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Abstract Using the Stochastic Finite Element Method
(SFEM) to perform reliability analysis of the free vibration of
composite plates with material and fabrication uncertainties
has received much attention lately. In this work the stochas-
tic analysis is performed using the First-Order Reliability
Method (FORM-method 2) and the Second-Order Reliabil-
ity Method (SORM). The basic random variables include
laminae stiffness properties and material density, as well
as the randomness in ply orientation angles. Modeling of
the composite behavior utilizes a nine-noded isoparametric
Lagrangian element based on the third-order shear deforma-
tion theory. Calculating the eigenvectors at the mean values of
the variables proves to be a reasonable simplification which
significantly increases solution speed. The stochastic finite
element code is validated using comparisons with results
of Monte Carlo simulation technique with importance sam-
pling. Results show that SORM is an excellent rapid tool in
the stochastic analysis of free vibration of composite plates,
when compared to the slower Monte Carlo simulation tech-
niques.
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1 Introduction

Dynamic behavior of composite laminates is a function of
the geometrical and material properties of these laminates.
Mechanical properties, density, stacking sequence, as well as
the laminate dimensions determine the values of the natural
frequencies. These quantities are not deterministic in nature.
Rather, uncertainties in their values due to manufacturing
and fabrication result in variations in the behavior charac-
teristics of the laminate such as the values of the natural
frequencies. Computer simulations of composite laminates
used in aerospace applications often show closely packed
or overlapping natural frequencies. In such cases even the
slightest shift in characteristics of the laminate can have
a pronounced effect on the response of the structure. For
proper quality control of the dynamic characteristics of lam-
inates, their sensitivities to the laminate properties need to be
investigated.

Analysis of structures with deterministic characteristics
to random excitations has been reported extensively in the
literature; see [1] for example. This is not the case, however,
for the analysis of composite structures with a comprehen-
sive implementation of uncertainties. Sources of uncertain-
ties range from the statistical nature of the material properties
of the constituents, to the inevitable fabrication randomness
in layup and curing. To implement the effects of material
and manufacturing uncertainties, a set of random variables
representing laminate mechanical properties, density and ori-
entation angles is chosen. Randomness in these variables is
quantified experimentally or using simulation codes. Ibrahim
[2] and Manohar and Ibrahim [3] have presented a review of
structural dynamics problems with such stochastic parameter
variations. Oh and Librescu [4] developed a mean-centered
second-moment method to study the free vibration and reli-
ability of composite cantilevers.
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Composite plates were also analyzed using these
techniques. In their work, Salim et al. [5–7] have employed a
First-Order Perturbation Technique FOPT to perform static
analysis of composite plates using classical laminated plate
theory with random material properties. The static response
of uncertain FEM discretized structures was evaluated by
Falsone and Impollonia [8], while Chamis et al. [9,10] com-
bined optimization techniques with probabilistic structural
analysis to reduce the maximum deflection of a composite
simulated fuselage by a factor of 4.5.

Several higher-order finite elements have been employed
to model plate dynamic response in most of such analyses.
Elseifi [11] used a four noded element based on a higher-
order shear deformation theory to perform reliability analy-
sis of thick composite plates subject to first-ply failure with
parameter uncertainties. Shankara and Iyengar [12] used a
higher-order shear deformation theory to formulate elements
with 5 DOFs and 7 DOFs per node to study the free vibration
of plates. Later, Singh et al. [13] added the complexity of
random material properties to the free vibration analysis of
composite plates.

The aim of the present work is to study and develop a
Stochastic FEM code to investigate the fundamental fre-
quency of rectangular composite plates made up of laminae
with uncertain parameters. The generalized analysis allows
the random variables representing material properties to be
Gaussian or non-Gaussian, correlated or uncorrelated. Lam-
inate mechanical behavior is modeled using a higher-order
shear deformable element. Considerable reduction in cal-
culation time is achieved by deriving the derivatives of the
reduced stiffness and mass matrices symbolically.

2 Reliability models of the composite laminate

The commonly used deterministic safety factors do not
provide adequate information to achieve optimal use or
resources, while probabilistic analysis does. The first step
in studying the variation of the fundamental frequency of
the composite plate, ωp, due to uncertainties in its material
properties and ply angles is to define a suitable and specific
performance criterion. Figure 1 shows a composite laminate
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Fig. 1 Geometry of the composite plate

plate of side dimensions a and b, and thickness h. The plate
is subjected to harmonic load of frequency ωL , which can
take any value up to ωp. In probabilistic design, ωp is not a
unique value, but is regarded a random variable which has a
certain distribution. This distribution can be quantified by its
mean value and standard deviation. At the design point, the
plate fundamental frequency ωp, is equal to a certain speci-
fied value ωr . To ensure a safe design, the value of ωr should
be lower than the plate natural frequency ωp. Accordingly, a
suitable performance function is defined as:

g(X) = (λp/λr ) − 1 (1)

where λp,r = ω2
p,r are the eigenvalues, and X is a vector of

basic random variables, given by:

X = [E11, E22, G31, G23, G12, ν12, ρ, θ1, θ2, . . . , θm] (2)

Here, E11, E22, G12, G13, G23 and ν12 are the mechanical
properties of each lamina in its principal directions, ρ is the
material density, and θi are the ply orientation angles. A fail-
ure surface or a limit state of interest can then be defined as
g(X) = 0, with the probability of failure calculated from:

p f =
∫

....

∫

g<0

fX (X1, X2, . . . , Xn)dX1dX2 . . . dXn (3)

where fX (X1, X2, . . . , Xn), is the joint probability density
function for the n basic random variables, where n = 7 + m.
The integration is performed over the failure region g(X) <0.

There are several methods to calculate pf. Here we shall
use two types of analytical approximations that lead to two
methods; the First-Order Reliability Method (FORM-
Method 2), and the Second-Order Reliability Method
(SORM). Both methods will be investigated in their abil-
ity to correctly predict the probability of failure and the Most
Probable Point (MPP) of the system. A detailed account of
both methods can be found in [17] and will be summarized
here.

2.1 First-order reliability method (FORM method-2):

In this method a Newton-type recursive formula is used to
find the design point when the performance unction is
implicit, as in the case when using finite element formula-
tion to describe the behavior of the system. First the vector
X is transformed into a reduced X′ with standard Gaussian
random variables of zero mean and unit standard deviation.
This is done by adding to the mean value the variability rep-
resented by each Gaussian variable and then dividing by the
standard deviation. The starting point of the procedure in the
space of X′ is usually taken as the point of mean values. This
point does not, in general, lie on the limit surface g(X′

0) = 0,
as shown in Fig. 2 for a two dimensional space. The equation
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Fig. 2 FORM Method-2 for the nonlinear limit state

of the limit state is now linearized around X′
0:

g(X) = c0 + ∇gT (X′
0)X′ (4)

The natural frequency of the composite plate contains
trigonometric functions of the lamination angles. The per-
formance function is, therefore, nonlinear and its gradient is
not constant. In this case, the new design point is obtained
recursively by:

X′∗
k+1 = 1∣∣∇g(X′∗

k)
∣∣2

[
∇gT (X′∗

k)X
′∗
k − g(X′∗

k)
]
∇g(X′∗

k)

(5)

The distance from the origin to this new design point in the
X′-space is:

β =
√√√√ n∑

i=1

X′∗2

i (6)

The procedure is terminated when reaching the Most Proba-
ble Point (MPP). MPP is assumed to be reached when both
of the following conditions are satisfied

|βk+1 − βk | � ε, (7a)∣∣g(X′∗
k+1)

∣∣ � δ, (7b)

with ε and δ being reasonably small numbers. The probability
of failure in this case is:

p f = 1 − 
(β) (8)

where 
 is the cumulative distribution function of a stan-
dard Gaussian distribution with zero mean and unit standard
deviation.

2.2 Second-order reliability method (SORM):

This method uses a second-order Taylor approximation of
the nonlinear limit state function in order to better model its

Fig. 3 SORM rotation of coordinates

curvature. This expansion at a given point X∗ in the standard
Gaussian variable space is:

g(X1) ∼= g(X∗) +
n∑

i=1

∂g

∂Xi
(Xi − X∗

i )

+1

2

n∑
i=1

n∑
j=1

(
Xi − X∗

i

)(
X j − X∗

j

) ∂2g

∂Xi∂X j
(9)

A simple closed-form solution for the probability of fail-
ure using this second-order approximation is derived using
the theory of asymptotic approximations in [18] as:

p f = 
(−β)

n−1∏
i=1

(1 + βκi )
−0.5 (10)

where β is the reliability index using FORM, and κi are
the principal curvatures of the limit state at the minimum dis-
tance point. These curvatures are obtained as follows. First
the X ′ standard Gaussian variables are rotated to another
set of coordinates, denoted as Y , such that the last component
of the new set, Yn , coincides withα, the unit gradient vector of
the limit state at the design point. This transformation is
shown in Fig. 3 for the case of n = 2. This orthogonal
transformation is given by:

Y = RX′ (11)

where R is the rotation matrix. For the case n > 2, the rows
ri of this matrix are calculated using Gram-Schmidt orthog-
onalization procedure, see [17], as:

rn = r0n, (12a)

rk = r0k −
n∑

j=k+1

[
r jr T

0k

r j r T
j

r j

]
, k =n−1, n−2, . . . , 1 (12b)
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where r0i are the rows of the matrix R0, given by:

R0 =

⎡
⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
0 · · · · · · · · ·
α1 α2 · · · αn

⎤
⎥⎥⎦, (13)

with αı being the components of the unit gradient vector α

at the design point.
Defining a matrix A whose elements are denoted by ai j is

computed as:

ai j = (RDRT )i j

|∇g(Y∗)| (14)

where D the n ×n second-derivative matrix of the limit state
surface in the standard normal space evaluated at the design
point. Since Yn coincides with the β-vector computed in
FORM, the last column and last rows in the A matrix and the
last row in the Y vector are dropped out to take this factor
into account. The limit state can then be rewritten in terms
of a second-order approximation in the rotated Y space as:

Yn = β + 1

2
YT AY, (15)

where A is now of size (n − 1) × (n − 1). The required
curvatures κi are computed as the eigenvalues of the matrix
A. The probability of failure can now be calculated from
Eq. (10).

3 Finite element model

To include transverse shear stresses and rotatory inertia
effects, several shear deformation theories are developed.
Here, an element based on the Higher-Order Shear Defor-
mation Theory (HSDT) is utilized. Development of the ele-
ment, detailed in [13] and briefly summarized here, employs
the parabolic shear deformation theory.

3.1 Displacement field

In the parabolic shear deformation theory, the displacement
field is described in terms of midsurface displacements u, v

and w, the perpendicular to the midplane, ζ , and the rotations
of the normal to the midsurface at ζ= 0, φ1 and φ2. Consider-
ing the derivatives of the out-of-plane displacement as sepa-
rate independent degrees of freedom transforms this system,
with 5 degrees of freedom per node and C1 continuity, into
one with 7 degrees of freedom per node and mathematically
easier C0 continuity. The displacement field may be modi-
fied to accommodate C0 continuity, see [12]. The resulting

displacement field is:

ū(x1, x2, ζ, t) = u + f1(ζ ) φ1 + f2(ζ ) θ1

v̄(x1, x2, ζ, t) = v + f1(ζ ) φ2 + f2(ζ ) θ2

w̄(x1, x2, ζ, t) = w,

(16)

where:

θ1 = ∂w/∂x1, θ2 = ∂w/∂x2, f1(ζ ) = ζ − 4ζ 3/3h2,

and f2(ζ ) = −4ζ 3/3h2, (17)

which satisfies the conditions of stress-free upper and lower
plate surfaces.

3.2 Strain energy

The elastic strain energy of the laminated composite plate as
it undergoes deformation is:

U = 1

2

∫

A

ε̄T Dε̄d A (18)

where ε̄ =
{
ε0

1 ε0
2 ε0

6 κ0
1 κ0

2 κ0
6 κ2

1 κ2
1 κ2

1 ε0
4 ε0

5 κ1
4 κ1

5

}
,

(19)

D =

⎡
⎢⎢⎢⎢⎣

A1 B1 E 0 0
B1 D1 F1 0 0
E F1 H 0 0
0 0 0 A2 D2
0 0 0 D2 F2

⎤
⎥⎥⎥⎥⎦, (20)

with

(
A1ij, B1ij, D1ij, Eij, F1ij, Hij

)

=
n∑

k=1

ζk∫

ζk−1

Q(k)
ij (1, ζ, ζ 2, ζ 3, ζ 4, ζ 6)dζ, (21a)

(
A2ij, D2ij, F2ij

) =
n∑

k=1

ζk∫

ζk−1

Q(k)
ij (1, ζ 2, ζ 4)dζ, (21b)

where i and j take the values 1,2,6 in (21a) and take the
values 4,5 in (21b). In these equations, the orthotropic lamina
stiffnesses are given by:

Q11 = E11

d
, Q22 = E22

d
, Q12 = ν12 E22

d
,

Q44 = G23, Q55 = G13, Q66 = G12 (22)

where d = 1 − ν12ν21.
The strain energy functional is computed for each element

and then summed over all the elements in the domain to get
the total functional for the domain. Following this procedure,
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Eq. (18) can be written as:

U =
N E∑
e=1

U (e) =
N E∑
e=1

1

2

∫

A(e)

ε̄T Dε̄d A (23)

where, N E is the number of elements. Upon substituting for
the strain vector, the mechanical strain energy becomes:

U = qT K q (24)

where K is the global stiffness matrix and q is the global
displacement vector.

3.3 Kinetic energy

The kinetic energy of the vibrating plate, within the domain
of small displacements, is:

T = 1

2

∫

A

N L∑
k=1

ζk∫

ζk−1

(ρ(k) ˙̂uT ˙̂u )dζd A, (25)

where û is the displacement vector given by û = {ū v̄ w̄}
and ρ(k) is the density of layer k. Similar to the strain energy,
this expression can be rewritten as:

T = q̇T Mq̇, (26)

where M is the global mass matrix.

3.4 FEM formulation

Using variational principles, the governing equations for free
vibration for the system can be derived as:

K q + Mq̈ = 0 (27)

For positive definite M , Eq. (27) can be transformed into a
standard eigenvalue problem:

Aq − λq = 0, (28)

where A = M−1 K and λP = ω2
p, with ωp being the natural

frequency of the plate. This FEM formulation, augmented
with suitable boundary conditions, is used next to represent
the system response when calculating the implicit objective
function at each iteration of the stochastic analysis.

4 Stochastic finite element analysis

In reliability analysis, the partial derivatives of the perfor-
mance function g(X) with respect to all random variables
Xi are required. These can be expressed, using the chain rule
and Eq. (16) as:

∂g

∂ Xi
= 1

λr

∂λp

∂ Xi
, i = 1, 2, . . . n (29)

The partial derivatives of the j th eigenvalue with respect to
the random variables have been derived in by Hasselman and
Hart [14] as:

∂λ j

∂ X
=

∂
∂ X

[
φT

j (K − λ j M)φ j

]

φT
j Mφ j

, (30)

where φ j is the eigenvector corresponding to λ j .
Noting that K is independent of ρ, while ρ is a common

factor of all elements of M , substitution of Eq. (30) into
Eq. (29) yields:

∂g

∂ Xi
= 1

λr

∂
∂ Xi

[
φT

p Kφp

]

φT
p Mφp

, for i = 1, 2, . . . 6, 8, 9, . . . n,

(31a)
∂g

∂ X7
= −λp

λrρ
. (31b)

Standard finite difference routines can be used to evaluate
the derivatives of the stiffness matrix K in Eq. (31a) with
respect to the random variables. This, however, becomes
time consuming, especially when the set of random vari-
ables include ply orientation angles, because the process is
repeated at each iteration point. Moreover, since the predic-
tion of the new point depends on the derivatives, which are
approximate in this case, the optimization method takes a
larger number of iterations to converge. Finally, using SORM
in computing the probability of failure requires calculating
the second derivatives as well, which deems the finite differ-
ence choice impractical. Use is made of MATLAB symbolic
capabilities in evaluating the derivatives of the reduced stiff-
ness and mass matrices. In evaluating the derivative in the
numerator of Eq. (31), the eigenvectors at the mean value
of X are used, and are not updated at each iteration. This
greatly simplifies calculations and is justifiable for large fre-
quency ratios. As the frequency ratio increases, MPP tends
to be closer to the mean value of X , which is used in cal-
culating the eigenvectors. Validity of this simplification, and
confidence in the whole modeling, is further established with
comparisons with available published results and with results
obtained when this simplification is not used.

For the case when all the variables are treated as uncor-
related random variables, the eigenvalue can be assumed to
have a statistical distribution with mean and variance calcu-
lated at the mean of the random variables, given by:

µλ � λ(µX1 , µX2, . . . µXn ) (32a)

V ar(λ) = σ 2
λ �

n∑
i=1

(
∂λ

∂ Xi

)2

V ar(Xi ) (32b)
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5 Numerical illustrations

5.1 Second-order statistics of a square laminate:

The first illustration is a square symmetric [0◦/90◦]s laminate
with a/h = 10. Only natural frequencies and break second-
order statistics are investigated for this laminate in [13] for
SSSS boundary conditions. The mean values of the mater-
ial properties are: E11/E22 = 25, G13/E22 = G12/E22 =
0.5, G23/E22 = 0.2, E22 = 10.3 GPa, ν12 = 0.25, ρ = 1.

Table 1 shows a comparison of the first five calculated
nondimensional natural frequencies of the laminate using
two values for the mesh size and those reported in [13]. It is
clear from the table that a good agreement is obtained for the
2 × 2 mesh and excellent agreement is obtained using the
fine 5 × 5 mesh, with a difference of only 1.35% in the fifth
nondimensional natural frequency. This small difference is
believed to be due to the use of the full 3 × 3 integration rule
in [13].

The sensitivity of the fundamental eigenvalue to random
changes in mechanical properties is illustrated in Fig. 4. The
analysis in [13] is taken up to a COV value of 0.2 for the
mechanical properties, while the material density and ply
orientation angles are assumed deterministic. The calculated
curve of the present work under these conditions is almost
identical to that reported in [13]. Two other curves are pre-
sented on the figure; one with the density taken as a random
variable, and the other with both the density and ply angles as

Table 1 Non-dimensional natural frequencies ω̄ for a SSSS [0◦/90◦]s
square plate

2 × 2 5 × 5 Ref. [13] %�5×5

11.9187 11.7364 11.77252 −0.31

22.2978 21.8645 21.83344 0.14

28.0998 27.3512 27.37726 −0.1

34.466 33.2477 33.23205 0.05

44.7714 37.9417 37.43603 1.35
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Fig. 4 Variation of COV(λ) with simultaneous changes of the random
variables for a SSSS [0◦/90◦]s square laminate
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Fig. 5 Variation of COV(λ) with individual changes of the random
variables for a SSSS [0◦/90◦]s square laminate

Table 2 Non-dimensional fundamental frequency ω̄ for SSSS and
CFCF [0◦/45◦/ − 45◦/90◦] square laminates

a/h SSSS CFCF

Present Ref [15] � % Present Ref [15] � %

5 7.3021 7.17 1.8 7.5926 7.38 2.9

10 8.92 8.89 0.34 11.3582 11.1 2.3

random variables. It is clear from the figure that the random-
ness in material density can not be ignored, whereas random-
ness in ply angles has almost no effect on the randomness of
the fundamental natural frequency.

The relative importance of randomness in each mater-
ial property is illustrated in Fig. 5. Here COV(λ) is plot-
ted against the COV of each random variable assuming all
remaining variables to be deterministic at their mean values.
It is clear from the figure that the natural frequency is sensi-
tive to the following material properties, in decreasing order
of importance: ρ, E11, G23, G13, E22, G12 and ν12.

To validate the calculated results of the present work in
cases involving asymmetric laminates and different bound-
ary conditions, a square [0◦/45◦/−45◦/90◦] laminate made
of the same material is considered. The laminate was stud-
ied in [15] for two values a/h = 5 and a/h = 10, and for
two sets of boundary condition, SSSS and CFCF. Table 2
shows a very good agreement between the calculated nondi-
mensional natural frequency of the present FEM scheme and
the published results. Figure 6 shows a comparison of the
calculated COV(λ) for the SSSS case, based on determin-
istic density and ply angles, to that reported in [15]. The
excellent agreement of Figs. 5 and 6 proves the validity of
the present work for asymmetric, as well as, for symmet-
ric laminates. The upper curve in Fig. 6 suggests that, unlike
the symmetric case, the error in calculating COV(λ) by
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Fig. 6 Variation of COV(λ) with simultaneous changes of the random
variables for a SSSS [0◦/45◦/ − 45◦/90◦] square laminate

assuming ply angles to be deterministic in asymmetric
laminates is considerably large.

5.2 Full stochastic analysis of a square asymmetric laminate

Full stochastic analysis of laminates involves determining
the MPP and probability of failure. To the best of our knowl-
edge, there are no published results for this detailed stochastic
finite element analysis of the free vibration of laminated com-
posites. Most publications deal with static problems only,
[8,10,11], or calculate only second-order statistics (COV),
[12,15]. Accordingly, results of the present work are com-
pared to those of the well-established Monte Carlo simulation
technique. To reduce number of sufficient sample simulation,
a technique that utilizes importance sampling is used. The
procedure of applying this technique is detailed in [16].

The illustration is of a [0◦/45◦/ − 45◦/90◦] square lami-
nate with a/h = 10. The uncorrelated random material prop-
erties and ply angles have the Gaussian distributions shown
in Table 3. The mean and SD of stiffnesses are in GPa, and
those of the density are in kg/m3. It should be noted that the

developed MATLAB code facilitates the choice of other
types of distributions, thus providing more flexibility in
quantifying the randomness of the basic variables.

Since the probability of failure using Monte Carlo simu-
lation technique depends on the number of simulations, then
p f can be taken as a dependent random variable, for which
one can calculates a mean, a standard deviation and a skew-
ness coefficient. Table 4 shows the variation of p f with the
number of simulations for three values of the frequency ratio,
ωr/ωp = 0.97, 0.93, 0.87, respectively. It should be noted
that for relatively low frequency ratios, the last two rows of
Table 4, p f is so small that convergence is not clearly vis-
ible due to round-off error. This problem does not exist in
the present work because convergence is based on the value
of β, which for all practical purposes, a very large number
compared to any round-off error. The values of the mean,
SD, and skewness coefficient for the three p f distributions
are listed in Table 5. The small values of SD suggest that
the value of p f does not change much around the mean.
Negative skewness coefficients mean that dispersion is more
below the mean than above it. Therefore, taking the mean of
Monte Carlo calculated p f as a reference for comparison is
justified and reasonable.

Table 6 shows a comparison of the safety index and the
probability of failure calculated using FORM and SORM
optimization methods to the mean values of Monte Carlo
simulation results at the three values of the frequency ratio.
For both optiomization methods, solution is performed once
by updating the eigenvectors at each iteration, ver(1), and
another time with the eigenvectors calculated only at the
mean values of the random variables, ver(2). The last row
of the table provides a comparison of the CPU time of both
versions of SORM and Monte Carlo for the case of ωr/ωp =
0.97.

Taking the probability of failure obtained Using Monte
Carlo simulation as a reference, it is concluded that using
FORM overestimates p f by an unacceptably high percentage
that increases as the frequency ratio decreases. Using SORM,

Table 3 Statistical distribution
of the basic random variables

Property E11 E22 G12 G23 G13 ν12 ρ �θ

Mean 16.48 1.4 0.87 0.45 0.87 0.334 1,000 0.0◦

SD 0.61 0.05 0.052 0.014 0.052 0.01 36 1.8◦

Table 4 Variation of p f of
Monte Carlo for SSSS
[0◦/45◦/ − 45◦/90◦] square
laminate with a/h = 10 for
three values of the frequency
ratio

No. of simulations 50 100 150 200 250 300 350 400 450 500

p f (×102) 8.88 7.34 6.72 7.85 7.74 7.43 7.42 7.85 7.85 7.59

(×104) 5.10 3.87 4.52 4.85 5.09 4.75 4.88 5.11 5.34 5.23

(×1010) 1.99 1.27 1.19 1.48 1.60 1.44 1.57 1.68 1.823 1.826
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Table 5 Statistical parameters of the p f distributions of Table 4

ωr /ωp Mean SD Skewness coefficient

0.97 0.0765 1.964E−3 −9.614E − 2

0.93 4.86E − 4 4.21E − 5 −1.06

0.87 1.58E−10 2.35E−11 −276

on the other hand, overestimates p f by a maximum value
of only 3.5%. This indicates that the problem is highly
nonlinear, and ignoring its nonlinearity in FORM introduces
large errors. Table 6 also shows that results of ver(1) and ver
(2) for any given optimization method are virtually the same.
This confirms the validity of the assumption that the values
of the eigenvectors do not change much around the mean
value. Finally, the table shows the considerable save in CPU
time when using the present SORM analysis. Although the
importance sampling method converges to p f using rela-
tively small number of simulations, its CPU time is about 13
times that of ver(1), and 24 times that of ver(2) of the almost
equally accurate SORM method.

Results of the MPP for this plate are presented in Table 7.
Results corresponding to ωr/ωp = 0.97 are obtained using
ver(1) and ver(2) solutions. Again, it is clear that the simpli-
fying assumption of constant eigenvectors close to MPP is
justified, even for relatively low reliability problems. There-
fore only ver(1) results are listed for the remaining frequency
ratios.

6 Discussion and conclusions

In the present study, a procedure and a MATLAB code for
performing reliability analysis of the free vibration of lam-
inated composite plates has been developed. The suggested
stochastic analysis is performed using both the First-Order
Reliability Method (FORM-Method 2) and the Second-Order
Reliability Method (SORM), while the system response used
FEM formulation with a nine-node isoparametric Lagrangian
element. The code used MATLAB’s symbolic capabilities to
obtain the derivatives of the performance function symboli-
cally, thus greatly reducing calculation time. Validity of the
obtained results was established by comparisons with avail-
able published work, and algorithm effectiveness was estab-
lished by comparisons with results of Monte Carlo simulation
with importance sampling.

Upon investigating the sensitivity of the used performance
function to random changes in material properties, it was
concluded that the randomness in material density can not be
neglected in any accurate analysis of the scatter in the natural
frequencies of rectangular laminates. The randomness in ply
angles, however, can be neglected for the cases of symmetric
rectangular laminates.

Results showed that calculating the probability of failure
using SORM is an excellent rapid tool in the stochastic analy-
sis of free vibration of composite plates, when compared to
the slower Monte Carlo simulation techniques, which require
solving a large FEM problem so many times. Assuming
the eigenvectors to be constant at the mean value of the
random variables during the computation of the derivatives

Table 6 Comparison of the
safety index and probability of
failure for SSSS
[0◦/45◦/ − 45◦/90◦] square
laminate for three values of the
frequency ratio

FORM SORM MonteCarlo

ver(1) ver(2) ver(1) ver(2)

β 1.3267 1.3268 1.4103 1.4102 1.4293

3.1918 3.1920 3.2952 3.2951 3.2985

6.1858 6.1859 6.2937 6.2945 6.2905

Pf 0.0923 0.0923 0.0792 0.0792 0.0765

7.07E−4 7.06E−4 4.92E−4 4.91E−4 4.86E−4

3.09E−10 3.09E−10 1.55E−10 1.54E−10 1.58E−10

CPU time (s) 4,674 2,484 59,616

Table 7 MPP for SSSS [0◦/45◦/ − 45◦/90◦] square laminate with a/h = 10 for three values of the frequency ratio

ωr /ωp E11 E22 G12 G23 G13 ν12 ρ θ1 θ2 θ3 θ4

0.97 16.307 1.3825 0.8398 0.4496 0.8644 0.3337 1036.4 0.263 44.519 −45.481 90.270

16.305 1.3826 0.8399 0.4496 0.8641 0.3337 1036.6 0.258 44.525 −45.480 90.258

0.93 16.057 1.3549 0.7927 0.4490 0.8567 0.3332 1085.1 0.596 43.837 −46.163 90.596

0.87 15.647 1.3031 0.7051 0.4482 0.8453 0.3326 1156.1 1.003 42.777 −47.223 91.003
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of the eigenvalues proved to be a reasonable simplifying
assumption, which gives excellent results with much less
computational time. One limitation on the probability of
failure computed using FORM was emphasized; namely its
large error in non-linear problems.
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