1 of the cylindrical grid in the inner wall. The boundary conditions are imposed at i = 1 of

the outer cylindrical grid and i = NSI+1 of the inner cylindrical grid.

4.3. Interface Conditions

With the boundary conditions imposed at the inner surface of the inner cylinder and
the outer surface of the outer cylinder, the interface conditions are unknown. Also, the
eccentric annulus is fitted with a bi-polar mesh resulting in M+1 mesh points at each
interface whereas the walls have cylindrical mesh, therefore, the three grids are linked by
applying the principles of continuity of temperature and continuity of heat flux at all
points on both interfaces.

At the interface points, continuity of temperature and continuity of heat flux can be

expressed in finite difference form as:
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6,(N +1,/)=6,.(L/)
6,(N+1,7+1)=6,(0,/+1)
6,(N+1,j-1)=6,(,/-1) (4.10)

KR*H(N+1,j{9"'(2’j)-9"’(1’j)+ 1 9_"—(1,_]'-!-1)—9”.(1,]—1)] =

AR; NR, 2A¢
6,(N+17)-6,(N,j) 6, (N+1,j+1)~8,(N+1,j-1)
A7 - 2AE

where, 2 << M

4.3.2. Continuity of Temperature and Heat Flux at the Outer Interface

4.3.2.1. Temperature and Heat Flux Relations at Corner Points

The two comer points at the outer interface (R = NR; = 1) are shown as bold points
1 and 4 in Fig. (4.1).

The temperature and heat flux conditions at R = NR3 = 1 (Outer Interface) are:

At Z =0 (Widest Gap)

6,(11)=6, (NSO +1,)

- —5,, 4.11
KR* H(Ll{em (Nso Hiz)e o,,,(Nso,1)] _ 6?,(2,13S (L)) @.11)
n

At =t (Narrowest Gap)

6,(L,M +1)=6,,(NSO+1,M +1)

8,,(NSO+1,M +1)-6, (NSO,M +1)] 6,(2,M +1)-6 (1, M +1)
AR - An

(]

KR*H(,M +1{

(4.12)
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4.3.2.2. Temperature and Heat Flux Relation at Rest of the Outer

Interface
The rest of the mesh points on (2 < j < M) the outer interface can be seen in Fig.
4.1).

6,1, /)=6,,(NSO +1, )
6,(1,/+1)=6,, (NSO +1, j +1)
6,(1,j-1)=6,(NSO+1, 1)

kr*H(, j)| G NS0 +1.)-6, (NSO, /) | 1 6, (NSO+1,j+1)-6,(NSO+1,j-1)]
AR, NR, 2A¢
gf(z’j)-af(l’j)+9f(1:j+1)"0f(l,j—l)
An 2A¢

(4.13)

where, 2 < js M

The temperature values at the cylindrical mesh points of the inner and outer
interfaces are calculated using the principles of continuity of temperature and heat flux as
described before. The temperature values at bipolar mesh points of inner and outer
interfaces are calculated using linear interpolation. At both interfaces, temperature at
every mesh point of the bipolar grid is evaluated using the temperatures at the two
neighboring mesh points of the cylindrical grid. The X-coordinate of the grid points is
used for this purpose. This interpolation can be expressed as follows (See Fig.4.1):

Fluid temperature at the outer interface:

X ,/)-x,, L5
ef(l,f)=eso(Nso‘*'I,J.'f)*[am(NSO+1,17+1)‘9,0(NSO+1,J]’)][ 1)~ %,(.5) ]

Xm (1’ jf+ 1) - Xm (1! jf)
(4.14)
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Fluid temperature at the inner interface:

Xf(N+1’j)-X:i(l’jj)] (4.15)

0,0 +1.1)=0,0.7)+[0,0.5)-0,0. )| S etk
Where,
X(1,) is the X-coordinate of bipolar grid points on the outer interface.
X{(N+1,)) is the X-coordinate of bipolar grid points on the inner interface.
Xso(14)) is the X-coordinate of cylindrical grid points on the outer interface.
Xii(1,1)) is the X-coordinate of cylindrical grid points on the inner interface.
The relations presented in this section calculate all the unknown temperature values

at the interfaces. The solution goes from the outer wall towards the inner wall smoothly

with all the boundary conditions at the two solid-fluid interfaces are unknown.

4.4. Method of Solution

1. The finite difference equations (4.1) through (4.7) are linearized by assuming that
where the product of two unknowns occur, one of them is given approximately by its
value at the previous axial step, the variable superscripted with an asterisk (*). Thus the
finite difference equations (4.1) to (4.7) represent a complete mathematical model of
seven equations in seven unknowns (U,V,W,P,0, 6, and 650) and are numerically solved
in the manner described hereinafter. Due to symmetry, these equations need to be solved
in only half the domain, i.e. for 0 < & < = The variables U V. W, 4 6 and 6, are
computed, for a given axial location (Z), at the intersections of the grid lines, i.e. the mesh

points. The problem under investigation is govemed by six dimensionless parameters,
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namely, the radius ratio (NR5), the eccentricity (E), the Prandtl number (Pr), conductivity
ratio (KR) and thicknesses of the two walls (Owall and Iwall). For a fluid of a given Prin
an annulus of given NR; and E, the solution starts by calculating the corresponding values

of n;and 7, by means of the following equations, respectively.

MR, (1 + E2)+ (1 - E?) +J[NR1(1 +E2)+ (- f:’)J2 _1J 4.16)

- =1lo
T = "0k, 2NR,E 2NR,E

=lo
7, ge 2E 3E

lliNRz(l - E2)+ 1+ E?) +\[(NR1(I —E)+(+ Ez))2 " @17

Where,
NR> = Fluid Annulus Radius Ratio, r,;/r;,
Selecting the numbers of increments in 7 and £ directions (N and M respectively)

the values of A4 & A& can be computed by using the following equations, respectively.

(. —n,)
An=--_t—=27 4.18
n 7 (4.18)
T
Al =— 4.19
& v; (4.19)
where,

N = Total number of mesh points along 7- direction in fluid annulus.
M =Total number of mesh points along &direction in fluid annulus.

Similarly, for the solid walls, by selecting the values of NR; and NR, and the number

of radial (R) increments in the outer and inner walls and the number of increments in the
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tangential (¢) direction (NSO, NSI and M, respectively) the values of AR,, AR; and 4¢ can

be determined by means of the following equations.

AR, = (M;;v;oﬂﬂ (4.20)
AR, = LNR_N;[ﬂ 4.21)
A =% (4.22)
where,

NSO = Total number of mesh points along radial direction in outer wall.

NSI = Total number of mesh points along radial direction in inner wall.

M = Total number of mesh points along circumferential direction in outer and inner
walls.

2. For free convection, assume a value for the uniform axial velocity profile at the

3

-

entrance U,. Since W = V = 0, the inlet pressure will be P2, =—U; for this free

convection case.

3. The energy equations for the fluid (4.4) and solid (4.6 and 4.7) are simultaneously
solved for the temperatures using Gauss-Seidel iteration at a particular cross-section. The
simultaneous solution of equations (4.4, 4.6 & 4.7) results in obtaining the unknown
values of g 6,;and 8, at the next cross-section.

4. Within the Gauss-Seidel iteration, the temperature values of cylindrical grid
points at the two interfaces are calculated using principles of continuity of temperature

and continuity of heat flux. The temperature values of bipolar grid points at both the
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interfaces are computed by interpolating between the temperature values of the two
neighboring cylindrical grid points at both sides of each bipolar grid point. It must be
remembered that bipolar coordinate system is used in eccentric fluid annulus while
cylindrical coordinate system is used in the two solid walls.

5. Now to solve for the two unknowns P and U at the aforesaid plane, the integral
form of the continuity equation (4.5) and the finite difference form of the axial
momentum equation (4.2) can be used. The set of algebraic equations result from the
application of the axial momentum equation at each interior node of the solution grid
along with that equation resulted from expressing the integral continuity equation using
the trapezoidal rule is put in a matrix form. The general format for this matrix corresponds
to N segments in n-direction and M segments in E-direction. The method of solving this
matrix is an extension to the special form of the modified Gauss-Jordan elimination
scheme [54, 55].

6. &-Momentum equation (4.3) is solved for W-velocity component using Gauss-
Seidel iteration method.

7. Continuity equation (4.1) is used to evaluate V-velocity component at all the
interior grid points.

Steps 2-7 are repeated to advance axially until the pressure defect (P) becomes zero

for the free convection.



Chapter 5

ON THE NUMERICAL MODEL

5.1. Introduction

Conjugate free convection heat transfer in vertical eccentric annuli will be
numerically solved using the finite-difference scheme developed in chapter 4. A
numerical model is developed to perform the thermal and flow analysis of free convection
in vertical eccentric annuli along the whole height of the annular channel. This chapter is
devoted to describe in detail the capabilities of the computer code. Different features and
possible options of expressing the governing equations in finite difference forms are

emphasized in this chapter.

S5.2. Interpolation at the Interfaces

The inner surface temperature of the outer cylinder, which is actually the outer
solid-fluid interface and the outer surface temperature of the inner cylinder, which is the
inner solid-fluid interface, are unknown. The temperatures at the two interfaces have to be
calculated in order to solve for the whole domain. For this purpose, the principles of
continuity of temperature and continuity of heat flux are applied to solve for the boundary

conditions on both inner and outer interfaces.

38
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The geometry of the problem, shown in Fig. (5.1), consists of two eccentric
cylinders. That makes an eccentric fluid annulus between the two cylinders. The most
suitable orthogonal curvilinear coordinate system which can be used to express the partial
differential equations describing the flow and heat transfer through eccentric annuli is the
bipolar coordinate system. However, since the cylinder walls have uniform thickness, the
cylindrical coordinate system is more appropriate for the solid walls. The use of bipolar
coordinate system in the eccentric fluid annulus and cylindrical coordinate system in the
cylinder walls has resulted in un-matched mesh points for both systems at the two
interfaces, as shown in Fig. (5.1). This un-matching of mesh points at the two interfaces
lead us to use, in terms of polar mesh points, interpolation to calculate the bipolar mesh
point values at the two interfaces. The interpolation technique uses the variable values and
coordinates of the two neighboring cylindrical coordinate mesh points at the interface to
calculate the value of each bipolar mesh point at that interface. Two types of
interpolations can be considered. One is the linear interpolation and the other is the
logarithmic interpolation. A constraint lies in logarithmic interpolation. As the
initialization of mesh points is taken as zero (0), therefore, logarithmic interpolation fails
to execute (Log of zero (0) is infinity (e0)). This can only be used if non-zero initialization
is used but one cannot be sure as some zero value may come during the calculations.
Hence logarithmic interpolation cannot be used in the present situation. Hence, the only
option left is the linear interpolation that will be used in the computer code.

Equations (4.8-4.13) represent the continuity of temperature and continuity of heat

flux relations for four points at the inner and outer interfaces on the line of symmetry and
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Fig.5.1. Two-Dimensional Half Symmetric Mesh of Eccentric Annuli

NSO=10, NSI=5, N=15, M=25, E=0.5, NR,=0.5, Inner wall thickness=0.05, Outer wall
thickness=0.1
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for all the cylindrical coordinate mesh points on inner and outer interfaces. It is observed
in the heat flux relations of the four symmetry points at the two interfaces (Eqs.4.8, 4.9,
4.11 and 4.12) that there is no temperature gradient along ¢ and & directions. The reason is
that due to symmetry, equal amount of heat is flowing in clockwise and counter-clockwise
directions at these four points so the net effect of heat flow is Zero. For the rest of the
cylindrical coordinate mesh points, heat is flowing in ¢ and & directions as well, as can be
seen in egs. (4.10) and (4.13). Here, continuity of temperature and continuity of heat flux
can either be applied on only 4 corner points at the two interfaces on the line of symmetry,
for simplicity as done by Haider [55], or on all the cylindrical coordinate mesh points on
both outer and inner interfaces. In this way, all the boundary conditions in the domain are
calculated and now the eciuafiéné to c:ba.tlnculate the temperatures on all internal mesh points

in eccentric annulus and cylindrical walls can be used.

5.3. Axial Increment

Axial increment along the channel height is a very important factor in the
computation. Since very large gradients occur near the entrance, the axial step is kept very
small so that change in behavior of the values can be analyzed precisely. As the flow
moves along the channel, the gradient decreases and need of very small axial step size
ceases. A constant, relatively large axial step can be kept when the values of gradients are
very small. Three different axial formulations are tested. One is the linear axial increment,

which is used by Mokheimer [54] and Haider [55] in their work. The second increment



43

earlier in section 5.2. Only radial heat flux is to be formulated at these four points, i.e.
bold 1, 2, 3 and 4, as shown in Fig. (5.1). The limitation in using the continuity of
temperature and continuity of heat flux on only four comer points is that the temperature

values on the all mesh points sense the temperature change after many iterations.

5.4.2. Continuity of Heat Flux on All Points of Cylindrical Mesh Points
at Both Solid-Fluid Interfaces Using Central Finite Difference

Scheme in Circumferential Direction

The second case involves heat flux formulation on all the mesh points on both solid
walls at the interfaces for cylindrical coordinate system. As there is no symmetry along
the circumference due to eccentricity, heat will flow circumferentially as well as radially.
Thus heat flux cannot be ignored on these points. Writing the equation in finite difference
form needs some consideration. Central finite difference scheme is applied to express the
terms of circumferential heat flux, while forward and backward schemes are implemented
on radial heat flux terms for both solid and fluid. The advantage in applying the continuity
of temperature and continuity of heat flux on all the interface mesh points is that the
actual heat transfer phenomenon is depicted on the interface walls and also, the
temperature change is sensed sooner in the iteration procedure than the case in which heat
flux is applied only on the four comer points at the interfaces. This fact has been verified
by performing special runs having one code using continuity of heat flux principle at only
4 comer points while the other code applying the continuity of heat flux principle on all

interface mesh points.



5.4.3. Continuity of Heat Flux on All Points of Cylindrical Mesh Points
at Both Solid-Fluid Interfaces Using Forward Finite Difference

Scheme in Circumferential Direction
The third possibility is similar to the second one, i.e., the values at all mesh points of
the interface are coupled using heat flux relation. The only difference is that
circumferential terms are using forward difference scheme instead of central differential

scheme.

5.5. Axial Increment Size

5.5.1. Significance

The axial step size determines how much accuracy is achieved. If the step size is
small, the flow and thermal behaviors can be more accurately computed. The values of the
variables near the entrance of the channel change considerably, that’s why small
incremental steps are needed in order to monitor the rapid change in such values. After
some distance, the smaller axial step becomes insignificant as the change in values

becomes small.

5.5.2. Axial Steps
The existing computer program, developed by Mokheimer [54], was using linear
axial increment with the initial step size AZ = 1x10'°. This step size gradually increased

to values of AZ =5x10", 1x107?, 5x10%, 1x107, 1x107, 1x1075, 1x107, 1x10~* and 1x107



45

after §, 10, 20, 30, 40, 50, 60, 80 & 100 steps respectively. The final step size was AZ =
1x10~ which remained constant after 100 axial steps. In the present work, a gradual and
smooth increase of the axial step was considered. This includes step change in the axial
step. Initially, same constant final value of AZ = 1x107 was used for exponential and
hyperbolic increments but, later on, it was further reduced to 1x10™ due to the reason that
latter AZ, i.e. 1x10™ is 10 times less than the previous one and it can compute more values

for a particular channel height thus giving better representation of the gradient variations.

5.5.3. Linear increase of the Axial Increment

This was the existing model for axial increment which is presently modified to make
axial increment AZ starting from 1x107'° and reaching a constant value of 1x10~ after 100
steps. Figures (5.2) and (5.3) show the graph of total axial distance and axial increment
against the number of axial steps respectively. It can be seen from Fig. (5.2), the total
axial distance moved by the fluid from the inlet in case of linear axial formulation seems
to change its behavior suddenly after some number of steps. This behavior is better
understood from Fig. (5.3). There is step change in the axial-step size after certain number
of steps, in case of linear formulation. As AZ is involved in the calculations of the fluid
annulus energy equation, calculation of axial momentum equation, determination of V-
velocity component and also in the Nusselt number calculations, any sudden jump in axial
step size AZ may lead to discontinuity in the above calculations. To avoid any such doubt,

smooth continuous axial step size increment needs to be implemented. For this purpose,
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AZ = Axial step size

Z, =Number of axial steps

In order to find the value of constant, one can equate the above equation to 1x107,
which is AZ for the first axial step (Z,=1). The value of the constant comes out to be 6.49.

Hence nine versions of computer code might be obtained using the same finite
difference equations of the same goveming equations when one uses different
combinations of the ways to express the axial step increase, expressing the continuity of
axial heat flux principle at only 4 comer points or at all interface mesh points. All 9
versions of the computer code are shown in the tabular form in Table 5.1.

The present study is for free convection. Factors such as heat flux on both interfaces,
mixed mean temperature and heat absorbed in the fluid describe the thermal behavior in
the geometry circumferentially and along the height. Other factors such as program
running time and number of axial steps describe the behavior of computer code execution.
Table 5.2. gives different values for the above-mentioned 9 models, related to free
convection, for an incoming dimensionless axial velocity (U, = 0.005). It is quite obvious
that model 2 is taking more time than model 1. The same behavior can also be observed
between models 4 & 5 and 7 & 8. The increase in time is due to the increase in axial steps
as all the computations have to be done in each axial step. This increase in time is not so
significant but if the program runs at high incoming flow rate, this will be a prominent
factor.

Exponential or hyperbolic axial formulation has also a noticeable impact on the

channel height. The channel height has decreased from 5.11x10™ to 4.69x10™ (about 8.2



Table 5.2. Some Results for the versions of Computer Code Tested

Model
Ktype | Parameters
1 2 3 4 5 6 7 8 9
HF; ox 3.17105] 3.22166 | 3.22083 | 3.12735| 3.14917| 3.14822| 3.12805( 3.15023 | 3.1493
HF, ox -1.3453 | -1.3206 | -1.3212 | -1.3494 | -1.3346 | -1.3353 | -1.3495 | -1.3346 | -1.3353
= NU, ox 5.46746| 54756 | 5.47675] 5.36187 | 5.36449 | 5.36536 | 5.36162 | 5.36488 | 5.3658
g. NUg ox 3.20297| 3.20828 | 3.20762 | 3.23805 | 3.23187 | 3.23128 | 3.23933 | 3.23309 | 3.23247
% Om,ex 4.20E-01)4.12E-01]4.12E-01|4.17E-01|4.13E-01]4.13E-01|4.17E-01]|4.13E-01[4.13E-01
IE 2o 5.11E-04(4.69E-04|4.71E-04|5.11E-04|4.89E-04[{4.90E-04|5.11E-04{4.89E-04|4.90E-04
Time(min.) | 3.17096 | 5.09883 | 5.04401 | 3.23047 | 5.30768 | 5.30664 | 3.225 | 5.3388 | 5.31226
:::p"sf 101 | 176 | 173 | 101 | 177 | 174 | 101 | 177 | 17a
Configuration Used in the model
NR;=0.3 N =20
NR, =0.5 NSO =15
NR; = 1.0 NSI = 15
NR¢=1.2 KR =10
E=0.5 PR=0.7
M=20 Up =0.005

CASE=1.1
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%) when we shift from linear to hyperbolic axial step formulation. Also the number of
axial steps has increased. Comparing hyperbolic & exponential axial increments in
Table.5.2, the model having hyperbolic axial increment (models 2, 5 and 8) use more
axial steps as compared to exponential step formulation (models 3, 6 and 9) and hence,
take more time. Although the difference seems small but other cases may increase the
time difference, therefore, exponential step increment formulation will be used for the
final computer code for further analysis. Coming to the heat flux formulation, only four-
point heat flux model is not able to describe the actual phenomenon. Due to eccentricity,
heat will definitely flow circumferentially as well as radially in the present problem, so
this consideration along the circumferential interfaces will take us closer to actual process.
It is better to take the heat flux considered throughout the interface wall. It should be
remembered that heat flux relation is used to get the mesh point temperature values for the
solid walls at inner and outer interfaces. On the basis of above discussion, temperature
and heat flux continuity principle will be used on all cylindrical mesh points along the
circumference of both interfaces. The selection between central and forward difference
schemes in heat flux relation will be made on the basis of the following discussion. The
central difference has a truncation error of second order, i.e., O(h®) while a forward and
backward difference has truncation error of the first order, i.c., O(h). This makes the
central difference scheme having less error than forward difference. A scheme having less
error should be the choice for selection, therefore, the central finite difference scheme,
having less error, will be used in the heat flux relation in the present model. Other

parameters are also compared for general values trend. From the above analysis, model 6



52

looks most suitable for further analysis. It takes less time than the exponential axial

increment with forward finite difference scheme.

5.6. Grid Independence

It is an established fact that the solution of finite difference scheme has errors but
the error can be minimized by increasing the number of grid points or in other words,
decreasing the mesh size. As the mesh points increases, the solution approaches the exact
solution. A stage comes when increasing the number of mesh points doesn’t affect the
solution much. This is called Grid independence. Different mesh sizes are tested to verify
this fact. Twelve different mesh sizes each for fluid annulus and inner & outer solid walls

are tested, as shown in Table 5.3.

Table. 5.3. Investigated Combinations of mesh sizes for Grid Independence Test

Fluid 1 4510 [10x15{15x 10| 15x15 | 15x20 | 20 x 1520 x20| 20 x 25 | 25 x 25| 25 x 30 | 30 x 25 | 30 x 30
Mesh | (NxM)
config-
urtion | Solid

NSO)

(NSI& 1 10&10|10& 15|15& 10]15&15|15& 20 (20 & 15]20&20{20 & 25{258 25| 258 30|30 & 25|30 & 30

Increasing the number of mesh points N in the 7-direction reduces the percentage
difference from the reference mesh (30x30) in fluid annulus. Different trend with some
exceptions is observed in case of increasing M alone in the £-direction. The same
behavior is observed in the solid walls in which the 30 x 25 mesh size in both the inner
and outer walls is taken as reference.

The selection of a suitable mesh size is done by first taking 15 segments in the radial

direction of each of the solid walls and varying the mesh size in the fluid annulus. Grid
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size of 30 x 30 is taken as reference mesh. Table 5.4 shows clearly that mesh size of 25 x
25.i.e. 25 segments along n direction and 25 segments along £ direction has percent
difference of values, shown in the Table, less than 1° % from the reference mesh size
values and, therefore, has been selected. The execution time reported in Table 5.4ison a
Pentium I processor having 600 MHz of CPU speed and 64 MB RAM. The mesh size in
solid walls is selected by taking the chosen 25 x 25 mesh size in fluid annulus and
varying the number of segments in outer and inner walls as shown in Table 5.5. The
number of segments along the ¢-direction in the solid walls are taken to be the same as in
the E-direction in the fluid annulus, i.e. 25 segments.

The selected mesh size in both walls is on the basis of a specified % difference
from reference values, which is less than 1% in local heat flux at inner & outer interfaces
(HF; & HF,), local Nusselt number at inner & outer interfaces (AVNU; & AVNU,) and
mean Bulk temperature (6,). Also the reference mesh is taken to be 30 & 30 radial
increments in inner & outer walls respectively. The standard dimensions of inner and
outer tube, shown in Table 7.1 indicate that the outer wall thickness is almost double that
of the inner tube. Therefore, the number of mesh points in the radial direction in the outer
and inner walls is selected to have the same proportion as the thickness of the two walls.
Table 5.6 shows three such possible combinations. The combination of 10 segments and
20 segments along radial direction for inner and outer cylinders, respectively, are selected
to be uséd. This is because this mesh-size combination matches the wall thickness

proportion and gives accurate enough results, as shown in Table 5.6.
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5.7. Selected Numerical Model

From the above discussion, computer code using central finite-difference scheme
in the continuity of heat flux relation on boundary points, linear interpolation and
exponential increase in axial increment size is the final choice to do further analysis.
Furthermore, mesh sizes of NxM=25x25, NSOxM=20x25 and NSIxM=10x25 are selected

in the fluid annulus, outer cylinder wall and inner cylinder wall, respectively.



Chapter 6

VALIDATION OF PRESENT COMPUTER CODE

6.1. Introduction

A physical phenomenon can be analyzed using set of equations. These equations are
valid only if they describe almost the same behavior as that of the system under
consideration. The solution of these equations can be achieved either by analytical or
numerical methods. But in both cases, the validation of these equations can be done by
comparing the results with the results obtained experimentally. A numerical model of
these equations can also be validated by the results obtained previously by other
investigators, after adopting the same conditions as that of the previous work. If the
results of the numerical model show good agreement with the previous results, then it is
considered as a valid model and can be used for further analysis.

To check the adequacy of the present computer code, special runs are carried out. In
order to validate for the conventional forced case, reported by Trombetta [39], Feldman
[40], Mokheimer [54] and Haider [55], very large values of thermal conductivity ratio
(KR) and very thin walls are used. These values correspond to KR=1000, inner wall
thickness=0.001, NR,=0.5, NR;=1.0 and outer wall thickness=0.002. For comparison with

Haider [55], mesh sizes of NxM=20x20, NSOxM=16x20 and NSIxM=8x20 are used in

58
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fluid annulus, outer cylinder and inner cylinder, respectively. These values are kept

constant for the validation purpose.

6.2. Comparison With Forced-Convection Results

6.2.1. Conventional Forced Convection Heat Transfer Case

The results of the present computer code, with E=0.5 and 0.6, for the fully
developed heat transfer parameters are in excellent agreement with the conventional case
results [39,40,55]. Table 6.1 gives comparisons between the present numerical solutions
and other comresponding conventional solutions available in the literature. The
configurations, shown in Table 6.1a, are selected to simulate forced convection heat
transfer having negligible thickness of channel walls, i.e. NR;=0.499, NR,=0.5, NR;=1.0,
NR4=1.002 and very high conductivity ratio, i.e. KR=1000. The purpose of selecting
these values is to minimize the conjugation effect so that results can be compared and
verified with conventional case. Thermal boundary conditions of the first kind is used,
which has isothermally h;aated inner wall (T.) while the outer wall is at the inlet fluid
temperature (T,), while 0.7 and 0.6 are the values of Prandtl number and eccentricity,
respectively.

The values of parameters are compared with that of Haider [55] and Trombetta [39].
Fully developed pressure gradient (dp/dz)y is verified by Haider [55] and Shah and
London [2]. A mutual comparison is also presented to show the adequacy of the present
work. The percentage error between the present work and Shah and London [2] for heat

flux at the inner wall (HF;rp) and fully developed pressure gradient (dp/dz)g is almost the
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Table.6.1. Comparison With Available Results For Eccentric Annuli Having_
Linear Axial Increment

NR,=0.499 N =20
NR,=0.5  M=20
NR,=1.002 NSI=8
KR=1000 NSO =16

=0.6 Case =1.1
Forced
Pr=0.7 Convection
Table.6.1a. Fully developed forced flow
Shah
Parameters/ Present Haider| % Present and % Haider s:::d::‘d %
Models [55] | error London | error [55] 21 error
(2}
(dp/dz)y | 32.246632.2070] 0.1229132.2466| 31.8180 { 1.3470(/32.2070| 31.8180 | 1.2226
Hg:]" % errorj| Present Trog:]e tta % error H[asig]er Trog:]e fta % error
HF ¢ 3.5948 | 3.5930 | 0.0500|f 3.5048 | 3.5820 | 0.3573| 3.5930 | 3.5820 | 0.3071
AVNU,s, | 57407 | 5.7380 | 0.0468f 57407 | 57460 |0.0925)f 57380 | 57460 | 0.1302
AVNU, . | 47616 | 4.7620 | 0.0077[ 4.7616 | 4.7540 |o0.1606|| 4.7620 | 4.7540 | o0.1683
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Table.6.1b. Fully developed forced flow

KR=1000 NSO =16

E=0.5 Case=1.1
Forced
Pr=1.0 Convection
PARAMETER Haider |, Feldman |, Haider | Feldman |,
S/MODEL Present [55] %e arrorfl Present [40) %o @rTOT (55) [40) %e @rror
(dp/dz),q 35.7237 | 35.7300] 0.0177 ] 35.7237 | 35.3400 | 1.0857|] 35.7300 | 35.3400 | 1.1036
Om g 0.3793 | 0.3793 | 0.0021 || 0.3793 0.3848 | 1.431414| 0.3793 0.3848 | 1.4293
AVNU% 5.3842 | 5.3830 | 0.0221 ] 5.3842 5.3900 | 0.1078|f 5.3830 5.3900 | 0.1299
AVNU, 4 4.3172 | 4.3180 | 0.0178] 4.3172 | 4.3080 | 0.2143 | 4.3180 4.3080 | 0.2321
Table.6.1c. Developing forced flow
O AVNU, AVNU,
Z/MODEL i
Present HF;:;' % error|| Present H;g; r % error| Present [Haider [55]| % error
0.001 0.0417 | 0.0416 | 0.2810] 15.1060 | 15.1190 | 0.0857 || 0.0001 0.0001 6.6847
0.01 0.1527 | 0.1526 | 0.0977|| 7.6672 7.6680 | 0.0101}| 1.5364 1.5370 | 0.0363
0.1 0.3517 | 0.3517 | 0.0052 |} 5.3489 5.3500 | 0.0198]| 4.3336 4.3340 | 0.0094
"6 T AVNU, AVNU,
ZIMODEL Feldman|, Feldman |, Feldman |,
Present [40) % error|l Present [40] %e @rror|| Present [40] Yo error
0.001 0.0417 | 0.0362 [15.2400)| 15.1060 | 13.0800 |15.4896| 0.0001 0.0004 ]82.2257
0.01 0.1527 | 0.1319 [15.8067]] 7.6672 | 6.8580 11.7998|] 1.5364 3.4600 |55.5942
0.1 0.3517 | 0.3209 | 9.6037|f 5.3489 5.1840 | 3.1817] 4.3336 4.6010 | 5.8120
O AVNU, AVNU,
ZIMODEL | Feldman| Haider Haider Feldman
[40] (55] (55 % error| [40) Haider [55]| % error
0.001 0.0362 | 0.0416 [14.9171|] 13.0800 | 15.1190 [15.5887|| 0.0004 0.0001 [80.9524
0.01 0.1319 | 0.1526 {15.6937]] 6.8580 7.6680 |11.8110|| 3.4600 1.5370 |55.5780
0.1 0.3209 | 0.3517 | 9.5980 || 5.1840 5.3500 | 3.2022) 4.6010 4.3340 | 5.8031
(dp/dz) " PRESSURE GRADIENT
HF, HEAT FLUX ON THE INNER INTERFACE
AVNU; NUSSELT NO. ON THE INNER INTERFACE
AVNU, NUSSELT NO. ON THE OUTER INTERFACE
Om MIXED MEAN TEMP.

A AXIAL DISTANCE MEASURED FROM THE INLET
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same as that between Shah and London [2] anci Haider [55]. The present model gives
better results for fully developed average Nusselt number at inner and outer interfaces
than that of Haider [55] by taking the results obtained by Shah and London [2] as
reference . Table 6.1b has the same configuration except for eccentricity, E=0.5, and
Prandtl number, Pr =1.0. This Table compares the results of four parameters calculated in
the present computer code with that of Feldman [40] and Haider [55]. This Table is
helpful for the observer to have the complete comparative analysis of the selected
parameters. Table 6.1c shows the axial development of the selected parameters. Linear
axial increment is used as was used by Haider [55]. Since very large gradients exist near
the entrance, computations are made with very small axial steps near the entrance (AZ=1
x 107'%); the axial step size being gradually increased several times as the flow moves
downstream to reach a maximum value of AZ=1 x 10~ near fully developed region. It
can be observed that as we move further in the axial direction, the percentage error
decreases until fully developed conditions are achieved where percentage error lies
around 1%. Haider [55] compared his results for these three parameters with Feldman
[40]. The present computer code also gives satisfactory results and even better for some
cases.

Another tabular comparison is made for three different parameters at different
eccentricities between the present work and that reported by Mokheimer [54]. Table 6.2
gives a good picture of the percentage error between the values, which is obviously less
than 1%. It should be kept in mind that the same linear axial increment, which was used
by Mokheimer [54] for this validation. As there are no solid walls in the work of

Mokheimer [54], the mesh size of 20 and 10 segments along the radial (R) direction and
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Table.6.2. Comparison With Available Results By Mokheimer [45] For

Conventional Forced Convection

N=20
NR,=0.5 M=20
NR(=1.002 NSI=25
KR=1000 NSO =25
E=0.6 Case = 1.1
Pr=0.7
em.fd " Nul.fd " Nuo,fd
E ./. ) O/°
Present|Mokheimer Present|Mokheimer Present|Mokheimer
error error error
0.1 0.4084 0.4084 0.0183 || 4.9228 4.9223 0.0092 FI 3.5296 3.5299 0.0085
0.2 0.4059 0.4057 0.0572 || 4.9597 4.9593 0.0087|f 3.6183 3.6184 0.0040
0.3 0.4006 0.4005 0.0244 " 5.0412 5.0412 0.0004 || 3.7643 3.7643 0.0004
0.4 0.3934 0.3935 0.0169 || 5.1787 5.1794 0.0131]| 3.9822 3.9819 0.0083
0.5 0.3845 0.3847 0.0318 (| 5.3991 5.3980 0.0212 I>4.2973 4.2962 0.0253
0.6 0.3738 0.3740 0.0574 || 5.7404 5.7432 0.0489 | 4.7617 4.7607 0.0207
0.7 0.3600 0.3604 0.1165 " 6.3043 6.2885 0.2518 || 5.4937 5.4992 0.1000
0.8 0.3413 0.3417 0.1180" 7.2795 7.2773 0.0302“ 6.8477 6.8441 0.0522
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25 segments each in the circumferential (¢) direction in outer and inner cylinder walls,
respectively, were taken for each cylinder wall. This fine mesh size will definitely
improve the result even though very slightly.

The graphical comparison shown in Fig. (6.1) is for the axial development of mixed
mean temperature at different eccentricities for forced convection. At the start of the
channel, the values of mixed mean temperature for different eccentricities are very close
to each other and thus approach the fully developed values for different eccentricities.
These values gradually part from each other as the flow moves down the channel. The
curves, obtained by El-Shaarawi et al.[45] and the present computer code, for each

eccentricity show good agreement with each other, as shown in Fig. (6.1).

6.2.2. Conjugate Forced Convection Heat Transfer Case

The present computer code is also validated for conjugate forced convection. The
comparison is presented graphically rather than in tabular form. Figures (6.2) and (6.3)
show the graphical comparison solely with the work done by Haider [55]. All these
figures are for forced convection heat transfer. Figure (6.2) is showing the developing
temperature profiles across the widest gap for an eccentricity, E=0.5 and conductivity
ratio, KR=1. Rest of the configurations is shown below the graph. Quter wall thickness is
taken twic_e the inner wall thickness and so is the number of mesh grids, just like Haider
[55] did, for comparison. You can see the gradual development of the temperature profile
across the widest gap towards the fully developed profile. The overlapping of curves 7 &

8 is an indication that flow has become fully developed, so as the temperature profile.
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Fig.6.1. Comparison between the present results and those of conventional Forced
Convection [47] for mixed mean temperature against Z for various values of
Eccentricity in an annulus of NR,=0.5

NR;=0.5, N=20, M=20, NSI=25, NSO=25, NR1=0.499, NR4=1.002,
KR=1000, Pr=0.7, Case=1.[
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Now this curve will not change for other cross sections at lengths beyond Z = 2.03 x 10™".
Axial station (8) is the additional station to show that the profile has actually reached fully
developed conditions. The same temperature profile is observed at the same axial distance
in the graph obtained by Haider [55). The closeness of the two curves shows that the
results obtained from the present computer program are consistent with the results
obtained by Haider [55].

Figure (6.3) shows a comparison between the present and Haider’s work [55] for the
fully developed temperature profiles at the widest gap for three different values of KR,
namely, 1,10,100. An additional value of KR=500 was also used to show that there is no
change in the temperature profile after a certain value of KR or in other words, the

conjugation effect is suppressed.

6.3. Comparison With the Results For Conventional Free Convection

First comparison is made in Table 6.3 for the channel height, required to suck
specific flow rate under thermal boundary conditions of first kind,. In free convection, the
fully developed conditions are reached by the fluid flow when the channel height is large
enough. Conventional conditions are achieved by using very thin walls and high
conductivity ratio. The value of Prandtl number is taken as 0.7. Mesh size is the same as
reported by Mokheimer [54], i.e. 20 segments each along 7 and £ directions. Finer mesh is
used in the solid walls. 20 segments along radial direction each for inner and outer walls
are used and 25 segments along ¢ direction are used. Different values of induced flow rate

is compared with the conventional case and as it is obvious from Table 6.3 that
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Table.6.4. Nusselt Number Averaged for the Cases 1.1 & 1.0 at Inner and Outer Interface

_ Case 1.1 _ w _ Case 1.0 _

E AVNU,; AVNU, AVNU, AVNU,
Mok[t;:;me Present e:l"‘or Mok[::;mer Present er.:::r Mokll;:;mar Present e:ll'::r Mok[I;;mer Present er.::r
01] 5.2368 | 5.2454 |0.1640] 3.2478 | 3.2411 0.2072|| 4.7061 4.7019 10.0907] 3.7760 | 3.7815]0.1454
0.2] 5.2847 | 5.3056{0.3952| 3.3199 | 3.3033 0.4993|| 4.7497 | 4.7362|0.2826] 3.8673 | 3.8849 {0.4556]
03| 5.3755 |5.4178]0.7883| 3.4447 | 3.4103 0.9978" 4.8326 | 4.8054 |0.5641] 4.0240 | 4.0617 |0.9377
04] 55268 | 5.6015(1.3517| 3.6316 | 3.5690 |1.723 49716 | 4.9333 [0.7711] 4.2562 | 4.3122 |1.3151
0.5] 5.7679 | 5.7891]0.3681| 3.8996 | 3.8803 |0.494 5.1930 | 5.1884 |0.0880] 4.5860 | 4.5931 |0.1542
0.6] 6.1510 | 6.2142]1.0264] 4.2872 | 4.2279 |1.383 5.5440 | 5.5142)0.5369] 5.0594 | 5.1090 [0.9803]
0.7] 6.7840 | 6.8117]|0.4087| 4.8794 | 4.8507 |0.586 6.1218 | 6.0857 |0.5897| 5.7785 | 5.8430 [1.1155]
0.8] 7.9466 | 8.0325|1.0818] 5.9010 | 5.8089 |1.559 7.1796 | 7.1265]0.7397] 7.0137 | 7.1151 |1.4461
0.9] 10.7610 [10.9518|1.7730] B8.2538 | 8.0388 |2.6043f 9.7342 | 9.7318 |0.0249] 9.8472 | 9.8540 0.0700]
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Chapter 7

RESULTS AND DISCUSSION FOR BOUNDARY

CONDITION OF FIRST KIND

7.1. Introduction

This chapter discusses the effect of solid-fluid conductivity ratio (KR), eccentricity
(E), radius ratio (NR3) and walls thickness on incoming flow rate and other heat transfer
parameters as function of the channel height employing fundamental boundary condition
of first kind. It is to remind the reader that the boundary condition of first kind comprises
of inner cylinder wall kept at a prescribed isothermal temperature while outer cylinder
wall kept isothermal at ambient temperature for case (1.I). These boundary conditions
switch their places for case (1.0). The selected values of inner and outer walls thickness
are taken from the standard practical values shown in Table 7.1. The values of solid-fluid
conductivity ratio (KR) are selected in such a way to represent all of its practical values
shown in-Table 7.2. The four controlling factors; KR, E, NR; and wall thickness are
explicitly required to solve the problem under consideration for a fluid of a specific

Prandtl number. The values of these parameters, used for computation, are shown in Table

73.
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Table.7.1. Radius Ratios for Standard Steel Pipes

Nominal Size Radius Ratio Dimensionless
(Inch) Tube Thickness
: ASTM
N NR N
inner | Outer Schedule # R, 2 R, inner | Outer
114 1 Sch. 40 0.35 0.51 1.25 0.17 0.25
Sch. 80 0.32 0.56 1.37 0.25 0.37
Sch. 40 0.36 0.49 1.2 0.13 0.2
3/8 11/4
Sch. 80 0.33 0.53 1.3 0.2 0.3
Sch. 40 0.39 0.52 1.18 0.14 0.18
1/2 11/2
sch.80 | 036 | o0s6 | 127 | 02 | o027
ala ) Sch. 40 0.4 0.51 145 [ 0.1 0.15
Sch. 80 0.38 0.54 1.22 0.16 0.22
1 21/2 Sch. 40 042 0.53 1.16 0.11 0.16
- Sch. 80 0.41 0.57 1.24 0.15 0.24
Sch. 40 04 0.47 1.12 0.07 0.12
112 | 4 |
Sch. 80 038 | 05 | 118 || o 0.18

Table.7.2. Common Values of KR

Thermal
Material Conductivity
(Wim-°C)
Air @ 300 K 0.02624
Carbon Steel (1 % C) 43
Water - Saturated @ 300 K 0.613
Cast fron (4 % C) @ 293 K 52
Engine Qil (SAE 50) @ 293 K 0.145
Aluminum Metal @ 293 K 236
Asbestos @ 273 K 0.154
Plastic 0.48
Solid Fluid Conductivity Ratio (KR)
Mg:';" d Air | Water Oil
Aluminum 8993.9 |384.99 1627.59
Cast iron 1981.71 |84.83 358.62
Steel 1638.72 |70.15 296.55
Plastic 18.29 0.78 3.31
Asbestos 5.87 0.25 1.06




Table.7.3. Variable Parameters Used in the Analysis

KR E NR; IWALL OWALL
1 0.1 0.1 0.01 0.02
5 0.3 0.3 0.05 0.1
10 0.5 0.5 0.1 0.2
50 0.7 0.7 0.2 04
100
1000
Iwall Dimensioless inner cylinder wall thickness
Owall

Dimensionless outer cylinder wall thickness
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Fig.7.1. Variation of Flow Rate with Channel Height for Different
Values of Conductivity Ratio (KR) (Case 1.1)

NR; = 0.5, inner Wall Thickness =0.1, Outer Wall Thickness = 0.2, E=0.5
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Fig.7.2. Variation of Flow Rate with Channel Height for Different Values of

Conductivity Ratio (KR) (Case 1.0)
NR; = 0.5, inner Wall Thickness = 0.1, Outer Wall Thickness =0.2, E=0.5
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For case (1.I), when the channel height is small and solid-fluid conductivity ratio
increases, the temperature on the inner solid-fluid interface increases. The outer wall
effect is not prominent in this case because the heat signal is not fully sensed by the outer
interface due to short channel ﬁeight. This results in the increased flow rate into the
channel. For high channels, the situation reverses because the outer wall cooling effect
dominates due to its larger surface area at high solid-fluid conductivity ratio enabling
more heat to flow through the outer wall. The result is the decrease of temperature on
outer solid-fluid interface. This reduces the induced flow rate into the channel. For case
(1.0), the effect of increasing solid-fluid conductivity ratio on induced flow rate remains
consistent for all the channel height range, i.e. having increased flow rate with increasing
values of conductivity ratio. In this case the outer wall heating effect is dominant on the
cooling effect of the inner wall throughout the channel height. The effect of increased
flow rate enables the fluid to absorb more heat, thus raising the mean temperature within
the annulus, which increases the buoyancy force driving more flow to be induced in the
channel.

Figures (7.3-7.20) explain this phenomenon. These figures have been obtained for a
specific flow rate of 0.0075 for case (1.I) and 0.0105 for case (1.0). All the
circumferential analysis is carried out at an axial (vertical) location of 4.36x10™ for case

(1.D) and 4.86x107 for case (1.0).
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7.2.1.2. Local Heat Flux (HF)

Figures (7.3) and (7.4) show the circumferential variation of local heat flux with
solid-fluid conductivity ratio on inner and outer interfaces respectively for case (1.I). Here
it is necessary to define the sign convention of heat flux. The value of heat flux is taken
positive if it causes heat to flow into the fluid annulus whereas it is taken negative if heat
flows out of fluid annulus and can also be interpreted as the heat removal from the fluid.
Both of the Figs. (7.3) and (7.4) show increase in the value of heat flux with increasing
solid-fluid conductivity ratio but the difference is that the inner solid-fluid interface is
increasing the heating effect while the outer interface is contributing to the increasing
cooling effect of the channel. This is also true for case (1.0) and similar behavior is
observed on outer and inner solid fluid interfaces as shown in Figs. (7.5) and (7.6). The
only difference is that the heat is flowing from outer cylinder wall to the inner cylinder
wall for case (1.0). In this case, the heat flow through the inner interface is not enough to
cool the whole domain; this makes the heating effect of outer wall dominant due to its
larger surface area, therefore, increasing the flow rate. The values of the heat flux come
closer to each other at high values of solid-fluid conductivity ratio as can be seen in Figs.

(7.3-7.6). This is an indication of the reduced conjugate effect.
7.2.1.3. Circumferential Temperature (6)
The increased heat flux on both solid-fluid interfaces, at higher values of solid-fluid

conductivity ratio increases the temperature on the inner active (Heat Transfer) interface

while decreases it on the outer interface as can be seen in Figs. (7.7) and (7.8) for case
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Fig.7.6. Circumferential Variation of Local Heat Flux on Inner
Interface at an Axial (vertical) Location of 4.86x10™ for Different
Values of Conductivity Ratio (Case 1.0)
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(1.D. Opposite behavior of circumferential temperature values is observed for case (1.0)

as shown in Figs. (7.9) and (7.10).

7.2.1.4. Temperature Profile

The temperature variation with conductivity ratio along the line of symmetry can be
shown with the help of the temperature profiles across the fluid annulus at the widest and
the narrowest gaps as shown in Figs. (7.11) and (7.12), respectively, for case (1.I). The
temperature values on both the solid-fluid interfaces for case (1.0) behave in a similar

reversed manner as can be seen in Figs. (7.13) and (7.14).

7.2.1.5. Average Heat Flux (AVHF)

Figures (7.15-7.18) show the variation of the average heat flux for different values
of KR along the axial distance of the channel for cases (1.I) and (1.0). The average heat
flux increases with the conductivity ratio on both the interfaces. This means that the
amount of heat entering and leaving the fluid annulus has increased. For case (1.I), heat
enters the fluid annulus through inner interface while leaves through outer interface. For
case (1.0), the places of heat entering and exiting the fluid annulus are interchanged. It is
observed, from the figures for both cases (1.I and 1.0), that the curves of average heat
flux become almost horizontal at large values of Z (away from the channel entrance)

indicating that fully developed conditions are approached.
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7.2.1.6. Total Heat Absorbed (0)

Figure (7.19) shows the variation of the total heat absorbed (§) by the fluid
versus channel height (L) for different values of solid-fluid conductivity ratio for case
(1.D). Two trends can be seen in the figure. For short channels, higher values of solid-fluid
conductivity ratio shows greater heat absorbed in the fluid whereas this trend reverses for
high channels. Increasing the conductivity ratio increases the amount of heat added
through the inner wall but the heat signal is not fully sensed by the outer wall in such
short channels. Therefore, more heat is gained by the fluid through the isothermally
heated inner wall than that lost by the fluid through the outer wall maintained at the
ambient temperature. This results in the rise of mean fluid temperature and hence the flow
rate. For high channels, the amount of heat lost by the fluid though the outer wall
increases at high values of conductivity ratio, thus, decreasing the amount of heat
absorbed by the fluid. This reduces the mean fluid temperature, which in turn reduces the
buoyancy driving force that induces the flow into the channel resulting in a reduced flow
rate. Only one trend of having an increased heat absorbed by the fluid at higher values of
the conductivity ratio is observed for case (1.0), as shown in Fig. (7.20). The heating
effect of outer wall remains dominant throughout the channel height because the heat
flowing from the outer wall is much more than that lost through the inner wall due to its
less surfaqe area. This accumulation of heat in the fluid assists the increased heating effect
on outer interface, with increasing conductivity ratio, in inducing more flow rate in the

channel.
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7.2.2. Effect of Eccentricity (E)

This analysis is carried out using geometry of annulus radius ratio 0.5, inner and

outer walls thickness of 0.1 and 0.2, respectively and conductivity ratio 10.

7.2.2.1. Induced Flow Rate (F)

Figures (7.21) and (7.22) present the variation of induced flow rate with the channel
height for different values of the eccentricity for cases (1.I) and (1.0) respectively. It is
observed that at a given channel height, the flow rate induced is greater for case (1.0)
than for case (1.I), as can be seen in Fig. (7.23). This is attributed to the larger heating
surface in case (1.0) than in case (1.I). For both cases (1.I and 1.0) and given radius ratio,
conductivity ratio and channel iIeight, increasing the eccentricity increases the induced
flow rate. The reason is that eccentricity increases/decreases the resistance to flow on the
narrowest (v = 1)/widest (y = 0) gap side of the annulus. The axial velocity profile
develops with increasing/decreasing values on the widest (y = 0)/narrowest (y = 1) gap
side of the annulus resulting in net increase of higher heat transfer coefficient. This is due
to the increase in the heat transfer to the fluid by convection at the widest gap (y = 0).
This increases the mean fluid temperature leading to increased flow rate. Considering
very short channels, both cases (1.I and 1.0) show reverse trend, i.e. increasing the
eccentricity decreases the induced flow rate. The reason is that for small eccentricity, the
heat flows almost uniformly from the heated wall in all directions but does not find
enough channel height for the fluid to take the heat by convection thus resulting in

decreased mean fluid temperature and leads to the decrease in induced flow rate.
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7.2.2.2. Local Heat Flux (HF)

Figures (7.24-7.27) show the effect of eccentricity on the circumferential variations
of local heat flux on inner and outer interfaces for cases (1.I) and (1.0) at a specific flow
rate of 0.006 for case (1.I) and 0.009 for case (1.0). All the circumferential analysis is
carried out at an axial (vertical) location of 1.37x107 for case (1.I) and 1.99x107 for case
(1.0). Figures (7.24) and (7.25) show very small variation in local heat flux along the
circumference of the cylinder walls at low eccentricity for case (1.). The variation
increases on both solid-fluid interfaces with eccentricity. The reason is that with the
increase of eccentricity, the thermal resistance to heat flow at the narrowest gap w=1
decreases due to reduced distance whereas the resistance to heat flow increases at the
widest gap (y = 0) due to increased distance. Figures (7.26) and (7.27) show the same
trend for case (1.0) as seen for case (1.I). The only difference is that the heating and
cooling walls have switched their places. The reason for negative values of heat flux on

outer interface (case 1.I) and inner interface (case 1.0) is already explained in section

7.2.1.

7.2.2.3. Circumferential Temperature (6)

The rise in narrowest gap (y = 1) interface temperature of the cooling wall (outer
wall for case 1.I and inner wall for case 1.0) due to increased heat flux can be seen in
Figs. (7.28-7.31) for cases (1.I) and (1.0). From Figs. (7.28) and (7.29), small eccentricity
shows almost uniform interface temperatures along the circumference (of high value at

inner wall and low value at outer wall) for case (1.I). The increase of eccentricity causes
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amount of heat gained by the fluid is less at high eccentricity. This trend reverses for high
channels. This is also true for case (1.0) as shown in Fig. (7.37). The reason is that for
high channels (Large values of L), when eccentricity increases, the fluid flow at the
widest gap develops with higher values of velocity as compared to the narrowest gap,
because the widest gap offers less resistance to fluid flow. This increases the coefficient
of heat transfer at the widest gap and enhances the ability of fluid to absorb more heat,
thus causing more flow rate to be induced in the channel. The opposite happens for short
channels as the flow doesn’t find enough channel height to develop sufficient buoyancy
effect to gain more velocity in the widest gap (y =0) as eccentricity increases; this results

in a decrease in the heat absorbed by the fluid and directly affects the induced flow rate.

7.2.3. Effect of Radius Ratio (NR;)

This analysis is carried out using geometry of, inner and outer walls thickness of 0.1

and 0.2 respectively, eccentricity 0.5 and conductivity ratio 10.

7.2.3.1. Induced Flow Rate (F)

Figures (7.38) and (7.39) show the effect of the annulus radius ratio (NR») on the
dimensionless flow rate for case (1.I). For given eccentricity, wall thicknesses and
conductivity ratio, increasing the annulus radius ratio increases the dimensionless flow

rate. This is also true for case (1.0) as can be seen in Fig. (7.40). This increase in the
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dimensionless flow rate becomes helpful in the cooling of channels having the same
conductivity ratio and walls thickness for both cases (1. and 1.0).

Figures (7.41) and (7.42) are obtained by plotting the values of dimensionless flow
rate at a channel height (L) of 0.002 and fully developed (maximum) values of the same
parameter against the corresponding annulus radius ratios (NR3), respectively or case
(1.). Both figures, obtained from Figs. (7.38) and (7.39), show increasing trend of the
dimensionless flow rate with increasing radius ratio. Similarly, Figs. (7.43) and (7.44) are
obtained by taking the dimensionless flow rate at a channel height (L) of 0.002 and the
fully developed values of the same parameter against the corresponding radius ratios
respectively for case (1.0) and shows the same increasing trend with radius ratio as for
case (1.I).

As fluid annulus radius ratio (NR;) is the ratio of the outer radius of the inner

- - - - r.: - . -
cylinder to the inner radius of the outer cylinder (=), therefore an increase in the radius

ratio might mean the annulus cross sectional area has decreased. Physical understanding
says that smaller annulus area should have small flow rate. This is checked for case (1.I)
by converting the dimensionless flow rate into its dimensional form
(f = xy Gr(r,, —r,;)F) and plotting it against the radius ratio in Fig. (7.45). Still the flow
behavior is not explained. Increasing the radii, i.e. r; and r;,, in such a way that the radius
ratio remains the same, increases the annulus cross sectional area and hence the
dimensional flow rate, which does not explain the trend shown in Fig. (7.45). Therefore,
the dimensional flow rate per unit area is determined and plotted against the

corresponding radius ratios as shown in Fig. (7.46). Now this explains the behavior that
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whatever the radii may be, the flow rate per unit area increases when the annulus radius
ratio is increased. Figures (7.47) and (7.48) show the dimensional flow rate behavior in

the fluid annulus for case (1.0) and can be explained in a similar way as for case (1.]).

7.2.3.2. Total Heat Absorbed (3)

Increasing the radius ratio (NR:) has a direct impact on the total heat absorbed by
the fluid as can be seen in Figs. (7.49) and (7.50) for case (1.I). The same behavior is
observed for case (1.0) as shown in Fig. (7.51). This is attributed to the decreased
distance in the annulus for heat to flow and increased fluid flow rate per unit area enabling

more heat to be absorbed by it.

7.2.4. Effect of Wall Thickness

This analysis is carried out using conductivity ratio 2, annulus radius ratio 0.5 and

eccentricity 0.5.

7.2.4.1. Induced Flow Rate (F)

Figure (7.52) shows the variation of flow rate with channel height at selected values
of walls thickness for case (1.I). Two different trends of flow rate variation with
increasing walls thickness are observed. For short channels, the flow rate is more for thin
walls whereas this behavior reverses for high channels. Thick walls have the same
opposing effect as that for walls with small conductivity ratio. i.e. inner wall resisting the

heat to flow into the fluid while outer wall preventing the heat to flow out of the fluid. For
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the channel. Secondly, another analysis has been done by keeping the outer wall thickness
fixed while increasing the inner heated wall thickness. The thick inner wall resists the heat
to enter the fluid annulus, causing the temperature values on the inner solid-fluid interface
to decrease. This affects the amount of heat absorbed by the fluid, decreases the mean
fluid temperature and consequently the induced flow rate as shown in Fig. (7.55).

Figures (7.56-7.71) explain these phenomena in detail; these figures are for a
specific flow rate of 0.00825 for case (1.I) and 0.01125 for case (1.0). All the
circumferential analysis is carried out at an axial (vertical) location of 1.58x10™ for case

(1.I) and 6.86x10° for case (1.0).

7.2.4.2. Local Heat Flux (HF)

Figures (7.56) and (7.57) show the effect of the wall thickness on the circumferential
variation of the local heat flux on the inner and outer interfaces respectively for case (1.I).
Both the figures (7.56) and (7.57) show a decrease in the value of the heat fluxes with
increasing walls thickness. The local heat flux also decreases with the wall thickness for
case (1.0) as shown in Figs. (7.58) and (7.59). The reason is that the thick walls resist the

heat to flow through it hence, decreasing the local heat flux.

7.2.4.3. Circumferential Temperature (0)

Circumferential temperature variations on the inner and outer interfaces with
increasing walls thickness for case (1.I) are shown in Fig. (7.60) and (7.61) respectively.

The resisting effects of the walls, as discussed earlier, decrease the temperature levels on
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the hot inner interface whereas it increases on the cold outer interface with increasing
walls thickness. The outer wall insulating influence with increasing interface temperature
values for thick walls enable more flow to be induced in the channel. Figure (7.62) shows
decreasing temperature values on the hot outer solid-fluid interface whereas Fig. (7.63)
shows increasing temperature values on the cold inner solid-fluid interface, with
increasing walls thickness for case (1.0). The temperature values on the outer and inner
interfaces have an opposite effect on the flow rate as compared to case (1), i.e.

increasing the walls thickness reduces the induced flow rate.

7.2.4.4. Temperature Profile

The temperature profiles across the channel along the line of symmetry for thin and
thick walls are shown in Figs. (7.64) and (7.65) respectively. These profiles help in
explaining the phenomenon. Very thin walls show almost zero temperature gradient as
can be seen in Fig. (7.64) whereas the temperature gradient increases in thick walls (Fig.
7.65) leading to a decrease in temperature on the inner interface and an increase in
temperature on outer interface. Hence, the heat flow out of the fluid annulus or in other
words the cooling effect through the outer wall decreases when walls thickness is
increased, leading to an increase in flow rate. Figures (7.66) and (7.67) show the
temperature profiles across the channel along the line of symmetry for very thin and very
thick walis respectively for case (1.0). The increased temperature gradients lead to
reduced temperature values on the outer interface and increased temperature values on the

inner interface. The outer wall effect, which is the supporting factor in reducing the flow
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Hence it can be concluded that the increase in the temperature level in the fluid and on
outer solid-fluid interface by increasing the wall thicknesses causes more flow rate to be
induced for high channels for both cases (1.I) and (1.0) whereas for short channels in case
(1.0), the reduced heat absorbed along with the lower temperature values on outer solid-
fluid interface decreases the induced flow rate and this trend reverses in short channels for

case (1.I).

7.3. Critical Conductivity Ratio (KR) with respect to Eccentricity (E)

It is of practical importance to know the values of the conductivity ratio beyond
which the conjugate effect can be neglected. Figure (7.74) shows graphically the results of
the present work for the variation of the percentage difference in channel height from the
conventional case (KR—> ) with conductivity ratio for different values of eccentricity for
case (1.I). Channel height is the criterion considered to determine the critical values of
certain parameters for the conjugate free convection case by comparing it with the
conventional case. The percentage difference is based on the conventional values of the
channel height. The critical value of the conductivity ratio for given eccentricity and
radius ratio, has been arbitrarily defined as that value which causes the channel height to
differ by no more than 1% from the conventional solution result for the given eccentricity
and radius ratio. According to this definition, the critical values of the conductivity ratio,
ptesehted in Fig. (7.74), are also given in Table 7.4. It is obvious from the figure that the
higher the values of eccentricity, the higher the critical value of conductivity ratio. It can

also be inferred from the figure that conjugate effect increases with eccentricity.
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Figure (7.75) shows the graphical representation of the critical values of
conductivity ratio for case (1.0). The same parameter (channel height) and criterion (1%)
are adopted to determine the critical value of the conductivity ratio beyond which the
conjugate effect can be neglected. The results are presented in Table 7.5. It is observed
that an increase in eccentricity (E), at a given radius ratio (NR,=0.5), causes the critical
value of conductivity ratio (KR) to decrease. Furthermore, the critical values of
conductivity ratio at given values of eccentricity and radius ratio for case (1.0) are greater
than the corresponding values for case (1.I) indicating that the conjugate effect is more

pronounced in case (1.0) than in case (1.I).

7.4. Critical Outer Wall Thickness with respect to Eccentricity (E)

Figure (7.76) shows graphically the obtained results for the variation of the
percentage difference in channel height from the corresponding conventional case resulits
with the wall thickness for different values of eccentricity for case (L.I). This percentage
is based on the conventional values of channel height and has been arbitrarily defined as
the value that causes the channel height to differ by no more than 1% from the
conventional solution result for given eccentricity and radius ratio (NR2 =0.5). According
to this definition, the critical values of the outer wall thickness, below which the conjugate
effect can be neglected, are given in Table 7.6 and are also presented in Fig. (7.76). The
ratio of oﬁter to inner wall thickness is kept fixed at 0.5. It can be seen from the figure

that, for a given NR; = 0.5, the higher the value of eccentricity, the lower the critical wall
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Table. 7.5. Critical Value of Conductivity Ratio for Different Values of
Eccentricity, Case (1.0)

KR Channel Heightf E =0.1 " E=0.3 IrE =0.5 E=0.7

. Value 0.00654 0.00476 J# 0.00375 0.00296

% Difference | 160.47060 || 114.44489 || 103.38371 || 98.85896

5 Value 0.00321 0.00271 i 0.00222 0.00178

% Difference 27.72369 II 21.83867 20.66689 19.88858

10 Value 000286 || 0.00247 || 000204 |[ o0.00164

% Difference | 13.88091 [ 11.08194 | 1052702 | 10.40245

50 Value 000258 || o0.02271 [ o0.00188 1%0.00152

% Difference | 2.87438 2.28598 2.17530 2.12058

100 Value 0.00255 1 0.00225 || o.00186 4'_ 0.00150

% Difference | 147983 [ 116206 | 109563 || 1.05087

1000 Value 0.00251 0.00222 IL 0.00185 "r 0.00149

% Difference 0.19233 0.13342 0.11729 0.10898

Conventional channel height 0.00248 I[ 0.00220 0.00183 0.00147
Critical KR a0 || 190 150 130

Cham;:':mg:;;":sl::"dmg 0.00251 || 0.00222 1[ 000184 | 0.00149
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Table. 7.6. Critical Value of Wall Thickness for Different Values of Eccentricit
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Case (1.1
Owall |Channel Height| E=0.1 E=03 || E=05 | E=07
0.002 Value | 0.002684925/[0.002057299][0.001664717][0.001488516
% Difference ]0.000994786| 0.00479196 [[0.014927807]|0.022204151
0.02 Value 0.00268469 [|0.002056976|0.001664516(|0.001487282] -
% Difference |0.009734339]0.020478114/[0.026989748]/0.105097665
0 Value  |0.002683342] 0.002053543]|0.001657797][0.001476362
% Difference | 0.059965049[0.187368226{0.430512296] 0.838542907
02 Value | 0.002667646(|0.002035524/0.001637531/[0.001453634
% Difference | 0.64454051 | 1.063174511/[ 1.647755539|| 2.365100973
04 Value  |0.002608472/[0.001973751/[0.001574937][0.001405286
% Difference 2.848453564/4.065635755|| 5.40723497 ||5.612459056
: c°"v°"g;'91"§h‘""°' 0.002684952{| 0.002057398|0.001664965]| 0.001488847
Critical Wall Thickness 0.236 0.195 0.156 0.112
Channel Height
Corresponding to Crtical |0.002658102/}0.002036824({0.001648315{ 0.001473958
wall Thickness
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thickness. It is also observed in this analysis that the conjugate effect increases with
eccentricity.

Figure (7.77) shows the graphical representation of the critical values of outer wall
thickness for case (1.0). Same parameter (channel height) and criterion (1%) is adopted to
determine the critical value of the wall thickness below which the conjugate effect can be
neglected. Same ratio of Outer to inner wall thickness, i.e. 0.5 is also kept fixed for case
(1.0). The results, presented in Table 7.7 and Figure (7.77), show that the critical value of
outer wall thickness increases with increasing eccentricity (E). Furthermore, the critical
values of wall thickness are smaller than the corresponding values for case (1.I) indicating

that the conjugate effect is more pronounced for case (1.0).

7.5. Critical Conductivity Ratio (KR) with respect to Radius Ratio (NR;)

This section presents the critical values of thermal conductivity ratio (KR) beyond
which the conjugate effect can be neglected for different radius ratios (NR;) for cases (1.I)
and (1.0). Figure (7.78) shows graphically the results of the present work for the variation
of the percentage difference in channel height from the conventional case with
conductivity ratio (KR) for different values of radius ratio (NR;) for case (1.I). The
percentage difference is based on the conventional values of the channel height. The
critical value of the conductivity ratio (KR) for given radius ratio (NR) and eccentricity
(E), has béen chosen as that value which causes the channel height to differ by no more
than 1% from the conventional solution result for the given radius ratio and eccentricity.

The critical values of the conductivity ratio (KR), presented in Fig. (7.78), are also given
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Table.7.7. Critical Values of Wall Thickness for Different Values of

Eccentricity, (Case 1.0)

OWALL c::i;“:' E=01 | E=03 JI E=05 || E=07
0.002 Value 0.002514254 | 0.002223385{ 0.001846115] 0.0014881

% Difference | 0.192746213|| 0.145210691f 0.132275791 [ 0.115712441

0.02 Value 0.002547123]| 0.00224734 |[0.001865703( 0.0015038

% Difference | 1.50257866 [| 1.224186481 (| 1194766371 1.171969873

0 Value 0.002687084 || 0.002348512[] 0.001947563 Aﬂ‘o.omssgas

% Difference |7.080017984 || 5.78115337 || 5.634793866 || 5.6143060889

02 Value 0.002857747 || 0.002466198 | 0.00203776 || 0.00163587

% Difference | 13.88090549]| 11.08194466]] 10.52701905|[ 10.05731504

04 Value 0.003191703|| 0.00267756 || 0.002191502f 0.00174887

% Difference |27.18903319|| 20.60207465]| 18.86589807 ][ 17.65067745

Conventional Channel Height | 0.002509417} 0.002220161 0.001843676|[0.00148638
Critical Owall 0.01295 0.0161 0.0166 0.0168

Channel Height Correspondin 0.002242363 0.001862113| 0.001501244

to Critical Wall Thickness

gl 0.002534511
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Table 7.8. Values of Critical Conductivity Ratio for Different Radius
Ratios Case (1.1

160

KR °:;:::' NR,=0.1 | NR,=0.3 " NR;=0.j NR, = 0.6 ll NR,=0.7

. Value  ]0.001967175]0.001544043/0.002858583 0.001025 [0.006431019

% Difference] 34.95414156 7.986871477|2.849553013(| 11.64945428[ 15.27053051

5 Value  ]0.001695915]{0.001474481 |9.002775067 0.00111368 {/0.006861845

% Difference] 16.34485707]|3.121882784|[ 0.155266799]| 4.005620797| 9.594346648

0 Value  ]0.001582169 0001456773' 0.002777826[0.001134558|[ 0.007159751

% Difference| 9.227612458]| 1.88378705 [|0.056020008]|2.205950772|[ 5.669398445

s0 Value  ]0.001487869|0.001436245 0002778461"0 00115453 [|0.007489593

% Difference| 2.07227061 [ 0.447703838[ 0.03306704 0484533685“1.323686497

100 Value ]0.001473211/(0.001433117 0002778794} .001157326|{0.007538651

~_|% Difference] 1066700847/ 0.229002524| 0.02109532 [|0.2435161880.677347537

1000 Value  |0.001459372]f0.001430221 00027792 001159844 0.007584795

% Difference] 0.117284657]0.026422046 0005511223 0026511681 0.069391336

c°"v°"t:;::ltcm""°' 0.001457662"0.001429843 0002775383 0.001160151 0.007590062

Critical KR 136 30 33.5 || 63

Channel Height

CorrespoKn;t\agl ut: Critical| 0.001472239/0.001444141[/0.002807177} 0.00114855 “0.007514161
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Table 7.9. Values of Critical Conductivi

Ratio for Different Radius

Ratios Case (1.0)

136

KR c::i;::' NR, =0.1 " NR,=0.3 || NR,=05 || NR,=0.7

) Value | 0.00790041]|0.00797402][0.00736902] 0.00298963

% Difference | 58.6794144| 89.4171742[116.103715(| 118.533063

s value  |0.00553781/{0.00490328 0.00414366(| 0.00166875

% Difference | 11.2267005] 16.4738193{ 21.5168648] 21.9813111

‘0 Value  |0.00525878(/0.00455743( 0.003779 [[0.00151679

% Difference | 5.62235727|/8.25861262 10.822729 [[10.8730172

s Value  [0.00503514/|0.00428016|0.00348505[ 0.00139955

% Difference | 1.13061992]| 1.67206362} 2.20242604]{ 2.30345053

100 Value  |0.00500708([0.00424529|| 0.0034478 [|0.00138393

% Difference | 0.56694626|| 0.843729'dh.11006548 116123709

1000 Value | 0.0049822 [|0.00421347]|0.00341393[ 0.00136966

% Difference | 0.06734406] 0.08800625] 0.11690399)] 0.118524

c°"v°"t',:’;;:'t°ha""°' 0.00497885"0.00420977 0.00340995 0.00136804

Critical KR 54 76 159 188

Channel Height

Corresp?(n:tlagl Lo Critical 10.00502864{10.00425186{0.00344405(0.00138172
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conventional and conjugate cases at a given radius ratio (NR3). Hence it can be inferred

that conjugate effect increases with radius ratio (NR3) for case (1.0).

7.6. Critical Outer Wall Thickness with Respect to Radius Ratio (NR;)

Figure (7.80) shows graphically the results of the present investigation for the
variation of the percentage difference in channel height from the conventional case with
the wall thickness for different values of radius ratio (NR;) for case (1.I). This percentage
is based on the conventional values of channel height and has been chosen as the values
that cause the channel height to differ by no more than 1% from the conventional solution
results for given radius ratio (NRz) and eccentricity (E=0.5). The critical values of the
wall thickness, below which the conjugate effect can be neglected, are presented in Table
7.10 and are also presented in Fig. (7.80). It is to remind the reader that an increase in the
critical value of wall thickness means the conjugate effect is decreasing. It can be seen
from the figure that, for a given eccentricity (E=0.5), the critical value of wall thickness
increases up to a certain value of radius ratio. After that value of radius ratio, the critical
value of wall thickness starts decreasing. This is because with the increase of radius ratio
(NRy), the effect of outer wall increases. Also more heat flows through the fluid annulus
causing the percentage difference in channel height between conventional and conjugate
cases to decrease resulting in the decrease in the conjugate effect. For large radius ratios
(NR3y), suéh as 0.6 and 0.7, the effect of outer wall dominates causing the channel height
to decrease and create higher percentage difference in channel height from the

conventional case. It means thinner walls are needed to reach the critical value criterion,
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Table 7.10. Critical Values of Quter Wall Thickness for Different Values
of Radius Ratio Case (1.1)

Owall c:;;::u NR;=0.1 || NR;=0.3 || NR,=0.5 || NR,=0.6 " NR; =0.7
0.002 Value | 0.001458319)[0.001429858|| 0.00277936 ||0.001160014] 0.007589
% Difference] 0.045046322/|0.001015959( 0.000823344//0.011832943|[ 0.013091613
0.02 Value |0.001464109[0.001429881|| 0.00277934 ||0.001158765| 0.00757
% Ditference] 0.442264189||0.002672969[ 0.001542928| 0.11948685 || 0.26431895
0 value |0.001507423[0.001436187| 0.002778 [l0.001150009| 0.00742
% Difference| 3.413723508| 0.443660095{ 0.049755069||0.874224257]| 2.240587339
02 value |0.001552169]0.001456778| 0.0028022 | 0.00113 | 0.0071524
% Difference] 9.227612458|| 1.88378705 [|0.820941809||2.598910568|[5.766250312
04 Value |0.001816942||0.001525284| 0.00289652 || 0.001076 " 0.0070254
% Difference| 24.64767539|( 6.674902564|| 4.214500881( 7.253475903][ 7.430450932
C°"Vem:::i::'tc"°""°' 0.001457662|0.001429843|0.002779383}|0.001160151 || 0.007590062
Critical KR 0.037 0.149 0.2125 0.1 0.0525
Channel Height
Correspt:(n:i:lag' :: Critical| 0.001472239]{ 0.001444141| 0.002807177|| 0.00114855 || 0.007514161
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i.e,, 1 % channel height difference from the conventional case as can be seen in Fig.
(7.80) and Table 7.10. The transition from decreasing to increasing values of conjugate
channel height with increasing wall thickness for a radius ratio (NR; = 0.5) can be
observed in Table 7.10.

Figure (7.81) shows the graphical representation of the critical values of wall
thickness for case (1.0). Same parameter (channel height) and criterion (1%) is adopted to
determine the critical value of the wall thickness below which the conjugate effect can be
neglected. The results, presented in Table 7.11 and Figure (7.81), show that, for a given
eccentricity (E=0.5), higher the value of radius ratio, the lower the value of critical wall
thickness. Hence it is concluded that conjugate effect increases with radius ratio (NR.) for

case (1.0).



Chapter 8

RESULTS AND DISCUSSION FOR BOUNDARY

CONDITIONS OF THIRD KIND

8.1. Introduction

This chapter covers the results and discussion of the effect of conductivity ratio,
eccentricity, radius ratio and wall thickness on induced flow rate in the vertical eccentric
annuli under the boundary conditions of third kind. It is to remind the reader, the
boundary conditions of the third kind comprise of one wall heated isothermal (at a
prescribed temperature) while the other wall kept adiabatic. Same values of eccentricity
(E), radius ratic (NR;), conductivity ratio (KR) and wall thickness are used in the present

analysis as were used for boundary conditions of first kind.

8.2. Results and Discussion

8.2.1. Effect of Conductivity Ratio (KR)

The following results are obtained using geometry of annulus radius ratio 0.5, inner
and outer wall thicknesses 0.1 and 0.2, respectively and eccentricity 0.5 imposing

boundary conditions of third kind.

141
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8.2.1.1. Induced Flow Rate (F)

Figure (8.1) shows the variation of induced flow rate (F) with channel height (L) for
some selected values of conductivity ratio (KR) for case (3.I). Two trends are observed
for the flow rate variation for case (3.I). For short channels, when the conductivity ratio
increases, the flow rate increases and then it starts decreasing after a certain value of
conductivity ratio. For high channels, only one trend of decreasing the flow rate with
conductivity ratio is observed. The flow behavior in high channels is attributed to increase
in the heat conduction (circumferential and transversal) in the cylinder walls as well as
decrease in the amount of heat absorbed in the fluid. The opposite happens for short
channels up to a certain value of conductivity ratio because when the conductivity ratio is
increased, the amount of heat entering the fluid through the inner wall increases, resulting
in increase in the amount of heat absorbed in the fluid and hence the flow rate. After
certain value of conductivity ratio (KR) the thermal conductivity of outer wall dominates,
resulting in reduced temperature difference between the fluid and outer solid-fluid
interface. This causes the induced flow rate in the eccentric channel to reduce. A trend of
having increase in the induced flow rate up to a certain value of conductivity ratio (KR)
and then decrease in its value is observed for all channel heights in case (3.0) as shown in
Fig. (8.2). It means, when the conductivity ratio (KR) is increased up to a certain value,
the increased amount of heat causes an increase in the temperature values on the inner
soh’d-ﬂui& interface as well as the heat absorbed in the fluid resulting in increase in the
induced flow rate. After that value of conductivity ratio (KR), the temperature difference

between the outer solid-fluid interface and the mean fluid temperature decreases (as a
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result of insulating the inner wall and high wall conductivity) and hence the heat transfer

decreases, causing the reduction in the induced flow rate.

8.2.1.2. Optimum Conductivity Ratio (KR,,)

Due to this variation in the trend of induced fluid flow rate, for cases (3.I, short
channels) and (3.0), there is need to determine the values of conductivity ratio (KR) at
different eccentricities (E) and radius ratios (NR3), at certain specific channel heights,
after which the behavior of induéed flow rate reverses. We can also say that these values
of conductivity ratio (KR) are the optimum values giving maximum induced flow rate at
certain specific channel heights abbreviated as (KR,p).The channe-l heights used for
analysis are 0.008, 0.01, 0.012 and 0.014. The analysis is carried only for case .0)
because this induced flow behavior is present in case (3.I) for very small range of channel
height, which may be insignificant to analyze.

Figures (8.3 through 8.6) show the graphs of conductivity ratio (KR) plotted against
induced flow rate (F) at eccentricities (E) ranging from 0.1 to 0.7, for a given radius ratio
(NR2=0.5), at the four specified channel heights. From the figures (8.3 trough 8.6), it is
observed that all four channel heights show almost the same values of optimum
conductivity ratio (KRop) with the exception for eccentricity 0.3 at channel height of
0.008 as shown in Fig. (8.4). Also for eccentricity 0.7, as can be seen in Fig. (8.6), after an
optimum ;:onductivity ratio value of 11.5, there is no significant increase in the induced
flow rate. Hence it can be stated that the channel height has no significant effect on the

optimum value of conductivity ratio (KRopr)- This conclusion enables us to take the mean
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of the values of optimum conductivity ratio (KR) obtained at the specified channel
heights for each eccentricity (E) and plot these values against the eccentricity as shown in
Fig. (8.7). The results are also presented in tabular form as shown in Table 8.1. It is
obvious from the figure and the table that increasing the eccentricity results in an increase
in the optimum value of conductivity ratio (KRop). The physical interpretation of this
phenomenon can be given by considering hydrodynamics that involves the increase in
flow rate with increasing eccentricity. At large eccentricity, the increased flow rate
enables more heat to carry, which comes from the outer wall and causes the optimum
value of conductivity ratio (KRop:) to elevate.

Similar analysis is carried out for different radius ratios at specific channel heights,
i.e. 0.008, 0.01, 0.011, 0.012. Figures (8.8 through 8.11) show the graphs of conductivity
ratio (KR) plotted against induced flow rate (F), for a given eccentricity (E=0.5), at the
specified channel heights. Figure (8.8) for radius ratio (NR,=0.1) shows a shift in the
optimum value of conductivity ratio (KRcp) from 5.5 to 1.5 as the channel height
increases. Rest of the figures (8.9, 8.10 and 8.11) show almost the same values of
optimum conductivity ratio (KRp) at the specified channel heights indicating no
significant effect of channel height on the optimum value of conductivity ratio (KRqpr).
Taking mean of the values of optimum conductivity ratio (KRop) at the above mentioned
channel heights for each radius ratio (NR,) and plotting these values against the
eccentricity shows an increase in optimum conductivity ratio (KRop) with radius ratio
(NRy) as shown in Fig. (8.12) and presented in Table 8.2. A possible explanation of the
phenomenon can be given by considering the heat absorbed in the fluid, which increases

with increasing radius ratio. The increased heat absorbed in the fluid at large radius ratio
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in turn increases the buoyancy force and hence the induced flow rate causing the optimum
value of conductivity (KRop) ratio to elevate. The above discussion can be helpful to
design the most efficient eccentric channel for having maximum flow rate with known
radius ratio, eccentricity and wall thickness.

Figures (8.13-8.24), obtained for a flow rate of 0.00825 for case (3.) and 0.01275
for case (3.0), explain the phenomenon. All the circumferential analysis is carried out at

an axial (vertical) location of 1.65x10™ for case (3.]) and 3.86x107 for case 3.0).

8.2.1.3. Local Heat Flux (HF)

Figures (8.13) and (8.14) show the increase in the circumferential values of local
heat flux on inner (Case 3.I) and outer (case 3.0) interfaces, respectively. A transition
from the circumferential decrease to increase in the heat flux is present for both cases (3.1
and 3.0). The figure shows that for conductivity ratio (KR=1 to 10), the values of heat
flux decrease circumferentially from widest gap (y = 0) to narrowest gap (y = 1). This is
because the heat that accumulates on the interface next to insulated wall at the narrowest
gap (y = 1) decreases the temperature difference between the walls. After certain values
of the conductivity ratio, as shown in Fig. (8.13) for KR=50 to 100, the circumferential
heat conduction in the inner wall from narrowest gap (y = 1) to widest gap (v = 0)
(clockwise) increases to such an extent to increase the heat flux at the narrowest gap (y =
1) as compared to the widest gap (y = 0) on the inner solid-fluid interface for case @G.D.
This is also true for case (3.0) as shown in Fig. (8.14). Furthermore, increasing the

conductivity ratio (KR) causes the overall circumferential heat flux to increase at the
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heated wall interfaces (inner interface for case (3.I) and outer interface for case (3.0)) as

shown in Figs. (8.13) and (8.14).

8.2.1.4. Circumferential Temperature (6)

Figures (8.15-8.18) present the circumferential variation of temperature values on
inner and outer solid-fluid interfaces for given values of conductivity ratio (KR) for cases
(3.1) and (3.0). Both cases show the same circumferential behavior of temperature with
conductivity ratio (KR) on the interfaces next to heated and insulated walls. There is also
the change of trends in the circumferential temperature values on inner (case 3.I) and
outer (case 3.0) interfaces (Figs. 8.15 and 8.17), which are directly related to the
circumferential change of local heat flux as already explained. As can be seen from Figs.
(8.16) and (8.18), the widest gap (y = 0) shows increasing temperature values up to a
certain limit of conductivity ratio and then the temperature values start decreasing. The
narrowest gap (y = 1) shows only one trend of decreasing temperature values with
increasing KR. This is attributed to the circumferential heat conduction in the outer wall,
which remains near the interface for small values of conductivity ratio (KR) and

penetrates the wall when conductivity ratio (KR) has large values.

8.2.1.5. Temperature Profile
Figures (8.19-8.22) explain the phenomenon by considering the temperature profiles
across the channel at wxdest (v = 0) and narrowest gaps (y = 1) for cases (3.I) and (3.0).

These figures are depicting the same results of the temperature values on inner and outer
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Conductivty Ratio (Case 3.1)

NR; = 0.5, Inner Wall Thickness = 0.1, Outer Wall Thickness =0.2, E=0.5
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Fig.8.18. Circumferential Variation of Temperature on Inner Interface at

a Channel Height of 3.86x10™® for Different Values of Conductivty Ratio
(Case 3.0)

NRz =0.5, Inner Wall Thickness = 0.1, Outer Wall Thickness = 0.2, E=0.5



1 .
T \\\\
0.6
0 5
0.4 . 10
KR=1
02
100, 1000 S0
0
1 12 14 16 1.8 2 22 24

X

Fig. 8.19. Temperature Profile Across the Channel at the Widest Gap (¥=0) at
an Axial (vertical) Location of 1.65x10™ for Different Valueso of Conductivity

Ratio (KR) (Case 3.1)
NR; = 0.5, Inner Wall Thickness = 0.1, Outer Wall Thickness = 0.2, E=0.5

=1

0.8 10

. /

//
/

50
0.2
' 100 / 1000
0 . : .
0.0 02 04 0.6 0.8 1.0 12 1.4

X

Fig. 8.20. Temperature Profile Across the Channel at the Narrowest Gap

(¥'=1) at an Axial (vertical) Location of 1.65x10™ for Different Valueso f
Conductivity Ratio (KR) (Case 3.1)

NR; = 0.5, Inner Wall Thickness = 0.1, Outer Wall Thickness =0.2, E=0.5

157



o8 10] 5. = "

100 /
04 /
02

1000

12 14 16 1.8 2 22 24
X

Fig. 8.21. Temperature Profile Across the Channel at the Widest
Gap ('¥=0) for Different Valueso of Conductivity Ratio (KR)
(Case 3.0)

NR; = 0.5, inner Wall Thickness = 0.1, Outer Wall Thickness = 0.2, E=0.5

|
1 KR=1,5
10
0.
8 \\ 50
0.6
\ 100
0.4 \
0.2
1000
0 _ v
© 0.0 0.2 0.4 0.6 0.8 1.0 12

X

Fig. 8.22. Temperature Profile Across the Channel at the
Narrowest Gap (‘¥=1) for Different Valueso of Conductivity
Ratio (KR) (Case 3.0)

NRz = 0.5, inner Wall Thickness = 0.1, Outer Wall Thickness =0.2, E=0.5

158



159

solid-fluid interfaces as already explained for circumferential temperature values for these
cases. The most important observation is the decrease of temperature gradient in the walls

with increasing conductivity ratio (KR).

8.2.1.6. Average Heat Flux (AVHF)

Figures (8.23) and (8.24) show the average value of heat flux on inner (case 3.I) and
outer (case 3.0) solid-fluid interfaces, respectively. The increase in the average heat flux
is directly linked to the local heat flux. The heat flux increase in turn increases the amount
of heat entering the fluid, but due to high thermal conductivity, more heat is conducted in

the opposite wall, insulated at one side.

8.2.1.7. Total Heat Absorbed (0)

The total heat absorbed (Q ) by the fluid follows the same trend as for the flow rate

for cases (3.I) and (3.0) as can be seen in Figs. (8.25) and (8.26) for eccentricity (E =
0.5). When the amount of heat absorbed by the fluid decreases, it also reduces the mean
fluid temperature. The axial momentum of the fluid flow decreases and with it decreases
the buoyancy force, hence driving less fluid flow in the channel. We have determined the
value of conductivity ratio (KR) beyond which the heat absorbed by the fluid decreases
for only one case, i.e. E = 0.5, as shown in Fig. (8.27). We can infer from the above
discussion that, for the investigated geometry (NR>=0.5, inner wall thickness=0.1, outer
wall thickness=0.2 and E=0.5), we can have shorter channels to induce a specific flow

rate of the fluid by taking the material of the cylinders having conductivity ratio (KR) in a
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range of 9-10 imposing the boundary conditions of third kind having outer surface

isothermally heated wall and inner insulated wall.

8.2.2. Effect of Eccentricity (E)

The results to be presented here are obtained for an annulus radius ratio 0.5, inner

and outer wall thicknesses of 0.1 and 0.2, respectively, and conductivity ratio 10.

8.2.2.1. Induced Flow Rate (F)

Figures (8.28) and (8.29) show the variation of the flow rate with the channel height
for different values of eccentricity for cases (3.I) and (3.0), respectively. In both cases,
increasing the eccentricity, at any given radius ratio and conductivity ratio, results in an
increase in the induced flow rate. This is attributed to the reduced resistance to fluid flow
at the widest gap (W =0), which enables the fluid to flow with greater velocity at the same
gap and hence absorbing more heat. The result is an increase in the mean fluid
temperature and hence the induced flow rate. The magnitude of the flow rate, at any
specific channel height, is higher for case (3.0) as compared to case (3.I). This indicates
that more heat flows through the outer wall to the fluid in case (3.0) due to its larger
surface area than that of the inner wall. This imposes a direct impact on the mean fluid
temperature and hence the induced flow rate. The switching of the boundary conditions
from case (3.I) to case (3.0) results in a change in the behavior of the heat flux and

temperature values on the inner and outer solid-fluid interfaces, as discussed hereunder.
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Figures (8.30-8.37), obtained for a flow rate of 0.01125 for case (3.I) and 0.015 for
case (3.0), explain the phenomenon. All the circumferential analysis is carried out at an

axial (vertical) location of 2.86x10" for case (3.I) and 4.36x107 for case (3.0).

8.2.2.2. Local Heat Flux (HF)

Figure (8.30) shows circumferential variation of the local heat flux on the inner
solid-fluid interface with eccentricity for case (3.I). Here, we can see that, in general,
increasing the eccentricity reduces the local heat flux values on inner interface. The
reason is that with the increase of eccentricity, the heat flow at the narrowest gap (¥ = 1)
increases but the outer insulated wall does not ;llow the heat to escape, thus, resulting in a
rise in the temperature on its outer interface. This reduces the temperature difference
between the outer and inner interfaces, hence reducing the incoming heat flux. This
decreasing heat flux with increasing eccentricity (E) on the interface next to the heated
wall does not occur for case (3.0) as shown in Fig. (8.31). The higher the eccentricity, the
higher will be the local heat flux on outer interface. The increased flow of fluid at widest
gap absorbs more heat when eccentricity increases and enables more heat to flow through
the outer interface indicating an effective contribution of hydrodynamics in the heat
transfer. The inner insulated wall has very little effect on the outer wall heat flux. The
local heat fluxes on the interfaces next to the adiabatic walls for both cases (3.1 and 3.0)

have zero values and hence are not presented.
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8.2.2.5. Total Heat Absorbed (Q)

Figures (8.38) and (8.39) show the total heat absorbed (Q ) by the fluid varying with
eccentricity for case (3.I) and (3.0), respectively. Both cases show same trend of having
increased heat absorbed by the fluid with eccentricity. The only difference is the
magnitude of heat absorbed which is higher for case (3.0). The reason is the bigger
surface area of outer solid-fluid interface than the inner interface allowing more heat to
flow through it into the fluid. The graphical comparison is presented in Fig. (8.40). The
presence of insulated wall in each case does not allow the heat to flow through this wall.
The only way out for the heat is by free convection, which causes the mean bulk
temperature and the buoyancy force to increase; thus sucking more fluid in the channel.
Hence, for given annulus radius ratio, conductivity ratio and wall thicknesses, the heat
transfer in the channel is carried out only by free convection. Furthermore, this analysis
can be utilized to determine the heat transfer for a specific channel height with the help of
Figs. (8.38) and (8.39) for cases (3.I) and (3.0), respectively, at any particular eccentricity

for given conductivity ratio, wall thicknesses and radius ratio.

8.2.3. Effect of Radius Ratio (NR;)

This analysis is carried out for an annulus of eccentricity 0.5, inner and outer walls

thickness of 0.1 and 0.2, respectively, and conductivity ratio 10.
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8.2.3.1. Induced Flow rate (F)

Figures (8.41) and (8.42) show the variation of dimensionless flow rate with channel
height (L) for different values of annulus radius ratio (NR;) for case (3.I). For given
eccentricity, wall thicknesses and conductivity ratio, increasing the annulus radius ratio
increases the dimensionless flow rate. This is also true for case (3.0) as can be seen in
Figs. (8.43) and (8.44).

Figures (8.45) and (8.46) are obtained by plotting the values of dimensionless flow
rate at a channel height (L) of 0.005 (Fo.00s) and maximum values of the same parameter
(Fmax) against the corresponding annulus radius ratios (NRy), respectively, for case (3.I).
Both figures show increasing trend of the dimensionless flow rate with increasing radius
ratio. Similar trend is observed for case (3.0) shown in Figs. (8.47) and (8.48). Fig. (8.47)
is obtained at the same channel height (L) as for case (3.I), i.e. 0.005. Fmux is the
maximum flow rate that can be sucked into the channel of a specific radius ratio (NRa).
This can be seen in Figs. (8.41-8.44) showing the curves to become horizontal after a
certain channel height indicating the maximum possible induced flow rate in the channel
for given eccentricity (E), conductivity ratio (KR), wall thicknesses and radius ratio
(NRz).

In order to explain the flow behavior further, the dimensionless flow rate (F) s
converted into its dimensional form (f, m%/sec) and plotted against the corresponding
radius ratfos, as shown in Fig. (8.49) for case (3.I). Furthermore, the dimensional flow
rate per unit annulus area is calculated and plotted against the corresponding radius ratios

(NRy), shown in Fig. (8.50), due to the reason explained earlier in section 7.2.3. Similar
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trend is found for case (3.0) as can be observed in Figs. (8.51) and (8.52). From the
figures (8.49-8.52), it can be inferred that whatever the radii may be, flow rate per unit
area increases when the annulus area is decreased or in other words radius ratio is

increased.

8.2.3.2. Total Heat Absorbed (0)

Increasing the radius ratio or in other words, decreasing the annulus area has a direct
impact on the total heat absorbed in the fluid as can be seen in Figs. (8.53-8.55) for case
(3.). The same behavior is observed for case (3.0) as shown in Figs. (8.56-8.58). This is
attributed to the decrease in distance in the annulus for heat to flow énabling more heat be
absorbed in it. A relative comparison is presented for the amount of heat absorbed by the
fluid between cases (1.I) and (3.I), as shown in Figs. (8.59) and (8.60). Due to the
presence of one insulated wall for case (3.I), the heat finds no way to flow through other
than the fluid. This enables more amount of heat being absorbed by the fluid for case (3.I)
as compared for case (1.I), as can be seen in Figs. (8.59) and (8.60). This is also true for

Cases (1.0) and (3.0) as can be seen in Figs. (8.61) and (8.62).

8.2.4. Effect of Wall Thickness

The results to be presented here are obtained for an annulus radius ratio 0.5,

eccentricity 0.5 and conductivity ratio 10.
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8.2.4.2. Local Heat Flux (HF)

Figure (8.66) shows the circumferential variation of local heat flux on inner solid-
fluid interface for given values of walls thicknesses for case (3.I). It is clear from the
figure that increasing the wall thickness reduces the local heat flux. This is attributed to
the wall thickness, which resists the heat to flow through it. A transition from increasing
heat flux values to its decreasing values circumferentially can be observed in the figure.
This is because when the thicknesses of the walls are increased, the heat accumulates on
the outer interface at the narrowest gap (y = 1) more than at the widest gap (y = 0). This
reduces the temperature difference and hence the heat fluxes at the narrowest Gap (y = 1).
Similar trend of decreasin;g circumferential heat flux and transition of circumferential heat
flux values with increasing wall thicknesses is observed for Case (3.0) as shown in Fig.
(8.67). This can be explained similar to that for case (3.I). The variation of local heat flux
at the narrowest gap (y = 1) is due to some circumferential conduction taking place in the

walls. (y =1).

8.2.4.3. Circumferential Temperature (8)

Figures (8.68-8.71) show the circumferential temperature variation for the given
values of wall thicknesses for cases (3.I) and (3.0). Figures (8.68) and (8.70) show
decreasing circumferential temperature values with increasing wall thicknesses on the
solid-fluid interface next to the heated wall (inner wall for case (3.I) and outer wall for
case (3.0)) for cases (3.I) and (3.0), respectively. The opposite is observed on the other

interfaces in Figs. (8.69) and (8.71) for both cases. The reason, as already explained, is the
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Fig.8.67. Circumferential variation of Local Heat Flux on Outer

Interface at an Axial (vertical) Location of 2.86x10 for Different
Values of Wall Thickness (Case 3.0)

(1)iwall=0.01;0wall=0.02 (2)iwall=0.05;Owali=0.1 (3)iwall=0_1:0Owall=0.2
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wall thickness resisting the heat to enter and leave the annulus, hence contributing to the
increased flow rate into the channel. The overlapping of the circumferential temperature
values on inner solid-fluid interface for case (3.0) is due to the circumferential conduction

in the inner wall.

8.2.4.4. Temperature Profile

The temperature profile across the channel is also helpful in understanding the effect
of wall thickness on flow rate into the channel as can be seen in Figs. (8.72-8.75) for cases
(3.D and (3.0). It is clear from the figures that thick walls resist more to heat flow than
the thin walls. This effect can be seen by the h1gh temperature values on both the
interfaces. The temperature value on the interface next to the insulated wall is more for
case (3.0) than for case (3.I). This is due to more heat being conducted through outer wall
having larger surface area as compared to the inner wall. Due to increase in the
circumferential heat conduction in the insulated thick wall for each case (3.I and 3.0), the
temperature in the same wall at the widest gap (y = 0) increases, hence influencing the
temperature in the fluid to raise near that wall at the same gap, shown in Figs. (8.73) and

(8.75).

8.2.4.5. Average Heat Flux (AVHF)

The average heat flux also decreases with increasing wall thicknesses as presented

in Figs. (8.76) and (8.77) for cases (3.I) and (3.0), respectively.
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Chapter 9

CONCLUSIONS AND RECOMMENDATIONS

The present work has aimed at obtaining a numerical solution for the conjugate
laminar free convection heat transfer in vertical eccentric annuli. Two sets of thermal
boundary conditions have been applied on the inner and outer surfaces of the two
cylinders. One set of boundar}f conditions comprises of one wall kept isothermally
heated while the other wall maintained at the inlet fluid temperature, known as
boundary conditions of first kind, represented by cases (1.I) and (1.0). The other set of
boundary conditions has one wall adiabatic while the other wall kept isothermally
heated, known as boundary conditions of third kind, represented by cases (3.I) and
(3.0). A model using bi-polar grids to fit the eccentric fluid annulus and cylindrical
grids in the solid walls has been presented. A finite-difference algorithm has been
developed to solve the model equations, which comprises the continuity equation,
axial and tangential-like momentum equations and the fluid and solid energy
equations.

The model has been numerically tested for mesh size and validated with
previously reported results. Numerical results have been presented for a fluid of
Prandtl number Pr=0.7. In the first part of the study, boundary conditions of first kind
were imposed on the cylinder walls to analyze the effect of conductivity ratio (KR),

radius ratio (NR;), eccentricity (E) and walls thicknesses on the induced flow rate.
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From the results, it is concluded that induced flow rate is affected by the above-
mentioned factors. Furthermore, it is also observed that the conjugate effect in the
channel changes with conductivity ratio and wall thicknesses. However, for a given
eccentricity, there are some critical values of conductivity ratio above which and walls
thicknesses below which, the conjugate effect can be neglected.

In the second part of the work, boundary conditions of third kind were imposed
on the cylinder walls to see the effect of the four above-mentioned factors on the
induced flow rate. Similarly, the effect of the four above mentioned factors on the
induced flow rate and conjugate effect were analyzed for different conductivity ratio
(KR) and walls thicknesses at any given eccentricity. Similar trend of having more
conjugate effect with decreasing the conductivity ratio and increasing the walls

thicknesses is obtained as found for boundary condition of first kind.

9.1. Conclusions

From the obtained resuits the following conclusions can be deduced:

.For a given eccentricity (E), decreasing the value of conductivity ratio (KR), i.e.
increasing the thermal resistance of the walls results in the following, at a given axial
location (Z):

o Fora given channel height (Z = L), increases the induced flow rate for cases (1.I)
and (3.I), whereas decreases the induced flow rate for case (1.0). The flow rate
first increases and then decreases for case (3.0).

o Makes the conjugate effect more pronounced for cases (1.I and 1.0).

o Lowers the temperature at the inner interface and raise the temperature at the outer

interface in all cases, i.e. (1.Iand 1.0, respectively) and (3.I and 3.0, respectively).
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Increases the circumferential temperature variation at both interfaces in all cases,
i.e. (1.Iand 1.0, respectively) and (3.Land 3.0, respectively).

Rec!uces the interfacial heat flux at both interfaces for cases (1.I) and (1.0) and at
the interface next to the heated wall each for cases (3.I) and (3.0).

Increases the heat absorbed for cases (1.I) and (3.I), whereas decreases the heat
absorbed for case (1.0). The amount of heat absorbed first increases and then
decreases for case (3.0).

For a given eccentricity (E), increasing the values of wall thicknesses, i.e.

increasing the thermal resistance of the walls results in the following, at a given axial

location (Z):

For a given channel height (Z = [:), decreases the induced flow rate for case (1.0),
whereas increases the induced flow rate for cases (1.I) and (3.I). The induced flow
rate first increases and then decreases after certain wall thickness for case (3.0).
Make the conjugate effect more pronounced for cases (1.Iand 1.0).

Lowers the temperature at the inner interface and raise the temperature at the outer
interface in all cases, i.e. (1.1 and 1.0, respectively) and (3.I and 3.0, respectively).
Increases the circumferential temperature variation at both interfaces for all cases,
ie. (1.Iand 1.0, respectively) and (3.I and 3.0, respectively).

Reduces the interfacial heat flux at both interfaces for cases (1.I) and (1.0) and at
the interface next to the heated wall each for cases (3.I) and (3.0).

Decreases the heat absorbed for case (1.0), whereas increases the amount of heat
absorbed for cases (1.I) and (3.I). The heat absorbed first increases and then

decreases for case (3.0).
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On the other hand, for given conductivity ratio (KR), radius ratio (NR;) and wall

thickness, increasing the eccentricity leads to:

Incrpases in the induced flow rate for all cases, i.e. (1.I and 1.0, respectively) and
(3.Iand 3.0, respectively).

Makes the conjugate effect more pronounced for cases (1.Iand 1.0).

Decreases and increase the temperatures at the interfaces next to and opposite to
the heated walls for cases (1.I) and (1.0), respectively. The increase in the
eccentricity increases and decreases the temperature on both interfaces for cases
(3.) and (3.0), respectively.

Increases the circumferential temperature variation at both interfaces in all cases,
i.e. (1.1and 1.0, respectively) and (3.Iand 3.0, respectively).

Increases the interfacial heat flux at both interfaces for cases (1.I) and (1.0)
whereas causes reduction/rise in the heat flux value at the interface next to the
heated wall for case (3.1)/(3.0).

Increases the heat absorbed for all cases, i.e. (1.I and 1.0, respectively) and (3.1
and 3.0, respectively).

For given eccentricity, conductivity ratio and wall thickness, increasing the

radius ratio leads to:

Increase in the dimensionless induced flow rate for all cases, i.e. (1.I and 1.0,
respectively) and (3.1 and 3.0, respectively).
Decrease in the dimensional induced flow rate for all cases, i.e. (1.I and 1.0,
respectively) and (3.1 and 3.0, respectively).
Increase in the flow rate per unit area for all cases, i.e. (1.Iand 1.0, respectively)

and (3.Iand 3.0, respectively).
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Increase the heat absorbed for all cases, i.e. (1.I and 1.0, respectively) and (3.1
and 3.0, respectively).

The results related to critical conductivity ratio (KR) and wall thickness show

that:

o For a given radius ratio (NR;=0.5), The conjugate effect for case (1.0) is more
pronounced than that of case (1.I) with eccentricity variation. This can be
judged by the higher critical values of KR and lower wall thickness values for
case (1.0) than case (1.I).

e For a given eccentricity (E=0.5), increasing the radius ratio (NR:)
decreases/increases the critical value of thermal conductivity ratio (KR) for
case (1.[)/(1.0) with an exception c;f an increase in the critical value at large
radius ratios (NR) for case (1.I). The critical value of outer wall thickness
increases/decreases for case (1.I)/(1.0) with increasing radius ratio (NR2) with
an exception of decrease in the critical value at large radius ratios (NRa) for

case (1.I).

9.2. Recommendations

Due to the wide scope of the present research work, the following suggestions

for the future research in the same area can be given.

(-]

Experimental work can be suggested to validate the presently obtained resuits for
the cases investigated.
Conjugate free convection heat transfer analysis can be carried out in vertical

eccentric annuli with rotating boundaries.
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Transient case for conjugate free convection heat transfer in vertical eccentric
annuli can be investigated.

Coqjugate mixed convection heat transfer in vertical eccentric annuli can be
investigated.

The effect of conductivity ratio, eccentricity, radius ratio and wall thickness on the
induced flow rate along with the critical values of conductivity ratio and wall
thickness can also be investigated by employing boundary conditions of 2™ and 4%

kind.



APPENDIX A

NORMALIZATION OF GOVERNING EQUATIONS

The governing equations in bipolar coordinate system and cylindrical coordinate
system can be written in dimensionless form in order to make it applicable for any value
of the parameter and for any similar problem. The dimensionless parameters are given in
the nomenclature. The procedure to normmalize momentum equation in m-direction is
shown hereinafter.

The momentum equation in n-direction for steady state condition in bipolar

coordinate system can be written as:

al(hv)+ 1 z-;l(;w)+ 1 8%(hv)
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ﬂx = h" on*  h* o8&t h3 o& on 65 K on &
- (pa?
3 | " 'p, 1L & (,n W), L & (0 w)__2
_ th az: | rPer? HID,,I aﬂz k'Dh I{ZD,,Z 652 | k’Dk H3D,,3
D HE| A\
;
2 fmk,ﬁ)_f_(fmrﬂ) oUD,), 2 oH ;, @ HDUKG
2 a§ \ Dﬁ aT] Dk ag H-Dk aﬂ az O‘IGr ]
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Finally, we get after simplification and rearrangement of terms.

_Gr? o 1 az(HV) 1 a(HV) 1 o*#HY) 2 {B(HV)_a(HW) oH
H on “HGE ez B on? T o&? H* | o¢ on | a&

8(1 - NR,)* 8H aU
H? dn oZ

The momentum equation in n-direction becomes:

v, w ouv)

B THT o2 +4(1 - NR, U —

vV _WeH _ Gr18P+l o*(HV) B(HV)
Z H*on H on H'| onf as?

1 8 (HV) a(Hw) 8(HV)| oH . 8(1 - NR,)* 8H aU
HGr* 82? H‘ an a8 | a¢ H* énéz

Similar Steps can be followed to obtain the following non-dimensional equations.

Momentum equation along E-direction

wow ¥ a(HW)

2
H &  H? on +4( - MR, U

oW _V:oH __Gr’ o az(Hw) a* (HW)
oz H'eF H ag H- on® as?

1_o*HW) 2 [o(HWw) o(aV) a1ar+s(1-1\r1ez)2 oH aU
HGr* 0z* H*| on oF H? o oz

Momentum equation along Z-direction

62U+62U
WoU V aUu U _ 6 1 P 1 |3 oan?
——+-———+4(1-NR, YU - —+
H o H oy -r. ) oZ 4(1-NR2)2 41-NR,) 0Z H*| H?® aU

T T
Gr- oZ



APPENDIX B

PRINCIPLE OF CONTINUITY OF HEAT FLUX

The present study is focused on the analysis of conjugate free convection heat
transfer in vertical eccentric annuli. The geometry of the problem consists of two solid
cylinders, one within the other having eccentricity. The annulus between the inner surface
of outer cylinder and outer surface of inner cylinder provides space for fluid flow. There
is heat transfer between the cylinders. Two solid fluid interfaces exist in the geometry.
One is at the outer surface of inner cylinder and the other is at the inner surface of outer
cylinder. The amount of heat flowing at any point from the interface of heated wall is
equal to the amount of heat flowing in the annulus. In other words, continuity of heat flow
is present at the interfaces. Derivation of this principle of continuity of heat flux is going
to be presented here.

The expression of heat flux in any curvilinear coordinate system can be written as
[56]-:

3
g =-kVT = —kY u, Lgu—r
a; ou;

inl

And the three components of the heat flux vector along the u;, u» & u; coordinates

are given by:
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Here, in cylindrical coordinate system,

u=r
Uz=¢
U3 =2z

a; can be defined as:

(&) @) )
Bu; Bu; du;

where,
i=1,2,3

The coefficients aj, a;, a; are called the scalar factors which may be constant or
functions of the coordinates. The conversion factors for the axes in cylindrical and bipolar

coordinates are:

Cylindrical coordinate system:

x =rcos¢
y=rsing
z=z '

Bipolar coordinate system [57]:



_asinhp
coshn—cos&

_ asing
coshn.—cosé&

Z=2Z
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No heat is flowing in z-direction. It means there is no heat flux in z-direction,

therefore, the z-direction term will vanish. First of all heat flux relation in solid walls will

be derived. The generalized form of heat flux relation in radial direction is given by:

- LoT
aq a, ou,

» (&Y :
> =(Z) (%)
X =rcos¢
%:cosqﬁ
y=rsing
¥ _

o sing

Therefore, Eq. (2) becomes:

a;> = sin® ¢ + cos® ¢
a =1

Eq. (1) then becomes:

oT
= _k—
q, 3
Flux in ¢-direction is given by:
1 9T
qz —3 _k wn———

a, 0¢

(1)

()

3)



: (Y (Y
=(%) %) ®
x=rcos¢
%:—rsimﬁ
y =rsing
%:rccs¢

Therefore, Eq. (4) becomes:
ay =r

Substituting in Eq. (3), results in

2 = ~k——

r o¢

Combining fluxes in both directions, we get:

or radg

910l :-kx(a_T.i._l._a};J (A)

Now to derive the relation in bipolar coordinate system. Here we have:

u =n
II2=§
U3 =z

Flux in n-direction is given by:

= k=
q e ()

: (&Y (Y
o =(&) +(Z) ©
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L 7
9 = kazaf @)
: (&), (@) g
o« =(%) (%) ®
asinhp

- coshn —cos&

& ___asinhpsing
o¢ (cosh 7y ~ cos &)

a sin&
coshn —cosé&

dy _ a cos&coshn -1

& (coshnp — cos &)

Therefore, Eq. (8) becomes:

» _a’sinh?psin*& gt cos? Ecosh?* n+1-2cos&coshn
? (coshpy ~cosé&)’ (coshnp —cos¢&)*

a
a =———
coshn—cosé

a,=h

Therefore, Eq. (7) can be written as:

= —f—Z

9 = k OF

The total heat flux in the fluid is:

18T 10T
g = k| ——— + —o— @B
L f(" on T 35) )




Applying continuity of heat flux at the solid-fluid interface:

Dsotid = 9 pruia

8T 10T 18T 14T
—kj—t+——r|= k| ——
or  rog hdn hOE

k (or  18r) _1(ar oI
k,\or rog) h\on oc

8T 18T\ _(or arT
KR"(?+7W) - (577 * 65) ©

Hence, this relation can be used at all interface mesh points but first we have to
normalize it. From nomenclature,

_ a
coshn —cosé&

R=L = r=Rp,
T
6=11';—-T£, = T=T,+0(T,-T,)

Taking Eq. (C) and applying the normalized relations:

AT, +6(r, ~T)}
a [a{z:, +6(T, -} 1 off, +6(, - T,)}] _ an '
(coshn —cos&) or,R r.R o¢ 3T, + 93(1’: —-T)}
<

KR _rsihn, (20 120\ _(28 06) . .
r, (coshn—cos&){ R ~ R 6¢ on oF

arolE ) Y o




[£8]
(1%
o

where,

sinh 7,

H() = (coshn —cos &)

Equation (D) is the dimensionless form of the continuity of heat flux.

The finite difference form of equation (D) for outer interface can be written as:

i 8,,(NSO+1,j-1)-

KR.HOU exo(IAv}sz’O’j) + asa(Nfg ':t;ki + 1)

6, (NSO +1, /)= AR,An o 2A¢.NR,

An.KR.HO()+AR,
L21) 6, (NSO+1,j+1)-6, (NSO +1,/-1)
| Ap 2A¢8 -
where,
HO(j) = sulhna

cosh7n, —cosAS

T¢(2,)) is unknown as can be seen in Fig. (B.1). The following interpolation relation

is used to determine the unknown values of T¢(2,j)-

T,(2./)= 6,2, i) +(6, @ i +1)-6,(2, i )][xj,r("é(ijgln)f«f\’(fz(fjf)]

The unknown Xi(2,j), which is the x-coordinate of T (2,j), is calculated using the

following interpolation relation:

%,(2.0)= X, @ i)+ [x, @5 +1)-x,C. Ii)][ X’f(l(;i)f) i{((; (f’il)]

Equation (D) for inner wall in finite difference form can be written as:
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—&—Fluid Annulus Mesh

——[nner wall mesh ! '.

=&~ Quter wall mesh

[ et

NSI+1 1

Fig. 8.1. Two-Dimensional Half Symmetric Mesh of Eccentric Annuli

NSO=10, NSI=5, N=15, M=25, E=0.5, NR;=0.5, Inner wall thickness=0.05, Outer wall
thickness=0.1
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12.) | 0.0, 7+1D) - 8,07 ~1)]]
KRHI (’){ 2A¢.NR,
6., /) = AR;-An
AnKRHIO)+ &R\ 1.(N,))  6,0,7=1)=6,0.j+1)
’ i An 2A8 i
where,
HI()) = — 0 1e

cosh7; —cos AS

T¢(N,j) is calculated using the following interpolation relation:

Tf(N:J')=9;(N,J.’f)+[Of(N,ﬁH)-B,(N,If)][ X, (N, )~ X, (N, j) }

X (N, j+1)-X (N, jf)

Xio(N,j) is the x-coordinate of T¢(N,j) and is calculated from the following equation:

Xw(N,f)=Xf(N,ji)+[X,(N,1’/‘+1)-X,(N,ﬁ)][ X.(,7)~X (N +1, jj) ]

X (N +1, j+1)-X (N +1, jj)



APPENDIX C

INTERPOLATION FORMULATION

The continuity of temperature and continuity of heat flux are used to determine the
temperature values for cylindrical coordinate mesh points at the two solid-fluid interfaces.
The temperature values at bipolar coordinate mesh points at the interfaces can easily be
calculated using the cylindrical coordinate temperature values at the respective interfaces
by interpolation. Lets take one case. Consider a point at outer interface where the
temperature value 6¢(1,j) is unknown as shown in Fig. (5.1). The two neighboring points
850 NSO+1, jj) and 65, (NSO+1, jj+1) have already been calculated using principle of
continuity of temperature and continuity of heat flux. The coordinates of all the three
points are known. All these known and unknown values are tabulated in Table C.1. Now
two types of interpolation can be performed.

1. Logarithmic interpolation.

2. Linear interpolation.

1. Logarithmic Interpolation

The logarithmic interpolation formula consists of logarithmic functions. The

constraint in this interpolation is that there should not be any zero (0) or negative Value
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Table C.1. Temperature and coordinate values on the two interfaces

Interface Temperature X-Coordinate
0:s NSO+, jj) Xso NSO+, jj)
9¢(14) Xe (L)

B850 NSO+1, jj+1)

Xso NSO+, jj+1)

Inner Interface | Quter Interface

Bsi (1, jj) Xso (1, jj)
Br(N+1,j) Xe(N+1y)
esi (1: jj+1) Xso (1: jj+1)
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