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State machine synthesis with Weinberger arrays

SADIQ M. SAITT and AIMAN H. EL-MALEH?

The development of a digital circuit synthesis program is described. The program
accepts the transition tahle of a state machine and returns equations for an
implementation that assumes a sum-of-product nexi-state and outpul functions.
From the equations for the next-state and output functions, nMOS VLS layout
for a Weinberger array is gencrated. D flip-flops are assumed for memory
f elements. Using this tool, ledious manual calculations can be avoided and
layouts can be generated automatically from state table descriptions.

1. Introduction

A state machine is a sequential circuit containing memory and combinational
logic. The contents of memory define the state, and the logic defines the output
and the next state as a function of the current state and the cxternal inputs. State
machines are widely used by engincers for digital circuit design. Synthesis of state
machines is becoming an important part of VLSI design (Clare 1973).

Since much of the work in implementing a state machine invelves tedious
calculations, it is preferable that once the transition table of a state machine has
been specified the final design and implementation are oblained automatically,

In VLSI design of state machines, in general. programmable logic arrays
{PLAs) are used for combinational logic (Mead and Conway 1980, Ayres 1983). In
this paper, we syvnthesize the circuit using Weinberger arrays {WAs) (Weinberger
1967), The structure of a WA, its advantages and disadvantages, are discussed by
Ullman (19843, Mukherjee (1986), Sait and Al-Khulaiwi (1990} and Sait and
Al-Rashed (1990).

Since the combinational logic 1s for a state machine, there 15 4 constrainl on
the order of rows. This is ta avoid the feedback lines through the memory from
crossing each other, The other constraint arises from the fact that inputs for both
the present-state and next-state signals must appear on the same side of the array
as the flip-lops. These constraints make the optimization of the generated WA
difficult

The development of a state machine synthesizer program is discussed in this
paper; it calculates and reduces the equations for the variables (that is. previous
state, input, next state and output) of the state table. In addition, the program
pencrates 4 WA for the given state machine if necessary. Column folding is
attempted but the optimization of the array with the above constraints is stll an
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open problem. The algorithms used and the implementation details of the state
machine synthesizer program, also the generation of the WA for the modelled slate
machine are discussed.

2. State machine synthesizer

The algorithms used in the development of the state machine synthesizer
program are briefly presented. The notation used. the main algorithm, a general-
ized Quine procedure for the generation of the prime implicants and the algorithm
for testing tautology (Breuer 1972, McCluskey 1956 and Ullman 1984) are
discussed, also the input/output format to the synthesizer and the data structure
used in the implementation are discussed.

2.1 Definitions

Boolean switching functions can be represented in two equivalent forms: the
normal form boolean switching expression and a cubical representation. For
example, the expression x,x,+x,x, is represented in its cubical form as 10x, 1xl;
The cubical notation is used in this paper because it is concise and lends itself to
direct, easy computer implementation,

{a) An n-tuple c={c,c; ... ¢,) where ¢,e{0, 1, x! is said to be a cube. A O-cube
15 an n-tuple c=(c;c;...c,] where ;e {0,1}. Given that € is a set of cubes, K" (),
the O-complex defined by €, is the set of all O-cubes, each of which is covered by
some clement of €. A cube ¢ defines a boolean product term Pic), and vice versa.
For example, P(10x0)=x,%,%,, where %,,%,,...,%, arc the n variables of a
switching function, and x; and %, arc said to be the true and false literals
associated with the variable %, In general, if we set %! =x, =1, #f=1, then
Ple) =TT x5

If r elements of ¢ are x's, we say that ¢ is an r-cube. An r-cube is said to cover
or contain 2 (-cubes, namely all those O-cubes which can be obtained from ¢ by
replacing the x's by 0's and 1's.

(h) Subsuming (=). Let a={a,a,...a,) and b=(lb,. .. b,) be two arbitrary
cubes. We say cube a subsumes cube b: writlen a=b iff all the O-cubes covered by
@ are also covered by b, ie. K™Na)= K°b). For example, llx subsumes lxx and,
equivalently, x,x,; subsumes x,. If a subsumes b, then equivalently we can say that
a is contained in or covered by .

I1 C 15 a cover of a complex K° and if a=b where a, be €, then € —a s also a
cover of K. Let €’ be obtained from € by deleting all cubes ae € such that a=hb
for some beC, where abh This operation of deriving ' from € is called
subsuming, and it is denoted by C' =5[],

() Consensus (g). The consensus of two product terms P and 0 is the largest
product R such that B does not imply either P or O, but R implies P+ 0. The
consensus of P and @ is defined only for the case where there exists exactly oneg i
such that x; is a literal in P and %, is a literal in 0. In this case, we can write
P=x.P and Q=3.0", where P’ and Q' are not functions of %, and therefore the
consensus of P and @ is PO

The consensus operator is defined by the following coordinate tahle:
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{x and y are symbaols used for the purpose of definition).
If w, ¢ b;=y for exactly one i, then
agh=(mia, ¢b) mlaygb,)....ma,¢h,)
where m( =0, m{1)=1, and m{x]=my)=x
Otherwise a ¢ b is undefined,

C ¢ C is defined by the equation C¢C={c'¢ |’ e Cli<j)
Lxamples are

Higlll=x11
11 ¢ x00 =02 {undefined)
x01 ¢ 1x0=10x

{d) Sharp product (F). The sharp product (#-product) between two cubes g and
b, denoted by aZh s defined o be the set of cubes such that PlaZh) is the set of
all prime implicants of the function defined by Pla)lP(b). Equivalently, a£b is the
set of all prime implicants for the complex K%a)—[K%a)~ K%Fk)]. Algebraically,
afbis defined according to the following coordinate table:

by
s
E-Tif} I ox
0z (R
ui{ 1 9 & &
x‘l B -z

(v and z are symbols used for the purpose of definition)
agh=aifa;gh=yforany
ath=d¢ if g, 4h,=z for all i

Otherwise,
atb=|l(a,a;...a- a8+, ...q,), where

a;gh=ae[0, 1}, and the union runs over all i

By definition,

C'ih=3 |: I f."f.b:l and afC=S[(...(afc")Fc)..15c%)]
(-1
where iy, iy, ....1, is any permutation of 1,2, ..., p and p=|C|,
Also,

c*gc:s[ L) c":r.C]

o o

Sharping can be thought of as a subtraction process because C'£C is a cover
or all vertices in €’ which are not in C {Breuer 1972).
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2.2, Components of the program

The synthesizer program 1s divided into five main modules. The function of each
module is briefly described below,

(1) Expand module: used o expand the truth/state tabje entered by the user, if
needed, from singular cover form into s and 17 form
(i1} Quine module: used to caleulate the equations for the next state and oulput
functions
(i) FCCOVER module: used to reduce the equations to reduce the size af the
resulting circuit by forming an irredundan cover

{iv) FNOR module: used to represent the equations in NOR form and label the
product terms for the functions

(v) Weinberger module: used to generale a WA for the given machine

When the truth/state table for the machine has been read, the expand module
15 called. Every column of the previous state and inpul variables in the table is
checked. [fa 2 (meaning a do not care} is found in any row, the Tow containing it
will be replaced by two rows one having O instead of the 2 and one having 1.
Following this method, the table will be expanded to O-cubes in order 1o find the
prime implicants for every function, More details of the algorithms are @iven in the
next section.

23, Aleovithmy

The main difficulty with the simplification procedures is that they require the
generation of the set of prime implicants Z which can be quite large. A technigue
for rapidly obtaining an inigal conneclion cover €, is used. Orce C, is obtained,
redundancies in it cgn be eliminated, and an irredundant connection cover
obtained. In this procedure each funciion fis simplified mdividually, hence the
amount of computation grows only linearly with the number of functions (Breuer
1972 and Ullman 1984).

231 Main algorithm
Step 1
For i=1 to number of functions do
Generate an irredundant cover C' for function S from initial covers C, and
DC'. (CY represents the trye vertices of [ DC represents the do not care
vertices of )
Step 2
CCOVER=¢
For i=1 to number of functions do
COOVER=CCOVER Lt
Step 3
For cach ce CCOVER do
Obtain an element ce in CCOVER, where e, =1 iff G A
Otherwise
=2, that is, this cube ¢ i5 not a product term for function
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Step 4
For cach row r of CCOVER do
Raise column | of vector e by placing 2 instead of 1 in column ¢, if the test
below s positive:

(i} Find the set R of rows other than r consisting of cubes ¢ with [ in

column ¢, Let g, ..., g, be the terms corresponding to the rows of R,
(i) Let b, +...+h, be the complement of the term represented by row r
(iii} Test whether A ... +h 48, +...+ g, 15 8 tautology.
Step 5

For every row rin CCOVER eliminate row r
if the e vector of that row consists of entirely 27
Step 6
(Cienerate the product terms for every function i)
Fori=1 to numbers of functions do
if ¢;=1 for row r then
fl = )I:.I e
number of lunctions = number of states 4+ number of outputs

Explanation of steps: Step | generates the irredundant cover €' for every function £
Steps 2 and 3 are used for generating a connection cover for all the funclions.
Steps 4 and 5 are used for removing redundancies in the connection cover. Step 6
forms the product terms for every function.

232 Aleorithm for generation of prime implicant Z. Given below is the generalized
Quine’s procedure which is used for gencrating the prime implicants ¥ {Breuer
1972 and McCluskey 1956)

Step 1. A,=8[C,wDC]
Step 2. For r=0.1,...n, we have

(i) Z7is the set of all r-cubes ac 4, such that arm C,# ¢ and no element
in the set ag A, 15 an (r+ 1) cube
(i) A, =S[4 (4 cA)]—Z
(iif) If A, + 1= the process can be terminated since
=g lorall r+1<s=5n
Step 3

Z=\} z
r=0

233 Tawology testing. Testing for whether or not a boolean expression 1s &
tautology is based on the idea that any expression fi{x,....,x,) can be written as
Xy filxg, o ) F 2y fol%as. .0 x.b. Then [ s a tautology iff both f, and fi arc
tautologous. There are many heuristics that can be used to tell in certain cases
what the answer to a subproblem is. Two useful ones are {Ullman 1984):

(i) If a matrix has a row with all 2%s, then surely it is a tautology, because this
term covers all the peints in the boolean cube,
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(1) Suppose a matrix has n columns, so its rows are lerms representing points in
the boolean n-cube. A term ¢ with i, 2's represents 2 points, so we can casily
obtain an upper bound on the number of points all the terms cover. by
summing 2% over all terms 1. If this sum is less than 2 the matrix cannot
represent a tautology. In this case, we not only answer ‘no’ for the particular
matrix at hand; we also know that the original matrix is not a tautology, A
recursive program has been developed for the above algorithm (Ullman 1984),

240 Inputiowiput format

To describe a stale machine, the following information must be supplied to the
program in order.

(@) MNumber of rows of the transition/truth table

(4 Mumber of states in the machine

(¢} Mumber of input variables

(¢} Mumber of cutput variables

(e} Labels for the previous states, inputs, next states and outputs
(£} The transition/truth table of the machineg

The program accepts both completely specified and incompletely specified
circuits. A 2 is used to represent a ‘do not care’ in the table. The data can also be
entered in a singular cover form and then it will be expanded by the program,

The program reads the input file with the above format for a state machine.
and calculates the equations for the next state and output functions. The input
data must be entered in the above order. The program accepts both combinational
logic truth tables and sequential circuit state tables. If the table is of a
combinational circuit, then the number of states must be entered as zero. The
cquations are printed for each function separately,

2.5 Data siructures used

For storing the prime implicants and the product terms for every function, the
following data structures are used. A one-dimensional array is used to store the
number of product terms for every function. In addition, a three-dimensional array’
is used for storing the product terms or the cubes. These data structures are
represented in Pascal as follows:

FC  Array[l ... L] of integer
cube Array[l... L,] of char
F Array[l... Ly 1., Li] of cube
L, Upper limit on the number of (states + inputs)
L, Upper limit on the number of {states 4+ outputs)
L;  Upper limit on the number of product terms for a function

More details can be obtained from the two examples given in the next section,

3. Generation of a Weinberger array for a state machine
An algorithm for the generation of a WA for a state machine is given helow,
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Figure 1, Input state table of Example 1.
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Figure 2. (al Irredundani covers for functions of example [; (b)) NOR representation of
[unctions of Example 1.

Step 1
[Change the functions o0 NOR-representation ]

Geetting the equations of the next-state and output functions, they are first
converted to NOR form.

As an example, consider the state table given in Fig, 1 which is the input to the
synthesizer, Trredundant covers for the functions and their corresponding NOR
representation for A4, B+ and Z are obtained and are given in Fig. 2, For
example,

A+ =(A—WB—NX}+ (4 —=UB—)+{A—=)X)

(A=) +(B=) + (XN +UA=)HB=W+{A=VFIXNT
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Figure 3. Automatically generated WA for the state 1able of Example L |
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Figure 5. Input state table of Example 2 (Mead and Conway 1980,
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Figure 6. Irredundant covers for functions of Example 2,

A+ A+ (NOR represen-
tation)
A— B— X A— B— X
0 1 ] 1 0 1
I 0 2 1 2
i 2 1 0 2 {0

Step 2

Every product term in a function needs a pull-up and a row in the WA, A
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Figure 7. NOR representation of functions of Example 2.

product term consisting of one variable need not have a pull-up and a specific row
in the array since it can be taken from the (previous state or inputl variables) rows.

These rows (of WA) are labelled from M| to M, (i can be as large as needed).
Before labelling the rows [corresponding to the product terms) of the functions,
they are ordered using a certain criteria. This criteria is that the common product
terms are pushed down (i.e, labelled at the end),

This criteria allows overlapping of pull-ups from both directions of the WA
{top and bottom) il possible, thus reducing area as in column folding.

Step 3

This step consists of forming the set of pull-ups to be placed in the top side of
the array and the sct of pull-ups to be placed in the bottom side of the array.

The set of top pull-ups (STPs) and bottom pull-ups (SBPs)
All product terms are labelled with M, labels
For i=1 to number of functions do
If |[F|=1 then there is no need for a pull-up since the function will be either
an {input or state variable) or an M, variable.
If the function has a product term consisting of one variable and |F)|= 1
Then

STP—STPuw F,
Otherwise
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Figure 8. Automatically generated WA for stale table of Example 2.

If for all M;e F,, j=i—1 then
SBP—SBPUF;

Cherwise

STP+—STPUF,;

Step 4

The rows in the WA used for previous state variables are ordered to avoid the
crossing of wires while connecting the next-state rows, through the memory, to the
previons-state rows. This is done easily by looking at the order of representation
of the next-state variables in the WA, and ordering the previous states Tows in an
opposite order.

By performing the above four steps, an irredundant WA is generated for the
state machine.

Outpat fornmat of WA

(@) Either of the symbols P; or PU,; is used to represent a pull-up {i represents the
number of the pull-up)

{b) The symbol *+ is used to represent the placement of a transistor

{r} The symbol *** represents the end of the metal line running from the output of
the top pull-up, and it also represents the placement of a contact cut

(d) Mapping of this array to stick diagram and hence to layout is straightforward
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The automatically generated WA in the above-discussed format and its corres-
ponding stick diagram in mixed notation for the state-table in Fig. 1 are given in
Figs 3 and 4 respectively.

Another example ol a state table is given in Fig. 5. This is the traffic light
controller (Mead and Conway 1980), The generated irredundant covers and their
corresponding NOR representation are given in Figs 6 and 7 respectively. The
generated WA in *— +* notation is given in Fig. 8

4. Conclusions

A state-machine synthesis program that provides a useful aid in digital-circuit
design and synthesis has becn developed. Stick diagrams and layouts of the WA
for the input state diagram are generated automatically.

From Fig. 4. it 1s obvious that the area can be further reduced by optimization.
For example, interchanging rows for X and 4 — allows the felding of columns M3
and M4 without violating the constraints mentioned earlier. However, this was not
done primarily to place the variable and its complement beside each other. An
algorithm for row compaction (Sail and Al-Khulaiwi 1990) and column folding
{Sait and Al-Rashed 1990} can be modified and applied to reduce the area further.
As was explained earlier, the system can also take the truth tahle of combinational
logic circuits and provide the VLSI layouts for WA automatically, However, in
this case the optimization constraints will be relaxed.

The algorithms are coded in Pascal and the software runs on IBM PC. Copies
of the software can be obtained from the authors.
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