rSadiq M. Sait, Farooqui AA*The architecture of a highly reconfigurable RISC dataflow

array processor sINTERNATIONAL JOURNAL OF ELECTRONICS 83 (4): 493-518 OCT
1997

Automatic Weinberger array synthesis from UAHPL description

§. M. SAITt and F, A. AL-KHULAIWIY

A Weinberger array (WA) (Weinberger 1967) synthesis system is described that
automatically generates WAs for combinational logic circuits modelled in Univer-
sal Hardware Programming Language (UAHPL) {Masud and Sait 1986). The
system also minimizes the arca required by the WA by performing row compac-
tion. An algorithm similar to that used for channel routing is employed for com-
paction {Hashimoto and Stevens 1971} This convenient tool for designing
combinational logic circuits models at a high level of abstraction and much of the
procedure is automated.

1. Introduction

Automatic design of the layouts of digital systems from descriptions in high-level
language is an attractive approach, especially when the number of transistors per
chip is large. Structured implementation of digital systems in nMOS is preferable for
its regularity, the case of mapping to layouts, and testing. Several design automation
(DA) systems have been designed keeping these points as the primary objectives
(Ayres 1983, Kang and van Cleemput 1981, Sait 1987).

UAHPL has been used to model digital systems and synthesize them in nMOS
technology. Final implementations have used path programmable logic arrays
(PPLA) (Olson 1984), storage logic arrays (SLAs) (Hill er al. 1984) and also full
custom VLSI design (Sait 1987). In this paper we present the automatic synthesis of
layouts for al-NOR nMOS Weinberger arrays (WAs) (Weinberger 1967) for com-
binational circuits modelled in UAHPL (Masud 1981). The UAHPL DA (Masud
and Sait 1986) system is used to generate the interconnection list, which is the
mapping of the modelled circuit. The list is converted to an all-NOR representation,
optimized to delete any redundant gates and then mapped to a WA, A new row
compaction procedure for row area sharing is devised to reduce the area required by
the array. As a result of compaction, average savings of 50-90% have been obtained.
The final output of the WA synthesis system is the stick diagram and layout data for
fabrication in nMOS techneology.

The next section discusses the advantages of the Weinberger array and the lan-
guage UAHPL. Section 3 gives an overview of the WA generator system. The heu-
ristics and algorithms used in the generation and compaction of the WA, and their
implementation details, are discussed in &4, Results and conclusions are presented in
§5.

2. Weinberger arrays and UAHPL
This section gives a brief overview of WAs and features of the UAHPL language.

Received July 1989; accepted July 1989,
+ Department of Computer Engineering, KFUPM Box. No, 673, Dhahran 31261, Saudi
Arabia.

0020 720790 S3.00 @ 1990 Taylor & Francis Ltd

Administrator
Text Box

Administrator
Text Box
Sadiq M. Sait, Farooqui AA�The architecture of a highly reconfigurable RISC dataflow array processor �INTERNATIONAL JOURNAL OF ELECTRONICS 83 (4): 493-518 OCT 1997

212 5. M. Sait and F. A. Al-Khulaiwi

2.1, Weinberger arrays

A Weinberger array is a logic array similar to a programmable logic array
(PLA). However, it differs from a PLA in that it consists of only one plane, Wein-
berger arrays can take any form, one of which is the NOR structure in which there
is a single rectangular plane consisting of only NOR gates (and inverters).

Weinberger arrays are an alternative to PLAs as a method of implementing
combinational logic circuits. They have certain advantages over the PLAs in that
the area does not generally grow with the size of the problem as fast as that required
for PLAs does. If the final implementation is in nMOS technology, then large PLAs
require large widths for power and ground lines (in metal); this is to avoid the
problem of metal migration (Mead and Conway 1980). The other advantage of Was
is that unlike PLAs they accommodate forms of logic other than the standard two-
level sum of products (SOP) logic. Functions expressed as an arbitrarily deep SOP,
that is, of multi-level circuits, can be casily realized using WAs,

22 UAHPL

Universal Hardware Programming Language is an extension of AHPL (Hill and
Peterson 1978). Tt is a register transfer-level language that allows one to specify
many low-level details for efficient implementation of digital systems in MOS tech-
nology (Sait 1987). Large iterative circuits such as artithmetic logic units (ALUs) can
be conveniently expressed as a combinational logic circuit (CLU). The language has
been implemented by means of a multistage compiler which supports a wide spec-
trum of design activities including testing (Chiang er al. 1982), simulation (Alsharif
1983) and VLSI mask generation (Sait 1987),

An example of a UAHPL model for a simple circuit is given in Fig. 1. The
description of the UAHPL model is as follows. Registers and flip-flops are declared
as MEMORY. Other declarations in this example are external inputs (EXINPUTS)
and a CLU called SAMCKT. CLUs are used to describe both simple and iterative
combinational circuits. Examples include circuits of adders, decoders, ete. For the
purpose of simplicity we use a trivial example.

The declaration part is followed by the procedural part, which consists of num-
hened stags defeing Ve vote SequEntyl macnine. The number ol steps is equal to

MODULE: EXAMFLE].
MEMORY : ACI{2];ACZ{1].
EXINFUTS : CLOCK ; RESET.
CLUNITS : CET[Z] <: SAMCKT=. 1 .5.

BODY
SEQUENCE : CLOCK.
1 ACl == CKT{AC2, ACZ,AC2);
=% {1}.
ENDSECUENCE
CCNTROLHESET (RESET) / (1).
END.

CLU: SAMCET(X) <. N .=,
INPUTS: XiZ*H+1j.
OUTEUTS: YiM+1],

BODY
¥IO] = (X[0j@X{1]};
Yi1] = (X[1ljaxizyy,
END.

END.

Figure 1. UAHPL model of example 1.

Automatic Weinberger array synthesis 213

the number of states in the finite state machine. This part begins with the statement
BODY SEQUENCE: CLOCK and is terminated by the keyword ENDSE-
QUENCE. Each step in the procedural part consists of a step number followed by a
register transfer statement (+), and/or connection statements (=), and, if needed, by
a branch {—) statement. Each pulse on signal line CLOCK advances the circuit
from one step to the next. UAHPL permits the usual operators such as AND (&),
OR (+), EXOR (@), NOT {—) and concatenation {,).

The identifier following the delimiter <" in the CLU gives the generic name of
the CLU. If the CLU has already been compiled it is not necessary to deseribe it:
otherwise it must be described. The number enclosed in curly brackets is used as a
parameter whose use is explained later. The generic CLU description is used as a
template by the compiler to generate copies of the combinational circuit, UAHPL
uses an Algol-like syntax for CLU description and is very suitable for describing
iterative networks. Another involved example of a CLU that uses the iterative con-
struct 15 given in Fig. 2

The parameter in curly brackets in the CLU deseription allows the compiler to
generate CLUs of various sizes from the same template. In Fig. 2 the parameter 'T' is
used to specify the bit size of the INCR (incrementer) unit. Referring to Fig. 2, to do
the incrementing the least significant bit is complemented and the other output bits
are obtained by EXclusive ORing the corresponding input bit with the logical AND
of all the lower significant input bits. FOR and IF statements are compiler dircctives
whereby the compiler generates the iterative network at compile time. In this paper
the UAHPL description of CLUs only is mapped to NOR WAs.

3, Overview of the system

This section provides an overview of the system. We briefly discuss the LUAHPL
compiler and net-list generator, the conversion of the net-list representation tooan
all-NOR circuit, optimization of the converted circuit to delete redundant inveriers
and gates and the generation of the WA personality.

3.1, UAHPL compiler and ner-list

The task of generating WAs from UAHPL descriptions is carried out in stages.
Tools available in the UAHPL DA system are also used (Masud and Sait 1986). The
first stage of the DA system performs syntax and semantic analysis of the model and
decomposes it into tables which are used by subsequent stages. The task of the
second stage is to produce a logic-level design of the system in terms of flip-flops,

CLU: INCR{I) <. M .>.
"I-BIT INCREMENTER COMSTRUCTED WITH EXCLUSIVE CR GATES"
"AND GATES & AN INVERTER"
IWEUTS : X[1}.
QUTPUTS: Y§iIi-
BODY

FOR J=(I-1} TO O STEP -1
CONSTRUCT
1F J=1=1 THEN Y[J}=-X]J]
ELSE YiJi=XiJi@(& K| J+1:1-1])
El
ROF.
EWD, "INCR"

Figure 2. UAHPL model of CLU for I-bit incrementer.

214 S M. Sait and F. A, Al-Khulaiwi

various logic gates and their interconnection. The design is stored in a net-list
(Masud 19813,

Figure 3 gives a partial net-list for the CLU in the UAHPL model given in
Fig. 1. It comprises the gatelist and the 1Olist. Figure 4 gives the corresponding
logic circuit,

The gatelist is stored in a matrix data structure under the name COLS. The
three fields of COLS are GATE+. GATE-TYPE AND I-LINK. I-LINK is a
pointer to the IOlist. Whence inputs to the gates are obtained. The IOlist is stored
in another matrix called CONMNECTION, and this also has three fields, The first
field in the 1Qlist is g stquence number and is not stored. The first two of the next
three fields have the GATE 4, which is the number of the gate connected ta the
input, and the third field is a pointer to the matriy itself, which is null if the fan-in is
less than two. The complete circuit can be constructed and manipulated using
COLS and CONNECTION. The next sections will deseribe the process of mapping
the interconnection list provided by the second stage of the UAHPL compiler to
efficient NOR Weinberger arrays for fabrication in nMOS technology.

GATE # GATE TYFE ILINK
1 INFUT 1
2 Ineyt 3
3 INEUT 3
it CUTEUT a9
5 QUTFUT 13
B EXCR &
7 EXOF 1

Figure 3a). Partial gatelist for SAMCKT in Fig. 1,

Gate#f Cates Hext Fointerp

1 102 0 4]
2 1 2 5
3 1oz 4]]
4 102 [4] 4]
5 3 (%] o
B F 1 o
7 B 7 9]
B & o o
4 =] [0
10] il ¥]
11 3 2 D
1z T [, o
13 7 Q 4]
14 5 o] 0
15 4 124 4]
i 140 9] 4]

Figure 3. Partial 1O0st for SA MCKT in Fig, 1.

2
S .

Figure 4. Logic circuit of SAMCKT in Fig. 1.

Automatic Weinberger array synthesis 215

3.2, Conversion of net-list to NOR gates

The linked list shown in Fig. 3 can be manipulated to meet the demands or
recommendations of the target technology. When modelling and designing digital
hardware one often uses more than the minimal number of logical element types
than are absolutely necessary. This is convenient because it is tedious to work in
terms of a minimal set. At the same time, only a minimal set may be available or
recommended for actually building the cireuit. There is, then, a need for automatic
translation from the form preferred by the designer to that required for implementa-
tion. The designer may prefer to think in terms of logical operators like AND,
NAND, OR, etc., while the basic hardware module preferred may be NOR.

Each gate used in the circuit contains a record in the gatelist. Since we want to
synthesize the NOR Weinberger array, it is required to convert all the gates in the
gatelist to NOR gates. In order to convert the logical circuit to all-NOR, the gates
in the gatelist must be replaced by NOR gates, and additional inverters (also here
called one-input NORs) must be added at the input or output of the NOR gate to
maintain the functionality of the circuit. As an cxample, to convert AND gates to
NOR gates the record in the gatelist containing the ANID gate is replaced by a
NOR gate, and additional inverters required at the mput of this gate are added as
additional records in the gatelist. The I/0 pointers in the 10list corresponding to
the input/output connections of the gates are updated. In order to convert the
EXOR gate to NOR gates the equivalent circuit shown in Fig. 5, containing only
MOR gates replaces the EXOR gate, and thus four additional records are added to
the gatelist for each EXOR gate. The modified gatelist and [Olist are given in
Figs fija) and 6(k), respectively. The all-NOR SAMCKT is shown in Fig. 7.

3.3. Deleting redundant inverters

The net-list provided by the Stage-2 UAHPL compiler is already optimized.
Dietails of the optimization algorithms are found in work by Masud (1981). After
conversion of the circuit to all-NOR, additional inverters may appear in series/
parallel with the inverters already present in the circuit. These are removed by a
simple optimizing routine and the corresponding records are dropped from the gate-
list. The function of the optimizing routine to remove the redundant gates in the
converted NOR list may be stated as follows.

In the process of converting the circuit to NOR gates and inverters the circuit
may have two points providing the same logic signal at all times. For example
points ‘p’ and *q" and points *’ and '5" in Fig. 8(b). These points are merged and the
redundancy in the circuit is removed.

The optimized NOR circuit 1s now mapped into a Weinberger personality as
explained in the next section.

I>——a@b

Figure 5. NOR equivalent of EXOR gate.

216 8. M. Sait and F. A, Al-K hulaiwi

GATE # GATE TYFPE ILINE

1 4025 *
2 4025]
3 G025 X
4 4026 11
] 4026 1z
G INV1 1
F) Inva2 2
B HORZ 3
9 HORG *
b {+] HORS 5
£ 1} NOR& G
12 NORT T
13 HORS =]
14 NORGD =]
15 NOR1O 10

Figure 6(a). All-MOR gatclist from Fig. 3a.

Gate# Catel Mext Pointer

1 11 0 4]
2 15 8] 4]
3 1 2 0
L =] 2]
3 1 a i)
B 9 10 0
7 2 | L]
a 3 12 4]
] 2 12 4]
10 13 14 Y]
11 L] Q 9]
1z ¥ i o]

Figure 6(b). [Olist from Fig, 3{a) for all-NOR circuit.

12

L

Figure 7. NOR eguivalent of SAMCET.

34, NOR Weinberger array generator

To specify the exact function of the layout in a succinct way, we define a person-
ality matrix for the Weinberger array. The array is represented as a matrix which
contains —, 4+, and *. A "+’ means that there is a transistor at the intersection of a
column and a row. A *—’ means there is no transistor at the intersection of a

Automatic Weinherger array synthesis 217

@ >

b —cﬁb"

Figure Bla). Sample circuit.

Figure 8(h). Redundant all-NOR sample creut,
D:‘ g

s [R S

rs

Figure #¢). Optimazed all-NOR sample circuit.

column and a row, and a "*" means that there is a contact-cut (sometimes called an
internal input).

Mapping the net-list to the Weinberger personality is fairly straightforward. In a
Weinberger array the number of columns equals the number of NOR gates and
inverters in the circuit. The number of rows is equal to the number of columns plus
the number of external inputs.

A row 1s assigned for each column (NOR gate) and for each external input. The
net-list is then scanned and “+'s (for transistors) are inserted in the Weinberger
personality depending on where the gates receive the inputs, Similarly a **° is placed
in the column that generates the internal input (indicating the contact cut in the
array). A "—" will indicate the absence of a contact-cut or transistor in the person-
ality. The personality of the circuit in Fig. 7 is shown in Fig 9. The stick diagram
for the corresponding nMOS transistor circuit is given in Fig. 10. In Fig. 10 rows
al, a2, a3 are for external inputs, 01 and 02 are the outputs and the rest of the rows
are for internal inputs,

The personality matrix of the generated WA 1s sparse, since only a few tran-
sistors and contact cuts are used in large arrays. The next step is to optimize the
array such that the area used is reduced and at the same time the structure and
advantages of the WAs are retained. One method is to perform column folding,
where a column can share the circuitry of two columns in the unfolded array. In this
case the maximum reduction in area is only 30% of the original area. In this paper

218 5. M. Sait and F. A. Al-Khulaiwi

e s o

Figure % Weinberger personality for SAMCKT,

— [: % VoD
gl dids fide
L_I,L LY o LEL L
IS A | I L B | o
a2 ____|| Il |05 O8I o5 | O
(31 a3 | g
()01 —--m)- 1 | | | |
(5102 ——--f-R-} U1 | |
B 1 ----H-H- f-t-H-H-H-t-H-H--
LT R— | ST | L
=15 S— | | i VI V|
M ___ Ol ' _%_,- N |
TFs 1o | | T___._.T:[_Z"_I“_.
1 a gLy e l_:_._._._F_._fo
121 P 1 3
ard soesfl=l i | 1 O
h: II L1

p—— —

Figure 10. Stick diagram for NOR WA of SAMCKT.

we present an efficient row compaction algorithm that gives much better results
than column folding. The next sections discuss the heuristics and algorithms used in
area reduction by row compaction of the WAs,

4. Heuristics, algorithms and implementation details

The optimizing algorithms for row compaction consist of two steps: (a) A
column-ordering heuristic, and (b) a row compaction algorithm. This is similar to
the channel routing algorithm due to Hashimoto and Stevens {1971} without the
vertical constraint.

d 1. Column-ordering algorithm

As stated carlier, in the WA, for each column of the array there is a correspond-
ing row. This row carries the signal from the output of that column to the other
columns in the array. In nMOS this horizontal row runs in polysilicon and feeds the
inputs of the NOR gates of the succeeding columns. The polysilicon wire and the

Automatic Weinherger array synthesis 214

transistors to which 11 inputs in a particular row form the circuit of that row.
Haowever, not the entire area of the row may contain transistors, contacts or connec-
tion lines. In row compaction, the area of a single row may be used to implement
the circuits used in several rows of the uncompacted array, thus reducing the overall
ared. The efficiency of row compaction is largely dependent on the relative position
of the columns. This is because the effective size of a row will be the distance
hetween the extreme transistors/contacts on that row, for a given ordering of
columns, and reordering may affect/change this size. The effective row is that part of
the row that has a transistor or contact at its extreme ends and no transistor or
contact cut beyvond the effective part. For example in Fig. 10 the effective size of
row Mo 1 (al) is between columns 3 and 5. Similarly, in row No. 13 (Q) the effective
size is from columns 2 to 10,

The ordering of a column is similar to the assignment problem. A heuristic
ORDER, explained below, is used to reduce the complexity. This is only a sketch of
the algorithm: more details can be obtained from Fig, 11,

Logic function can be divided into levels, The logical net-list is a mapping of the
circuit, and the columns in the initial ordered WA are the ones corresponding to the
gates in the cireuit,

Step L. Bequentially scan the initial ordered list of columns and remove any gates
(columns) that receive external inputs.

Step 2. In the process of scanning,
{2.1) if any gate appears whose input gates have already been remaoved, or
(2.2) if any output gate appears, then,
remove the gate and update the initial list.

Step 3. Continue the above steps until the end of the initial ordered list is reached,

Pracedure ORDER{orderl,arder?, COLS, CONNECTION)
Srordecl: Initial ovder of calumns */
Starder?: Final order, the reault =/
Declare SEL, mark : Boolean
BEGIHN
Mo of columns
Fv1, markitj-False, 1 5 1 5 N

Repeat
For i+1 To NC K
Begin
if markx|orderl{i}i-Faise then
Begin
SEL-True
For each input K of COLS(erderl(i),2ipo
Begin
SEL-SEL AND markiorderl (k)]
Erned
If NOT SEL then
Begin
orderd| fleorderl{i)
F—7+1, markiorderl(i)|-True
End
End
End
Until (j = HNC)
ENDORDER

Figure [[. Pseudo code for ORDER algorithm.

220 S M. Sait and F. A, Al-Khulgiwi

Step 4. Go to the beginning of the updated initial list and repeat Steps 2 and 3 until

the initial list is empty.

The order in which the gates are removed from the initial ordered list is the new
order of columns in the WA, The procedure called ORDER that gives the new
ordering of columns s given in Fig. 11. The new order for the columns in Fig. 10 is
as follows.

Initial order: 1,2, 34,5 6,7, 8,9, 10
Final order: 3.4, 5,6, 7. 8.9 10,1, 2

~

From Fig. 7 note that because gate Mo, 3 receives external inputs its column is
chosen first. Then gate No. 4 receives inputs from gate No. 3 (already placed) and
external inputs, and so it comes next. The process continues until gates Nos, 5 and 6
are placed. The next gate in sequence is No. 7, which is chosen, and this continues
until the end of the initial ordered list. Gates Nos. 1 and 2 were not chosen in the
first scan because the initial ordered list is scanned sequentially. In the second pass
gate No. [is chosen because its input {from gate No. 6) was placed in the previous
pass, and so is gate No, 2.

4.2. Raw compaction algorithm

In order to compact the array the problem is now considered as a channel
routing problem (Hashimoto and Stevens 1971), where the columns that mark the
extreme ends of the effective row are the nets, and the effective rows themselves are
the tracks of the uncompacted array. Unlike the situation for the channel routing
problem, since the pull-ups are only on the top there is no vertical constraint on the
tracks, only a horizontal constraint. The algorithm for compaclion i3 given in
Fig. 12

Procedure DOMPAC[order?, ROWS)
Declare placed : AREAY[1...,n| of Boolean
BEGIN

NR=¥ of rows

.-'Iﬂl-set of all columns

placedii]l—False, L £ 1 2 NR
Fer 411 rows Iin ROWS DO
Hogin
rfind 5., I,
b I
Ard,
Far i+1 To NB D4
Begpin
A-A
Fapr Fejf+el To NR DO
Begin
if A|wsj—sj then
Begin

put row j in row i
placed] jl~True
A=A [Sj K a-}..
End
End
AcA

|
End.
ENDCCMPALC

Figure 12, Pseudo code for COMPAC algorithm.

Auromaric Weinberger array synthesis 22]

In Fig, 12 the data structure ROWS consists of one field. This field is a pointer
to the CONNECTION data elements, Tt will give the columns for each row that
have either a transistor or a contact cut, For example, ROWS(1) will point to COMN-
NECTION, which will contain the elements 3, 5. Similarly ROWS(13) will point o
CONNECTION, which will contain 2, 10.

The algorithm in Fig. 12 is best explained with the help of an example. Consider
the Weinberger array shown in Fig. 10, As a first step the sets §; for cach row 7 are
built. These sets will contain the numbers of the columns in which row %" has a
transistor or a contact cut. For example: §, = {3, 5}, §, = {3, 5 7.9}, 5, ={7. &}
Se=1{1} Ss= {2}, S:=143,4,5, 5, = {46}, 53 =15 6}, 55 = {16}, S10=1{T8&
9% 8, = {8 10}, 5,; = {9, 10}, 5,3 = {2, 10},

As the next step the rows are sorted: first the rows corresponding to the inputs
are considered. The rest of the rows are taken in the order of their ordered columns.
Hence the new order of rows for this example will be:

1,2 3,67, 89 10, 11, 12, 13, 4, 5. (1, 2, 3 correspond to the inputs, row No, 6
corresponds to column No. 3, row No. 7 to column Na. 4, and so on,)

Let A; be the universal set of all columns in the ordered WA, In the example
under discussion 4, = {1, 2,3, 4, 5, 6, 7. 8, 9, 10}. We also define a set I; which, out
of the array of ordered columns, has the number of those columns in the effective
row %° that have mo transistors or contact; for example I, = {4}, I, = {5, 6, 8},
I, =154 1, =17,89 10, 1, = {9} I3 = {1}, and the rest of the sets are .

Then the sets (5 w), = 5, w 1, are computed for all k rows, The {8 w I} sets
for the inputs are {S w1}, ={3, 4 5L [Sul}; =13, 456 7.8 9L {Sul};=
17. 8}. The same sets for the other rows, taken in the order of the ordered columns,
are: Suwul=1{3 45, 5wl =456}, {Sully={56} 15 wit;=1{l,
6}, ISUTl=17.89L{8ul},,={8910,5ui},={910L {8ul},;=
1,2, 10548 v Il = {1}, and {50 T} = {2}

The procedure for compaction can now bhe summarized as follows.

Step 1. Imitialize set A4,
Step 2. Forcach row ‘& compute 4+~ 4 = {§ w T},.

Step 3. Any other row *f" that can share the empty area with row ‘k" must satisfy
two conditions:
{a) it must not be a row corresponding to another mput of the circuit;
{h} it must satisfy the condition 4 n {S w I}, =S w [},

If any row *f" satisfies these criteria, then its position is moved to row 'k’ and set
A is updated. The abave steps are repeated until no row can be merged with row k
Then the next row is taken and the procedure is repeated on the rows that have not
alrcady been merged.

As an example

A—{8uli};=11,26,7282910

Bow MNo. % can be merged with this row since A m {Sw I}, =1{1,2,6, 7, 8 9,
10} A 41, 6) = {1, 6}

222 S. M. Sair and F. A, ALK hulaiwi

The new set 4 becomes
A=A—-1Sulle=127829 10!

The next row that satisfies the criteria of merging is row No. 5, so row No. 5 is
also moved to row No. 1. Note that row No. 3 also satisfies the second condition,
but since it is an external mput {(and all inputs are to appear on the sides) it is not
considered. Thus row MNo. 1 in the compacted array has rows 1, 9 and 5 of the
uncompacted array. The compacted WA and the corresponding personality of
Fig. 10 are given in Fig 13. The uncompacted personality generated for the
UAHPL model of Fig. 2 for [= 3 is given in Fig. 14 and the corresponding com-
pacted personality is given in Fig, 15

5. Results and conclusions

In this paper we have presented a methodology whereby optimal layouts of WAs
can be gencrated from high-level descriptions in UAHPL. A new method ta reduce
the area of WA by row compaction has been decided. On an average a 50-90%
reduction in the area of WA after compaction has been observed. The developed
system is now part of the silicon compiler of the UAHPL DA system (Sait 1987).
Several simple and iterative practical circuits have been modelled in UAHPL and
the compacted WAs were generated automatically. The results of compaction for
some circuits are shown in the Table. It is apparent from the psendocode and algo-
rithms that the complexity of the WA generator is O(n?), where n is the number of
gates in the circuit. Since the final implementation is structured, mapping of the
generated compacted personalities of WAs to nMOS lavouts is straightforward.

HEW ORDER OF COLUMMNE 15 -
i

S5 (¥ 5 B T A
92 142 1 A
bt b mmat
o — =tk
————t
kg Ay
B kg
*
3 4 5 181 2

[l

L

(1,95 a1 ——_ il L ..
[2a3) a2 - __ e 0
e R SO | | |]
By 1 oo I
T S | | R O | 1]
wl
I

Figure 13, Compacted WA of Fig. 10,

Automatic Weinberger array synthesis

Figure 14, Uncompacted personality of Fig. 2,1 = 3.

NEW ORDER OF COLUMMS IS5 :=

10: 1k: 124
24 257 34
X: S T
17s 2B 274
39:= G0 Gl
18: 1% 20
32 33: dE
31 =5 9
e e (L L TP PRy F SRR wh
[———— drH b H bt At A mmm== e e L
Fhemtpbahay A ot EhpEo o Eh kR k*—
_______________ Flamttoctt®tboactatr A3t ®id: Faa
------------------------------ RTINS
LETR PR R T T - ow h_a E_4
P PR R Fadt Rap *oi *4 o
i ok Wod Wy w3

Figure 15. Compacted personality of Fig,

13
35
14;
28:

21
43

14.

22:
d6;:
15;:
29

30
A

Autamatic Weinberger array synthesis

Mo, of rows N of rows Area
before after Zained
Case MNo. of cols compaction compaction (%)

16 18 9 S0
6 30 11 a3
11 13 f 54
45 30 b 24
40 46 11 L

ACKNOWLEDGMENTS

The authors thank the King Fahd University of Petroleum and Minerals for
support under COE4635, They also thank Mr Ahmed Al-Sheikh and Mr Abdul
Rashid Bhatti for help in drawing the figures.

REFERENCES

ArsHanir, M. M., 1983, Functional level simulator for universal AHPL. M.S. thesis, Uni-
versity of Arizona.

Avees, R, F, 1983, VLST: Silicon Compiler and the Art of Automatic Chip Design (Englewood
Cliffs, N.1.: Prentice Hall).

Criang, C. H, Hiw, Fo Mosses, A and Cues, 12, 1982, Fault detection test generation at
the register transfer level. Proceedings af the ILEEE. First Annual Phoenix Conference
on Compulers and Communications, pp. 58-63.

Hastmoro, A, and Stevens, 8., 1979, Wire routing by optimizing channel assignment within
large apertures. Proceedings of the Eighth Design Automation Conference, 1978, pp.
155169,

Hiie, F. I, Navam, Z., Cuiang, C, Cuex, D, and Masup, M., 1984, Hardware compilation
from an RTL to a storage logic array target. LEEE, Transactions on CADMCAS, 3,
pp. 208-217.

Hiee, F. 1, and Prrerson, G. R, 1973, Digital Systems: Hardware Organization and Design
{Mew York: Wiley) (second edition published 19781

Kamg, 5, and van Cresmreur, W, M., 1981, Automatic PLA synthesis from a DDL-P
description, f8th Design Automation Conference, pp. 391-397,

Masun, M, 1981, Modular implementation of a digital hardware design automation system.
Fh.[3. dissertation, Department of Electrical Engineering, University of Arizona,
Masup, M., and Sarr, 5. M. 1986, Universal AHPL—a language for VLSI design automa-

tion. LEEE Circuirs and Devices magazine.

Mean, C., and Coxway, L., 1980, etroduction o VLST Systems (Addison Wesley).

Orson, T, AL 1984, Automatic AHPL description to path programmable logic array. M.S.
thesis, Lniversity of Arizona.

Sarr, 5. M., 1987, VLSI mask generation [rom register transfer level deseriptions: an automa-
ted approach. Ph.I>. dissertation, Department of Electrical Engineering, KFUPM,
Dhahran.

WEINBERGER, A, 1967, Large-scale integration of MOS complex logic: a layout method.
LEE.E, Journal of Solid Stare Circuits 2, 182-190,

