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Abstract The superior properties of functionally graded
materials (FGM) are usually accompanied by randomness in
their properties due to difficulties in tailoring the gradients
during manufacturing processes. Using the stochastic finite
element method (SFEM) proved to be a powerful tool in
studying the sensitivity of the static response of FGM plates
to uncertainties in their material properties. This tool is yet
to be used in studying free vibration of FGM plates. The aim
of this work is to use both a First Order Reliability Method
(FORM) and the Second Order Reliability Method (SORM),
combined with a nine-noded isoparametric Lagrangian ele-
ment based on the third order shear deformation theory to
investigate sensitivity of the fundamental frequency of FGM
plates to material uncertainties. These include the effect of
uncertainties on both the metal and ceramic constituents. The
basic random variables include ceramic and metal Young’s
modulus and Poisson’s ratio, their densities and ceramic
volume fraction. The developed code utilizes MATLAB capa-
bilities to derive the derivatives of the stiffness and mass
matrices symbolically with a considerable reduction in cal-
culation time. Calculating the eigenvectors at the mean
values of the variables proves to be a reasonable simpli-
fication which significantly increases solution speed. The
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stochastic finite element code is validated using available
data in the literature, in addition to comparisons with results
of the well-established Monte Carlo simulation technique
with importance sampling. Results show that SORM is an
excellent rapid tool in the stochastic analysis of free vibra-
tion of FGM plates, when compared to the slower Monte
Carlo simulation techniques.

Keywords FGM - Stochastic finite element analysis -
Shear deformable plate - FORM - SORM

1 Introduction

The superior properties of advanced composite materials,
such as high specific strength and high specific stiffness, have
led to their widespread use in aircrafts, spacecrafts and space
structures. In conventional laminated composite structures,
orthotropic elastic laminas are bonded together to obtain
enhanced mechanical and thermal properties. However, the
abrupt changes in material properties across the interface
between different materials can result in large interlaminar
stresses leading to delamination. Furthermore, large plastic
deformations at the interface may trigger the initiation and
propagation of cracks in the material. One way to overcome
these adverse effects is to use Functionally Graded Materials
(FGM), in which material properties vary continuously. This
is achieved, for example, by gradually changing the volume
fraction of the constituent materials, usually in the thickness
direction only, or by changing the chemical structure of a thin
polymer sheet to obtain a smooth variation of in-plane mate-
rial properties and an optimum response to external thermo
mechanical loads.

Due to difficulties in tailoring the gradients to actual speci-
fications during manufacturing processes, properties of
FGM’s are not deterministic in nature. There is a reasonable
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body of recent research on studying the effect of uncertainties
in material properties on the accuracy of static and thermal
analyses of FGM’s. In [1], for example, Ferrante and Graham
used stochastic simulation to study the effect of microstruc-
tural randomness on stress and temperature distributions in
FGM'’s. Later, they added the effect of non-Gaussian porosity
randomness on the calculation of thermal distributions [2].
Yang et al. [3] investigated the stochastic bending response
of moderately thick FGM plates. In their work they com-
bined a higher order shear deformation plate element and a
first order perturbation technique to obtain the second order
statistics; mean and variance of the flexural deflection of the
plates with various boundary conditions.

Dynamic analysis, however, has not received as much
attention, even for the more commonly used laminated com-
posites. In Salim et al. [4] used first order perturbation tech-
niques and FEM formulation to investigate the sensitivity of
the natural frequencies of single ply and double ply laminates
to randomness of material properties. In Senthil and Batrab
[5], obtained exact solutions to the free vibration of FGM
rectangular plates. In this work, however, the values of the
FGM properties were assumed to be exactly known. Mechan-
ical properties, material density, and plate dimensions, fac-
tors that determine the dynamic behavior of FGM plates, are
not deterministic in nature. Rather, uncertainties in their val-
ues due to manufacturing and fabrication result in variations
in the behavior characteristics of the plate such as the values
of the natural frequencies. For proper quality control of the
dynamic characteristics of laminates, their sensitivities to the
laminate properties need to be investigated.

In order to gain knowledge of the sensitivity of the solu-
tion to various FGM parameters, a reliability analysis has to
be performed. In this work, our previously developed sto-
chastic finite element SFEM analysis of the free vibration
of composite laminates [6] is adopted for FGM plates. This
analysis allows the random variables representing material
properties to be normal or non-normal, correlated or uncor-
related. A choice between the First Order Reliability Method
(FORM) and the Second Order Reliability Method (SORM)
is facilitated by the procedure. Laminate mechanical behav-
ior is modeled using a higher order shear deformable ele-
ment. Considerable reduction in calculation time is achieved
by deriving the derivatives of the reduced stiffness and mass
matrices symbolically. The code is built using the MATLAB
7.1 compiler and all runs are made on a P4 2.8 GHz machine
with 512MB RAM.

2 Stiffness of functionally graded materials
A functionally graded material is often a mixture of two kinds
of materials; for example, one can be a metal and the other

ceramic. Without losing generality, it can be assumed that the
top surface of an FGM plate is ceramic rich and the bottom
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is metal rich. The region between the two surfaces consists
of material blended with both of them, whose distribution is
assumed to be in the form of a simple power law [7]:

Pe(z) = PcVe+ Py (1 =Ve), ey

where P,, Pc, Py stand for the effective material properties
of the FGM, of the ceramic, and of the metal constituent,
respectively. The ceramic volume fraction V¢ is a function
of the coordinate in the thickness direction, z, and is given
by:

Ve = (0.5 i %) h2<z<h/20<n<oco  (2)

where £ is the plate thickness. P, = Pc, when the exponent
n = 0, and P, = Py as n approaches infinity. The stiffness
matrix of a FGM plate, calculated using Eq. (1) is:

[Q@)]. =[QlcVe + [Qln (1 — Vi) 3

where the stiffness matrices of the isotropic constituents are
given by:

01 On 0 0 0
O O»n 0 0 0
[Qlcoemr=]0 O Ouxu 0 O (4a)
0 0 0 Qs 0
0 0 0 0 Q66 Cor M
with
E
|:Q11=Q22=—2, Q2 =001,
1—v
Q44 = Oss5s = Qo6 = ] . (4b)
2V Icorm

3 Reliability models of the composite laminate

Probabilistic analysis can provide necessary information to
achieve optimal use of material. The first step in performing
such an analysis for the free vibration of a FGM plate, similar
to the one in Fig. 1, is to define a suitable and specific per-
formance function. The plate is assumed to be subjected to a

Ceramic

Metal

Fig. 1 Geometry of the FGM plate
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periodic load with frequency wy, which can take any value
up to w,. This upper limit is not a unique value, but has a
certain distribution. This distribution can be quantified by its
mean value and standard deviation. At the design point, the
plate fundamental frequency w,, is equal to a certain spec-
ified value w,, which may be taken as that of the periodic
load. Accordingly, the performance function is defined as:

g(X) = p/rr) — 11 ©)
where A, = a)?, , are the eigenvalues, and X is a vector of

the basic variables. For this plate, X is chosen as:
X =[Ec,vc,pc, Em,vu, pm, nl (6)

where pc and pys are the material density of the ceramic and
metal, respectively. According to Eq. (5), a failure surface or
a limit state of interest can be defined as g(X) = 0, with the
probability of failure calculated from:

pf:/.../fX(Xl,Xz,...,Xn)XmdXz...an, )
g<0

where fx (X1, X2, ..., Xy), is the joint probability density
function for the seven basic random variables. The integra-
tion is performed over the failure region g < 0. In order to
calculate p f, and following our procedure in [6], we shall use
two types of analytical approximations that lead to two meth-
ods; the First-Order Reliability Method (FORM-Method 2),
and the Second-Order Reliability Method (SORM). Both
methods will be investigated in their ability to correctly pre-
dict the probability of failure and the Most Probable Point
(MPP) of the system. A detailed account of both methods
can be found in [8] and will be summarized here.

3.1 First-order reliability method (FORM Method-2)

In this method a Newton-type recursive formula is used to
find the design point when the performance function is
implicit, as in the case when using finite element formulation
to describe the behavior of the system. First the vector X is
transformed into a reduced X’ with normal random variables
of zero mean and unit standard deviation. The starting point
of the procedure in the space of X’ is usually taken as the
point of mean values. This point does not, in general, lie on
the limit surface g(X)) = 0, as shown in Fig. 2 for a two
dimensional space. The equation of the limit state is now
linearized around X :

g(X)=co+ Vg (X)X’ ®)

Since the performance function is non-linear, then its gra-
dient is not constant. In this case, the new design point is
obtained recursively by:

/

l !’ ’ ’ ’
X = ————1Ve (XX = g(XDIV8(X). ©)
Ve (x|

709
X2 |
X ¢(C)=ko
X' g(X")=k1
31

Fig. 2 FORM Method-2 for the non-linear limit state

The distance from the origin to this new design point in the
X'-space is:

(10)

The procedure is terminated when reaching the most proba-
ble point (MPP). MPP is assumed to be reached when both
of the following conditions are satisfied:

(11a)
(11b)

|Br+1 — Bl < €,
s | =8

with € and § being reasonably small numbers. The probability
of failure in this case is:

pr=1-=0(B), (12)

where @ is the cumulative distribution function of a stan-
dard normal distribution with zero mean and unit standard
deviation.

3.2 Second-order reliability method (SORM)

This method uses a second order Taylor approximation of
the non-linear limit state function in order to better model its
curvature. This expansion at a given point X* in the standard
normal variable space is:

29
§(X1) = g(X) + 3 - (Xi = X))
i=1 !

1 n n 32
52> (X - X;) (% - Xj)Wégx,-' (13)

i=1 j=1

A simple closed-form solution for the probability of fail-
ure using this second-order approximation is derived using
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Fig. 3 SORM rotation of coordinates

the theory of asymptotic approximations in as:

n—1
pr=o=p) [] A+, (14)

i=1

where B is the reliability index using FORM, and «; are the
principal curvatures of the limit state at the minimum dis-
tance point. These curvatures are obtained as follows. First
the X’ standard normal variables are rotated to another set
of coordinates, denoted as Y, such that the last component
of the new set, Y,, coincides with «, the unit gradient vec-
tor of the limit state at the design point. This transformation
is shown in Fig. 3 for the case of n = 2. This orthogonal
transformation is given by:

Y = RX’ (15)

where R is the rotation matrix. For the case n > 2, the rows
r; of this matrix are calculated using Gram—Schmidt orthog-
onalization procedure, see [8], as:

T'n = T0n, (16a)
- rird
Tk = Tok— Z |:rj-rOTkrji|’ k=n—-1,n-2,...,1,
j=k+1 L7
(16b)
where rg; are the rows of the matrix Ry, given by:
1 0 -0
o 1 -0
Ro = 17
0 0 - . ’ (17)
al oy - Oy

with ¢, being the components of the unit gradient vector «
at the design point wherei = 1,2, ..., n.
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Defining a matrix A whose elements are denoted by a;; is
computed as:

_ (RDRY);

L= , 18
U Ve (1%

where D the n x n second-derivative matrix of the limit
state surface in the standard normal space evaluated at the
design point. Since Y, coincides with the S-vector computed
in FORM, the last column and last rows in the A matrix and
the last row in the Y vector are dropped out to take this factor
into account. The limit state can then be rewritten in terms
of a second-order approximation in the rotated Y space as:

1
Y, =B+ EYTAY, (19)

where A is now of size (n — 1) x (n — 1). The required curva-
tures k; are computed as the eigenvalues of the matrix A. The
probability of failure can now be calculated from Eq. (14).

4 Finite element model

To include transverse shear stresses and rotatory inertia
effects into the free vibration analysis of laminates, several
shear deformation theories are developed. Here, an element
based on the higher-order shear deformation theory (HSDT)
is utilized. Development of the element, detailed in [9] and
briefly summarized here, employs the parabolic shear defor-
mation theory.

4.1 Displacement field

In the parabolic shear deformation theory, the displacement
field is described in terms of midsurface displacements u, v
and w, the perpendicular to the midplane, ¢, and the rota-
tions of the normal to the midsurface at ¢ = 0, ¢p; and ¢».
Considering the derivatives of the out-of-plane displacement
as separate independent degrees of freedom transforms this
system, with 5° of freedom per node and C'! continuity, into
one with 7 degrees of freedom per node and mathematically
easier C° continuity. The displacement field may be mod-
ified to accommodate C° continuity, see [9]. The resulting
displacement field is:

u(xr,x2,¢,0) =u+ f1(Q) o1+ f2(¢) 6
v(x1,x2, ¢, 1) = v+ fi(§) 2+ f2() 62 (20)

w(xy, x2,4,1) = w,
where

01 = dw/dxi, 6 =dw/dxa, f1(¢) =¢ — 4¢3 /3h%,
and  fo(¢) = —4¢3/3h%, 1)
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which satisfies the conditions of stress-free upper and lower
plate surfaces.

4.2 Strain energy

The elastic strain energy of the plate as it undergoes defor-
mation is:

L[
U= [& DedA (22)

= o0 0,0 0,0,2 2 2 0.0, 1,1
&= {81 82 86 K| Ky Kg K1 K| Ky 84 85 Ky KS]? (23)

Al Bl E 0 O
Bl DI F1 0 O

D=|E F1 H 0 0 , (24)
0O 0 0 A2 D2
0O 0 O D2 F2

with

(Alj, Blj, D1yj, Ejj, F1;j, H;j)

h/2
= [ ouect et e, (252)
—h)2
h/2
(A2, D2;j, F2;j) = / ng]).(l,{z,{“)d;, (25b)
—h)2

where i and j take the values 1,2,6 in (252a) and take the val-
ues 4,5 in (25b), and components of Q are calculated in Eq.
4).

The strain energy functional is computed for each element
and then summed over all the elements in the domain to get
the total functional for the domain. Following this procedure,
Eq. (22) can be written as:

U —%E:U@ —%1 ' Dz dA (26)
= = 2 & &
e=1 e=1 A

where NE is the number of elements. Upon substituting for
the strain vector, the mechanical strain energy becomes:

U=¢q"Kq (27)

where K is the global stiffness matrix and ¢ is the global
displacement vector.

4.3 Kinetic energy

The kinetic energy of the vibrating plate, within the domain
of small displacements, is:

h2

| e o
T— E/Z / (i )dedA, (28)

2 k=1_j

where i is the displacement vector given by u = {i v w}
and p is the density calculated using a power law similar to
Eq. (1). Similar to the strain energy, this expression can be
rewritten as:

T=4¢"Mjg, (29)

where M is the global mass matrix.

4.4 FEM formulation

Using variational principles, the governing equations for free
vibration for the system can be derived as:

Kq+Mg=0. (30)

For positive definite M, this equation is transformed into a
standard eigenvalue problem:

Ag —Aiqg =0, (31)

where A = M1 K and A p= a)?,, with @, being the natural
frequency of the plate. This FEM formulation, augmented
with suitable boundary conditions, is used next to represent
the system response when calculating the implicit objective
function at each iteration of the stochastic analysis.

5 Stochastic finite element analysis

In reliability analysis, the partial derivatives of the perfor-
mance function g(X) with respect to all random variables
X; are required. These can be expressed, using the chain rule
and Eq. (16) as:

dg 19,
= =P I=1,2,...n (32)
X, A 0X;

The partial derivatives of the jth eigenvalue with respect
to the random variables are:

aj %[¢,,T(K —MM>¢/']

X ¢T Mg, ’ 53)

where ¢; is the eigenvector corresponding to A ;.
Noting that K is independent of p, while p is a common
factor of all elements of M, substitution of Eq. (33) into
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Eq. (32) yields:

) T

0 1 _,-[‘1’ K¢p]
28 L A fori=1,2,.6,8,9,...n,
8Xi )\r ¢pM¢p

(34a)
9g  —a
- A— (34b)
X7 Arp

Standard finite difference routines can be used to eval-
uate the derivatives of the stiffness matrix K in Eq. (34a)
with respect to the random variables. This, however, becomes
time consuming, especially when the set of random vari-
ables include ply orientation angles, because the process is
repeated at each iteration point. Moreover, since the predic-
tion of the new point depends on the derivatives, which are
approximate in this case, the optimization method takes a
larger number of iterations to converge. Finally, using SORM
in computing the probability of failure requires calculating
the second derivatives as well, which deems the finite differ-
ence choice impractical. Use is made of MATLAB symbolic
capabilities in evaluating the derivatives of the reduced stiff-
ness and mass matrices. In evaluating the derivative in the
numerator of Eq. (34), the eigenvectors at the mean value
of X are used, and are not updated at each iteration. This
greatly simplifies calculations and is justifiable for large fre-
quency ratios. As the frequency ratio increases, MPP tends
to be closer to the mean value of X, which is used in cal-
culating the eigenvectors. Validity of this simplification, and
confidence in the whole modeling, is established in our recent
work [6] by comparisons with available published results and
with results obtained when this simplification is not used.

For the case when all the variables are treated as uncor-
related random variables, the eigenvalue can be assumed to
have a statistical distribution with mean and variance calcu-
lated at the mean of the random variables, given by:

Mo = A(Ux, s X2, - X)) (35a)

n 2
Var(h) =0 >~ > (%) Var(X;). (35b)
i=1 !

6 Numerical illustrations
6.1 Full stochastic analysis of a square FGM plate

The first numerical illustration is a simply-supported plate on
all edges (SSSS) aluminum-zirconia FGM plate. The plate
has a thickness ratio a/h = 10. In the present example the
ceramic volume fraction exponent is assumed determinis-
tic, n = 2. Material properties of the constituents are taken
as normal random variables with the distributions shown in
Table 1. The tolerances § and € that determine convergence
are taken to be 0.001.
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Table 1 Statistical distribution of the basic random variables

Property Ec (GPa) Ep (GPa) ve vy pc (kg/m?) py (kg/m?)

Mean 151 70
cov 0.036 0.037

03 0.3 3,000
0.0 0.03 0.036

2,707
0.036

The calculated non-dimensional natural frequency @ =
wa®/py | Eph? for a 5x5 mesh is 4.7799 which compares
very well with the published result of 4.7756 reported in [7].
This latter value was obtained using a 10x 10 mesh of qua-
dratic rectangular 8-node serendipity elements.

To the best of our knowledge, full stochastic analyses, with
calculated probability of failure, reliability index, and MPP,
of the free vibration of FGM plates do not exist in literature.
Therefore, the obtained results of the probability of failure
will be compared only to those of a developed and verified
code in [6] employing Monte Carlo simulation with impor-
tance sampling. The aluminium-zirconia plate is analyzed for
a frequency ratio FR = w, /w, = 0.93. The probability of
failure using Monte Carlo simulation technique depends on
the number of simulations, as can be seen in Table 2. There-
fore py can be taken as a dependent random variable, for
which one can calculate a mean, a standard deviation and a
skewness coefficient. These values for the p ¢ distribution of
Table 2 are 5.362 x 1073, 0.01586, —0.00301 respectively.
The small value of SD suggests that the value of py does
not change much around the mean. The negative skewness
coefficient means that dispersion is more below the mean
than above it. Therefore, taking the mean of Monte Carlo
calculated pf as a reference for comparison is justified and
reasonable.

Table 2 shows one of the disadvantages of the use of Monte
Carlo simulation to predict the probability of failure for prob-
lems with high reliability and relatively low frequency ratios.
Since p s for these cases are very small, convergence is not
clearly visible due to round-off error. FORM and SORM
algorithms, on the other hand, do not suffer from this prob-
lem because convergence is based on the value of 8, which
for all practical purposes, is a very large number compared
to any round-off error. The probability of failure, calculated
using FORM, is py = 542 x 1075, while that calculated
using SORM is py = 5.3625 x 1073, In both methods, the
system has to be solved only five times, as compared to the
hundreds of times required to get a solution using Monte
Carlo simulation, even when importance sampling is used.
FORM overestimates the value of the mean of probability
of failure by about 1.13%, while SORM overestimates it by
only 0.01%. This means that this problem is quasi linear with
a small introduced error when the non-linearity is ignored in
FORM.

Full stochastic analysis involves determining, not only
p s, but also the MPP and the sensitivity of the performance
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Table 2 Variation of p s of Monte Carlo for SSSS FGM square plate with a/h = 10, n = 2, and a frequency ratio of 0.93

No. of Simulations 900 1000 1100 1200

1300 1400 1500 1600 1700 1800

pr(x107%) 5.04 5.26 5.34 5.46

5.48 5.46 5.41 5.38 5.34 5.45

Table 3 MPP of SSSS FGM square plate with a/h = 10, n = 2, for
three values of the frequency ratio

wy/w, Ec(GPa) Ey (GPa) ve vy pc (kg/m®) py (kg/m?)
0.90 137.3 61.3 0.3 0.3 3190.8 3019.1
0.93 141.8 64.2 0.3 0.3 3136.8 2930.8
0.95 144.6 66.0 0.3 0.3 3099.0 2869.0

Table 4 Comparison of the safety index and probability of failure of
SSSS FGM square plate with a/h = 10, n = 2, for three values of the
frequency ratio

Wy Jwp FORM SORM
B P B Pf

0.90 5.5951 1.10E-8 5.5978 1.09E-8
0.93 3.8710 5.42E-5 3.8737 5.36E-5
0.95 2.7414 3.10E-3 2.7440 3.00E-3

08

B FR=0.95 BFR=0.93 O FR=0.9

0.6

04+
2 02+
>
3 o
®

02

04 1

0.6

08

Random Variable

Fig. 4 Sensitivity of g to changes in the random variables for SSSS
FGM square plate with a/h = 10 and n = 2 for different w, /w),

function to changes in the random variables. Table 3 presents
the MPP of the plate for three values of the frequency ratio.
It is clear from this table that the variability of the Poisson’s
ratio of both constituents does not affect the reliability of
the solution. Table 4 shows a comparison of the values of
the reliability index and the probability of failure, calculated
for the three frequency ratios using both FORM and SORM
optimization methods.

The sensitivities of the performance function, g, for
changes in the random variables are plotted in Fig. 4. The
figure shows that, at this particular value of n, with more
metal than ceramic, metal properties have a more pronounced

0.14

0.12 |

0.1

0.08 |

0.06

0.04 |

0.02 |

COV of the square of natural frequency

0 0.02 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Variation of COV of r.v. individually

Fig. 5 COV of the fundamental eigenvalue of SSSS FGM square plate
witha/h =10andn = 0.5

effect on the solution. The natural frequency is most sensi-
tive to changes in Young’s moduli, and is least sensitive to
changes in Poisson’s ratio, which explains why the values of
vc and vy, at the MPP point are almost equal to their mean
values. Finally, the figure shows that the relative importance
of the variables is the same at all reliability levels of this
range. Relative importance can be measured by changes in
the COV value of the eigenvalue corresponding to variations
in COV of the random variables. This second order statistics
investigation is carried out in the second illustration.

6.2 Second order statistics of a square FGM plate

In this example, the variation of the covariance of the square
of the natural frequency due to individual variations in the
basic random variables is investigated. The FGM plate is the
same as that studied in the first illustration. Unlike the first
illustration, the randomness of the ceramic volume fraction
is considered here. Figs. 5, 6 and 7 show the variation of
the COV of the eigenvalue when the COV of each of the
random variables varies from O to 20%, forn = 0.5, 1 and 2,
respectively. From these figures it can be concluded that the
volume fraction exponent n and the Poisson’s ratios vy, and
vc have a small effect on the COV of the fundamental eigen-
value, while constituent density and Young’s moduli have
the most striking effect. This conclusion is even emphasized
in Table 5. The table shows the order of importance of the
uncertainties on the calculated distribution of X in a decreas-
ing order of importance for three different compositions of
the plate, represented by n = 0.5, 1, and 2. It can be seen that
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COV of the square of natural frequency

0 0.02 004 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Variation of COV of r.v. individually

Fig. 6 COV of the fundamental eigenvalue of SSSS FGM square plate
witha/h =10andn =1

0.14 - -
- —©—Ec
13
g 012} —H&—Em
g_ —¥%— nuc
L o4 LT um
I ' ——roc
% —— rom
S 008 }|-xz-
kS
o
S 006
>
o
2]
é’ 0.04
°
> 0.02 |
(@]
o

0 Il

0O 0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18 0.2
Variation of COV of r.v. individually

Fig. 7 COV of the fundamental eigenvalue of SSSS FGM square plate
witha/h =10andn =2

Table 5 Order of importance of the random variable uncertainties on
A for SSSS FGM square plate with a/h = 10 for three values of p(n)

u(n) Ec Ey ve 1274 pc oM n
0.5 1 4 6 7 2 3 5
1.0 1 4 6 7 2 3 5
2.0 3 2 7 5 4 1

as n increases, signifying more metal, the plate natural fre-
quency becomes more sensitive to the metal properties than
to those of the ceramic.

@ Springer

7 Discussion and conclusions

The potential and versatility of a suggested procedure was
demonstrated by applying it to reliability analysis of the free
vibration of FGM plates. Using the developed code, the deriv-
ative of the performance function with respect to each of the
random variables is calculated. These variables included the
properties of both constituents and the ceramic volume frac-
tion. FORM and SORM techniques were used to optimize
the solution and obtain MPP of the plate. Natural frequency
results obtained showed excellent agreement with the limited
published results and with Monte Carlo simulation results.
FORM Method 2 and SORM were found to be appropriate
methods for this problem, and converged after small number
of iterations.

The present work lends itself to modifications that add to
its speed, accuracy and range of applicable problems. The
algorithm can be modified to solve other classes of problems
with minor programming modifications and smart choice
of the performance function. These include static response,
damage characteristics, optimization and forced vibrations.
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