
Parallel Stochastic Evolution Algorithms for Constrained Multiobjective
Optimization

Abstract

Stochastic evolution (StocE) is an evolutionary meta-
heuristic that has shown to achieve better solution quali-
ties and runtimes when compared to some other well es-
tablished stochastic metaheuristics. However, unlike these
metaheuristics, parallelization of StocE has not been ex-
plored before. In this paper, we discuss a comprehensive
set of parallel strategies for StocE using a constrained mul-
tiobjective VLSI cell placement as an optimization problem.
The effectiveness of the proposed strategy is demonstrated
by comparing its results with results of parallel SA algo-
rithms on the same optimization problem.

1. Introduction

Evolutionary metaheuristics are increasingly being ap-
plied to a variety of combinatorial optimization problems,
especially with vast multi-modal search spaces, which can-
not be efficiently navigated by deterministic algorithms.
Stochastic evolution (StocE) [7] is a randomized iterative
search algorithm, similar to the other well known meta-
heuristics such as Simulated Annealing (SA), Genetic Al-
gorithms (GA) and Tabu Search (TS) [9]. It is inspired by
the alleged behavior of biological processes. Compared to
SA, each move in StocE is a compound move. Also, it
allows controlled uphill moves throughout the search pro-
cess, unlike SA behavior in the cold regime. StocE has
demonstrated improvements in runtime and solution qual-
ity over the more established metaheuristics when applied
to the same problem instance [10].

With large problem complexities and conflicting opti-
mization objectives, the runtime requirement for achieving
near optimal solutions can be prohibitively high. Paral-
lelization of metaheuristics aims to solve complex problems
and traverse larger search spaces in a reasonable amount of
time. The goals of parallelization can be to achieve either
lower runtimes for the same quality solutions as the sequen-
tial algorithm or higher quality solutions in a limited amount
of time [3]. However, determining an appropriate parallel

approach can be a non-trivial exercise. The factors to be
considered include the nature of the problem domain (solu-
tion landscape), the metaheuristic structure, and the parallel
environment. Parallelization of metaheuristics is an actively
researched topic [3], but unlike SA, GA, and TS [2, 4], par-
allelization of StocE has not been studied. In this work,
parallel algorithms for StocE are presented considering a
complete spectrum of parallel models [2]. VLSI cell place-
ment is used as an optimization problem and the goal is to
achieve scalable speed-ups using a low-cost cluster environ-
ment. It is found that parallelization of StocE increases its
effectiveness in solving large, multi-objective optimization
problems. A comparison with parallel SA strategies is also
given, which further highlights the performance gains.

This paper is organized as follows: Section 2 briefly dis-
cusses the optimization problem and costs functions. This
is followed by a description of StocE algorithm in Section
3 and its sequential runtime analysis in Section 4. Section 5
presents the proposed strategies, while experimental results
and comparison are given in Section 6. Section 7 concludes
the paper.

2. Optimization Problem and Cost Functions

This paper addresses the problem of VLSI standard cell
placement with the objectives of minimizing wirelength,
power consumption, and timing performance (delay), while
considering the layout width as a constraint.

Wirelength Cost: Interconnect wirelength of each net in
the circuit is estimated using Steiner tree and then total
wirelength is computed by adding the individual estimates:

Costwire =
∑

i∈M

li

where li is the wirelength estimation for neti and M

denotes total number of nets in circuit.

Power Cost: Power consumptionpi of a net i in a
circuit can be given as:

pi ≃ li · Si

where,Si is the switching probability of neti. The cost
function for estimate of total power consumption in the cir-
cuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si)

Delay Cost: This cost is determined by the delay along the
longest path in a circuit. The delayTπ of a pathπ consisting
of nets{v1, v2, ..., vk}, is expressed as:

Tπ =

k−1∑

i=1

(CDi + IDi)

whereCDi is the switching delay of the cell driving netvi

andIDi is the interconnect delay of netvi. The delay cost
function can be written as:

Costdelay = max{Tπ}

Width Cost: Width cost is the maximum of all the row
widths in the layout. Formally, width constraint is expressed
as:

Width − wavg ≤ α × wavg

where,α is a constant andwavg is the minimum possible
layout width.

Overall Fuzzy Cost Function: In this work, fuzzy
logic is used to integrate multiple, conflicting objectives
into a scalar cost function [10]. The resulting quality
measure for a solutions is denoted asµ(s) and is a value
between 0 and 1, with 1 representing an optimal solution.

AlgorithmStocE(S0, p0, R);
Begin

BestS= S = S0;
BestCost= CurCost= Cost(S);
p = p0;
ρ = 0;
Repeat

PrevCost= CurCost;
S = PERTURB(S, p);

/* perform a search in the neighborhood of s */
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost);

/* updatep if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;
ρ = ρ − R;

/* Reward the search withR more generations */
Else

ρ = ρ + 1;
EndIf

Until ρ > R
Return (BestS);

End

Figure 1. The Stochastic Evolution algorithm.

3. Sequential StocE Algorithm

The StocE algorithm seeks to find a suitable location
S(m) for each movable elementm ∈ M , which eventu-
ally leads to a lower cost of the whole stateS ∈ Ω, where
Ω is the state space. A general outline of the StocE algo-
rithm is given in Figure 1. The inputs to the StocE algorithm
are, an initial state (solution)S0, an initial valuep0 of the
control parameterp, and a stopping criterion parameterR.
Throughout the search,S holdsthe current state (solution),
while BestS holds the best state. If the algorithm gener-
atesa worse state, a uniformly distributed random num-
ber in the range[−p, 0] is drawn. The new uphill state is
accepted if the magnitude of the loss is greater than the
random number, otherwise the current state is maintained.
Therefore,p is a function of the average magnitude of the
uphill moves that the algorithm will tolerate. The parameter
R represents the expected number of iterations the StocE al-
gorithm needs until an improvement in the cost with respect
to the best solution seen so far takes place, that is, until
CurCost≤BestCost. If R is too small, the algorithm will
not have enough time to improve the initial solution, and
if R is too large, the algorithm may waste too much time
during the later generations. Experimental studies indicate
that a value ofR between 10 and 20 gives good results [7].
Finally, the variableρ is a counter used to decide when to
stop the search.ρ is initialized to zero, andR−ρ is equal to
the number of remaining generations before the algorithm
stops.

After initialization, the algorithm enters aRepeat loop
Until the counterρ exceedsR. Inside theRepeat body,
the cost of the current state is first calculated and stored in
PrevCost. Then, thePERTURB function (see Figure 2)
is invoked to make a compound move from the current state
S. PERTURB scans the set of movable elementsM ac-
cording to some apriori ordering and attempts to move ev-
ery m ∈ M to a new locationl ∈ L. For each trial move,
a new stateS′ is generated, which isa unique function
S′ : M → L such thatS′(m) 6= S(m) for some mov-
able objectm ∈ M . To evaluate the move, the gain func-
tion Gain(m) = Cost(S) − Cost(S′) is calculated. If the
calculated gain is greater than some randomly generated in-
teger number in the range[−p, 0], the move is accepted and
S′ replacesS as the current state, assuming a minimiza-
tion problem. Since the random number is≤ 0, moves
with positive gains are always accepted. After scanning all
the movable elementsm ∈ M , theMAKE STATE routine
makes sure that the final state satisfies the state constraints.
If the state constraints are not satisfied thenMAKE STATE
reverses the fewest number of latest moves until the state
constraints are satisfied. This procedure is required when
perturbation moves that violate the state constraints are ac-
cepted.

2

FUNCTION PERTURB(S,p);
Begin

ForEach (m ∈ M) Do
/* according to some apriori ordering */

S′ = MOV E(S, m);
Gain(m) = Cost(S) − Cost(S′);
If (Gain(m) > RANDINT (−p, 0)) Then

S = S′

EndIf
EndFor;
S =MAKE STATE(S);

/* make sureS satisfies constraints */
Return (S)

End

Figure 2. The PERTURB function.

The new state generated byPERTURB is returned to the
main procedure as the current state, and its cost is assigned
to the variableCurCost. Then the routineUPDATE (Fig-
ure 3) is invoked to compare the previous cost (PrevCost)
to the current cost (CurCost). If PrevCost= CurCost,
there is a good chance that the algorithm has reached a local
minimum and therefore,p is increased bypincr to tolerate
larger uphill moves, thus giving the search the possibility
of escaping from local minima. Otherwise,p is reset to its
initial valuep0.

At the end of the loop, the cost of thecurrent state S is
compared with the cost of thebest state BestS. If S has a
lower cost, then the algorithm keepsS as the best solution
(BestS) and decrementsR by ρ, thereby rewarding itself
by increasing the number of iterations (allowing the search
to live R generations more). This allows a more detailed
investigation of the neighborhood of the newly found best
solution. IfS, however, has a higher cost,ρ is incremented,
which is an indication of no improvements.

PROCEDURE UPDATE(p, PrevCost, CurCost);
Begin

If (PrevCost=CurCost) Then
/* possibility of a local minimum */

p = p + pincr;
/* incrementp to allow larger uphill moves */

Else
p = p0; /* re-initialize p */

EndIf;
End

Figure 3. The UPDATE procedure.

4. Sequential StocE Analysis

Prior to formulating parallelization strategies, the pro-
filing of sequential StocE is presented to identify the time
intensive routines and performance bottlenecks, thus serv-
ing as a basis to engineer effective parallel approaches. The
profiling was done using the GNU ‘gprof’ utility. The per-
centage of time taken by problem-specific cost computa-
tions versus all remaining functions is documented in Ta-
ble 1. The profiling results clearly demonstrate that more
than 90% of time is spent in the cost function calculations of

wirelength, power and delay, thereby highlighting the com-
putational complexity involved.

Table 1. Runtime profile of sequential StocE
Circuit Number Cost Functions Other
Name of Cells calculation Functions
s1494 661 93.15% 6.85%
s3330 1961 92.86% 7.14%
s5378 2993 93.43% 6.57%
s9234 5844 92.87% 7.13%
s15850 10383 89.64% 10.36%

5. Parallel StocE Algorithms

Given the profiling results, an intuitive approach would
be to parallelize the cost functions to achieve a low level
parallelization. However, due to the nature of data de-
pendencies involved, this strategy is not suited to a coarse
grained parallel environment, where node-to-node commu-
nications are high [8]. Another parallelization approach that
can be considered is one that divides the solution into in-
dependent domains, each to be operated in parallel. This
strategy seems attractive as the total cost calculations will
be distributed across all processors. Finally, a third type
of parallelization that can be attempted is known as coop-
erative parallel searches (Asynchronous Multiple Markov
Chains), where parallel threads each running a complete
StocE process cooperate with each other to quickly reach
good solutions.

5.1. Asynchronous Multiple Markov Chains
(AMMC)

This strategy exploits the capability of multiple, con-
current threads to cooperatively navigate the search space.
With this parallel approach, there is no workload division
as each processor runs the whole StocE algorithm. It has
been reported as a successful strategy for SA parallelization,
demonstrating good runtime trends [6]. A similar approach
is adopted in this work for StocE, utilizing the advantages
of AMMC in terms of relaxing the synchronization require-
ments among individual processors. Since StocE is strictly
sequential in nature, the asynchronous feature of AMMC
reduces the inter-processor communication cost, and can be
intuitively considered to perform well. Moreover, StocE
follows a search path based on randomization, which de-
termines the acceptance/rejection of moves. Hence, each of
these paths can be viewed as as a separate Markov chain
exploring a different region of the solution space (by us-
ing different random seeds). Moreover, the search process
is biased by propagating the best solution among all pro-
cessors. Thus, whenever any processor reaches a solution

3

Algorithm ParallelStocEAMMC MasterProcess
Notation
(* CurS is the current solution. *)
(* Cost(S) returns the cost of solution. *)
(* BestS is the best solution. *)

Begin
ReadUser Input Parameters()
ReadInput Files
ConstructInitial Placement
CurS = S0; //only master has the initial Solution
BestS = CurS;
CurCost = Cost(CurS);
BestCost = Cost(BestS);

Broadcast(CurS);
Repeat

Receivefrm Slave(BestCost);
Sendto Slave(verdict);
If (verdict == 1)

Receivefrm Slave(BestS);
Else

Sendto Slave (BestS);
EndIf

Until (All Slaves are done);
Return(BestS);

EndIf
End. (*Master Process*)

Figure 4. Master Process for Parallel AMMC
StocE Algorithm.

better than the others, it is communicated to all participat-
ing nodes, thus intensifying exploration around that region
of search space. This AMMC approach uses a master-slave
topology, the details of which are shown in Figure 4 and
Figure 5. The slave processor upon reaching a better solu-
tion sends the cost metric to the master node. The master
compares this with the current best received by it has. If
found better, the slave is instructed to send the entire solu-
tion; else, the master sends the solution it has to the slave.

5.2. Rows Division

In contrast to AMMC, this strategy attempts reduction
in effective workload by assigning a non-overlapping sub-
set of rows to each processor. A similar parallelization ap-
proach was first reported for Simulated Evolution [5]. In
this approach, every node is responsible for perturbing cells
only within its assigned subset of rows in the overall solu-
tion. Two different row allocation patterns are alternated
between the successive iterations. This ensures that a cell
has the freedom to move to any place in the solution. Fig-
ure 6 shows the allocation pattern of rows among three pro-
cessors. The left and right patterns show the distributionsin
odd and even numbered iterations, respectively.

Figures 7 and 8 show the parallel algorithms for the mas-
ter and slave nodes, respectively. As shown in these fig-
ures, each processor has the same initial solution and ir
calls thePERTURB function on its allocated subset of non-
overlapping rows. The placement generated by a node is
termed as a partial solution. These are sent to the master,
which combines all partial placements to generate a new
complete solution. The master then evaluates this new solu-

Algorithm ParallelStocEAMMC SlaveProcess
Notation
(* CurS is the current solution. *)
(* Cost(S) returns the cost of solution. *)
(* BestS is the best solution. *)

Begin
ReadUser Input Parameters()
ReadInput Files

ReceiveInitial Sol(CurS);
CurS = S0;
BestS = CurS;
CurCost = Cost(CurS);
BestCost = Cost(BestS);
Repeat

S = PERTURB(S, p);
/* perform a search in the neighborhood of s */
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost); /* updatep if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;
ρ = ρ − R;
/* Reward the search withR more generations */

Else
ρ = ρ + 1;

EndIf
Sendto Master(BestCost);
Receivefrm Master(verdict);
If (verdict == 1)

Sendto Master (BestS);
Else

Receivefrm Master(BestS);
EndIf

Until ρ > R
Return (BestS);

End

Figure 5. Slave Process for Parallel AMMC
StocE Algorithm.

tion and depending on the new cost, either incrementsrho

or decrements it byR. This new solution is then again
broadcasted to all slaves. This process continues till the tar-
get fitness value is achieved or termination criteria is met.

Figure 6. Rows Division

6. Experiments

The programs were written in C using the MPI library
(MPICH 1.2.5). A dedicated cluster of eight 2GHz Pen-
tium 4 machines, with 256MB of RAM, connected with 100
Mbps Ethernet, running Redhat Linux 7.2 (kernel 2.4.7-10)
was used. ISCAS-89 benchmarks circuits are used, which

4

Algorithm ParallelStocEMasterProcess
Notation
(* CurS is the current solution. *)
(* Φs is the partition selected to work upon. *)

Begin
ReadUser Input Parameters()
ReadInput Files
ConstructInitial Placement
Repeat

ParFor
Slave Process(CurS)
(* Broadcast Cur Placement. *)

EndParFor
S = PERTURB(S, p);
/* perform a search in the restricted neighborhood of s */
(* For each slave process. *)
ParFor

ReceivePartial Solutions
EndParFor
Make CompleteSolution
CurCost= Cost(S);
UPDATE(p, PrevCost, CurCost);
/* updatep if needed */
If (CurCost< BestCost) Then

BestS=S;
BestCost= CurCost;
ρ = ρ − R;
/* Reward the search withR more generations */

Else
ρ = ρ + 1;

EndIf
Until ρ > R

Return (BestSolution)
End. (*Master Process*)

Figure 7. Master Process for Rows Division
Parallel StocE Algorithm.

contain a set of circuits of various sizes in terms of number
of gates and paths.

Table 2 shows the performance of the AMMC approach.
It can be seen that the parallel algorithm achieves negli-
gible, if any, reduction in runtime with increasing proces-
sors. The reasons for such behavior are discussed later in
this section. The results of rows division strategy are given
in Table 3. The maximum number of processors that can
be used is limited by the number of rows, and hence for
small circuits, results are presented accordingly. As seen,
this workload division approach delivers excellent runtime
gains, especially for larger circuits. This is reflected in Fig-
ure 6, which shows the speedup achieved with increasing
number of processors for different circuits.

The intelligence and effectiveness of any optimization
algorithm is determined by how it navigates the search
space with a strong bias towards higher quality solutions.
The algorithmic intelligence of StocE lies in its perturbation

Table 2. Results for AMMC parallel strategy.

Circuit # µ(s) Seq. Parallel Times
Name Cells Time p=2 p=3 p=4 p=5 p=6
s1494 661 0.6 94 32 32 32 32 34
s3330 1961 0.6 186 96 95 89 92 95
s5378 2993 0.6 450 268 270 265 270 268
s9234 5844 0.6 1143 799 802 800 799 799
s15850 10383 0.6 2103 1908 1903 1908 1905 1908

Algorithm ParallelStocESlaveProcess(CurS,Φs)
Notation
(* CurS is the current solution. *)
(* Φs is the partition caculated by the slaves to work upon. *)
(* mi is modulei in Φs. *)

Begin
ReadUser Input Parameters()
ReadInput Files
ConstructInitial Placement
Repeat
Receive Placement

S = PERTURB(S, p);
/* perform a search in the restricted neighborhood of s */

SendPartial Solution
Until FitnessValue not achieved

End. (*Slave Pocess*)

Figure 8. Slave process for Rows Division
Parallel StocE Algorithm.

function, method of calculating and updating the control pa-
rameterp, and in selecting an appropriate termination crite-
ria represented byR. Though the AMMC approach works
well with SA [6], the results with StocE are very limited,
showing only runtime gains for upto two processors. The
apparent reason for this limited performance is that each
thread of StocE performs a compound move that optimizes
the solution to a large extent. In addition, the self award-
ing criteria of StocE, triggered on finding good solutions,
relaxes the termination criteria. This, in effect, gives each
processor enough time to keep improving the solution when
in local minima and thus the cooperation from other proces-
sors gives no noticeable benefit. As a result, StocE fails to
show any benefit using a parallel search.

Table 3. Results for rows division strategy.
Circuit µ(s) Time Runtime for Parallel StocE
Name Serial p=2 p=3 p=4 p=5 p=6
s1494 0.6 60 49 55 112 - -
s3330 0.7 1087 355 214 190 186 170
s5378 0.65 1047 495 365 311 305 293
s9234 0.65 2140 1261 917 704 616 615
s15850 0.65 3538 2876 1841 1543 1423 1167

Speedup - StocE Fixed Row-Division

0

1

2

3

4

5

6

7

2 3 4 5 6

Number of Processors

S
pe

ed
up

s1494

s3330

s5378

s9234

s15850

Figure 9. Speedup trend for Parallel StocE
with Rows Division

5

In the rows division parallelization approach, the work-
load is efficiently distributed by dividing the solution among
multiple processors, without disturbing the intelligenceof
the perturbation mechanism. Here, the Master processor
remains in charge of updating and controlling parameters.
This direct workload distribution was the primary reason
behind the favorable speedup trends seen with this strategy.

A comparison between parallel StocE algorithm using
rows division and parallel SA using AMMC as well as rows
division is now presented. The focus is on the speed-up
achieved for the best fitness values achieved by StocE. The
speed-up is defined as follows [1]: Lett1 denote the worst
case running time of the fastest known sequential algorithm
for the problem, and lettp denote the the worst case running
time of the parallel algorithm using p processors. Then, the
speedup provided by the parallel algorithm is

S(1, p) =
t1

tp
(1)

Figure 10 graphically depicts the results of comparison
using the s15850 ISCAS-89 benchmark. The figure shows
reduction in runtime against increasing number of proces-
sors as well as the corresponding speedups achieved. All
the speedups have been calculated using the best sequen-
tial time available, which is the sequential time of StocE.
It can be seen that for SA, AMMC gives better results as
compared to rows division parallelization model. In case of
StocE, since the AMMC model fails to produce any speedup
(Table 2), the results are not depicted. The rows division
method for StocE gives the best results compared to all
other strategies, as it achieves significant workload division
without affecting algorithm’s intelligence. As can be seen
for the benchmark circuit s15850 in Figure 10, StocE rows
division outperforms all the parallel versions by achieving
the target solution quality in 1167 seconds with 6 proces-
sors. To achieve the same solution quality SA using AMMC
model took 1500 seconds with 6 processors. SA with rows
division model stood last by achieving the targeted solution
quality in 3473 seconds with 6 processors and thus failed in
producing any speedup. Another interesting feature, mak-
ing StocE rows division model outstanding is the perfor-
mance enhancement using less resources. StocE rows divi-
sion gives speedup of nearly 2 employing 3 processors only
and still keeps improving on addition of extra processors
while SA AMMC used 5 processors to produce a slightly
better speedup than what StocE has achieved with 3 proces-
sors. Thus, the rows division model understandably works
best for StocE on large circuits with extensive number of
rows and cells. The comparisons were made across all the
circuits listed in Table 4 and similar trends were seen. It
was found that as the circuit size increases, the difference
among the performance of parallel StocE and SA imple-
mentations becomes more pronounced. The results shown

and discussed here represent the behavior of the parallel
strategies on a large size problem.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Processors

T
im

e
(s

ec
)

Time Reduction Trend (s15850)

StocE (Fixed Row−Division, 0.65)
SA (Fixed Row−Division, 0.65)
SA (AMC, 0.65)

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Number of Processors

S
pe

ed
up

Speedup Trend (s15850)

StocE (Fixed Row−Division, 0.65)
SA (Fixed Row−Division, 0.65)
SA (AMC, 0.65)

Figure 10. StocE Vs SA. The left and right fig-
ures respectively show the average run-time
reduction and average speedup.

7. Conclusions

In this paper, two applicable parallelization models for
StocE were presented for the VLSI cell placement prob-
lem. Low-Level parallelization appeared as an ineffective
approach, given the coarse grain parallel environment. A
parallel search model using AMMC approach was imple-
mented and was found to give very limited speedups while
a domain decomposition parallelization using rows division
strategy gave excellent results. Runtimes were compared
against the AMMC and rows division parallel SA models
and it was found that parallel StocE performs better than
parallel SA implementations.

References

[1] S. G. Akl. Parallel Computation: Models And Methods.
1997.

[2] T. G. Crainic and M. Toulouse.Handbook of Metaheuris-
tics, volume 57, chapter Parallel Strategies for Metaheuris-
tics, pages 465 – 514. Kluwer Academic Publishers, 2003.

[3] V.-D. Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol.
Essays and Surveys in Metaheuristics, volume 15, chapter
Strategies for the Parallel Implementation of Metaheuristics,
pages 263 – 308. Kluwer Academic Publishers, 2001.

[4] S. D. Ekşiog̃lu, P. M. Pardalos, and M. G. C. Resende.Mod-
els for Parallel and Distributed Computation - Theory, Algo-
rithmic Techniques and Applications, chapter Parallel Meta-
heuristics for Combinatorial Optimization, pages 179 – 206.
Kluwer Academic Publishers, June 2002.

6

[5] R. M. Kling and P. Banerjee. Esp: Placement by simulated
evolution. IEEE Transaction on Computer-Aided Design,
1989.

[6] S.-Y. Lee and K.-G. Lee. Synchronous and asynchronous
parallel simulated annealing with multiple markov chains.
IEEE Transactions on Parallel & Distributed Systems, Oc-
tober 1996.

[7] Y. G. Saab and V. B. Rao. Stochastic evolution : A
fast effective heuristic for some generic layout problems.
27th ACM/IEEE Design Automation Conference, pages 1–
6, 1990.

[8] S. M. Sait, M. I. Ali, and A. M. Zaidi. Evaluating Parallel
Simulated Evolution Strategies for VLSI Cell Placement. In
20th International Parallel and Distributed Processing Sym-
posium, April 2006.

[9] S. M. Sait and H. Youssef.Iterative Computer Algorithms
and their Application to Engineering. IEEE Computer So-
ciety Press, December 1999.

[10] S. M. Sait, H. Youssef, J. A. Khan, and A. El-Maleh. Fuzzi-
fied iterative algorithms for performance driven lowpower
vlsi placement.IEEE Proceedings of the International Con-
ference on Computer Design, 2001.

7

